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Abstract

Noise present in an environment has significant impacts on a quantum system affecting
properties like coherence, entanglement and other metrological features of a quantum state.
In this dissertation, we address the effects of different types of noise that are present in a
communication channel (or medium) and an interferometric setup, and analyze their effects
in the contexts of preserving coherence and entanglement, phase sensitivity, and limits on
rate of communication through noisy channels.

We first consider quantum optical phase estimation in quantum metrology when phase
fluctuations are introduced in the system by its interaction with a noisy environment. By
considering path-entangled dual-mode photon Fock states in a Mach-Zehnder optical inter-
ferometric configuration, we show that such phase fluctuations affect phase sensitivity and
visibility by adding noise to the phase to be estimated. We also demonstrate that the optimal
detection strategy for estimating a phase in the presence of such phase noise is provided by
the parity detection scheme.

We then investigate the random birefringent noise present in an optical fiber affecting the
coherence properties of a single photon polarization qubit propagating through it. We show
that a simple but effective control technique, called dynamical decoupling, can be used to
suppress the effects of the dephasing noise, thereby preserving its ability to carry the encoded
quantum information in a long-distance optical fiber communication system.

Optical amplifiers and attenuators can also add noise to an entangled quantum system,
deteriorating the non-classical properties of the state. We show this by considering a two-
mode squeezed vacuum state, which is a Gaussian entangled state, propagating through a
noisy medium, and characterizing the loss of entanglement in the covariance matrix and the
symplectic formalism for this state.

Finally, we discuss limits on the rate of communication in the context of sending messages
through noisy optical quantum communication channels. In particular, we prove that a strong
converse theorem holds under a maximum photon number constraint for these channels,
guaranteeing that the success probability in decoding the message vanishes in the asymptotic
limit for the rate exceeding the capacity of the channels.
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Chapter 1
Introduction

Quantum theory allows us to understand the behavior of systems at the atomic length scale or
smaller levels. It contains elements that are radically different from the classical description
of nature and has revolutionized the way we see nature. The cornerstone of this fascinating
theory was laid down by the pioneering work of Max Planck in 1900 when he came up with
the remarkable postulate that the energy spectrum of a harmonic oscillator is discrete and
quantized. This quantized nature of the energy spectrum not only helped to construe the
spectral distribution of thermal light but also led to several immediate implications that in
turn contributed to the formulation of the quantum description of nature. In particular,
in 1905 Albert Einstein applied Planck’s idea of discrete energy to explain the phenomenon
called the photo-electric effect, where light incident on a piece of metal results in the emission
of electrons from the metal.

Einstein also contributed to the quantum theory of electromagnetic radiation by estab-
lishing a theory in 1917 for understanding the absorption and emission of light from atoms.
In 1927, Paul Adrien Maurice Dirac put forward a complete quantum mechanical treatment
of the emission and absorption of light, leading to the quantum description of optics. Unlike
classical optics, this new theory is based on quantized electromagnetic fields, and explains the
concept of photon as the elementary quanta of light radiation. Roy Glauber, in his seminal
work in 1963, provided the quantum formulation of optical coherence that fully established
the field of quantum optics.

Along with the quantization of electromagnetic fields and atomic energy levels, the quan-
tum mechanical description of nature also makes use of principles such as superposition,
entanglement, teleportation and uncertainty principle. Based on these quantum principles,
extensive efforts have been taken over the last few decades, contributing towards the develop-
ment of technologies for computation, communication, cryptography, metrology, lithography
and microscopy, etc. The reason for this growing interest in exploiting quantum phenomena
is that they promise major 'quantum’ leaps over the existing technologies (that are based on
classical concepts) in the above mentioned areas.

One serious impediment for using the aforementioned quantum principles is that a quan-
tum state is extremely fragile. The quantum state of a system gets affected by an environ-
ment, leading to the loss of information from the system to the environment. In general, the
behavior of a quantum system is significantly influenced by noise present in the environment
that surrounds the system. The noisy environment can in general have significant effects on
properties like phase coherence, entanglement and metrological characteristics of quantum
states.

In this dissertation, we address the effects of different types of noise that are present in a
communication channel (or medium) or an interferometric setup, and analyze their effects in
the contexts of preserving coherence and entanglement, phase sensitivity, and limits on the
rate of communication through noisy channels. In Chapter 1, we begin with a brief overview of
the essential topics of quantum mechanics, quantum optics, and quantum information theory,
providing a foundation for discussions in later chapters. We first consider quantum optical
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phase estimation in quantum metrology when phase fluctuations are introduced in the system
by its interaction with a noisy environment. In Chapter 2, by considering path-entangled
dual-mode photon Fock states in a Mach-Zehnder optical interferometric configuration, we
show that such phase fluctuations affect phase sensitivity and visibility by adding noise to
the phase to be estimated. We also demonstrate that a specific detection scheme, known as
parity detection, provides the optimal detection strategy for estimating the phase in presence
of such phase noise for these states.

In Chapter 3, we investigate the random birefringent noise present in an optical fiber and
its effects on the coherence of a single photon polarization qubit propagating through the
fiber. We show that a simple but effective control technique, called dynamical decoupling, can
be used to suppress the effects of the dephasing noise thereby preserving its ability to carry
the encoded quantum information for a long-distance optical fiber communication system.

Optical amplifiers and attenuators can also add noise to an entangled quantum system
deteriorating the non-classical properties of the state. We show this by considering a two-
mode squeezed vacuum state, which is a Gaussian entangled state, propagating through
a noisy medium, and by characterizing the loss of entanglement in the covariance matrix
and the symplectic formalism for this state. In Chapter 4, we present a case study as an
application of this to provide an estimate of the tolerable noise for a given entanglement to
be preserved and also to detect the presence or absence of an object embedded in such noisy
medium.

We also study the ultimate limits on reliable communication through noisy optical quan-
tum communication channels that are allowed by the laws of quantum mechanics. In Chapter
5, we consider phase-insensitive bosonic Gaussian channels that represent the most practi-
cally relevant models to describe free space or optical fiber transmission, or transmission of
classical messages through dielectric media. In particular, we prove that a strong converse
theorem for these channels holds under a maximum photon number constraint, guaranteeing
that the success probability in decoding the message vanishes for many independent uses of
the channel when the rate exceeds the capacity of the respective channels.

In the following, we give a brief overview of the essential concepts of quantum mechanics
and its principles, providing a foundation for the works that will be covered in this thesis.

1.1 Brief review of quantum mechanics

1.1.1 Pure and mixed states

A pure state of a quantum system is conventionally denoted by a vector |¢)) having unit
length and which resides in a complex Hilbert space H. A pure state |1)) can be expressed
in terms of a set of complete orthonormal basis vectors {|¢,)} spanning the Hilbert space H

) :ch|¢n> (1.1)

Here ¢, are a set of complex numbers such that > |c,|> = 1. As a simple example of a pure
state, we can consider a ‘qubit’—a two-level system, which is regarded as the fundamental
unit of quantum information. A general qubit can be written in terms of the orthonormal
basis vectors |0) and |1) as [¢)) = a|0) 4+ B|1), where o and /3 are two complex numbers with
o+ |87 = 1.



A mixed state, on the contrary, is a statistical ensemble of pure states. Mixed states
represent the most frequently encountered states in real experiments because of the fact that
in reality the quantum systems cannot be completely isolated from their surroundings. Both
pure and mixed states, however, can be represented by their density operator or density
matrix (denoted by p). The density matrix p in general is positive definite, and Hermitian
(p" = p). The trace of p is unity, i.e. Trp = > (da]pl¢n) = 1. For a pure state [), the
density operator can be written as p = |¢) (1|, and it also satisfies p* = |)(¢|1)) (¥| = p. In
fact, the quantity Tr[p?] is also referred to as the purity of the state.

As an example, take the pure state |¢)) = %. The density operator for this state in
the basis {|0),]1)} can be written as p = 3 i 11

The density operator for a mixed state, which is a probabilistic mixture of the pure states

{1 (x|}, is defined as
p= Zpk|¢k><¢k|, (1.2)
k

where the sum of the probabilities ), py = 1.

As a special case, consider the maximally mixed state for which the probabilities of the
basis states are equal. In that case, the density operator p is given by p = %f , where N is
the dimension of the Hilbert space H and I is the identity operator.

The decomposition of the mixed state in Equation (1.2) is not unique. Since the density
operator is Hermitian in nature, it has a spectral decomposition p = ). a;|i)(i| for some
orthonormal basis |i). The eigenvalues a; here form a probability distribution.

1.1.2 Product states and entangled states

The pure and mixed states of a composite quantum system AB can be classified into two
classes—separable states and entangled states. Let us consider two quantum systems A and
B with respective Hilbert spaces H4 and Hp. The pure states and the mixed states of the
composite system AB can be identified following the same way as for the individual systems
but in the joint Hilbert space Hap = Ha @ Hp.

A quantum state pAP € H,p in general is said to be separable if p*# can be expressed
as a convex combination of the product states:

D Y (1.3)
k

where ), pi, = 1. Such a separable state can be prepared in the laboratory by local operations
and classical communication.

On the other hand, if a state is not separable, it is called an entangled state. As an
example, we can consider the pure state

) = 0)[al)s +[1)4]0) 5
V2 ’
which can not be written as a separable state of the above form, and represents an entangled
state.




One can always consider a mixed state p* of a system A as entangled with some auxiliary
reference system R. First, consider its spectral decomposition

p= arln) (0, (1.4)

k

in some orthonormal basis |¢;). Then, the following state is called a purification of p*
[0 = Vag|gw) k)" (1.5)
k

for some set of orthonormal states {|k)} of the system R. The above idea of purification has
the implication that the noise in the state can be thought to be arising from the interaction
of the system with an external environment to which we do not have access. This remarkable
notion of the purification extends, by considering an isometric extension of a channel, to the
case of the noisy quantum channels as well.

1.1.3 Dynamical evolution of quantum states

How a closed quantum system evolves with time is, in general, governed by a unitary trans-
formation U of the state. This means that the state [1)(ty)) of the system at time ¢, is
reversibly related to the state at time ¢ by a unitary transformation U (t, to)|¢(t0)):

() = U )l(o) = exp == (o). (16)

where A is a constant known as Planck’s constant. For a mixed state with the density operator
p, the evolution looks like

p(t) = U(t, t0)p(to)UT (¢, to). (1.7)

The unitary evolution of a closed quantum system implies the reversibility which means that
one can recover the initial state before the evolution from the knowledge of the evolution.
Furthermore, the unitarity of the evolution also ensures that the unit-norm constraint is
preserved.

In almost all real-life scenarios, the system interacts with a surrounding environment
where the evolution of such an open quantum system is not governed by unitary evolution
in general. However, the state of the system together with the environment is still a closed
system, and its time evolution is again given by a unitary evolution. But for the system
alone, the evolution is non-unitary, and can be conveniently represented by a noisy map N
acting on the density operator p.

This map N is a trace-preserving map, meaning that Tr{N(p)} = 1. It is also completely
positive. It means that the output of the tensor product map (I* ® N)(p) for any finite
k is a positive operator where the input p to the channel is a positive operator. We note
that such a completely positive trace-preserving (CPTP) map is the mathematical model
that we will use for a quantum channel (see Chapter 5) since it represents the most general
noisy evolution of a quantum state. Such a model of the noisy channel can be expressed in
an operator sum representation with Kraus operators A, so that A(p) = ok flkﬁflz with
S Al Ay =1



1.1.4 Quantum measurements

As with all measurements, we try to extract some classical information when we make a
measurement on a system. However, there exist some fundamental subtleties regarding the
notion of quantum measurements. In quantum mechanics, measurements are described by a
set of Hermitian (self-adjoint) operators, and the act of measurement on a quantum system
inevitably disturbs the quantum state.

In the following, we discuss two types of quantum measurements that we generally
encounter—the one is called projective measurement (or von Neumann measurement), and
the other is known as Positive Operator-Valued Measure (POVM).

A projective measurement in quantum mechanics refers to the kind of measurement in
which the measurement projects a quantum state onto an eigenstate of the measurement
operator. Let M denote the measurement operator which is Hermitian in nature and has a
complete set of orthonormal eigenstates {|¢)}. The measurement of this operator M on a
quantum state p yields an outcome which is an eigenvalue ¢ of M, ie.

M|¢) = ¢|o), (1.8)

with the probability p(¢) = (¢|p|#). Note that the eigenvalue ¢ is real since M is a Hermitian
operator. The post-measurement state of the system is then the eigenstate |¢) with the
corresponding eigenvalue ¢. Thus, the measurement projects the state onto its eigenspace,
and hence the name projective measurement. However, if the system is already in one of
the eigenstates of the operator M , then the measurement does not change the state of the
system.

A generalization of the above projective measurement is called the Positive Operator-
Valued Measurement (POVM). A set of positive operators {I1,,} that satisfy > TI,, = I is
called a POVM. For a pure quantum state [¢), the probability of getting m as the outcome of
a POVM is (¢)|TL,, |10}, while for a mixed state p the probability of getting m as the outcome is
Tr{f[mp}. Unlike projective measurements, the POVM operators do not uniquely determine
the post-measurement state.

For instance, we consider classical data transmission over a noisy quantum channel, where
it is appropriate for the receiver at the end of the channel to perform a POVM since he is
merely concerned about knowing the probabilities of the outcomes of the measurement and
not the post-measurement state.

1.2 Brief review of quantum optics

In this section we review some concepts in quantum optics that will be relevant for our works
in later chapters. We start with the quantization of electromagnetic fields and discuss some
key features associated with it, by following the notations used in Reference [133]). Then we
present a brief study on the quantum mechanical states and their phase space representations.
We then discuss the notion of phase in quantum optics and delineate the methods of its
estimation in an optical interferometric setup. Finally, we present a brief overview of the
approaches to determine the lower bounds in estimation of such an optical phase, e.g., by
evaluating the quantum Cramér-Rao bound. The quantum Cramér-Rao bound also helps us
to decide if a given detection strategy is optimal for estimating the optical phase.



1.2.1 Quantization of the electromagnetic field

In order to understand the quantization of the electromagnetic field, we start with the classical
electromagnetic field in free space in the absence of any source of radiation, which is described
by Maxwell’s equations:

VE=0 (1.9)

0B
VxE=-2 (1.10)
VB =0 (1.11)

1 OE

where E = E(r,t) and B = B(r,t) represent the electric field and magnetic field vectors
in free space in terms of the spatial vector r = r(x,y, z) and time ¢, and ¢ is the speed of
light. In order to obtain a general solution of the above equations, we introduce the vector
potential A(r,t) which is defined in terms of the electric and the magnetic fields as

0A
E=-—- (1.13)
B =V xA. (1.14)

Since there is no source present, we can choose to work in the Coulomb gauge, i.e.
V.A =0. (1.15)

Using the above Gauge condition, we obtain a vector wave equation for the vector potential
A(r,t) which is of the form
1 0?A
2 o2
We can now separate out the vector potential A(r,t) into two terms, and confine the field
to a finite volume (say V = L? for a cubical cavity of side L) so that A(r,t) can now be
written in terms of a discrete set of orthogonal mode functions u(r) corresponding to the
frequency wy

V2A(r,t) = (1.16)

A(r,t) = Z g (r)e™r + Z aluj(r)eTiwrt (1.17)
k k
Substituting this into Equation (1.16), we then get

2 | Wi
(V + g) ug(r) =0. (1.18)
For a cubical cavity of side L confining the field, the solution of the above equation takes the
form

1 ~ ke
u(r) = TaEeAe kr, (1.19)

where £, is the unit polarization vector (A = 1,2 corresponding to two orthogonal polariza-
tions) perpendicular to the wave vector k, and components of k are given by
2mn, _ 27mny, 2mn,

ky = 7k ——7kZ:
L v L L

(1.20)



With the solution of ui(r) in Equation (1.19), the vector potential A(r,?) can be written
as

2e0Wy,

A(r,t) = ; ( h )1/2 [akuk(r)ew"‘t + azu};(r)e—i“”“t] ) (1.21)

where ¢ is the permittivity of free space. The associated electric field can then be written
as

250wk

E(r,t) = Z ( f )1/2 [akuk(r)eiwkt + aLuZ(r)e‘iw’“t] : (1.22)

We now proceed to the quantization of the electromagnetic field which we can do by
generalizing the amplitudes a; and a£ in the above equations to be mutually adjoint operators

ayp and &,t satisfying the following bosonic commutation relations:
lan, aw] = [af, al,] = 0, (1.23)

The operators a; and dL are known as the annihilation and creation operators for a quan-
tum mechanical harmonic oscillator (the reasons for such names will be clearer in the next
subsection).

The quantum theory of the radiation field associates each mode of the field to a quantum
harmonic oscillator. The energy stored in the electromagnetic field in the cavity is given by

the Hamiltonian . .
H= _/ (50E2 + —B2> d’r, (1.25)
2 Jy=rs Ho

where o is the permeability of free space. The above Hamiltonian may be rewritten in the

following form:
o 1
H= }k huw <a2ak + 5) : (1.26)

which represents the sum of two terms—the first is the number of photons in each mode of
the radiation field multiplied by the energy of a photon Awy in each mode, while the second
term %hwk is the energy corresponding to the vacuum fluctuations in each mode of the field.

1.2.2 Quadratures of the field

The last subsection described how the bosonic field operators @ and a' represent the bosonic
system such as the modes of the electromagnetic field that can be associated with indepen-
dent quantum harmonic oscillators. There is another kind of field operator known as the
quadrature operator that can be used to describe bosonic systems. We define the following
two Hermitian quadrature operators X and Y in terms of a and a'

i+ al a— af
V2 V2i

which satisfy the commutation relation [X , Y] = ¢, and Heisenberg’s uncertainty relation:

o td

(1.27)

1
AXAY > 3 where (AX)? = (X?) — (X)?, (AY)? = (Y?) — (Y)?, (1.28)
where AX and AY denote the uncertainties in the quadratures X and Y, respectively.
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1.2.3 Quantum states of the electromagnetic field

The Hamiltonian operator from Equation (1.26) has the eigenvalues hw(n + 3) where n =
0,1,2,... (For the sake of brevity, we henceforth drop the mode index k). The eigenstates
In) are known as photon number states or Fock states. The operator 7 = afa is called the

photon number operator:
nln) = nln). (1.29)

The vacuum state of the field mode is given by a|0) = 0, and has energy %hw The photon
number states form a complete orthonormal basis for representing any arbitrary state of a
single-mode bosonic field, since (n|k) = d,;, (orthonormal), and °°° |n)(n| = I(complete),
where I is the identity operator.

The action of the creation and annihilation operators on the number state |n) is

aln)y = +/nln — 1), (1.30)
a'ln) = vn + 1n + 1). (1.31)

Also, the number state |n) can be obtained from the ground state |0) in the following way

(at)"
n) = 0). 1.32
) =" 10) (1.32)
For Fock states, the mean values of the field operator a and the quadrature operators vanish,
i.e.

(nlaln) = (n|X|n) = (n|Y|n) =0 (1.33)

These states contain equal uncertainties in the two quadratures, i.e. (AX)? = (AY)? = n+1,
leading to AXAY =n + % It can also be noted here that the photon number states or the
Fock states are highly non-classical in nature, and have well-defined number of photons but
phase distribution is completely random (see Figure 1.1).

Y quadrature

X quadrature

Figure 1.1: Phase space diagram of the quantum states. A number state |n) is shown as a
circle with a fixed number of photons but completely random phase distribution. A coherent
state |a), with amplitude |a|? and phase ¢, has equal uncertainties in the two quadratures,
and it can be generated by displacing the vacuum state |0) in the phase space. A squeezed
state |€) in which fluctuations in one quadrature are reduced is also shown in the figure.
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The coherent states of light, contrary to the Fock states |n) discussed above, are the
“most classical-like” states in the sense that they are the closest analogue of the classical
electromagnetic wave, having fixed amplitude and phase (for example a coherent laser light).

The coherent states |«) are defined as the eigenstates of the annihilation operator a, i.e.
ala) = ala), where |«|? is the amplitude of the coherent state |a). In the number state basis,
the coherent states |) can be written as superposition of the Fock states |n)

X e~lal?/24n

e Q@
o) = —n,), 1.34
) ;0 ] n) ( )

which can be generated by “displacing” the vacuum state |0) (see Figure 1.1) with a dis-
placement operator D(a):

la) = D(a)|0). (1.35)

The displacement operator D(«) is defined as : D(a) = exp(aal — a*a).
The probability of finding n photons in a coherent state |«) is represented by the following
Poisson distribution with mean |a|? = (n) (where 71 = a'a is the photon number operator)

€f|a\2a2n

Pn = (1.36)

n!

The coherent states of light have uncertainties in the quadratures (AX)? = (AY)? = 1,
leading to the minimum uncertainty product AXAY = % Also, the mean values of the field
operator a and the quadrature operators are non-zero,

. N Re(a) ~ Im(a)
alala) = a, (a|X|a) = , (oY |a) = . 1.37
(alala) (aX]a) 7 (a]Y]a) 7 (1.37)
Unlike the Fock states, the coherent states are non-orthogonal
* 1 2 1 2
(al) = exp (0’ = la* = 5181 ) (138)

but they form a complete basis of states
< Pa S
I= [ la)(a]l—=>"In)nl. (1.39)

We can see that the thermal state py, of a mode (which is a mixed state of the radiation
field) is written as an isotropic Gaussian mixture of the coherent states |a)

o lol2/ N
o= [ Il (1.40)
ﬂ-Nth

where Ny, is the mean number of photons in the thermal state py.
The next class of states that we consider are squeezed states |£) that can be generated by
applying the unitary single-mode squeezing operator

$(6) = exp (%5@*2 - %s*fﬂ) L€ =re®, (1.41)
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on the vacuum state, i.e S(€)[0) = |€). Here r is called the squeezing parameter. The mean
number of photons in the squeezed state is (afa) = sinh? 7. In terms of the Fock states |n),
the squeezed state can be written as

1€) = io:em(b tanhr)" ﬂpm (1.42)

\/COSh - (n!)222n

It shows that |) has only even photon number states in the superposition. This is the case
when a nonlinear crystal is pumped with a bright laser light—some of the pump photons
having frequency 2w are divided into pairs of photons each with frequency w. The outgoing
mode for a degenerate parametric amplifier consists of a superposition of even photon-number
states.

In order to see the quadrature squeezing in such states, let us first define a more general
quadrature operator (which is a linear combination of the quadrature operators X and Y)

~o—if | At 0
x5, =ttt (1.43)
V2

with the commutation relation [Xg, Xoir /2] = 4. For the single-mode squeezed state |£), one
can show that

2 1, 2 1
(AXop)" = 5%, (AXypaimp) =577, (1.44)
1
AX¢/2AX¢/2+W/2 == 5 (145)

From the above, we see that the quadrature denoted by AXy/, is stretched, while the other
quadrature AXy/o4x/2 is squeezed at the same time.

The squeezed coherent states |€, ) can be generated by applying the squeezing operator
S(€) on the coherent state |o):

€, @) = 5(§)|a) = S(€)D(a)]0). (1.46)

Since the displacement D(a) in phase space does not produce further squeezing, the squeezing
properties of this state |, ) are the same as those for the single-mode squeezed vacuum state
192

Finally, we consider the two-mode squeezed vacuum state |£)Tysy that can be generated
by applying the unitary two-mode squeezing operator

So(€) = exp (5&*6* - g*aé) , (1.47)

on the two-mode vacuum state, i.e S5(£)|0,0) = |¢)rmsy, where @ and b denote the annihi-
lation operators corresponding to the two modes. The correlation between these two modes
(ab) gives rise to the non-classical properties of the state |£)Tuvsy, such as squeezing.

The two-mode squeezed vacuum state |£) sy can be written in terms of the Fock states
|n) as

1
Z e (tanh )" |ng, ny), (1.48)

[©)rmsy = coshr
n=0

showing that the photon pairs are created by the two-mode squeezing operation on the
vacuum state.

10



1.2.4 Phase in quantum optics and its estimation

In quantum metrology, we seek to exploit the quantum mechanical properties of a state to
improve the sensitivity and resolution in estimating a physical parameter. In particular,
the physical parameter that is of the most significance in the context of quantum optical
metrology is the optical phase. However, there exists no Hermitian operator in quantum
mechanics that can represent such an optical phase, and consequently it calls for an estimation
scheme in which the optical phase is the parameter to be estimated.

Let us consider a single mode of the radiation field E having an unknown phase. One can
use the standard technique, known as the balanced homodyne detection to measure the phase
difference, as shown in Figure 1.2. A local oscillator excited in a strong coherent state (such
as a laser), say ae', is applied on the other input port of a 50-50 beam splitter. A phase
difference is established between the two input modes since the phase of the local oscillator
is known. The detectors placed in the output beams measure the difference in the intensities
I; — I, from which the phase of the unknown signal can be measured.

l4

) Detector 1
N

N

Radiation field

mode E —
A i
Beam Detector 2
Splitter
0

Local Oscillator

Figure 1.2: Balanced homodyne detection to measure unknown phase difference. E represents
the electric field of the radiation field incident on the 50-50 beam-splitter, where it is mixed
with a local oscillator in a strong coherent state with phase 6. The outputs are incident on
two photodetectors, and the corresponding photocurrents give the difference of the intensities
I; — I, revealing the phase of the unknown signal.

In the following, we discuss the optical interferometric setup, commonly known as the
Mach-Zehnder interferometer, to detect the phase shift between two modes that can be
treated as a quantum mechanical extension of homodyne detection.

A typical setup of a Mach-Zehnder interferometer (MZI) is shown schematically in Figure
1.3. In a MZI configuration, laser light in the port A is split by the first beam-splitter, then
it is reflected from the two mirrors followed by accumulation of the phase difference ¢, and
finally is recombined at the second beam-splitter. If we denote the annihilation operators
for the input and output pair of modes by a, I;, and a’, v , respectively, the effective mode

11



Mirror

| i Detector C

Beam
Splitter 2

Beam
Splitter 1

e — Detector D
Mirror

Figure 1.3: Schematic diagram of a Mach-Zehnder interferometer. Laser light in the port
A is split by the first beam-splitter, then it is reflected from the two mirrors followed by
accumulation of the phase difference ¢ due to the phase-shifter, and finally is recombined at
the second beam-splitter, emerging in the ports C' and D.

transformation relation between them can be written as

(@) =40 0 S () @)= (e o) (). oo

In the above, ¢ is the relative phase shift between the two paths, which is also proportional
to the optical path difference between the these two paths. In order to estimate this phase
shift ¢, we write the phase uncertainty A¢ as

(M) = (¢°) — (¢)*. (1.50)

This quantifies the precision with which ¢ can be estimated for a given interferometric
detection scheme. Using the simple error-propagation formula, we can write

> Q>

~

A¢ = AA : (1.51)

where A represents an observable (Hermitian operator) for the detection scheme used at the
output of the interferometer.

When a coherent state is used in one port in conjunction with the vacuum at the other,
the above relation in Equation (1.51) gives the phase estimate A¢ that scales as 1/y/f, where
n is the average number of photons in the coherent state. Furthermore, regardless of the state
used in the first port, the phase uncertainty A¢ is lower bounded by 1/4/n as long as the
vacuum state is fed into the second port of the interferometer. This bound given by 1/v/n
is known as the shot-noise limit (SNL), and is a manifestation of vacuum fluctuations. Note
that this agrees with the number-phase uncertainty relation AnA¢ > 1 since An = /n for
the coherent state.

12



Any state for which it is possible to attain a phase-sensitivity lower than the SNL is
said to achieve super-sensitivity. Numerous proposals exist in the literature for reducing the
phase uncertainty below the SNL by using quantum states of light, and approaching 1/7 is
known as the Heisenberg limit (HL) of phase-sensitivity. The first among those is due to
Caves [1], where he showed that using coherent light and squeezed vacuum states at the two
input ports of the MZI can give rise to Heisenberg-limited phase sensitivity.

1.2.5 Phase estimation and the Cramér-Rao bound

Here we briefly review the essential ingredients of estimation theory. We first present the
Fisher information approach from classical estimation theory and then show how it general-
izes in the quantum estimation of the optical phase, providing a lower bound on the phase
sensitivity A¢, known as the Cramér-Rao bound.

In classical estimation theory, one aims to construct an estimate for a set of unknown
parameters {¢q, @, ..., 0, } that gives the most accurate estimate of the set of parameters
based on a given data set of the measurement outcomes. Here we consider the the ultimate
limit in estimating a single parameter ¢ by using the classical Fisher information for a given
measurement X. Each measurement provides an outcome x which depends on the value of
}.

The performance of a given estimator of ¢ can be quantified by the error estimate A¢p =
V/ {(est — Prear)?). Here (...) denotes the average over all possible experimental results, while
Qest and ¢rea are the estimated and the real value of the unknown parameter ¢, respectively.
For v repetitions of the given measurement, this error estimate A¢ is bounded by the classical
Cramér-Rao bound [2]

1

VVE(9)

where F'(¢) is the classical Fisher information, given by

Fo) = S ptalo) { P, (153)

A > (1.52)

x

Here the probability distribution p(z|¢) corresponds to the probability of getting the exper-
imental result x for estimating the parameter ¢. This relation applies to both classical and
quantum physics whenever the estimator is unbiased, i.e. (Pest) = ¢real and the probability
distribution p(z|¢) is fixed.

In quantum mechanics, we can model the experiment using the POVM operators I1,,
where 11, is associated to a measurement outcome z. For a quantum state denoted by the
density matrix p(¢) that carries the encoded information about the unknown parameter ¢,
we can write

p(z|o) = Tr [p(¢)IL,] . (1.54)

Maximizing over all possible measurement strategies, we can arrive at the quantum Fisher
information Fy (p(¢)) (which depends only on the probe state p(¢)), leading to the following
lower bound on the estimation of ¢, known as the quantum Cramér-Rao bound

1

VvEq (p(9))

A¢ > (1.55)
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For a closed system, prepared in a pure state p = |1} (1|, which evolves under a unitary
transformation Uy, the quantum Fisher information is given by [3]

Fo(p'(9) = 4(AH?), (1.56)

where §/(6) = Uup} £16) = (55 ) Uy and (312 = [0 = (W1@)0)?]. For

instance, when we use the coherent state as the probe state, the quantum Fisher information
can be evaluated to be F = 4((An)?) associated with the unitary evolution operator U, =
¢ (7 is the photon number operator). Since for the coherent state An = /i, this leads
us to the SNL where the phase sensitivity A¢ scales as 1/y/n. By using quantum states of
light, it is possible to increase the precision of the phase estimation—for example, maximizing
this variance corresponds to the case of the NOON state [4] where the variance is increased
to ((An)?) = NT2, leading to the HL of the phase sensitivity, i.e. the phase sensitivity A¢
scaling as 1/N where N is the mean input photon number of the NOON state.

1.3 Brief review of quantum information theory

In quantum information theory, we study the ultimate limits on reliable communication that
are allowed by the laws of quantum mechanics, and also seek to determine the ways by which
these limits can be achieved in realistic systems. The mathematical foundations of quan-
tum information theory were laid out in the ground-breaking 1948 paper of Claude Shannon
that introduced the idea of channel capacity, the maximum mutual information between a
channel’s input and output, as the highest rate at which error-free reliable communication is
possible for a given channel. This idea is captured in his famous noisy channel coding theo-
rem [5]. Holevo, Schumacher, and Westmoreland provided a generalization of the Shannon’s
classical channel coding theorem to the quantum setting [6, 7], establishing an achievable
rate at which a sender can transmit classical data to a receiver over a noisy quantum channel
using the channel a large number of times.

It is worthwhile to note that quantum information science is an overwhelmingly rich and
broad subject by its own virtue, encompassing fields as diverse as quantum computation,
quantum complexity, quantum algorithms, entanglement theory, quantum key distribution,
and so on. However, in the following we present a very brief review of the topics in quantum
information theory that will be extensively used in our study in Chapter 5. For a detailed
review on the subject, the interested readers are referred to Reference [8].

1.3.1 Quantum entropy and information

For quantifying the amount of information and correlations in quantum systems, we define
the von Neumann entropy H(p) of a quantum state p

H(p) = —Tr(plogp). (1.57)

This entropy is also known as the quantum entropy, and gives a measure of how mixed the
quantum state is. The base of the logarithm is taken to be 2. We can also express the von
Neumann entropy in terms of the eigenvalues \; of the density operator p as

H(p)=—> X\log\:. (1.58)
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Note that for a pure state, the von Neumann entropy is zero, while for a maximally mixed
state it is given by log D where D is the dimension of the system.
For a bipartite system AB in a joint state pAZ, the joint quantum entropy is defined as

H(AB) = —Tr(p*? log p*?). (1.59)
The joint entropy of the bipartite system is subadditive, i.e.
H(AB) < H(A) + H(B),

where the equality holds when p4? is a tensor-product state (p? = p? ® pP).
The conditional quantum entropy H(A|B) of the bipartite state pA? is defined as

H(A|B) = H(AB) — H(B), (1.60)

i.e., the difference between the joint entropy and the marginal entropy.

1.3.2 Quantum mutual information

Quantum mutual information is a measure of correlations between two systems A and B.
The quantum mutual information I(A; B) of a bipartite state pA? is defined as

I(A;B) = H(A) + H(B) — H(AB). (1.61)

The quantum mutual information can also be written alternatively in terms of the conditional
quantum entropies

I[(A; B) = H(A) — H(A|B) = H(B) — H(B|A). (1.62)

1.3.3 Holevo bound

In quantum information theory, the Holevo bound serves as an upper bound on the accessible
information. Suppose that a sender (Alice) prepares an ensemble £ = {px(z), p,} before
handing it over to a receiver (Bob). In order to determine which value of X Alice chose,
Bob performs a measurement on his system B which are described by the POVM elements
{A,}. The accessible information in this case is the information that Bob can access about
the random variable X, and is defined as

Liee(§) = max I(X;Y), (1.63)

where Y is a random variable representing the outcome of the measurements that Bob per-
forms.
The Holevo bound can then be written as

where the quantity on the right hand side x(§) = H (>, pxps) — 2, pxH (p;) is also
known as the Holevo x quantity or the Holevo information of the ensemble of the states
¢ = {px(x),p,}. The implication of the Holevo bound is that this upper bound can be
achieved asymptotically by employing a joint (collective) quantum measurement on Bob’s
side. This gives the maximum information that Bob can gain about ¢ by such joint quantum
measurements.
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1.3.4 Capacity of classical communication: HSW theorem

The notion of the Holevo bound introduced above leads us to determining the achievable rates
of communication for a noisy quantum channel. Holevo, Schumacher, and Westmoreland
(HSW) characterized the classical capacity of a quantum channel A in terms of the Holevo
information [6, 7]

XWN)= max [(X;B),, (1.65)

{px(2),pz}

and showed that this Holevo information serves as an achievable rate for communicating
classical data over the quantum channel A. Here, {px(z), p.} represents an ensemble of
quantum states, and the quantum mutual information /(X; B), = H(X),+H(B),—H(XB),,
is defined with respect to a classical-quantum state pxp = > px (z) |z) (x| x QN (ps) 5. The
above formula given by HSW for certain quantum channels is additive whenever

XNF) = nx(N). (1.66)

For such quantum channels, the HSW formula is indeed equal to the classical capacity of
those channels. However, a regularization is necessary for the quantum channels for which
the HSW formula cannot be shown to be additive. The classical capacity in general is then
characterized by the following regularized formula:

Yee(N) = Tim Sy (AE7). (1.67)

n—oo N,

1.4 Distance measures in quantum information

Noisy quantum channels affect the input states, resulting in an output state which is different
from the input. It is, therefore, necessary to characterize how close two quantum states are
by using some distance measures. In this section, we review two such distance measures—
the trace distance and the fidelity. These distance measures are important in quantum
information theory because they help us to compare the performance of different quantum
protocols. We conclude this chapter with a brief discussion on the gentle measurement lemma,
that concerns the disturbance of the quantum states upon measurement. This helps us to
characterize the distance between the original state and the post-measurement state.

1.4.1 Trace distance

The trace norm ||A||; of an Hermitian operator A is defined as
1Al = Tr {\/ATA} . (1.68)

The trace distance between two operators A and B is given by

IA— B, :Tr{\/(A—B)T(A—B)}. (1.69)

In particular, when we consider any two operators p and o, the trace distance between them
is bounded by
0< |lp—olh <2 (1.70)
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The above trace distance is invariant under unitary operations, i.e.
I = olly = [UpU" — Ut (1.71)

The trace distance between two quantum states p and o is equal to twice the largest proba-
bility difference that these two states could yield the same measurement outcome II [8], i.e.,

lp = olly = 2 max Tr{Il(p — o)}, (1.72)

where the maximization is done over all positive operators Il with eigenvalues between 0 and
1.

As an example, we can use the trace distance between two quantum states to obtain the
minimum probability of error to distinguish between two quantum states (say po and p;) in
the setting of the quantum binary hypothesis testing.

Suppose that Alice prepares, with equal probability 1/2, either py or p;, and Bob wants
to distinguish between them. In order to do so, he performs a binary POVM with elements
{Ilp,II; }. Let us say the decision rule is: Bob declares the state to be py if he receives “0”
as a measurement outcome or otherwise (for the “1” outcome) declares it to be p;. The
probability of error in distinguishing these two states can then be written as (using the
relation in Equation (1.72))

(1= Te{Ty(p0 — p1)}). (1.73)

DN —

pe = 5 (Tr{Tlopa} + (Tr{Typo}) =

Another important relation that we will use quite often is the one that concerns the
measurement on two approximately close states [8]: For two quantum states p and o and a
positive operator IT (0 < II < I), we can write

T{Ilp} > Tr{Tlo} — llp— o (1.74)

Consider two quantum states, for example, p and o that are e-close in trace distance to each
other (e is a very small positive number), i.e. ||p — o||; < e. Suppose that the probability of
successful decoding of the state p with the measurement operator II is very high so that

Tr{Illp} > 1 —¢, (1.75)
then for the state o, we have [using Equation (1.74)]

Tr{llo} > 1—2¢ (1.76)
which states that the same measurement also succeeds with high probability for the state o.

1.4.2 Fidelity

Here we introduce the fidelity as an alternative measure of how close two quantum states are
to each other. The fidelity between an input state |¢)) and an output state |¢) when both of
them are pure states is given by

F (), 1)) = [(¢]e)]*. (1.77)
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This fidelity is equal to one if the states overlap with each other, while it is equal to zero
when the states are orthogonal to each other.

However, a noisy quantum communication protocol could map a pure input state [1) to
a mixed state p. In such case, we define the expected fidelity between these two states in the
following way. The expected fidelity between a pure input state 1) and mixed output state p
is given by

F(l), p) = @lply). (1.78)

In the most general case, both the above states could be mixed. We can incorporate the
idea of purification (with respect to a reference system R) to define the fidelity between the
two mixed states p4 and o4 for a common quantum system A. This fidelity is known as the
Uhlmann fidelity [8].

Suppose we want to determine the fidelity between the two mixed states ps and o4 of
the quantum system a. Consider the purifications of these two states as |¢,)®4 and |¢, )54
with respect to the reference system R. The Uhlmann fidelity between the two mixed states
is then defined as

Flp,o)=  max_ [(6,l00) (1.79)

|6p) A, oo ) A
where the maximization is over all purifications |¢,)** and |¢, )7
For two quantum states p and o, the relation between the trace distance and fidelity for

two quantum states can be expressed as

V) < gllo—olh < VI~ F(p.0). (1.80)

As an example of the relation in Equation (1.80), we can establish a useful relation
between the trace distance and the fidelity for two very close states p and o. Suppose for a
very small positive constant € we have

F(p,o0)>1—¢, (1.81)

then it follows that
lp—olly <2V, (1.82)

i.e., these two states are 24/e-close in trace distance to each other.

1.4.3 Gentle measurement

The notion of gentle measurement that we describe below is associated with the disturbance
of the quantum states when some quantum measurement is performed on them. This follows
by applying the relation Equation 1.80 considering a measurement operator A (or an element
of a POVM) on a quantum state p. In the following lemma describing the “gentle” effect
of the quantum measurement on the quantum state we follow the notations and definitions
used in Reference [8].

Lemma 1 If the measurement operator A detects the quantum state p with a very high
probability, i.e. for a very small positive constant €

Tr{Ap} > 1—¢, (1.83)
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then the “gently” perturbed post-measurement state is given by

. VApA

_ Y PV 1.84
which is 2+/e-close in trace distance to p, i.e.,
o —p'll < 2Ve. (1.85)

Finally, we specify a variation of the above lemma that we will explicitly use in our work.

Lemma 2 If the measurement operator A detects the quantum state p with a very high
probability, i.e.,
Tr{Ap} > 1 —c¢, (1.86)

then vV ApV/A is 2v/e-close in trace distance to p, i.e.,

lp— VApVAL < 2VE. (1.87)
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Chapter 2
Effects of phase fluctuation noise in

quantum metrology !

In this chapter, we discuss the effects of phase fluctuations on the quantum metrological
properties of the two-mode path-entangled photon-number states and compare their perfor-
mances in an optical interferometric setup in the presence of such noise. In particular, we
consider the maximally path-entangled state, known as the NOON state, along with a more
generalized version of it, called the mm’ state in the context of quantum phase estimation.
NOON states of light have been shown to achieve Heisenberg limited supersensitivity as well
as super resolution in quantum metrology [9, 10] but they are extremely susceptible to pho-
ton loss [11, 12, 13, 14, 15]. In order to combat this disadvantage of the NOON states under
photon loss, Huver et al. proposed mm’ states, and showed that such states provide more
robust metrological performance than NOON states in the presence of photon loss [14].

In real life applications such as a quantum sensor or radar, phase fluctuations due to
different noise sources can further aggravate the phase sensitivity by adding significant noise
to the phase ¢ to be estimated. For instance, when one considers the propagation of en-
tangled states over distances of kilometers, through, say, the atmosphere, then atmospheric
turbulence becomes an issue as it can cause uncontrollable noise or fluctuation in the phase.
In this sense, phase fluctuation can render the quantum metrological advantage for achieving
super-sensitivity and super-resolution totally useless. This has motivated us to investigate
the impacts of such random phase fluctuations on the metrological properties (such as the
phase sensitivity and the visibility) of quantum mechanically entangled states.

Considering the path-entangled photon Fock states, viz. NOON and mm’ states in the
presence of such phase noise, we study the parity detection [16] for the interferometry to
calculate the phase-fluctuated sensitivity. This detection scheme has been shown to reach
Heisenberg limited sensitivity when combined with the NOON state in the absence of photon
loss [16, 17, 18, 19]. Here we calculate the minimum detectable phase shift in the presence
of phase fluctuation, and show that the lower bound of the phase-fluctuated sensitivity for
both the states saturates the quantum Cramér-Rao bound [20, 21], which gives the ultimate
limit to the precision of phase measurement. This shows that the parity detection serves as
an optimal detection strategy when the above states are subject to phase fluctuations.

Here, we first introduce in Section 2.1 the NOON and mm’ states, i.e., the class of path-
entangled two-mode photon Fock states that we will study for investigating the effects of
the phase noise on the metrological properties of these states. In Section 2.2, we describe
how the density matrices corresponding to these states evolve under phase fluctuations in a
typical optical interferometric configuration. Section 2.2 contains the discussion of the parity
detection scheme that is used in our work to evaluate the phase sensitivity and visibility.

I This chapter previously appeared as B. Roy Bardhan, K. Jiang, and J. P. Dowling, Physical Review A
88, 023857 (2013) (Copyright(2013) American Physical Society) [22]. It is reprinted by permission of the
American Physical Society. See Appendix C for details.
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In order to provide the tightest bound on the uncertainty of the phase, we provide explicit
calculation of the quantum Fisher information that in turn gives the quantum Cramér-Rao
bound, the lowest bound on phase sensitivity that can be attained with these states. Finally,
we conclude this chapter with a brief summary of the main results obtained from the work
presented here. For the sake of completeness, we provide in Appendix A calculations of phase
sensitivity and visibility in the presence of both photon loss and phase fluctuation for the
states considered above.

2.1 Path entangled photon Fock states—NOON and mm' states

Quantum states of light have long been known to attain greater precision, resolution and
sensitivity in metrology, image production, and object ranging [4, 23, 24] than their classical
counterparts. The maximally path-entangled NOON state is one of the most prominent exam-
ples of such non-classical states [9, 25, 26], which is a superposition of all N photons in one
path of a Mach-Zehnder interferometer (MZI) with none in the other, and vice versa. This
state is entangled between the two paths, and has been shown to violate the Bell inequality
for non-classical correlations [27]. The NOON state can be written as

1
V2

where a and b represent the two paths of the interferometer. This state is in the class of
Schrodinger-cat states [26], and a measurement of the photon number in either of the paths
results in random collapse of all the N photons into one or the other path.

NOON states are known to achieve Heisenberg limited super-sensitivity as well as super-
resolution in quantum metrology [9, 10]. In recent years, several schemes for reliable produc-
tion of such states have been proposed, making them useful in super-precision measurements
in optical interferometry, atomic spectroscopy, gravitational wave detection, and magnetom-
etry along with potential applications in rapidly evolving fields such as quantum imaging and
sensing [28, 29, 30, 31, 32, 33, 34].

The superiority of the NOON state in phase sensitivity and resolution, compared to a
coherent state |a), can be attributed to the fact that the number state evolves N-times
faster in phase than the coherent state. This in turn results in the sub-Rayleigh-diffraction-
limited resolution (super-resolution) as well as the sub-shot-noise-limited phase sensitivity
(super-sensitivity) achieved with the NOON state [4].

However, the NOON states are vulnerable to photon loss which is present in almost all
realistic interferometric configurations. For instance, the NOON state is transformed, when a
single photon is lost from the system, to the state [N —1,0)(N — 1,0/ + [0, N — 1){0, N — 1]
which is unusable for estimation of the phase ¢. In order to overcome such disadvantage of
the NOON state in the presence of photon loss, the authors in Reference [14] proposed a class
of the generalized path-entangled Fock states, by introducing decoy photons to both paths
of the interferometer. These states are known as the mm' states and have been shown to be
more robust against photon loss than NOON states. The mm’ states can be written as

Im m'yp = %(\m,m'ﬁb +Im',myas), (2.2)
where m and m’ are the number of input photons injected into the two modes of the inter-
ferometer.

IN 2 0)0 (1N, 0)ap + [0, N)as), (2.1)
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For this class of path-entangled Fock states, Jiang et al. provided strategies for choosing
the optimal m and m' for a given photon loss [15]. The mm' states can be produced, for
example, by post-selecting on the output of a pair of optical parametric oscillators [35]. Note
that the mm’ state reduces to a NOON state when m = N and m’ = 0.

In the following sections, we study the behavior of the phase sensitivity and the visibility
of the mm’ and the NOON states under phase fluctuations.

2.2 Dynamical evolution of the mm’ and NOON states under phase fluctuations

We start with the propagation of mm’ and NOON states through a MZI (schematically shown
in Figure 2.1) in the presence of the phase fluctuations A¢, where the photon number differ-
ence (Am = m — m/) between the two arms in the initial state is fixed.

Source ITI  [Detector

I

Figure 2.1: Schematic diagram of a two-mode optical interferometer. Here a and b denote
the two modes for the mm’ and NOON states as the input. The source and the detector are
represented by the respective boxes. Effects of the phase fluctuations due to the phase noise
is represented by A¢ in the upper path b of the interferometer. The upper beam passes
through a phase-shifter ¢, and the phase acquired depends on the total number of photons
Am = m —m' (or N) passing throughout the upper path. Parity detection is used as the
detection scheme at either of the two output ports of the interferometer.

The presence of the phase shifter in the upper path b introduces a phase shift ¢ to the
photons traveling through it, so that the state at stage II becomes

1
) :E

=alm,m’) + Blm’,m), (2.3)

(e™?|m, m') + €™?|m/, m))

where a = ¢'?/4/2 and 8 = ™% //2. Because of the different number of photons being
phase-shifted on the upper path b, phase shifts accumulated are different along the two paths,
thus providing the possibility of interference upon detection.

The combined effects of random phase fluctuations are represented by A¢ in the upper
path in Figure 2.1, and the mm’ state at stage III is then given by,

[W(AG)) 1 = ™ A m, m') + Be™A|m’, m). (2.4)
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Notice that because of the random nature of the phase fluctuations, the state of the system
becomes a mixed state and the associated density matrix is then

P = ([P(AQ))m (Y (Ad)]). (2.5)

Random fluctuations A¢ in the phase effectively cause the system to undergo pure dephasing.
As a result, the off-diagonal terms in the density matrix will acquire decay terms, while the
diagonal terms representing the population will remain intact, 7.e. the photon number will
be preserved along the path [36].

We can expand the exponential in Equation (2.3) in a series expansion, and consider the
terms up to the second order in A¢. We assume the random phase fluctuation A¢ to have
Gaussian statistics described by Wiener process, i.e. with zero mean and non-zero variance
(A¢?) = 2T'L (L is the length of the dephasing region, and I is the dephasing rate). Ensemble
averaging over all realizations of the random process then gives,

(€M) = 1+ iAm(Ag) — (Am)*(A¢?) /2
=1—(Am)’TL~e" (Am)*T'L

The density matrix for the mm' state is approximated by

P = |a* [, ) (m, | + |8, m) (m!, m]
+ Oé*ﬁe—(Am)Ql"L|7n7 m/) <m/’ m|

+ aff e AL ! m) (m,m/]. (2.6)
A similar equation for the NOON state can be obtained from Equation (2.1) as

PNOON = |05‘2|N7 O><N70| + |B|2’07N><07 N|
+a*Be N TEIN 0)(0, N| + af*e N TL|0, NY(N,0). (2.7)

2.3 Parity operator

Achieving super-resolution and super-sensitivity depends not only on the state preparation,
but also on the optimal detection schemes with specific properties. Here, we study parity de-
tection, which was originally proposed by Bollinger et al. in the context of trapped ions [37]
and it was later adopted for optical interferometry by Gerry [16]. The original parity opera-
tor can be expressed as T = exp(imn), which distinguishes states with even and odd number
of photons without having to know the full photon number counting statistics. Usually the
parity detection is only applied to one of two output modes of the Mach-Zehnder interferom-
eter. In our case, the parity operator inside the interferometer, following the Reference [38],
can be written as

(m+m Z |k n— ><n_k7k|7 (28)
k=0

where I[12 = 1 and n = m+m’ , is the total number of photons. It should be noticed that the
parity operator inside the interferometer detects both modes a and b of the field.
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The expectation value of the parity for the mm’ state is then calculated as

<ﬂ>mm/ =Tr [ﬂpmm/]
= (—1)m+m) = (AmPTL (s TAm (¢ — 7/2)], (2.9)

where the density matrix p,, is given by Equation (2.6). If we put a half-wave plate in front
of the phase shifter, which amounts to replace ¢ by ¢ + 7/2, the expectation value becomes,

(1) gy =(— 1)+ =AML (o[ A ] (2.10)

Using the density matrix pnoon in Equation (2.7) for the NOON state, we can also obtain the
expectation value of the parity operator for the NOON state as

<ﬂ>NOON = Tr [ﬂpNOON:|
= (=1)Ne N cos[Ng]. (2.11)

2.3.1 Phase sensitivity

In quantum optical metrology, the precision of the phase measurement is given by its phase
sensitivity. We now calculate the phase sensitivity for both the mm’ and NOON states using
the expectation values of the parity operator obtained above.

Phase sensitivity using the parity detection is defined by the linear error propagation
method [39]

AIL
5= ——— 2.12
?= o a0 (212)

where AIT = 1/ (I12) — (I1)2. Given (II2, ,) = 1, the phase sensitivity with the parity detec-
tion for the mm/ state is

1 — e=2am)’I'L cos2( Ame)
S = o . 2.13
¢ \/(Am)ZG—Q(Am) I'L sin?(Ame) (2.13)

For the NOON state, the phase sensitivity with the parity detection is similarly obtained
as

1 — e 2N*I'Lcog2 N
0pNoON = \/ N2 2INTL 2 Nj. (2.14)
We note that in the limit of no dephasing (I' = 0), 0@ — 1/(Am). For the NOON state,
I' — 0 case leads to d¢noon — 1/N (Heisenberg limit of the phase sensitivity for the NOON
state).

In Figure 2.2, we plot the phase sensitivities d@,,,» and d¢ngon for the various dephasing
rates I' choosing Am = N, so that the amount of phase information is the same for either
state. For Am = N, Equations (2.13) and (2.14) show that the mm’ and NOON states give
rise to the same phase sensitivity. In particular, we show the phase sensitivity for the states
|4 :: 0) and |5 :: 1), and find that both the states perform equally well in presence of phase
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