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Abstract

I provide detailed studies of two types of novel superconducting systems. In the first, I

examine the effect of thermal (Gaussian) magnetic fluctuations on the superconducting tran-

sition of paramagnetically-limited superconductors under a Zeeman magnetic field. I consider

transitions into both the uniform and the modulated (Fulde-Ferrell-Larkin-Ovchinnikov) su-

perconducting states. I derive the Landau free energy expansion in powers of the supercon-

ducting order parameter, allowing for competition between the magnetic fluctuations and

the superconducting order. I determine the order of the transition at the upper critical field

and find that the fluctuations drive the transition, usually second-order, to first order at

intermediate temperatures for both the uniform and modulated states. I also compute the

thermodynamic signatures of the transition along the upper critical field. I use these results

to help explain experiments on the heavy-fermion superconductor CeCoIn5, for which the

superconducting transition is first-order at low temperatures and large magnetic fields. In

the second study, I use a T -matrix approach to examine the resonant state generated by a

single, non-magnetic impurity in multi-band superconducting systems. I consider extended

s-wave symmetry of the superconducting gap and allow for anisotropy of the gap along the

Fermi surface. I derive analytic expressions for the Green’s functions in the continuum and

identify the criteria for the formation of the impurity states, emphasizing the role the band

structure plays for existence of the resonant state. I then use these results to guide and

explain the results of numerical studies of the impurity states on a lattice. For my numerical

approach, I use dispersion relations appropriate for the description of the ferropnictides, a

recently-discovered family of iron-based superconductors. I map the impurity state in real-

space and emphasize how the features of these states can help identify the nodal structure

of the gap on each of the Fermi surface sheets.

vi



1. Introduction

Condensed matter physics concerns itself with explaining the physics of collective phe-

nomena in dense phases of matter. Of special interest are the ordered states that form when

some symmetry of the system is broken by the quantum-mechanical or electromagnetic inter-

actions between the material’s constituent parts. Superconductivity, one such state, arises

when the condensation of paired electrons breaks the U(1) gauge symmetry of the system.

The superconducting state is characterized both by infinite electrical conductance and the

screening of the bulk of the superconductor from applied magnetic fields. It has been the

subject of intense study over the past century, and is the state upon which my work for this

dissertation is based.

1.1 Conventional Superconductivity

1.1.1 Discovery and Description of Superconductivity

Discovered experimentally in 1911 by Heike Kamerlingh Onnes[1], superconductivity is

a low-temperature phase wherein the electrical resistance of a metal abruptly disappears

below a characteristic, or critical, temperature Tc. It was not until 1950 that Ginzburg

and Landau[2] provided a phenomenological theory to describe the properties of type II

superconductors in the vicinity of Tc. They did this by providing a small-parameter expansion

of the superconductor’s free energy in terms of a complex-valued order parameter ψ and

its gradients. Seven years later, Bardeen, Cooper, and Schrieffer (BCS) provided the first

microscopic description of superconductivity via a variational wave function that accounted

for the condensation of the electron pairs. Finally, in 1959, Gor’kov connected the BCS and

Ginzburg-Landau theories by showing that, near Tc, the Ginzburg-Landau order parameter

ψ is directly proportional to ∆, the amplitude of the BCS pair wave function [3].

1
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Figure 1.1: Density of states in conventional s-wave superconductor from both theory and ex-
periment. The figure on the left is the theoretical density of states N(ω)/NF = ω/

√
ω2 −∆2

as predicted by Bardeen, Cooper, and Schrieffer[5]. The figure on the right is the density of
states for lead at T=1.6K as measured in an electron tunneling experiment by Giaever in
1960[4]. In each case, the horizonal line represents the density of states in the normal phase.
The softened gap feature in the experimental data is due to the convolution of the density
of states with the energy derivative of the Fermi distribution function.

The conventional BCS theory shows how superconductivity arises when electrons of the

same energy, near the Fermi surface, form pairs of opposite momentum and spin, pairs which

then condense into a single quantum mechanical state. This condensate of “Cooper pairs” is

phase-coherent throughout the superconductor. The formation of the condensate lowers the

energy of the system by the energy Ucond = NF∆
2/2, where NF is the Fermi-level density

of states in the normal-phase. The size of a Cooper pair is ξ0 = ~vF/kBTc, where ~ is

the reduced Planck constant, vF is the Fermi velocity, and kB is the Boltzmann constant.

Experimentally, the superconducting state is characterized by the existence a energy gap,

of width 2∆, from which all of the single-electron states have been removed. The states

from within the gap are moved to higher energies when the superconductivity sets in and

coherence peaks form in the density of states at the energies ω = ±∆. In Fig. 1.1, I show the

density of states both as predicted by BCS theory and as first measured for lead in 1960[4].

All that BCS theory requires for pairing to take place is an attractive interaction between

the electrons near the Fermi surface. Any attractive interaction, no matter how weak, leads
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to pairing and, in the usual case, is due to the electron-phonon interaction. The situation

can be more interesting when the pairing arises from another source, and, in particular, non-

trivial shapes of the superconducting gap can result when pairs are formed by a repulsive

interaction. This falls beyond the scope of the original BCS theory, and I explain this

situation in more detail in Section 1.2.

1.1.2 Two Types of Superconductivity and Response to a Magnetic Field

In the superconducting state the Cooper-pair’s center-of-mass momentum couples to the

vector potential of an applied magnetic field. In 1933 Meissner and Ochsenfeld discovered the

perfect, macroscopic diamagnetic response of superconductors to a weak magnetic field [6].

This perfect diamagnetism results when supercurrents flowing along the surface screen the

applied field from penetrating the superconductor beyond the penetration depth λ. This

expulsion of the magnetic field occurs regardless of whether the field is applied before or

after cooling below Tc. This highlights the exotic nature of the superconducting state since

a simple zero-resistance metallic state would trap any field applied above its zero-resistance

transition. The diamagnetic response can drive the superconductor back into its normal

phase when the kinetic energy of the surface currents is greater than the condensation energy,

and the field at which this occurs is the thermodynamic critical field Hc,therm(T ).

There are two types of superconductor that behave very differently when the magnetic

field increases. Type I superconductors expel the field from the material until the energy gap

closes discontinuously in a first-order transition. In contrast, type II superconductors allow

the field to penetrate through supercurrent vortices, in the so-called mixed state that forms

above Hc1, before the order parameter vanishes in a second-order transition at the upper

critical field Hc2. The superconducting transitions in both types of superconductor can de-

scribed using Ginzburg-Landay (GL) theory. The GL theory allows for the superconducting

order parameter to change over the temperature dependent length ξL(T ), and ξL = ξ0 at
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Figure 1.2: Landau free energy F (|∆|2) near (a) a second and (b) a first order transition at
Tc. Coexistence of both states is possible near the first order transition, and the supercooling
(Tsc) and superheating (Tsc) temperatures mark the limits of this coexistence.

T = 0. In 1957, Abrikosov used the Ginzburg-Landau theory to predict the vortex state

in type II superconductors with λ <
√
2ξL(T ) [7]. In this case, the superconducting state

is destroyed at the orbital-limited upper critical field which is Hc2,orb = Φ0/2πξ
2
0 at T = 0.

Here Φ0 = hc/2e is the flux quantum.

The spins of the Cooper pairs also couple to the magnetic field through the Zeeman effect.

The effect of the Zeeman field is to spin-polarize the electrons that make up the Cooper pair,

a process called paramagnetic limiting. For most materials the paramagnetic effect is much

less significant that the orbital effects, hence systems in the paramagnetic limit are novel

and of interest. In Chapter 3, I describe the theory of superconductivity in the paramagnetic

limit and the spatially inhomogeneous superconducting states that it can bring about.
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Before moving on, I remind what is meant by first-order and second-order transitions,

both of which can be described by the GL theory. Recall that Ginzburg-Landau theory

describes the free energy of the superconducting state as an expansion in the order parameter

ψ, or equivalently, in the amplitude of the gap ∆. As shown in Fig. 1.2(a), a second-order

transition occurs when the minimum of the energy occurs for ∆ = 0 at the transition

temperature Tc. This means that the gap is zero at the transition and opens smoothly upon

cooling below Tc. For a first-order transition, which I shown in Fig. 1.2(b), the gap is finite at

the normal-to-superconducting transition. Notice that the energy of the normal (∆ = 0) and

the superconducting state are equal at the first-order transition, hence coexistence of the two

states can be expected near Tc. Near a first order transition, there are two free energy minima

in a temperature range about Tc, one each for the normal and superconducting states, and

this allows for hysteresis when cooling or heating the material through Tc. Specifically, the

normal state can exist down to the supercooling temperature Tsc, and the superconducting

state can exist at temperatures up to the superheating temperature Tsh. For a field-induced

superconducting transition, the supercooling field and the superheating field are analogous

to Tsc and Tsh, respectively.

1.2 Unconventional Superconductivity

The gap in an unconventional superconductor transforms according to a non-trivial rep-

resentation of the underlying lattice symmetry of the material. This can happen when

spin fluctuations provide the pairing mechanism in systems near incipient antiferromagnetic

(AFM) order, and the strong on-site Coulomb energy reduces the amplitude of on-site pair-

ing and enhances the pairing on nearest-neighbor sites. This results in an anisotropic gap

function in momentum space and can lead to a sign change in the gap on different parts of

the Fermi surface (FS) or between different FS sheets [8].
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The work for this dissertation is based upon two families of layered materials where the

electronic structure is nearly two-dimensional (2D). The first is the isostructural cerium-

based compounds, called the 115’s, of which I focus on CeCoIn5[9] and its d-wave pairing

state. The other is the family of multi-band iron-based compounds that were discovered

relatively recently[10], for which the gap structure remains a topic of debate. Below I give

a brief overview of the unconventional superconducting state in these two materials, and I

present a more detailed description of each in Chapters 2 and 6, respectively.

1.2.1 Heavy-Fermion Superconductivity

Superconductivity in heavy-fermion materials arises out of a metallic state with strong

electronic correlations that are due to the presence of a lattice of magnetic moments. As

conduction electrons propagate through the system, they can scatter off of the local moment.

In the single-ion Kondo effect, the electron forms a bound state with the local moment at

T = 0, and the precursor to this bound state is evident in the enhanced scattering of electrons

at low-T . When there is a lattice of magnetic ions, the conduction electrons collectively

experience resonant scattering at low temperatures so that the quasiparticle effective mass

dramatically exceeds the band mass. This reduces the Fermi velocity of the electrons and

increases the orbital-limiting fieldHc2,orb ∝ v−2
F . The result is that the orbital effect decreases

in importance when compared to the paramagnetic effect.

Superconductivity in CeCoIn5 forms from heavy electrons that reside on a corrugated

Fermi surface that is open along the crystalline c-axis [11]. Since the system is close to

AFM order[12, 13, 14, 15], the pairing of the heavy electrons is likely mediated by AFM spin

fluctuations. This results in the so called d-wave order parameter that changes sign across

the four gap nodes on the Fermi surface.

1.2.2 Multi-Band Superconductivity

The pnictides are layered materials with Fermi surfaces comprised of several quasi-2D
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sheets. In the pnictides, the pairing occurs between states that reside on different Fermi

surface sheets that are well-separated in momentum space. In addition, the strong on-site

Coulomb repulsion induces anisotropy of the superconducting gap on some of the sheets. This

gap anisotropy can lead to ”accidental” nodes, i.e., nodes that are not enforced by symmetry,

or may simply result in a deep minimum in the gap on the FS sheet. The details of the

gap shape have been under intense investigation in the three years since high-temperature

superconductivity was first reported in these compounds [16]. It is this open question of the

detailed shape of the gap that motivates my study of superconductivity in these systems.



2. The Heavy-Fermion Superconductor
CeCoIn5

As I described Section 1.2.1, superconductivity in heavy-fermion materials arises out of

a metallic state with strong electronic correlations that are due to the lattice of magnetic

ions. For CeCoIn5, whose crystal structure I show in Fig. 2.1, the magnetic ion is cerium

which has a valence shell comprised of a single f electron that provides a magnetic moment

of 2.6µB. Measurements on CeCoIn5 indicate that the conduction electrons responsible for

superconductivity are quite heavy and reside primarily on the quasi-2D FS sheets [11].

Figure 2.1: Crystal structure of CeCoIn5 and the quasi-2D Fermi surface responsible for
superconductivity. The atomic position for the crystal structure are taken from Ref. [17].
The Fermi surface, with the extremal orbits α1, α2, and α3, is adapted from Ref. [11].

Mapping the Fermi surface by de Haas−van Alphen quantum oscillations provides one

such measure of the electrons’ mass [18]. In Fig. 2.1, I reproduce the Fermi surface with the

largest f -electron contribution. The cyclotron masses are mc = 10− 30me for the extremal

orbits α1, α2, and α3 [11]. An even stronger indication that the electrons are heavy comes

8
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from measurements of the specific heat, C, where the value of the Sommerfeld coefficient,

γ = C/T , is roughly proportional to the effective mass m∗.

As shown in Fig. 2.2, the normal state value is C/T & 300 mJ/mol K−2 for CeCoIn5,

which is several orders of magnitude larger than the typical free-electron result. The specific

heat at the superconducting transition also indicates the presence of strong interactions,

since the specific heat jump ∆C/γTc = 4.5 in CeCoIn5 is over three times greater than the

weak-coupling BCS result [9, 19].

Figure 2.2: Specific heat divided by temperature vs. temperature in CeCoIn5, adapted from
Ref. [9]. Data is for both the superconducting state with no magnetic field (open squares)
and the 50 kOe field-induced normal state (solid circles). A contribution from the indium
nuclear quadrupole moment has been removed. The inset shows the entropy of the system
as a function of temperature under the same magnetic field conditions.

2.1 Residual Magnetic Fluctuations

The specific heat C = −T∂S/∂T , hence the jump in C/T at Tc indicates the rate at

which entropy is released at the superconducting transition. Usually, the jump in C/T at Tc

is due to the formation of Cooper pairs, but any reduction in the material’s entropy at Tc also

contributes to the jump. Since the jump is so large for CeCoIn5, one is motivated to seek out
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other sources of entropy. In CeCoIn5, the f -electrons that form the Kondo lattice are not

completely screened by the onset of superconducting order, and the uncompensated portion

of the local moments can fluctuate freely [9, 12]. Furthermore, the material’s proximity to

magnetic order implies the existence of low-energy magnetic fluctuations that also contribute

to the entropy of the system [12, 13, 14, 15].

These experimental observations motivated Kos, Martin, and Varma to propose a simple

Landau model of superconductivity that accounts for both superconductivity and thermal

(Gaussian) magnetic fluctuations[20]. They included in their free energy expression a term

proportional to |∆|2|M|2, where M is the magnetization, to account for the competition

between the two orders and integrated over the fluctuations to obtain a renormalized free

energy. The competition between two orders allowed them to explain partially the large

specific heat jump at Tc(B = 0), but it also implied a concomitant decrease in the transition

temperature Tc. This partial suppression of the zero-field transition implied an analogous

suppression of the transition in an applied field, which in turn suggested that the presence

of thermal magnetic fluctuations might explain other puzzling features of the phase diagram

for CeCoIn5 as I explain below.

2.2 Evidence of Unconventional Superconductivity

According to most experimentsrefs, superconductivity in CeCoIn5 has d-wave symmetry.

In addition, CeCoIn5 is very near the paramagnetic limit [21]. This is because the heavy

electron mass lowers the kinetic energy associated with the orbital limiting field Hc2,orb,

so that superconductivity is destroyed mostly through the Zeeman-splitting of the spin-

degenerate Fermi surfaces. The destruction of superconductivity through the Zeeman effect

is called Pauli or paramagnetic limiting, see my discuss of this phenomenon the next chapter.

The ratio between the estimated orbital critical field Hc2,orb and the Pauli-limiting field

HP for CeCoIn5 is
√
2Hc2,orb/HP ≃ 3.5 [22]. It was also proposed that the unusual field
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dependence of the vortex lattice form factor of CeCoIn5 is due to the Zeeman-splitting the

Fermi surfaces [23, 24]. In this limit, it is possible to realize the spatially-modulated [Fulde-

Ferrell-Larkin-Ovchinnikov (FFLO)] superconducting phase. In point of fact, experiment

proves the existence of a novel superconducting phase in CeCoIn5 at low temperature and

high fields (LTHF), see Fig. 2.3, which early experiments tentatively identified as FFLO [21,

25, 26, 27].

Figure 2.3: Temperature- magnetic field phase diagrams field for CeCoIn5, adapted from
Ref. [21]. The field directions for the left hand diagram are in the Ce-In planes while the
field orientation for the right hand diagram is parallel to this plane. Insets are close ups of
the LTHF phase as adapted from Ref. [28].

It is tempting to think of CeCoIn5 as being in the strict paramagnetic limit, but several of

the experimental features of the transition into the LTHF phase are not fit by the established

theories of Pauli-limiting in two dimensions. The usual 2D theory of d-wave superconduc-

tivity in the Pauli limit predicts a second order normal-to-superconducting transition along

the entire critical field line Bc(T ) [29]; however, experiments show that this is not the case

for CeCoIn5. Specifically, as I show in Fig. 2.3, the normal-to-superconducting transition in

CeCoIn5 becomes first order below the temperature T0 and remains first order down to the
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lowest temperatures accessible [21]. Thus the transition into the LTHF state, which occurs

along Bc(T ) at low T .

There are theoretical predictions under which the normal-to-superconducting transition

may become first order. These include strong Fermi-liquid enhancement of the magnetic sus-

ceptibility [30, 29] as well as impurity scattering in the resonant limit [31]. Also, CeCoIn5 is

not completely Pauli-limited [21] and superconducting fluctuations in the presence of orbital

effects can drive the transition to first order over an intermediate temperature range [32, 33].

In this study, I propose a simple description of how first order transitions may naturally

emerge over a part of the phase diagram. Working in the strict paramagnetic limit, I show

that the competition between superconductivity and thermal magnetic fluctuations can drive

the transition to first order both for the uniform and the FFLO state at intermediate tem-

peratures. I track the suppression of the critical field Bc(T ) and discuss how the magnetic

fluctuations affect the thermodynamics at the superconducting transition.



3. Superconductivity in the Paramagnetic
Limit

3.1 The Zeeman Effect and Paramagnetic Limiting

Under a purely Zeeman field, B, the electron spin couples to the field, but the diamagnetic

response of the superconductor to the field is irrelevant. Mathematically, the Zeeman effect

is described by the Hamiltonian

HZeeman =
∑
k

µB
(
c†k↑ck↑ − c†k↓ck↓

)
, (3.1)

where k is the electron momentum and the spin for the c†k↑ck↑ (c†k↓ck↓) is along (opposite)

the magnetic field. The magnitude of electron’s magnetic moment is µ = gµB/2, where µB

is the Bohr magneton and g is the conduction electron g-factor. As is clear from Eq. 3.1, the

electrons with spin along (‘up’) or opposite (‘down’) the Zeeman field are raised or lowered in

energy, respectively, when compared to electrons in the absence of the magnetic field. Thus,

with increasing B field, the Fermi surface for the spin-up (spin-down) electrons encloses a

smaller (larger) volume in k-space, as I show in Fig. 3.1.

This detuning of the two Fermi surfaces is in direct conflict with spin-singlet supercon-

ductivity, since paramagnetic pair-breaking occurs as the Zeeman field increases the energy

of the spin-singlet with respect to spin-polarized s = 1. In an isotropic spin-singlet supercon-

ductor, two Fermi-level electrons with different spins pair up so that their net momentum

is zero. I represent this schematically in the inset to Fig. 3.2, where the electrons reside

on opposite sides of the spin-degenerate Fermi surface. If the Zeeman field polarizes the

electrons and hence splits the two Fermi surfaces, then there are no Fermi-level electrons of

opposite momentum with which to form the Cooper pairs; however, if the system remains

in the superconducting state, then there is an energy cost equal to the paramagnetic energy

13
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Figure 3.1: Fermi surfaces for normal-state free electrons in the absence (left) and presence
(right) of a Zeeman field B. In the absence of the field, the Fermi surfaces are degenerate
for the two spin species. A finite field increases the number of spin-down electrons and thus
increases k-space volume enclosed by the corresponding Fermi surface. The volume enclosed
by the spin-up Fermi surface decreases by an amount equal to the volume increase of the spin-
down Fermi surface. Pauli-limiting occurs when the Zeeman B destroys superconductivity
by lifting the spin degeneracy of the Fermi surfaces so that there are no electrons of opposite
momentum with which to form Cooper pairs. The wave vector kF is the Fermi momentum.

of the polarized normal state. The superconductor then returns to the normal state one the

paramagnetic energy cost is greater than the condensation energy of the superconducting

state. This process is called paramagnetic, or Pauli, limiting.

In Fig. 3.2, I show the (T,B) phase diagram for a paramagnetically-limited system

with isotropic s-wave superconductivity. The second order transition into the uniform su-

perconducting state, ∆(r) = ∆0, becomes first order below a characteristic temperature

TP ≃ 0.56Tc0 [34]. Here Tc0 is the transition temperature in zero magnetic field and for which

I show the derivation in Appendix A.1. At T = 0, superconductivity is destroyed when the

energy of the polarized normal state equals the superconducting condensation energy (the

Clogston[35]-Chandrasekhar[36] limit). This occurs at the Pauli field HP = ∆/(
√
2µ). Be-

cause the transition below TP is first order, there is also a supercooling field below which

the normal state cannot exist.
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Figure 3.2: Phase diagram for spatially-uniform, paramagnetically-limited superconductiv-
ity. The transition is second order (solid blue) at high temperatures and is first order (dashed
blue) at low temperatures. The supercooling field (dotted magenta) is also shown. The inset
shows the zero-momentum Cooper pair on the degenerate Fermi surfaces.

3.2 Finite-Momentum Pairing and the FFLO State

An alternative to destroying the uniform superconductivity is instead to pair electrons

of opposite spin on the Zeeman-split Fermi surfaces. In this situation, the Fermi-level elec-

trons of course have the same energy but now have momenta differing by a wave vector

Q ∼ µB/(~vF ), where vF is the Fermi velocity. The finite center of mass momentum of

the Cooper pairs leads to a spatial modulation of the order parameter [37, 38] and allows

superconductivity to survive at fields above the Clogston-Chandrasekhar limit.

One-dimensional spatial modulation of the order parameter can be of two general types:

the phase-modulated Fulde-Ferrell (FF) state, ∆(r)=∆0e
iQx, and the amplitude modulated

Larkin-Ovchinnikov (LO) state, ∆(r)=∆0 sin(Qx). The phase modulation of the FF state

describes a current-carrying state with an associated kinetic energy, thus the LO state is

generally the energetically favorable phase.
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Figure 3.3: Phase diagram for 2D s-wave superconductor with LO modulation of the order
parameter at low T and high B. The transition is second order into both the uniform
(dark blue) and LO (orange) states. The second order transition (light blue) between the
uniform and modulated states is taken from Ref. [30]. The upper critical (dashed green)
and supercooling (dotted green) fields from Fig. 3.2 are shown for reference. Inset shows the
nonzero-momentum Cooper pair on the Zeeman-split Fermi surfaces, and the magnitude of
the modulation wave vector Q is Q ∼ |k↓ − k′

↑| = µB/~vF .

In the analysis of one-dimensional modulation for isotropic, s-wave superconductors, the

transition into the FFLO state is found to be second order in two dimensions and first order in

three[30, 39, 40, 41]. In superconductors with nodes, such as d-wave CeCoIn5[9, 42, 43, 44],

the normal-to-FFLO transition is second order in both two[29] and three[45] dimensions.

Although I do not consider the existence of a vortex lattice, it is worth noting that the

transition to a combined vortex and LO state is also expected to be of the second order[46].

The predicted structure of the modulated state in s-wave systems is still not well estab-

lished. In the absence of spin-orbit coupling, the direction of Q in real space can be chosen

arbitrarily, and a superposition of plane waves with modulations along different directions

may yield lower energy than for a single-mode modulation [47, 48]. In Fig. 3.3, I show the

phase diagram for a two-dimensional s-wave superconductor in the paramagnetic limit, al-

lowing for single-mode modulation of the superconducting order parameter. As shown, at



17

0 0.2 0.4 0.6 0.8 1
T / T

c0

0

0.1

0.2

0.3

0.4

µB
 / 

2π
T

c0 Normal

Uniform SC

Nodal

Antinodal

T
P

Q
Nodal

Q
Anti∆ FS

Figure 3.4: Phase diagram for 2D d-wave superconductor with LO modulation of the order
parameter at low T and high B. Moving from high to low temperature, the normal-to-
superconducting transition is second order into the uniform (dark green), nodally-oriented
LO (purple), and anti-nodally (magenta) states. The second order transition (black) between
the uniform and nodally-oriented states and the first-order transition (dashed tan) between
the nodally and anti-nodally oriented states are taken from Ref. [29]. The two possible
directions of the modulation wave vector Q are illustrated in the upper-right.

the point TP the second order transition into the LO state preempts what would be the first

order transition into uniform superconducting state and remains second order all the way

down to T = 0. The transition between the uniform and LO states is second order, and the

phase boundary between the two states meets the upper critical field at TP .

The situation is different for systems with unconventional gap symmetry, such as d-wave

systems, due to the presence of nodes in the superconducting gap [45, 49, 29, 50]. For a

d-wave gap, the modulation wave vector is preferentially along either the nodal or anti-

nodal direction, depending on both the temperature and the purity of the sample[29, 31]. In

Fig. 3.4, I show the phase diagram for a two-dimensional d-wave superconductor with single-

mode modulation, where the LO state is more advantageous than FF modulation. The

transition into the modulated states below TP is second order with the modulation along the

nodal (antinodal) direction above (below) T ≃ 0.06Tc0[29, 51, 47]. As for the s-wave system,
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the transition between the uniform and modulated state is second order; however for the

d-wave system there is within the superconducting phase an additional first order transition

between the states with nodally- and antinodally- oriented modulation wave vector.

3.3 Microscopically-derived Landau Theory of the Para-

magnetic Limit

In order to derive the Landau expansion of the free energy F , I begin with the partition

function

Z = Tr(e−βH) = e−βF (3.2)

where β = T−1, H is the mean-field Hamiltonian

H =
∑
k,σ

ϵkσc
†
kσckσ +

1

|λ|
∑
q

|∆q|2 −
∑
q,k

Y(k̂)
(
∆qc

†
k+q↑c

†
−k↓ +∆⋆

qc−k↓ck+q,↑

)
, (3.3)

and the trace is taken over all of the eigenstates of H. Here σ =↑ (σ =↓) denotes the

orientation of the electron with the spin along (opposite) to the field direction. Here ϵk is

the band energy measured with respect to the chemical potential so that ϵk↑ = ϵk + µB

and ϵk↓ = ϵk − µB. In Eq. (3.3), |λ| is the strength of the pairing interaction, Y(k̂) is a

normalized basis function that transforms according to an irreducible representation of the

crystal point group and describes the gap symmetry, and k̂ denotes position on the Fermi

surface.

I assume, for simplicity, a separable pairing interaction, so that the spin-singlet order

parameter is ψ(k,q) = Y(k̂)∆q, with the amplitude ∆q self-consistently determined from

∆q = −|λ|
∑
k

Y(k̂) ⟨ck+q↑c−k↓⟩ . (3.4)

Here ⟨· · · ⟩ indicates the thermal average

⟨ck+q↑c−k↓⟩ =
Tr(e−βHck+q↑c−k↓)

Tr(e−βH)
. (3.5)
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Uniform superconducting states have the single non-vanishing Fourier component with q = 0,

while modulated states correspond to one or more components with q ̸= 0. For simplicity,

and without loss of generality, I use a model of a 2D circular Fermi surface. I use the

azimuthal angle, θ, to parameterize the position on the Fermi surface, and I choose Y(k̂) ≡

Y(θ) = 1 and Y(θ) =
√
2 cos 2θ for s- and d-wave gaps, respectively.

As I show in Appendix A, the gap amplitude in Eq. (3.4) has to minimize the free energy.

Hence it determines, at the mean field level, the Landau expansion of the free energy density

FL in powers of ∆q,

FL =
∑
{qi}

α̃qi
|∆qi

|2 +
∑
{qi}

γ̃q1,...,q4∆q1∆
∗
q2
∆q3∆

∗
q4
δq1+q3,q2+q4

+
∑
{qi}

ν̃q1,...,q6∆q1∆
∗
q2
∆q3∆

∗
q4
∆q5∆

∗
q6
δq1+q3+q5,q2+q4+q6 .

(3.6)

The coefficients of this expansion are combinations of the normal state Green’s functions

as described in Appendix A. The summation over {qi} in Eq. (3.6) includes all possible

combinations of the allowed Fourier components of ∆(r): qi = 0 for a uniform gap amplitude,

single mode qi = Q for the FF modulation, and qi ∈ {Q,−Q} for the LO phase. In the

following I restrict myself to the comparison of the free energies of these three phases, finding

the one most energetically favorable and the corresponding wave vector Q.

I determine the phase transition line Bc(T ) by finding, at a given temperature, T , the

highest Bc of the three phases I compare. In each phase I find Bc(T ) = max(Bc(T,q))

by unrestricted maximization with respect to the modulation wave vector. To simplify

my analysis, I introduce the dimensionless energy density, f = FL/NFT
2
c0, where NF is

the 2D normal state density of states at the Fermi level. I also introduce the dimensionless

amplitude δ0 = ∆0/Tc0 where ∆0 is the SC gap amplitude and Tc0 is the mean-field transition

temperature at B = 0 in the absence of magnetic fluctuations. The reduced temperature

and magnetic field are given by t = T/Tc0 and b = µB/(2πTc0) respectively, and I have set

kB = ~ = 1 throughout this study.
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3.3.1 Uniform Superconducting State

For the uniform state, ∆q = ∆0δq,0, I find

fu(T,B) = αu|δ0|2 + γu|δ0|4 + νu|δ0|6 , (3.7)

with the coefficients determined from Eqs. (A.25)-(A.16),

αu = ln (t) + Re

[
Ψ

(
1

2
+ i

b

t

)]
−Ψ

(
1

2

)
, (3.8a)

γu = −1

8

⟨|Y(θ)|4⟩FS

(2πt)2
Re

[
Ψ(2)

(
1

2
+ i

b

t

)]
, (3.8b)

νu =
1

192

⟨|Y(θ)|6⟩FS

(2πt)4
Re

[
Ψ(4)

(
1

2
+ i

b

t

)]
. (3.8c)

Here Ψ (Ψ(n)) is the digamma (nth order polygamma) function, and ⟨· · · ⟩FS =
∫
dθ/(2π).

For the s- and d-wave symmetries of the gap, Eq. (A.19), my coefficients agree with those in

Refs. [39, 45].

3.3.2 Fulde-Ferrell Superconducting State

For the spatially-inhomogeneous superconducting state, the coefficients in Eq. (3.6), de-

pend on the direction of modulation. Since the modulation wave vector Q ∼ ξ−1
0 ≪ kF , for

two particles at locations θ and π + θ on the Fermi surface, there is an energy mismatch

vF ·Q = vFQ cos(θ−θQ), where θQ is the modulation direction with respect to the crystalline

a axis. This energy mismatch enters in Eq. (A.25) with qi = Q.

Recall that the polygamma functions in Eq. (3.8) originate from the summation over

Matsubara frequencies, and that their argument is determined by the energy mismatch of

the particles in the Green’s functions in Eqs. (A.25)-(A.16). Consequently, the coefficients

of the free energy expansion in the FF state are given by the same polygamma functions

as for the uniform case, Eq. (3.8), but with the arguments reflecting the energy difference

µB + vF ·Q. Hence in the expansion fFF (T,B) = αFF |δ0|2 + γFF |δ0|4 + νFF |δ0|6, I find

αFF = ln (t)−Ψ

(
1

2

)
+Re

⟨
|Y(θ)|2Ψ

(
1

2
+ i

b+ q̄

t

)⟩
FS

, (3.9)
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where q̄ = q cos(θ − θq) and q = ξ0Q/2. Similarly, γFF and νFF are given by expressions

identical to Eqs. (3.8b) and (3.8c) under the replacement b→ b+ q̄ and averaging both the

digamma functions and the basis functions Y(θ) together over the Fermi surface.

It follows that for any anisotropic superconductor the direction of the modulation and the

shape of the gap cannot be separated. For a two-dimensional d-wave superconductor that I

consider, the modulation along the nodal/antinodal direction is preferred in a pure material

above/below T ≃ 0.06Tc0[29, 51, 47], although as the impurity scattering is increased mod-

ulation along a node becomes favorable even for T < 0.06Tc0[31]. Therefore, below I focus

on the modulation along the gap nodes.

3.3.3 Larkin-Ovchinnikov Superconducting State

For the Larkin-Ovchinnikov (LO) state, the quadratic component in Eq. (3.6) includes

two terms identical to Eq. (3.9) but summed over q = ±Q with ∆±Q = ∆0/2. Both terms

for LO are identical when averaged over the Fermi surface, hence αLO = αFF/2. Thus the

second order transition line, Bc, determined from α = 0, is identical for both the FF and

LO phases. The relative stability of the FF and LO phases is determined by comparing the

quartic coefficients γFF and γLO at the transition, with the smaller of the two corresponding

to the thermodynamically stable SC state because fSC − fN = −α2/(2γ).

The quartic coefficient, γLO, is obtained by summing the six terms in Eq. (A.15) with

qi ∈ {Q,−Q}, subject to the constraint δq1+q3,q2+q4 . This yields

γLO = tRe

⟨
∞∑
n=0

|Y(θ)|4
ω̄n,b

(
3ω̄2

n,b − q̄2
)

128π2
(
q̄2 + ω̄2

n,b

)3
⟩
FS

, (3.10)

where ω̄n,b = t(n + 1
2
) + ib. Twenty distinct terms contribute to the sixth order Landau

coefficient which becomes

νLO = −tRe

⟨
∞∑
n=0

|Y(θ)|6
ω̄n,b

(
q̄6 − 33ω̄2

n,bq̄
4 + 35ω̄4

n,bq̄
2 + 5ω̄6

n,b

)
2048π4

(
q̄2 + ω̄2

n,b

)5 (
9q̄2 + ω̄2

n,b

) ⟩
FS

. (3.11)
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3.4 Determination of Transition Field and Optimal Mod-

ulation Wave Vector

For each phase, with the free energy density written as

f = α(t, b, q)|δ0|2 + γ(t, b, q)|δ0|4 + ν(t, b, q)|δ0|6 , (3.12)

I determine the critical field bc(T ) and the optimal modulating wave vector q0. I allow for

possible second and first order transitions, and compare the results to determine the order

of the physical transition.

The second order transition field at fixed t is the maximal value of bc (with respect to

q) for which α(t, bc, q) = 0, and γ(t, bc, q0) > 0. The corresponding optimal q0 determines

whether the transition is into a uniform (q0 = 0) or modulated state. In the vicinity of the

transition line

|δ0|2 = − α(t, bc, q0)

2γ(t, bc, q0)
≈ α′(tc − t)

2γ(tc, bc, q0)
, (3.13)

where α′ = ∂α(t, bc, q0)/∂t|t=tc . With this value I can compute the free energy difference

between the normal and the superconducting states and therefore determine the thermody-

namic properties such as the specific heat jump at the transition, see below.

In the region where γ < 0, the first order transition occurs once the minimum in the free

energy shifts discontinuously to δ0 ̸= 0 before the quadratic coefficient α changes sign [52].

This happens along the line defined by

γ2(t, bc, q)− 4α(t, bc, q)ν(t, bc, q) = 0 , (3.14)

where the new minimum first appears at

|δ0|2 = − γ

2ν
. (3.15)

For example, I show in Fig. 3.5 the result of the Landau expansion for the unmodulated

s-wave state in the paramagnetic limit. As shown, the Landau expansion only captures the
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Figure 3.5: Landau theory prediction of upper critical field for s-wave system with uniform
gap. The inset shows the superconducting gap amplitude along Bc(T ) measured with respect
to ∆00, the gap amplitude at zero temperature and field. The first order transition field
predicted by Landau theory (dashed orange) closely follows the mean-field transition (dashed
blue) provided ∆(T ) ≪ ∆00. When ∆(T ) is large, i.e., here for T . 0.45Tc0, the Landau
expansion begins to break down and incorrectly predicts Bc(T ). As in Fig. 3.2, the transition
is second order (solid blue) for T > TP and supercooling field (dotted magenta) is also shown.

line of first order transition while ∆(T ) is much smaller than the gap at zero temperature

and field ∆00, which I calculate in Appendix A.2 for both s- and d-wave gap symmetries.

I locate the first order transition at a given t by unrestricted maximization, with respect

to q, of the field bc that satisfies Eq. (3.14). At each temperature, I locate the maximal field

bc(q) = bc(q0) for which the coefficient α(t, bc, q0) = 0. If I find γ(t, bc, q0) > 0, the transition

is second order. If γ(t, bc, q0) < 0, I maximize bc for Eq. (3.14), checking that γ remains

negative and that the free energy remains bounded from below. The latter condition requires

ν(t, bc, q0) > 0, which is satisfied throughout the region of the first order transition if the full

q dependence of ν is kept, see Eq. (3.11). This is in contrast to the sixth order coefficient’s

changing sign within the gradient expansion. The first and second order transition lines

meet at a critical point t⋆ where γ(t⋆, bc, q0) = 0. For the d-wave gap, I compare the critical

fields for nodal and antinodal orientations of the modulation wave vector Q and verify that
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Figure 3.6: Optimal wave vector q0(bc(T )) (solid) and quartic coefficient γ(Bc(T )) (dot-
dashed) obtained by unrestricted maximization of bc(t) for LO state. Quartic coefficient for
small-q expansion (dashed) is also shown. Upper/lower panels are for s and d-wave (q along
node) gaps.

modulation along gap nodes is preferred above T ≃ 0.06Tc0. As shown in Fig. 3.6 for LO

modulation, the quartic coefficient remains positive and the transition is second order on

both sides of tP .

3.5 Gradient Expansion of the Free Energy

Analysis of the FFLO states is often carried out within the Ginzburg-Landau theory,

which entails an expansion of the superconducting state free energy in both the amplitude

and the gradient of the order parameter [39]. Such an expansion is justified in the immediate

vicinity of TP , but its region of validity is very narrow. I obtain the gradient expansion

of the free energy by expanding Eq. (3.12) in powers of q. This requires me to expand
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Eqs. (3.9)-(3.11) in powers of q while retaining the corresponding powers of Y(θ). The

resulting expansion

f = (α0 + α2q
2 + α4q

4)|δ0|2 + (γ0 + γ2q
2)|δ0|4 + ν0|δ0|6 (3.16)

contains only even powers of q since the system is isotropic, and the coefficients in Eq. 3.16

are identical to those obtained for s-wave and d-wave superconductivity in Refs. [39] and

[45], respectively. Since each subsequent term in the expansion contributes an extra qG0
σ in

the Matsubara summation of Eqs.(A.25)-(A.15), I have αn ∝ γn−2 ∝ Re(Ψ(n)(1
2
+ i b

t
)) for

n ≥ 2. Consequently α2 and γ0 change sign at exactly the same temperature, tP = TP/Tc0,

in the absence of magnetic fluctuations. The modulated state with q20 = −α2/(2α4) emerges

at lower T via a second order transition described by

f =

(
α0 −

α2
2

4α4

)
|δ0|2 +

(
γ0 −

γ2α2

2α4

)
|δ0|4 + ν0|δ0|6 (3.17)

with the renormalized quartic term positive. The results obtained from an examination of

Eq. (3.17) are identical to those discussed in Refs. [39, 45].

The modulation wave vector increases rapidly along Tc(B) < TP and becomes comparable

to the inverse of the superconducting coherence length, ξ−1
0 = [~vF/2πTc0]−1, rendering the

gradient expansion invalid. As I show in Fig. 3.6, below tP the transition is into modulated

state with the wave vector that reaches values of q0 ≈ 0.2ξ−1
0 and higher. The gradient

expansion loses accuracy as the expansion parameter increases and eventually fails when q0

becomes too large. This failure of the expansion is manifested in the significant discrepancy

between the values for the quartic coefficient at the optimal wave vector within the gradient

expansion and in the full evaluation, shown in Fig. 3.6.



4. Thermal Magnetic Fluctuations

Soft magnetic modes exist in systems that are close to ordering magnetically. In the con-

tinuum limit, the fluctuations of the magnetization fieldM(r) are described by the Gaussian

free energy

FM [M] =
1

2

∫
drχ−1M(r)2 . (4.1)

Here I have ignored the the momentum dependence of χ(q), assuming the that the momenta

relevant for superconductivity are Q ∼ ξ−1
0 ≪ π/a (where a is the lattice spacing). I do not

discuss here the role of the (possibly singular) antiferromagnetic (AFM) fluctuations in me-

diating the superconducting pairing: this role can only be addressed within the framework

of specific microscopic theories[53, 54, 55]. My task is to consider the competition of super-

conductivity and the long-wavelength fluctuations of the magnetization, whether uniform

or staggered, in systems with susceptibility χ that is much larger than the dimensionless

Pauli susceptibility for typical metals χP ≈ 10−6. Although the susceptibility χ ≫ χP is

enhanced, the system is not close to ferromagnetic order (χ≪ 1), hence I do not distinguish

between B and the applied magnetic field H for the rest of the study. In the same spirit, I

ignore M ·H in the magnetic free energy since its contribution to the averaged free energy

is a factor of χ smaller than the corrections I consider.

In Ref. [20] the susceptibility was taken to be temperature-dependent, in agreement with

experiment [12], χ(T ) = χ0Tsf/(T + Tsf ) where Tsf is a characteristic energy scale for the

low-energy spin fluctuations. While I make use of this expression to make contact with

Ref. [20], my main results are qualitatively the same for a temperature independent χ of the

same magnitude. I also ignore the field dependence of χ. Finally, I do not account for the

quantum fluctuations of M and consider only thermal fluctuations of the magnetization.
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Recall that my goal is to investigate the effects of long-wavelength magnetic fluctuations

on the N-SC transition. I include the competition between magnetism and superconducting

orders via the lowest order term allowed by symmetry in the free energy expansion,

Fsc,M [∆,M] =
η

2

∫
dr|∆(r)|2M(r)2 , (4.2)

where the coupling constant η > 0 makes coexistence of the two orders unfavorable. In a

simple system it would be possible to determine η from microscopics, by expanding B =

H + 4πM in each Green’s function in the powers of the fluctuating magnetization and

introducing the correlator ⟨M(r)M(r′)⟩ that is proportional to the susceptibility, in analogy

with Ref. [56]. Such an expansion produces an M2|∆|2 term. In a complex system with f -

electrons I cannot determine the coefficient of this term microscopically, and I use Eq. (4.2)

with a phenomenological parameter η to explore the salient features of the model. My

consistency checks on the choice of η are the magnitudes of the jump in ∆0 and of ∆M/M

across the first order transition line. I find maximal ∆0(Tc) . 0.3∆(0) and ∆M/M ≈ 1−5%

everywhere along the first order transition line. These values are moderate, hence my choice

of η is physically reasonable.

To verify the generality of my results, I examined the coupling of the SC order parameter

to higher order terms in M(r)2 and its gradients, e.g. |∆(r)|2|∇M(r)|2, and, within the

small-q approximation, to gradients of the order parameter itself, e.g. |∇∆(r) · M(r)|2. I

checked that, while these various couplings renormalize the transition temperature, they do

not introduce new features into the phase diagram.

To derive the effective theory for the superconducting order, I integrate out the magnetic

fluctuations from the partition function

Z = exp [−(FL + Fsc,M + FM)/T ] ≡ e−FL/TZsc,M ,

where FL =
∫
dDrFL. I obtain the total free energy

F = FL − T lnZsc,M , (4.3)
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where the magnetic contribution is

Zsc,M =

∫
D[M(r)] exp

[
− 1

T
(Fsc,M + FM)

]
, (4.4)

and D[M(r)] indicates integration over all possible configurations of magnetization. The

integral is Gaussian in M, hence I compute it analytically and expand in powers of |∆|2

to obtain the corrections due to magnetic fluctuations to the expansion coefficients in FL.

Below I address these corrections in each of the three phases I consider: uniform, FF, and

LO.

4.1 Uniform and Fulde-Ferrell Superconducting States

Integrating out the fluctuating magnetization for a uniform order parameter, ∆0, is

straightforward. I work with the Fourier components of the magnetization, Mk, and re-

strict the sum

Fsc,M + FM =
∑
|k|<kc

1

2

(
χ−1 + η|∆0|2

)
|Mk|2 , (4.5)

to one-half of k-space since Mk = M⋆
−k for real M(r). Therefore from Eq. (4.4) I have, after

Gaussian integration over both real and imaginary parts of Mk,

Zsc,M =
∏

|k|<kc

(
2πχT

1 + ηχ|∆0|2

) d
2

, (4.6)

where now the product is taken over all k up to the cutoff of the order of the lattice spacing

|kc| = π/l, and d is the dimensionality of magnetization vector M.

Neutron scattering [57] measurement of the dynamic spin susceptibility in CeCoIn5 shows

evidence of spin fluctuations, and light Cd-doping [15] induces AFM order at QAFM =

(.5, .5, .5) [58]. Sister compound CeRhIn5 exhibits AFM order at QAFM = (.5, .5, .297) [59],

which is stable under pressure [60, 61], before SC preempts AFM order at P ≈ 2GPa [62].

Furthermore, the pressure dependence of Tc and TN for CeRhIn5 and Cd-doped CeCoIn5 is

nearly identical [15] suggesting that the SC and magnetic orders in both are closely related.
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Hence I conclude that CeCoIn5 is in proximity to 3D magnetic ordering, and I take d = 3

for the purposes of this study.

The corresponding contribution to the free energy is FM(∆0) = −T lnZsc,M . Subtracting

the average magnetic contribution to the normal state energy, FM(∆0 = 0), I find an additive

contribution to the superconducting free energy density

Funi,M =
Funi,M(∆0)−Funi,M(0)

LD

=
3

2

T

LD

∑
k<kc

ln
(
1 + ηχ|∆0|2

)
=

3

2

T

lD
ln
(
1 + ηχ|∆0|2

)
,

(4.7)

where LD is the volume. The last line of Eq. (4.7) follows from
∑

k a ≈ a(L/l)D where a does

not depend on k. Expanding this contribution in powers of |∆0| for my 2D superconductor

(D = 2), I find the renormalized coefficients of f = F/(NFT
2
c0), Eq. (3.12),

αu = αu +
3

2
t
Tc0
NF l2

ηχ(T ), (4.8a)

γu = γu −
3

4
t
T 3
c0

NF l2
η2χ2(T ), (4.8b)

νu = νu +
1

2
t
T 5
c0

NF l2
η3χ3(T ) , (4.8c)

where αu, γu, and νu are given in Eqs. (3.8a)-(3.8c).

Since in the FF state, ∆(x) = ∆0e
iQx, only the phase of the order parameter is modulated,

the coupling between the magnetization and the superconducting order, Eq. (4.2), has exactly

the same form as in the uniform state. Hence the renormalized expansion coefficients are

obtained from Eqs. (4.8) by a direct substitution of αFF , γFF , and νFF for αu, γu, and νu,

respectively.

4.2 Modulated Larkin-Ovchinnikov State

In the LO state, in addition to the order parameter ∆(x) = ∆0 cos(Qx) competing with

the average magnetization, the amplitude modulation couples the magnetic fluctuations at



30

wave vectors differing by 2Q. Therefore, the magnetic contribution to the free energy is

Fsc,M + FM =
∑
|k|<kc

[
1

2

(
χ−1 +

1

2
η|∆0|2

)
|Mk|2 −

η

8
|∆0|2Mk ·

(
M⋆

k+2Q +M⋆
k−2Q

)]
. (4.9)

After integrating out the fluctuations, the contribution to the superconducting free energy

density relative to the normal state becomes

FLO,M =
3

2

T

LD

∑
k<kc

[
ln

(
1 +

1

2
ηχ|∆0|2

)
+ ln

(
1− 1

8
η2χ2|∆0|4 +

1

8
η3χ3|∆0|6

)]
. (4.10)

The first term differs from its counterpart in Eq. (4.7) by the factor of 1/2, arising from the

spatial average of cos2(Qx). The second term arises from the mode-mode coupling terms in

Eq.(4.9) and is derived in Appendix B. Under expansion in ∆0, it only contributes to the

fourth and sixth order terms in the free energy, and I obtain

αLO = αLO +
3

4
t
Tc0
NF l2

ηχ(T ), (4.11a)

γLO = γLO − 3

8
t
T 3
c0

NF l2
η2χ2(T ), (4.11b)

νLO = νLO +
1

4
t
T 5
c0

NF l2
η3χ3(T ) , (4.11c)

where αLO, γLO, and νLO are given in Sec. 3.3.3.

Comparing Eqs. (4.8) and (4.11), I see that the free energy expansion depends on η and

χ only through their product ηχ. Thus, for subsequent analysis I define a dimensionless

coupling parameter

η̃ =
3

2

Tc0
NF l2

η =
3

2
Tc0TFη , (4.12)

where the characteristic temperature TF = (NF l
2)−1 is of the order of the Fermi temperature

in the system. I also define a dimensionless parameter based on the experimental fit of

χ(T ) = χ0Tsf/(T + Tsf )

χ̃ = χ0
Tsf
Tc0

. (4.13)
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With these parameters, the renormalized quadratic coefficients in Eqs. (4.8a) and (4.11a)

become simpler, e.g.,

ᾱu = αu + η̃χ̃
t

t+ tsf
. (4.14)

The renormalization of all other Landau coefficients is determined by the product η̃χ̃, and,

in simplifying the fourth and sixth order terms in Eqs. (4.8) and (4.11), I introduce the

parameter tF = TF/Tc0.

I note that the dimensionality of the magnetization vector M enters the Landau coeffi-

cients as a prefactor of the coupling parameter η. Throughout this paper, I take d = 3. Using

a different value for d simply decreases the magnetic fluctuation contributions in Eqs. (4.8)

and (4.11) by a factor of d/3. For example, taking d = 2 only requires that I use 3η/2 to

obtain the same results (e.g., Tc) as for η and d = 3. Hence, I proceed with my choice d = 3

without any loss of generality.

4.3 Choice of Energy Scales and Coupling Parameters

The exchange of entropy between the magnetic fluctuations and superconductivity reduce

the zero-field transition temperature from the unrenormalized Tc0 to the experimentally

observed Tc(η > 0) as determined from the instability condition

0 = αu = ln

(
Tc
Tc0

)
+

3

2
TcTFηχ . (4.15)

The extra entropy is released in a specific heat jump that exceeds the BCS value,

∆C/Tc(η)

NFT 2
c0

= − ∂2f

∂T 2

∣∣∣∣
Tc(η)

=
[ᾱ′(η)]2

2γ̄(η)

∣∣∣∣
Tc(η)

, (4.16)

where f(η) is the dimensionless free energy for the given coupling, η, and ᾱ′ = ∂ᾱ(T )/∂T .

Without magnetic fluctuations, BCS mean field theory predicts for s-wave gap ∆C/CN =

12/7ζ(3) ≈ 1.43 and for d-wave gap ∆C/CN = 8/7ζ(3) ≈ 0.95 at Tc0. Here CN is the

normal state specific heat, and ζ(3) ≈ 1.202 is the Riemann zeta function. Measuring the
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jump relative to the s-wave value, I find for B = 0

∆C/Tc(η)

1.43CN/Tc0
=

(
1 + 3

2
TcTFη (χ+ Tcχ

′)
)2

⟨|Y(θ)|4⟩ − 3(2π)2

7ζ(3)
T 3
c TFη

2χ2

∣∣∣∣∣
Tc

(4.17)

where Tc = Tc(η) and χ
′ = ∂χ(T )/∂T . Using Eq. (4.15) to eliminate η I find

∆C/Tc
1.43CN/Tc0

=

(
1 + (χ+Tcχ′)

χ
ln
(

Tc0

Tc

))2
⟨|Y(θ)|4⟩ − 4(2π)2

21ζ(3)
Tc

TF
ln2
(

Tc0

Tc

) , (4.18)

in zero field. I discuss the field dependence of ∆C/Tc in Section 5.2.1.

From the experimentally measured behavior of the susceptibility, specific heat jump

∆C/Tc(B = 0), and Tc one can estimate Tc0 provided a reasonable guess about the value

of TF can be made. For my purposes, I take Tc = 2.3K, TF = 40K (the Kondo coherence

temperature for CeCoIn5[63]), and the dimensionless χ0 ≈ 10−4 (presented in units of emu/g

in Ref. [12]). I follow the example of Ref. [20] and set Tsf = 1.5K. With this choice Tsf < Tc,

and I examine the effects of χ which varies substantially with temperature below Tc. Exper-

iment, however, suggests a weaker temperature dependence of χ(T ) with Tsf ≈ 3.5Tc[12].

Therefore, I verify that my general results are independent of the details of χ by comparing

this case with the analysis for constant susceptibility. For my chosen energy scales, I solve

Eq. (4.18) with ∆C/Tc = 3∆C/Tc0. This gives for s-wave Tc0 = 6.20K and η̃χ̃ ≃ 1.6 and

for d-wave Tc0 = 9.27K and η̃χ̃ ≃ 2.3.



5. Effects of Magnetic Fluctuations on the
Normal-to-Superconducting Transition

Using the formalism outlined above, I am now in a position to investigate the changes

appearing in the transition lines of the superconductor coupled to the magnetic fluctuations.

In the following I set TF , Tsf , and Tc0 as described at the end of the previous section. I

adjust the coupling η to the magnetic fluctuations as well as the temperature dependence of

the magnetic susceptibility. I first address the nature of the transition along the Bc(T ) line,

and then consider the thermodynamic signatures of these transitions.

5.1 Normal-to-Superconducting Transition in an Applied

Zeeman Field

Quite generally, coupling to magnetic fluctuations suppresses the transition temperature,

since, as is clear from Eq. (4.2), the finite thermal average of M2(r) makes the appearance

of superconductivity energetically costly. This is also evident from Eqs.(4.11a) and (4.8a),

which show positive additive contribution to the quadratic coefficients in the Landau expan-

sion. In the absence of the field, when α(T ) = − lnT/Tc0, it follows from Eq.(4.15) that the

transition temperature Tc satisfies

Tc
Tc0

∣∣∣∣
B=0

= e−
3
2
TcTF ηχ(Tc) = exp

(
− η̃χ̃ Tc
Tc + Tsf

)
, (5.1)

where in the last step I explicitly invoked the temperature dependence of the susceptibility.

For small η̃χ̃ the linearized form of this equation coincides with that used in Ref. [20].

At the same time the results for the quartic coefficient, Eqs.(4.11b) and (4.8b) show that

it is renormalized downward by the magnetic fluctuations. Since the sign of this term controls

whether the transition is of the second or first order, it seems possible that the order of the

transition may change as the strength of the magnetic fluctuations increases.
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Figure 5.1: The normal-to-superconducting transition in s-wave superconductors under a
Zeeman field. Magnetic fluctuations, η̃, modify the Bc2 transition, showing four distinct
regions (for increasing T ): second order into modulated, first order into modulated, first
order into uniform, and second order into uniform states.

Figures 5.1 through 5.3 show that this is indeed the case: coupling to magnetic fluctua-

tions opens a region of first order transition from the normal to both uniform and the modu-

lated superconducting state. This finding is a major conclusion of my work, and qualitatively

fits with the behavior of CeCoIn5 where the transition becomes first order below T0 ≈ 1K[22],

while the putative FFLO-like phase does not occur until a lower temperature[21].

To understand this behavior recall that in the absence of fluctuations [34, 39, 45] the quar-

tic term of the Ginzburg-Landau expansion for the uniform superconducting phase changes

sign, γu(TP ) = 0 exactly at the point along the Bc(T ) line (at temperature TP ) where the

modulated phase, reached via a second order transition, αLO(TP ) = 0, becomes allowed.

Coupling to the fluctuations increases αLO and lowers γu ensuring that the first order transi-
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Figure 5.2: The normal-to-superconducting transition in d-wave superconductors under a
Zeeman field. Order parameter modulation is along gap node. Magnetic fluctuations, η̃,
modify the Bc2 transition, showing four distinct regions (for increasing T ): second order
into modulated, first order into modulated, first order into uniform, and second order into
uniform states.

tion in the uniform state occurs at higher temperature than that where the modulated phase

can form.

Since I use the expansion in powers of δ0, I can only estimate the location of the first order

transition line away from the critical points at which the transition becomes second order.

However, since the jump in δ0 across the first order transition is modest this estimate is quite

reliable. For example, the jump is δ0(tc) . 0.3δ0(0) for s-wave gap symmetry, with δ0(0) =

πe−γE ≈ 1.76 as I derive in Appendix A.2. I denote by tLO my estimate of the temperature

along bc(t) where the first order transition lines into the uniform and the LO phases meet.

For t < tLO, the transition (first or second order) is into the amplitude-modulated phase,

while the transition is into a uniform phase for t > tLO. I also define the temperatures t⋆P and
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Figure 5.3: Normal state to superconducting state transition lines for s- and d-wave with
nodally-oriented Q. Upper curves are in the absence of fluctuations, and lower curves are
for η̃χ̃ = 0.5.

t⋆LO where the second order transitions into the uniform and LO modulated superconducting

states, respectively, become first order. In the absence of fluctuations, the temperatures

coincide so that t⋆P = t⋆LO = tLO = tP .

As is seen from Figs. 5.1 through 5.3, the region of the first order transitions widens as

the fluctuations become softer (χ increases) or compete more strongly (η increases) with

superconductivity. I find that for s-wave order the region of the first order transition, for the

same values of the coupling and magnetic susceptibility, is wider than for s-wave. This can

be qualitatively explained by examining the quartic Landau coefficient for both symmetries

in the absence of fluctuations, shown in Fig. 5.4. In the vicinity of TP , the coefficient γ̃ is
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Figure 5.4: Quartic Landau coefficient evaluated along Bc(T ) for s-wave and d-wave sym-
metries with LO modulation for t < tP and uniform state for t > tP .

numerically smaller for an s-wave order parameter than for d-wave, both on the uniform and

the modulated (with the wave vector Q yielding maximal Bc for each symmetry) side of the

transition. Hence it is easier to drive an s-wave system to first order transition.

Note that for d-wave SC I find that the modulation of the order parameter along the

gap nodes is stabilized even below T = 0.06Tc0, where, in the absence of fluctuations, the

anti-nodal direction would be more advantageous [49, 51, 29]. The anti-nodal modulation

still gives a lower free energy at very low temperatures, below a threshold that depends on

the parameter η̃χ̃, but that occurs far from the first order transition range on which I am

focusing here. Therefore for the rest of this study, I discuss only d-wave SC where Q is

oriented along a gap node.

I find that the main result, i.e., the region of the first order transition, does not depend

on the detailed temperature dependence of χ(T ). For comparison, I also considered the

constant susceptibility χ1 ≡ χ(Tc) so that, for a given coupling strength η̃, I obtain the same

Tc. In Fig. 5.5, I compare the critical field and order of transition for χ(T ) and constant

χ1. Since η̃χ1 < η̃χ(T ) for all T < Tc, superconductivity is suppressed less and Bc(T ) is

higher for constant susceptibility. However, in both cases the product η̃χ < 1, and the
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Figure 5.5: S-wave critical field bc(t) for both constant χ(t) and χ1 ≡ χ(tc) for tc = 0.76.
Upper and lower curves are for χ1 and χ(t), respectively. The critical field is suppressed
less for χ1 since η̃χ1 < η̃χ(t) at t < tc. As η̃χ < 1 for both cases, the region of first order
transitions is larger for χ1.

magnetic fluctuations have a larger effect for constant susceptibility than for χ(T ) on the

fourth Landau coefficient where η̃χ enters quadratically. Thus, the N-SC transition is first

order over a wider temperature range for constant susceptibility. While both the exact

temperature range of first order transition and the degree of Bc(T ) suppression depends on

the temperature dependence of χ, the presence of these effects is independent of the details

of the susceptibility. Furthermore, the thermodynamics of the transition are similar for both

χ1 and χ(T ) where the only significant difference is the low-T behavior of the specific heat

jump for d-wave as discussed below.

To some extent, all of the phase transitions can be predicted by a small-q expansion of

the Landau free energy, which is valid in the immediate vicinity of the onset of the transition

into modulated superconducting state [64]. As I show in Fig. 3.5, the gradient expansion

can capture the second order transitions only over a moderate temperature range below tP

in the absence of magnetic fluctuations. Therefore, the gradient expansion can estimate

the onset of the first order transitions only when the coupling η̃χ̃ is small enough so that
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Figure 5.6: Normal-to-superconducting transition lines for s-wave superconductivity as pre-
dicted by the small-q expansion of Landau free energy with η̃χ̃ = 0.15. Magnetic fluctuations
introduce first order normal-to-superconducting transitions into both the uniform and the
modulated superconducting states. The inset is a closeup of the region around tLO, and the
temperatures t⋆LO, tLO, and t

⋆
P are explained in the text.

t⋆LO and t⋆P remain close to tP . In Fig. 5.6, I show the results of the gradient expansion

for s-wave superconductivity with η̃χ̃ = 0.15, and, as shown, the first order transitions

into the uniform and modulated states are clearly present. However, as I show in Fig. 5.7,

the optimal wave vector found via the small-q approximation diverges not far below t⋆LO,grad,

where t⋆LO,grad is the value of t
⋆
LO predicted by the gradient expansion. Due to this limitation,

the gradient expansion breaks down and incorrectly predicts that the first-order transition

exist over a smaller temperature range than is predicted by the full theory. Furthermore,

the limitations of the gradient expansion also prevent me from locating the low-temperature

first- and second-order transitions into modulated state. Hence, this is why I use the fully-q

dependent Landau theory that I have presented above.

My main conclusion thus far is therefore that coupling to thermal magnetic fluctuations

drives the normal-to-superconducting transition to first order along bc(t) in the vicinity of

the onset of the modulated state. Importantly, the transition is first order on both sides of
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Figure 5.7: The optimal wave-vector q0 at the normal-to-superconducting transition for s-
wave system with η̃χ̃ = 0.4 as determined by both the full theory (solid blue line) and the
small-q expansion (dotted orange line). The small-q approximation predicts tLO,grad and
t⋆LO,grad. The rapid increase in q0 below t⋆LO,grad indicates the breakdown of the small-q
expansion near the point where α4 ∝ ν → 0, see Ref. [64].

this point, i.e., I find first order transitions both in the uniform and into the LO state.

At lower temperatures the transition to the inhomogeneous superconducting state is second

order. This is natural within my picture since the thermal fluctuations “die out” as the

temperature is lowered. Within the present framework I cannot determine whether, should

the quantum dynamics of the magnetization be accounted for, the transition would remain

first order to the lowest temperatures. However, since t⋆LO ≈ 0.5tc for d-wave order parameter

(Figs. 5.1, 5.2, and 5.3), it appears likely that the LO transition becomes second order again

at high enough temperatures so that the quantum fluctuations are unlikely to have a major

effect. I now investigate the thermodynamic signatures of these transitions.
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5.2 Thermodynamics at the Normal-to-Superconducting

Transition

5.2.1 Specific Heat Jump at the Second Order Transition

The specific heat jump, measured relative to the BCS s-wave value, at the second order

normal-to-superconducting transition along Bc(T ) is given by

∆C/Tc(η)

1.43C/Tc0
=

7ζ(3)

8π2

(ᾱ′)2

2γ̄

∣∣∣∣
Tc,Bc,Q0

. (5.2)

Here again the prime denotes the temperature derivative, and the quadratic and quartic

coefficients are determined from Eqs. (4.8) and (4.11) evaluated at the transition point and

optimal modulation vector Q0. The results are presented in Fig. 5.8 for the s and d-wave

superconductors.

Not surprisingly, the specific heat jump diverges on approaching the first order transition

region. Note that in the absence of fluctuations, even though the transition remains second

order throughout, there is a singularity in ∆C/Tc due to the vanishing of the quartic coef-

ficient at TP . The shoulder in the specific heat in the modulated state is found both with

and without coupling to the magnetic moment, and hence simply reflects the details of the

variation of the coefficients and the modulation wave vector with temperature.

Of more interest is the low temperature behavior. While for s-wave superconductors the

specific heat jump vanishes as T → 0 for both η = 0 and η ̸= 0, for the d-wave symmetry

the same jump is a) finite for η ̸= 0, and b) exhibits a minimum at the lowest T .

The key to understanding this behavior is in evaluating the T = 0 limit of the coefficients

αLO and γLO, which can be done analytically as detailed in Appendix C. Note that the classi-

cal fluctuations disappear at T = 0, as evidenced by the linear in t fluctuation corrections in

Eqs. (4.8) and (4.11) and that the values of bc and Q0 at t = 0 do not depend on η or χ. For

s-wave symmetry, the optimal wave vector and critical field are Q0,s = e−γEξ−1
0 ≈ 0.56ξ−1

0



42

0

1

2

3

4

(∆
C

/T
c)/

(∆
C

/T
c0

) B
C

S

0 0.2 0.4 0.6 0.8 1
T

c
/T

c0

0

1

2

3

(∆
C

/T
c)/

(∆
C

/T
c0

) B
C

S ηχ~~ = 0.0
ηχ~~ = 0.3

0 1
T/T

c0

0

1

2 ∆C
t
P

★
t
LO

★

t
P

★
t
LO

★

(a)

(b)

Figure 5.8: (Specific heat jump at second order normal-to-superconducting transition for
(a) s-wave and (b) d-wave symmetries with η̃χ̃ =0.0, 0.3. Inset: Specific heat jump ∆C at
second order normal-to-superconducting transition.

and bc,s = e−γE/2 ≈ 0.28 (γE ≈ 0.577 is Euler’s constant) at zero temperature, respectively.

I find that for the s-wave case in the absence of fluctuations at Q0,s, the quartic coefficient

γLO diverges as (b2 − (Q0,s/2)
2)−3/2 as the field approaches bc,s (see Eq. (C.10)). Hence

∆C/Tc = 0 at zero temperature irrespective of the value of η.

In contrast, I find that at zero temperature the optimal wave vector for the d-wave gap

is

Q0,d = e−γE exp

[√
3− 1

4

]
ξ−1
0 ≈ 0.67ξ−1

0 , (5.3)

with bc,d/(2Q0,dξ0) = (1 +
√
3)/4)1/2 ≈ 0.83, and the coefficient γLO(T = 0) = 0.07 remains

finite for all values of η. The vanishing of the specific heat jump in the absence of magnetic
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fluctuations is now due to the vanishing of α′ at T = 0 (discussed in Appendix C.0.2). The

temperature slope of the quadratic term, ᾱ′(0) = α′
LO(0) + η̃χ(0), increases as η becomes

finite, and this leads to a finite value of ∆C/Tc for d wave order in the limit T → 0 in the

presence of the fluctuations.

The negative slope at t = 0 of the specific heat jump for d-wave (Fig. 5.8(b)), is due to

the temperature dependence of χ. To explain this, I expand Eq. (5.2) in t to find

∆C/Tc
∆C/Tc0

≃ 7ζ(3)

8π2

(
(ᾱ′)2

2γ̄
+
ᾱ′ (2γ̄ᾱ′′ − γ̄′ᾱ′)

2γ̄2
t

)
(5.4)

where all the derivatives and γ̄ are evaluated at t = 0.

As discussed in Appendix C.0.2, for d-wave symmetry the quadratic derivative ᾱ′(0) =

η̃χ(0) is positive while the quartic derivative γ̄′(0) = −(η̃χ(0))2/(6tF ) is negative at low

t. The second order quadratic derivative is ᾱ′′(0) = α′′
LO(0) + 2η̃χ′(0) with α′′

LO(0) ≈ 4.54

and χ′ = −χ̃/t2sf is always negative for χ(T ). Hence, with χ(T ), the initial slope at t =

0 of the specific heat jump is determined by how strongly the fluctuations compete with

superconductivity. As shown for η̃χ̃ = 0.3 in Fig. 5.8(b), moderate coupling is sufficient

to make prominent the dip in the specific heat jump for d-wave at low temperatures. For

constant susceptibility, however, χ′ = 0, and the specific heat jump always increases from

its value at t = 0.

5.2.2 Entropy and Magnetization at the First Order Transition

Between t⋆P and t⋆LO, where the transition is first order, I compute the entropy jump,

∆S = −∂f/∂t, at the transition, and show it in Fig. 5.9(a). From Eq. (3.12), the entropy

jump is

−∆S =

[
∂α

∂t
|δ0|2 +

∂γ

∂t
|δ0|4 +

∂ν

∂t
|δ0|6

]
t=tc

= −∂α
∂t

γ

2ν
+
∂γ

∂t

( γ
2ν

)2
− ∂ν

∂t

( γ
2ν

)3 (5.5)
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with |δ0|2 = −γ/(2ν) at the first order transition. As the effective coupling parameter

between magnetism and superconductivity, η̃χ̃, grows, more and more entropy is transferred

at Tc from the magnetic fluctuations to superconductivity, and the entropy jump increases.

I find, as expected, that ∆S is largest in the vicinity of tLO, where δ0 takes its maximum

value, and is on the order of a few percent of the entropy difference between the SC state at

T = 0 and the normal state at Tc(B = 0). I also find that δ0 is moderate at the first order

transition, with its largest value δ0(tLO) ≈ 0.3δ0(t = 0, b = 0), and the results of my small

δ0 expansion make physical sense.

The mismatch in the entropy jump in Fig. 5.9(a) at tLO results from averaging the LO gap

amplitude over the system size in the limit q = 0. Near tLO, the wavelength λFFLO = πξ0/q

of ∆(x) becomes comparable to the system size, and the profile of the order parameter near

tLO resembles a single kink [30, 29] profile that describes the uniform-modulated transition

within the SC phase. Below tLO the modulation vector q0 rises rapidly along bc(t), and the

spatial averaging of the order parameter is justified away from the immediate vicinity of

tLO. Therefore I expect that a calculation free of the single-mode ansatz, will give a greater

entropy jump for the modulated state in the immediate vicinity of TLO.

Since at the first order transition γ changes sign, I expand this coefficient near t⋆P and

t⋆LO along the transition line, γ = gi(tc− t⋆i ) where gi is positive (negative) near ti = t⋆P (t⋆LO).

I find that, near the tricritical points,

−∆S = SN(tc)− SSC(tc) ≃
−gi
2ν

∂α

∂t

∣∣∣∣
tc

(tc − t⋆i ) , (5.6)

where SN and SSC are the entropy in the normal and SC states, respectively. Hence −∆S

increases linearly in tc−ti as seen in Fig. 5.9(a). This behavior may be tested experimentally

in magnetocaloric measurements.

Exactly at the points t⋆P and t⋆LO, the entropy difference between the normal and the

superconducting states is zero. Instead, there is a rapid release of entropy upon lowering
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the temperature at a fixed field, and entering the SC state. Near t⋆P and t⋆LO, both the

quadratic and quartic Landau coefficients are small and can be expanded about t⋆i , namely

α = ai(t− t⋆i ) and γ = gi(t− t⋆i ). I then find

|δ0|2 =
−gi(t− t⋆i )±

√
g2i (t− t⋆i )

2 − 3aiν(t− t⋆i )

3ν
(5.7)

and, sufficiently close to t⋆i , |δ0|2 is dominated by the temperature dependence of the second

term under the square root. Thus, the entropy relative to the normal state varies with

temperature as

SSC(t)− SN(t) ≃ −3

2

√
a3i
3ν

√
t⋆i − t , (5.8)
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where SSC(t) and SN(t) are the entropy in the SC and N states, respectively.

To further test the validity of my parameter choices, I calculate

M/H =
(
χ−1 + η|∆0|2ave

)−1
(5.9)

along the first order N-SC transition. Here |∆0|2ave is the spatial average of the SC order

parameter. I find that magnetization is suppressed by the onset of superconducting order

(see Eq. (4.2)) as entropy is transferred between their respective degrees of freedom. The

fractional change in magnetization is

∆M

M
= − ηχ(T )|∆0|2ave

1 + ηχ(T )|∆0|2ave
(5.10)

across the transition. This jump, as shown in Fig. 5.9(b), resembles the entropy jump in

Fig. 5.9(a), which makes sense as both quantities depend on the value |∆0| takes upon

entering the SC state. Thus, the jump in δ0 across the transition may be revealed by

measuring both ∆M/M and ∆S along the line of first order transition.

Since I include fluctuations phenomenologically, it is possible that the first order transi-

tions are due to an unreasonable choice of the coupling parameter η such that the magne-

tization is strongly renormalized. As a check on the validity of my model, I verify that the

magnetization does not change drastically at the N-SC transition. As shown in Fig. 5.9(b),

the relative change in M/H at a first order transition is generally less than a few percent

and validates my method of including the magnetic fluctuations.



6. Superconductivity in the Iron-Based
Materials

Given the typically antagonistic relationship between superconductivity and magnetism,

it came as a surprise in 2008 when Kamihara, et al., reported the discovery of high-temperature

superconductivity, Tc=26 K, in fluorine-doped LaFeAsO [16]. It is so well known that el-

emental iron is strongly magnetic that the spontaneous parallel magnetic ordering of local

moments is called ferromagnetism after ferrum, the Latin word for iron. Thus, the pres-

ence of superconductivity, much less high-temperature superconductivity, in an iron-based

material was wholly unexpected. This discovery gave birth to the study of iron-based super-

conductivity, which has remained at the forefront of research for the past three years.

Superconductivity in the iron-based material is possible because the Fe-moments order

antiferromagnetically rather than ferromagnetically; therefore, the iron moments do not

provide a macroscopic magnetic field to interfere with superconductivity. The Fermi-level

charge carriers in LaFeAsO originate primarily from d-electrons donated by the irons in the

Fe-As plane [65], and the antiferromagnetic fluctuations of the irons sublattice are likely the

mechanism by which pairing occurs [8]. Thus, it seems that the presence of iron and its

proximity to antiferromagnetic order are key to superconductivity in LaFeAsO.

Within a year of Kamihara’s announcement, many other iron-based materials were re-

ported [16, 66, 67, 68, 69]. In Figure 6.1, I show the four most common structural classes

in which superconductivity has been found. Each of these materials has a layered structure

based upon planar, tetrahedrally-coordinated Fe-M layers where M is either a pnictide or

chalcogenide. Pnictides are elements in the nitrogen column of the periodic table (Group 15),

e.g., phosphorous and arsenic, while the chalcogenides are from the oxygen column (Group

16), e.g. selenium and tellurium. The so-called 11 materials (FeSe, FeTe) are comprised of a

47
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Figure 6.1: Common crystal structures for the Fe-based superconductors, adapted from
Ref. [70]. The shaded box highlights the Fe-M layer common to all of the materials. The
numerical labeling scheme corresponds to the stoichiometric ratios of the constituent ele-
ments.

simple layering of the Fe-M planes. In the 111, 122, and 1111 materials the Fe-M layers are

separated by so called ‘blocking layers’ composed alkali, alkaline earth, or rare earth metals

and oxygen or fluorine. See Figure 6.1 for an explanation of the numerical labeling scheme.

6.1 Electronic Structure

The charge carriers in the iron-based superconductors reside primarily in the Fe-M planes,

hence their electrical properties are quasi-two dimensional. Furthermore, since the M atoms

are staggered below and above the plane, the crystalline unit cell is doubled with respect to

the underlying iron lattice. This results in a crystallographic Brillouin zone that is half the

size of the zone for the iron atoms alone. In the pnictides, all five d-orbitals of iron contribute
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to the density of states at or very near the Fermi surface [65, 71, 72], which can be modeled

with two [73] or four [74, 75] bands, of hole-like (over half-filled) and electron-like (under

half-filled) nature. Band structure calculations predict a Fermi surface that consists of at

least four separate sheets, two each of the hole and electron types, that are located at the

center and corners of the crystallographic zone respectively [76, 77, 74, 75, 65, 71, 72]. The

general features of these calculations are borne out in experiment.

Angle-resolved photoemission (ARPES) measurements studies on LaFePO [72], in fluorine-

doped NdFeAsO [78], and potassium-doped BaFe2As2 [79] show the basic structure of two

hole sheets at the zone center and two electron sheets at the corners. This confirms the

basic topology of the Fermi surface sheets, but ARPES is a surface probe and is not capable

of determining the detailed dependence of the sheets on kz, the momentum perpendicular

to the material surface. On the other hand, quantum oscillation experiments can probe

the cross-sections of the Fermi surface along the crystalline c-axis, and such experiments

performed on the 122-type materials SrFe2As2 [80] and BaFe2As2 [81, 82] also confirm the

general features of the band structure calculations. In Figure 6.2, I show the Fermi surface of

BaFe2As2 as calculated by density functional theory [71] and as measured by de Haas−van

Alphen oscillations [81].

6.2 Unconventional Multi-band Superconductivity

There are two main scenarios for the A1g pairing state in the iron-based superconductors.

In the first, pairing is magnetically-mediated which requires a sign change between the order

parameter on different parts of the Fermi surface. Unlike CeCoIn5, however, this does not

immediately imply the existence of gap nodes on any one Fermi surface sheet. In the first

situation, proposed three months after superconductivity in LaFeAsO was reported, Mazin,

et al. [8], and Kuroki, et al. [76], suggest that the near nesting of the electron and hole

FS sheets leads to predominantly interband pairing with a change in the sign of the order
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Figure 6.2: Quasi-two dimensional Fermi surfaces in the iron-based superconductors. The
figures are for BaFe2As2 as calculated by density functional theory [71] and as calculated to
fit quantum oscillation measurements [81]. The experimentally determined Fermi surface is
on the right. Note that the high-symmetry Γ point is at the corner of the figure on the left
and at the center of the figure on the right.

parameter between FS sheets of different type. For the pnictide structure, this proposed order

parameter is of the “extended” s-wave type. This so-called s+− state, quickly caught on as

a leading contender for the gap symmetry, and several groups have attempted to obtain

the momentum dependence of the anisotropic energy gap from various calculations. The

results range across several different types of order parameter: possible nodes on both Fermi

surface sheets [83]; a combination of strongly anisotropic or nodal gap on the electron sheet

with nearly isotropic gap on the hole sheet [84, 77, 85, 86, 87, 88]; and nearly isotropic, full

superconducting gaps on all of the FS sheets [89, 90]. In the second, more recently suggested

scenario, orbital fluctuations due to spatial oscillation of the Fe atoms promote pairing with

the same sign of the order parameter on the FS sheets [91]. There are many indications that

the order parameter has the full symmetry of the lattice [76, 87, 85, 89, 90, 77, 84, 92, 93].

one detailed study showed, however, that the extended s-wave and the d-wave pairing states

can be nearly degenerate in energy [77], which indicates that the detailed physics of any one

system might tip the balance in favor of one symmetry state or the other.
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The experimental situation is also far from clear, and there is an emergent consensus that

the gap structure is non-universal for different compounds and across doping ranges [94, 95,

70]. ARPES experiments measure isotropic or nearly isotropic gaps on all FS sheets in

the 122-type materials [79, 96, 97, 98] and in fluorine-doped NdFeAsO [78]. Penetration

depth measurements indicate both full and nodal superconducting gaps, depending on the

material [99, 100, 101, 102, 103, 104, 105, 106, 107]. Transport measurements [108, 109, 110,

107] and nuclear magnetic resonance (NMR) studies [111, 112, 113] suggest the presence of

line-nodes in 1111-type materials and phosphorous-doped BaFe2As2 while indicating fully-

gapped superconductivity in other 122-type materials. Note that even if the interactions

favor a nodal state in a pure compound, lifting of the nodes due to disorder may occur [114,

115]. Hence determination of the structure of the gap remains an important goal, with many

studies suggesting experimental signatures of the various gap symmetries [87, 116, 117, 118,

119, 120, 121, 75, 122, 123, 124].

6.3 Resonant States Near a Single Impurity

Historically, some of the most detailed theoretical and experimental studies of the con-

sequences of the nodal gap have been carried out for the cuprate superconductors. Scan-

ning tunneling spectroscopy measurements near impurity sites played a significant role in

testing our understanding of the superconducting state, see Ref. [125] for review. Pre-

diction [126, 127] and subsequent observation [128, 129] of the bound states via scanning

tunneling spectroscopy (STS) at and around impurities was an important milestone in un-

derstanding superconductivity in the copper based systems. The analysis of the spatial

dependence the states (DOS) around the impurity provided insights into nodal structure of

the gap [125], and I show the both a calculated and an experimentally measured impurity-

induced state in Fig. 6.3.
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Figure 6.3: The resonance state in the d-wave cuprates near a non-magnetic impurity. The
figure on the left is the spatial profile as first presented in Ref. [130]. The figure on the right,
adapted from Ref. [128], is scanning tunneling microscopy data for a zinc impurity on the
surface of Bi2Sr2CaCuO8+δ. The arrows for the experimental data show the direction of the
gap nodes in real space.

It is with this in mind that I pursue my study of the single-impurity effect in the iron-based

superconductors. I consider the formation of bound states around non-magnetic impurities in

multiband extended s-wave superconductors, and focus on the gap symmetries and parameter

values relevant to iron-based materials. Several recent studies have also considered this

problem but have failed to reach a consensus on the nature of the resonant state [131, 75,

132, 123, 121, 133, 133, 134]. Here I provide a comprehensive analysis of the single-impurity

problem combining analytical and numerical techniques. I consider the conditions for the

existence of well-defined resonance states and analyze the spatially-resolved density of states

around the impurity site for different shapes of the gap in the A1g representation. I take the

gap on the hole FS to be isotropic and investigate the consequences of the gap anisotropy

on the electron sheet. I allow for an isotropic gap, deep gap minima, and gap nodes, and I

compare the results for different gap shapes while emphasizing the salient features expected

in STS measurements. I demonstrate that the energy of the impurity states for similar

gap structures is sensitive to the details of the band structure of the material. I explain
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the physics behind these effects and provide experimentally testable predictions for future

tunneling studies.



7. Basic Models of Multiband Systems

As discussed in Chapter 6, all five d-orbitals of iron contribute to the density of states

(DOS) at or very near the Fermi surface [65, 71, 72], and the number of bands crossing

the chemical potential depends on the specific compound, doping, and other details. Con-

sequently one faces the choice of either using the results of the ab-initio calculations for a

given material or considering a simplified band structure that contains features common to

the entire family. Both approaches have their respective merits, and I take the latter route

since it allows me to combine analytical and numerical techniques in a controlled way.

Motivated by the quasi-2D nature of the pnictides, I restrict my analysis to a two-

dimensional Brillouin Zone (BZ). The salient feature I include is the existence of the hole

Fermi surface (FS) sheet around the Γ point, and the electron FS sheet at the M and

equivalent points. As described in Section 6.1, the crystallographic unit cell contains two

irons and the resulting BZ shown in 6.2 for a representative compound. It is often useful,

however, to ‘unfold’ the Brillouin zone into one twice the size of the physical BZ, and this

is the representation that I show schematically in Fig. 7.1. Note that in the unfolded BZ

picture, the M point corresponds to the middle of the BZ boundary.

In the simplest model there is one [73], and in a more realistic description two [74, 75, 76,

77] FS sheets of each type. The two-band model is well-suited to an analytical description in

the continuum, while the four-band model is more representative of the electronic structure

of the pnictides. I therefore consider three classes of models: a two-band continuum model

with one electron and hole band each; a two-band tight-binding model with one electron

and hole band each; and a more realistic four-band model with two electron bands and two

hole bands each. In the continuum model I analyze the conditions for the formation of the

impurity resonance state and determine how the impurity state depends on the structure of

54
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Figure 7.1: Two-dimensional model of the iron-based superconductors. The unfolded and
the folded Brillouin Zones contain one and two iron atoms respectively and are indicated
by the solid and dotted black lines respectively. The two hole-like (dotted magenta) and
electron-like (dash-dotted blue) Fermi surfaces are of approximately the same size. The gap
is taken to be isotropic on the hole Fermi surfaces, and anisotropic on the electron Fermi
surfaces, shown in red solid line for the case with nodes at ϕn and equivalent points.

the bands. I then use a simple two-band nearest-neighbor tight-binding model to verify that

my analytical results are clearly manifested in the numerical approaches and to understand

the properties of the impurity state in real space. This then sets the stage for carrying out

calculations in the more physical four-band model suggested in Ref. [74] where I discuss

conditions for the existence of the resonance states and determine the properties of the

impurity state in a realistic system.

7.1 Basic Hamiltonian and the Choice of Gap Functions

My basic Hamiltonian is H = H0 +Himp where H0 is the mean field Hamiltonian for a

pure multiband superconductor and Himp describes scattering by the impurities. I assume
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H0 to be diagonal in the band index, j, so that H0 =
∑

j Hj, where

Hj =
∑
kσ

ξjkc
†
jkσcjkσ −

∑
k

(
∆jkc

†
jk↑c

†
j−k↓ +∆∗

jkcj−k↓cjk↑

)
. (7.1)

Here ξjk is the quasiparticle energy in band j, measured with respect to the chemical poten-

tial, which varies between different models and is specified in the appropriate sections below,

c†jkσ and cjkσ are the creation and annihilation operators for quasiparticles with momentum

k and the spin σ, and ∆jk is the superconducting gap function on the j-th Fermi surface

sheet.

Hereafter I take the order parameter to be of the extended s-wave form [8, 93, 77, 84],

A+B [cos(kxa) + cos(kya)], where a is the lattice constant for the square Fe lattice so that

k is the wave vector in the “unfolded” zone scheme. When projected on the hole, Sh, and

electron, Se, Fermi surface sheets in Fig. 7.1, this results in a nearly isotropic gap on the hole

sheet(s), ∆hk ≈ ∆h for k ∈ Sh, and a generally anisotropic gap on the electron sheet(s). To

find the gap on the electron FS, I expand the gap near (π, 0) to find ∆ek ≈ A+
Bk2F
2

cos 2ϕ,

where ϕ is the angle as measured from the [010] direction. A similar expansion near the other

M points gives the same gap shape on all of the other electron sheets. Thus, the gap is of the

general form ∆ek=±∆e(1+r cos 2ϕ) for k ∈ Se, where the angle ϕ is measured from the [100]

and [010] directions at (±π, 0) and (0,±π), respectively, as I show in Fig. 7.1. Different gap

structures are then determined by the relative sign of the gaps on the electron and the hole

sheets (s++ vs s+− pairing) and the value of the parameter r. Without loss of generality, I

take r ≥ 0, and the choice of the minus sign with r = 0 gives the so-called s+− state [8]. Gap

anisotropy on the electron sheet increases with increasing r, with the quasiparticle spectrum

fully gapped for 0 < r < 1, and the minimal/maximal gap values ∆e,±=±∆e(1± r). Nodes

develop in ∆ek for r > 1 at ϕn = ± (π ± arccos r−1) /2, see Fig. 7.1, and move towards the

45◦ degree directions as r increases. In the limit r → ∞, the gap on the electron sheets

approaches the d-wave form ∆ek=−r∆e cos 2ϕ. Throughout this paper I will be considering
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Figure 7.2: Density of states for single-band superconductor with with order parameter
∆k=−∆0(1 + r cos 2ϕ) and ε=ω/∆0. I show the isotropic s-wave gap (r=0), gap with deep
minima (r=0.7), and gap with nodes (r=1.3). Arrows indicate the s-wave gap edge εs=1,
the lower gap feature at εm=|1− r|=0.3, and the upper gap edges at εM=|1 + r|.

the values r = 0 (isotropic gap on electron Fermi surface), r = 0.7 (nodeless anisotropic

gap), and r = 1.3 (nodal gap). For both of the latter two choices, a feature exists in the

density of states of the pure material at the energy ω = 0.3∆e, see Fig. 7.2, which makes the

comparison of the two more straightforward.

The relative magnitudes of the gap amplitudes on the electron and the hole Fermi surface

sheets depends on the details of the pairing interaction and the band structure. For two-band

superconductivity arising from purely interband pairing, since the dimensionless coupling

constant is the product of the bare coupling and the density of states, a simple calculation

of the gap amplitude ratio δ0 = ∆e/∆h at zero temperature yields (see Appendix D)

1 = n⟨δ2⟩FS = nδ20

(
1 +

r2

2

)
, (7.2)

where n = Ne/Nh is the ratio of the DOS at the Fermi surface in the electron and hole bands

respectively, and ⟨. . .⟩FS denotes the Fermi-surface average. To simplify my analysis, I keep

the total Fermi-level DOS fixed at NF = (Ne + Nh)/2. For r=0 Eq. (7.2) agrees with the



58

result for isotropic s+−-wave superconductivity [89, 135]. As seen in ARPES measurement

of the the band dispersion [72, 136] and quantum oscillation measurement of the various

band masses [81, 137, 138, 82], the electron- and hole-band contributions to the normal state

DOS vary with material and generally fall into the range 0.5 < Ne(0)/Nh(0) < 1. Here

Nj(0) is the total contribution to the Fermi-level DOS from all FS sheets of the jth type.

Tight-binding fits to the Fermi surface also yield different Fermi-level DOS on the two types

of the FS sheets [73, 74, 75], with some estimates as large as n ≈ 5 [73]. For all of the models

examined in this paper, I consider the parameter range 0.5 < n < 1 and hence estimate

1 < δ0 <
√
2 for the isotropic s+− gap. The range of δ0 for the anisotropic cases depends of

course on the choice of r.

7.2 Impurities and the T -matrix Formalism

I make a simplifying assumption that the scattering due to a single non-magnetic impurity

located at the origin is independent of momentum within each band, and therefore is given

by

Himp =
∑
kk′σ

Ujj′c
†
jkσcj′k′σ , (7.3)

where Ujj′ are the elements of the scattering matrix Ǔ in the particle-hole (Gor’kov-Nambu)

and band space. The approximate independence of the elements of Ǔ is justified in part by

the small size of the Fermi surfaces in pnictides. For simplicity hereafter, I parameterize the

impurity by the “intraband” and “interband” matrix elements, U0 and U1 respectively. In

the two-band model this notation is obvious,

Ujj′ =

{
U0, if j = j′

U1, if j ̸= j′ ,
(7.4)

as shown Fig. 7.3(a). In the four-band model this nomenclature means that the scattering

both within each electron or hole band, and between the nearly degenerate electron or hole

bands, is described by U0, while the matrix element for scattering between any electron-
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Figure 7.3: Quasiparticles near the electron (solid circles) and hole (dashed circles) FS
sheets scatter within and between the conduction bands by means of the intraband (U0:
solid arrows) and interband (U1: dashed arrows) components of the scattering potential.
Panels (a) and (b) show, respectively, the scattering potentials for the two- and four-band
models for the iron-based superconductors.

like band and any hole-like band is given by U1. I show the four-band scattering potential

schematically in Fig. 7.3(b).

The electron and hole Fermi surfaces in the iron-based superconductors are separated by

a wave vector of order π/a, and therefore this parametrization means separation into small

and large momentum scattering. The potential of a generic charged impurity is screened

at the Thomas-Fermi length, which is on the order of the lattice spacing, a. Consequently,

interband scattering can be expected to be suppressed, U1≪U0. This suggests that one

limit of interest is a purely intraband scattering potential, U1=0. On the other hand, band

structure calculations show that the same iron d-orbitals contribute significantly to both

the electron and the hole sheets of the Fermi surface [77]. Therefore it is logical to assume

that an impurity, located at or near the Fe site, that directly affects these orbitals, will

produce a significant interband scattering component. One obvious candidate is the Co-

dopants in the 122 series where first principle calculation indicates, perhaps, a moderate
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Figure 7.4: Two general scenarios for the scattering between FS sheets with different gap
shapes. The solid (dashed) black lines represent a positive (negative) superconducting gap,
and the impurity states are generated primarily by either U0 or U1 in each of the two cases
shown. In panel (a), impurity states are generated when U1 scatters quasiparticles across
the sign change of the gap on different FS sheets. In panel (b), impurity states are generated
when U0 scatters quasiparticles across the gap nodes on the electron FS sheet.

ratio of U1/U0 ∼ 1/3 [139]. Fits to the low-temperature specific heat in Co-doped 122

materials suggest U1/U0 ∼ 0.6 [140, 141]. In this study, I consider both these ratios and

also the “extreme” case U1 ≃ U0. In a realistic material the scattering may have additional

anisotropy due to the orbital content that varies along each Fermi surface, but I am not

aware of any detailed microscopic calculations of this effect. Furthermore, the inclusion of

too many phenomenological parameters obscures the essential physics I aim to explain, hence

I limit my analysis to the parameters U0 and U1.

Both scattering potential components help to generate the impurity states, but the for-

mation of the states are controlled by either U0 or U1 depending on the shape of the gap

on the electron FS sheets. In Fig. 7.4, I shown the two general scenarios for forming the

resonant state. In the situation where the gaps are of the isotropic s+− type, impurity states

are generated primarily when U1 scatters quasiparticles across the sign change of the gap on

different FS sheets. In contrast, when there are gap nodes on the electron FS sheets, the
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impurity states are controlled by U0 which scatters quasiparticles across the nodes on the

electron sheet.

To compute the physical properties, I determine the Green’s function which is a matrix

in both band and particle-hole space,

Ǧjj′(k,k
′; τ) = −

⟨
Tτ

(
Ψ†

jk(τ)Ψj′k′

)⟩
, (7.5)

where Ψ†
jk=(c†jk↑, cj−k↓) is the Nambu spinor for band j, and Tτ is the ordering operator

for the imaginary time τ . In this notation Ĥjk=ξjkτ̂3 + ∆jkτ̂1, with τ̂0 the identity matrix

and τ̂i (i=1. . .3) the Pauli matrices in the Nambu space. In the absence of impurities,

Ǧ0,jj′(k,k
′)=δjj′δkk′Ĝ0,j(k), and, after transforming to the fermionic Matsubara frequencies

ωn = 2πT (n+ 1/2) at temperature T , the Green’s function Ĝ0,j(k; iωn)=(iωnτ̂0 − Ĥjk)
−1 in

each band takes the standard form

Ĝ0,j(k; iωn) = −iωnτ̂0 + ξjkτ̂3 +∆jkτ̂1
ω2
n + ξ2jk +∆2

jk

. (7.6)

In the particle-hole space, the non-magnetic charged impurity potential is proportional

to the Pauli matrix τ3. I solve the single impurity problem by computing the T -matrix,

Ťjj′(k,k
′; iωn) that accounts for all the scattering events. The Green’s function and the

T -matrix satisfy the equations [125]

Ǧ = Ǧ0 + Ǧ0Ť Ǧ0 , (7.7)

Ť = Ǔ + Ǔ
∑
k

Ǧ0Ť . (7.8)

For my choice of the momentum-independent Ǔ , the T -matrix is solely a function of the

band index and the frequency, hence

Ť =

[
1− Ǔ

∑
k

Ǧ0

]−1

Ǔ . (7.9)

While this form is convenient for the analysis in momentum space and for analytical work,

to compute the local density of states (LDOS) I need to Fourier transform the equations to
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real space and carry out the analytic continuation iωn → ω + i0+ to obtain the retarded

propagator. The corresponding equations for an impurity located at the origin read

Ǧ(r, r′;ω)= Ǧ0(r, r
′;ω)+Ǧ0(r, 0;ω)Ť (ω)Ǧ0(0, r

′;ω) , (7.10)

with

Ť (ω) =
[
1− ǓǦ0(0, 0;ω)

]−1
Ǔ . (7.11)

The poles of the Green’s function in the ω plane give the energies of the elementary

excitations. It is clear from the structure of Eq. (7.7) and Eq. (7.10) that the set of the poles

of Ǧ consists of the poles of Ǧ0, which yield the excitation energies in the clean system,

and the poles of the T -matrix. Consequently, it is the poles of the T -matrix that give the

energies of the impurity-induced states. The density of states per spin in each band is

Nj(r, ω) = − 1

π
Im
(
Ǧjj,11(r, r;ω + i 0+)

)
, (7.12)

where the indices 11 refer to the particle component in the Nambu space. I use this equation

to determine the density of states near the impurity site. It is important that this expression

is diagonal in the band indices since it means that only the diagonal components of the

T -matrix, Ťjj, are important for the determination of the impurity states, see Eq. (7.7).

Several important comments are in order here. First, I assume that the electron and

hole Fermi surfaces are well separated, which is certainly true for the pnictides, so that the

summation over the momenta k in Eq. (7.8) is dominated by the region near each respective

sheet. Second, since each such summation generally yields a prefactor of the density of

states at the Fermi surface, the ratio of the densities of states for the electron and the hole

Fermi sheets controls not only the relative gap amplitudes (as discussed above), but also the

number of states available for scattering, and directly affects the location of the resonance. I

include it below in the analytical work and show that the effect is very significant. Therefore

in choosing a parametrization of the Fermi surface for numerical approaches it is important
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to fit not only the topology of the Fermi surface, but also the density of states, i.e. the

slope of each band near the chemical potential. I give an example below where different

parameterizations of the bands yield dramatically different results for the impurity-induced

state because of this effect.

Third, if I denote (as I do hereafter) ĝj =
∑

k Ĝ0,j(k) =
∑

i gjiτ̂i, with i = 0, . . . , 3, it is

clear from Eq. (7.9) that the impurity potential appears in combination with

gj3 = −
∑
k

ξjk
ω2
n + ξ2jk +∆2

jk

. (7.13)

This component of the local Green’s function depends on the particle-hole band asymmetry,

and therefore changes little between the normal and the superconducting states (I assume

that the gap amplitude is small compared to the bandwidth), and therefore can be evaluated

in the normal state. Analytical work often assumes gj3 = 0. For a flat band of widthW with

the density of states N0 = W−1 and the chemical potential µ measured from the center of the

band, I find g3 = −W−1 ln |(W − 2µ)/(W + 2µ)|. Hence g3W ∼ µ/W ≪ 1 for µ ≪ W and

becomes of order unity when the chemical potential approaches the band edges. Of course, in

numerical work the value of gj3 ̸= 0 depends on the chemical potential and the assumed band

structure; this is especially true of the tight-binding models where a van Hove singularity

typically is present. It is well known from the studies of single-band superconductors that, for

such models and for a given scattering potential strength, the resonance state is sensitive to

the exact form of the band structure [142, 143], and therefore below I explicitly address how

the particle-hole anisotropy affects the results. Note that my simple analysis above suggests

that ge3/Ne(0) ≤ 0 for the electron-like bands and gh3/Nh(0) ≥ 0 for the hole-like bands .

This implies that the sign of the scattering potential (repulsive for holes and attractive for

electrons, or vice versa), while irrelevant in the particle-hole symmetric case, does matter for

a realistic band structure. I measure the Green’s functions gj3 in terms of the πNj for the

rest of this study.
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Finally, I comment on the analytic structure of the T -matrix. The density of states,

Nj(r, ω), is related to the retarded Green’s function, which is analytic in the upper half of

the complex energy plane; therefore, all the poles of the T -matrix are in the lower half-

plane. Consequently, in solving Eq. (7.8) and Eq. (7.11), care needs to be taken to use the

appropriate analytic continuation of the Green’s function that coincides with the retarded Ǧ0

in the upper half-plane, but does not have a branch cut on crossing into the lower half-plane.

I present a detailed procedure for constructing such a function in Appendix E.



8. Two-band Model in a Continuum

8.1 Analytical Model and the T -matrix

A model with two circular Fermi surface sheets, which I refer to as the “electron” (band

index j = e) and the “hole” (j = h), even though I control by hand the particle-hole

anisotropy in each, allows analytical progress and clear elucidation of the effects I aim to in-

vestigate. The T -matrix, Eq. (7.8), is a 2x2 matrix in the band index, see also Refs. [144, 115].

Fig. 8.1 shows the diagrammatic representation for the intra- and interband components for

the electron band, and gives

T̂ee = U0τ̂3 + U0τ̂3ĝeT̂ee + U1τ̂3ĝhT̂he , (8.1a)

T̂he = U1τ̂3 + U1τ̂3ĝeT̂ee + U0τ̂3ĝhT̂he . (8.1b)

Here I suppressed the frequency ω for brevity. The equations for T̂hh and T̂he are obtained

by simply switching the band labels. I find

T̂ee = Â−1
[
U0τ̂3 − (U2

0 − U2
1 )τ̂3ĝhτ̂3

]
, (8.2)

where

Â = (1− U0τ̂3ĝh) (1− U0τ̂3ĝe)− U2
1 τ̂3ĝhτ̂3ĝe . (8.3)

It follows from Eq. (8.3) that the poles of the T -matrix are given by the solutions of

det(Â) ≡ D(ω) = 0, where

D(ω) = U4
0

(
g2e0 − g2e1 − π2N2

e c
2
e − ge

2U
2
1

U2
0

)
×
(
g2h0 − g2h1 − π2N2

hc
2
h − gh

2U
2
1

U2
0

)
− U2

1

(
ge

2 + gh
2 + 2(ge0gh0 − ge1gh1 + ge3gh3)

)
,

(8.4)

where gj
2=
∑

i(−1)ig2jiand c
2
j=(πNjU0)

−2 (1− U0gj3)
2.

65
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Figure 8.1: Diagrammatic equations for the electron-band T -matrix in the two-band model.
Solid (shaded) semicircle is T̂ee (T̂he); Line with filled (hollow) arrowhead is the propagator
ĝe (ĝh). Dotted (crossed) circle is the intraband, U0, (interband, U1) scattering potential
which contains the Pauli matrix τ̂3.

I compute the τ0 and τ1 components of the local Green’s functions ĝj by going to the

continuum representation and using, for the circular Fermi surface,

∑
k

Ĝ(k;ω) ≈ Nj

∫ ωc

−ωc

dξj

∫ 2π

0

dϕj

2π
Ĝ(ξj, ϕj;ω) , (8.5)

where ϕj is the angle parameterizing the jth Fermi surface sheet and ωc is the energy cutoff. I

use the amplitude of the isotropic gap on the hole Fermi surface as the energy unit, ε=ω/∆h,

so that (recall δ0=∆e/∆h)

ĝh(ε) = −πNh
ετ̂0 + τ̂1√
1− ε2

+ gh3τ̂3 , (8.6)

ĝe(ε) = −πNe

⟨
ετ̂0 − δ0(1 + r cos(2ϕ))τ̂1√
δ20(1 + r cos(2ϕ))2 − ε2

⟩
FS

+ ge3τ̂3 , (8.7)

where ⟨...⟩FS indicates the angular integration over the Fermi surface. Since gj3 depends on

the details of the normal state band structure, see Eq. (7.13), I keep it as a free parameter

with no energy dependence. The appropriate definition of the branches of the square root

used in Eq (8.6) is given in Appendix E. I found closed form expressions for gji and arbitrary

values of r: The derivation is given in Appendix E.2, and the resulting expressions are

straightforward but too cumbersome to write here. For a pole at ε = ε1− iε2, both the DOS

in the pure system at the same energy, ε1, and the width of the resonance, ε2 = (2τ)−1, where

τ is the lifetime, determine how the impurity state mixes with the continuum and whether

it is observable experimentally. I will see below that low-energy states near impurities in
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multiband systems exist only under special conditions. I will determine the most favorable

conditions for the existence of such resonances by solving ∂D(ω)/∂U1 = 0 for the optimal

scattering strength U1,m, defined via

U4
1,m

U4
0

=
g2e0 − g2e1 − π2N2

e c
2
e

g2e0 − g2e1 − g2e3

g2h0 − g2h1 − π2N2
hc

2
h

g2h0 − g2h1 − g2h3
. (8.8)

Solving this equation and D(ω) = 0 gives the extremal impurity state energy, and I check

that this energy is generally a minimum for the s+− gap symmetry. I now proceed to consider

several conceptually important cases.

8.2 Decoupled Bands

In the absence of interband scattering, U1 = 0, the problem reduces to that for two

decoupled single band superconductors. This limit allows me to make a connection with

previous results, and show the technical details of the calculation. Eq. (8.4) factorizes in the

equations for each band,

(U−1
0 − gj3)

2 −
[
g2j0 − g2j1

]
= 0 . (8.9)

It is clear that the effect of the particle-hole anisotropy is equivalent to changing the effective

strength of the impurity potential [142], U−1
eff = U−1

0 − gj3, so that the strong scattering

(unitarity) limit, U−1
eff → 0 no longer corresponds to a large value of the bare scattering

potential U0 as it did for g3 = 0. The solutions of Eq. (8.9) are well known for the s- and

d-wave cases [125]. For an isotropic SC gap, ∆k = ∆0, Eq. (8.6) gives g
2
j0 − g2j1 = −π2N2

j .

Hence Eq. (8.9) is never satisfied and there are no impurity bound states. For r≫1, when

the gap approaches the d-wave shape with the magnitude ∆max = r∆0, I expand the local

Green’s function ε̄=ε/r=ω/∆max ≪ 1. Using Eqs. (E.12) and (E.14) from Appendix E.2.1,

I find

c2e +
4

π2r2
=

4ε̄2

π2

[
ln2

(
4

ε̄

)
+ iπ sgn(ε̄) ln

(
4

ε̄

)]
, (8.10)
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where ce = (πNFUeff )
−1 ≡ cot δ, and δ is the scattering phase shift. In the limit r−1=0, the

average of the order parameter over the Fermi surface vanishes, ⟨∆k⟩FS = 0, so that g1 = 0,

and I recover the well-known resonance condition for d-wave SC [127, 130, 125],

ε̄d =
π|ce|

2 ln (8/π|ce|)

(
±1− i

π

2 ln (8/π|ce|)

)
. (8.11)

This yields a mid-gap state, ε̄d = 0, in the unitarity limit, δ = π/2, when U−1
eff = 0. When

0 < r−1 ≪ 1, the low-energy solutions are given by Eq. (8.11) with |ce| =
√
4/π2r2 + c2e. It

follows that the resonance for a given scattering strength moves away from ω = 0 as the gap

average over the Fermi surface increases.

For a given gap shape, r, the lowest-energy resonant state always forms in the unitarity

limit U−1
eff = 0, even when the expansion in r−1 is no longer valid. I find these resonances

by using the Green’s functions in Appendix E.2 to solve Eq. (8.9) numerically with ce = 0.

Fig. 8.2, shows the evolution of the deep-lying impurity state with the gap anisotropy r. For

the nodal case, r > 1, the T -matrix generically has two poles on the positive frequency side,

at ε1 > r − 1 and at ε1 < r − 1, but only the latter is a sharp resonance plotted in Fig. 8.2.

Decreasing the anisotropy in a system with gap nodes causes the impurity state to broaden

and move away from the chemical potential, see Fig. 8.2. As r → 1, the unitarity impurity

state approaches εm = |1−r|, and moves above the gap edge when r . 1, fully merging with

the continuum.

8.3 Fully-isotropic Gaps: The s+− and s++ States

When the bands are coupled, it is clear from Eq. (8.4) that the sign of the interband

scattering, U1, is irrelevant, and only its magnitude affects the location of the poles of the T -

matrix. In contrast, both the magnitude and the sign of the intraband scattering component,

U0, are relevant. In the following I consider the simplest of the cases proposed for the iron-

based superconductors, that with the isotropic gaps on both Fermi surface sheets, ∆hk = ∆h
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Figure 8.2: (Evolution of the impurity resonance for a single band. I plot the energy (ε1) and
the width (ε2) of the resonance normalized to the smaller gap edge, ∆m = |r − 1|∆e. Main
panel: unitarity limit, U−1

eff = 0. The resonance state tends to mid-gap only in the d-wave
limit, r−1 = 0. Inset: finite r = 1.3. Even for strong scattering the resonance remains at
finite energy.

and ∆ek = −∆e (where ∆e > 0 for s+− pairing, and ∆e < 0 for the s++ state). It is easy

to verify that g2j0 − g2j1 = −π2N2
j , with no energy dependence, which simplifies the analysis

greatly. My general approach here is to find the most favorable conditions for the existence

of the low-energy impurity state, ask whether they can be satisfied for the Fe-containing

materials, and determine how far from these optimal conditions I can be in the parameter

space to still see the resonance peak.

8.3.1 Locating the Bound State Energy

For the isotropic gap, all of the energy dependence of Eq. (8.4) is contained in the term

α = ge0gh0 − ge1gh1. Thus the poles of the T -matrix can be found explicitly. The bound

state energy satisfies

ω2 +∆e∆h√
∆2

e − ω2
√

∆2
h − ω2

= α(Ui, Nj, gj3) , (8.12)
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Figure 8.3: Energy of the impurity bound state for isotropically-gapped system given by
ωM = min(ω+, ω−), see Eq. (8.14), which is measured with respect to ∆M = min(∆e,∆h).
For a given value of the DOS ratio Ne/Nh, and the corresponding fixed δ0, variation of the
impurity potentials U0 and U1 traces a path along the surface. For a given value of α, the
bound state energy is always lowest at δ0=1.

where α ≥ 1 and is given by

α =
π2NeNhU

4
0

2U2
1

[
1 + c2e −

(
1 +

g2e3
π2N2

e

)
U2
1

U2
0

] [
1 + c2h −

(
1 +

g2h3
π2N2

h

)
U2
1

U2
0

]
+
π2(N2

e +N2
h) + (ge3 − gh3)

2

2π2NeNh

.

(8.13)

Note that the dependence of the energies on the scattering potential and the partial densities

of states enters only via the parameter α. Thus, the poles of the T -matrix are

ω2
± =

α2(∆e +∆h)
2 − 2(α2 − 1)∆e∆h

2(α2 − 1)
± α(∆e +∆h)

2(α2 − 1)

√
α2(∆e −∆h)2 + 4∆e∆h , (8.14)

and the bound state is given by ωM = min(ω+, ω−) and is measured with respect to the

smaller of the two gaps ∆M = min(∆e,∆h). Finally, it is easy to locate U1,m for the

isotropically-gapped system since, in this case, the energy dependence disappears from
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Eq. (8.8) which becomes

U2
1,m

U2
0

=

√√√√ 1 + c2e

1 +
(

ge3
πNe

)2
√√√√ 1 + c2h

1 +
(

gh3
πNh

)2 . (8.15)

The resonance energy depends on the ratio of the gaps, δ0, and parameter α as shown in

Fig. 8.3. For a fixed band structure, variation of the impurity scattering strength traces a

path of constant δ0 along the surface, which I describe below for several situations. Although

I consider arbitrary ratios of U1/|U0| below, I emphasize that only those resonant states at

U1 < |U0| are physical solutions to Eq. (8.4).

8.3.2 Particle-hole Symmetric Case

For particle-hole symmetric bands I set gh3 = ge3 = 0 so that now

α =
[1 + π2N2

e (U
2
0 − U2

1 )] [1 + π2N2
h(U

2
0 − U2

1 )]

2π2NeNhU2
1

+
N2

e +N2
h

2NeNh

. (8.16)

Focus first on the s+− state corresponding to δ0 > 0 in Fig. 8.3. Examination of Eq. (8.12)

shows that ωM = ω− and is monotonic in α. To find the optimal conditions for the impurity

state, I minimize ω−/∆M with respect to δ0 for fixed α, and find that the bound state lies

deepest in the gap when δ0 = 1. In this case, i.e., for equal gap magnitudes ∆j = ∆0, the

impurity states form at ±ε where

ε ≡ ω−

∆0

=

[
α− 1

α+ 1

]1/2
. (8.17)

Mid-gap bound states form when α=1, and Eq. (8.16) shows that this requires two separate

conditions, Ne=Nh=NF and U2
1,m = (πNF )

−2 + U2
0 , a rare situation where the the bands

are balanced and the interband scattering matrix element is stronger than its intraband

counterpart. In Fig. 8.4(a), I show the dependence of the resonant energy on the scattering

potentials for identical bands, n = 1, where it is clear that the lowest energy impurity states

form near U1,m.
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For the s+− gap and unequal densities of states, Ne ̸= Nh, the mid-gap impurity state

is altogether impossible, and the impurity bound state is always away from the chemi-

cal potential. The lowest energy of the bound state is found under the conditions of

Eq. (8.15), U2
1,m = U2

0

√
1 + (πNeU0)

−2
√

1 + (πNhU0)
−2, still at U1 > U0. I show this result

in Fig. 8.4(b), where I used the interband pairing constraint nδ20=1 with n = 0.5. Imbalance

in the DOSs restricts the impurity states to ε & 0.3 for most values of the scattering po-

tentials, and the low-energy bound states are relegated to scattering potentials near U0 ≈ 0

and substantial interband scattering U1 ≈ (πNF )
−1. This is clearly an unphysical result and

arises from the assumption of the particle-hole symmetric bands. As I show in the following

section, relaxing this assumption changes the situation entirely.

Before that, let me consider the s++ gap, shown by δ0 < 0 in Fig. 8.3. The energies of the

bound states are given by the same Eq. (8.14), but with ∆e < 0. Note that for the identical

bands, ∆e = −∆h the bound state is always at the gap edge irrespective of the strength of

the scattering potential, ω± = ∆h. For |∆e/∆h| < 1 the bound state is still given by ω−,

while in the opposite limit, |∆e/∆h| > 1, the in-gap state is obtained from ω+. Existence

of the in-gap bound state for the s++ two-band system is in agreement with the work of

Golubov and Mazin, Ref. [145], who showed that only for identical bands is the transition

temperature independent of the non-magnetic impurity scattering, while for non-identical

bands interband non-magnetic scattering suppresses the transition temperature. Therefore,

the bound state exists over a wide range of impurity potentials, albeit generally at higher

energies compared with the optimal conditions for the s+− order parameter. Figure 8.3

shows the overall features of the bound state in this case.

While for the s++ gap there is no reason to believe a priori that the interband pairing is

dominant, the presence of a single thermodynamic transition where gaps on both the electron

and the hole Fermi surfaces open simultaneously argues in favor of strong interband coupling.

Therefore, I restrict myself to the situation where δ0 = n1/2 as for the s+− case discussed
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Figure 8.4: Energy of the impurity bound state in isotropically gapped systems with (a,b)
s+− and (c,d) s++ order parameter. In all cases nδ20=1, see Eq. (7.2), and dashed line is
πNFU1,m along which the energy is minimal, see Eq. (8.15) with the gj3=0.

above. Under this restriction, the bound state generally remains close to the gap edge, a

result I emphasize in Fig. 8.4(c,d). Since the bound state forms at the gap edge for n=1, I

show instead in Fig. 8.4(c) the situation for n=0.8, i.e., the case of nearly-balanced bands. As

shown, the bound states form away from the gap edge only in the immediate vicinity of U1m

and even then remain at ε & 0.7 over most of the scattering plane. Low-energy impurity

states are completely absent except at the unphysical U0 ≈ 0 and U1 ≈ (πNF )
−1. This

situation does not change appreciably as the bands are further imbalanced, see Fig. 8.4(d)

where n = 1/2, and I see that impurity states are unlikely to form in s++ systems. Hence, I

focus my analysis below to the case of s+− gap.
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8.3.3 Finite Bandwidth and Particle-hole Asymmetry

When the bands are particle-hole asymmetric the impurity states are still given by

Eqs. (8.14) and (8.13) with ge3, gh3 ̸= 0. To understand the importance of the finite gj3,

I focus my discussion below on energy of the bound states along this line. In fact, if I con-

sider the states along U1,m and take U0 to infinity, I find that the strong scattering state

forms at ω = 0 only when

π2N2
e + g2e3
πNe

=
π2N2

h + g2h3
πNh

. (8.18)

I find that a line of zero energy states always exists when the bands are completely

identical, a situation I show in Fig. 8.5(a) so that n = 1 and ge3 = −gh3 = 0.5. The primary

difference between this and the previous result is the shifted line U1,m for finite gj3, since here

the sign of U0 matters. When the gj3 > 0, the minimal energy condition is now U1,m < |U0|

for positive U0, and the situation is reversed if both gj3 < 0.

In Fig. 8.5(b), I show the energy for states when one band is much broader than the

other. In this situation, I see that the location of the lowest-energy state depends strongly

on the sign of U0. Since the scattering in band e is effectively Ũ0 = U0(1 − ge3U0)
−1, I see

that scattering within the finite band is reduced when U0 is moderate and of opposite sign

as ge3. In the strong scattering limit |U0| → ∞, the bound state energy approaches the finite

value ε = g2e3/|g2e3 + 2π2N2
h |.

In Fig. 8.5(c), I present the results for ge3 = −gh3, i.e., for bands that are identical up

to the sign of their particle hole asymmetry. Since I expect electron and hole bands to have

gj3 of opposite sign, this is the case that is most applicable to bound states in the pnictides.

I find that in this case U1,m > |U0|, and that low-energy bound states are wholly absent

at small U0. In fact, it is straightforward to show that the energy is largest at U0 = 0 for

the bound states along U1,m, and the bound state at U0 = 0 approaches ω = 0 only in the

strong-scattering limit.
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Figure 8.5: Energy of the impurity bound state in finite-bandwidth s+− SC system for (a,b,c)
n = 1 and (d,e,f) n = 1/2. Dashed line is Ū1,m along which the resonance energy is minimal
for a given Ū0, see Eq. 8.15. In all cases, 1 = nδ20 as per Eq. (7.2).

Shifting the dominant DOS contribution to one band or the other has significant con-

sequences for the formation of the bound state. In Fig. 8.5(d,e,f), I show the bound state

energies for the same conditions as in Fig. 8.5(a,b,c), except that I now set n = 1/2. When

the gj3’s are the same, the effect of shifting the DOS balance is to simply raise the energy

of all of the impurity states, as I show in Fig. 8.5(d,f). Since the system is particle hole

asymmetric, the amount by which the energies are shifted depends on the sign of U0, and

for gj3 > 0 the energies are shifted much closer to the gap edge for U0 > 0. When the bands

have equal but opposite gj3, I can capture the basic physics with an expansion of Eq. (8.13)
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for n ≈ 1. The expansion gives α(n) = α(1)+2U0|gj3|(n−1)f(n, U0, gj3), where f(n, U0, gj3)

is always positive. From this, I see that taking n < 1 shifts the energies to lower energies for

U0 > 0, a result that is apparent in Fig. 8.5(f).

8.4 Two Bands: Anisotropic Gap on One of the Sheets

For the anisotropically-gapped systems, I numerically solve the equation for the pole of

the T -matrix given by Eq. (8.4) by evaluating the local Green’s functions, see Eq. (8.7), on

the electron FS with the help of Eqs. (E.6b) and (E.6c). As before, I treat the gj3 as free

parameters. Since I expect the gj3 to have opposite signs for one electron and hole bands, the

situation relevant for the pnictides, below I focus on the situation where gh3 = −ge3 = 0.5 for

both balanced and unbalanced bands. I set δ−2
0 =n(1 + r2/2) according to Eq. (7.2), whence

the lower gap edge is εm=|1− r|δ0. Below, I consider only the sub-εm states, impurity states

that form below εm, since it is their spatial dependence that gives information about the

nodal structure of the SC gaps. I will return to this point in Sections 9 and 10 where I

calculate the spatial dependence of the local density of states near the single non-magnetic

impurity.

8.4.1 Nodeless Anisotropic Gap

As I show in Fig. 8.6, the low-energy states in the δ0 = 1 system form only over a very

narrow region of the U0-U1 plane in the vicinity of U1,m. Since the electron band is fully-

gapped at low energies so that g2e0−g2e1 ≈ −π2N2
e , and, far below εm, here I can approximate

U1,m by the isotropic s+− result from Eq. (8.15). Compare the energies in Figs. 8.6(a) and

(b) and those in the immediate vicinity of U1,m for isotropic s+− that I show in Figs. 8.5(c)

and 8.5(f), respectively. As shown, there are few qualitative differences in the bound state

energies as long as the gap remains nodeless. This includes the fact that the low-energy

states do not form below U1 ≈ |U0| and are thus unlikely to form in the nodeless anisotropic
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Figure 8.6: Energy of the low-lying impurity state in finite-bandwidth, nodeless anisotropic
system, r=0.7, with (a) n=1 and (b) n=1/2. The T -matrix has no poles below εm in white
regions, and only the poles at U1 < |U0| are physical resonant states. Hence, low-energy
states are not likely to form in the absence of gap nodes. Dashed line is Ū1,m along which the
resonance energy is minimal, see Eq. 8.15. In both cases, δ−2

0 =n(1 + r2/2) and εm = 0.3δ0.
Energy is measured relative to εm.

system. I do not show the results for δ0 < 0. I did check, however, for low-energy resonant

states for the nodeless anisotropic system with δ0 < 0. I found that the impurity state does

not form below εm.

8.4.2 Anisotropic Gap with Nodes

The situation changes drastically when the FS supports gap nodes. Recall that the

formation of the resonant state requires that quasiparticles be scattered between parts of

the FS that have gaps of different sign. If nodes are present on one of the sheets, then

the intraband component U0 controls the formation of the impurity state, as I explained

in Section 7.2. Consequently, once U0 is sufficiently large, I find that the low-energy state

forms at even the smallest values of U1. This is in keeping with the single-band results that



78

Figure 8.7: Energy of the impurity bound state in systems with nodal gap for (a,b) δ0 > 0
and (c,d) δ0 < 0. In all cases the gj3=0, and δ0 is set according to Eq. (7.2). Energy is
measured relative to εm.

I discussed in Section 8.4.2. Since it is U0 that is important when there are nodes on the

electron FS, I find that the low-energy state forms readily for both signs of δ0.

In Fig. 8.7, I show the low-energy state when the bands are particle-hole symmetric. For

the sign-changing case δ0 > 0, the low-energy state forms at all but the smallest values of U0

and U1, see Figs. 8.7(a,b). The exact energy of the impurity state depends on the imbalance

in the bands, and the resonance forms deeper in the gap when the bands are imbalanced.

Generating a non-magnetic impurity state only requires that particles scatter across a sign

change in the gap, which is why it easy to generate states in the nodal system when ∆e

and ∆h have the same sign. This is in stark contrast to the fully-gapped systems where the

low-energy states simply do not form for U1 < |U0|. Since U0 can now scatter particles across

the nodes on the electron sheet, one might naively expect to generate states for δ0 < 0 as

easily as when δ0 > 0. However, in the sign-unchanging nodal case, there are fewer states
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Figure 8.8: Energy of the low-lying impurity bound state in finite-bandwidth nodal system,
r=1.3, with (a) n=1 and (b) n=1/2. The T -matrix has no poles below εm in white regions,
and only the poles at negative U0 and U1 < |U0| are physical resonant states. In both cases,
δ−2
0 =n(1 + r2/2) and εm = 0.3δ0. Energy is measured relative to εm.

on the electron sheet where the gap is opposite in sign to ∆h, a fact that somewhat reduces

the importance of U1 in generating the resonant state. For the sign-unchanging case δ0 < 0,

the resonances only form over a restricted region of the U0-U1 plane, and, as I shown in

Figs. 8.7(c,d), there are two clear regimes where either U0 or U1 is more important. Of

physical importance are the regions where U1 < |U0|. Thus, for both signs of δ0, I find that

it is relatively easy to generate low-energy resonant states in the nodal systems when U0 is

sufficiently strong, and the resonant state forms at even the smallest values of U1 as per the

results of Section .

I now consider the effects of finite bandwidth on the resonant states in the nodal systems.

I take gh3 = 0.5 and ge3 = −0.5 so that the bands are hole-like and electron-like, respectively.

As I show in Fig. 8.8, there are large regions of low-energy states for both signs of δ0. When

the ge3 is finite, it is ce that controls the scattering between the nodes on the electron
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sheet [142], and the formation of the low-energy state now depends strongly on the sign of

U0. Specifically, it is easier to generate states at negative U0 since ge3 < 0. Compare the

energy of the states at U1 < |U0| for U0 as shown in Fig. 8.8. The impurity state at large U1

can be lower in energy for the sign-changing system; however, there is not much difference

in the energy of the low-lying states at small U1, regardless of the sign of δ0.

The physically relevant impurity states, U1 < |U0|, are robust against an imbalance

in the electron and hole contributions to the total DOS. Comparing Figs. 8.8(a,c) with

Figs. 8.8(b,d), show that the band imbalance only slightly reduces the range of U0 and U1

over which the low-energy state can form. Thus, regardless of the sign of δ0, I find that

low-energy states will form over a substantial region of the U0 − U1 plane. As usual, the

energy of the strong-scattering state is sensitive to the band structure, and I find that it

always lies at finite bias in the presence of gap nodes.

I do not calculate or show U1,m since the ge0 and ge1 in Eq. (8.8) depend strongly on

the energy of the resonant state, and solving finding Eq. (8.8) with D(ω) = 0 is analytically

impossible. However, it is clear from Figs. 8.7 and 8.8 that there is a shallow minimum

in the energy of the accessible states for each fixed U0. The shallowness of this minimum

implies that most of the physical low-energy states remain close to εm so that they mix with

the continuum states that form the DOS feature. While this results in a broadening of the

resonant peaks relative to the bound states in the isotropic system, any peak below εm is

relevant for probing the nodal structure of the gap.

In short, I find that the bound-state energy is sensitive to the details of the band structure,

and that these details must be taken into account when interpreting the results of model-

specific calculation. My analytical results provide insight into the varied tight-binding results

for both the sign-changing s+− state, where the bound state can form at low energies [133]

but often remains close to the gap edge [131, 75, 132, 123, 121], and the s++ state, for which

the bound state is wholly absent [121, 133]. I see that conditions for forming low-energy
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states are generally the same for the isotropic and nodeless anisotropic gap. The situation is

utterly different in the presence of gap nodes, where the importance of U0 and U1 is reversed

for generating the impurity state. Consequently, I find that low-energy states form equally

well for both the sign-changing and sign-unchanging nodal SC gaps. This remarkable result

has direct consequences for probing the nodal structure of the gap by STS, a point I return

to in Section 9.2. Now that I know the conditions under which to expect impurity states,

I proceed in the next chapter to examine numerically the energy and spatial dependence of

the local density of states near the single impurity



9. Two-band Tight-binding Model and the
Local Density of States

Before I proceed to a more realistic model of iron-based superconductors, I consider a

simple two-band tight-binding model, an instructive scenario wherein I can disentangle the

effects due to the particle-hole asymmetry from those due to unequal densities of states on

different Fermi surface sheets. I take the quasiparticle dispersion to be

ξjq = −4tj cos qx cos qy − µj , (9.1)

where the wave vectors qx and qy are measured in units of a−1, the inverse of the distance

between Fe ions, so that I work in the “unfolded” zone picture. For simplicity I set th as

the unit of energy hereafter in this section. Setting µh/|th| = −µe/|te| = 3 ensures that

the electron and hole Fermi surfaces have the same size and shape, with two hole sheets,

one each centered at the Γ point and (±π,±π), and two electron sheets, centered at the M

points (±π, 0) and (0,±π), in the unfolded zone picture. The dispersion in Eq. (9.1) yields

a van Hove singularity at the center of the band, where ξjq = −µj; therefore, for my choice

of µe and µh, the density of states is featureless around the chemical potential which I take

as zero energy.

I consider the superconducting order parameter that transforms according to an A1g

representation of the lattice point group. Therefore I take an isotropic gap, ∆hq=∆h, on the

hole pocket and an anisotropic gap of the form

∆eq = −∆e [1 + r̃ (cos qx + cos qy)] (9.2)

on the electron pocket. The choice of the anisotropy factor r̃ = 4tr/(µe − 4t) for small

electron Fermi surface size maps the order parameter on that studied in the previous section.

Indeed, expanding Eq. (9.1) near the point (π, 0), I find that the electron Fermi surface is

82
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approximately given by (π − qx)
2 + q2y ≡ k2F ≈ 1− µe/(4t). A similar expansion of Eq. (9.2)

yields the gap ∆eq ≈ −∆e[1 + r cos 2ϕ], where ϕ is the angle on the electron Fermi surface

and is measured from [010], as I show in Fig. 7.1. An analogous expansion near the other M

points yields the same ∆eq, but with ϕ measured from [010] or [100] at (−π, 0) and (0,±π),

respectively.

I work with the Hamiltonian Ȟ =
∑

j,q Ĥjq, where Ĥjq = ξjqτ̂3 + ∆jqτ̂1 and j = e, h is

again the band index, and define the Green’s function for the clean system via

Ǧ−1
0 (q;ω) =

[
ωτ̂0 − Ĥeq 0

0 ωτ̂0 − Ĥhq

]
. (9.3)

I Fourier transform Ǧ0(q;ω) to real space,

Ǧ0(ri, rj;ω) =
1

NqxNqx

∑
q

Ǧ0(q, ω)e
iq(ri−rj) , (9.4)

with Nqi the number of q-points in the qi direction, and solve for the full Green’s function

using Eq. (7.10) and Eq. (7.11). The local density of states (LDOS) is N(r, ω)=2
∑

j Nj(r, ω)

from Eq. (7.12) with the factor of 2 for spin degeneracy. The calculations presented below

have been done on a lattice with Nqx=Nqy=1600 with intrinsic broadening γ=∆h/40=0.005t.

I set ∆h=0.2t and take ∆e=δ0∆h, where |δ0| is determined from Eq. (7.2) with the DOS

ratio n = Ne(0)/Nh(0) that I defined earlier. Recall that δ0 > 0 corresponds to the sign-

changing superconducting state state. I calculate the LDOS for both n=1 and n=1/2 by

setting te=th and te=2th, respectively. With these parameters, the Green’s function gh3 = 1

for the hole band while, for the electron band, ge3 = −1 and ge3 = −0.9 in the absence

and presence of gap nodes, respectively. Recall that I measure the gj3 with respect to the

πNj(0).

As I did in Chapter 8, I measure the scattering potentials in units of πNF = π(Ne(0) +

Nh(0))/2, and I introduce Ūi = πNFUi for notational simplicity. Here I focus on the moderate

intraband potential Ū0 = ±1.5, and calculate the LDOS for Ū1/|Ū0| = (1/3, 2/3, 1) in keeping
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with the expectations [139, 140, 141] discussed in Chapter 6. For the fully-gapped systems,

I estimate U1,m for each case by evaluating the Green’s functions gei and ghi at ω = 0

for use in Eq. (8.8), while for the nodal case I find U1,m by inspection of the calculated

LDOS. I present the LDOS for U1,m only when it differs appreciably from the LDOS for

Ū1/|Ū0| = (1/3, 2/3, 1).

9.1 Local Density of States in the Two-band System

In choosing the FS shape described above for the electron- and hole-like bands, I restrict

myself to the situation where ge3 and gh3 are of opposite signs. I find that the energy of

the impurity states agrees qualitatively with the predictions made in Sections 8.3 and 8.4.

Specifically, I find that low-energy states generally do not form in the fully-gapped systems

at physical values of finite scattering since. This is because a dominant interband scattering

is required to scatter states between different signs of the gap on the electron and hole

sheets. Furthermore, the intraband scattering controls the formation of the impurity state

when there are nodes on the electron sheet. As such, it is easy to generate the low-energy

resonance in the nodal systems.

I begin with the case n = 1, where the opposite particle-hole asymmetry of the two bands

prevents the formation of the low-energy state for the nodeless systems when the scattering

is moderate. I show this in Fig. 9.1(a,b) for the isotropic gap where the bound state never

forms at ω = 0. Furthermore, the lowest-energy resonance remains stuck to the LDOS

feature at εm in the anisotropic system, see Figs. 9.1(c,d). These results are consistent with

my analytic predictions.

As expected, when the gap has nodes, I find that sub-εm states form readily when there

are nodes on the electron sheet. In Fig. 9.1(e,f), I show the impurity states for physical values

of Ū1 < |Ū0|. As shown, the interband scattering has to be comparable to |Ū0|, an unlikely

scenario, for a state to form for Ū0 > 0; however, the impurity state forms for all Ū1 when
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Figure 9.1: On-site LDOS for n=1 with moderate scattering, Ū0=±1.5 for (a,b) isotropic,
(c,d) nodeless anisotropic, and (e,f) nodal gaps with δ0 > 0. Panels (g,h) are for nodal gap
with δ0 < 0. The thin black line is the DOS of the clean system, and arrows mark the
DOS feature at εm for the anisotropic cases. Low-energy impurity states form below εm in
the nodal system even at small values of Ū1, but impurity states do not form near ω=0 in
either of the fully-gapped systems. The LDOS for Ū1,m is shown when Ū1,m ̸≈ |Ū0|, but it
is unlikely when Ū1,m > |Ū0|. The insets show close ups of the low-intensity positive-bias
peaks. Note the different vertical scales.
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Figure 9.2: On-site LDOS for n=1/2 with moderate scattering, Ū0=±1.5, for (a,b) isotropic,
(c,d) nodeless anisotropic, and (e,f) nodal gaps with δ0 > 0. Panels (g,h) are for nodal gap
with δ0 < 0. The thin black line is the DOS of the clean system, and arrows mark the
DOS feature at εm for the anisotropic cases. Low-energy impurity states form below εm in
the nodal system even at small values of Ū1, but impurity states do not form near ω=0 in
either of the fully-gapped systems. The LDOS for Ū1,m is shown when Ū1,m ̸≈ |Ū0|, but it
is unlikely when Ū1,m > |Ū0|. The insets show close ups of the low-intensity positive-bias
peaks. Note the different vertical scales.
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Ū0 < 0. As I discussed in Section 8.4.2, scattering across a gap node is all that is required

to generate an impurity state, hence the physical low-energy state forms equally well when

δ0 < 0 as I show in Fig. 9.1(h). Also in keeping with my predictions from Section 8.4 is the

fact that the impurity state stays close to εm. The height of the LDOS at the resonance

energy depends upon Ū1, and the stronger peaks generally correspond to the larger values of

Ū1 in the small-U1 limit. The peaks for δ0 < 0 are also weaker than those for δ0 > 0, and it

may be difficult to detect the impurity state generated by either a weak impurity or in the

anisotropic s++ system. As I discuss in the next section, it is the shape, in real space, of the

impurity state that can be used to discriminate the structure of the gap on the electron FS

sheet. Hence, it is of paramount importance to carefully examine the LDOS to locate the

impurity state.

The situation is different when the dominant contribution to the DOS comes from the

hole bands. I show in Fig. 9.2 the LDOS for n = 1/2 and the same gap symmetry cases

and scattering potentials as discussed above. The most obvious difference between these

results and those in Fig. 9.1 is that here the impurity state energy for the fully-gapped cases

depends strongly on the sign of U0. As expected from the results presented in Fig. 8.5(f),

the isotropic-gap bound state is lower in energy when U0 > 0 but remains close to the gap

edge at ∆h for physical values of Ū1. My prediction for the nodeless anisotropic system is

verified in Fig. 9.2(c,d) where I see that the impurity state is unlikely to form below εm.

Although I find a sub-εm state for the anisotropic case at Ū1=−Ū0=1.5, it is unlikely that

such a large interband scattering potential is physically relevant.

I also verify my prediction of the low-energy state in both the sign-changing and sign-

unchanging nodal system. In fact, comparing Figs. 9.2(f) and (h), I see that the LDOS are

remarkably similar for the two cases. As before, a larger interband scattering component

generates a stronger resonance, and the resonances generally remain close to the gap feature
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at εm. Thus, I see that the formation of the low-energy state in the nodal systems are robust

against a moderate imbalance in the bands.
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Figure 9.3: On-site LDOS for strong scattering, |Ū0|=Ū1=100, for (a,c,e,g) n=1 and (b,d,f,h)
n=1/2. When the bands are balanced, n=1, the strong scattering state is at low energy.
When the bands are imbalanced, the state forms away from ω = 0 for of the gap shapes. As
shown in panel (f), the nodal s+− state has a low-energy peak in the LDOS at U1,m = 99.5.
Note the different vertical scales for the cases. The thin black line is the DOS of the clean
system.
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To examine the impurity state in the strong-scattering limit, I set |Ū0| = Ū1 = 100, where

I find that the shape of the LDOS does not depend strongly on the sign of Ū0. As I show

in Fig. 9.3, the location of the strong-scattering state depends on the symmetry of the gap.

For fully-gapped systems at n=1, the bound state forms at ω = 0 as shown in Figs. 9.3(a,c);

however, the state moves to finite bias when the bands are imbalanced, see Figs. 9.3(b,d).

As in the case of finite scattering, the low-energy state is more likely to form when there

are nodes on the electron FS sheet. This is true for both signs of δ0, I show in Fig. 9.3(e)-(h).

The only situation in which I do not find a sub-εm state at |Ū0| = Ū1 = 100 is for the nodal

s++ state when the bands are imbalanced; however, there is a sub-εm state when Ū1 = 99.5.

Since the low-energy state forms for Ū1 within one percent of Ū0, this indicates that the

resonance very nearly forms even when the bands are imbalanced. The fine-tuning of Ū1

required implies that such a state is unlikely to form in a physical system if the bands’ DOS

are sufficiently different

9.2 Spatial Dependence of the Resonant State

So far I have shown that the presence of the low-energy impurity state is generally a hall-

mark of the gap nodes on the electron FS sheets, especially when the bands are particle-hole

asymmetric. Even though the sub-εm state is not likely to form in the nodeless anisotropic

system, it is clear from my results in Figs. 9.1(c,d) and 9.2(c) that such a state is possible

when the interband and intraband scattering parameters are of comparable strength. I now

explore the spatial dependence of the impurity state to obtain a fuller picture of the differ-

ences and similarities between the various gap structures on the electron sheet. Of course

the resonance peak decays away from the impurity site, and the decay length depends on

the electronic structure and the potential strength. The decay is isotropic for the s+− sys-

tem; however, the decay can be direction-dependent for the anisotropic gaps, depending on

whether the impurity state forms above or below εm and whether the gap has nodes. This
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Figure 9.4: Impurity state for the two-band model with (a,c) nodeless, r=0.7, and (d,e)
nodal, r=1.3, anisotropic gaps. Panels (a) and (b) show the positive-bias peaks that form
at ε ≈ 0.7, above εm, for Ū1 = Ū0 = 1.5. Panels (c) and (d) show the positive-bias peaks
that form at ε ≈ 0.23, below εm, for Ū1 = −Ū0 = 1.5. The impurity sits at (0, 0), and x and
y are the axes for the crystallographic unit cell.

is the effect I emphasize in this section and then pay further attention to in my subsequent

analysis of the more realistic band structure relevant for the pnictides.

The impurity states above εm in both of anisotropic systems display a four-fold symmetric

decay pattern, which I show in Fig. 9.4(a) and (b). The shape of the state is virtually identical

in the immediate vicinity of the impurity. While there can be differences in the shape of the

state far from the impurity, there the decay pattern is insufficient to determine the presence

or lack of gap nodes. However, the similarity between the spatial profiles disappears once

the resonant state forms below εm. When the impurity state is below εm, there is little

difference between the bound state in the nodeless system and the bound states that form in

the presence of isotropic s+− gap. In Fig. 9.4(c), I show the spatial dependence of the sub-

εm state that forms in the nodeless system. As shown, the impurity state exhibits almost
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Figure 9.5: Sub-εm impurity state for the two-band model with n=1 and nodes, r=1.3, on
the electron FS sheets. Shown are the positive-bias peaks for Ū0 = −1.5 with (a,d) Ū1=0.5,
(b,e) Ū1=0.5, and (c,f) Ū1=0.5 that I present in Fig. 9.1(f) and (h). Panels (a), (b), and (c)
are for the sign-changing case while panels (c), (d), and (e) are for the sign-unchanging case.
The impurity sits at (0, 0), and x and y are the axes for the crystallographic unit cell.

circular Friedel oscillations as it decays with distance from the impurity, which indicates

that the resonance forms at an energy for which there are no states in the clean system. In

contrast, the impurity state in the nodal system is still four-fold symmetric even below εm,

as I show in Fig. 9.4(d).

This four-fold symmetry in the nodal system is much more prominent when the impurity

state forms far below εm, and the resonance decays much more slowly along the Fe-lattice

axes. This is clearly seen in the spatial mappings that I show in Fig. 9.5 for both the

sign-changing and sign-unchanging systems with n=1. As shown, there is little about the

resonance state generated by a particular value of Ū0 and Ū1 that can discriminate between

the two possible signs of δ0.
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Figure 9.6: Sub-εm impurity state for the two-band model with n=1/2 and nodes, r=1.3, on
the electron FS sheets. Shown are the positive-bias peaks for Ū0 = −1.5 with (a,c) Ū1=0.5
and (b,d) Ū1=1.0 that I present in Fig. 9.2(f) and (h). Panels (a) and (b) are for the sign-
changing case while panels (c) and (d) are for the sign-unchanging case. The impurity sits
at (0, 0), and x and y are the axes for the crystallographic unit cell.

The spatial features of the impurity state are the same for resonances in the unbalanced-

band system, which I show in Fig. 9.6 for n=1/2. As for the balanced-band scenario, the

shape of the sate is four-fold symmetric with its longer decay length along the Fe-lattice

axes. It is clear then, that the shape of the low-energy resonance is key to identifying the

nodal structure of the gap. The four-fold symmetry of the low-energy state is much more

pronounced when there are gap nodes on the electron FS sheet. Unfortunately, the imbalance

in the bands does not introduce any features into the shape of the state that are capable of

discriminating between the two signs of δ0.



10. Realistic Four-band Tight-binding Model

I now verify my findings within the context of more realistic models of the pnictide

band structure. Several studies of impurity-induced resonances have focused on extended s-

wave superconductivity and find that resonances induced by non-magnetic impurities do not

develop in the vicinity of the chemical potential [121, 131, 75]. References [121] and [131],

use the minimal two-band model proposed by Raghu, et al. [73], that has also been used to

study the consequences of s-wave cos(kx) cos(ky) superconductivity in the pnictides [87], and

find that non-magnetically-induced resonances develop only near the gap edge. This is in

stark contrast to the low-energy impurity states discussed previously in this study and those

from Refs. [75, 133] that develop well within the gap. The discrepancy between these two

general cases arises because, as we discussed above, the details of the chosen tight-binding

dispersion have important consequences for the formation of impurity states.

The minimal two-band model from Ref. [73], and used in Refs. [121] and [131], does

reproduce the pnictide FS topology; however, it gives the relative Fermi-level densities of

states as Ne(0) ≈ 4.9Nh(0), as I show in Fig. 10.1(a), with particle-hole anisotropy given by

the Green’s functions ge3 ≈ −3.7πNe(0) and gh3 ≈ 0.4πNh(0). Using the formalism presented

in Section 8.3.3, I estimate the bound-state energy for the isotropic s+− state, which I show

in Fig. 10.2. As shown, the impurity state remains close to the gap edge if it forms at all.

I also checked for resonances numerically by calculating the LDOS with this model, and I

found that the bound states that do form remain close to the gap edge. Furthermore, I

do not find impurity states far from the gap edge in either of the anisotropically gapped

systems. I conclude that the large degree of particle-hole anisotropy of this model prevents

the formation of low-energy states. Thus, while it reproduces the FS topology, the model
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Figure 10.1: Normal state electron and hole DOSs for (a) two-band model with hopping
integral t from Ref. [73] and (b) four-band model from Ref. [74]. Insets: Band structures for
the respective models; symmetry-point notation is for the 1111-type materials [72, 137, 146,
65].

presented in Ref. [73] does not give resonant states due to the mismatch of the electron and

hole bands.

I follow, instead, the four-band model presented in Ref. [74], which fits the Fermi-surface

topology and Fermi velocity as determined by the local-density approximation, and whose

band structure and normal-state DOS I show in Fig. 10.1(b). This four-band model estimates

the relative contributions of electrons and holes to the Fermi-level DOS as Nh(0) ≈ 2.5Ne(0)

or, in my notation, n ≈ 0.4. It also estimates the Green’s functions ge3 ≈ −πNe(0) and

gh3 ≈ 1.2πNh(0), where gj3 and Nj(0) represent the total contribution from the bands of

the jth type. As I show below, the band structure from Ref. [74] allows for the formation of

impurity states under the conditions I have discussed above.
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Figure 10.2: Energy of the impurity state in isotropic s+− for the minimal two-band model of
Ref. [73], as estimated using the formalism in Chapter 8. Impurity states are nearly absent
for physical values of πNFU1. The dashed line is πNFU1,m as taken from Eq. (8.15).

I extend the formalism in Chapter 9 to include four bands so that the eight-by-eight

matrix Green’s function Ǧ0(k;ω) is defined by

Ǧ−1
0 (k;ω) = ωI−


Ĥα1k 0 0 0

0 Ĥα2k 0 0

0 0 Ĥβ1k 0

0 0 0 Ĥβ2k

 . (10.1)

Here I is the eight-by-eight identity matrix and the band index j now takes the values α1,

α2, β1, and β2. From Reference [74], the tight-binding dispersions are

εαik = −tαi
(cos (kx) + cos (ky))− t′αi

cos (kx) cos (ky)− µαi (10.2)

for the two hole bands and

εβik = −tβi (cos (kx) + cos (ky))− t′βi
cos

(
kx
2

)
cos

(
ky
2

)
− µβi

(10.3)

for the two electron bands with i=1,2. Here I work in the folded BZ picture, corresponding

to two Fe atoms per unit cell with the lattice constant ã=
√
2a. The momenta kx and ky are
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therefore measured in units of ã−1. The tight-binding parameters from Ref. [74] are

(tα1 , t
′
α1
, µα1) = (−0.3,−0.24, 0.6) (10.4a)

(tα2 , t
′
α2
, µα2) = (−0.2,−0.24, 0.4) (10.4b)

(tβ1 , t
′
β1
, µβ1) = (−1.14,−0.74,−1.70) (10.4c)

(tβ2 , t
′
β2
, µβ2) = (−1.14, 0.74,−1.70) . (10.4d)

The tight-binding parameters in Eq. (10.4) yield the Fermi surface topology that I show in

Fig. 10.3, which consists of two hole (εαik=0) and two electron (εβik=0) FS sheets centered

at the high-symmetry points Γ and M. The electron and hole contributions to the Fermi

level DOS are Nh(0) = Nα1(0) +Nα2(0) and Ne(0) = Nβ1(0) +Nβ2(0), respectively. Here all

energies are measured in electron volts (eV).

G

M

-Π 0 Π
-Π

0

Π

kx

k y

Figure 10.3: Fermi surfaces for bands εαik and εβik, i=1,2. Two hole pockets from εα1k

(dashed) and εα2k (solid) are centered at the Γ point of the folded Brillouin Zone. Two
electron pockets from εβ1k (dashed) and εβ2k (solid) are centered at the M point. The thin
dash-dotted line gives the nodal line for the gap ∆β2k on εβ2k for r̃=8.56. This corresponds
to maximal and minimal gap on the electron FSs of ∆β+=1.94∆0 and ∆β−=−0.3∆0, respec-
tively. The momentum is measured in units of ã−1.
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I again consider the isotropic gap ∆αik=∆h on the hole FS sheets, and I define the gap

on the electron sheets to be

∆β1k = −∆e

(
1 + r̃ cos

(
kx
2

)
cos

(
ky
2

))
(10.5a)

∆β2k = −∆e

(
1− r̃ cos

(
kx
2

)
cos

(
ky
2

))
, (10.5b)

where the anisotropy of ∆βik is set by

r̃ = r
4tβ2 + t′β2

2tβ2 − 2µβ2

. (10.6)

With this gap profile, the gap extrema on the electron FSs are ∆β,max ≈ −∆e (1 + 0.110r̃)

and ∆β,min ≈ −∆e (1− 0.152r̃), respectively. I choose r̃=4.91 for the nodeless and r̃=8.56

for the nodal anisotropic gaps so that ∆β,min=−∆e|r − 1| are the same as the gap minima

considered in Chapter 9 for r = (0, 0.7, 1.3).

I set ∆h=0.06 eV and ∆e=δ0∆h, with |δ0| as determined from Eq. (7.2) using the Ne(0)

and Nh(0) defined above. Although this value for ∆h is larger than what is found experimen-

tally [79, 96, 97, 98], it is still much smaller than the bandwidth and captures the relevant

physics. All of my calculations for this section are performed on a 2000 by 2000 k-space grid

and take the intrinsic broadening γ=∆h/40=0.0015 eV. With these parameters, the Green’s

functions gh3 = 1.2πNh(0) and ge3 = −πNe(0) at the chemical potential.

10.1 Local Density of States in the Four-Band System

I find that impurity states in the four-band model of Ref. [74] are generally consistent

with the results discussed previously in this study. In particular, the details of the band

structure from Ref. [74], and hence the resulting location and shape of the impurity state,

are closest to those of the n=1/2 case that I considered in Section 9.1. Unless otherwise

specified, all the comparisons I make with the results from Section 9.1 are for the n=1/2

results shown in Fig. 9.2.
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In Fig. 10.4, I show the LDOS for the same scattering parameters as in Section 9.1. As

before, the particle-hole asymmetry causes the impurity-state energy to depend strongly on

the sign of U0. As expected, the low-energy states do not form when the FS sheets are

fully-gapped, but the states readily form when there are nodes on the electron sheets. A

comparison of Figs. 10.4(f) and (h) shows that the impurity state forms in the nodal systems

for physical Ū1 regardless of the sign of δ0. This, and the proximity of impurity state to εm,

agree with both my predictions from Section 8.4 and the results of Section 10.4.

Although I do not present the strong-scattering LDOS for the fully-gapped bands, I have

verified that the low-energy state does not form away from U1,m for these gap symmetries

within the current four-band model. I focus instead on the nodal system as I did in Sec-

tion 9.1. As I show in Fig. 10.4, there is likely no low-energy state for Ū1 = |Ū0| = 100. As

before for n = 1/2, the sub-εm peak forms instead at Ū1 = 99.5 which indicates that the

strong-scattering state very nearly in the nodal system. Consequently, since the resonance

does not form in the fully-gapped cases, any low-energy resonance heralds the presence of

nodes in the gap on the electron sheet.

10.2 Spatial Dependence of the Resonant State

Compare the impurity states for the four-band system with their counterparts, i.e., same

Ū0 and Ū1, for the two-band system that I show in Figs. 10.6 and 9.5, respectively. Except

for the overall spectral intensity, the resonant states are very nearly identical in the two

different models. Presumably, the differences that appear result from the fine details of the

two models but don’t affect the salient features of the decay pattern. This result is not

as surprising as one might think. Since I have approximated the interband scattering as

being the same for the FS sheets of the same type, the two electron(hole) conduction bands

effectively behave as a single band. The validity of this approximation comes from the fact

the two bands of each type are nearly degenerate in energy and have similar dispersion near
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the chemical potential. Hence the four-band aspect is not important for to the overall results

of the model.

Given the nearly identical results for the two- and four-band models, I have verified the

usefulness of the simple two-band approach. Specifically, if one has a good first principles

calculation of the strength of the impurity potential, then an appropriate two-band model

should effectively predict the energy and shape of the resonant state for any of the gap

symmetries. Of course, the appropriate two-band model must mimic the pnictide dispersions

near the Fermi level as closely as possible.

I emphasize that the physics in multiband systems, e.g., the pnictides, can be extremely

sensitive to the details of the band structure, and it is clear that experimental verification of

the gap node structure in the pnictides will depend on the electron and hole contributions to

the Fermi-level DOS. This observation is in keeping with a recent suggestion [147] that the

apparent conflict between measurements indicating the presence [107] and absence [147] of

gap nodes in the nominally identical BaFe2(As0.67P0.33)2 and BaFe2(As0.7P0.3)2, respectively,

is due to a large difference in the band masses, and hence the partial densities of states

near the Fermi level. Measurement of the effective mass in BaFe2(As0.37P0.63)2 [81] suggests

that the hole band can be a factor of two heavier than the electron band, a situation that

I have discussed at length in this study. Measurements also show that the band masses are

effectively identical to one another in the Fe-1111 compounds [72, 138, 137], which increases

the likelihood that low-energy states will form in these materials in the presence of strong

scattering even if the bands are fully-gapped. I therefore suggest a STS experiment to map

the resonant state near a surface impurity on a nominally-clean pnictide. The accompanying

spatial profile of any low-lying resonant states will be well-suited to verifying the nodal

structure of the superconducting gap in both 122-type and 1111-type materials.
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Figure 10.4: Evolution of on-site LDOS (eV−1) for four-band model with moderate scattering,
Ū0=±1.5, for (a,b) isotropic, (c,d) nodeless anisotropic, and (e,f) nodal gaps for δ0 > 0.
Panels (g,h) are for nodal gap with δ0 < 0. The thin black line is the DOS of clean system,
and arrows mark the DOS feature at εm for the anisotropic cases. Low-energy impurity
states form below εm in the nodal system even at small values of Ū1, but impurity states
do not form near ω=0 in either of the fully-gapped systems. The LDOS for Ū1,m is shown
when Ū1,m ̸≈ |Ū0|, but it is unlikely when Ū1,m > |Ū0|. The insets show close ups of the
low-intensity positive-bias peaks. Note the different vertical scales.
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Figure 10.6: Sub-εm impurity state for the four-band model with nodes, r=1.3, on the
electron FS sheets. Shown are the positive-bias peaks for Ū0 = −1.5 with (a,c) Ū1=0.5 and
(b,d) Ū1=1.0 that I present in Fig. 10.4(e) and (f). Panels (a) and (b) are for the sign-
changing case while panels (c) and (d) are for the sign-unchanging case. The impurity sits
at (0, 0), and x and y are the axes for the crystallographic unit cell.



11. Conclusions

There are two major results contained in this thesis. First, motivated by experiments

on the heavy-fermion CeCoIn5, I considered the effect of classical magnetic fluctuations on

the normal-to-superconducting transition in two-dimensional s-wave and d-wave supercon-

ductors. I considered both the uniform and inhomogeneous (FFLO) superconducting states,

and I investigated the order of the transition into each. My main finding is that there ex-

ists a range of temperatures, in the vicinity of the onset of the modulated state, where the

coupling to magnetic fluctuations causes the transition to become first order into both the

uniform and the modulated states. The width of the temperature range increases with the

strength of coupling to the magnetic fluctuation and is generally greater for s-wave systems.

Since the regime of interest in experiment occurs for temperatures T/Tc ∼ 0.2 − 0.5, I

considered only classical thermal fluctuations. My approach outlined a new, generic, path

towards a first order normal-to-superconducting transition, and demonstrated an important

experimentally observed feature: the separation between the onset of the first order tran-

sition and the transition into a modulated state. It suggests that accounting for magnetic

fluctuations, which are known to exist in heavy fermion and other related compounds, af-

fects the shape of the transition lines, the order of the transition, and the behavior of the

thermodynamic properties at the transition. In my analysis, the transition remains second

order as T → 0, but it remains for future studies to see whether accounting for the quantum

dynamics of spins changes this conclusion. Among other potentially interesting avenues of

research are whether impurity scattering, which is known to suppress the inhomogeneous LO

state, enhances or shrinks the first order transition regime, and what the results of combining

the Zeeman field with the orbital coupling and vortex physics are.
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Second, I presented a detailed analysis of the non-magnetic, single-impurity problem in

multiband superconducting systems, examining the conditions under which resonances exist

and the potential they have to resolve the outstanding issue of the gap shape in the pnictides.

I considered both analytical and numerical two-band models and then used them to explain

the results of a more realistic four-band model. I found that low-energy resonances are

generally absent from the fully-gapped states except, perhaps, in the strong-scattering limit

for materials in which the particle and holes bands are very nearly balanced. I found that

the low-energy state is more likely to form when the gap has nodes on one or more of the

Fermi surface sheets, where the states form via the same mechanism as in the single-band

system with nodes. I found also that the low-energy state in the nodal system has a four-

fold symmetric shape, with the impurity state decaying more slowly along the principle axes

of the crystallographic unit cell. The formation of a low energy state and its characteristic

shape would provide the ‘smoking gun’ evidence for the nodal state. Even though the physics

of the pnictides is sensitive to the details of the electronic band structure, I find that the

formation of low-energy state in the nodal state is generally robust against moderate changes

to the band structure. For the nodal case, which is dominated by the intraband scattering, I

found that the low-energy resonance does not discriminate between the sign-changing (s+−)

and sign-unchanging (s++) cases and can only be used to verify the presence of nodes on the

Fermi surface sheet.

The two electron sheets and the two hole sheets in the pnictides are nearly degenerate, and

this justifies my approach of using a two-band model to mimic materials with four Fermi

surface sheets. While this approach that has been utilized many times for the pnictides

with varying results, I found that the details of the band structure near the Fermi level

are important and affect the energy of the impurity state. Thus, I chose the parameters in

my two-band model to approximate the Fermi-level properties of the four-band model, and I

found that my two-band approach was sufficient to capture the salient physics. In this study,
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I have ignored the suppression of the superconducting gap in the vicinity of the impurity.

Since I consider only a single impurity, I also ignore the lifting of the nodes dues to finite

impurity concentration. Neither of these affect the qualitative description of the impurity

effect in the pnictides, and I leave them to future studies.
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Appendix A: Derivation of Landau Expansion
in Powers of the Order Parameter

To derive the coefficients for the Landau free energy functional, I begin with the partition

function

Z = Tr(e−βH) (A.1)

where H is the mean-field hamiltonian in Eq. (3.3), β = T−1 and the trace is taken over all

eigenstates of H. I require that the free energy F = −T ln(Z) is an extremum with respect

to ∆q and ∆∗
q, so that

δF =
∑
q

(
∆∗

q

|λ|
+
∑
k

Y(k̂)
⟨
c†−k↓c

†
k+q↑

⟩)
δ∆q + h.c. = 0 , (A.2)

where h.c. stands for the Hermitian conjugate. Since δF = 0 and δ∆q can take any value,

it follows that F is an extremum when ∆∗
q satisfies the self consistency condition

∆∗
q = −|λ|

∑
k

Y(k̂)
⟨
c†−k↓c

†
k+q↑

⟩
(A.3)

I construct the Landau free energy functional by expanding in powers of ∆q, but not

in the modulation wave vector q, which allows me to treat the low temperature region. To

carry out this expansion I use the Gor’kov formulation of the Green’s function approach.

The normal,

Gσ(k,k
′; τ) = −

⟨
Tτ

(
ckσ(τ)c

†
k′σ(0)

)⟩
, (A.4)

and anomalous,

F †(k,k′; τ) = −
⟨
Tτ

(
c†k↓(τ)c

†
k′↑(0)

)⟩
, (A.5)

Green’s function satisfy the equations of motion(
− ∂

∂τ
− ϵk↑

)
G↑(k,k

′; τ) +
∑
q

Y(k̂)∆qF
†(−k+ q,k′; τ) = δk,k′δ(τ) , (A.6)(

− ∂

∂τ
+ ϵ−k↓

)
F †(−k,k′; τ) +

∑
q

Y(k̂)∆∗
qG↑(k+ q,k′; τ) = 0 , (A.7)
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respectively. Here Tτ denotes imaginary time ordering and σ =↑ (σ =↓) indicates the

orientation of the electron spin is parallel (antiparallel) to the applied field B. The equations

of motion in Eqs. (A.6) and (A.7) are found by using

∂A(τ)

∂τ
= [H, A(τ)] , (A.8)

where the square brackets denote the commutator between the Hamiltonian H and the

operator A(τ) = ckσ(τ), c
†
kσ(τ) [148].

A Fourier transformation of Eqs. (A.6)-(A.6) into the Matsubara frequency space yields

(iωn − ϵk↑)G↑(k,k
′; iωn) +

∑
q

Y(k̂)∆qF
†(−k+ q,k′; iωn) = δk,k′ , (A.9)

(iωn + ϵ−k↓)F
†(−k,k′; iωn) +

∑
q

Y(k̂)∆∗
qG↑(k+ q,k′; iωn) = 0 , (A.10)

where ωn = 2πT
(
n+ 1

2

)
is the fermionic Matsubara frequency. The thermal average entering

the free energy variation, Eq. (A.2), is given in terms of the Matsubara sum⟨
c†−k↓c

†
k+q↑

⟩
= −T

∑
n

F †(−k,k+ q; iωn) , (A.11)

where F †(−k,k + q; iωn) is found by solving Eqs. (A.9) and (A.10). Thus, in terms of F †,

Eq. (A.2) is

δF =
∑
q

(
∆∗

q

|λ|
− T

∑
k,n

Y(k̂)F †(−k,k+ q; iωn)

)
δ∆q + h.c. = 0 . (A.12)

I iteratively expand Eqs. (A.9) and (A.10) in powers of ∆q and ∆∗
q, and hence find

the series expansion for F †(−k,k′; iωn). Using this expansion for the thermal average in

Eq. (A.12), I integrate term by term with respect to ∆q, and I obtain the Landau free

energy density, FL = F/L2 where L2 is the 2D system size, up to O(|∆0|6) inclusive. I find

FL =
∑
{qi}

α̃qi
|∆qi

|2 +
∑
{qi}

γ̃q1,...,q4∆q1∆
∗
q2
∆q3∆

∗
q4
δq1+q3,q2+q4

+
∑
{qi}

ν̃q1,...,q6∆q1∆
∗
q2
∆q3∆

∗
q4
∆q5∆

∗
q6
δq1+q3+q5,q2+q4+q6

(A.13)
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where the summation over {qi} includes all possible combinations of the allowed Fourier

components of ∆(r).

The fully q-dependent coefficients of the Ginzburg-Landau expansion are given by

α̃q =
1

|λ|
− T

∑
n,k

|Y(k̂)|2G0
↑(k+ q; iωn)G

0
↓(−k;−iωn), (A.14)

γ̃q1,...,q4 =
T

2

∑
n,k

|Y(k̂)|4G0
↑(k+ q1; iωn)G

0
↓(−k+ q3 − q2;−iωn)

×G0
↑(k+ q2; iωn)G

0
↓(−k;−iωn),

(A.15)

ν̃q1,...,q6 = −T
3

∑
n,k

|Y(k̂)|6G0
↑(k+ q1; iωn)G

0
↓(−k+ q3 + q5 − q2 − q4;−iωn)

×G0
↑(k+ q2 + q4 − q3; iωn)G

0
↓(−k+ q3 − q2;−iωn)

×G0
↑(k+ q2; iωn)G

0
↓(−k;−iωn),

(A.16)

where

G0
σ(k; iωn) =

1

iωn − ϵkσ
(A.17)

is the normal state propagator for an electron of spin σ in a Zeeman field.

All the momentum sums are evaluated using the fact the the Green’s functions are peaked

at the Fermi energy, so that, for my model of a 2D circular Fermi surface

∑
k

g(k) = NF

∫ 2π

0

dθ

2π

∫ ωc

−ωc

dϵ g(ϵ, θ) . (A.18)

where NF is the density of states at the Fermi energy and g(k) is whatever function is to

be integrated over k. Given that the pairing interaction |λ| is assumed to be finite only

over an energy band of width 2ωc that is centered at the Fermi surface, I formally take the

integration limits on ϵ to be ±ωc. Whenever the integrand dies out faster than 1/ε2, I can

safely extend the ϵ integration limits out to infinity. Assuming a circular Fermi surface, I

use 2D angular basis functions

Y(k̂) =

{
1 s−wave
√
2
(
k̂2x − k̂2y

)
=

√
2 cos(2θ) dx2−y2 ,

(A.19)
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normalized so that ⟨|Y(θ)|2⟩FS = 1 where θ is the azimuthal angle in momentum space. Here

⟨· · · ⟩FS indicates the angular average over the 2D Fermi surface.

Since I cannot obtain a closed-form expression for k-integrated Landau coefficients, I

compute the integral over ϵ analytically and leave the integral over θ to be evaluated nu-

merically. Thus, I obtain the Landau coefficients γ̃q and ν̃q that I show in Section 3.3. To

obtain the expression for α̃q, I use the self consistency condition in Eq. (A.3) to eliminate the

interaction strength |λ| in favor of the zero-field transition temperature Tc0 in the standard

manner that I describe below.

A.1 The Critical Temperature in Zero Magnetic Field

Using Eqs. (A.9) and (A.10), and the fact that the superconducting order parameter is

real and uniform (∆q = ∆∗
q = ∆0δq,0) at B=0, I arrive at the zero-field self consistency

equation

1

|λ|
= T

∑
k,n

Y(k̂)2

[
1[

G0
↓(−k;−iωn)

]−1 [
G0

↑(k; iωn)
]−1

+∆2
0Y(k̂)2

]
B=0

= T
∑
k,n

Y(k̂)2
1

ω2
n + ϵ2k +∆2

0Y(k̂)2
.

(A.20)

where the last line follows from the fact that the two spin species are degenerate in the absence

of the Zeeman field and the assumption of quadratic dispersion wherein ϵk↑ = ϵ−k↓ = ϵk.

The transition at Tc0 is second order, hence I set ∆0 = 0 and T = Tc0 in Eq. (A.20) and then

compute the Matsubara sum over n to obtain

1

|λ|
=
NF

2

∫ 2π

0

dθ

2π
Y(θ)2

∫ xc

−xc

dx

x
tanh

(πx
2

)
= NF

∫ xc

0

dx

x
tanh

(πx
2

)
,

(A.21)

where x = ϵ/πT and xc = ϵ/πTc0. Note that here the angular dependence of the gap is

irrelevant due to the normalization of the Y(θ). The last line of Eq. (A.21) is evaluated
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using integration by parts, under the assumption that ωc ≫ Tc0, whence

1

|λ|
= NF ln

(
2eγE

π

ωc

Tc0

)
, (A.22)

where γE ≈ 0.577 is the Euler-Mascheroni constant. It follows immediately that

Tc0 =
2eγE

π
ωce

−1/(|λ|NF ) . (A.23)

I can rewrite α̃q by using Eq. (A.22) to eliminate |λ| and then inserting the term

0 = T
∑
k,n

Y(k̂)2
1

ω2
n + ϵ2k

−NF ln

(
2eγE

π

ωc

T

)
, (A.24)

so that, by combining the logarithms and collecting the k sums, I obtain

α̃q = NF ln

(
T

Tc0

)
+ T

∑
n,k

|Y(k̂)|2
[

1

ω2
n + ϵ2k

−G0
↑(k+ q; iωn)G

0
↓(−k;−iωn)

]
. (A.25)

This expression is then used to determine the quadratic Landau coefficients αi = N−1
F

∑
q α̃q,

where i = (u, FF, LO), that I present in Chapter 3.3.

A.2 Superconducting Gap at Zero Temperature and Field

I can similarly find ∆0 = ∆00, the superconducting gap at zero temperature and field by

integrating the zero-field self consistency equation in Eq. (A.20) in the limit T → 0. In this

limit, the Matsubara sum in Eq. (A.26) becomes an integral so that

1

|λ|
= lim

T→0

(
T
∑
k,n

Y(k̂)2
1

ω2
n + ϵ2k +∆2

00Y(k̂)2

)

=
∑
k

Y(k̂)2
∫ ∞

−∞
dω

1

ω2 + ϵ2k +∆2
00Y(k̂)2

=
NF

2

∫ 2π

0

dθ

2π
Y(θ)2

∫ ωc

−ωc

dϵ
1√

ϵ2k +∆2
00Y(θ)2

.

(A.26)

For s-wave superconductivity I use Y(θ) = 1 and obtain ∆00 = ∆s0 through the integral

1

|λ|
=
NF

2

∫ ωc

−ωc

dϵ
1√

ϵ2k +∆2
s0

= NF ln

(
2ωc

∆s0

) (A.27)
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where the last line follows from the fact that ωc ≫ ∆s0. The d-wave gap at zero field is

∆d0Y(θ) = ∆d0

√
2 cos(2θ), so that

1

|λ|
=
NF

2

∫ 2π

0

dθ

2π

∫ ωc

−ωc

dϵ
2 cos(2θ)2√

ϵ2k + 2∆2
d0 cos(2θ)

2

=
NF

2

∫ 2π

0

dθ

2π
4 cos(2θ)2 sinh−1

(
ωc/∆d0√
1 + cos(4θ)

)

=
NF

2

(
ln

(
8ω2

c

∆2
d0

)
− 1

)
,

(A.28)

assuming that ωc ≫ ∆d0. Solving these two equations, I obtain ∆s0 = 2ωce
−1/(|λ|NF ) and

∆d0 =
√
8ωce

−1/2e−1/(|λ|NF ) so that

∆s0

Tc0
= πe−γE ≈ 1.76 (A.29a)

∆d0

Tc0
=

√
2πe−1/2e−γE ≈ 1.51 . (A.29b)



Appendix B: Tridiagonal Integration of
Gaussian Fluctuations

For the case of single-mode cos(Q · r) modulation of the order parameter, the magnetic

contribution to the free energy functional (due to the off-diagonal k,k± 2Q coupling) takes

the tridiagonal form

F(M(r)) = T
∑
k

(
akMk ·M∗

k + bkMk ·
(
M∗

k+2Q +M∗
k−2Q

))
, (B.1)

where

ak = a ≡ 1

2T

(
1

χ
+

1

2
η|∆0|2

)
, ∀k (B.2)

and

bk = b ≡ − 1

8T
η|∆0|2, ∀k. (B.3)

This yields the partition sum

Z =
∏
k

∫
D(Mk) exp

[
−
(
a|Mk|2 + bMk ·

(
M∗

k+2Q +M∗
k−2Q

))]
=

d∏
i=1

∏
k

∫
D(Mk,i) exp

[
−
(
a|Mk,i|2 + bMk,i

(
M∗

k+2Q,i +M∗
k−2Q,i

))]
,

(B.4)

where the product over i accounts for the d spatial components of M(r). To compute this

integral, I separate the product over all wave vectors into a product over components parallel

and perpendicular to the direction of Q. As the terms comprising Z have no functional

dependence on i, I have Z = Zd
0 where

Z0 =
∏
k⊥

∏
k∥

∫
D(Mk⊥,k∥) exp

[
−a|Mk⊥,k∥ |

2
]

× exp
[
bMk⊥,k∥

(
M∗

k⊥,k∥+2Q +M∗
k⊥,k∥−2Q

)]
.

(B.5)

Due to the coupling between Mk⊥,k∥ and Mk⊥,k∥±2Q, the product over k∥ can be divided

up into a product of integrals taken only over wave vectors |k∥| ≤ |Q|, effectively employing
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the Brillouin zone method of solid state physics with |k∥| ≤ |Q| corresponding to the first

Brillouin zone. Each term in the product over |k∥| ≤ |Q| is then an integral connecting k∥

to kn = k∥ +n(2Q), where n is an integer. The sum over k is cut off at a wave vector on the

order of the inverse lattice spacing kc = π/l. So, to cut off the sum over n, I define the cut

off integer nc such that k±nc = k∥ ± nc(2Q) ≈ kc.

Separating the product over k∥ in this way, and introducing the notational shorthand

Mn(k⊥, k∥) =Mk⊥,k∥+n(2Q) ,

my partition sum can be rewritten

Z0 =
∏
k⊥

Q∏
k∥=−Q

∫
[· · · D(M1)D(M−1)D(M0)]

× exp
[
−a|M0|2 − bM0

(
M∗

1 +M∗
−1

)
− · · ·

]
.

(B.6)

I integrate over the real and imaginary parts of Mn = M ′
n + iM ′′

n and restrict the product

over k to be over one-half of k-space because Mk = M∗
−k for real M(r). However, as the

integrand factors into two identical integrals overM ′
n and M ′′

n , I can integrate overM ′
n alone

and take the product over all values of k. Thus

Z0 =
∏
k⊥

Q∏
k∥=−Q

∫ [
· · · D(M ′

1)D(M ′
−1)D(M ′

0)
]

× exp
[
−a(M ′

0)
2 − 2bM ′

0

(
M ′

1 +M ′
−1

)
− · · ·

]
.

(B.7)

Beginning with n = 0, I integrate recursively over all M ′
n and denote by an and bn the

renormalized coefficients of (M ′
±n)

2 and M ′
nM

′
−n, respectively. Working with a and b given

in Eqs. (B.2) and (B.3), the integration coefficients are

a0 = a and b0 = b for n = 0, (B.8)

a1 = a0 −
b20
a0

and b1 =
b20
a0

for n = 1, (B.9)

and, for n ≥ 1, the remaining terms

an+1 = a0 −
anb

2
0

a2n − b2n
and bn+1 =

bnb
2
0

a2n − b2n
(B.10)
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are determined recursively. The partition sum becomes

Z0 =
∏
k⊥,k∥

√
π

a0

√
π2

a21 − b21

√
π2

a22 − b22
× · · · ×

√
π2

a2nc
− b2nc

=
∏
k⊥,k∥

(√
π

a0

)2nc+1
√

a20
a21 − b21

√
a20

a22 − b22
× · · · ,

(B.11)

where k∥ ∈ (−Q,Q) is understood. The free energy functional F(M(r)) can now be replaced

with its thermodynamic average F = −β−1 ln (Z) which is

F =
d

2β

 kc∑
|k|=0

ln
(a0
π

)
+

′∑
k⊥,k∥

n

ln

(
a2n − b2n
a20

) , (B.12)

where for the second sum n ∈ (−nc, nc). The prime implies that n = 0 is excluded from the

sum since the n = 0 term is ln(1) = 0.

In order to obtain the necessary small ∆ expansion of Eq. (B.12), I need to expand

(a2n − b2n) /a
2
0 to O(|∆0|6) inclusive. I do this by introducing recursion relations

sn = an + bn = a0 −
b20
sn
, n > 1

dn = an − bn = a0 −
b20
dn
, n > 1

(B.13)

with the initial values s1 = a0 and d1 = a0 − 2b20/a0, respectively. Taking a0 = a and

b0 = b from Eqs. (B.2) and (B.3), I expand sndn/a
2
0 = (a2n − b2n) /a

2
0 to third order in b since

b ∝ |∆0|2. Expressing a and b in units of 1/2χT , I have the initial values

s1 = a = 1− 2b

d1 = a− 2b2

1− 2b
= 1− 2b− 2b2 − 4b3 +O(b4) ,

(B.14)

and the remaining terms for n > 1

sn = dn = 1− 2b− b2 − 2b3 +O(b4) . (B.15)

With these expressions, I find that sndn = 1− 4b+ 2b2 is independent of n when expanded

to third order in b. Thus,

sndn
a20

=
1− 4b+ 2b2

(1− 2b)2
= 1− 2b2 − 8b3 +O(b4) , (B.16)
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and, substituting b = −ηχ|∆0|2/4, I finally obtain

a2n − b2n
a20

= 1− 1

8
η2χ2|∆0|4 +

1

8
η3χ3|∆0|6. (B.17)

up to O(|∆0|6) inclusive. Since the summands no longer depends on n, I recollect the

summation over k⊥, k∥, and n into a sum over |k| < kc. I take the sum to include all

n ∈ (−nc, nc) with the n = 0 term identical to the rest. I justify this by noting that, for a

system of size LD, the sum over k∥ for n = 0 is of order 2QL and is much smaller than the

sum over all k∥ < kc (of order 2kcL) since Q≪ kc (where Q . ξ−1
0 and kc = π/l).

After subtracting the average magnetic contribution to the normal state, the fluctuation

contribution to the superconducting free energy is

FLO,M =
d

2β

kc∑
|k|=0

[
ln

(
1 +

1

2
ηχ|∆0|2

)
+ ln

(
1− 1

8
η2χ2|∆0|4 +

1

8
η3χ3|∆0|6

)]
, (B.18)

which, with d = 3, is the expression given in Eq. (4.10).



Appendix C: Landau Coefficients in the Zero
Temperature Limit

I determine the Landau coefficients ᾱLO and γ̄LO and their temperature derivatives in the

limit t→ 0. I first derive analytically αLO and γLO from Eqs. (3.9) (with prefactor of 1/2 for

LO) and (3.10) for both s- and d-wave at zero temperature; there the magnetic fluctuations

die out so that ᾱLO = αLO and γ̄LO = γLO. I then determine numerically the derivatives

α′
LO(0), α

′′
LO(0), and γ

′
LO(0) for d-wave symmetry and add to them the magnetic fluctuation

corrections at t = 0.

C.0.1 Analytic determination of bc, q0, and γLO

I first evaluate the quadratic Landau coefficient for the LO gap modulation. In the limit

t = 0, the quadratic coefficient becomes

αLO =
1

4

⟨
|Y(θ)|2 ln

(
(b+ q̄)2

)⟩
− 1

2
Ψ

(
1

2

)
, (C.1)

where Y(θ) = 1 and Y(θ) =
√
2 cos 2θ for s- and d-wave gaps, respectively. Here I use

b = µB/(2πTc0) and q̄ = q cos(θ − θq) where q = ξ0Q/2. The angle θq is the modulation

direction with respect to the crystalline a axis, and θq = π/4 for nodally-oriented d-wave.

Integration over θ yields

αLO,s =
1

2
Re

[
ln

(
b+

√
b2 − q2

2

)]
− 1

2
Ψ

(
1

2

)
(C.2)

and

αLO,d =
1

4
ln

(
q2

4

)
+
b4

q4
− b2

q2
+

1

8
− 1

2
Ψ

(
1

2

)
(C.3)

for s- and d-wave respectively. I locate the transition by finding the maximum b for which

αLO,d = 0, and I find that for s-wave

q0,s = bc,s = 2eΨ(1/2) =
e−γE

2
≃ 0.281 , (C.4)
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where γE ≈ 0.577 is Euler’s constant, and for d-wave

q0,d =
e−γE

2
exp

(
−2a4 + 2a2 − 1

4

)
≃ 0.337 ,

bc,d = aq0,d ≃ 0.278 ,

(C.5)

where a = ((1 +
√
3)/4)1/2 ≃ 0.826.

To determine the quartic Landau coefficient, first note that, in the limit T = 0, the

Matsubara sum 2πT
∑

n F (ωn) becomes the integral
∫
dωF (ω). Thus, I rewrite Eq. (3.10)

as

γLO = Re

∫ ∞

0

dω̄

128π2

∫ 2π

0

dθ

2π
|Y(θ)|4Iγ(ω̄, b, q, θ) , (C.6)

where ω̄ = ω/(2πTc0) and

Iγ(ω̄, b, q, θ) =
(ω̄ + ib)

(
3 (ω̄ + ib)2 − q̄2

)(
(ω̄ + Ib)2 + q̄2

)3 . (C.7)

I perform the angular integration changing variables to z = eiθ, and then integrating

around the unit circle in the complex z-plane. After thus averaging over the Fermi surface,

I arrive at

Iγ,s(ω̄, b, q) =
2q4 + 5q2ω̄2

b + 6ω̄4
b

2ω̄2
b (q

2 + ω̄2
b )

5/2
(C.8)

and

Iγ,d(ω̄, b, q) =
24ω̄b

q8
8q4ω̄b + 44q2ω̄3

b + 40ω̄5
b√

q2 + ω̄2
b

− 24ω̄b

q8
(
q4 + 24q2ω̄2

b + 40ω̄4
b

)
(C.9)

for s-wave and d-wave, respectively. Here ω̄b = ω̄+ ib. Evaluating the integral over ω̄ I arrive

at

γLO,s =
3

32π2

3b2 − 2q2

b(b2 − q2)3/2
, (C.10)

and

γLO,d =
1

64π2q2

(
1− 2

b2

q2

(
3− 36

b2

q2
+ 40

b4

q4

))
, (C.11)

the quartic Landau coefficients at t = 0. From Eq. (C.10), I find that γLO,s diverges as

bc → q0 (see Eq. (C.4)) while, from Eq. (C.5) and (C.11) I see that γLO,d ≃ 0.070 remains

finite when T → 0.
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Figure C.1: Temperature derivatives of quadratic and quartic Landau coefficients for d-wave
at fixed bc,d and q0,d in zero temperature limit. Main figure shows α′

LO and −γ′LO, both of
which limit to zero at t = 0. Inset: α′′

LO ≈ 4.54 at t = 0.

C.0.2 Evaluation of derivatives for d-wave at T = 0

The temperature derivatives of the quadratic and quartic coefficients are

ᾱ′
LO(η̃, t) = α′

LO(t) +
1

2
η̃χ , (C.12a)

ᾱ′′
LO(η̃, t) = α′′

LO(t) + η̃χ′ , (C.12b)

γ̄′LO(η̃, t) = γ′LO(t)−
1

6tF
η̃2χ2 . (C.12c)

Expressions for α′
LO(t), α

′′
LO(t), and γ′LO(t) are obtained by taking the first and second

derivatives of Eq. (3.9) (with prefactor of 1/2 for LO modulation) and the first derivative of

Eq. (3.10), respectively, with respect to t.

I determine α′
LO(0), α

′′
LO(0), and γ′LO(0) numerically by fixing b = bc,d and q = q0,d

and evaluating the derivatives as t approaches zero. As shown in Fig. C.1, I find that

α′
LO = γ′LO = 0 and α′′

LO ≈ 4.544 at t = 0. Using these values and working with χ(T ), I

obtain ᾱ′
LO(0) = 6.18η̃χ̃, ᾱ′′

LO(0) = 4.544 − 152.8η̃χ̃, and γ̄′LO(0) = −1.48(η̃χ̃)2 in the zero

temperature limit.



Appendix D: Constraint on Gap Amplitudes
for Two-band Systems

A two band system, with band indices j, j′, with a purely inter-band pairing potential

Vjj′(k,k
′) is described by the mean field Hamiltonian H0=

∑
j Hj where

Hj =
∑
kσ

ξjkc
†
jkσcjkσ −

∑
k

(
∆jkc

†
jk↑c

†
j−k↓ +∆∗

jkcj−k↓cjk↑

)
(D.1)

is the mean field Hamiltonian for band j, with the superconducting gap function on the j-th

Fermi surface sheet self-consistently determined by

∆jk =
∑
k′

Vjj′(k,k
′)⟨cj′k′↑cj′−k′↓⟩ . (D.2)

Here ξjk is the quasiparticle energy in band j, measured with respect to the chemical po-

tential, and c†jkσ and cjkσ are the creation and annihilation operators for quasiparticles with

momentum k and the spin projection σ.

I assume a separable form of the interaction Vjj′(k,k
′) = λjj′fj(k̂)fj′(k̂

′) with the pairing-

interaction strength λjj′ . The function fj(k̂) defines the pairing symmetry and k̂ denotes

direction on the j-th Fermi surface sheet. Hence, the self consistency equations can be

rewritten as

∆j = λjj′
∑
k′

f 2
j′(k̂

′)⟨cj′k′↑cj′−k′↓⟩

= −Tλjj′
∑
n,k′

∆j′f
2
j′(k̂

′)

ω2
n + ξ2j′k +∆2

j′f
2
j′(k̂

′)
,

(D.3)

where the gap amplitude ∆j > 0 is defined via ∆jk=∆jfj(k̂) and ωn=2πT (n + 1/2) is the

fermionic Matsubara frequency for temperature T .

Since the pairing interaction strength is symmetric in the band-indices, the gap ampli-
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tudes are related as

∆h

∆e

=

∑
n,k

∆ef
2
e (k̂)

ω2
n + ξ2ek +∆2

ef
2
e (k̂)∑

n,k

∆hf
2
h(k̂)

ω2
n + ξ2hk +∆2

hf
2
h(k̂)

. (D.4)

I write
∑

k F (k)≈Nj

∫ ωc

−ωc
dξj
∫ 2π

0
dϕj/(2π)F (ξj, ϕj), where ξj is perpendicular to the j-th FS

sheet, ϕj is the direction on the j-th FS sheet, and ωc is the cutoff frequency. Thus, rewriting

Eq. (D.4), I have

1 =

∑
n

∫ ωc

−ωc

dξe

∫ 2π

0

dϕe

2π

Ne∆
2
ef

2
e (ϕe)

ω2
n + ξ2e +∆2

ef
2
e (ϕe)∑

n

∫ ωc

−ωc

dξh

∫ 2π

0

dϕh

2π

Nh∆
2
hf

2
h(ϕh)

ω2
n + ξ2h +∆2

hf
2
h(ϕh)

. (D.5)

I assume that fh(ϕh) = 1 so that the gap on the hole-like FS sheet is isotropic. I also assume

that fe(ϕe) = −(1 + r cosϕe), where the parameter r controls the anisotropy of the gap on

the electron-like FS.

In the weak-coupling limit ωc ≫ ∆j, I find that

1 =
Ne

Nh

∫ 2π

0

dϕe

2π

∆2
e(1 + r cosϕe)

2

∆2
h

=
Ne

Nh

∆2
e

∆2
h

(
1 +

r2

2

) (D.6)

at T = 0, so that the ratio Nh/Ne is equal to the ratio of the Fermi-surface average of the

squared SC gap on each FS sheet. When r = 0, the condition in Eq. (D.6) reduces to the

expression reported in Refs. [89, 135]. Using my notations δ0 = ∆e/∆h and n = Ne/Nh, the

last line of Eq. (D.6) becomes the expression I use in Eq. (7.2).



Appendix E: Derivation of Local Green’s
Function for Anisotropically-Gapped Band

E.1 Choice of Branch Cuts for Integration of Green’s

Functions

As shown in Eq. (8.1), the T -matrix depends on only the local Green’s functions ĝj =∑
k Ĝj,0(k) =

∑
i gjiτ̂i where τ̂0 is the identity matrix and τ̂i (i = 1, 2, 3) are the Pauli

matrices. Working in two dimensions, I take
∑

k = Nj

∫
dξ
∫
dϕ/(2π), with ϕ the azimuthal

angle and Nj the normal-state Fermi-level DOS. Assuming particle-hole symmetry (gj3 = 0)

and integrating perpendicular to the FS, I obtain the Green’s functions

ĝh(ω) = −πNh
ωτ̂0 +∆hτ̂1√

∆2
h − ω2

. (E.1)

for the isotropically-gapped hole band and

ge0(ω)

πNe

= −
∫ 2π

0

dϕ

2π

ω√
∆e(1 + r cos(2ϕ))2 − ω2

, (E.2a)

ge1(ω)

πNe

=

∫ 2π

0

dϕ

2π

∆e(1 + r cos(2ϕ)))√
∆2

e(1 + r cos(2ϕ))2 − ω2
(E.2b)

for the anisotropically-gapped electron band.

The physical properties of the system are determined from the retarded Green’s function

which has poles only in the lower half of the complex energy plane; therefore, the poles of

the T -matrix must lie at ω = ω1+ iω2 with ω2 ≤ 0. To ensure this analytic property, I define

the complex-valued square root
√
∆2(ϕ)− ω2 such that the branch cut consists of two lines

extending from ω = ±∆(ϕ) to ω = ±∆(ϕ) − i∞ and meeting at the point at infinity (see

Fig. E.1). (I denote with
√
z the square root with the standard branch cut along the negative

real axis.) With this branch cut, the retarded Green’s functions are analytic in the upper

128



129

Figure E.1: Branch cut structure for complex-valued
√

∆2(ϕ)− ω2 = −√
ρ+ρ−e

i(ϕ++ϕ−)/2.
Branch cuts (hashed lines) extend from ω = ±∆(ϕ) to ω = ±∆(ϕ)− i∞. Phase angles are
measured from branch cuts as shown.

half ω plane, yielding the DOS at ω = ω1 + i0+ and are continuous and well-defined across

the real frequency axis.

With this choice of branch cut and the changes of variables ε = ω/∆h and cos(2ϕ) =

Re (z), the Green’s functions in Eqs. (E.1) and (E.2) become

ĝh(ε)

πNh

= − ετ̂0 + τ̂1√
1− ε2

(E.3a)

ge0(ε̃)

πNe

= − ε̃

π
I0(ε̃) (E.3b)

ge1(ε̃)

πNe

=
1

π
(I0(ε̃) + I1(ε̃)) , (E.3c)

with ε̃ = ω/∆e = ε/δ0 and δ0 = ∆e/∆h. The integrals in Eqs. (E.3b) and (E.3c) are

I0(ε̃) =

∫ 1

−1

dz√
1− z2

√
(1 + rz)2 − ε̃2

(E.4a)

I1(ε̃) =

∫ 1

−1

r z dz√
1− z2

√
(1 + rz)2 − ε̃2

. (E.4b)

I integrate along the straightest possible contour which is C1 (straight-line z ∈ [−1, 1]) for

ε̃2 ≥ 0. Mapped into the complex z-plane, the branch cuts of
√

(1 + rz)2 − ε̃2 terminate at
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Figure E.2: Branch cuts (hashed lines) and integration contour (solid line) in complex z-
plane (z = z1 + iz2) for fixed ε = ε1 + iε2 with r > 1, ε2 < 0, and ε1 ∈ (1− r, 1+ r). Branch
cuts terminate at z± = (−1 ± ε)/r and, as shown, cross z1 axis for e2 < 0. The contour is
deformed as shown (η = 0+) when branch cuts cross the line z ∈ (−1, 1).

z± = (−1 ± ε̃)/r and cross the Re (z) axis for ε̃2 < 0 (see Fig. E.2). When ε̃1 falls within

the smallest gap (|ε̃1| < |1− r|) of the nodal SC state (r > 1), both of the branch cuts cross

C1. In this case, the contour must be deformed around the branch cut as shown in Fig. E.2.

When |ε̃1| ∈ (|1 − r|, 1 + r) only the branch cut passing through z = (−1 + |ε̃1|)/r crosses

C1.

E.2 Analytical Expressions for Green’s Functions with

an Anisotropic Gap

It is advantageous to express the integrals (E.4a) and (E.4b) in terms of the the complete
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elliptic integrals

K(m) =

∫ 1

0

dx√
(1− x2)(1−mx2)

(E.5a)

Π(n,m) =

∫ 1

0

dx/ (1− nx2)√
(1− x2)(1−mx2)

, (E.5b)

where I use the notational conventions of Ref. [149]. Thus, the Green’s functions take the

closed form

ĝh(ε)

πNh

= −sgn (1 + sgn(ε2)|ε1|)
ετ̂0 + τ̂1√
1− ε2

(E.6a)

ge0(ε̃)

πNe

= − 2i sgn(ε̃1)ε̃K̃(b)

π
√
(sgn(ε̃1)ε̃+ r)2 − 1

(E.6b)

ge1(ε̃)

πNe

=
2i
(
ε̃K̃(b)− (ε̃+ sgn(ε̃1)(1− r)) Π̃(a, b)

)
π
√

(sgn(ε̃1)ε̃+ r)2 − 1
, (E.6c)

with the arguments

a =
2r

sgn(ε̃1)ε̃+ r + 1
(E.7a)

b =
4rsgn(ε̃1)ε̃

(sgn(ε̃1)ε̃+ r)2 − 1
. (E.7b)

With S = sgn(1+|ε̃|2−r2), s1 = sgn(ε̃2), s2 = sgn(ε̃2) and p(ε̃2, r) = (1− 2Θ(−ε̃2)Θ(1− r)),

where Θ(x) the unit-step function, the piecewise-defined functions K̃(b) and Π̃(a, b) are

K̃(b) =


p(ε̃2, r)K(b) + is1Θ(r − 1) (s2(S + 1)− 2)K(1− b) (I)

K(b) + is1 (s2S − 1)K(1− b) (II)

K(b) + is1 (s2(S + 1)− 2)K(1− b) (III)

(E.8)

and

Π̃(a, b)=


p(ε̃2, r)Π(a, b)− πΘ(−ε̃2)Θ(r−1)

√
1−a

√
1−b/a

+ i s1Θ(r−1)(s2(S+1)−2)
1−a/b

Π
(

1−b
1−b/a

, 1− b
)

(I)

Π(a, b) + i s1(s2S−1)
1−a/b

Π
(

1−b
1−b/a

, 1− b
)

(II)

Π(a, b)− πΘ(−ε̃2)√
1−a

√
1−b/a

+ i s1(s2(S+1)−2)
1−a/b

Π
(

1−b
1−b/a

, 1− b
)

(III)

(E.9)

for energies (I) below the smaller gap edge (|ε̃1| < |1 − r|), (II) between the gap edges

(|1− r| < |ε̃1| < 1+ r), and (III) above the larger gap edge (|ε̃1| > 1+ r). These complicated
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expressions result from the analytic continuation of K(b) and Π(a, b) across their two branch

cuts in the ε̃-plane: the real energy axis and, for r > 1, the circle of radius
√
r2 − 1 defined

by S = 0. For |ε̃|2 > r2 − 1 in the upper half plane, Eqs. (E.8) and (E.9) become simply

K̃(b) = K(b) and Π̃(a, b) = Π(a, b).

E.2.1 Asymptotic expansion

To examine resonances deep within the gap for broad featureless bands (ge3 = ghe = 0), I

need small-ε̃ asymptotic expressions for ge0 and ge1 . Using, from Ref. [149], the identities

K (z) =≃ π

2
(1 +O (z)) , z → 0 (E.10)

and

K (z) ≃ −1

2
ln

(
1− z

16

)
, z → 1 , (E.11)

the lowest-order terms in the small-ε̃ expansion of ge0 in the region |ε̃| < |1− r| are

ge0
πNe

≃ − i sgn(ε̃1)ε̃√
r2 − 1

− 2

π

ε̃√
r2 − 1

ln

(
4(r2 − 1)

sgn(ε̃1)ε̃r

)
. (E.12)

Using, also from Ref. [149], the identity

Π (−n,m) =
2
√
n atan (

√
n) + ln(16/(1−m))

2(n+ 1)
(E.13)

I obtain the small-ε̃ expansion

ge1
πNe

≃ Pr − i
1

2

sgn(ε̃1)

(r2 − 1)3/2
ε̃2 . (E.14)

The expression

Pr =
1

π

∫ π

0

sgn [1 + r cos(θ)] dθ

=

{
1 0 < r < 1

1− 2
π
acos

(
1
r

)
r > 1

(E.15)

follows directly from Eq. (E.2b) with ω = 0 and θ = 2ϕ.
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