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Abstract

Noise present in an environment has significant impacts on a quantum system affecting
properties like coherence, entanglement and other metrological features of a quantum state.
In this dissertation, we address the effects of different types of noise that are present in a
communication channel (or medium) and an interferometric setup, and analyze their effects
in the contexts of preserving coherence and entanglement, phase sensitivity, and limits on
rate of communication through noisy channels.

We first consider quantum optical phase estimation in quantum metrology when phase
fluctuations are introduced in the system by its interaction with a noisy environment. By
considering path-entangled dual-mode photon Fock states in a Mach-Zehnder optical inter-
ferometric configuration, we show that such phase fluctuations affect phase sensitivity and
visibility by adding noise to the phase to be estimated. We also demonstrate that the optimal
detection strategy for estimating a phase in the presence of such phase noise is provided by
the parity detection scheme.

We then investigate the random birefringent noise present in an optical fiber affecting the
coherence properties of a single photon polarization qubit propagating through it. We show
that a simple but effective control technique, called dynamical decoupling, can be used to
suppress the effects of the dephasing noise, thereby preserving its ability to carry the encoded
quantum information in a long-distance optical fiber communication system.

Optical amplifiers and attenuators can also add noise to an entangled quantum system,
deteriorating the non-classical properties of the state. We show this by considering a two-
mode squeezed vacuum state, which is a Gaussian entangled state, propagating through a
noisy medium, and characterizing the loss of entanglement in the covariance matrix and the
symplectic formalism for this state.

Finally, we discuss limits on the rate of communication in the context of sending messages
through noisy optical quantum communication channels. In particular, we prove that a strong
converse theorem holds under a maximum photon number constraint for these channels,
guaranteeing that the success probability in decoding the message vanishes in the asymptotic
limit for the rate exceeding the capacity of the channels.

vii



Chapter 1
Introduction

Quantum theory allows us to understand the behavior of systems at the atomic length scale or
smaller levels. It contains elements that are radically different from the classical description
of nature and has revolutionized the way we see nature. The cornerstone of this fascinating
theory was laid down by the pioneering work of Max Planck in 1900 when he came up with
the remarkable postulate that the energy spectrum of a harmonic oscillator is discrete and
quantized. This quantized nature of the energy spectrum not only helped to construe the
spectral distribution of thermal light but also led to several immediate implications that in
turn contributed to the formulation of the quantum description of nature. In particular,
in 1905 Albert Einstein applied Planck’s idea of discrete energy to explain the phenomenon
called the photo-electric effect, where light incident on a piece of metal results in the emission
of electrons from the metal.

Einstein also contributed to the quantum theory of electromagnetic radiation by estab-
lishing a theory in 1917 for understanding the absorption and emission of light from atoms.
In 1927, Paul Adrien Maurice Dirac put forward a complete quantum mechanical treatment
of the emission and absorption of light, leading to the quantum description of optics. Unlike
classical optics, this new theory is based on quantized electromagnetic fields, and explains the
concept of photon as the elementary quanta of light radiation. Roy Glauber, in his seminal
work in 1963, provided the quantum formulation of optical coherence that fully established
the field of quantum optics.

Along with the quantization of electromagnetic fields and atomic energy levels, the quan-
tum mechanical description of nature also makes use of principles such as superposition,
entanglement, teleportation and uncertainty principle. Based on these quantum principles,
extensive efforts have been taken over the last few decades, contributing towards the develop-
ment of technologies for computation, communication, cryptography, metrology, lithography
and microscopy, etc. The reason for this growing interest in exploiting quantum phenomena
is that they promise major ’quantum’ leaps over the existing technologies (that are based on
classical concepts) in the above mentioned areas.

One serious impediment for using the aforementioned quantum principles is that a quan-
tum state is extremely fragile. The quantum state of a system gets affected by an environ-
ment, leading to the loss of information from the system to the environment. In general, the
behavior of a quantum system is significantly influenced by noise present in the environment
that surrounds the system. The noisy environment can in general have significant effects on
properties like phase coherence, entanglement and metrological characteristics of quantum
states.

In this dissertation, we address the effects of different types of noise that are present in a
communication channel (or medium) or an interferometric setup, and analyze their effects in
the contexts of preserving coherence and entanglement, phase sensitivity, and limits on the
rate of communication through noisy channels. In Chapter 1, we begin with a brief overview of
the essential topics of quantum mechanics, quantum optics, and quantum information theory,
providing a foundation for discussions in later chapters. We first consider quantum optical
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phase estimation in quantum metrology when phase fluctuations are introduced in the system
by its interaction with a noisy environment. In Chapter 2, by considering path-entangled
dual-mode photon Fock states in a Mach-Zehnder optical interferometric configuration, we
show that such phase fluctuations affect phase sensitivity and visibility by adding noise to
the phase to be estimated. We also demonstrate that a specific detection scheme, known as
parity detection, provides the optimal detection strategy for estimating the phase in presence
of such phase noise for these states.

In Chapter 3, we investigate the random birefringent noise present in an optical fiber and
its effects on the coherence of a single photon polarization qubit propagating through the
fiber. We show that a simple but effective control technique, called dynamical decoupling, can
be used to suppress the effects of the dephasing noise thereby preserving its ability to carry
the encoded quantum information for a long-distance optical fiber communication system.

Optical amplifiers and attenuators can also add noise to an entangled quantum system
deteriorating the non-classical properties of the state. We show this by considering a two-
mode squeezed vacuum state, which is a Gaussian entangled state, propagating through
a noisy medium, and by characterizing the loss of entanglement in the covariance matrix
and the symplectic formalism for this state. In Chapter 4, we present a case study as an
application of this to provide an estimate of the tolerable noise for a given entanglement to
be preserved and also to detect the presence or absence of an object embedded in such noisy
medium.

We also study the ultimate limits on reliable communication through noisy optical quan-
tum communication channels that are allowed by the laws of quantum mechanics. In Chapter
5, we consider phase-insensitive bosonic Gaussian channels that represent the most practi-
cally relevant models to describe free space or optical fiber transmission, or transmission of
classical messages through dielectric media. In particular, we prove that a strong converse
theorem for these channels holds under a maximum photon number constraint, guaranteeing
that the success probability in decoding the message vanishes for many independent uses of
the channel when the rate exceeds the capacity of the respective channels.

In the following, we give a brief overview of the essential concepts of quantum mechanics
and its principles, providing a foundation for the works that will be covered in this thesis.

1.1 Brief review of quantum mechanics

1.1.1 Pure and mixed states

A pure state of a quantum system is conventionally denoted by a vector |ψ〉 having unit
length and which resides in a complex Hilbert space H. A pure state |ψ〉 can be expressed
in terms of a set of complete orthonormal basis vectors {|φn〉} spanning the Hilbert space H
as

|ψ〉 =
∑
n

cn|φn〉. (1.1)

Here cn are a set of complex numbers such that
∑

n |cn|2 = 1. As a simple example of a pure
state, we can consider a ‘qubit’—a two-level system, which is regarded as the fundamental
unit of quantum information. A general qubit can be written in terms of the orthonormal
basis vectors |0〉 and |1〉 as |ψ〉 = α|0〉+ β|1〉, where α and β are two complex numbers with
|α|2 + |β|2 = 1.

2



A mixed state, on the contrary, is a statistical ensemble of pure states. Mixed states
represent the most frequently encountered states in real experiments because of the fact that
in reality the quantum systems cannot be completely isolated from their surroundings. Both
pure and mixed states, however, can be represented by their density operator or density
matrix (denoted by ρ̂). The density matrix ρ̂ in general is positive definite, and Hermitian
(ρ̂† = ρ̂). The trace of ρ̂ is unity, i.e. Tr ρ̂ =

∑
n〈φn|ρ̂|φn〉 = 1. For a pure state |ψ〉, the

density operator can be written as ρ̂ = |ψ〉〈ψ|, and it also satisfies ρ̂2 = |ψ〉〈ψ|ψ〉〈ψ| = ρ̂. In
fact, the quantity Tr[ρ̂2] is also referred to as the purity of the state.

As an example, take the pure state |ψ〉 = |0〉+|1〉√
2

. The density operator for this state in

the basis {|0〉, |1〉} can be written as ρ̂ = 1
2

(
1 1
1 1.

)
The density operator for a mixed state, which is a probabilistic mixture of the pure states

{|ψk〉〈ψk|}, is defined as

ρ̂ =
∑
k

pk|ψk〉〈ψk|, (1.2)

where the sum of the probabilities
∑

k pk = 1.
As a special case, consider the maximally mixed state for which the probabilities of the

basis states are equal. In that case, the density operator ρ̂ is given by ρ̂ = 1
N
Î, where N is

the dimension of the Hilbert space H and Î is the identity operator.
The decomposition of the mixed state in Equation (1.2) is not unique. Since the density

operator is Hermitian in nature, it has a spectral decomposition ρ̂ =
∑

i ai|i〉〈i| for some
orthonormal basis |i〉. The eigenvalues ai here form a probability distribution.

1.1.2 Product states and entangled states

The pure and mixed states of a composite quantum system AB can be classified into two
classes—separable states and entangled states. Let us consider two quantum systems A and
B with respective Hilbert spaces HA and HB. The pure states and the mixed states of the
composite system AB can be identified following the same way as for the individual systems
but in the joint Hilbert space HAB = HA ⊗HB.

A quantum state ρ̂AB ∈ HAB in general is said to be separable if ρ̂AB can be expressed
as a convex combination of the product states:

ρ̂AB =
∑
k

pkρ̂
A
k ⊗ ρ̂Bk , (1.3)

where
∑

k pk = 1. Such a separable state can be prepared in the laboratory by local operations
and classical communication.

On the other hand, if a state is not separable, it is called an entangled state. As an
example, we can consider the pure state

|ψ〉 =
|0〉|A1〉B + |1〉A|0〉B√

2
,

which can not be written as a separable state of the above form, and represents an entangled
state.

3



One can always consider a mixed state ρ̂A of a system A as entangled with some auxiliary
reference system R. First, consider its spectral decomposition

ρ̂A =
∑
k

ak|φk〉〈φk|, (1.4)

in some orthonormal basis |φk〉. Then, the following state is called a purification of ρ̂A

|ψ〉RA =
∑
k

√
ak|φk〉A|k〉R (1.5)

for some set of orthonormal states {|k〉} of the system R. The above idea of purification has
the implication that the noise in the state can be thought to be arising from the interaction
of the system with an external environment to which we do not have access. This remarkable
notion of the purification extends, by considering an isometric extension of a channel, to the
case of the noisy quantum channels as well.

1.1.3 Dynamical evolution of quantum states

How a closed quantum system evolves with time is, in general, governed by a unitary trans-
formation U of the state. This means that the state |ψ(t0)〉 of the system at time t0 is
reversibly related to the state at time t by a unitary transformation Û(t, t0)|ψ(t0)〉:

|ψ(t)〉 = Û(t, t0)|ψ(t0)〉 = exp

(−iH(t− t0)

~

)
|ψ(t0)〉, (1.6)

where ~ is a constant known as Planck’s constant. For a mixed state with the density operator
ρ̂, the evolution looks like

ρ̂(t) = Û(t, t0)ρ̂(t0)Û †(t, t0). (1.7)

The unitary evolution of a closed quantum system implies the reversibility which means that
one can recover the initial state before the evolution from the knowledge of the evolution.
Furthermore, the unitarity of the evolution also ensures that the unit-norm constraint is
preserved.

In almost all real-life scenarios, the system interacts with a surrounding environment
where the evolution of such an open quantum system is not governed by unitary evolution
in general. However, the state of the system together with the environment is still a closed
system, and its time evolution is again given by a unitary evolution. But for the system
alone, the evolution is non-unitary, and can be conveniently represented by a noisy map N
acting on the density operator ρ̂.

This map N is a trace-preserving map, meaning that Tr{N (ρ̂)} = 1. It is also completely
positive. It means that the output of the tensor product map (Ik ⊗ N )(ρ̂) for any finite
k is a positive operator where the input ρ̂ to the channel is a positive operator. We note
that such a completely positive trace-preserving (CPTP) map is the mathematical model
that we will use for a quantum channel (see Chapter 5) since it represents the most general
noisy evolution of a quantum state. Such a model of the noisy channel can be expressed in
an operator sum representation with Kraus operators Âk so that N (ρ̂) =

∑
k Âkρ̂Â

†
k with∑

Â†kÂk = Î.
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1.1.4 Quantum measurements

As with all measurements, we try to extract some classical information when we make a
measurement on a system. However, there exist some fundamental subtleties regarding the
notion of quantum measurements. In quantum mechanics, measurements are described by a
set of Hermitian (self-adjoint) operators, and the act of measurement on a quantum system
inevitably disturbs the quantum state.

In the following, we discuss two types of quantum measurements that we generally
encounter—the one is called projective measurement (or von Neumann measurement), and
the other is known as Positive Operator-Valued Measure (POVM).

A projective measurement in quantum mechanics refers to the kind of measurement in
which the measurement projects a quantum state onto an eigenstate of the measurement
operator. Let M̂ denote the measurement operator which is Hermitian in nature and has a
complete set of orthonormal eigenstates {|φ〉}. The measurement of this operator M̂ on a
quantum state ρ̂ yields an outcome which is an eigenvalue φ of M̂ , i.e.

M̂ |φ〉 = φ|φ〉, (1.8)

with the probability p(φ) = 〈φ|ρ̂|φ〉. Note that the eigenvalue φ is real since M̂ is a Hermitian
operator. The post-measurement state of the system is then the eigenstate |φ〉 with the
corresponding eigenvalue φ. Thus, the measurement projects the state onto its eigenspace,
and hence the name projective measurement. However, if the system is already in one of
the eigenstates of the operator M̂ , then the measurement does not change the state of the
system.

A generalization of the above projective measurement is called the Positive Operator-
Valued Measurement (POVM). A set of positive operators {Πm} that satisfy

∑
m Π̂m = Î is

called a POVM. For a pure quantum state |ψ〉, the probability of getting m as the outcome of
a POVM is 〈ψ|Π̂m|ψ〉, while for a mixed state ρ̂ the probability of getting m as the outcome is
Tr{Π̂mρ}. Unlike projective measurements, the POVM operators do not uniquely determine
the post-measurement state.

For instance, we consider classical data transmission over a noisy quantum channel, where
it is appropriate for the receiver at the end of the channel to perform a POVM since he is
merely concerned about knowing the probabilities of the outcomes of the measurement and
not the post-measurement state.

1.2 Brief review of quantum optics

In this section we review some concepts in quantum optics that will be relevant for our works
in later chapters. We start with the quantization of electromagnetic fields and discuss some
key features associated with it, by following the notations used in Reference [133]). Then we
present a brief study on the quantum mechanical states and their phase space representations.
We then discuss the notion of phase in quantum optics and delineate the methods of its
estimation in an optical interferometric setup. Finally, we present a brief overview of the
approaches to determine the lower bounds in estimation of such an optical phase, e.g., by
evaluating the quantum Cramér-Rao bound. The quantum Cramér-Rao bound also helps us
to decide if a given detection strategy is optimal for estimating the optical phase.
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1.2.1 Quantization of the electromagnetic field

In order to understand the quantization of the electromagnetic field, we start with the classical
electromagnetic field in free space in the absence of any source of radiation, which is described
by Maxwell’s equations:

∇.E = 0 (1.9)

∇× E = −∂B

∂t
(1.10)

∇.B = 0 (1.11)

∇×B =
1

c2

∂E

∂t
, (1.12)

where E = E(r, t) and B = B(r, t) represent the electric field and magnetic field vectors
in free space in terms of the spatial vector r = r(x, y, z) and time t, and c is the speed of
light. In order to obtain a general solution of the above equations, we introduce the vector
potential A(r, t) which is defined in terms of the electric and the magnetic fields as

E = −∂A

∂t
(1.13)

B = ∇×A. (1.14)

Since there is no source present, we can choose to work in the Coulomb gauge, i.e.

∇.A = 0. (1.15)

Using the above Gauge condition, we obtain a vector wave equation for the vector potential
A(r, t) which is of the form

∇2A(r, t) =
1

c2

∂2A

∂t2
. (1.16)

We can now separate out the vector potential A(r, t) into two terms, and confine the field
to a finite volume (say V = L3 for a cubical cavity of side L) so that A(r, t) can now be
written in terms of a discrete set of orthogonal mode functions uk(r) corresponding to the
frequency ωk

A(r, t) =
∑
k

αkuk(r)eiωkt +
∑
k

α†ku
∗
k(r)e−iωkt (1.17)

Substituting this into Equation (1.16), we then get(
∇2 +

ω2
k

c2

)
uk(r) = 0. (1.18)

For a cubical cavity of side L confining the field, the solution of the above equation takes the
form

uk(r) =
1

L3/2
ε̂λe

ik.r, (1.19)

where ε̂λ is the unit polarization vector (λ = 1, 2 corresponding to two orthogonal polariza-
tions) perpendicular to the wave vector k, and components of k are given by

kx =
2πnx
L

, ky =
2πny
L

, kz =
2πnz
L

. (1.20)
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With the solution of uk(r) in Equation (1.19), the vector potential A(r, t) can be written
as

A(r, t) =
∑
k

(
~

2ε0ωk

)1/2 [
akuk(r)eiωkt + a†ku

∗
k(r)e−iωkt

]
, (1.21)

where ε0 is the permittivity of free space. The associated electric field can then be written
as

E(r, t) =
∑
k

(
~

2ε0ωk

)1/2 [
akuk(r)eiωkt + a†ku

∗
k(r)e−iωkt

]
. (1.22)

We now proceed to the quantization of the electromagnetic field which we can do by
generalizing the amplitudes ak and a†k in the above equations to be mutually adjoint operators

âk and â†k satisfying the following bosonic commutation relations:

[âk, âk′ ] = [â†k, â
†
k′ ] = 0, (1.23)

[âk, â
†
k′ ] = δkk′ . (1.24)

The operators âk and â†k are known as the annihilation and creation operators for a quan-
tum mechanical harmonic oscillator (the reasons for such names will be clearer in the next
subsection).

The quantum theory of the radiation field associates each mode of the field to a quantum
harmonic oscillator. The energy stored in the electromagnetic field in the cavity is given by
the Hamiltonian

H =
1

2

∫
V=L3

(
ε0E

2 +
1

µ0

B2

)
d3r, (1.25)

where µ0 is the permeability of free space. The above Hamiltonian may be rewritten in the
following form:

H =
∑
k

~ωk
(
â†kâk +

1

2

)
, (1.26)

which represents the sum of two terms—the first is the number of photons in each mode of
the radiation field multiplied by the energy of a photon ~ωk in each mode, while the second
term 1

2
~ωk is the energy corresponding to the vacuum fluctuations in each mode of the field.

1.2.2 Quadratures of the field

The last subsection described how the bosonic field operators â and â† represent the bosonic
system such as the modes of the electromagnetic field that can be associated with indepen-
dent quantum harmonic oscillators. There is another kind of field operator known as the
quadrature operator that can be used to describe bosonic systems. We define the following
two Hermitian quadrature operators X̂ and Ŷ in terms of â and â†

X̂ =
â+ â†√

2
, Ŷ =

â− â†√
2i

, (1.27)

which satisfy the commutation relation [X̂, Ŷ ] = i, and Heisenberg’s uncertainty relation:

∆X∆Y ≥ 1

2
, where (∆X)2 = 〈X2〉 − 〈X〉2, (∆Y )2 = 〈Y 2〉 − 〈Y 〉2, (1.28)

where ∆X and ∆Y denote the uncertainties in the quadratures X and Y , respectively.
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1.2.3 Quantum states of the electromagnetic field

The Hamiltonian operator from Equation (1.26) has the eigenvalues ~ω(n + 1
2
) where n =

0, 1, 2, . . . (For the sake of brevity, we henceforth drop the mode index k). The eigenstates
|n〉 are known as photon number states or Fock states. The operator n̂ = â†â is called the
photon number operator:

n̂|n〉 = n|n〉. (1.29)

The vacuum state of the field mode is given by â|0〉 = 0, and has energy 1
2
~ω. The photon

number states form a complete orthonormal basis for representing any arbitrary state of a
single-mode bosonic field, since 〈n|k〉 = δnk (orthonormal), and

∑∞
n=0 |n〉〈n| = Î(complete),

where Î is the identity operator.
The action of the creation and annihilation operators on the number state |n〉 is

â|n〉 =
√
n|n− 1〉, (1.30)

â†|n〉 =
√
n+ 1|n+ 1〉. (1.31)

Also, the number state |n〉 can be obtained from the ground state |0〉 in the following way

|n〉 =
(â†)n√
n!
|0〉. (1.32)

For Fock states, the mean values of the field operator â and the quadrature operators vanish,
i.e.

〈n|â|n〉 = 〈n|X̂|n〉 = 〈n|Ŷ |n〉 = 0 (1.33)

These states contain equal uncertainties in the two quadratures, i.e. (∆X)2 = (∆Y )2 = n+ 1
2
,

leading to ∆X∆Y = n+ 1
2
. It can also be noted here that the photon number states or the

Fock states are highly non-classical in nature, and have well-defined number of photons but
phase distribution is completely random (see Figure 1.1).

X quadrature 

Y quadrature 

Figure 1.1: Phase space diagram of the quantum states. A number state |n〉 is shown as a
circle with a fixed number of photons but completely random phase distribution. A coherent
state |α〉, with amplitude |α|2 and phase φ, has equal uncertainties in the two quadratures,
and it can be generated by displacing the vacuum state |0〉 in the phase space. A squeezed
state |ξ〉 in which fluctuations in one quadrature are reduced is also shown in the figure.
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The coherent states of light, contrary to the Fock states |n〉 discussed above, are the
“most classical-like” states in the sense that they are the closest analogue of the classical
electromagnetic wave, having fixed amplitude and phase (for example a coherent laser light).

The coherent states |α〉 are defined as the eigenstates of the annihilation operator â, i.e.
â|α〉 = α|α〉, where |α|2 is the amplitude of the coherent state |α〉. In the number state basis,
the coherent states |α〉 can be written as superposition of the Fock states |n〉

|α〉 =
∞∑
n=0

e−|α|
2/2αn√
n!

|n〉, (1.34)

which can be generated by “displacing” the vacuum state |0〉 (see Figure 1.1) with a dis-
placement operator D̂(α):

|α〉 = D̂(α)|0〉. (1.35)

The displacement operator D̂(α) is defined as : D̂(α) = exp(αâ† − α∗â).
The probability of finding n photons in a coherent state |α〉 is represented by the following

Poisson distribution with mean |α|2 = 〈n〉 (where n̂ = â†â is the photon number operator)

pn =
e−|α|

2
α2n

n!
. (1.36)

The coherent states of light have uncertainties in the quadratures (∆X)2 = (∆Y )2 = 1
2
,

leading to the minimum uncertainty product ∆X∆Y = 1
2
. Also, the mean values of the field

operator â and the quadrature operators are non-zero,

〈α|â|α〉 = α, 〈α|X̂|α〉 =
Re(α)√

2
, 〈α|Ŷ |α〉 =

Im(α)√
2
. (1.37)

Unlike the Fock states, the coherent states are non-orthogonal

〈α|β〉 = exp

(
α∗β − 1

2
|α|2 − 1

2
|β|2
)
, (1.38)

but they form a complete basis of states

Î =

∫
|α〉〈α|d

2α

π
=
∞∑
n=0

|n〉〈n|. (1.39)

We can see that the thermal state ρth of a mode (which is a mixed state of the radiation
field) is written as an isotropic Gaussian mixture of the coherent states |α〉

ρth =

∫
e−|α|

2/Nth

πNth

|α〉〈α|d2α, (1.40)

where Nth is the mean number of photons in the thermal state ρth.
The next class of states that we consider are squeezed states |ξ〉 that can be generated by

applying the unitary single-mode squeezing operator

Ŝ(ξ) = exp

(
1

2
ξâ†2 − 1

2
ξ∗â2

)
, ξ = reiφ, (1.41)
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on the vacuum state, i.e Ŝ(ξ)|0〉 = |ξ〉. Here r is called the squeezing parameter. The mean
number of photons in the squeezed state is 〈â†â〉 = sinh2 r. In terms of the Fock states |n〉,
the squeezed state can be written as

|ξ〉 =
1√

cosh(r)

∞∑
n=0

einφ(tanh r)n
√

(2n)!

(n!)222n
|2n〉. (1.42)

It shows that |ξ〉 has only even photon number states in the superposition. This is the case
when a nonlinear crystal is pumped with a bright laser light—some of the pump photons
having frequency 2ω are divided into pairs of photons each with frequency ω. The outgoing
mode for a degenerate parametric amplifier consists of a superposition of even photon-number
states.

In order to see the quadrature squeezing in such states, let us first define a more general
quadrature operator (which is a linear combination of the quadrature operators X̂ and Ŷ )

X̂θ ≡
âe−iθ + â†eiθ√

2
, (1.43)

with the commutation relation [X̂θ, X̂θ+π/2] = i. For the single-mode squeezed state |ξ〉, one
can show that (

∆Xφ/2

)2
=

1

2
e2r,

(
∆Xφ/2+π/2

)2
=

1

2
e−2r, (1.44)

∆Xφ/2∆Xφ/2+π/2 =
1

2
. (1.45)

From the above, we see that the quadrature denoted by ∆Xφ/2 is stretched, while the other
quadrature ∆Xφ/2+π/2 is squeezed at the same time.

The squeezed coherent states |ξ, α〉 can be generated by applying the squeezing operator
Ŝ(ξ) on the coherent state |α〉:

|ξ, α〉 = Ŝ(ξ)|α〉 = Ŝ(ξ)D̂(α)|0〉. (1.46)

Since the displacement D̂(α) in phase space does not produce further squeezing, the squeezing
properties of this state |ξ, α〉 are the same as those for the single-mode squeezed vacuum state
|ξ〉.

Finally, we consider the two-mode squeezed vacuum state |ξ〉TMSV that can be generated
by applying the unitary two-mode squeezing operator

Ŝ2(ξ) = exp
(
ξâ†b̂† − ξ∗âb̂

)
, (1.47)

on the two-mode vacuum state, i.e Ŝ2(ξ)|0, 0〉 = |ξ〉TMSV, where â and b̂ denote the annihi-
lation operators corresponding to the two modes. The correlation between these two modes
〈ab〉 gives rise to the non-classical properties of the state |ξ〉TMSV, such as squeezing.

The two-mode squeezed vacuum state |ξ〉TMSV can be written in terms of the Fock states
|n〉 as

|ξ〉TMSV =
1

cosh r

∞∑
n=0

einφ(tanh r)n|na, nb〉, (1.48)

showing that the photon pairs are created by the two-mode squeezing operation on the
vacuum state.
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1.2.4 Phase in quantum optics and its estimation

In quantum metrology, we seek to exploit the quantum mechanical properties of a state to
improve the sensitivity and resolution in estimating a physical parameter. In particular,
the physical parameter that is of the most significance in the context of quantum optical
metrology is the optical phase. However, there exists no Hermitian operator in quantum
mechanics that can represent such an optical phase, and consequently it calls for an estimation
scheme in which the optical phase is the parameter to be estimated.

Let us consider a single mode of the radiation field E having an unknown phase. One can
use the standard technique, known as the balanced homodyne detection to measure the phase
difference, as shown in Figure 1.2. A local oscillator excited in a strong coherent state (such
as a laser), say αeiθ, is applied on the other input port of a 50-50 beam splitter. A phase
difference is established between the two input modes since the phase of the local oscillator
is known. The detectors placed in the output beams measure the difference in the intensities
I1 − I2, from which the phase of the unknown signal can be measured.

θ	
  

Local Oscillator 

Beam 
Splitter  

Detector 1 

Detector 2 

Radiation field  
mode E 

I1 

I2 

Figure 1.2: Balanced homodyne detection to measure unknown phase difference. E represents
the electric field of the radiation field incident on the 50-50 beam-splitter, where it is mixed
with a local oscillator in a strong coherent state with phase θ. The outputs are incident on
two photodetectors, and the corresponding photocurrents give the difference of the intensities
I1 − I2, revealing the phase of the unknown signal.

In the following, we discuss the optical interferometric setup, commonly known as the
Mach-Zehnder interferometer, to detect the phase shift between two modes that can be
treated as a quantum mechanical extension of homodyne detection.

A typical setup of a Mach-Zehnder interferometer (MZI) is shown schematically in Figure
1.3. In a MZI configuration, laser light in the port A is split by the first beam-splitter, then
it is reflected from the two mirrors followed by accumulation of the phase difference φ, and
finally is recombined at the second beam-splitter. If we denote the annihilation operators
for the input and output pair of modes by â, b̂, and â′, b̂′, respectively, the effective mode
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Figure 1.3: Schematic diagram of a Mach-Zehnder interferometer. Laser light in the port
A is split by the first beam-splitter, then it is reflected from the two mirrors followed by
accumulation of the phase difference φ due to the phase-shifter, and finally is recombined at
the second beam-splitter, emerging in the ports C and D.

transformation relation between them can be written as(
â′

b̂′

)
=

1

2

(
1 i
i 1

)(
1 0
0 e−iφ

)(
1 −i
i 1

)(
â

b̂

)
= ie−iφ/2

(
sin(φ/2) cos(φ/2)
cos(φ/2) − sin(φ/2)

)(
â

b̂

)
. (1.49)

In the above, φ is the relative phase shift between the two paths, which is also proportional
to the optical path difference between the these two paths. In order to estimate this phase
shift φ, we write the phase uncertainty ∆φ as

(∆φ)2 = 〈φ2〉 − 〈φ〉2. (1.50)

This quantifies the precision with which φ can be estimated for a given interferometric
detection scheme. Using the simple error-propagation formula, we can write

∆φ =
∆Â

|∂〈Â〉
∂φ
|
, (1.51)

where Â represents an observable (Hermitian operator) for the detection scheme used at the
output of the interferometer.

When a coherent state is used in one port in conjunction with the vacuum at the other,
the above relation in Equation (1.51) gives the phase estimate ∆φ that scales as 1/

√
n̄, where

n̄ is the average number of photons in the coherent state. Furthermore, regardless of the state
used in the first port, the phase uncertainty ∆φ is lower bounded by 1/

√
n̄ as long as the

vacuum state is fed into the second port of the interferometer. This bound given by 1/
√
n̄

is known as the shot-noise limit (SNL), and is a manifestation of vacuum fluctuations. Note
that this agrees with the number-phase uncertainty relation ∆n∆φ ≥ 1 since ∆n =

√
n̄ for

the coherent state.

12



Any state for which it is possible to attain a phase-sensitivity lower than the SNL is
said to achieve super-sensitivity. Numerous proposals exist in the literature for reducing the
phase uncertainty below the SNL by using quantum states of light, and approaching 1/n̄ is
known as the Heisenberg limit (HL) of phase-sensitivity. The first among those is due to
Caves [1], where he showed that using coherent light and squeezed vacuum states at the two
input ports of the MZI can give rise to Heisenberg-limited phase sensitivity.

1.2.5 Phase estimation and the Cramér-Rao bound

Here we briefly review the essential ingredients of estimation theory. We first present the
Fisher information approach from classical estimation theory and then show how it general-
izes in the quantum estimation of the optical phase, providing a lower bound on the phase
sensitivity ∆φ, known as the Cramér-Rao bound.

In classical estimation theory, one aims to construct an estimate for a set of unknown
parameters {φ1, φ2, . . . , φn} that gives the most accurate estimate of the set of parameters
based on a given data set of the measurement outcomes. Here we consider the the ultimate
limit in estimating a single parameter φ by using the classical Fisher information for a given
measurement X. Each measurement provides an outcome x which depends on the value of
φ.

The performance of a given estimator of φ can be quantified by the error estimate ∆φ ≡√
〈(φest − φreal)2〉. Here 〈. . .〉 denotes the average over all possible experimental results, while

φest and φreal are the estimated and the real value of the unknown parameter φ, respectively.
For ν repetitions of the given measurement, this error estimate ∆φ is bounded by the classical
Cramér-Rao bound [2]

∆φ ≥ 1√
νF (φ)

, (1.52)

where F (φ) is the classical Fisher information, given by

F (φ) =
∑
x

p(x|φ)

{
dp(x|φ)

dφ

}
. (1.53)

Here the probability distribution p(x|φ) corresponds to the probability of getting the exper-
imental result x for estimating the parameter φ. This relation applies to both classical and
quantum physics whenever the estimator is unbiased, i.e. 〈φest〉 = φreal and the probability
distribution p(x|φ) is fixed.

In quantum mechanics, we can model the experiment using the POVM operators Πx,
where Πx is associated to a measurement outcome x. For a quantum state denoted by the
density matrix ρ(φ) that carries the encoded information about the unknown parameter φ,
we can write

p(x|φ) = Tr [ρ(φ)Πx] . (1.54)

Maximizing over all possible measurement strategies, we can arrive at the quantum Fisher
information FQ (ρ(φ)) (which depends only on the probe state ρ(φ)), leading to the following
lower bound on the estimation of φ, known as the quantum Cramér-Rao bound

∆φ ≥ 1√
νFQ (ρ(φ))

. (1.55)
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For a closed system, prepared in a pure state ρ = |ψ〉〈ψ|, which evolves under a unitary
transformation Ûφ, the quantum Fisher information is given by [3]

FQ (ρ′(φ)) = 4〈∆Ĥ2〉, (1.56)

where ρ′(φ) = ÛφρÛ
†
φ, Ĥ(φ) = i

(
dÛ†φ
dφ

)
Ûφ, and 〈∆Ĥ〉2 =

[
〈ψ|Ĥ2(φ)|ψ〉 − 〈ψ|Ĥ(φ)|ψ〉2

]
. For

instance, when we use the coherent state as the probe state, the quantum Fisher information
can be evaluated to be FQ = 4〈(∆n̂)2〉 associated with the unitary evolution operator Uφ =
ein̂φ (n̂ is the photon number operator). Since for the coherent state ∆n =

√
n̄, this leads

us to the SNL where the phase sensitivity ∆φ scales as 1/
√
n̄. By using quantum states of

light, it is possible to increase the precision of the phase estimation—for example, maximizing
this variance corresponds to the case of the N00N state [4] where the variance is increased
to 〈(∆n̂)2〉 = N2

4
, leading to the HL of the phase sensitivity, i.e. the phase sensitivity ∆φ

scaling as 1/N where N is the mean input photon number of the N00N state.

1.3 Brief review of quantum information theory

In quantum information theory, we study the ultimate limits on reliable communication that
are allowed by the laws of quantum mechanics, and also seek to determine the ways by which
these limits can be achieved in realistic systems. The mathematical foundations of quan-
tum information theory were laid out in the ground-breaking 1948 paper of Claude Shannon
that introduced the idea of channel capacity, the maximum mutual information between a
channel’s input and output, as the highest rate at which error-free reliable communication is
possible for a given channel. This idea is captured in his famous noisy channel coding theo-
rem [5]. Holevo, Schumacher, and Westmoreland provided a generalization of the Shannon’s
classical channel coding theorem to the quantum setting [6, 7], establishing an achievable
rate at which a sender can transmit classical data to a receiver over a noisy quantum channel
using the channel a large number of times.

It is worthwhile to note that quantum information science is an overwhelmingly rich and
broad subject by its own virtue, encompassing fields as diverse as quantum computation,
quantum complexity, quantum algorithms, entanglement theory, quantum key distribution,
and so on. However, in the following we present a very brief review of the topics in quantum
information theory that will be extensively used in our study in Chapter 5. For a detailed
review on the subject, the interested readers are referred to Reference [8].

1.3.1 Quantum entropy and information

For quantifying the amount of information and correlations in quantum systems, we define
the von Neumann entropy H(ρ) of a quantum state ρ

H(ρ) = −Tr(ρ log ρ). (1.57)

This entropy is also known as the quantum entropy, and gives a measure of how mixed the
quantum state is. The base of the logarithm is taken to be 2. We can also express the von
Neumann entropy in terms of the eigenvalues λi of the density operator ρ as

H(ρ) = −
∑
i

λi log λi. (1.58)
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Note that for a pure state, the von Neumann entropy is zero, while for a maximally mixed
state it is given by logD where D is the dimension of the system.

For a bipartite system AB in a joint state ρAB, the joint quantum entropy is defined as

H(AB) = −Tr(ρAB log ρAB). (1.59)

The joint entropy of the bipartite system is subadditive, i.e.

H(AB) ≤ H(A) +H(B),

where the equality holds when ρAB is a tensor-product state (ρAB = ρA ⊗ ρB).
The conditional quantum entropy H(A|B) of the bipartite state ρAB is defined as

H(A|B) = H(AB)−H(B), (1.60)

i.e., the difference between the joint entropy and the marginal entropy.

1.3.2 Quantum mutual information

Quantum mutual information is a measure of correlations between two systems A and B.
The quantum mutual information I(A;B) of a bipartite state ρAB is defined as

I(A;B) = H(A) +H(B)−H(AB). (1.61)

The quantum mutual information can also be written alternatively in terms of the conditional
quantum entropies

I(A;B) = H(A)−H(A|B) = H(B)−H(B|A). (1.62)

1.3.3 Holevo bound

In quantum information theory, the Holevo bound serves as an upper bound on the accessible
information. Suppose that a sender (Alice) prepares an ensemble ξ = {pX(x), ρx} before
handing it over to a receiver (Bob). In order to determine which value of X Alice chose,
Bob performs a measurement on his system B which are described by the POVM elements
{Λy}. The accessible information in this case is the information that Bob can access about
the random variable X, and is defined as

Iacc(ξ) = max
Λy

I(X;Y ), (1.63)

where Y is a random variable representing the outcome of the measurements that Bob per-
forms.

The Holevo bound can then be written as

I(X;Y ) ≤ H

(∑
x

pXρx

)
−
∑
x

pXH (ρx) , (1.64)

where the quantity on the right hand side χ(ξ) = H (
∑

x pXρx) −
∑

x pXH (ρx) is also
known as the Holevo χ quantity or the Holevo information of the ensemble of the states
ξ = {pX(x), ρx}. The implication of the Holevo bound is that this upper bound can be
achieved asymptotically by employing a joint (collective) quantum measurement on Bob’s
side. This gives the maximum information that Bob can gain about ξ by such joint quantum
measurements.
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1.3.4 Capacity of classical communication: HSW theorem

The notion of the Holevo bound introduced above leads us to determining the achievable rates
of communication for a noisy quantum channel. Holevo, Schumacher, and Westmoreland
(HSW) characterized the classical capacity of a quantum channel N in terms of the Holevo
information [6, 7]

χ(N ) ≡ max
{pX(x),ρx}

I(X;B)ρ, (1.65)

and showed that this Holevo information serves as an achievable rate for communicating
classical data over the quantum channel N . Here, {pX(x), ρx} represents an ensemble of
quantum states, and the quantum mutual information I(X;B)ρ ≡ H(X)ρ+H(B)ρ−H(XB)ρ,
is defined with respect to a classical-quantum state ρXB ≡

∑
x pX (x) |x〉 〈x|X⊗N (ρx)B. The

above formula given by HSW for certain quantum channels is additive whenever

χ(N⊗n) = nχ(N ). (1.66)

For such quantum channels, the HSW formula is indeed equal to the classical capacity of
those channels. However, a regularization is necessary for the quantum channels for which
the HSW formula cannot be shown to be additive. The classical capacity in general is then
characterized by the following regularized formula:

χreg(N ) ≡ lim
n→∞

1

n
χ(N⊗n). (1.67)

1.4 Distance measures in quantum information

Noisy quantum channels affect the input states, resulting in an output state which is different
from the input. It is, therefore, necessary to characterize how close two quantum states are
by using some distance measures. In this section, we review two such distance measures—
the trace distance and the fidelity. These distance measures are important in quantum
information theory because they help us to compare the performance of different quantum
protocols. We conclude this chapter with a brief discussion on the gentle measurement lemma,
that concerns the disturbance of the quantum states upon measurement. This helps us to
characterize the distance between the original state and the post-measurement state.

1.4.1 Trace distance

The trace norm ‖A‖1 of an Hermitian operator A is defined as

‖A‖1 = Tr
{√

A†A
}
. (1.68)

The trace distance between two operators A and B is given by

‖A−B‖1 = Tr
{√

(A−B)†(A−B)
}
. (1.69)

In particular, when we consider any two operators ρ and σ, the trace distance between them
is bounded by

0 ≤ ‖ρ− σ‖1 ≤ 2. (1.70)
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The above trace distance is invariant under unitary operations, i.e.

‖ρ− σ‖1 = ‖UρU † − UσU †‖1. (1.71)

The trace distance between two quantum states ρ and σ is equal to twice the largest proba-
bility difference that these two states could yield the same measurement outcome Π [8], i.e.,

‖ρ− σ‖1 = 2 max
0≤Π≤I

Tr {Π(ρ− σ)} , (1.72)

where the maximization is done over all positive operators Π with eigenvalues between 0 and
1.

As an example, we can use the trace distance between two quantum states to obtain the
minimum probability of error to distinguish between two quantum states (say ρ0 and ρ1) in
the setting of the quantum binary hypothesis testing.

Suppose that Alice prepares, with equal probability 1/2, either ρ0 or ρ1, and Bob wants
to distinguish between them. In order to do so, he performs a binary POVM with elements
{Π0,Π1}. Let us say the decision rule is: Bob declares the state to be ρ0 if he receives “0”
as a measurement outcome or otherwise (for the “1” outcome) declares it to be ρ1. The
probability of error in distinguishing these two states can then be written as (using the
relation in Equation (1.72))

pe =
1

2
(Tr{Π0ρ1}+ (Tr{Π1ρ0}) =

1

2
(1− Tr{Π0(ρ0 − ρ1)}) . (1.73)

Another important relation that we will use quite often is the one that concerns the
measurement on two approximately close states [8]: For two quantum states ρ and σ and a
positive operator Π (0 ≤ Π ≤ I), we can write

Tr{Πρ} ≥ Tr{Πσ} − 1

2
‖ρ− σ‖1. (1.74)

Consider two quantum states, for example, ρ and σ that are ε-close in trace distance to each
other (ε is a very small positive number), i.e. ‖ρ− σ‖1 ≤ ε. Suppose that the probability of
successful decoding of the state ρ with the measurement operator Π is very high so that

Tr {Πρ} ≥ 1− ε, (1.75)

then for the state σ, we have [using Equation (1.74)]

Tr {Πσ} ≥ 1− 2ε (1.76)

which states that the same measurement also succeeds with high probability for the state σ.

1.4.2 Fidelity

Here we introduce the fidelity as an alternative measure of how close two quantum states are
to each other. The fidelity between an input state |ψ〉 and an output state |φ〉 when both of
them are pure states is given by

F (|ψ〉, |φ〉) = |〈ψ|φ〉|2. (1.77)
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This fidelity is equal to one if the states overlap with each other, while it is equal to zero
when the states are orthogonal to each other.

However, a noisy quantum communication protocol could map a pure input state |ψ〉 to
a mixed state ρ. In such case, we define the expected fidelity between these two states in the
following way. The expected fidelity between a pure input state ψ and mixed output state ρ
is given by

F (|ψ〉, ρ) = 〈ψ|ρ|ψ〉. (1.78)

In the most general case, both the above states could be mixed. We can incorporate the
idea of purification (with respect to a reference system R) to define the fidelity between the
two mixed states ρA and σA for a common quantum system A. This fidelity is known as the
Uhlmann fidelity [8].

Suppose we want to determine the fidelity between the two mixed states ρA and σA of
the quantum system a. Consider the purifications of these two states as |φρ〉RA and |φσ〉RA
with respect to the reference system R. The Uhlmann fidelity between the two mixed states
is then defined as

F (ρ, σ) = max
|φρ〉RA,|φσ〉RA

|〈φρ|φσ〉|2, (1.79)

where the maximization is over all purifications |φρ〉RA and |φσ〉RA.
For two quantum states ρ and σ, the relation between the trace distance and fidelity for

two quantum states can be expressed as

1−
√
F (ρ, σ) ≤ 1

2
‖ρ− σ‖1 ≤

√
1− F (ρ, σ). (1.80)

As an example of the relation in Equation (1.80), we can establish a useful relation
between the trace distance and the fidelity for two very close states ρ and σ. Suppose for a
very small positive constant ε we have

F (ρ, σ) ≥ 1− ε, (1.81)

then it follows that
‖ρ− σ‖1 ≤ 2

√
ε, (1.82)

i.e., these two states are 2
√
ε-close in trace distance to each other.

1.4.3 Gentle measurement

The notion of gentle measurement that we describe below is associated with the disturbance
of the quantum states when some quantum measurement is performed on them. This follows
by applying the relation Equation 1.80 considering a measurement operator Λ (or an element
of a POVM) on a quantum state ρ. In the following lemma describing the “gentle” effect
of the quantum measurement on the quantum state we follow the notations and definitions
used in Reference [8].

Lemma 1 If the measurement operator Λ detects the quantum state ρ with a very high
probability, i.e. for a very small positive constant ε

Tr {Λρ} ≥ 1− ε, (1.83)
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then the “gently” perturbed post-measurement state is given by

ρ′ =

√
Λρ
√

Λ

Tr{Λρ} , (1.84)

which is 2
√
ε-close in trace distance to ρ, i.e.,

‖ρ− ρ′‖1 ≤ 2
√
ε. (1.85)

Finally, we specify a variation of the above lemma that we will explicitly use in our work.

Lemma 2 If the measurement operator Λ detects the quantum state ρ with a very high
probability, i.e.,

Tr {Λρ} ≥ 1− ε, (1.86)

then
√

Λρ
√

Λ is 2
√
ε-close in trace distance to ρ, i.e.,

‖ρ−
√

Λρ
√

Λ‖1 ≤ 2
√
ε. (1.87)
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Chapter 2
Effects of phase fluctuation noise in

quantum metrology 1

In this chapter, we discuss the effects of phase fluctuations on the quantum metrological
properties of the two-mode path-entangled photon-number states and compare their perfor-
mances in an optical interferometric setup in the presence of such noise. In particular, we
consider the maximally path-entangled state, known as the N00N state, along with a more
generalized version of it, called the mm′ state in the context of quantum phase estimation.
NOON states of light have been shown to achieve Heisenberg limited supersensitivity as well
as super resolution in quantum metrology [9, 10] but they are extremely susceptible to pho-
ton loss [11, 12, 13, 14, 15]. In order to combat this disadvantage of the N00N states under
photon loss, Huver et al. proposed mm′ states, and showed that such states provide more
robust metrological performance than N00N states in the presence of photon loss [14].

In real life applications such as a quantum sensor or radar, phase fluctuations due to
different noise sources can further aggravate the phase sensitivity by adding significant noise
to the phase φ to be estimated. For instance, when one considers the propagation of en-
tangled states over distances of kilometers, through, say, the atmosphere, then atmospheric
turbulence becomes an issue as it can cause uncontrollable noise or fluctuation in the phase.
In this sense, phase fluctuation can render the quantum metrological advantage for achieving
super-sensitivity and super-resolution totally useless. This has motivated us to investigate
the impacts of such random phase fluctuations on the metrological properties (such as the
phase sensitivity and the visibility) of quantum mechanically entangled states.

Considering the path-entangled photon Fock states, viz. N00N and mm′ states in the
presence of such phase noise, we study the parity detection [16] for the interferometry to
calculate the phase-fluctuated sensitivity. This detection scheme has been shown to reach
Heisenberg limited sensitivity when combined with the N00N state in the absence of photon
loss [16, 17, 18, 19]. Here we calculate the minimum detectable phase shift in the presence
of phase fluctuation, and show that the lower bound of the phase-fluctuated sensitivity for
both the states saturates the quantum Cramér-Rao bound [20, 21], which gives the ultimate
limit to the precision of phase measurement. This shows that the parity detection serves as
an optimal detection strategy when the above states are subject to phase fluctuations.

Here, we first introduce in Section 2.1 the N00N and mm′ states, i.e., the class of path-
entangled two-mode photon Fock states that we will study for investigating the effects of
the phase noise on the metrological properties of these states. In Section 2.2, we describe
how the density matrices corresponding to these states evolve under phase fluctuations in a
typical optical interferometric configuration. Section 2.2 contains the discussion of the parity
detection scheme that is used in our work to evaluate the phase sensitivity and visibility.

1This chapter previously appeared as B. Roy Bardhan, K. Jiang, and J. P. Dowling, Physical Review A
88, 023857 (2013) (Copyright(2013) American Physical Society) [22]. It is reprinted by permission of the
American Physical Society. See Appendix C for details.
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In order to provide the tightest bound on the uncertainty of the phase, we provide explicit
calculation of the quantum Fisher information that in turn gives the quantum Cramér-Rao
bound, the lowest bound on phase sensitivity that can be attained with these states. Finally,
we conclude this chapter with a brief summary of the main results obtained from the work
presented here. For the sake of completeness, we provide in Appendix A calculations of phase
sensitivity and visibility in the presence of both photon loss and phase fluctuation for the
states considered above.

2.1 Path entangled photon Fock states—N00N and mm′ states

Quantum states of light have long been known to attain greater precision, resolution and
sensitivity in metrology, image production, and object ranging [4, 23, 24] than their classical
counterparts. The maximally path-entangled N00N state is one of the most prominent exam-
ples of such non-classical states [9, 25, 26], which is a superposition of all N photons in one
path of a Mach-Zehnder interferometer (MZI) with none in the other, and vice versa. This
state is entangled between the two paths, and has been shown to violate the Bell inequality
for non-classical correlations [27]. The N00N state can be written as

|N :: 0〉a,b =
1√
2

(|N, 0〉a,b + |0, N〉a,b), (2.1)

where a and b represent the two paths of the interferometer. This state is in the class of
Schrödinger-cat states [26], and a measurement of the photon number in either of the paths
results in random collapse of all the N photons into one or the other path.

N00N states are known to achieve Heisenberg limited super-sensitivity as well as super-
resolution in quantum metrology [9, 10]. In recent years, several schemes for reliable produc-
tion of such states have been proposed, making them useful in super-precision measurements
in optical interferometry, atomic spectroscopy, gravitational wave detection, and magnetom-
etry along with potential applications in rapidly evolving fields such as quantum imaging and
sensing [28, 29, 30, 31, 32, 33, 34].

The superiority of the N00N state in phase sensitivity and resolution, compared to a
coherent state |α〉, can be attributed to the fact that the number state evolves N -times
faster in phase than the coherent state. This in turn results in the sub-Rayleigh-diffraction-
limited resolution (super-resolution) as well as the sub-shot-noise-limited phase sensitivity
(super-sensitivity) achieved with the N00N state [4].

However, the N00N states are vulnerable to photon loss which is present in almost all
realistic interferometric configurations. For instance, the N00N state is transformed, when a
single photon is lost from the system, to the state |N − 1, 0〉〈N − 1, 0|+ |0, N − 1〉〈0, N − 1|
which is unusable for estimation of the phase φ. In order to overcome such disadvantage of
the N00N state in the presence of photon loss, the authors in Reference [14] proposed a class
of the generalized path-entangled Fock states, by introducing decoy photons to both paths
of the interferometer. These states are known as the mm′ states and have been shown to be
more robust against photon loss than N00N states. The mm′ states can be written as

|m :: m′〉a,b =
1√
2

(|m,m′〉a,b + |m′,m〉a,b), (2.2)

where m and m′ are the number of input photons injected into the two modes of the inter-
ferometer.
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For this class of path-entangled Fock states, Jiang et al. provided strategies for choosing
the optimal m and m′ for a given photon loss [15]. The mm′ states can be produced, for
example, by post-selecting on the output of a pair of optical parametric oscillators [35]. Note
that the mm′ state reduces to a N00N state when m = N and m′ = 0.

In the following sections, we study the behavior of the phase sensitivity and the visibility
of the mm′ and the N00N states under phase fluctuations.

2.2 Dynamical evolution of the mm′ and N00N states under phase fluctuations

We start with the propagation of mm′ and N00N states through a MZI (schematically shown
in Figure 2.1) in the presence of the phase fluctuations ∆φ, where the photon number differ-
ence (∆m = m−m′) between the two arms in the initial state is fixed.

Source Detector

φ

a

I

b
∆φ

II III

Π̂

Figure 2.1: Schematic diagram of a two-mode optical interferometer. Here a and b denote
the two modes for the mm′ and N00N states as the input. The source and the detector are
represented by the respective boxes. Effects of the phase fluctuations due to the phase noise
is represented by ∆φ in the upper path b of the interferometer. The upper beam passes
through a phase-shifter φ, and the phase acquired depends on the total number of photons
∆m = m −m′ (or N) passing throughout the upper path. Parity detection is used as the
detection scheme at either of the two output ports of the interferometer.

The presence of the phase shifter in the upper path b introduces a phase shift φ to the
photons traveling through it, so that the state at stage II becomes

|ψ〉II =
1√
2

(eim
′φ|m,m′〉+ eimφ|m′,m〉)

=α|m,m′〉+ β|m′,m〉, (2.3)

where α = eim
′φ/
√

2 and β = eimφ/
√

2. Because of the different number of photons being
phase-shifted on the upper path b, phase shifts accumulated are different along the two paths,
thus providing the possibility of interference upon detection.

The combined effects of random phase fluctuations are represented by ∆φ in the upper
path in Figure 2.1, and the mm′ state at stage III is then given by,

|ψ(∆φ)〉III = αeim
′∆φ|m,m′〉+ βeim∆φ|m′,m〉. (2.4)
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Notice that because of the random nature of the phase fluctuations, the state of the system
becomes a mixed state and the associated density matrix is then

ρmm′ = 〈|ψ(∆φ)〉III III〈ψ(∆φ)|〉. (2.5)

Random fluctuations ∆φ in the phase effectively cause the system to undergo pure dephasing.
As a result, the off-diagonal terms in the density matrix will acquire decay terms, while the
diagonal terms representing the population will remain intact, i.e. the photon number will
be preserved along the path [36].

We can expand the exponential in Equation (2.3) in a series expansion, and consider the
terms up to the second order in ∆φ. We assume the random phase fluctuation ∆φ to have
Gaussian statistics described by Wiener process, i.e. with zero mean and non-zero variance
〈∆φ2〉 = 2ΓL (L is the length of the dephasing region, and Γ is the dephasing rate). Ensemble
averaging over all realizations of the random process then gives,

〈ei∆m∆φ〉 = 1 + i∆m〈∆φ〉 − (∆m)2〈∆φ2〉/2
= 1− (∆m)2ΓL ≈ e−(∆m)2ΓL.

The density matrix for the mm′ state is approximated by

ρmm′ = |α|2|m,m′〉〈m,m′|+ |β|2|m′,m〉〈m′,m|
+ α∗βe−(∆m)2ΓL|m,m′〉〈m′,m|
+ αβ∗e−(∆m)2ΓL|m′,m〉〈m,m′|. (2.6)

A similar equation for the N00N state can be obtained from Equation (2.1) as

ρN00N = |α|2|N, 0〉〈N, 0|+ |β|2|0, N〉〈0, N |
+ α∗βe−N

2ΓL|N, 0〉〈0, N |+ αβ∗e−N
2ΓL|0, N〉〈N, 0|. (2.7)

2.3 Parity operator

Achieving super-resolution and super-sensitivity depends not only on the state preparation,
but also on the optimal detection schemes with specific properties. Here, we study parity de-
tection, which was originally proposed by Bollinger et al. in the context of trapped ions [37]
and it was later adopted for optical interferometry by Gerry [16]. The original parity opera-
tor can be expressed as π̂ = exp(iπn̂), which distinguishes states with even and odd number
of photons without having to know the full photon number counting statistics. Usually the
parity detection is only applied to one of two output modes of the Mach-Zehnder interferom-
eter. In our case, the parity operator inside the interferometer, following the Reference [38],
can be written as

Π̂ = i(m+m′)
m∑
k=0

(−1)k|k, n− k〉〈n− k, k|, (2.8)

where Π̂2 = 1 and n = m+m′, is the total number of photons. It should be noticed that the
parity operator inside the interferometer detects both modes a and b of the field.
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The expectation value of the parity for the mm′ state is then calculated as

〈Π̂〉mm′ = Tr
[
Π̂ρmm′

]
= (−1)(m+m′)e−(∆m)2ΓL cos[∆m(φ− π/2)], (2.9)

where the density matrix ρmm′ is given by Equation (2.6). If we put a half-wave plate in front
of the phase shifter, which amounts to replace φ by φ+ π/2, the expectation value becomes,

〈Π̂〉mm′ =(−1)(m+m′)e−(∆m)2ΓL cos[∆mφ]. (2.10)

Using the density matrix ρN00N in Equation (2.7) for the N00N state, we can also obtain the
expectation value of the parity operator for the N00N state as

〈Π̂〉N00N = Tr
[
Π̂ρN00N

]
= (−1)Ne−N

2ΓL cos[Nφ]. (2.11)

2.3.1 Phase sensitivity

In quantum optical metrology, the precision of the phase measurement is given by its phase
sensitivity. We now calculate the phase sensitivity for both the mm′ and N00N states using
the expectation values of the parity operator obtained above.

Phase sensitivity using the parity detection is defined by the linear error propagation
method [39]

δφ =
∆Π̂

|∂〈Π̂〉/∂φ|
, (2.12)

where ∆Π̂ =

√
〈Π̂2〉 − 〈Π̂〉2. Given 〈Π̂2

mm′〉 = 1, the phase sensitivity with the parity detec-

tion for the mm′ state is

δφmm′ =

√
1− e−2(∆m)2ΓL cos2(∆mφ)

(∆m)2e−2(∆m)2ΓL sin2(∆mφ)
. (2.13)

For the N00N state, the phase sensitivity with the parity detection is similarly obtained
as

δφN00N =

√
1− e−2N2ΓL cos2Nφ

N2e−2N2ΓL sin2Nφ
. (2.14)

We note that in the limit of no dephasing (Γ → 0), δφmm′ → 1/(∆m). For the N00N state,
Γ→ 0 case leads to δφN00N → 1/N (Heisenberg limit of the phase sensitivity for the NOON
state).

In Figure 2.2, we plot the phase sensitivities δφmm′ and δφN00N for the various dephasing
rates Γ choosing ∆m = N , so that the amount of phase information is the same for either
state. For ∆m = N , Equations (2.13) and (2.14) show that the mm′ and N00N states give
rise to the same phase sensitivity. In particular, we show the phase sensitivity for the states
|4 :: 0〉 and |5 :: 1〉, and find that both the states perform equally well in presence of phase
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Figure 2.2: Phase sensitivity δφ of the mm′ and the N00N states with phase fluctuation. We
show the phase sensitivity δφ of the mm′ state |5 :: 1〉), or the N00N state |4 :: 0〉, having
the same phase information, as a function of phase shift φ for different values of Γ: Γ = 0.1
(curved blue dashed line), Γ = 0.3 (curved black double-dotted line), Γ = 0.5 (curved purple
dotted line). The Heisenberg limit (1/N) and the shot noise limit (1/

√
N) of the phase

sensitivity for the N00N state are shown by the red solid line and the black dashed line,
respectively, for comparison.

fluctuations when parity detection is used, although the former has been shown to outperform
N00N states in presence of photon loss [14, 15].

The minimum phase sensitivities δφmin can be obtained from Equations (2.13) and (2.14)
for φ = π/(2∆m), or φ = π/(2N) for the mm′ or N00N states, respectively. Also, note
that the HL for a general mm′ state is 1/(m + m′) in terms of the total number of photons
available, and is equal to 1/N for the N00N state. The SNL for these two states is given
by 1/(

√
m+m′) and 1/

√
N , respectively. For the |4 :: 0〉 and |5 :: 1〉 states, we plot the

minimum phase sensitivity δφmin in Figure 2.3 as a function of Γ, and compare with the SNL
and HL for both the states. We see that the minimum phase sensitivity δφmin hits the HL
for the NOON state for Γ = 0 only, while it never reaches the HL for the mm′ state.

2.3.2 Visibility

We define a relative visibility in the following to quantify the degree of measured phase
information

Vmm′ =
〈Π̂mm′〉max − 〈Π̂mm′〉min

〈Π̂mm′(Γ = 0)〉max − 〈Π̂mm′(Γ = 0)〉min

, (2.15)

where the numerator corresponds to the difference in the maximum and minimum parity
signal in presence of phase fluctuations, while the denominator corresponds to the one with
no dephasing, i.e. Γ = 0. Visibility for the N00N state is similarly defined as

VN00N =
〈Π̂N00N〉max − 〈Π̂N00N〉min

〈Π̂N00N(Γ = 0)〉max − 〈Π̂N00N(Γ = 0)〉min

. (2.16)
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Figure 2.3: Minimum phase sensitivity δφmin with phase fluctuation. We show the minimum
phase sensitivity δφmin of the mm′ state |5 :: 1〉), or the N00N state |4 :: 0〉 as a function of
Γ. The shot noise limits (SNL) and the Heisenberg limits (HL) of the phase sensitivity for
both the states are also shown for comparison.

Using Equations (2.10) and (2.11), we then obtain the visibilities for the mm′ state

Vmm′ = e−(∆m)2ΓL, (2.17)

and for the N00N state

VN00N = e−N
2ΓL. (2.18)

We note that the visibility of the N00N state with the parity detection in Equation (2.18)
agrees with the visibility in Reference [36].

The visibility in Equations (2.17) and (2.18) depends on the value of the dephasing rate
Γ and N (or ∆m = m−m′), and for a given value of Γ, the visibility falls down faster as N
increases. Hence, high-N00N states (or mm′ states) with large number of photons are very
much susceptible to the phase fluctuations compared to the low-NOON states, and hence are
not suitable to achieve metrological advantage with robustness in presence of phase noise.
This is shown in Figure 2.4, where we plotted the visibility for different N (or ∆m) with
respect to the dephasing rate Γ.

2.4 Quantum Fisher information: bounds for phase sensitivity

In order to minimize the uncertainty δφ of the measured phase, we now seek to provide the
lowest bound on the uncertainty of the phase. This bound is given by the quantum Cramér-
Rao bound δφQCRB, and is related to the quantum Fisher information F (φ) [40, 41, 20, 21]
as δφQCRB ≥ 1√

F (φ)
.
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Figure 2.4: Visibility V of the mm′ and the N00N state with phase fluctuation. We show
the visibility V of the mm′ state for different ∆m (for different N in case of N00N states
with the same phase information) as a function of Γ. The visibility V is plotted for N(or
∆m)=2 [solid blue line], N(or ∆m)=4 [dashed red line], N(or ∆m)=6 [double dotted black
line], and N(or ∆m)=8 [dot-dashed purple line]. We see that the visibility drops faster for
larger values of ∆m (or N).

A general framework for estimating the ultimate precision limit in noisy quantum-enhanced
metrology has been studied by Escher et al [42]. In the following, we first obtain the quan-
tum Fisher information, leading to the quantum Cramér-Rao bound for both the mm′ and
N00N states in the presence of phase fluctuations, and show that parity detection attains the
quantum Cramér-Rao bound for both of these states subject to dephasing.

The quantum Cramér-Rao bound has been shown to be always reached asymptotically
by maximum likelihood estimations and a projective measurement in the eigenbasis of the
symmetric logarithmic derivative Lφ [43, 20, 21], which is a self-adjoint operator satisfying
the equation

Lφρφ + ρφLφ
2

=
∂ρφ
∂φ

, (2.19)

where ρφ is given by Equation (2.6) for mm′ state and by Equation (2.7) for a N00N state.
The quantum Fisher information F (ρφ) is then expressed as [44]

F (ρφ) = Tr(ρφLφL
†
φ) = Tr(ρφL

2
φ). (2.20)

The symmetric logarithmic operator Lφ is given by

λi + λj
2
〈i|Lφ|j〉 = 〈i|∂ρφ

∂φ
|j〉, (2.21)

for all i and j, where λi and |i〉 are the eigenvalue and the corresponding eigenvector of ρφ.
Evaluating ρφ and ∂ρφ/∂φ from Equation (2.6) and then using Equations (2.20) and (2.21),
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we obtain the quantum Fisher information for the mm′ state

Fmm′ = (∆m)2e−2(∆m)2ΓL, (2.22)

leading to the quantum Cramér-Rao bound

δφQCRB,mm′ ≥
1√
Fmm′

=
1

∆me−(∆m)2ΓL
. (2.23)

For the N00N states, similar calculation with Equation (2.7) yields

FN00N = N2e−2N2ΓL, (2.24)

and

δφQCRB, N00N ≥
1√
FN00N

=
1

Ne−N2ΓL
. (2.25)

Equations (2.23) and (2.24) represent the lowest bound on the uncertainty of the phase
measurement for the mm′ and N00N states, respectively.

For a detection scheme to be optimal, it has to saturate the quantum Cramér-Rao bound.
Equations (2.13) and (2.14) represent phase sensitivity for the mm′ and N00N states respec-
tively, and these expressions can be shown to be identical to the quantum Cramér-Rao
bounds in Equations (2.23) and (2.24) for φ = π/(2∆m), or φ = π/(2N) for the mm′ or
N00N states respectively. Thus, parity detection saturates the quantum Cramér-Rao bounds
and is optimal for both states in the presence of phase fluctuations.

Note that in the most general scenario, the photon loss and phase fluctuation can both
affect the phase sensitivity and visibility of such states, and we can model photon loss from
the system into the environment by adding two fictitious beam splitters are added before
stage I as shown in Fig 2.5.
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Figure 2.5: Effects of both phase fluctuation and photon loss on the N00N and mm′ states.
Two fictitious beam splitters are introduced to the Figure 2.1 of Chapter 2 to mimic the loss
of photon from the system into the environment. After tracing out the environment mode vb
and va, the system results in a mixed state at stage I.
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2.5 Conclusion

In this chapter, we studied the effects of phase fluctuations on the phase sensitivity and
visibility of path-entangled photon Fock states such as mm′ and N00N states in an optical
interferometric setup. Although mm

′
states are more robust than N00N states against photon

loss, we showed that they do not provide any better performance in presence of such phase
fluctuations than their equivalent N00N counterpart. We have used the parity detection tech-
nique for phase estimation, that can be readily implemented using photon-number-resolving
detectors [45] in the low power regime and using optical nonlinearities and homodyning in
the high power regime [16, 46, 47, 48]. We have also presented a brief study on the quan-
tum Fisher information for such states and showed that for both the states parity detection
serves as the optimal detection strategy as it saturates the quantum Cramér-Rao bound of
the interferometric scheme.
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Chapter 3
Effects of dephasing noise on photon

polarization qubits 1

Quantum computers manipulate quantum states, rather than classical bits and have the
potential to solve certain problems much faster than their classical counterparts. These
problems include factorization of a large number (essential for the security of quantum cryp-
tographic system) by using Shor’s algorithm [49]. It can also provide a quadratic speedup
for searching a large unsorted database using Grover’s algorithm [50] and efficiently simulate
quantum systems [51, 52]. In a quantum computer, calculations are performed by controlled
time evolution of a set of coupled two-level quantum systems known as qubits. These qubits
are the building blocks for quantum information processing. They are used to store, process
and transmit information in a quantum computer.

However, there is a major obstacle to the practical realization of quantum computers. In-
evitable interaction of the qubits with a noisy environment causes a loss of coherence, leading
to errors in the processing of quantum information. Various strategies have been extensively
developed over the last few decades to effectively counteract such decoherence processes, in-
cluding decoherence free subspaces [53, 54], quantum error correction techniques [55, 56, 57]
and dynamical decoupling (DD) [58, 59, 60].

Dynamical decoupling is based on the idea of suppressing undesirable influences on quan-
tum dynamics by appropriately applied external pulses. In general, a DD scheme can be
regarded as an open-loop control technique acting on open quantum system to coherently
average out these undesirable interactions. This technique is comparatively simple to imple-
ment experimentally, and unlike other conventional quantum error correction protocols, it
does not require any measurement protocol or ancilla qubits or encoding overhead.

The development of DD has been motivated from nuclear magnetic resonance (NMR)
refocusing techniques developed since the discovery of the spin echo effect [63]. DD was first
introduced to quantum information processing for preserving single qubit coherence within
the spin-boson model [58]. It was then generalized to preserving states of open quantum
systems interacting with arbitrary environments. Since then a wide variety of DD schemes
have been proposed and analyzed. Prominent examples of DD schemes are the periodic DD
(PDD) [64], Carr-Purcell DD (CP) [65], Carr-Purcell-Meiboom-Gill (CPMG) [66], concate-
nated DD (CDD) [59, 61] and Uhrig DD (UDD) [60].

However, the majority of theoretical works on DD have considered only the case of ideal
pulses, i.e., the case when the decoupling pulses are assumed to be instantaneous and infinitely
strong. In that case, we can ignore the effect of a noise-inducing environment during the
application of the pulses. In any realistic physical implementation, the non-ideal properties of
these pulses reduce the efficiency of the decoupling techniques. For instance, pulses generally

1Parts of this chapter previously appeared as B. Roy Bardhan, K. L. Brown, and J. P. Dowling, Physical
Review A 88, 052311 (2013) (Copyright(2013) American Physical Society) [79] and B. Roy Bardhan et al.,
Physical Review A 85, 022340 (2012) (Copyright(2012) American Physical Society) [80]. They are reprinted
by permission of the American Physical Society. See Appendix C for details.
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have a finite duration (τp), and they also may not implement the desired rotations that
are required for averaging out the interaction of the system with the environment. These
imperfections can lead to the accumulation of a considerable amount of overall error, for a
large number of pulses, destroying the qubit coherence.

Photons are a prominent candidate for being mediators in quantum communication pro-
cesses since they move fast and interact weakly with the environment. Quantum information
is typically encoded in the polarization or phase of a photon. Recent developments in the
above schemes of DD have motivated us to study whether we can find a suitable DD strategy
to preserve polarization photonic qubits against decoherence effects. Previous works have
looked at the suppression of these effects by using methods including bang-bang decoupling.
Wu and Lidar [67] analytically showed that dynamical decoupling [58] could be used for
reducing quantum noise in optical fibers and Lucamarini et al. [68] showed the application
of DD for polarization qubits confined in a ring-cavity. Massar and Popescu presented a
method to reduce polarization-mode dispersion in an optical fiber using controlled polariza-
tion rotations [69]. Entanglement between a single photon and a single trapped atom was
reported by [70], which provided a step towards long-distance quantum networking with in-
dividual neutral atoms. Damodarakurup et al. experimentally reported on the suppression of
polarization decoherence in a ring cavity using bang-bang control of polarization qubits [71].

We propose the application of the CPMG sequence of dynamical decoupling for min-
imizing the random dephasing in birefringent optical fibers. This sequence [66] has been
shown to be robust against a variety of dephasing and control pulse errors [72, 73]. We apply
this sequence to flying polarization qubits in order to extend the useful range of a quantum
communication channel. We simulate the CPMG pulses with spatially separated half-wave
plates to suppress the dephasing of the input polarization qubits. This will be useful for the
BB84 protocol [74] of quantum key distribution, along with applications in optical quantum
computing [25]. Our method might also be useful in quantum teleportation [75], where the
entanglement is distributed with photonic qubits (as in quantum repeaters).

We also investigate the issue of polarization dephasing by using finite width wave plates
which are likely to cause some additional errors, apart from the random birefringent de-
phasing noise. Finite widths of the birefringent waveplates directly affect the phase of the
photon transmitted through the waveplates leading to a further loss of coherence. Introduc-
ing tailored refractive index profiles within the waveplates, we show that it is possible to
address such detrimental effects with DD techniques when implemented with waveplates at
the prescribed locations along the fiber. Estimates of the required inter-waveplate distance
are provided for each of the refractive index profiles, and this information will be enough
for an experimenter to know for successfully implementing a faithful long-distance quantum
communication channel in practice.

In this chapter, we first present a brief overview of the dynamical decoupling technique
along with its paradigmatic example: the spin-boson model. It will help us to understand
how this technique is useful in suppressing decoherence of a single qubit coupled to a purely
dephasing environment. In Section 3.2 we discuss the nature of random birefringent fluctu-
ations in an optical fiber which are likely to cause dephasing of a photon polarization qubit.
We will then show in Section 3.3 how the DD technique can help in mitigating this ran-
dom phase error to preserve the coherence for a long-distance optical communication fiber.
In Section 3.4, we provide a detailed description of the proposed application of the CPMG
sequence of dynamical decoupling to combat such dephasing and preserve the input state
through the fiber. We address the issue of the additional phase error introduced by the finite
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widths of the waveplates implementing the DD in the optical fiber in Section 3.5, and present
our numerical results and comparative analysis for various tailored refractive index profiles
in the fiber. We conclude with a brief summary and implications of our work, along with
suggestions for experimentally implementing the DD sequence in optical fibers.

3.1 Overview of dynamical decoupling

The most general Hamiltonian describing the evolution of a system coupled to a bath can be
written as

H = HS ⊗ IB + IS ⊗HB +HSB, (3.1)

where HS and HB are the system and bath Hamiltonians, respectively. The interaction
Hamiltonian HSB can be written as

HSB =
∑
α

Sα ⊗Bα, (3.2)

with Sα acting only on the system and Bα acting only on the bath.
The aim is to reduce or eliminate the errors by modifying the time evolution of the system

and the bath using external control Hamiltonians. This is done by repeatedly applying
external control pulses that act on the system such that the coupling of the system to the
bath can be time reversed and thus canceled. These control pulses are often called ”dynamical
decoupling pulses” due to their original objective of decoupling the system from the bath.
Typically, DD is used to reduce or eliminate phase errors on a qubit. But, this method can
also be used, by nesting two decoupling sequences in orthogonal directions, to mitigate both
bit-flip and phase errors [81, 62]. In Figure 3.1, we show a typical dynamical decoupling pulse
cycle which can be used to suppress phase error accumulated during the free propagation of
the system under the system-bath interaction Hamiltonian HSB.

Figure 3.1: A typical DD pulse sequence for removing pure dephasing noise. We show one
cycle of a typical dynamical decoupling with ideal (zero-width) pulses. The phase error
accumulates during the free propagation time τ .
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3.1.1 Example: DD for spin-boson model

Let us consider a qubit realized by a spin-1/2 system coupled to a quantized environment
that can be regarded as a continuum of harmonic modes [58]. The overall dynamics of the
qubit + environment system is governed by the Hamiltonian

H = ~ω0
σz
2

+
∑
k

~ωkb†kbk +
∑
k

~σz(gkb†k + g∗kbk), (3.3)

where ω0 denotes the energy difference between computational basis states |0〉, |1〉 of the
qubit, the second term corresponds to the bath HB =

∑
k ~ωkb

†
kbk with b†k, bk being the

bosonic operators of the k-th field mode, and the last term represents the system-bath inter-
action characterized by the coupling parameter gk, i.e.

HSB =
∑
k

~σz(gkb†k + g∗kbk). (3.4)

The associated decoherence mechanism is dephasing in which the qubits lose coherence (repre-
sented by the off-diagonal terms in the density matrix) without any energy exchange between
the qubit and the bath.

In the Schrödinger picture, let us write the state of the system combined with the bath
at time t as ρ(t). However, if we want to work in the interaction picture that corresponds to
the free dynamics of HS +HB, then the transformed state is given by

ρ̃(t) = ei(HS+HB)t/~ρ(t)e−i(HS+HB)t/~, (3.5)

and the transformed time-dependent interaction Hamiltonian by

H̃SB(t) = H̃(t) = ~σz
∑
k

(gkb
†
ke
iωkt + g∗kbke

−iωkt). (3.6)

The corresponding unitary operator can be written as

Ũ(0, t) = T exp

{
− i
~

∫ t

0

duH̃(u)

}
, (3.7)

where T is the time-ordering operator. For the sake of simplicity, we will henceforth set
~ = 1.

We can now consider the following two standard assumptions: (1) the qubit and the
bath are initially decoupled from each other, i.e., ρ(0) = ρS(0) ⊗ ρB(0), and (2) the bath
is initially in thermal equilibrium at temperature T . The unitary evolution operator in
Equation (3.7) can then be exactly evaluated for this model which in turn gives the qubit
coherence ρ01(t) = 〈0|ρ(t)|1〉 as [58]

ρ01(t) = ρ01(0)eiω0t−Γ0(t), Γ0(t) =

∫ ∞
0

dωJ(ω)
1− cosωt

ω2
, (3.8)

where J(ω) = I(ω)(2n̄(ω, T )+1) is the power spectrum of the bath specifying the effect of the
bath in terms of the oscillator spectral density I(ω). Here n̄(ω, T ) denotes the average number
of field excitations at the temperature T . The above equation determines the evolution of
the qubit coherence when there is no control (decoupling pulses) present.
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In the presence of the decoupling pulses, the decoherence properties of the qubit are
modified, resulting in a renormalized spectral density function Jc(ω) [58]. For a train of
instantaneous and infinitely strong π pulses about the x-axis (also known as the Bang-bang
pulses), it is given by:

Jc(ω) = J(ω) tan2

(
ωTc
4

)
, (3.9)

where N is the number of pulses and Tc is the cycle time. The corresponding controlled
dynamics of the qubit coherence is

ρ01(t) = ρ01(0)eiω0t−Γc(t), Γc(t) =

∫ ∞
0

dωJc(ω)
1− cosωt

ω2
. (3.10)

For arbitrarily fast control, i.e. for Tc → 0, N →∞, this reduces to

lim
Tc→0,N→∞

ρ01(t = NTc) = ρ01(0). (3.11)

This implies the possibility of preserving the qubit coherence of arbitrary single qubit states
using such instantaneous and infinitely strong pulses, and essentially signifies the ideal limit
of the suppression of the decoherence using the DD technique.

3.1.2 DD in the semiclassical picture of decoherence

Instead of the quantized environment affecting the coherence of the qubit, we can now con-
sider the semiclassical picture in which a local classical external field B(t) causes the pure
dephasing of the qubit. In the limit of weak system-bath coupling, we can invoke the Born-
Markov approximation and write the semiclassical interaction Hamiltonian as HSB = B(t)σz,
where B(t) is a scalar function of time. Suppose the qubit is initially in the coherent super-
position state (in the computational basis states |0〉, |1〉)

|ψ(0)〉 = a|0〉+ b|1〉. (3.12)

At the end of the evolution for a time τ in the presence of the field B(t) aligned in the z
direction, the qubit accumulates a random relative phase φ(τ) = 2

∫ τ
0
B(t)dt. As a result,

the qubit state is transformed into

|ψ(0)〉 = a|0〉e−iφ(τ)/2 + b|1〉eiφ(τ)/2. (3.13)

If we control the qubit with rotations around the x-axis on the Bloch sphere, then the
complete system Hamiltonian with dephasing is

H(t) = B(t)σz + f(t)σx, (3.14)

where f(t) is the time-dependent control field for the dynamical decoupling pulses [82].
The underlying principle of dynamical decoupling is to select a “pulse sequence” f(t)

which causes the integrated time evolution of the interaction Hamiltonian to coherently
average to zero [83]. We suppose that the control field is given by f(t) = π

2

∑M
k=1 δ(t −

tk), consisting of instantaneous “π pulses” at prescribed time instants {t1, . . . , tM}. In the
reference frame co-rotating with this control field f(t), we can rewrite the system Hamiltonian
from Equation (3.14) as

H̃(t) = y(t)B(t)σz. (3.15)
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In the above, y(t) is a “switching function” which takes on values ±1, switching polarity
at each time tk corresponding to a π pulse in the control sequence. To see the effect of a
dynamical decoupling sequence, we calculate the system propagator in the interaction picture
as

Ũ(0, T ) = exp

(
−i
[∫ T

0

y(t)B(t)dt

]
σz

)
. (3.16)

We can drop time-ordering in the propagator because the simplified Hamiltonian in Equa-
tion (3.15) commutes with itself at all times t ∈ [0, T ].

The ideal decoupling sequence would eliminate any dephasing from the system propa-
gator, but since B(t) is in general unknown, decoupling sequences must attempt to make∫ T

0
y(t)B(t)dt ≈ 0 by appropriate choice of pulse locations {t1, . . . , tM}. In the simplest ex-

ample, consider a time-independent B(t) = B0 and a single π pulse at t = T/2. In this case,
a simplified form of the Hahn spin-echo sequence [63], the system is fully decoupled at time
T .

A group theoretic understanding of the unitary symmetrization procedure to eliminate
errors up to the first order in the Magnus expansion is provided in Reference [84]. Typically,
the coupling terms contributing to the decoherence errors undergo an effective renormaliza-
tion. This renormalization transformation can be considered as the cancelation of the terms
in the Magnus expansion of the effective Hamiltonian [85]. This analysis assumes ideal pulses
having zero width, in which case it has been shown that DD sequences can be designed to
make higher-order system-bath coupling terms vanish [86, 82, 59].

3.1.3 Recent improvements

In the field of magnetic resonance, pulse sequence techniques have been studied as a method
of reducing spin ensemble dephasing for many decades [83, 87]. With the advent of quan-
tum computing, these techniques have been re-explored for overcoming decoherence effects,
resulting in the development of a wide variety of DD strategies. In quantum computing,
DD has been typically used as an open-loop control scheme to reduce the errors which occur
during the evolution of the quantum state.

The simplest case DD is the spin-echo sequence [63], where it is possible to reduce the pure
dephasing due to low-frequency (ω < 1/τ) noise by applying a π pulse at time τ/2 during
the free evolution. However, this is not very effective in the presence of high-frequency noise.
Moreover, errors are introduced by imperfections in realistic pulses. These issues can be
addressed by repeating the π pulses used in the spin-echo technique N times. Typically,
DD strategies assume ideal pulses having zero width, in which case it has been shown that
DD sequences can be designed to make higher-order system-bath coupling terms vanish
[86, 82, 59]. Such ideal, instantaneous pulses, however, are not achievable in actual physical
systems, and some researchers have considered finite-width pulses, which decouple to higher
order than simple rectangular pulses [88, 89].

Another choice of pulse sequence is known as CPMG dynamical decoupling [66], which
is a multi-pulse generalization of the spin echo. The CPMG sequence acts as a high-pass
filter, which effectively filters out the components of HSB varying slowly compared to τ . The
CPMG sequence has been shown to be robust against a variety of dephasing and control
pulse errors [72, 94, 95].
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In the context of optical quantum processing, DD can be used to preserve the coherence
of photonic qubits. Wu and Lidar [67] showed that dynamical decoupling could be used for
reducing quantum noise in optical fibers. Massar and Popescu presented a method to reduce
polarization mode dispersion in an optical fiber using controlled polarization rotations [69].
The suppression of polarization decoherence in a ring cavity using bang-bang control of
polarization qubits has been reported in Reference [71].

3.2 Birefringent dephasing of polarization qubits in optical fibers

3.2.1 Propagation of polarization qubits in optical fiber

In optical quantum information processing, photons are used to store, process and transmit
information. They are a prominent candidate for being mediators in quantum communica-
tion processes since they move fast and interact weakly with the environment. Quantum
information is encoded in the state of a photon, such as in photon number or polarization,
and the photons are typically routed through optical fibers or waveguides. Transmission of
the photons through such optical fibers can be helpful in using them as optical quantum
memory [96, 97], distributed quantum computation [98] and quantum cryptography [99].
Consequently, quantum communication using propagation of the photons through optical
fibers has emerged as a very active area of research for the last few decades.

However, as a photonic qubit propagates through the fiber, it interacts with the optical
fiber. This interaction causes the qubit to lose its ability to exhibit coherent behavior.
As a result, the phase of the qubit becomes randomized and the information stored in it is
eventually lost. Hence, it is crucial to protect the polarization qubits against such detrimental
dephasing effects induced by the fiber.

In the BB84 protocol of quantum key distribution [74], it is necessary to preserve the
input polarized signals against decoherence effects during propagation through the noisy
communication channel. Polarization-maintaining (PM) fibers can be used to preserve two
orthogonal states of single photon polarization qubit, e.g. photon states with vertical and
horizontal polarizations [100, 101]. However, the sender needs to choose the input polar-
ized light signals from either the horizontal-vertical basis or the diagonal basis randomly.
Therefore, it is important to preserve all of these states against unpredictable changes in the
polarization state due to dephasing in the fiber [102].

3.2.2 Dephasing in optical fiber and noise model

Due to the random fluctuations in uncontrollable factors like mechanical stress (internal or
external) [78], temperature, etc., in the optical fiber, the polarization state of single photons
changes very rapidly as it propagates through the fiber. These effects cause the birefringence
4n = |ne−no| (the subscripts e and o stand for the extraordinary and the ordinary rays) to
change randomly along the fiber. For practical fiber lengths of the order of several hundreds
of kilometers, the birefringence in such optical fibers can totally destroy the information
stored in the polarization qubits.

To combat such large-scale dephasing errors in the fiber, we propose the application of
dynamical decoupling implemented with waveplates along the communication channel. We
approximate the communication channel as continuously connected fiber elements, as shown
in Figure 3.2, which have sections of constant birefringence on the order of the length scale
of 10 m (which is fairly realistic for the long-distance communication purposes) along the
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fiber. We consider the communication channel provided by a polarization maintaining fiber.
As the optical losses are small for the wavelength in the telecommunication band, we restrict
our calculations for this wavelength region (around 1550 nm) [103, 104].

Figure 3.2: CPMG pulse sequence implemented in optical fiber with half-wave plates. Top
: CPMG sequence implemented with half-wave plates in the diagonal basis along the fiber;
Ufree’s are the propagators corresponding to the free propagations through the dephasing
segments. Bottom : Free propagations and π rotations caused by the waveplates for the
input qubit in the +45◦ state are shown on the Poincare sphere.

Assuming that single-photon sources are available, we initialize the qubit in the +45◦ or
−45◦ states which can be written as

|ψ(0)〉 =
1√
2

(|H〉 ± |V 〉). (3.17)

It should be pointed out here that the following analysis is valid for a general polarization
state of single photons, not only the +45◦ or −45◦ states [80]. If we now allow the input
photons to propagate freely for a length L, then the qubit state becomes

|ψ(L)〉 =
1√
2

(eiφH |H〉 ± eiφV |V 〉). (3.18)

The phase accumulated by the qubit is given by

4φ = φH − φV = (2π/λ)

∫ L

0

4n(x)dx, (3.19)

where the refractive index difference ∆n(x) between the two orthogonal polarizations is
referred to as the birefringent noise, resulting in the dephasing error 4φ = φH − φV .
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If we describe the fluctuations in the fiber to be random, stochastic fluctuations of the re-
fractive index difference ∆n(x) can be simulated as a Gaussian-distributed zero-mean random
process. In this case, the noise is completely defined by the first-order correlation function
at two points x1 and x2 inside the fiber given by

〈4n(x1)4n(x2)〉 = exp
[
−4n(x)2/2σ2

4n
]
. (3.20)

The above form of the two-point correlation function 〈4n(x1)4n(x2)〉 follows from the
fact that the fluctuating random birefringence noise ∆n(x) is assumed to have Gaussian
statistics with 〈∆n〉 = 0 and standard deviation σ∆n, leading to the random dephasing ∆φ in
Equation (3.19). The separation |x1−x2| between the two points x1 and x2 in Equation (3.20)
is considered to be less than the correlation length. (Estimates of the correlation lengths for
a typical optical fiber are given in Reference [105].) The Fourier transform S(k) of the

correlation function is S(k) = exp(−k2σ2
n

2
).

In the presence of such random birefringent dephasing, the off-diagonal density matrix
element propagates according to

ρ12(x = L) = ρ12(0)〈exp (−i4φ)〉 ≈ ρ12(0) exp

(
−〈∆φ

2〉
2

)
, (3.21)

where 〈. . .〉 represents the stochastic average, i.e. with respect to the realizations of the
birefringent noise. The second line in the above equation follows by expanding the exponential
in the first line in series expansion up to the second order of the dephasing ∆φ. Considering
∆φ to be a zero-mean Gaussian process, i.e. 〈∆φ〉 = 0, we obtain the last line in Equation
(3.21) showing that the off-diagonal terms decay exponentially leading to the loss of coherence
of the qubit. As a result, the phase of the qubit becomes randomized and the quantum
information stored in it is eventually lost.

We model the random dephasing by continuously concatenating pieces of fiber with ran-
domly generated lengths 4L. The total propagation length thus can be split into segments
of length ∆L with constant ∆n(x). The phase difference for the i-th segment is equal to the
sum of (2π/λ)∆Li∆ni. These segments constitute a single phase profile associated with a
particular instance of birefringent noise and corresponding changes in the refractive index
difference 4n. Ensemble averaging over profiles gives the density matrix for the output state
depicting the random dephasing in the fiber.

3.3 Dynamical decoupling to combat birefringent dephasing

Our aim is to preserve input polarization qubits against dephasing effects in an optical fiber,
so we intend to implement the most suitable DD sequence to suppress dephasing for a given
length of the fiber. In the following, we first illustrate how the dephasing effects in a single
qubit can be suppressed with DD techniques when the DD pulses are implemented with
half-wave plates along the long-distance optical fiber.

In order to do, we discuss the decoherence function formalism presented in References [73,
82] and show that with the DD pulse sequences it is possible to preserve the coherence of
photon polarization qubit in a long-distance optical fiber. We first note that the decoherence
function for the propagating photon qubit can be written as the ratio of the off-diagonal
terms of the diagonal matrix (say ρ12) at x = L and x = 0 for an optical fiber of length L, i.e.
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at the two ends of the fiber. The decoherence function for our noise model, i.e. dephasing in
the fiber (without pulses) is then

W (x = L) = exp

(
−
∫ ∞

0

dk

2π
S (k)

sin2(kL)/2

k2

)
, (3.22)

where S(k) is the Fourier transform of the autocorrelation function for the random spatial
fluctuation of the birefringence [73]. Upon application of a DD pulse sequence with filter
function F (kL) [73, 82] in the space domain, the decoherence function can then be shown to
be

W (x = L) = exp

(
−
∫ ∞

0

dk

π
S (k)

F (kL)

k2

)
, (3.23)

where the filter function F (kL) is given by F (kL) = 1
2

∣∣∑n
m=0 (−1)m

(
eikxm+1 − eikxm

)∣∣2, cor-
responding to a pulse sequence having specific set of xm with x0=0 and xn+1 = L. This filter
function encapsulates the influence of the pulse sequence applied. For the CPMG sequence
(described below), for instance, we take F (kL) = 8 sin4(kL/4M) sin2(kL/2)/ cos2(kL/2M)
[73] (M is the number of waveplates in one cycle)

Equation (3.23) indicates that the decay rate of the quantum state is determined by the
overlap between the spectral density and the filter function F (kL). Moreover, this equation
upon comparison with Equation (3.22) shows that by choosing suitable F (kL) and hence
DD pulse-sequence, one can expect to reduce decoherence effects introduced during the free
propagation of the qubit. We assume that the waveplates are very thin (width of the wave-
plate δ � Lτ ) such that the phase difference during the propagation of the photons through
the waveplates is negligible (See Section 3.5 for analysis and results with finite width of the
waveplates in the fiber).

In order to preserve the input polarization qubits in polarization maintaining optical
fibers, we simulate the CPMG sequence by placing spatially separated half-wave plates along
the fiber. Each wave plate effects a π rotation in the qubit state, equivalent to the π pulses

in typical DD schemes. The multi-pulse CPMG sequence is defined by xk = L
(k− 1

2
)

M
[66, 73]

where the first and the last free propagation periods are half the inter-waveplate separation,
effectively refocusing the Bloch vector at the conclusion of the sequence. We take the number
of waveplates in one cycle, M , to be 2. With such sequence the input state remains very
well-preserved after propagation through any given length of the fiber.

Each cycle of the two-pulse CPMG is implemented in the following steps:

1. Feed a single photon qubit polarized in the +45◦ or −45◦ state into the channel we
modeled above.

2. Allow the input qubits to propagate through a segment of the fiber for a length of Lτ .

3. Implement the first π-pulse of the CPMG sequence with half-wave plates in the diagonal
basis.

4. Allow a free propagation as before but this time for the length 2Lτ .

5. Finally, the second pulse is implemented with a half-wave plate followed by a free
propagation of length Lτ .
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At the end of the above cycle of length 4Lτ , the unitary operator corresponding to the
propagation of the polarization qubit through the fiber can be written as

Ûcycle == Ûfree(Lτ )σ̂xÛfree(2Lτ )σ̂xÛfree(Lτ ), (3.24)

where σ̂x is the Pauli X operator and Ûfree(Lτ ) are the propagators corresponding to the free
propagations along distances Lτ and 2Lτ , respectively.

The CPMG sequence with 2N pulses is obtained by repeating the above cycle N times,
and the propagator for such a sequence is ÛCPMG = ÛN

cycle where Ûcycle is defined above. For
the CPMG sequence with M = 2 pulses in one cycle, the filter function is given by [73]

F (kL) = 8 sin4(kL/8) sin2(kL/2)/ cos2(kL/4). (3.25)

The decoherence functions W (x) without CPMG and with CPMG are plotted in Figure 3.3.
We can theoretically predict that CPMG should preserve the coherence of the input polarized
qubit for a longer length than the fiber without the wave plates.

Figure 3.3: Decoherence function W (x) without CPMG and with CPMG. We plot
the decoherence function W (x) as a function of the distance along the fiber. Inset:
W (x) for CPMG with M=2 is shown (zoomed in) with the filter function F (kL) =

8 sin4(kL/8) sin2(kL/2)/ cos2(kL/4) and S(k) = exp(−k2σ2
n

2
). Distance along the fiber is

plotted in meters in the figure.
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3.4 Numerical Results

To characterize the effectiveness of our scheme, we use the fidelity F between the input state
|ψin〉 and ρout as

F = 〈ψin|ρout|ψin〉, (3.26)

where ρout = 1
n

n∑
i=1

|ψi〉〈ψi|. Here n is the total number of randomly generated phase profiles,

corresponding to the propagation operator ûi so that |ψi〉 = ûi|ψin〉 represents the simulated
birefringent noise. Therefore, fidelity being close to one implies that the input state is well-
preserved against dephasing.

For an arbitrary polarization state α|H〉 + β|V 〉, our calculations show that after n ran-
domly generated phase profiles, the average fidelity between the input and output states is

FAvg =

〈
cos2(θ) +

(
|α|2 − |β|2

|α|2 + |β|2

)
sin2(θ)

〉
. (3.27)

Here θ is the total phase introduced by the birefringent fiber as well as by the waveplates.
States which minimize the fidelity are given by 1√

2

(
|H〉+ eiφ |V 〉

)
and lie on the equator

of the Poincaré sphere. We observe that fidelity drastically improves when we used the
waveplates even for a large variation of the parameters of the random dephasing ∆φ. This
is shown in Figure 3.4.

Figure 3.4: Fidelity with CPMG waveplates with variation of the number of waveplates. We
show the fidelity with variation of the number of waveplates for different standard deviations
of the randomly generated dephasing 4φ and fixed L = 10km, 〈4L〉 = 10m and σ4L = 3m.
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For a given length of the fiber, we can estimate the minimum number of waveplates or
the distance between the waveplates required to achieve high fidelity. For instance, for a
total fiber length of L=10 km, the estimated number of wave plates from Figure 3.4 is 610
to obtain a fidelity of 0.98. Using this, the rough estimate of the inter-waveplate distance Lτ
is 8.2 m when we considered birefringence fluctuations ∆n on a length scale of 10 m (which
is fairly realistic for the long-distance communication purposes) along the fiber.

The variation of fidelity for different fiber lengths is plotted in Figure 3.5, which shows
that polarization qubits can be preserved up to an excellent fidelity using the CPMG sequence
for a wide range of the total fiber length.

Figure 3.5: Fidelity variation for different lengths of the fiber. The parameters used are
〈4L〉 = 10m, σ4L = 3m and σ4φ = ±100 radians.

In Figure 3.6, the contour plot of the fidelity is shown with respect to the standard devi-
ations 4L and 4φ. This plot illustrates that high fidelity can be obtained for a reasonably
large range of random fluctuations. Therefore, we show how to preserve polarization qubits
against dephasing over realistic lengths of optical fiber.

3.5 Dynamical decoupling with tailored waveplates for polarization qubits

In this section, we address the issue of the finite width of the waveplates which are likely
to cause some additional errors, apart from the random birefringent dephasing noise. Finite
widths of the birefringent waveplates directly affect the phase of the photon transmitted
through the waveplates leading to further loss of coherence. Introducing tailored refractive
index profiles within the waveplates, we show that it is possible to address such detrimental
effects with DD techniques when implemented with waveplates at the prescribed locations
along the fiber.
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Figure 3.6: Contour plot of the fidelity with the variations of the dephasing parameter. We
show the contour plot of the fidelity with the variations of the standard deviations of 4L
and 4φ. Lighter regions show higher values of the fidelity. The simulation is done with fixed
L = 10km, 〈4L〉 = 10m.

3.5.1 Ideal vs Real Pulses

Ideally, DD pulses are assumed to be strong and instantaneous pulses applied fast enough
compared to the internal dynamics of the environment. We can follow a similar method as
in Section 3.1 to analyze the evolution of the qubit. Consider a single cycle of a DD sequence
with pulses of duration τp having a period T . The evolution operator describing the evolution
of the system from time t = 0 to t = T , in the rotating frame, can be written as [106]

U(T ) = Uf (τN+1)
N∏
i=1

U i
C(τp)Uf (τi), (3.28)

where the free evolution operator Uf(τ) is given by

Uf(τ) = exp[−iH̃(τ)]. (3.29)

The time-dependent Hamiltonian H̃(t) is given by Equation (3.6). Therefore, the evolution
operator acting during the application of pulses is given by

U i
C(τp) = T exp

[
−i
∫ τp

0

dt′(H̃(t′) +H i
C(t′)

]
. (3.30)
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Since the evolution described in Equation (3.6) is necessarily a unitary one, it can be written
as the exponential of a Hermitian operator Heff

U(T ) = exp[−iHeffT ], (3.31)

where Heff can be written as a series expansion using the average Hamiltonian theory [107]

Heff = H(0) +H(1) + ....... =
∞∑
n=0

H(n). (3.32)

An ideal DD sequence, i.e. a DD sequence with instantaneous pulses, makesHeff = H(0) by
suppressing the system-bath interaction HI, and better performance of a DD sequence usually
corresponds to progressively eliminating the higher order terms in such an expansion [86, 82,
59] (e.g. Magnus expansion [85]).

Under the assumption of weak coupling to the environment, the evolution operator in
Equation (3.30) (in the rotating frame) simplifies to

U i
C(τp) = exp[−iσαθp/2]. (3.33)

Here α = x, y, z and θp = ωpτp (ωp being the frequency of the pulses) is the rotation around
the α axis. For ideal instantaneous pulses which implement π rotations, the angle θp will be
π.

However, imperfect pulses can result in errors in the rotation axis as well as in the angle of
rotation. We can write the resulting propagator as the product of the ideal pulse propagator
and a rotational error exp[−iσeiθei/2] [106], due to the i th waveplate,

U i
C(τp) = exp[−iσeiθei/2] exp[−iσαθp/2]. (3.34)

The modified free evolution operator in the presence of the pulse errors can be written as

Uf (τi, τp) = Uf (τi) exp[−iσeiθei/2]. (3.35)

The total evolution operation from Equation (3.28) then reads

U(T ) = U ′fN+1
(τN+1, τp)

N∏
i=1

U i
C(0)U ′f (τi, τp). (3.36)

The evolution operator in the above expression can then be written as a series expansion simi-
lar to Equation (3.31), and a good choice of DD sequence should make U(T ) ≈ exp(−iHBT ) I,
(where I is the identity) in the presence of the pulse errors defined above. Note that the initial
system is then preserved against decoherence along with the rotational imperfections, since
the factor exp(−iHBT ) merely acts as a background noise that does not get coupled with
the system.

Khodjasteh and Lidar analyzed the cumulative effects in pulse sequences and provided an
optimum pulse interval for realistic pulses with a fixed minimal pulse width τp,min [61]. Uhrig
and Pasini showed the optimized performance of the DD sequences for considering realistic
control pulses of finite duration and amplitude [95, 108]. Composite pulse sequences such as
BB1, CORPSE, and SCORPSE, have been shown to correct systematic pulse errors (which
might include pulse amplitude, phase and frequency errors) [109, 110, 111, 112, 113]. Pulse
shaping is another method that is used to counteract environmental noise effects during the
finite duration of the real pulses [114, 115, 112, 116].

44



3.5.2 Choice of DD to preserve the polarization qubit

The fact that the DD pulses are implemented with waveplates in our scheme, and the axis of
rotation is fixed by the orientation of the optical axis of the birefringent waveplates, highly
restricts our choice of DD methods. It is a technically formidable task to have precise control
of the varied orientations of the optic axes as required in each sequence of the composite
pulse sequences such as BB1, CORPSE, SCORPSE, or KDD (although all of them generally
provide robust performance against pulse errors). Moreover, these sequences typically require
a large number of pulses in each cycle, which in our case of long-distance fibers affects
scalability.

In general, a judicial choice of the DD sequence is decided according to the noise spectral
density of the environment. In our case, we have to choose DD sequences which provide
robust performance in the presence of our dephasing model, which has randomly distributed
noise with Gaussian spectral density. An optimized sequence such as UDD is not a good
choice in this case as UDD works best when the noise has a sharp high-frequency cut-
off [117, 90, 91, 92]). In the case of UDD, with single or multi-axis control, pulse errors
generally accumulate with higher orders. A few recent studies also indicate that high-order
UDD or concatenated DD sequences in general lose their advantage when the pulse intervals
are strongly constrained [118, 95].

In order to preserve polarization states in a fiber, the CPMG sequence has been shown
to work best in such Gaussian-distributed random birefringent noise [117, 73, 80]. Another
motivation for using CPMG is that this sequence is extremely robust against all pulse im-
perfections, when used with the longitudinal states, while giving marginally better results to
preserve the transverse components of polarization [113, 119, 72, 106, 120, 121, 117, 80]. It
requires π rotations around a fixed axis which can be easily set by orienting the optical axis
within half-wave plates.

For very similar reasons, we then consider the XY-4 sequence (which requires alternating
π rotations around X and Y axes), and is known to provide excellent performance in the
presence of pulse errors by preserving both the longitudinal and transverse components of
polarization [113, 106, 122, 123]. These sequences act as high-pass filters that effectively filter
out the components of the HI which vary slowly compared to τ . In both sequences, the total
evolution operator after one cycle, defined in Equation (3.36), is UT ≈ I+O(ω2

cτ
2) (τc = 1/ωc

is the correlation time of the environment). Hence, the errors (due to both dephasing and
pulse imperfections) resulting in the randomization of the phase of the polarization state
coming out of the fiber at the end, can be reduced with CPMG and XY-4 up to the first
order in ωcτ for each cycle.

3.5.3 Numerical Results

We first model birefringent dephasing in the optical fiber in the same way as in Section 3.2
by approximating the communication channel as continuously connected fiber elements. The
fluctuating random birefringence noise ∆n(x) in the fiber is simulated as a Gaussian zero
mean random process with 〈∆n〉 = 0 and standard deviation σ∆n. Since the magnitude of
the local birefringence at any point along a birefringent optical fiber is typically of the order
of 10−4 to 10−7 [100, 101], the standard deviation σ∆n is chosen to have this range of values
to mimic realistic fluctuations in the birefringence.

For simulating the effect of the finite widths of the waveplates when the polarization
qubits are fed into the fiber, we first note that the total propagation operator in Equation
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(3.34) after one cycle in the presence of such additional error can be written as U i
C(τp) =

exp[−i(θpi + ∆θpi)σα]. In our model with finite-width waveplates, the angle error term ∆θp
is the practical deviation from the intended rotation θp, and is due to the refractive index
profile ∆N(x) within the waveplates (which have width ∆l). We can define the flip angle
error corresponding to ∆θp as ∆θp/θp.

2 The angle error term ∆θp can be written as

∆θp = (2π/λ)

∫ ∆l

0

∆N(x)dx. (3.37)

We consider the following refractive index profiles, as shown in Figure 3.7, for simulating
realistic pulse effects:

∆N(x) =


exp

[
− (x−x0)2

2σ2

]
; 0 < x0 < ∆l (Gaussian)

1; 0 < x < ∆l and 0 elsewhere (Rectangular)

tanh[a(x+ 1) + 1] tanh[−a(x− 1) + 1] (Hyperbolic Tangent)

(3.38)

Figure 3.7: Refractive index profiles generating the effects of finite widths of waveplates.
We show the refractive index profiles ∆N(x) generating the phase error due to the finite
widths of the pulses, where x represents the distance within the waveplate: (a) Gaussian, (b)
Rectangular, and (c) Hyperbolic tangent [as defined in the text and in Equation (3.37)].

For the Gaussian profile, x0 and σ denote the mean and the standard deviation of the
refractive index distribution within the wave plate, and for the hyperbolic tangent profile the
parameter a can be used to adjust the slope of the distribution inside the waveplates. In our
simulation, we first consider the flip-angle error of 5%, which is approximately generated by
using the parameters a = 8, x0 = 1, σ = 1.8, from Equations (3.37) and (3.38).

We now aim to investigate two DD sequences: CPMG and XY-4 applied to the flying
polarization qubits propagating through optical fiber. The basic cycles of these two sequences
are fτXf2τXfτ and fτXfτY fτXfτY , respectively, both with cycle period of 4τ . The free
evolution periods correspond to the phase error accumulated during free propagation along
the fiber for a length fτ , and theX and Y rotations correspond to the π rotations implemented

2This flip angle error is not to be confused with the terminology of the flip angle in the context of
T1-relaxation (for instance in Reference [124]).
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with half waveplates, as shown in Figure 3.8. We make a comparative analysis of these
sequences for the following refractive index profiles that are used to generate the errors due
to the finite widths of the waveplates.

-X Waveplates 

Figure 3.8: A cycle of DD pulse sequence to supress phase error: (a) Schematic representation
of a cycle of general dynamical decoupling pulse sequence with pulses of duration τp, (b)
CPMG sequence with two pulses in a cycle, and (c) XY-4 sequence with alternated X and
Y waveplates. Here X, -X, an Y waveplates implement the π-rotations around x,−x, and y
axes, respectively.

The π rotations required for CPMG and XY-4 sequences are implemented with suitably
oriented half waveplates, and the effects of their finite widths on the relative random phase
are generated from the refractive index profiles of Equation (3.38). In Figure 3.9, we show
how the fidelity (we use the same definition of the fidelity as in Equation (3.26)) varies and
improves with the XY-4 sequence being applied for a realistic fiber length of 10 km, even
for a large variation of the parameters of the random dephasing ∆φ for the chosen refractive
index profiles.

Fidelity decay without the waveplates (free decays) is also shown in the inset for compar-
ison. In this free decay plot, we note that the fidelity quickly drops to 0.5 even for a small
distance (such as 20 m). The reason for this is that the random dephasing in the fiber results
in complete phase-randomization, and the initial pure state rapidly decays to the fully mixed
state (fidelity equal to 0.5 [125, 71]).

Figure 3.10 illustrates the results for the CPMG sequence for the same length of fiber. In
both Figures 3.9 and 3.10, we considered 5% flip-angle error to make the numerical results
comparable. The required number of wave plates to achieve a given fidelity can also be easily
estimated from the above figures. For instance, for the hyperbolic tangent refractive index
profiles, the required number of wave plates to achieve a 99.9% fidelity, are 840 and 860 for
the CPMG and XY-4 sequences, respectively. Fewer wave plates are required for hyperbolic
tangent refractive index profiles (for both the sequences) to achieve the same high fidelity.
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Figure 3.9: Fidelity with XY-4 sequence for different refractive index profiles. Total length
of the optical fiber is 10 km.

Figure 3.10: Fidelity with CPMG sequence for different refractive index profiles. Total length
of the optical fiber is 10 km.
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From these figures, we find that while both the sequences work reasonably well to preserve
the input polarization states for both the Gaussian and hyperbolic tangent refractive index
profiles, the rectangular refractive index profile gives the worst fidelity in both the cases. In
fact, this profile never gives perfect fidelity with the CPMG sequence. In general, the fidelity
is preserved better for the case of XY-4 sequence (Figure 3.9) than CPMG (Figure 3.10).
This is due to the fact that the phase errors due to the finite width of the waveplates get
partially cancelled due to the alternating π rotations around two orthogonal optic axes (X
and Y ) in a XY-4 sequence. It is also interesting to note that the fidelity in general improves
with increasing number of pulses (waveplates) in both cases showing the robustness of these
schemes in the sense that the pulse errors tend to cancel each other instead of getting added
up.

Due to finite widths of the wave plates, the actual angle of rotation deviates from π, and
this constitutes the flip angle error in the polarization state of the photon. In Figure 3.11,
we plot the variations of fidelity with respect to the standard deviation of the birefringent
dephasing ∆φ and flip angle errors for both the sequences. Here large flip angle errors up
to 50% are considered, and the contour plot shows that the input state is preserved up to
fidelity close to one for a large variation of the dephasing error as well as for flip angle errors.

Figure 3.11: Contour plots of the fidelity in presence of finite width errors. We show the
contour plots of the fidelity with the variations of the standard deviations of the random
birefringent dephasing ∆φ and the flip angle error for CPMG (Left) and XY-4 (Right). The
simulations are done with fixed number of waveplates (1000) and total length of the fiber
L = 10 km, and the average fidelity is obtained by taking 500 randomly generated phase
profiles.
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3.6 Conclusion

A quantum system is susceptible to inevitable interactions with its surrounding environment,
and in quantum information processing it is important to have robust control on the quantum
system such that it is effectively isolated from the environment. Dynamical decoupling is a
technique that can be used to suppress such effects of the environment by applying a sequence
of control pulses to the system. We considered the polarization photon qubits propagating
through optical fibers, and demonstrated that dephasing errors, contributed by both the fiber
birefringence and the finite widths of the waveplates implementing the pulse sequence, could
be suppressed by suitable dynamical decoupling methods. For a large range of rotational
error and random birefringent dephasing, our scheme provides a practical way to tackle them
as long as appropriate wave plate separations are maintained.

As we have dealt with noises due to random fluctuations caused by any possible source
such as temperature, stress, etc., the prescribed DD methods can be applied without an
experimentalist having a detailed, quantitative knowledge of the decohering environment. To
implement our proposed method experimentally to preserve the polarization qubits, several
familiar techniques could be suitable depending on the range of fiber lengths one wishes to
use. The wave plates may be directly incorporated into the fiber during the manufacturing
process. Other methods include writing a Bragg transmission grating periodically into the
fiber [76, 77], or twisting the fiber in controlled ways causing suitable mechanical stress [78].
Periodic modulations or perturbations in the refractive index in the graded index optical
fiber, implementing the desired profiles, can be generated by the techniques described in the
References [126, 127, 128].
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Chapter 4
Amplification and attenuation of Gaus-
sian entangled states

Quantum entanglement is one of the most fundamental quantum mechanical resources, and
it has wide range of applications in teleportation, cryptography, and super-sensitive and
super-resolving precision measurement. In this chapter, we will see that the propagation
of entangled light through an absorbing or amplifying medium significantly affects the non-
classical properties of the field. In particular, we consider the two-mode squeezed vacuum
state which is a well-studied entangled Gaussian state. This entangled state is easy to
produce and has been widely used in continuous-variable quantum information processing
including quantum metrology, quantum teleportation, quantum cryptography, quantum illu-
mination, etc. We study how the entanglement properties of an input field represented by
such entangled Gaussian states are affected by optical amplifiers and attenuators.

As an application of the above study, we present our work where we seek to exploit the
loss of the entanglement of the two-mode squeezed vacuum state in a lossy and noisy medium
to provide an estimate of the tolerable noise present in the medium for a given entanglement
to be preserved, and also to determine whether a target is present in the noisy medium.
The noisy environment, through which the signal mode is transmitted, is modeled as an
attenuator, and the optical amplifier is used to compensate the loss of the signal amplitude
in the attenuator.

In this chapter, we first briefly discuss the two-mode Gaussian states, particularly the
two-mode squeezed vacuum state, and their entanglement properties. We then provide an
overview of the models for an optical phase-insensitive amplifier and an attenuator and
their effects on the entanglement of the two-mode squeezed vacuum states in Section 4.2.
In Section 4.3, we present the model describing the propagation of the signal mode of a
two-mode squeezed vacuum state through a noisy medium (that may or may not contain a
weakly reflecting target) while the ancilla mode is retained. Section 4.4 contains our results
with the loss of entanglement where we use the covariance matrix formalism to characterize
the two-mode squeezed vacuum state, and the logarithmic negativity as a measure of the
entanglement present in the entangled system. We also discuss how the loss of entanglement
can be used as a direct signature of the presence or absence of a target in the noisy medium.

4.1 Gaussian States

Gaussian states are widely used in both quantum optics and quantum information theory.
They can be described by simple analytical formulas and their entanglement criteria are well-
developed [129, 130, 131]. A two-mode Gaussian state ρ with modes a and b is completely
characterized by its first and second statistical moments.
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4.1.1 Covariance matrix formalism

Let us first define the set of quadrature operators {xa, ya, xb, yb} as

xj = (aj + a†j)/
√

2, yj = (aj − a†j)/
√

2i, (4.1)

where j = a, b is the index for denoting the modes a and b. Let X denote a row vector
with elements (xa, ya, xb, yb) defined above. The first moment of the state ρ is called the
displacement vector (or the mean value)

X̄ = 〈X〉 = Tr(Xρ), (4.2)

while the second moment is given by the covariance matrix σ of the normalized Wigner
distribution [132]

W (X) =
e−(X−〈X〉)σ−1(X−〈X〉)T /2

(2π)n
√

det(σ)
, (4.3)

whose elements can be written as

σij =
1

2
〈(XiXj +XjXi)〉 − 〈Xi〉〈Xj〉. (4.4)

The expression in Equation (4.3) is valid for any n-mode Gaussian state.
The covariance matrix for an n-mode Gaussian state is, by definition, a real positive

symmetric matrix, and therefore one can make use of Williamson’s theorem [134]. This
theorem states that any real positive matrix of even dimension can be expressed in diagonal
form by using a symplectic transformation. By this theorem, for the n-mode covariance
matrix σ, there exists a symplectic matrix S such that

σ = Sσ⊕ST , σ⊕ = ⊕nk=1νkÎ , (4.5)

where the diagonal matrix σ⊕ is known as the Williamson form of the covariance matrix σ,
and its diagonal entries νk (k = 1, . . . , n) are the symplectic eigenvalues of σ.

4.1.2 Entanglement measures from the covariance matrix

From the symplectic eigenvalue spectra {νk} defined in Equation (4.5), one can define the
von Neumann entropy H(ρ) of the n-mode Gaussian state ρ as

H(ρ) =
n∑
k=1

g(νk), (4.6)

where g(x) ≡
(
x+1

2

)
log
(
x+1

2

)
−
(
x−1

2

)
log
(
x−1

2

)
. The von Neumann entropy of the reduced

state, for a bipartite state ρA,B, defines the entropy of entanglement which serves as a measure
of the entanglement [135].

The symplectic eigenvalues, when evaluated for the partially transposed density matrix,
can be used to characterize the conditions for separability (or rather the signature of the
entanglement) for bipartite Gaussian quantum states [129, 130, 136, 137]. In fact, if a quan-
tum state is separable, then its partial transpose is positive, and the positivity of the partial
transpose serves as a necessary condition for its separability.
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In the following, we discuss another quantitative measure of the entanglement known as
the logarithmic negativity that can also be evaluated from the symplectic eigenvalues of the
covariance matrix. For the sake of simplicity, let us consider the two-mode Gaussian state
case (n = 2). In this case, the covariance matrix has the following form

σ =

(
α γ
γT β

)
,

where α = αT , β = βT and γ are all 2 × 2 real matrices. In this case, the two symplectic
eigenvalues of the covariance matrix associated with its partial transpose ρ̃ are given by,

ν± =

√√√√∆̃(σ)±
√

∆̃(σ)2 − 4 det(σ)

2
, (4.7)

where ∆̃(σ) = det(α) + det(β) − 2 det(γ). If ν< denotes the smaller of the two symplectic
eigenvalues, then the necessary and sufficient condition for the corresponding quantum to be
entangled is

ν< <
1

2
. (4.8)

The associated quantitative measure of entanglement, the logarithmic negativity is given by
EN = max[0,− ln(2ν<)] [138, 131].

4.1.3 Two-mode squeezed vacuum state

We now consider the two-mode squeezed vacuum state |ξ〉 that can be generated by applying
the unitary two-mode squeezing operator

Ŝ(ξ) = exp
(
ξâ†b̂† − ξ∗âb̂

)
, (4.9)

on the two-mode vacuum state, i.e

|ξ〉 = Ŝ(ξ)|0, 0〉, (4.10)

where â and b̂ denote the annihilation operators corresponding to the modes a and b, respec-
tively.

The density matrix corresponding to this state can be written as ρ = Ŝ(ξ)|0, 0〉〈0, 0|Ŝ†(ξ),
where ξ = reiθ. The parameter r is called the squeezing parameter. The two symplectic eigen-
values are evaluated to be ν± = e±2r/2, and thus the quantum entanglement as quantified
by the logarithmic negativity EN = 2r is proportional to the squeezing parameter r.

4.2 Optical amplifier and attenuator models

An optical amplifier can be modeled as a bath containing N two-level atoms where N1

atoms are in the excited state while N2 are in the ground state. Here N1 + N2 = N , and
N1 > N2. Consider a single mode a of radiation (with annihilation and creation operators â
and â†, respectively) incident on the amplifier and in resonance with the atomic transition.
We assume that width of the atomic transition is large, and also the bath of N atoms is
maintained at the steady state [132, 139].
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In the interaction picture, the evolution of the density operator ρ for the mode a can be
described by the following master equation [132, 139, 140]

∂ρ

∂t
= −κN1(ââ†ρ− 2â†ρâ+ ρââ†)− κN2(â†âρ− 2âρâ† + ρâ†â). (4.11)

In the above master equation, an input Gaussian state evolves into a Gaussian state, preserv-
ing its Gaussian character. The gain of the amplifier is written as |G|2 = exp[2κt(N1−N2)].
Moreover, it has been shown that under the condition |G|2 < 2N1

N1+N2
, both the squeezing and

sub-Poisonnian statistics of an input state are preserved [141].
The optical amplifier described above adds quantum noise to the input field. As a result,

the Heisenberg-like evolution equation for the mode a can be written as

a(t) = Ga(0) + f †, (4.12)

where f † represents the noise added by the amplifier with the noise correlations 〈ff †〉 =
(1 + η)(|G|2 − 1) and 〈f †f〉 = η(|G|2 − 1) that follow from the commutation-preserving
relations. Here η = N2

N1−N2
.

Let us now consider the two-mode case, for instance, the two-mode squeezed vacuum

state Ŝ(ξ) = exp
(
ξâ†b̂† − ξ∗âb̂

)
, and subject both modes a and b to the optical amplifier

with gain G. The associated mode transformation equations are

a −→ Ga+ c†, b −→ Gb+ d†. (4.13)

The elements of the covariance matrix, as defined in Equation (4.4), can be obtained as [139]

α = β =
|G|2 cosh 2r + (1 + 2η)(|G|2 − 1)

2

(
1 0
0 1

)
, (4.14)

γ =
1

2
|G|2 sinh 2r

(
cos θ sin θ
− sin θ cos θ

)
. (4.15)

which gives

ν< =
|G|2(e−2r + (1 + 2η))− (1 + 2η)

2
. (4.16)

For the output state to be an entangled state, i.e. ν< < 1/2, the gain of the amplifier must
satisfy

|G|2 < 2

(1 + e−2r)
=

2

(1 + e−EN )
. (4.17)

Note that in the limit r →∞, the above condition becomes |G|2 < 2.
We now consider the case when only one mode (say a) is amplified, i.e. a −→ Ga +

c†, b −→ b. In this case, the elements of the covariance matrix are given by

α =
|G|2 cosh 2r + (1 + 2η)(|G|2 − 1)

2

(
1 0
0 1

)
, (4.18)

β =
cosh 2r

2

(
1 0
0 1

)
, (4.19)

γ =
1

2
|G|2 sinh 2r

(
cos θ sin θ
− sin θ cos θ

)
. (4.20)
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We can then obtain the following lowest symplectic eigenvalue

ν< =
1

4
(|G|2 + 1) cosh 2r + (1 + 2η)(|G|2 − 1)

−
√

(|G|2 − 1)2(cosh 2r + 1 + 2η)2 + 4|G|2 sinh2 2r), (4.21)

and find that ν< < 1/2 is satisfied for η = 0 (ideal amplification), i.e. the entanglement
survives regardless of the value of the gain. For η 6= 0, however, there exists a threshold gain,
and above this value of the gain, the entanglement disappears.

An attenuator which results in absorption of the radiation field can be described using the
same model as above but with N2 > N1 in the master equation in Equation (4.11). The ideal
attenuation corresponds to the case when N2 = N,N1 = 0. The Heisenberg-like evolution
equation for the mode a can be written as

a(t) = Ta(0) + g, T (t) = e−iωt−κt, (4.22)

where g represents the noise added by the amplifier with the noise correlation 〈g(t)g†(t)〉 =
1− |T (t)|2.

In this case, the elements of the covariance matrix can be obtained as

α = β =

(
e−2κt sinh2 r +

1

2

)(
1 0
0 1

)
, (4.23)

γ =
1

2
e−2κt sinh 2r

(
−1 0
0 1

)
, (4.24)

which gives

ν< =
1

2
e−2κt(e−2r + e2κt − 1). (4.25)

Here the eigenvalues ν< are always less than 1/2, implying that although both the amplifier
and the attenuator add noise to the modes of the entangled light, the effect of the attenuator
is less severe on the entanglement (or other non-classical properties) than is the amplifier’s
effect.

4.3 Propagation of Gaussian entangled state through noisy, lossy medium

4.3.1 Initial state—two mode squeezed vacuum

We consider quantum entanglement between different optical modes of radiation field, and
denote the two modes of the field by a0 and b0. An optical parametric amplifier (OPA)
produces two-mode squeezed vacuum states of the two modes a0 and b0, a prominent example
of Gaussian entangled continuous-variable states.

After the two-mode squeezed vacuum state |ξ〉 = exp
(
ξâ†0b̂

†
0 − ξ∗â0b̂0

)
(where |ξ〉 = reiθ)

is generated by the OPA, one of the modes (say b0) is retained, and we transmit the signal
mode a0 through a noisy environment (or atmosphere) toward a spatial region that may or
may not contain a weakly reflecting target.
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4.3.2 Propagation through noisy environment

We model the noisy environment as an attenuator with attenuation factor T , along with a
classical noise A that represents the overall noise or turbulence in the atmosphere. When the
signal mode a0 is transmitted through an atmosphere, the signal mode is attenuated by the
factor T , as shown in Figure 4.1.

Amplifier 

Attenuator 

TARGET 

Noisy medium 
Pump 

OPA 

Figure 4.1: Schematic diagram of propagation of the signal mode through noisy medium. The
signal mode a0 propagates through through the noisy medium which is modeled by an atten-
uator, and to compensate the loss a phase-insensitive amplifier is used. The entanglement is
calculated between the retained mode b0 and the mode a1 after propagation.

For such an attenuator with attenuation factor T and intrinsic noise g, we can write a
Heisenberg-like evolution equation for the mode a0 as

a0(t) = Ta0(0) + g(t), T (t) = e−iωt−κt, (4.26)

〈g(t)〉 = 0, 〈g†(t)g(t)〉 = 0, 〈g(t)g†(t)〉 = 1− |T (t)|2. (4.27)

If there is some additional ambient noise present in the medium, that further aggravates
the loss of entanglement when an initially entangled state propagates through the medium.
Let us denote such classical noise, which can represent the turbulence noise in atmosphere
for instance, by A and assume that this noise is Gaussian in nature. Adding this noise to
Equation (4.26), we can write

a′0(t) = Ta0(0) + g(t) + A. (4.28)

The signal-to-noise ratio for the mode at the output of the attenuator further decreases
due to this added noise. We will see in the next section (see Section 4.4) that it also degrades
the entanglement of the quantum state being transmitted, and it is possible to provide a
range of the tolerable noise from the information of the entanglement calculated between the
transmitted mode and the retained mode.
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As we model the atmosphere or the noisy environment with the attenuator, the input
signal consisting of the two-mode squeezed vacuum |ξ〉 is affected by the loss and attenuation
and eventually the signal itself is lost. For the sake of practical applications, one therefore
needs to preserve the amplitude of the signal by employing optical amplifiers.

An optical amplifier, as the name suggests, amplifies the optical mode in the signal but
also adds quantum noise to the signal. As a matter of fact, the optical amplifier adds more
noise photons to the signal than the attenuator, affecting its non-classical characteristics in
a more severe way than the attenuator. Hence, the amplifier with a gain G can be used to
compensate the attenuation effects T (with TG ≈ 1) to preserve the signal amplitude with
the trade-off of having a more rapid decay of entanglement.

In the previous section (see Section 4.2), we have discussed the effects of such optical
amplifiers on the entanglement of the Gaussian entangled states. Here in order to quantify
the degradation of the entanglement affected by an optical amplifier (adding the quantum
noise denoted by f) in conjunction with the attenuator, we first write the expression for the
output mode

a1 = G(Ta0 + g + A) + f = TGa0 +G(g + A) + f. (4.29)

We use the logarithmic negativity (see Section 4.2) as the measure of the entanglement for
the two-mode squeezed vacuum, and calculate the symplectic eigenvalues of the covariance
matrix using Equation (4.29).

4.4 Covariance matrix and entanglement calculation

In the following, we calculate the entanglement (or the loss thereof) between the modes a0

after propagation and the retained mode b0 that will depend on the noise terms, depicting
the loss of entanglement due to such propagation. In other words, the loss of entanglement
(quantified by the logarithmic negativity) due to the propagation through the attenuator
followed by the amplifier will have the signature of the noise present in the medium.

The signal mode a0 that is propagated through the noisy medium satisfies the commuta-
tion relation [a0, a

†
0] = 1. The mean photon number in this mode is given by

〈a†0a0〉 = sinh2 r, (4.30)

while the correlation between the modes a0 and b0 is

〈a0b0〉 = cosh r sinh reiθ, (4.31)

r being the squeezing parameter.
The covariance matrix σ in the present case is a 4× 4 real symmetric matrix which can

be written as [132]

σ =


A 0 B C
0 A C −B
B C A′ 0
C −B 0 A′

 , (4.32)

where the lowest symplectic eigenvalue ν< can be written as

ν< =
1

2

[
(A+ A′)−

√
(A− A′)2 + 4(B2 + C2)

]
. (4.33)
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In order to evaluate the elements of the covariance matrix shown above, we first calculate
〈a†1a1〉 and 〈a1a

†
1〉 for the transmitted mode a1. From Equation (4.29), we obtain

〈a†1a1〉 = T 2G2〈a†0a0〉+ (|G|2 − 1) + |G|2|A|2, (4.34)

〈a1a
†
1〉 = T 2G2〈a0a

†
0〉+ (1− |T |2) + |G|2|A|2, (4.35)

which gives the elements of the covariance matrix as

σ11 =
1

2

[
T 2G2 cosh 2r + |G|2(1 + 2|A|2)− |T |2

]
= σ22, (4.36)

σ12 = σ21 = σ34 = σ43 = 0, (4.37)

σ13 = σ31 =
TG sinh 2r cos θ

2
, (4.38)

σ14 = σ41 =
TG sinh 2r sin θ

2
, (4.39)

where σij = 1
2
〈(XiXj + XjXi)〉 − 〈Xi〉〈Xj〉 for the quadratures Xi and Xj (see Section 4.3)

of the two modes a1 and b0. Thus,

A =
1

2

[
T 2G2 cosh 2r + |G|2(1 + 2|A|2)− |T |2

]
, (4.40)

A′ =
cosh 2r

2
, B =

TG sinh 2r cos θ

2
, C =

TG sinh 2r sin θ

2
. (4.41)

The lowest symplectic eigenvalue is ν< is evaluated as

ν< =
1

2

(T 2G2 + 1) cosh 2r + F

2
−
√(

(T 2G2 − 1) cosh 2r + F

2

)2

+ T 2G2 sinh2 2r

 ,
(4.42)

where the combined effect of the noise is given by the noise term

F = |G|2(1 + 2|A|2)− |T |2. (4.43)

The expression of ν< in Equation (4.42) serves as a measure of the entanglement between
the optical modes a1 after propagation and the retained mode b0, and it also yields information
about the noisy environment as described below. In this sense, using the entanglement
calculation, we can provide a precise way of probing (or remote mapping) noisy medium.

The effect of the classical noise A on the entanglement is depicted in Figure 4.2, where
one can see that the entanglement measure ν< is plotted as a function of the gain |G|2 of
the amplifier for a fixed value of the attenuation |T |2 = 0.5. We see that the entanglement
decreases as the value of the classical noise |A|2 is increased from |A|2 = 0 (no classical noise)
to |A|2 = 0.3. The solid red line marks the value of ν< = 1/2 beyond which the entanglement
between the modes a1 and b0 vanishes. Larger values of the noise |A|2 results in more rapid
decay of entanglement.

In Figure 4.3, we plot the entanglement measure ν< as a function of the squeezing param-
eter r for different classical noise values keeping the attenuation factor the same |T |2 = 0.5.
The plots in this figure also reflects the detrimental effects of the noise |A|2 on the entangle-
ment.
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Figure 4.2: Plot of the eigenvalue ν< as a function of the gain |G|2 of the amplifier. We
show the variation of ν< for different values of the classical noise |A|2. As the value of |A|2
increases, the entanglement between the optical modes starts to disappear faster.

We also compare the results of the entanglement for one attenuator without any amplifier,
(i.e., |G| = 1) and with the ones where amplifier is used to compensate the effect of the loss on
the signal amplitude (by making the approximation |T ||G| = 1). These results are plotted in
Figure 4.4, where we can see that although adding an amplifier to the attenuator is important
for practical purposes, it affects the entanglement between the optical modes in a more severe
way than the attenuator. The solid red line marks the value of ν< = 1/2 beyond which, thus
providing a reference for the comparing the plots in the figure. Note that |T |2 = exp(−2κt)
can be varied from 0 to 1.

Since presence of noise, be it the intrinsic quantum noise of the amplifiers or the attenua-
tors or the classical turbulence noise, is generally unavoidable in most practical applications,
one might also be interested in determining the allowable ranges of the classical noise for a
given attenuation (or vice versa) for preserving a given entanglement in order to maintain its
usefulness in the presence of such noise. In other words, the entanglemenet can be regarded
as a probe for the noise present in the medium. Using the contour plot in Figure 4.5, we
show that it is possible to provide an estimate for the range of noises |T |2 and |A|2 one can
allow for the transmission of the signal mode through the noisy atmosphere.

In Figure 4.6, we compare the variations of the entanglement measure ν< for different
values of the initial entanglement (i.e. different values of the squeezing parameter r). Higher
values of r imply higher initial entanglement (note that EN = 2r initially, i.e. initial entan-
glement is proportional to r), and we find that if one starts with higher values of squeezing
parameter r, a larger classical noise |A|2 can be tolerated before the output state becomes
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Figure 4.3: Plot of the eigenvalue ν< for different values of the classical noise |A|2. We plot
ν< as a function of the squeezing parameter r for different values of classical noise |A|2 with
the same |T |2 = 0.5.

Figure 4.4: Plot of the eigenvalue ν< without and with optical amplifier for different noise.
We compare ν< for r=1, without any amplifier and with optical amplifier for different values
of the classical noise |A|2.

unentangled. The solid brown line marks the ν< = 1/2, beyond which the entanglement
disappears.
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Figure 4.5: Contour plot of the eigenvalue ν< for different noise with fixed r = 1.5. We
plot ν< as a function of the classical noise |A|2 and the attenuation |T |2 for the squeezing
parameter r = 1.5.

Figure 4.6: Eigenvalue ν< for different values of the squeezing parameter r.
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4.5 Entanglement as a tool for target detection

In the above we showed how the entanglement calculation can be useful for providing an
estimate of the noise and losses in the medium through which the signal mode has been
propagated. In the following, we show how we can exploit this information about the entan-
glement to detect the presence of an object. The conventional way to detect the presence
of an object to shine light (coherent laser source) in the direction where the object is likely
to be present and to see if any light is reflected off. Lloyd et al. showed that using en-
tangled photons in such scenario can provide substantial advantage, despite the complete
loss of entanglement in a highly lossy and noisy medium, over the unentangled or coherent
light [142, 143]. This is also known as quantum illumination where it is possible to get sig-
nificant improvement in the signal-to-background noise ratio in detecting a target embedded
in the noisy medium.

In a typical setup for target detection using entangled light, an entangled state is prepared
with a signal photon and an ancilla photon, and the signal photon is used only to detect the
target, while the ancilla photon is retained. If the target is immersed in noise or thermal
radiation, the signal photon will be affected by such noise and as a result, entanglement
between the signal photon and the ancilla photon will be significantly deteriorated. When
we detect the signal photon at the detector, the final entanglement between the detected
signal photon and the retained ancilla photon will carry all the information about the noisy
environment as well the information regarding whether the object is present or not. In this
sense, entanglement can be used as a direct measure of the presence of the target, despite
the presence of entanglement-destroying loss and noise.

The intuitive reason behind the enhancement of sensitivity for photon counting, according
to the References [142, 143], is that if the signal is entangled with the ancilla, then it is harder
for the noise to masquerade as the returning signal. This intuition turns out to be correct
in our case too, as we argue in the following, with the calculation of final entanglement
between the modes at the detector even though the noise and loss completely destroy the
entanglement; hence it also can justify one’s choice of using entangled Gaussian state over
conventional light for the purpose of precise detection of the target.

After transmitting the signal mode a0 through the noisy environment modeled by the
attenuator (and followed by the amplifier to compensate the loss), the output mode a1 given
by Equation (4.29). For the attenuation factor T = 0, we see that the signal is lost in the
noisy medium, and we get only the (amplified) noise at the output. In other words, the initial
entanglement is completely lost which is also reflected in the following covariance matrix

σT=0 =
1

2


(1 + 2|A|2) 0 0 0

0 (1 + 2|A|2) 0 0
0 0 cosh 2r 0
0 0 0 cosh 2r

 , (4.44)

when we consider propagation through the attenuator, without the amplifier (using amplifier
merely adds one constant factor in the diagonal terms as can be seen from Equation (4.29)).
Note that the off-diagonal terms in the covariance matrix disappear in this case implying the
complete loss of entanglement. This corresponds to the case of the presence of the target
in the medium when only the noise photons arrive at the detector. While for the T 6= 0
case, the non-zero off-diagonal terms effectively carry the signature of the cross-correlations
present between the mode a1 after propagation and the retained idler mode b0. The latter

62



case, i.e. T 6= 0, corresponds to when the entanglement is still present between these two
modes, and the total signal at the detector consists of the signal and the noise. For T = 0,
however, since all the entanglement present in the initial two-mode squeezed vacuum state
is lost, the output signal at the detector consists of only noise photons. Furthermore, we can
expect intuitively the entanglement reduces as |T |2 6= 0 decreases.

In Figure 4.7, we plot the entanglement measure ν< as a function of the squeezing pa-
rameter r for different values of |T |2 (with same classical noise |A|2). The solid red line
corresponds to |T |2 = 0, while the initial entanglement between the modes a0 and b0 is also
plotted for comparison as the solid blue line. For T = 0, we see that ν< is always greater than
1/2 regardless of the value of the squeezing parameter r, i.e., the output mode is no longer
entangled with the retained mode even if we start with a highly entangled initial state. In
this sense, the entanglement measure ν< can be considered to carry a signature of the absence
or the presence of the target.

Figure 4.7: Entanglement as a tool for target detection . We plot the variation of the sym-
plectic eigenvalue ν< as a function of the squeezing parameter r for different |T |2. The solid
red line marks the T = 0, that corresponds to the no target case where all the entanglement
has been lost, i.e. ν< > 1/2 for all values of r.

4.6 Conclusion

In this chapter, we have discussed how the optical amplifiers and attenuators affect the
entanglement properties of Gaussian entangled state by adding quantum noise to the state
propagating through them. The detrimental effects of the added noise is shown in terms of
the entanglement measure known as the logarithmic negativity that follows from the well-
studied covariance matrix (or symplectic) formalism for general Gaussian continuous variable
quantum states.

We considered a noisy medium that has been modeled by an attenuator followed by an
optical amplifier to compensate the loss, and analyzed the loss of entanglement for the two-
mode squeezed vacuum state using a necessary and sufficient condition for the entanglement
to be present. We showed how the loss of entanglement in such a noisy medium can be
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used to predict the absence or presence of a target embedded in the medium. However, this
proposed scheme to detect the target requires, in principle, reconstruction of the covariance
matrix which can be implemented, for example, by means of a single homodyne detector [144].
This is in contrast to the case analyzed by Shapiro et al. where the quantum target detection
problem is considered to be a quantum binary hypothesis testing problem by performing
joint quantum measurement on the received states at the detector [143, 145]. In both cases,
however, we note that the non-classical cross-correlation signature between the modes can
effectively be exploited to distinguish between the presence or absence of such a target.
Furthermore, we also showed that the entanglement calculation can be useful to provide an
estimate of the tolerable noise for a given entanglement to be preserved.
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Chapter 5
Noisy quantum channels and limits

on the rate of communication 1

Any communication system aims to transfer information reliably from one point to another.
Such transfer of information is typically done by modulating the information into an electro-
magnetic wave (carrier), which is then transmitted through a noisy communication channel.
The receiver, upon receiving the signal, demodulates the received state in order to recover
the information sent. In reality, however, noise present in the communication channels limit
the performance of such communication systems based on electromagnetic wave propaga-
tion. Hence, determining the information-carrying capacity of noisy quantum communication
channels is of practical relevance.

A quantum model for optical communication systems (e.g., the ones that are based on
fiber or free-space communication) is provided by the lossy bosonic channels, where the modes
of the electromagnetic field are used as the information carrier interacting with thermal-like
noisy environments. Gaussian bosonic channels are used to represent realistic models of
noise in many communication protocols [146, 6, 147], and in this chapter we will consider the
transmission of classical messages through such channels.

For the last few decades, extensive efforts have been put in the field of quantum infor-
mation theory to investigate the ultimate limits on reliable communication through noisy
quantum communication channels. In quantum information theory, the classical capacity of
a quantum channel is the maximum rate at which a sender can transmit classical messages
over the quantum channel such that the error probability decreases to zero in the limit of
many independent uses of the channel. This notion of the classical capacity is inspired by
the Shannon’s seminal work [5] that established the capacity theorem for a classical channel.
Holevo, Schumacher, and Westmoreland (HSW) later proved that a quantum generaliza-
tion of Shannon’s formula characterizes the capacity of a quantum channel [6, 7]. Many
of the open questions in quantum information, quantum communication, and quantum op-
tics communities revolve around identifying a tractable formula for the capacity of quantum
communication channels.

The above definition of the classical capacity suggests that (a) for any rate below capac-
ity, one can communicate error free in the limit of many channel uses, and (b) there cannot
exist an error-free communication scheme in the limit of many channel uses when the rate
of communication exceeds the capacity. However, this definition leaves open the possibility
to increase the communication rate R by allowing for some error ε > 0, whenever the rate R
exceeds the capacity. Leaving room for the possibility of such a trade-off between the rate R
and the error ε is the hallmark of a “weak converse,” and the corresponding capacity is some-

1Parts of this chapter previously appeared as B. Roy Bardhan and M. M. Wilde, Physical Review A 89,
022302 (2014) (Copyright(2014) American Physical Society) [158] and B. Roy Bardhan, R. Garcia-Patron,
M. M. Wilde, and A. Winter, Proceedings of IEEE International Symposium on Information Theory (ISIT),
pages 726-730 (2014)(Copyright(2014) IEEE) [159]. They are reprinted by permission from the publishers
See Appendix C for details.
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times called the weak capacity. A strong converse, on the contrary, establishes the capacity
as a very sharp threshold, so that there is no such room for a trade-off between rate and error
in the limit of many independent uses of the channel. The strong converse thus guarantees
that the error probability of any communication scheme asymptotically converges to one if
its rate exceeds the classical capacity. A conceptual illustration of this idea is provided in
Figure 5.1, where we also demonstrate the achievability of the rate of communication and the
weak converse part. Note that this plot should be interpreted in the limit of large n where n
is the number of channel uses.

Figure 5.1: Weak versus strong converse for communication through quantum channels. Here,
we illustrate the idea that the error probability converges to one in the limit of many channel
uses if a communication rate corresponds to a strong converse rate, whereas establishing a
communication rate as a weak converse rate suggests that there exists room for a trade-off
between communication rate and error proability. Achievable rates are such that there exists
a communication scheme whose error probability converges to zero in the limit of many
channel uses.

Despite their significance in understanding the ultimate information-carrying capacity
of noisy communication channels, strong converse theorems are known to hold only for a
handful of quantum channels [148, 149, 150]. Strong converse theorems have been shown
to hold for quantum memoryless channels with classical inputs and quantum outputs [151,
152]. Recently, a strong converse theorem has been proved to hold for the classical capacity
of the pure-loss bosonic channel [153]. These studies have provided an estimate of the
communication rate for the respective channels above which it is not possible to transmit
reliably the messages from the sender to the receiver of the channel. The strong converse
results are also helpful in establishing the security for particular models of cryptography in
which the eavesdropper is limited to having noisy storage [154].

In this chapter, we consider the transmission of classical messages through phase-insensitive
Gaussian channels. These channels are considered to be the most practically relevant mod-
els to describe free space or optical fiber transmission, or transmission of classical messages
through dielectric media, etc. The recent works in References [155, 156] have established
the exact expressions of the classical capacities of these channels under the constraint on the
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mean photon number of the input signal states. For instance, consider the thermal noise
channel represented by a beamsplitter with transmissivity η ∈ [0, 1] mixing signaling pho-
tons (with mean photon number NS) with a thermal state of mean photon number NB. The
results in References [155, 157, 156] imply that the classical capacity of this channel is

g(ηNS + (1− η)NB)− g((1− η)NB), (5.1)

where g(x) ≡ (x+1) log2(x+1)−x log2 x is the entropy of a bosonic thermal state with mean
photon number x. However, the corresponding converse theorem, which can be inferred as a
further implication of their work, is only a weak converse, in the sense that the upper bound
on the communication rate R of any coding scheme for the thermal noise channel can be
written as

R ≤ 1

1− ε [g(ηNS + (1− η)NB)− g((1− η)NB) + h2(ε)],

where ε is the error probability, and h2(ε) is the binary entropy with the property that
limε→0h2(ε) = 0. That is, only in the limit ε→ 0 the above expression serves as the classical
capacity of the channel, leaving room for a possible trade-off between rate and error proba-
bility. We prove a strong converse theorem for the classical capacity of all phase-insensitive
Gaussian channels that completely rules out such possibility of trade-off guaranteeing that the
success probability of correctly decoding the transmitted message asymptotically converges
to zero when the rate of communication exceeds the capacity of such channels.

This chapter is structured as follows. First, we present a brief review of bosonic Gaus-
sian channels, and specify the capacities of a few canonical bosonic Gaussian channels in
Section 5.1. In Section 5.2, we review some preliminary ideas and notations on the classical
capacity of noisy bosonic quantum channels. Section 5.3 contains our main result that the
strong converse property holds for the capacity of noisy bosonic Gaussian channels when im-
posing a maximum photon number constraint on the signal photon states. We then conclude
this chapter with a brief summary and a few potential applications of our results.

5.1 Noisy Bosonic Channel Models

Bosonic Gaussian channels play a very significant role in modeling optical communication
channels that rely on optical fibers or free space transmission. In general, an N mode
bosonic channel can be represented by N quantized modes of the electromagnetic field in
a tensor-product Hilbert space H⊗N = ⊗Nk=1Hk with N pairs of bosonic field operators
{âk, â†k} (k = 1, . . . , N). These bosonic field operators âk and â†k are known as the annihilation
and the creation operators of the k th mode of the field, respectively.

In the following discussion, we will restrict ourselves to memoryless Gaussian channels, in
which each mode of the field transmitted through the noisy channel is affected independently
and identically with respect to each other. This simplifies the description of the channel in the
sense that it is now sufficient to consider the individual modes of the field resulting in a single-
mode description of the noisy communication channel. However, the corresponding multi-
mode descriptions of the same channel can be constructed from tensor-product structures
using the single-mode channels.

Bosonic Gaussian channels are represented by completely positive and trace preserving
(CPTP) maps and they evolve Gaussian input states into Gaussian output states [160, 146,
161]. We note that a Gaussian state (e.g., the vacuum state or the thermal state) is completely
characterized by a mean vector and a covariance matrix [160]), which are necessarily the first
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and second moments of the quantum state ρ̂ representing the Gaussian state. Since it is
easy to characterize the Gaussian states in this manner, it turns out that the action of the
Gaussian channels on such states are also easy to describe. Single-mode Gaussian channels
are characterized by two matrices X and Y acting on the covariance matrix Γ of a single-mode
Gaussian state in the following way:

Γ −→ Γ′ = XΓXT + Y, (5.2)

where XT is the transpose of the matrix X. Here X and Y are both 2× 2 real matrices, and
in order for the map to be a CPTP map, they must satisfy

Y ≥ 0, detY ≥ (detX − 1)2.

A bosonic Gaussian quantum channel is said to be ‘quantum-limited’ if the above inequality
(involving detX and detY ) is saturated [162, 163, 155, 156].

Phase-insensitive Gaussian channels are invariant with respect to phase space rotations
[164, 161, 147, 163], and they are considered to be one of the most practically relevant models
to describe free space or optical fiber transmission, or transmission of classical messages
through dielectric media, etc. In fact, phase-insensitive Gaussian channels constitute a broad
class of noisy bosonic channels, encompassing all of the following: thermal noise channels,
additive noise channels , and noisy amplifier channels [164, 155, 156, 165]. In general, the
phase-insensitive channels can be characterized by the following matrices

X = diag
(√

τ ,
√
τ
)
, (5.3)

Y = diag (ν, ν) ,

with τ, ν ≥ 0 obeying the constraint above. The action of such phase-insensitive channels on
an input signal mode can be uniquely described by their transformation of the symmetrically
ordered characteristic function, defined as

χ(µ) ≡ Tr[ρD(µ)], (5.4)

where D(µ) ≡ exp(µâ†−µ∗â) is the displacement operator for the input signal mode â [160].
For the Gaussian channels, the transformed characteristic function at the output is given by
χ′(µ) = χ(

√
τµ) exp(−ν |µ|2 /2) [156, 155, 146].

In the following, we discuss some examples of phase-insensitive Gaussian channels.

5.1.1 Thermal noise channel

For the thermal noise channel, the environmental mode b̂ is in the thermal state, i.e., an
isotropic Gaussian mixture of coherent states with average photon number NB > 0. In the
number state representation, the density matrix of the thermal state ρb can be written as

ρb =

∫
d2α

exp(−|α|2/NB)

πNB

|α〉〈α| = 1

(NB + 1)

∞∑
l=0

(
NB

NB + 1

)l
|l〉〈l|. (5.5)

The interaction of signal photons with the thermal channel Eη,NB can be modeled by a
beamsplitter of transmissivity η coupling the signal with a thermal state with mean photon
number NB. The parameter η ∈ [0, 1] of the beamsplitter characterizes the fraction of input
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photons that make it to the output on average. The special case NB = 0 (zero-temperature
reservoir) corresponds to the pure-loss bosonic channel Eη,0, in which each input photon has
probability η of reaching the output.

The beamsplitter transformation corresponding to the thermal channel can be written as
the following Heisenberg-like evolution of the signal mode â and the environmental mode b̂:

â −→ √ηâ+
√

1− ηb̂
b̂ −→ √ηb̂−

√
1− ηâ. (5.6)

The unitary evolution operator U for the above transformation is given by the following

matrix U :=

( √
η

√
1− η

−√1− η √
η

)
. Tracing out the environmental mode b̂ from it yields the

CP map Eη,NB for the thermal noise channel

Eη,NB = Trb̂
[
U(ρa ⊗ ρb)U †

]
, (5.7)

where ρa and ρb correspond to the input state and the environmental thermal state, respec-
tively, and ρb is given by Equation (5.5).

The vacuum state at the input of the thermal channel produces a thermal output state
given by

Eη,NB(|0〉〈0|) =
1

((1− η)NB + 1)

(
(1− η)NB

(1− η)NB + 1

)â†â
. (5.8)

5.1.2 Additive noise channel

The additive noise channel is another example of a noisy bosonic channel, which is given by
the following completely-positive (CP) map:

Nn̄(ρ) =

∫
d2αPn̄(α)D(α)ρD†(α), (5.9)

where Pn̄(α) =
exp(−|α|2/n̄)

πn̄
, and D(α) = exp(αâ† − α∗â) is the displacement operator for

the input signal mode â. Pn̄(α) the Gaussian probability distribution representing a random
displacement of the signal mode â in phase space. For this channel, a classical Gaussian noise
is superimposed on the signal mode, resulting in the displacement in phase space.

The variance n̄ of this distribution, that characterizes the additive noise channel Nn̄,
represents the number of noise photons added to the mode â by the channel [166]. For n̄ = 0,
the CP map in Equation (5.9) becomes the identity channel, while for n̄ > 0, noise photons
are injected into the channel.

The additive noise channel Nn̄ on a vacuum-state input |0〉 produces a thermal-state
output

Nn̄(|0〉〈0|) =
1

n̄+ 1

(
n̄

n̄+ 1

)â†â
. (5.10)

Note that the additive noise channel can be obtained from the thermal noise channel in the
limit η → 1 and NB →∞, with (1− η)NB → n̄ [167].
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5.1.3 Noisy amplifier channel

The noisy amplifier channel is a widely used model in optical communication— it is not only
extensively used to model noisy communication when the channel provides gain to the signal
amplitude at the cost of added quantum noise, but also to model the optical parametric
amplifier used in various practical receivers.

The amplifier channel ANG is characterized by its gain G ≥ 1 and the mean number of
photons N in the associated ancilla input mode (which is in a thermal state). The correspond-
ing CPTP map for this channel can be obtained from the following commutator-preserving
phase-insensitive amplifier mode transformation relation [162]

ĉ =
√
Gâ+

√
G− 1b̂†, (5.11)

where b̂ is the modal annihilation operator for the noise injected by the amplifier. The
amplifier channel ANG is called quantum-limited when the environment is in its vacuum state
(we will denote such a quantum-limited amplifier by A0

G). This is the case when the minimum
possible noise is introduced by the amplifier to the signal since the environment mode is in
the vacuum state.

The transformed characteristic functions for the above Gaussian channels in phase-space
are given by the following expressions [157, 167, 165]

χ′(µ) =


χ(
√
ηµ)e−(1−η)(NB+1/2)|µ|2 for Eη,NB

χ(µ)e−n̄|µ|
2

for Nn̄
χ(
√
Gµ)e−(G−1)(N+1/2)|µ|2 for ANG .

(5.12)

5.1.4 Structural decompositions

Any phase-insensitive Gaussian bosonic channel P can be written as a concatenation of a
pure-loss channel followed by a quantum-limited amplifier channel [168, 164],

P = A0
G ◦ Eη,0, (5.13)

where Eη,0 is a pure-loss channel with parameter η ∈ [0, 1] and A0
G is a quantum-limited

amplifier whose gain G ≥ 1. We can note that for the above decomposition rule, τ = ηG and
ν = G (1− η) +G− 1 (with τ and ν defined in (5.3)).

For instance, the additive noise channel Nn̄ can be viewed as a cascade of a pure-loss
channel with transmissivity η = 1/(n̄ + 1) followed by a quantum-limited amplifier channel
whose gain G = n̄+ 1 exactly compensates for the loss, i.e.

Nn̄(ρ) = (A0
n̄+1 ◦ E 1

n̄+1
,0)(ρ), (5.14)

Also, we can consider the thermal noise channel Eη,NB as a cascade of a pure-loss channel
with transmissivity η′ = η/G′ followed by a quantum-limited amplifier channel with gain
G′ = (1− η)NB + 1, i.e.

Eη,NB(ρ) = (A0
(1−η)NB+1 ◦ Eη′,0)(ρ). (5.15)

Appendix B contains details on how the above structural decompositions can be obtained
by considering the action of the channels on the covariance matrix Γ.
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5.1.5 Capacitiies of noisy phase-insensitive Gaussian channels

For a single-mode pure-loss bosonic channel (where the environmental mode is in the vacuum
state) when the sender is constrained to use at most NS photons on average per use of the
channel, the capacity is given by g(ηNS) [169], where

g(x) ≡ (x+ 1) log2(x+ 1)− x log2(x) (5.16)

denotes the entropy of a bosonic thermal state with average photon number x. The above
capacity has shown to be achievable with coherent-state encoding with a constraint on the
mean number of photons per use of the channel [169].

The recent breakthrough works in References [155, 156] have provided a solution to the
long-standing minimum output entropy conjecture [147, 167] for all phase-insensitive Gaus-
sian channels, showing that the minimum output entropy for such channels is indeed achieved
by the vacuum input state, i.e., H[P(|0〉〈0|)] ≤ H[P(ρ)] for every ρ, where H(.) is the von
Neumann entropy. As a major implication of this work, the expressions for the classical
capacities of various phase-insensitive channels are known exactly, and are given by,

C(Eη,NB) = g(ηNS + (1− η)NB)− g((1− η)NB), (5.17)

C(Nn̄) = g(NS + n̄)− g(n̄) , (5.18)

C(ANG ) = g(GNS + (G− 1)(N + 1))− g((G− 1)(N + 1)), (5.19)

where NS is the mean input photon number. In general, the classical capacity of any phase-
insensitive Gaussian channel can be expressed as

g(N ′S)− g(N ′B), (5.20)

where N ′S = τNS + (τ + ν − 1) /2 and N ′B = (τ + ν − 1) /2, with τ and ν defined in (5.3). In
the above, N ′S is equal to the mean number of photons at the output when a thermal state
of mean photon number NS is input, and N ′B is equal to the mean number of noise photons
when the vacuum state is transmitted. Note that the capacities in (5.17), (5.18), and (5.19)
all have this particular form as in Equation (5.20). The classical capacities specified above
can be achieved by using coherent-state encoding for the respective channels [147].

5.2 Notations and Definitions

In this section, we present a brief review of the notations and the preliminary ideas that
we will use in the next section to prove our strong converse theorems for the capacity of
phase-insensitive channels.

5.2.1 Quantum Rényi entropy and smooth min-entropy

The quantum Rényi entropy Hα(ρ) of a density operator ρ is defined for 0 < α <∞, α 6= 1
as

Hα(ρ) ≡ 1

1− α log2 Tr[ρα] . (5.21)

It is a monotonic function of the “α-purity” Tr[ρα], and the von Neumann entropy H(ρ) is
recovered from it in the limit α→ 1:

lim
α→1

Hα(ρ) = H(ρ) ≡ −Tr[ρ log2 ρ] .
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The min-entropy of ρ, which is the negative logarithm of its maximum eigenvalue, can also
be recovered from it in the limit as α→∞:

lim
α→∞

Hα(ρ) = Hmin (ρ) ≡ − log2 ‖ρ‖∞ ,

where ‖ρ‖∞ is the infinity norm of ρ defined as

‖ρ‖∞ := max
i
{|λi|}, (5.22)

λi being the eigenvalues of the density operator ρ.
The quantum Rényi entropy of order α > 1 of a thermal state with mean photon number

NB can be written as [170]
log2 [(NB + 1)α −Nα

B]

α− 1
.

For an additive noise channel Nn̄, the Rényi entropy Hα(Nn̄(ρ)) for α > 1 achieves its
minimum value when the input ρ is the vacuum state |0〉〈0| [157]:

min
ρ
Hα(Nn̄(ρ)) = Hα(Nn̄(|0〉〈0|)) =

log2[(n̄+ 1)α − n̄α]

α− 1
for α > 1. (5.23)

Similarly, for the thermal noise channel Eη,NB , the Rényi entropy Hα(Eη,NB(ρ)) for α > 1
achieves its minimum value when the input ρ is the vacuum state |0〉〈0| [157]:

min
ρ
Hα(Eη,NB(ρ)) = Hα(Eη,NB(|0〉〈0|)) =

log2[((1− η)NB + 1)α − ((1− η)NB)α]

α− 1
for α > 1.

(5.24)
Furthermore, using the main result of [157] we can say that the minimum output Rényi
entropy of any phase-insensitive Gaussian channel P is achieved by the vacuum state:

min
ρ(n)

Hα(P⊗n(ρ(n))) = nHα(P(|0〉〈0|). (5.25)

An elegant generalization of the above Rényi entropy is the smooth Rényi entropy. The
smoothed Rényi entropy was first introduced by Renner and Wolf for classical information
sources [171], while it was later generalized to the quantum case by considering the set Bε(ρ)
of density matrices ρ̃ that are ε-close in trace distance to ρ for ε ≥ 0. The ε-smooth quantum
Rényi entropy of order α of a density matrix ρ is defined as [172]

Hε
α(ρ) = inf

ρ̃∈Bε(ρ)
Hα(ρ̃) for 0 ≤ α < 1,

Hε
α(ρ) = sup

ρ̃∈Bε(ρ)

Hα(ρ̃) for 1 < α <∞.

In the limit as α→∞, we recover the smooth min-entropy of ρ [172, 173]:

Hε
min(ρ) ≡ sup

ρ̃∈Bε(ρ)

[− log2 ‖ρ̃‖∞] . (5.26)

From the above, we see that the following relation holds

inf
ρ̃∈Bε(ρ)

‖ρ̃‖∞ = 2−H
ε
min(ρ) . (5.27)
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This relation gives the definition of the smooth min-entropy Hε
min, and we will show in

Section 5.3 that it leads to a strong converse theorem for the capacity of noisy bosonic
channels. A relation between the smooth min-entropy and the Rényi entropy of order α > 1
is given by the following inequality [174]

Hε
min (ρ) ≥ Hα (ρ)− 1

α− 1
log2

(
1

ε

)
. (5.28)

We will exploit this relation, along with the minimum output entropy results from [157], to
prove the strong converse theorem for the classical capacity of all phase-insensitive Gaussian
channels.

5.3 Strong converse for all phase-insensitive Gaussian channels

In the following, we prove that a strong converse theorem holds for the capacity of all phase-
insensitive Gaussian channels when imposing a maximum photon-number constraint. This
means that if we demand that the average code density operator for the codewords, which
are used for transmission of classical messages, is constrained to have a large shadow onto
a subspace with photon number no larger than some fixed amount, then the probability of
successfully decoding the message converges to zero in the limit of many channel uses if the
rate R of communication exceeds the classical capacity of these channels.

We first present the arguments to prove the strong converse theorem for a noiseless qubit
channel [175, 176], illustrating a simple approach for establishing the strong converse property
of classical capacity.

Suppose that any scheme for classical communication over n noiseless qubit channels
consists of an encoding of the message m as a quantum state on n qubits, followed by a
decoding POVM {Λm}. The rate of the code is R = (log2M)/n, and the success probability
for correctly recovering the message by a receiver is given by

1

M

∑
m

Tr{Λmρm} ≤
1

M

∑
m

Tr{Λm}‖ρm‖∞ (5.29)

≤ 1

M

∑
m

Tr{Λm} (5.30)

= M−12n (5.31)

= 2−n(R−1), (5.32)

where ‖ρm‖∞ is the infinity norm of ρm. We have used the facts that the maximum eigenvalue
corresponding to ‖ρm‖∞ is one, and

∑
m Λm = I⊗n for the POVM measurements {Λm}. The

above argument suggests that for a rate R > 1, the average success probability of any
communication scheme decreases exponentially fast to zero with increasing n.

The above proof for the noiseless qubit channel highlights an interplay of the success
probability of decoding with the strong converse rate, dimension of the encoding space, and
the purity of the channel in terms of the infinity-norm of the output states of the channel.
Our proof of the strong converse theorem for the phase-insensitive channels can be regarded
as a generalization of these arguments but also invites comparison with the proof of the
strong converse for covariant channels with additive minimum output Rényi-entropy [175].
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5.3.1 Strong converse under the maximum photon number constraint

In the context of optical communication, suppose that the sender and receiver are allowed
access to many independent uses of a quantum channel. If we allow the signal states at
the input of the channel to have an arbitrarily large number of photons, then the classical
capacity of the channel would be infinite, which makes this case practically uninteresting.
Therefore, it is essential to restrict the average number of photons of the signal states per
channel use such that the mean number of photons in any codeword transmitted through
the channel should be no larger than some number NS ∈ [0,∞). This is known as the mean
photon number constraint and is commonly used in establishing the information-carrying
capacity of a given channel [147, 169, 155, 156].

However, following the same arguments as in [153] (and later in [158]), we can show that
the strong converse need not hold under such a mean photon number constraint for a phase-
insensitive Gaussian channel. So instead, we prove that the strong converse theorem holds
under a maximum photon number constraint on the number of photons in the input states.

Let ρm denote a codeword of any code for communication over a phase-insensitive Gaus-
sian channel P . The maximum photon number constraint that we impose on the codebook
is to require that the average code density operator 1

M

∑
m ρm (M is the total number of

messages) has a large shadow onto a subspace with photon number no larger than some
fixed amount nNS. Such a constraint on the channel inputs can be defined by introducing a
photon number cutoff projector ΠL that projects onto a subspace of n bosonic modes such
that the total photon number is no larger than L:

ΠL ≡
∑

a1,...,an:
∑
i ai≤L

|a1〉〈a1| ⊗ . . .⊗ |an〉〈an|, (5.33)

where |ai〉 is a photon number state of photon number ai. The rank of the above projector
ΠdnNSe has been shown to be never larger than 2n[g(NS)+δ0] (Lemma 3 in [153]), i.e.,

Tr
{

ΠdnNSe
}
≤ 2n[g(NS)+δ0], (5.34)

where δ0 ≥ 1
n
(log2 e + log2(1 + 1

NS
)), so that δ0 can be chosen arbitrarily small by taking n

large enough.
Mathematically, the maximum photon number constraint can then be written as

1

M

∑
m

Tr
{

ΠdnNSeρm
}
≥ 1− δ1(n), (5.35)

where δ1(n) is a function that decreases to zero as n increases. In fact, the coherent-state
encodings that attain the known capacities of the phase-insensitive channels do indeed satisfy
the maximum photon number constraint, with an exponentially decreasing δ1(n), if coherent
states with mean photon number per mode < NS − δ are used, with δ being a small positive
number (see Reference [153] for an argument along these lines).

The first important step in proving the strong converse is to show that if most of the
probability mass of the input state of the phase-insensitive channel P is in a subspace with
photon number no larger than nNS, then most of the probability mass of the channel output
is in a subspace with photon number no larger than nN ′S, where N ′S is the mean energy of
the output state.
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Lemma 3 Let ρ(n) denote a density operator on n modes that satisfies

Tr{ΠdnNSeρ(n)} ≥ 1− δ1(n),

where δ1(n) is defined in (5.35). Let P be a phase-insensitive Gaussian channel with param-
eters τ and ν as defined in (5.3). Then

Tr{ΠdnN ′S+δ2)eP⊗n(ρ(n))} ≥ 1− δ1(n)− 2
√
δ1(n)− δ3(n),

where N ′S = τNS + (τ + ν − 1) /2, P⊗n represents n instances of P that act on the den-
sity operator ρ(n), δ2 is an arbitrarily small positive constant, and δ3(n) is a function of n
decreasing to zero as n→∞.

Proof. The proof of this lemma is essentially the same as the proof of Lemma 1 of [158],
with some minor modifications. We include the details of it for completeness. We first recall
the structural decomposition in (5.13) for any phase-insensitive channel:

P(ρ) =
(
A0
G ◦ ET

)
(ρ),

i.e., that any phase-insensitive Gaussian channel can be realized as a concatenation of a
pure-loss channel ET of transmissivity T followed by a quantum-limited amplifier channel AG
with gain G, with τ = TG and ν = G (1− T ) +G− 1. Thus, a photon number state |k〉 〈k|
input to the phase-insensitive noise channel leads to an output of the following form:

P (|k〉 〈k|) =
k∑

m=0

p (m)A0
G (|m〉 〈m|) , (5.36)

where

p (m) =

(
k

m

)
Tm (1− T )k−m .

The quantum-limited amplifier channel has the following action on a photon number state
|m〉 [164]:

A0
G (|m〉 〈m|) =

∞∑
l=0

q (l|m) |l〉 〈l| ,

where the conditional probabilities q (l|m) are given by:

q (l|m) =

{
0 l < m

(1− µ2)
m+1

µ2(l−m)
(

l
l−m

)
l ≥ m

,

where µ = tanh r ∈ [0, 1], with r chosen such that G = cosh2 (r).
The conditional distribution q (l|m) has the two important properties of having finite

second moment and exponential decay with increasing photon number. The property of
exponential decay with increasing l follows from(

1− µ2
)m+1

µ2(l−m)

(
l

l −m

)
=
(
1− µ2

)m+1
µ−2m2−2 log2( 1

µ)l
(

l

l −m

)
≤
(
1− µ2

)m+1
µ−2m2−2 log2( 1

µ)l2lh2( l−ml )

=
(
1− µ2

)m+1
µ−2m2−l[2 log2( 1

µ)−h2( l−ml )].
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The inequality applies the bound
(
n
k

)
≤ 2nh2(k/n) (see (11.40) of [177]), where h2 (x) is the

binary entropy with the property that limx→1 h2 (x) = 0. Thus, for large enough l, it will

be the case that 2 log
(

1
µ

)
− h2

(
l−m
l

)
> 0, so that the conditional distribution q (l|m) has

exponential decay with increasing l. We can also then conclude that this distribution has a
finite second moment. It follows from (5.36) that

P (|k〉 〈k|) =
∞∑
l=0

[
k∑

m=0

p (m) q (l|m)

]
|l〉 〈l| . (5.37)

The eigenvalues above (i.e.,
∑k

m=0 p (m) q (l|m) ) represent a distribution over photon
number states at the output of the phase-insensitive channel P , which we can write as
a conditional probability distribution p (l|k) over l given the input with definite photon
number k. This probability distribution has its mean equal to τk + (τ + ν − 1) /2, since the
mean energy of the input state is k. Furthermore, this distribution inherits the properties of
having a finite second moment and an exponential decay to zero as l→∞.

For example, we can consider the thermal noise channel Eη,NB with the structural decom-
position given by (5.15)

Eη,NB(ρ) = (A0
(1−η)NB+1 ◦ Eη/((1−η)NB+1))(ρ).

The mean of the corresponding distribution for this channel when a state of definite photon
number k is input, following the above arguments, is equal to ηk + (1− η)NB.

We now suppose that the input state satisfies the maximum photon-number constraint
in (5.35), and apply the Gentle Measurement Lemma [149, 148] to obtain the following
inequality

Tr
{

ΠdnN ′S+δ2eP
⊗n (ρ(n)

)}
≥ Tr

{
ΠdnN ′S+δ2eP

⊗n (ΠdnNSeρ(n)ΠdnNSe
)}
− 2
√
δ1(n), (5.38)

where N ′S = τNS + (τ + ν − 1) /2. Since there is photodetection at the output (i.e., the
projector ΠdnηN ′S+δ2e is diagonal in the number basis), it suffices for us to consider the input

ΠdnNSeρ
(n)ΠdnNSe to be diagonal in the photon-number basis, and we write this as

ρ(n) =
∑

an:
∑
i ai≤dnNSe

p (an) |an〉 〈an| ,

where |an〉 represents strings of photon number states. We then find that (5.38) is equal to∑
an:
∑
i ai≤dnNSe

p (an) Tr
{(

ΠdnN ′S+δ2e
)
P⊗n (|an〉 〈an|)

}
− 2
√
δ1(n)

=
∑

an:
∑
i ai≤dnNSe

p (an)
∑

ln:
∑
i li≤dnN ′S+δ2e

p (ln|an)− 2
√
δ1(n), (5.39)

where the distribution p (ln|an) ≡
n∏
i=1

p (li|ai) with p (li|ai) coming from (5.37). In order to

obtain a lower bound on the expression in (5.39), we analyze the term∑
ln:
∑
i li≤dnN ′S+δ2e

p (ln|an) (5.40)
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on its own under the assumption that
∑

i ai ≤ dnNSe. Let Li|ai denote a conditional random
variable with distribution p (li|ai), and let Ln|an denote the sum random variable:

Ln|an ≡
∑
i

Li|ai,

so that the term
∑

ln:
∑
i li≤dnN ′S+δ2e p (ln|an) becomes∑

ln:
∑
i li≤dnN ′S+δ2e

p (ln|an) = Pr
{
Ln|an ≤ n(N ′S + δ2)

}
= Pr

{
Ln|an ≤ n (τNS + (τ + ν − 1) /2 + δ2)

}
(5.41)

≥ Pr

{
Ln|an ≤ n

(
τ

1

n

∑
i

ai + (τ + ν − 1) /2 + δ2

)}
, (5.42)

where (τ + ν − 1) /2 represents the mean number of noise photons injected by the channel,
and the inequality follows from the constraint

∑
i ai ≤ dnNSe. Since

E {Li|ai} = τai + (τ + ν − 1) /2,

it follows that

E
{
Ln|an

}
= n

(
τ

1

n

∑
i

ai + (τ + ν − 1) /2

)
,

and so the expression in (5.42) is the probability that a sum of independent random variables
deviates from its mean by no more than δ2. To obtain a bound on the probability in (5.42)
from below, we now follow the approach in [158] employing the truncation method (see
Section 2.1 of [178] for more details), in which each random variable Li|ai is split into two
parts:

(Li|ai)>T0
≡ (Li|ai) I ((Li|ai) > T0) ,

(Li|ai)≤T0
≡ (Li|ai) I ((Li|ai) ≤ T0) ,

where I (·) is the indicator function and T0 is a truncation parameter taken to be very large
(much larger than maxi ai, for example). We can then split the sum random variable into
two parts as well:

Ln|an =
(
Ln|an

)
>T0

+
(
Ln|an

)
≤T0

≡
∑
i

(Li|ai)>T0
+
∑
i

(Li|ai)≤T0
.

We can use the union bound to argue that

Pr
{
Ln|an ≥ E

{
Ln|an

}
+ nδ2

}
≤ Pr

{(
Ln|an

)
>T0
≥ E

{(
Ln|an

)
>T0

}
+ nδ2/2

}
+ Pr

{(
Ln|an

)
≤T0
≥ E

{(
Ln|an

)
≤T0

}
+ nδ2/2

}
. (5.43)

The idea from here is that for a random variable Li|ai with sufficient decay for large values,
we can bound the first probability for

(
Ln|an

)
>T0

from above by ε/δ2 for ε an arbitrarily small
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positive constant (made small by taking T0 larger) by employing the Markov inequality. We
then bound the second probability for

(
Ln|an

)
≤T0

using a Chernoff bound, since these random
variables are bounded. This latter bound has an exponential decay with increasing n due
to the use of a Chernoff bound. So, the argument is just to make ε arbitrarily small by
increasing the truncation parameter T0, and for n large enough, we obtain an exponential
convergence to zero. We point the reader to Section 2.1 of [178] for more details. By using
either approach, we arrive at the following bound:∑

ln:
∑
i li≤dnN ′S+δ2e

p (ln|an) ≥ 1− δ3(n),

where δ3(n) is a function decreasing to zero as n → ∞. Finally, we put this together with
Equation (5.39) to obtain

Tr
{

ΠdnN ′S+δ2eP
⊗n (ρ(n)

)}
≥

∑
an:
∑
i ai≤dnNSe

p (an)
∑

ln:
∑
i li≤dnN ′S+δ2e

p (ln|an)− 2
√
δ1(n)

≥ (1− δ1(n)) (1− δ3(n))− 2
√
δ1(n)

≥ 1− δ1(n)− δ3(n)− 2
√
δ1(n),

which completes the proof.

Let Λm denote a decoding POVM acting on the output space of n instances of the phase-
insensitive channel. In what follows, we prove the strong converse theorem for the classical
capacity of all phase-insensitive Gaussian channels.

Theorem 1 Let P be a phase-insensitive Gaussian channel with parameters τ and ν as
defined in (5.3). The average success probability psucc of any code for this channel satisfying
(5.35) is bounded as

psucc =
1

M

∑
m

Tr{ΛmP⊗n(ρm)} ≤ 2−nR2
n

[
g(N ′S)−Hα(P(|0〉〈0|))+δ2+

1
n(α−1)

log2(1/ε)

]
+ ε+ δ6(n),

(5.44)

where α > 1, ε ∈ (0, 1), N ′S = τNS + (τ + ν − 1) /2, P⊗n denotes n instances of P, and

δ6(n) = 2
√
δ1(n) + 2

√
δ1(n) + δ3(n). δ1(n) is defined in (5.35), δ2 is an arbitrarily small

positive constant and δ3(n) is a function decreasing with n (both defined in Lemma 3).

Proof. This proof is very similar to the proof of Theorem 2 of [158], with the exception
that we can now invoke the main result of [157] (that the minimum output entropy for Rényi
entropies of arbitrary order is attained by the vacuum state input for any phase-insensitive
Gaussian channel).
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Let us consider the success probability of any code satisfying the maximum photon-
number constraint (5.35). The average success probability can be written as:

1

M

∑
m

Tr{ΛmP⊗n(ρm)} ≤ 1

M

∑
m

Tr{ΛmΠdnN ′SeP
⊗n(ρm)ΠdnN ′Se}

+
1

M

∑
m

∥∥ΠdnN ′SeP
⊗n(ρm)ΠdnN ′Se − P

⊗n(ρm)
∥∥

1

≤ 1

M

∑
m

Tr{ΛmΠdnN ′SeP
⊗n(ρm)ΠdnN ′Se}

+ 2

√
δ1(n) + 2

√
δ1(n) + δ3(n).

The first inequality is a special case of the inequality

Tr{Λσ} ≤ Tr{Λρ}+ ‖ρ− σ‖1 , (5.45)

which holds for 0 ≤ Λ ≤ I, ρ, σ ≥ 0, and Tr{ρ},Tr{σ} ≤ 1. The second inequality is obtained
by invoking Lemma 3 and the Gentle Measurement Lemma [149, 148] for ensembles.

Note that in the above, the second term vanishes as n→∞; hence it suffices to focus on
the first term, which by cyclicity of trace yields

1

M

∑
m

Tr{ΛmΠdnN ′SeP
⊗n(ρm)ΠdnN ′Se} =

1

M

∑
m

Tr{ΠdnN ′SeΛmΠdnN ′SeP
⊗n(ρm)}. (5.46)

At this point, we consider the set of all states σ̃m that are ε-close in trace distance to each
output of the phase-insensitive channel P⊗n (ρm) (let us denote this set by Bε (P⊗n (ρm)).
This consideration will allow us to relate the success probability to the smooth min-entropy.
We find the following upper bound on (5.46):

1

M

∑
m

Tr{ΠdnN ′SeΛmΠdnN ′SeP
⊗n(ρm)} ≤ 1

M

∑
m

Tr{ΠdnN ′SeΛmΠdnN ′Seσ̃m}+ ε

≤ 1

M

∑
m

Tr{ΠdnN ′SeΛmΠdnN ′Se} ‖σ̃m‖∞ + ε.

We can now optimize over all of the states σ̃m that are ε-close to P⊗n (ρm), leading to the
tightest upper bound on the success probability

1

M

∑
m

Tr{ΠdnN ′SeΛmΠdnN ′SeP
⊗n(ρm)} (5.47)

≤ 1

M

∑
m

Tr{ΠdnN ′SeΛmΠdnN ′Se} inf
σ̃m∈Bε(P⊗n(ρm))

‖σ̃m‖∞ + ε. (5.48)

Since the quantity inf σ̃m∈Bε(P⊗n(ρm)) ‖σ̃m‖∞ is related to the smooth min-entropy via

inf
σ̃m∈Bε(P⊗n(ρm))

‖σ̃m‖∞ = 2−H
ε
min(P⊗n(ρm)),
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we can get from the upper bound in (5.48)

1

M

∑
m

Tr{ΠdnN ′SeΛmΠdnN ′Se}2
−Hε

min(P⊗n(ρm)) + ε

≤ 1

M

∑
m

Tr{ΠdnN ′SeΛmΠdnN ′Se} sup
ρ

2−H
ε
min(P⊗n(ρ)) + ε

=
1

M
2− infρHε

min(P⊗n(ρ))Tr{ΠdnN ′Se}+ ε

≤ 2−nR2− infρHε
min(P⊗n(ρ))2n[g(N

′
S)+δ] + ε. (5.49)

The first inequality follows by taking a supremum over all input states. The first equality
follows because

∑
m Λm = I for the set of decoding POVM measurements {Λm}, and the

second inequality is a result of the upper bound on the rank of the photon number cutoff
projector in (5.34). We have also used the fact that the rate of the channel is expressed as
R = (log2M)/n, where M is the number of messages.

Observe that the success probability is now related to the smooth min-entropy, and we
can exploit the following relation between smooth min-entropy and the Rényi entropies for
α > 1 [174]:

Hε
min (ω) ≥ Hα (ω)− 1

α− 1
log2

(
1

ε

)
.

Using the above inequality and the fact that the “strong” Gaussian optimizer conjecture has
been proven for the Rényi entropies of all orders [157] (recall (5.25)), we get that

inf
ρ
Hε

min

(
P⊗n(ρ)

)
≥ n

[
Hα (P(|0〉 〈0|))− 1

n (α− 1)
log2

(
1

ε

)]
. (5.50)

The first term on the right hand side is a result of the fact that the vacuum state minimizes
the Rényi entropy of all orders at the output of a phase-insensitive Gaussian channel.

By tuning the parameters α and ε appropriately, we recover the strong converse theorem:

Corollary 1 (Strong converse) Let P be a phase-insensitive Gaussian channel with pa-
rameters τ and ν as defined in (5.3). The average success probability psucc of any code for
this channel satisfying (5.35) is bounded as

psucc =
1

M

∑
m

Tr{ΛmP⊗n(ρm)} ≤ 2−nR2n[g(N
′
S)−g(N ′B)+δ2+δ5/δ4+δ4C(N ′B)] + 2−nδ5 + δ6(n),

(5.51)

where N ′S = τNS + (τ + ν − 1) /2, N ′B ≡ (τ + ν − 1) /2, P⊗n denotes n instances of P, and

δ6(n) = 2
√
δ1(n) + 2

√
δ1(n) + δ3(n). δ1(n) is defined in (5.35), δ2 is an arbitrarily small

positive constant and δ3(n) is a function decreasing with n (both defined in Lemma 3), δ4 and
δ5 are arbitrarily small positive constants such that δ5/δ4 is arbitrarily small, and C (N ′B) is
a function of N ′B only. Thus, for any rate R > g (N ′S) − g (N ′B), it is possible to choose the
parameters such that the success probability of any family of codes satisfying (5.35) decreases
to zero in the limit of large n.
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Proof. In Theorem 1, we can pick α = 1 + δ4 and ε = 2−nδ5 , with δ5 > 0 much smaller than
δ4 > 0 such that δ5/δ4 is arbitrarily small, and the terms on the right hand side in (5.50)
simplify to

n

[
H1+δ4 (P(|0〉 〈0|))− δ5

δ4

]
.

The output state P(|0〉 〈0|) for the phase-insensitive channel with the vacuum state as the
input is a thermal state with mean photon number N ′B ≡ (τ + ν − 1) /2. The quantum Rényi
entropy of order α > 1 of a thermal state with mean photon number N ′B is given by [167]

log2 [(N ′B + 1)α −N ′αB ]

α− 1
. (5.52)

Lemma 6.3 of [173] gives us the following inequality for a general state (for α close enough
to one):

Hα (ρ) ≥ H (ρ)− 4 (α− 1) (log2 v)2 ,

where
v ≡ 2−

1
2
H3/2(ρ) + 2

1
2
H1/2(ρ) + 1.

For a thermal state, we find using (5.52) that

H3/2 (ρ) = 2 log2

[
(N ′B + 1)

3/2 −N ′3/2B

]
,

H1/2 (ρ) = −2 log2

[
(N ′B + 1)

1/2 −N ′1/2B

]
,

so that

v (N ′B) =
[
(N ′B + 1)

3/2 −N ′3/2B

]2

+
[
(N ′B + 1)

1/2 −N ′1/2B

]−2

+ 1.

We then find that

H1+δ4 (P(|0〉 〈0|)) ≥ H (P(|0〉 〈0|))− δ4C (N ′B)

= g (N ′B)− δ4C (N ′B) ,

where
C (N ′B) ≡ 4 [log2 v (N ′B)]

2
.

We now recover the bound in the statement of the corollary.
Finally, we recall the capacities of the phase-insensitive channels in (5.17), (5.18), and

(5.19). Comparing them with the statement of Corollary 1, we can conclude that these
expressions indeed represent strong converse rates for these respective channels, since the
success probability when communicating above these rates decreases to zero in the limit
n→∞.

Our results proving the strong converse of all phase-insensitive channels thus establishes
the capacity as a sharp transition between two regimes—one which is an error-free regime for
communication rates below the capacity, and the other in which the probability of correctly
decoding a classical message converges exponentially fast to zero if the communication rate
exceeds the classical capacity.
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5.4 Conclusion

In this chapter, we discussed various phase-insensitive Gaussian channels that represent phys-
ical noise models which are relevant for optical quantum communication, including lossy op-
tical fibers, amplifier and free-space communication. In the context of transmission of the
classical messages through these noisy quantum channels, we established a proof of the strong
converse theorem for these channels by relating the success probability of any code with its
rate of data transmission, the effective dimension of the channel output space, and the purity
of the channel as quantified by the minimum output entropy. For the communication rate
exceeding the capacity, the success probability of correctly decoding classical information has
been shown to asymptotically converge to zero in the limit of many channel uses.

Our result thus establishes the capacity of these channels as a very sharp dividing line
between possible and impossible communication rates through these channels and opens up
the path to applications, one of which could be to prove security of the noisy bounded storage
model of cryptography for optical links [154] for continuous-variable systems. The results
presented in this chapter can also be easily extended to the more general case of multimode
bosonic Gaussian channels [155]. Another area of research where our result might be extended
is in the setting of network information theory—for example, one might consider establish-
ing a strong converse for the classical capacity of the multiple-access bosonic channels, in
which two or more senders communicate to a common receiver over a shared communication
channel [179].
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arXiv:quant-ph/0512258.

[173] M. Tomamichel, “A Framework for Non-Asymptotic Quantum Information Theory”,
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Appendix A:
Effects of both photon loss and phase
noise on the sensitivity and visibility
2

In this appendix, we provide detailed calculations of the phase sensitivity and the visibility
using the parity detection technique when both photon loss and phase fluctuations are present
in the interferometric setup discussed in Chapter 2.

We consider the N00N and mm′ states, and to model photon loss from the system into
the environment, we add two fictitious beam splitters are added before stage I of our previous
configuration in Chapter 2 (See Fig 2.5). The two fictitious beam splitters have transmittance
Ta and Tb, and reflectance Ra = 1 − Ta and Rb = 1 − Tb, respectively. General Ta and Tb
are used in the following derivation of the density matrix, but later we assume Ra = 0 to
mimic the local path which is well-isolated from the environment. The photon loss entangles
the system with the environment and leaves the system in a mixed state. For a general mm′

input state, the density matrix of the system at stage II can be easily deducted from the
Reference [15] as

ρmm′(t) =
m∑
k=0

m′∑
k′=0

{
|α|2d1(t)|k, k′〉〈k, k′|+ |β|2d2(t)|k′, k〉〈k′, k|

}
(53)

+
m′∑
k=0

m′∑
k′=0

{
αβ∗d3(t)|∆m+ k, k′〉〈k,∆m+ k′|

+α∗βd4(t)|k′,∆m+ k〉〈∆m+ k′, k|
}
.

In the above, α = eim
′φ/
√

2, β = eimφ/
√

2 as before, and the coefficients di(i = 1, 2, 3, 4) are
defined in Reference [15]. m and m′ are the number of photons injected into the two modes
of the interferometer.

Given the system undergoes pure dephasing after stage II, we may use previous result
and show that the evolution of the density matrix ρmm′(t) is

ρ̇mm′(t) =−∆m2Γ×
m′∑

k,k′=0

{
αβ∗d3(t)|∆m+ k, k′〉〈k,∆m+ k′|+ α∗βd4(t)|k′,∆m+ k〉〈∆m+ k′, k|

}
.

2Part of this appendix previously appeared in B. Roy Bardhan, K. Jiang, and J. P. Dowling, Physical
Review A 88, 023857 (2013) (Copyright(2013) American Physical Society) [22]. It is reprinted by permission
of the American Physical Society. See Appendix C for the copyright permission from the publisher.
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From the above, it is then easy to see that

d1(t) = d1(0),

d2(t) = d2(0),

d3(t) = e−∆m2ΓLd3(0),

d4(t) = e−∆m2ΓLd4(0). (54)

Similar to Reference [15], we define

K1(t) =
m′∑
k=0

(d1(k, k, t) + d2(k, k, t)) ,

K2(t) =
m′∑
k=0

(d3(k, k, t) + d4(k, k, t)) , (55)

and it is straightforward to show that K1(t) = K1(0) and K2(t) = K2(0)e−∆m2ΓL. From
Equations (2.10) in Chapter 2 and (53), the parity signal of a mm′ state under both photon
loss and phase fluctuation can be shown to be

〈Π̂mm′〉 = K1(t) + (−1)m+m′K2(t) cos(∆mφ). (56)

This gives rise to the phase-sensitivity for the parity detection for a mm′ state under both
photon-loss and phase fluctuations as

δφmm′ =

√
1− {K1(t) + (−1)m+m′K2(t) cos(∆mφ)}2

{∆mK2(t) sin(∆mφ)}2 , (57)

where linear error propagation method in Equation (12) is employed. Notice that when loss
is negligible this sensitivity recovers Equation (2.13) in Chapter 2.

A relative visibility with respect to both loss and phase fluctuations can be defined as

Vmm′ =
〈Π̂mm′〉max − 〈Π̂mm′〉min

〈Π̂mm′(Γ = 0, L = 0)〉max − 〈Π̂mm′(Γ = 0, L = 0)〉min

,

= K2(0)e−∆m2ΓL (58)

where L = Rb characterizes the loss in the upper path and Ra is set to be zero as aforemen-
tioned. In the limit of L→ 0, K2(0) approaches one and the visibility reduces to the previous
result. Notice the dephasing only affects the off-diagonal terms of the density matrix while
loss affects both diagonal and off-diagonal terms. However, because of the linearity of the
Mach-Zehnder interferometer, the effect from photon loss is independent of that from phase
fluctuation, as expected. All results in this section apply to N00N states with N = m and
m′ = 0.
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Appendix B:
Structural decompositions of the bosonic
Gaussian channels 3

Here we review, for completeness, in detail an argument for the structural decompositions
of the noisy bosonic communication channels using the symplectic formalism [146, 160]. In
this formalism, the action of a Gaussian channel is characterized by two matrices X and Y
which act as follows on covariance matrix Γ

Γ −→ Γ′ = XΓXT + Y, (59)

where XT is the transpose of the matrix X. Such a map is called as the symplectic map
which applies to any Gaussian channel. Below we describe the symplectic transformations
for each of the channels Nn̄, Eη,0, AG, and Eη,NB :

• The additive noise channel Nn̄ with variance n̄ is given by

X = I and Y = 2n̄ I, (60)

where I represents the identity matrix.

• The pure-loss channel Eη,0 with transmissivity η < 1 is given by

X =
√
η I and Y = (1− η) I. (61)

• The thermal noise channel Eη,NB with transmissivity η < 1 and noise photon number
NB is given by

X =
√
η I and Y = (1− η)(2NB + 1) I. (62)

• The amplifier channel AG with gain G > 1 is given by

X =
√
G I and Y = (G− 1) I. (63)

We now show that the additive noise channel Nn̄ can be regarded as a pure-loss bosonic
channel Eη,0 with η = 1/(n̄ + 1) followed by an amplifier channel AG with G = (n̄ + 1). To
do so, we substitute

X1 =
√

1/(n̄+ 1)I,
Y1 = (1− (1/(n̄+ 1)) I,

X2 =
√

(n̄+ 1) I,
Y2 = n̄ I.

3This appendix previously appeared in B. Roy Bardhan and Mark M. Wilde, Physical Review A 89,
022302 (2014) (Copyright(2014) American Physical Society) [158]. It has been updated and adapted to
the disseration format by permission of the American Physical Society. See Appendix C for the copyright
permission from the publisher.
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in (61) and (63), where (X1, Y1) and (X2, Y2) correspond to the pure-loss bosonic channel
Eη,0 and the amplifier channel AG, respectively. The covariance matrix Γ12 for the composite
map (An̄+1 ◦ E 1

n̄+1
,0) is then obtained as Γ12 = X2(X1ΓXT

1 + Y1)XT
2 + Y2 = Γ I+ 2n̄ I, which

represents the additive noise channel Nn̄ [(60)]. Thus, we recover the decomposition in (5.14)

Nn̄(ρ) = (An̄+1 ◦ E 1
n̄+1

,0)(ρ) .

Following a similar approach for the thermal noise channel Eη,NB , we can find the struc-
tural decompositions

Eη,NB(ρ) =
(
N(1−η)NB ◦ Eη,0

)
(ρ),

Eη,NB(ρ) = (AG ◦ Eη,0) (ρ).
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Copyright Permissions

• Copyright permission from the journal Physical Review A (PRA) of the American
Physical Society (APS):

Here I copy the relevant text (from the website https://journals.aps.org/copyrightFAQ.
html):

“As the author of an APS-published article, may I include my article or a portion of
my article in my thesis or dissertation?

Yes, the author has the right to use the article or a portion of the article in a thesis
or dissertation without requesting permission from APS, provided the bibliographic
citation and the APS copyright credit line are given on the appropriate pages.”

The email from the American Physical Society indicating its permission to reuse the
materials from the papers authored by me is also shown below:
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