
Louisiana State University
LSU Digital Commons

LSU Doctoral Dissertations Graduate School

2011

Next generation multi-scale quantum simulations
for strongly correlated materials
Shuxiang Yang
Louisiana State University and Agricultural and Mechanical College, yangphysics@gmail.com

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations

Part of the Physical Sciences and Mathematics Commons

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in
LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please contactgradetd@lsu.edu.

Recommended Citation
Yang, Shuxiang, "Next generation multi-scale quantum simulations for strongly correlated materials" (2011). LSU Doctoral
Dissertations. 2772.
https://digitalcommons.lsu.edu/gradschool_dissertations/2772

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F2772&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F2772&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F2772&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F2772&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/114?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F2772&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations/2772?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F2772&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu


NEXT GENERATION MULTI-SCALE QUANTUM SIMULATIONS FOR
STRONGLY CORRELATED MATERIALS

A Dissertation

Submitted to the Graduate Faculty of the
Louisiana State University and

Agricultural and Mechanical College
in partial fulfillment of the

requirements for the degree of
Doctor of Philosophy

in

The Department of Physics and Astronomy

by
Shuxiang Yang

B.S., Zhejiang University, 2004
M.S., Zhejiang University, 2006

M.S., University of Cincinnati, 2008
December 2011



Acknowledgements

During the period of working on my thesis projects, I received a lot of helps from many
people. Here I want to express my gratitude for their support.

First of all, I would like to thank my advisor Dr. Mark Jarrell. From him, I have
learnt a lot about the techniques for the many-body strongly-correlated system and the
computational condensed matter physics. Mostly importantly, I have learnt how to do a
real research. I am also very thankful to my co-advisor Dr. Juana Moreno. She is always
very helpful, nice and considerate. I would also like to thank my another co-advisor Dr.
Thomas Pruschke. He helped me a lot during my visit to his group when working on
the troublsome parquet project.

I am also thankful to my colleages: Peng, Kuang-Shing, Jun, Cengiz, Alex, Zhaoxin,
Herbert, Peter, Ehsan, Karlis, Majid, Shi-Quan, Ka-Ming, Bhupender, Val, Ahn, Hanna,
Chinedu, Ryky, Kalani, Sean, Conrad, Xiaoyao, Sheng, Sebastian, and Andreas. It is
really a nice experience to work and discuss with you.

My thanks also go to my collaborators. Thanks for the frutiful collaborations.
I also want to thank my thesis committee members, Dr. Jiandi Zhang, Dr. Jagan-

nathan Ramanujam, Dr. Jorge Pullin, Dr. Michael Tom, Dr. Juana Moreno, and Dr.
Mark Jarrell. Thank you for your time and service.

I want to thank Ms. Carol A Duran for proof-reading part of my thesis.
Last but not the least, I want to thank my family, especially my wife. She is always

very considerate and supporting.

ii



Tables of Contents

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

Chapter 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Structure and Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Chapter 2 Parquet Formalism . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Single-Particle Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.1.1 Single-Particle Green Function and Self-Energy . . . . . . . . . . 4
2.1.2 Self-Consistent Diagrammatic Approximate Method . . . . . . . . 5

2.2 Two-Particle Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.1 Two-Particle Quantities . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.3 Hierarchy of Different Approximate Methods . . . . . . . . . . . . . . . . 11
2.3.1 Self-Consistent Hartree-Fock Approximation . . . . . . . . . . . . 12
2.3.2 Self-Consistent Second-Order Perturbation Theory . . . . . . . . 12
2.3.3 Random-Phase Approximation, T-Matrix Approximation and Fluc-

tuation Exchange Approximation . . . . . . . . . . . . . . . . . . 13
2.3.4 Parquet Approximation (PA) . . . . . . . . . . . . . . . . . . . . 14
2.3.5 Multi-Scale Many-Body Approach . . . . . . . . . . . . . . . . . 14

Chapter 3 Parquet Approximation . . . . . . . . . . . . . . . . . . . . . 16
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Algorithm and Computational Challenge . . . . . . . . . . . . . . . . . . 17
3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.1 Single-Particle Green Function G (τ) . . . . . . . . . . . . . . . . 21
3.3.2 Unscreened Local Moment . . . . . . . . . . . . . . . . . . . . . . 21
3.3.3 Uniform Susceptibility . . . . . . . . . . . . . . . . . . . . . . . . 22

3.4 Summary and Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Chapter 4 Proximity of Superconducting Dome to the QCP . . . . . 24
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
4.2 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

iii



4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Chapter 5 Dual Fermion Dynamical Cluster Approach . . . . . . . . 32
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.2 Mapping the DCA Formalism to Dual Fermions . . . . . . . . . . . . . . 33

5.2.1 Self-consistency Condition . . . . . . . . . . . . . . . . . . . . . . 37
5.2.2 Scaling of the Dual Fermion DCA Approach with Cluster Size . . 38
5.2.3 Mapping Back from the Dual Fermion to the Real Lattice . . . . 40

5.3 Dual Fermion Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Chapter 6 Response to Dynamical Modulation of the Optical Lattice
for Fermions in the Hubbard Model . . . . . . . . . . . . . 49

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.2 Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
6.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

Chapter 7 General Conclusion and Outlook . . . . . . . . . . . . . . . . 57

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Appendix A Permissions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Appendix B Minus Sign Problem for QMC Simulations . . . . . . . . . 65
B.1 Minus-Sign Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
B.2 Comment on the Bosonization Proposal . . . . . . . . . . . . . . . . . . 67

Appendix C Measurement of Two-Particle Green Function . . . . . . . 69
C.1 Definitions of Green Functions . . . . . . . . . . . . . . . . . . . . . . . . 69
C.2 Particle-Particle Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

C.2.1 Definition and Measurement . . . . . . . . . . . . . . . . . . . . . 70
C.2.2 Bethe-Salpeter Equation for χp . . . . . . . . . . . . . . . . . . . 71

C.3 Particle-Hole Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
C.3.1 Definition and Measurement . . . . . . . . . . . . . . . . . . . . . 73
C.3.2 Bethe-Salpeter Equations . . . . . . . . . . . . . . . . . . . . . . 76

Appendix D High-Frequency Expansion of Two-Particle Quantities . . 77
D.1 Analytical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
D.2 Numerical Results of the High-Frequency Expansion . . . . . . . . . . . . 81

iv



Appendix E Parquet Approximation for Anharmonical Classical Oscil-
lator System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

E.1 Parquet Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
E.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Appendix F Crossing-Symmetric Parquet Formalism . . . . . . . . . . . 91
F.1 Two-Particle Quantities . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
F.2 Two-Particle Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
F.3 Other Symmetries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Appendix G Determination of the Phase Digram for the 2-D Hubbard
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

G.1 Pairing Matrix Formalism . . . . . . . . . . . . . . . . . . . . . . . . . . 97
G.2 Determination of Phase diagram of the 2-D Hubbard Model . . . . . . . 98

G.2.1 Determination of the Superconducting Phase Transition Line . . . 99
G.2.2 Determination of the Pseudo-Gap Temperature Line . . . . . . . 99
G.2.3 Determination of the Fermi-liquid Cross-Over Temperature Line . 99

Appendix H Vertex Decomposition . . . . . . . . . . . . . . . . . . . . . . 102
H.1 Vertex Decomposition Scheme . . . . . . . . . . . . . . . . . . . . . . . . 102
H.2 Application on the Spin Instability . . . . . . . . . . . . . . . . . . . . . 102

Appendix I Inability to Extract the Irreducible Vertex Function . . . 104

Appendix J Perturbation Theory for the Dual Fermion Lattice Calcu-
lation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

J.1 Some Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
J.2 Hartree-Fock Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 108
J.3 Second-Order Contributions . . . . . . . . . . . . . . . . . . . . . . . . . 109
J.4 FLEX Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

Appendix K Author Publication List . . . . . . . . . . . . . . . . . . . . . 113

Vita . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

v



Abstract

This thesis represents our effort to develop the next generation multi-scale quantum
simulation methods suitable for strongly-correlated materials, where complicated phase-
diagrams prevail, suggesting complicated underlying physics.

We first give a detailed description of the parquet formalism. With its help, differ-
ent approximate methods can be unified and a hierarchy of approximate methods with
different accuracies and computational complexity can thus be designed.

Next, we present a numerical solution of the parquet approximation. Results on
the Hubbard model are compared to those obtained from Determinant Quantum Monte
Carlo (DQMC), FLuctuation EXchange (FLEX), and self-consistent second-order ap-
proximation methods. The comparison shows a satisfactory agreement with DQMC and
a significant improvement over the FLEX or the self-consistent second-order approxima-
tion.

The parquet formalism can also be used to analyze the superconducting mechanism
of the high-temperature superconductors. The dynamical cluster approximation (DCA)
method is used to understand the proximity of the superconducting dome to the quantum
critical point in the 2-D Hubbard model. At optimal doping, where Vd is revealed to be
featureless, we find a power-law behavior of χ0d(ω = 0), replacing the BCS logarithm
behavior, and strongly enhanced Tc.

After that we propose another multi-scale approach by combining the DCA and the
recently introduced dual-fermion formalism. Within this approach, short and long length
scale physics is addressed by the DCA cluster calculation, while intermediate length scale
physics is addressed diagrammatically using dual fermions. The bare and dressed dual
fermionic Green functions scale as O(1/Lc), so perturbation theory on the dual lattice
converges very quickly.

Lastly, we study the responses to dynamical modulation of the optical lattice potential
by analyzing properties of the repulsive fermionic Hubbard model in an optical lattice.
We provide numerical evidence showing the modulations by on-site local interaction
cannot be ignored, and instead can even strongly contribute to the dynamical behaviors
of the system in highly-doped cases.
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Chapter 1

Introduction

The discovery of high-temperature superconductors in the 1980s ignited an intense inter-
est and study of strongly correlated fermion systems. The high transition temperature,
higher than the boiling point of liquid nitrogen, has already resulted in vast applica-
tion in industry. However, a room-temperature superconductors could potentially have
a much greater impact on industry, and even in our everyday life. To realize that dream,
one might need to understand the underlying superconducting mechanism. On the other
hand, the expected high-Tc is far above the theoretical upper limit set by the BCS theory,
and thus demands a totally different theoretical explanation.

A generic feature in these systems is that the potential energy due to the Coulomb
interaction between electrons is comparable to or larger than the kinetic energy due to
the movement of the electrons. This is different from the situation in the simple metal
or semi-conductor, where interaction energy is much smaller than the kinetic energy
and thus conventional perturbation theory works remarkably well. No small parameters
exist, making the problem non-perturbative in nature, so the conventional perturbative
approaches fail. Numerically, this problem is exemplified, as an example, by the minus-
sign problem in quantum Monte Carlo (QMC) simulations, which makes the simulation
exponentially hard with increasing system size. The complicated phase diagrams associ-
ated with these strongly correlated materials suggest physics with different length scales
are competing with each other, rendering a multi-scale two-particle approach essential
to analyzing these systems.

To make the discussion more concrete and analysis more practical, we need to start
from some model Hamiltonians. For the cuprates, as the representative example of the
strongly correlated fermion systems, the Hubbard model is believed to be able to capture
its essential low energy physics. Though as simple as the single-band 2-D Hubbard model,
no analytical solution exists, and all the conventional perturbation approaches fail. We
thus have to turn to the numerical methods.

There are different numerical methods in our disposal for the 2-D Hubbard model.
The two most powerful are exact diagonalization and quantum Monte Carlo (QMC). For
the former, the computational complexity increases exponentially with the system size,
making the calculation restricted to around 20 sites, which is far from enough to extract
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the correct thermodynamical limit information. As for QMC, the difficulty is exemplified
as the minus sign problem 1, which in the effect makes the simulation of large systems
exponentially difficult as well.

People have been trying very hard to seek a possible solution for the minus sign
problem for years, but all in vain. And recently, it is proved to be non-deterministic
polynomial (NP) hard [1]. In spite of this, new approaches are proposed from time to
time trying to solve this problem. An example is the recently introduced bosonization
approach. Though it looks like a very clever idea, we prove in our comment [2] 2 that it
is equivalent to the conventional BSS algorithm and has the same minus-sign problem.

It may be impossible to solve this problem. Nevertheless, making it less severe is
possible. And many people have been working in this direction and great advances are
thus achieved. One example is the dynamical mean field theory (DFMT). As a quantum
analogy of the conventional Weiss mean field theory, DMFT maps a lattice system into
a single-site system embedded into a self-determined dynamical mean field. The spacial
fluctuation for the irreducible quantities is frozen while the most important quantum
fluctuation is preserved.

The Dynamical Cluster Approach (DCA) is a natural generalization of the DMFA.
And the short-ranged spacial correlation is incorporated, and thus DCA can provide a
better description of the real system.

The DCA is essentially a two-scale method: short and long. To incorporate the
correlation in the intermediate length scale, we thus propose the multi-scale approach:
the multi-scale many-body approach and the dual fermion dynamical approach. They
mainly differ in the different problem solvers used to take into account the intermediate
length-scale physics. For the former, the parquet approach is used, and for the latter,
the dual fermion approach is used.

1.1 Structure and Scope
As manifested in the title, this thesis is mainly intended for developing new multi-scale
numerical methods for strongly correlated materials. The thesis is structured as follows:

The parquet formalism, which is a combination of both single-particle formalism
and two-particle formalism, is described in detail in Chapter 2. Within the parquet
formalism, different approximate methods can be unified and a hierarchy of approximate
methods are thus formed.

Next, in Chapter 3, we apply the parquet approximation, which is the first two-
particle level approximate method, on the 2-D Hubbard model on a half-filled 4 × 4
cluster. Results are compared to those obtained from Determinant Quantum Monte
Carlo (DQMC), FLuctuation EXchange (FLEX), and self-consistent second-order ap-
proximation methods. This comparison shows a satisfactory agreement with DQMC

1See Appendix B.1 for more details
2See Appendix B.2 for more details
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and a significant improvement over the FLEX or the self-consistent second-order ap-
proximation.

In Chapter 4, the dynamical cluster approximation (DCA) method is used to under-
stand the proximity of the superconducting dome to the quantum critical point in the
2-D Hubbard model. In a BCS formalism, Tc may be enhanced through an increase in the
d-wave pairing interaction (Vd) or the bare pairing susceptibility (χ0d). At optimal dop-
ing, where Vd is revealed to be featureless, we find a power-law behavior of χ0d(ω = 0),
replacing the BCS log, and strongly enhanced Tc. Experiments are suggested in the end
to verify these predictions.

In Chapter 5, another multi-scale approach for strongly correlated systems is pro-
posed by combining the DCA and the recently introduced dual-fermion formalism. This
approach employs an exact mapping from a real lattice to a DCA cluster of linear size Lc
embedded in a dual fermion lattice. Short-length-scale physics is addressed by the DCA
cluster calculation, while longer-length-scale physics is addressed diagrammatically using
dual fermions. The bare and dressed dual fermionic Green functions scale as O(1/Lc),
so perturbation theory on the dual lattice converges very quickly. E.g., the dual Fermion
self-energy calculated with simple second order perturbation theory is of order O(1/L3

c),
with third order and three body corrections down by an additional factor of O(1/Lc).

Chapter 6 is devoted to the study of responses to dynamical modulation of the optical
lattice potential by studying properties of the repulsive fermionic Hubbard model in
an optical lattice. With the help of quantum Monte Carlo simulations and Maximum
Entropy Method as well as Hubbard-I approximation, the numerical evidence shows that
the modulations by on-site local interaction cannot be ignored, and can even strongly
contribute to the dynamical behaviors of the system in highly-doped cases. The filling
of the system plays a very important role to the responses and it also determines the
non-equilibrium dynamics of the system under perturbation.

In Chapter 7, a general discussion of future development and application concludes
the main body of this thesis.

In the appendix, a variety of subjects about the technical details are presented.

3



Chapter 2

Parquet Formalism

In this chapter, we will give a detailed description of the parquet formalism, which is a
combination of both single-particle formalism and two-particle formalism. Within the
parquet formalism, different approximate methods can be unified and a hierarchy of
approximate methods can thus been formed.

2.1 Single-Particle Formalism

2.1.1 Single-Particle Green Function and Self-Energy

The single-particle Green function (in the following we will call it Green function) can
be defined as

G(r, τ) ≡ − < Tτcr(τ)c†0(0) > (2.1)
≡ −θ(τ) < cr(τ)c†0(0) > +θ(−τ) < c†0(0)cr(τ) > (2.2)

where θ(τ) is the step function, and we are using the Heisenberg representation

Ô(τ) ≡ eτHÔe−τH (2.3)

and

< ... >=
Tr (e−βH ...)

Tr (e−βH)
(2.4)

The Green function can be interpreted as the phase a particle accumulates when it
moves through the spatial-time space. It is periodic in real space for the usual lattice
model and anti-periodic in the imaginary time space, thus can be transformed into the
momentum-frequency space:

G(k, iωn) =
1

Nβ

∑
i

ˆ β

0

dτ eiωnτ−ikriG(r, τ) (2.5)

4



The inverse Fourier transform is

G(r, τ) =
∑
k,n

e−iωnτ+ikriG(k, iωn) (2.6)

The Green function G(r, τ) is long-ranged and is reducible in the sense that the
contributing Feynman diagrams can be separated into two pieces by cutting one internal
fermion line. Careful analysis of the all contributing Feynman diagrams shows there is
some self-similarity in them, and the Green function can be decomposed into a more
irreducible and short-ranged quantity named as the self-energy. They are related by the
Dyson equation as

G(k, iωn) = G0(k, iωn) +G0(k, iωn)Σ(k, iωn)G(k, iωn) (2.7)

where G0(k, iωn) is the Green function for systems without interaction, and is thus called
bare Green function, and Σ(k, iωn) is the self-energy . There is an obvious benefit by
making approximation on the self-energy level instead of the Green function. Even if
we approximate the self-energy by a small number of Feynman diagrams, we would end
up with summing an infinite number of diagrams by solving the above Dyson equation.
The fact that the self-energy is short-ranged renders it possible to calculate using small
lattice size.

2.1.2 Self-Consistent Diagrammatic Approximate Method

The diagrammatic approach is a powerful method to analyze quantum systems. The
central issue within this kind of calculation is how to sum up as many physically relevant
Feynman diagrams as possible. And it turns out the self-consistent diagrammatic method
is an efficient way to achieve this purpose.

Before a detailed explanation of the self-consistent approximate method, we start
by recalling the conventional perturbation calculation. One can start from the Green
function (G-based) and calculate each Taylor expansion term directly. Take the first
order contribution as an example. We have the Hartree-Fock term diagrammatically
shown in Fig. 2.1.

Obviously, the Green function based perturbation calculation is inefficient, and we
can improve it by doing the perturbation calculation on the irreducible quantity, namely
the self-energy. We calculate the Hartree-Fock contribution to the self-energy, instead of
the Green function, and then we calculate the Green function using the Dyson’s equation.
In this way, we end up with summing an infinite number of diagrams constructed from
the Hartree-Fock contribution (see (b) in Fig. 2.1).

We can do an even better job by doing this self-consistently. The algorithm is shown
in Fig. 2.2. We need to use the dressed Green function to calculate the self-energy, and
after we calculate the Green function from Dyson equation, we need to calculate the
self-energy again using the updated Green function, and iterate it until some criterion

5



1st iter

2nd iter

+ +

+ + +

+

+ + +

a),

b),

c),

Figure 2.1: Feynman diagrams generated from the conventional G-based HF perturbation
(a), conventional Σ-based HF perturbation and the self-consistent HF calculation. Note
that the Σ-based HF perturbation incorporates infinite number of diagrams and shows
the advantage of making approximation on the irreducible quantity. And self-consistent
calculation can include many more diagrams by simply doing the calculation iteratively
and enjoys the best efficiency of generating many Feynman diagrams.

G

Σ
Figure 2.2: Algorithm for the self-consistent HF approximation.

of self-consistency is satisfied. In this way, many more diagrams can be included (see (c)
in Fig. 2.1).
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2.2 Two-Particle Formalism

2.2.1 Two-Particle Quantities

While single-particle quantities only give an averaged effect from other particles on one
specific particle in a motion, two-particle quantities can provide more detailed informa-
tion about how two particles interact with each other.

Two-Particle Green Function The two-particle Green function for the p-h channel
is defined as:

χph(τ1, τ2; τ3, τ4) ≡< Tτc(τ1)c†(τ2)c(τ4)c†(τ3) > − < Tτc(τ1)c†(τ2) >< Tτc(τ4)c†(τ3) >
(2.8)

and for p-p channel

χpp(τ1, τ2; τ3, τ4) ≡< Tτc(τ1)c(τ2)c†(τ4)c†(τ3) > (2.9)

in which other degrees of freedom can be added accordingly as the imaginary time index.
Its Fourier transform:

χ(iνm)iωn,iωn′ =

ˆ β

0

e(iωn+iνm)τ1dτ1

ˆ β

0

e−iωnτ2dτ2

ˆ β

0

e−(iωn′+iνm)τ3dτ3χ(τ1, τ2; τ3, 0)

(2.10)
which is of the dimensionality:

χ(iνm)iωn,iωn′ ∼
1

E3
(2.11)

Vertex Function Similar to the self-energy in the single-particle formalism, we have
vertex functions. For example, the reducible two-particle vertex F ph

h (12; 34) describes
the amplitude of a particle-hole pair scattered from its initial state |3, 4〉 into the final
state |1, 2〉. Here, i = 1, 2, 3, 4 represents a set of indices which combine the momentum
ki, the Matsubara frequency iωni and, if needed, the spin σi and band index mi.

In general, depending on how particles or holes are involved in the scattering pro-
cesses, one can define three different two-particle scattering channels. These are the
particle-hole (p-h) horizontal channel, the p-h vertical channel and the particle-particle
(p-p) channel. For the Hubbard model, the spin degree of freedom further divides the
particle-particle channel into triplet and singlet channels while the particle-hole is divided
into density and magnetic channels.

One can further discriminate the vertices according to their topology. Starting from
the reducible vertex F introduced above, we may define the irreducible vertex Γ cor-
responding to the subclass of diagrams in F that can not be separated into two parts
by cutting two horizontal Green’s function lines. Similarly, the fully irreducible vertex
Λ corresponds to the subclass of diagrams in Γ that cannot be split into two parts by
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c
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Figure 2.3: Different classes of diagrams; the solid line represents the single-particle
Green’s function and the wavy line represents the Coulomb interaction: here we use the
p-h horizontal channel for illustration. (a) Reducible diagrams: can be separated into
two parts by cutting two horizontal Green’s function lines. (b) Irreducible diagrams: can
only be separated into two parts by cutting two Green’s function lines in the other two
channels. (c) Fully irreducible diagrams : cannot be split in two parts by breaking two
Green’s function lines in any channel.

cutting two Green’s function lines in any channel. An illustration of these different types
of vertices is provided in Fig. 2.3.

The Pauli exclusion principle produces the so-called crossing symmetries which in
turn yield relationships between these vertices in the different channels. This enables us
to reduce the independent channels defined for the theory to the particle-particle and
the particle-hole horizontal channels.

2.2.2 Equations

Schwinger-Dyson Equation The parquet formalism assumes the complete knowl-
edge of the fully irreducible vertices and provides a set of equations which are self-
consistent at both the single- and two-particle levels. The connection between the single-
and two-particle quantities is through the Schwinger-Dyson equation which connects the
reducible vertex F to the self-energy Σ and serves as a bridge between single-particle
quantities and two-particle quantities.. It is an exact equation derived from the equation
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of motion and has the following form:

Σ(P ) = −UT
2

4N

∑
P ′,Q

{G(P ′)G(P ′ +Q)G(P −Q)(Fd(Q)P−Q,P ′ − Fm(Q)P−Q,P ′)

+G(−P ′)G(P ′ +Q)G(−P +Q)(Fs(Q)P−Q,P ′ + Ft(Q)P−Q,P ′)}
(2.12)

where the indices P , P ′ and Q combine momentum k and Matsubara frequency iωn, i.e.
P = (k, iωn).

Bethe-Salpeter Equations Similar to Dyson equation in the single-particle formal-
ism, we have two-particle Dyson equation which relates the two-particle Green function
with the vertex functions. For p-p channel, we have

−P−P ′

P ′ +Q P +Q

χp = − F p

χp(Q)P,P ′ = β ∗G(−P )G(P +Q)δP,P ′

− G(P +Q)G(−P )F p(Q)P,P ′G(P ′ +Q)G(−P ′) (2.13)

and

−P−P ′

P ′ +Q P +Q

χp = − Γp χ
p

χp(Q)P,P ′ = β ∗G(−P )G(P +Q)δP,P ′

− 1

β

∑
P ′′

χp(Q)P,P ′′Γp(Q)P ′′,PG(P ′ +Q)G(−P ′) (2.14)

As for the p-h channel, we have

PP ′

P ′ +Q P +Q

χd = − Fd−

χphd/m(Q)P,P ′ = −β ∗G(P )G(P +Q)δP,P ′

− G(P +Q)G(P )Fd/m(Q)P,P ′G(P ′ +Q)G(P ′) (2.15)

9



PP ′

P ′ +Q P +Q

χd = + Γd χd

χpd/m(Q)P,P ′ = −β ∗G(P )G(P +Q)δP,P ′

− 1

β

∑
P ′′

G(P +Q)G(P )Γpd/m(Q)P,P ′′χph(Q)P ′′,P ′ (2.16)

For more details about the definitions of these quantities and how to measure them
during the QMC simulation, please see the Appendix C.

The reducible and the irreducible vertices in a given channel are related by another
form of Bethe-Salpeter equation. It has the following form:

Fr(Q)P,P ′ = Γr(Q)P,P ′ + Φr(Q)P,P ′ (2.17)
Fr′(Q)P,P ′ = Γr′(Q)P,P ′ + Ψr′(Q)P,P ′ (2.18)

where r = d or m for the density and magnetic channels respectively and r′ = s or t for
the singlet and triplet channels, and we are using the vertex ladders which are defined
as:

Φr(Q)P,P ′ ≡
∑
P ′′

Fr(Q)P,P ′′χph0 (Q)P ′′Γr(Q)P ′′,P ′ (2.19)

Ψr′(Q)P,P ′ ≡
∑
P ′′

Fr′(Q)P,P ′′χpp0 (Q)P ′′Γr′(Q)P ′′,P ′ (2.20)

χ0 is the direct product of two single-particle Green’s functions and is defined according
to the particle-particle or the particle-hole channel as

χph0 (Q)P = G(P +Q)G(P ) (2.21)

χpp0 (Q)P = −1

2
G(P +Q)G(−P ) (2.22)

Note that in the above, the prefactor 1
2
is introduced to avoid the double-counting in

the p-p channel. This equation shows how a reducible vertex is reducible in its own
scattering channel.

Parquet Equation In a similar manner, the irreducible vertex and the fully irreducible
vertex are related by the parquet equation. This set of equations expresses the fact that
the irreducible vertex in a given channel is still reducible in the other two channels. The
parquet equation has the following form in the different channels:
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Γ Λ= Λ= + Γp χ0
p Fp

Γv

χ0

Fv

+

Γp +Λp
= Γ χ0

F

Γv

χ0

Fv

+=

Figure 2.4: Feynman diagram representation of the parquet equation for both p-h and
p-p channel. The irreducible vertex Γ is still decomposable in the other channels. Note
that the spin indices are ignored for simplicity.

Γd(Q)PP ′ = Λd(Q)PP ′ − 1

2
Φd(P

′ − P )P,P+Q −
3

2
Φm(P ′ − P )P,P+Q (2.23)

+
1

2
Ψs(P + P ′ +Q)−P−Q,−P +

3

2
Ψt(P + P ′ +Q)−P−Q,−P

Γm(Q)PP ′ = Λm(Q)PP ′ − 1

2
Φd(P

′ − P )P,P+Q +
1

2
Φm(P ′ − P )P,P+Q (2.24)

− 1

2
Ψs(P + P ′ +Q)−P−Q,−P +

1

2
Ψt(P + P ′ +Q)−P−Q,−P

Γs(Q)PP ′ = Λs(Q)PP ′ +
1

2
Φd(P

′ − P )−P ′,P+Q −
3

2
Φm(P ′ − P )−P ′,P+Q (2.25)

+
1

2
Φd(P + P ′ +Q)−P ′,−P −

3

2
Φm(P + P ′ +Q)−P ′,−P

Γt(Q)PP ′ = Λt(Q)PP ′ +
1

2
Φd(P

′ − P )−P ′,P+Q +
1

2
Φm(P ′ − P )−P ′,P+Q (2.26)

− 1

2
Φd(P + P ′ +Q)−P ′,−P −

1

2
Φm(P + P ′ +Q)−P ′,−P

2.3 Hierarchy of Different Approximate Methods
As summarized in Fig. 2.5, the parquet formalism is a combination of single-particle
formalism and two-particle formalism. It provides a self-contained description of a quan-
tum system up to the two-particle quantity level. Based on the parquet formalism, one
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can design approximate methods at different levels, forming a hierarchy of approximate
methods.

G T Σ

χ F Γ Λ

S.D.

B.S. Parquet

single-particle

two-particle

re irre fully irre

Figure 2.5: Parquet formalism.

2.3.1 Self-Consistent Hartree-Fock Approximation

At the highest level, we might make the approximation on the two-particle Green function
(analogous to the conventional G-based Hartree-Fock (HF) perturbation) such that four-
point correlation function can be expressed as a product of two two-point correlation
functions

〈niσnjσ′〉 = 〈niσ〉〈njσ′〉 (2.27)

It is equivalent to ignoring the contribution from the vertex functions. So we have

F = 0 (2.28)

From the Schwinger-Dyson equation, we then end up with including only the HF diagram
in the calculation of the self-energy (See (a) in Fig. 2.6).

=Σ +

=Σa),

b),

Figure 2.6: Contributions to the self-energy for the HF (a) and SOPT (b) methods.

For this HF method, the lowest-order correction comes from the second-order dia-
gram, and thus is of order of O(U2).

2.3.2 Self-Consistent Second-Order Perturbation Theory

As the next level of approximation, we approximate the full vertex F by the bare inter-
action
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F = v (2.29)

Putting this result into the Schwinger-Dyson equation, we then need to sum up first-
order and second-order diagrams in the calculation of self-energy (See (b) in Fig. 2.6),
which is exactly the Self-consistent Second-Order Perturbation Theory (SOPT). For this
method, the lowest-order correction is of order of O(U3).

2.3.3 Random-Phase Approximation, T-Matrix Approximation
and Fluctuation Exchange Approximation

By approximating the irreducible vertex, instead of the full vertex, we can sum more
diagrams, such as the ring-type (See (a) in Fig. 2.7) and the ladder-type (See (b) and (c)
in Fig. 2.7). For the former, it is referred to as the random phase approximation (RPA),
while the latter is referred to as the T-matrix approximation (TMA). And if we sum
up both types of diagrams, then we will end up with the so-called fluctuation exchange
approximation (FLEX). As compared to RPA or TMA, FLEX has the advantage of
considering fluctuations from different channels equally. For both RPA and TMA, the
lowest-order correction is of order of O(U3), the same as SOPT, while it is of order of
O(U4) for FLEX since it includes all the contributions up to the third order in U .

+

+

+

+

+
+

a),

b),

c),

Figure 2.7: Contributions to the self-energy for the RPA (a), TMA (b or c) and FLEX
( a, b and c) methods.

Random-Phase Approximation (RPA) The irreducible vertex in the longitudinal
charge channel is approximated by the bare Coulomb interaction. And then the Bethe-
Salpeter equation is used to sum over all the ring-type diagrams.

13



T-Matrix Approximation (TMA) Similar to RPA, the irreducible vertex in the
transverse p-h channel or p-p channel, instead of longitudinal p-h channel, is approxi-
mated by the bare Coulomb interaction. And then the Bethe-Salpeter equation is used
to sum all the ladder-type (instead of ring-type in RPA) diagrams.

Fluctuation Exchange Approximation (FLEX) A combination of RPA and T-
matrix approximation, such that the fluctuations in different channels are treated equally.

2.3.4 Parquet Approximation (PA)

To include even more diagrams in our calculation, we need to make the approximation
on the irreducible vertex level

Λ = v (2.30)

and then end up with the parquet approximation (PA). Within this approach, more
diagrams, like the ring+ladder-type and the simply-crossed diagrams, are included (see
Fig. 2.8). As compared to FLEX, PA preserves the crossing-symmetries, which are
consequences of the Pauli exclusive principle, and the lowest-order correction is of order
of O(U5).

+ + +

Figure 2.8: More diagrams are included in the PA calculation.

Although many more complicated diagrams are included in the PA approach, we
are still missing diagrams as shown in Fig. 2.9. To account for them, we can use the
quantum Monte Carlo method to sum up different diagrams and go to the next level of
approximate method, so-called Multi-Scale Many-Body approach (MSMB).

+

Figure 2.9: Diagrams which are missing in the PA calculation.

2.3.5 Multi-Scale Many-Body Approach

Within this approach, physics at the short length scales is treated explicitly with QMC
method, physics at the intermediate length scales treated diagrammatically using fully
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Figure 2.10: Schematic representation of MSMB approach.

G T Σ

χ F Γ Λ

S.D.

B.S. Parquet

more localized

Better approximation

F ≈ v

Γ ≈ v

Λ ≈ v

ΛII ≈ ΛI,DCA/QMC

SOPT

RPA, TMA, FLEX

Parquet Approximation

DCA/QMC+Parquet

1-particle

2-particle

re irre fully irre

MSMB

F = 0 H-F

Figure 2.11: From the parquet formalism, one can design a hierarchy of approximate
methods with different accuracies and different complexity.

irreducible vertices obtained from QMC, and physics at the long length scales treated at
the mean field level.
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Chapter 3

Parquet Approximation

In the previous chapter, we unified different approximate methods within the parquet
formalism, forming a hierarchy of methods with different precisions and computational
complexity. Among them, as the first full two-particle level method, the parquet approx-
imation has been out of our reach due to the massive computational requirement since
the introduction of parquet formalism. And only recently can we for the first time carry
out parquet calculations.

In this chapter, we will show how the parquet approximation is implemented, what the
computational challenges are, and how we solve them. With the almost perfectly parallel
parquet code, we apply it on the 2-D Hubbard model on a half-filled 4× 4 cluster. Re-
sults are compared to those obtained from Determinant Quantum Monte Carlo (DQMC),
FLuctuation EXchange (FLEX), and self-consistent second-order approximation meth-
ods. This comparison shows a satisfactory agreement with DQMC and a significant
improvement over the FLEX or the self-consistent second-order approximation.

During this project, I worked out the whole parquet formalism, designed the parquet
approximation algorithm, and implemented the serial version of the parquet code. To
make the code more stable, I went to University of Goettingen to work with Thomas
Pruschke, and finally we designed the damping scheme for our code, making the code
a practical tool for the strongly correlated electron systems. And I wrote a Matlab
version of the code, which is very helpful for the analysis the stability behavior of the
parquet approximation and turns out to be an ideal platform to try new techniques on the
parquet calculation efficiently. To make it parallel using MPI, I proposed the three-step
procedure to implement the vertex rotation, which is the communication bottle-neck of
the whole calculation. And then I worked with our collaborators to implement the MPI
version of parquet code. Later we added the OpenMP directives to increase the parallel
efficiency. This code is available in the public domain 1, and has seen several hundred
accesses up to now.

This work has been published in Phys. Rev. E, 80, 046706, (2009). The following
sections in this chapter are from that paper.

1http://www.phys.lsu.edu/~syang/parquet/index.html
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3.1 Introduction
Over the past 50 years, many different techniques have been devised and employed to
study strongly correlated electron systems. Unfortunately, advantages of the successful
attempts were usually outweighed by their limitations. Recently, because of the progress
in computer technology, complex diagramatic approaches have received increased at-
tention. Although Baym and Kadanoff’s Φ derivability [3, 4] does not guarantee the
physical validity of a theory, their framework enables the generation of conserving ap-
proximations which are guaranteed to satisfy a variety of Ward identities. For these
reasons, the FLuctuation EXchange (FLEX) approximation [5, 6] has been intensively
studied over the years. Its major disadvantage, however, is that it represents a con-
serving approximation at the single-particle level only. Thus, the physical validity of
the approximation appears to be questionable as the vertices are either overestimated
or underestimated and the Pauli exclusion principle is not respected properly [7]. In
contrast, the parquet formalism [8] introduced by de Dominicis et al. in 1964 is a con-
serving approximation which is self-consistent also at the two-particle level and one may
hope that it resolves at least some of the limitations FLEX has. Unfortunately, it has
an extremely complicated structure and was, apart from applications to the Anderson
impurity model and the 1-D Hubbard model with small system size [9, 10], hitherto also
computationally out of reach. To circumvent this limitation, Bickers et al. introduced
the so-called pseudo-parquet approximation [5] which attempts to improve on the FLEX
without introducing the complexity of the full Parquet equations. But this approach
fails to properly address the full frequency and momentum dependence of the scatter-
ing processes. Only very recently, due to the great advance of parallel computing and
the tremendous increase in computer memory, has it become possible to fully solve this
approximation for the first time.

The chapter is organised as follows. In section 3.2, we discuss the algorithm and the
numerical difficulties that arise. In section 3.3, we present first results obtained from the
parquet approximation (PA) for the 2-dimensional Hubbard model and their comparison
to other conserving approximation methods such as FLEX and self-consistent second-
order approximation (SC2nd). As a benchmark, we compare these results against the
Determinant Quantum Monte Carlo (DQMC) which provides a numerically exact result.

3.2 Algorithm and Computational Challenge
The set of equations dicussed above are solved self-consistently as illustrated in the self-
consistency loop in Fig. 3.1. One starts with a guess of the single-particle Green’s
function or self-energy. This can, for example, be taken from the second-order approx-
imation. The reducible and the irreducible vertices are also initialized with the bare
interaction. The self-consistency loop can then be described as follows:
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Figure 3.1: (color online) Schematic illustration for the different steps in solving the
parquet approximation equations self-consistently.

(i) first we calculte the bare susceptibility χ0 which is given by the product of two
Green’s functions

(ii) next this bare susceptibility is used to calculate F through the Bethe-Salpeter
equation

(iii) we then proceed with updating the irreducible vertices Γ by solving the parquet
equation.
This step requires the input of the fully irreducible vertex Λ. In the context of the
parquet approximation which we study here it is taken to be the bare interaction.
It however can also be extracted from some more sophisticated methods.

(iv) it is followed by a calculation of the new F through the Bethe-Salpeter equation

(v) this value of F is then used to update the self-energy through the Schwinger-Dyson
equation

(vi) the Dyson’s equation is solved for the Green’s function G.

This loop is repeated until convergence of the self-energy Σ is achieved within a reason-
able criterion.

Unfortunately, this loop becomes unstable when the strength of the Coulomb inter-
action is increased or the temperature is lowered. As we believe that this instability is
purely numerical in origin and related to the iterative nature of the algorithm, we have
to extend the above scheme to account for this problem. For example, one possibility
is to start with an overestimated self-energy and to damp it along with the irreducible
vertex between two iterations according to:

Σ = α1Σnew + (1− α1)Σold (3.1)
Γ = α2Γnew + (1− α2)Γold (3.2)

where α1 and α2 are some damping parameters.
Another possibility is to rewrite the coupled Bethe-Salpeter and parquet equations

in the form f(x) = 0 and apply a variant of a Newton’s root searching method. Then
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we can take advantage of the existing linear solvers such as BiCGS [11], GMRES [12] or
the Broyden algorithm [13].

One major advantage that the parquet formalism has over Exact Diagonalization
(ED) or Quantum Monte Carlo (QMC) is that it scales algebraically with the volume of
the system in space-time for any choice of parameters including those that lead to a sign
problem in QMC. The most time-consuming part of the formalism is the solution of the
Bethe-Salpeter and the parquet equations, where the computational time scales as O(n4

t )
where nt = nc × nf , nc being the number of sites on the cluster and nf the number of
Matsubara frequencies. Although the scaling is better than that of ED or QMC when the
sign problem is severe, one can see that the complexity quickly grows beyond the capacity
of usual desktop computers with incrasing system size, and large-scale supercomputer
systems have to be employed.

Our parallel scheme and our data distribution are based on the realization that the
Bethe Salpeter equation is the most time-consuming part of our calculation. One can
easily see that it decouples nicely with respect to the bosonic momentum-frequency index
Q. This enables us to distribute the vertices across processors with respect to this third
index and to solve the Bethe-Salpeter equation with a local matrix inversion. However,
this storage scheme puts a limit on the size of the problem that we can address. For a
node with 2 GBytes of memory, the maximum value of nt that we can use if our variables
are complex double precision is about 2500.

Unlike the Bethe-Salpeter equation, one can readily observe that the parquet equa-
tion does not decouple in terms of the third index. Solving this equation requires a
rearrangement of the matrix elements across processors and this is the communication
bottleneck in the algorithm. The rearrangement is necessary to obtain the form of the
vertex ladder Φ or Ψ that is required in the parquet equation. For instance, in the d chan-
nel, we need Φ (P − P ′)P,P+Q. This form of the vertex ladder is obtained by employing
the three-step process described in the following equations:

Φ (Q)P,P ′ =⇒ Φ (Q)P,P−P ′ (3.3)
Φ (Q)P,P−P ′ =⇒ Φ (P − P ′)P,Q (3.4)

Φ (P − P ′)P,Q =⇒ Φ (P − P ′)P,P+Q (3.5)

The first step in this transformation only moves data locally in memory. This does
not require much time. The second step is actually just a 2D matrix transpose but with
matrix elements spreading on many nodes. This is where communication across nodes is
required. It is achieved by using the standard Message Passing Interface (MPI) collective
directives2. The final step is also local and can equally be done very fast.
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Figure 3.2: (color online) Single-particle Green function G (τ) for two different momenta
a), k = (π, 0), b), k = (0, 0), extracted the three diagrammatic approaches and the
DQMC. For this temperature (T = 0.3t), the PA result (solid line) looks very close to
the DQMC one (symbol solid line) as compared to SC second-order (dashed line) or
FLEX (dash-dotted line). In the insert of b) is an enlarged view of the figure.

3.3 Results
In the following section, we will show the PA results for a 4 × 4 Hubbard cluster at
half-filling. The calculations are done for U = 2t and different temperatures. The
calculations are performed for a finite number of Matsubara frequencies3. However, for
the observables we calculated, such as the local moment and magnetic susceptibility in
Fig. 3.3 and Fig. 3.4, we performed an extrapolation to an infinite number of frequencies
so that the cutoff error in frequency is minimized. To see how good PA works for the
lattice model, we use the DQMC result as the benchmark. In the DQMC calculation,
∆τ = 1/12 is used and the combined statistical and systematic errors are smaller than
the symbols used. To further compare PA to other approximations, FLEX and self-
consistent second-order results are also included.

2For a detailed description of MPI, we refer to: http://www.mcs.anl.gov/research/projects/mpi/
3We use the periodic boundary condtions in the frequency space for the ease of implementation. And

we have checked that different boundary conditions converge to the same result as nf increases.
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3.3.1 Single-Particle Green Function G (τ)

First, one can get a rough idea of how PA improves the accuracy of physical observables
by comparing the single-particle Green’s function from different levels of approximation.
Shown in Fig. 3.2 are Gk (τ) with k = (π, 0) and k = (0, 0) calculated from the self-
consistent second-order approximation, FLEX, PA and DQMC. The parquet result is
significantly closer to the DQMC result than the second-order approximation and FLEX
results as can readily seen from the figure. This confirms the intuition that one would
get better results if the approximation is made on the vertex which is most irreducible.

3.3.2 Unscreened Local Moment

0 2 4 6 8 10
β

0.55

0.6

0.65

 
<

µ
>

DQMC
SC2nd
FLEX
PA

Figure 3.3: (color online) The inverse temperature dependence of local moment. Among
the three diagrammatic approaches, the PA result comes closest to the DQMC one.

Next we present results for the local magnetic moment defined as

〈µ〉 ≡
〈
(n↑ − n↓)2

〉
(3.6)

= 〈n〉 − 2 〈n↑n↓〉 (3.7)

where n̂σ denotes the number operator for electrons of spin σ. In the context of a
conserving approximation, it can be re-expressed in terms of the self-energy and the
single-particle Green’s function as

〈µ〉 = 〈n〉 − 2T

U
Tr(ΣG) (3.8)

where the trace sums over both the momentum and the frequency degrees of freedom.
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The results are shown in Fig. 3.3. Among the three diagrammatic approaches, the
PA result comes closest to the DQMC one. If we look more carefully at the DQMC curve,
we can find the existence of two humps. The hump at T1 ' U/2, which is well reproduced
by the PA, designates the energy scale for the charge fluctuation, and is directly related
to the suppression of charge double occupancy. The other hump beginning at T2 � t is
related to the virtual exchange interaction, J, between nearby spins. It is believed to be
related to the synergism between the development of the long-range antiferromagnetic
correlation and enhancement of the local moment. As a result, a pseudogap is opened
which increases the entropy of the system [14, 15]. The magnitude of T2 can be estimated
by noticing J = 4t2/U for the strong coupling limit and t exp (−2πt/U) in the weak
coupling limit [14, 16]. Therefore it basically interpolates between these two limits for
that U = 2t is in the intermediate coupling regime. This hump is not well captured by
PA. The increasing importance of envelop-shape diagram contribution [5, 7] not included
in PA is responsible for this deviation in the low temperature region.

3.3.3 Uniform Susceptibility
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Figure 3.4: (color online) Uniform susceptibility calculated for different methods as a
function of inverse temperature. While at the high temperature region, all the diagram-
matic method results come close to the DQMC result, the PA shows its advantage clearly
in the low temperature region.

Finally, we look at the uniform magnetic susceptibility which is defined as

χmag (0, 0) =

ˆ β

0

dτ
〈
T̂τ Sz (τ)Sz (0)

〉
(3.9)

=
1

T

〈
S2
z

〉
(3.10)
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with magnetic moment defined as

Ŝz (τ) =
1

N

∑
r

(nr,↑ (τ)− nr,↓ (τ)) (3.11)

The χmag from different approaches are presented in Fig. 3.4. The uniform magnetic
susceptibility calculated from DQMC follows a nearly linear dependence on β. This
mimics closely the Curie-Weiss law of weakly interacting moments and implies that the
dominant effect in the system is the short range magnetic fluctuation. This is consistent
with the β dependence of the local moment presented in Fig. 3.3. As the temperature
still dominates over the spin energy scale of the system, it suppresses the long range
fluctuation.

From this figure, the improvement of PA over the other two approximations is also
easy to see. Similar to the local moment, the difference between results from PA and
DQMC at the low temperature region can be explained by the omission of envelop-shape
diagrams in PA.

3.4 Summary and Outlook
We have presented the parquet formalism, PA method and in particular the implementa-
tion we use to solve large-sized problem. The preliminary application of PA on the 4× 4
Hubbard cluster shows that it can yield better results than the self-consistent second-
order or FLEX calculations. This is the first step in our work, next we are going to use
the parquet formalism in the so-called Multi-Scale Many-Body (MSMB) approach [17].
Within MSMB, correlations at different length scales are treated with different methods.
The short length scales are treated explicitly with QMC methods, intermediate length
scales treated diagrammatically using fully irreducible vertices obtained from QMC and
long length scales treated at the mean field level. Note that in this approach the fully
irreducible vertex is approximated by a QMC calculation on a small cluster, while in
PA it is approximated by the bare interaction. Therefor this approach should provide
superior results to the PA. Another advantage is that it can also avoid the exponential
increase of the computational cost as the system size increases, and thus can take full
advantage of the most up-to-date computer resources available. We will combine it with
the Local Density Approximation (LDA) to gain some predictive power from the first
principle electronic structure calculation.
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Chapter 4

Proximity of Superconducting Dome to
the QCP

The parquet formalism can also used to analyze the underlying mechanism of second-
order phase transition. Especially, we are most interested in the superconducting mech-
anism of the high-temperature superconductors. In the chapter, we use the dynamical
cluster approximation (DCA) method to understand the proximity of the superconduct-
ing dome to the quantum critical point in the 2-D Hubbard model. In a BCS formalism,
Tc may be enhanced through an increase in the d-wave pairing interaction (Vd) or the
bare pairing susceptibility (χ0d). At optimal doping, where Vd is revealed to be feature-
less, we find a power-law behavior of χ0d(ω = 0), replacing the BCS log, and strongly
enhanced Tc. And we suggest experiments in the end to verify these predictions.

In this project, I carried out the DCA calculation, determined the phase digram
by extracting the simulated data, and implemented the analysis code to do the vertex
decomposition using the parquet formalism. And I also worked with other collaborators
to analyze the bare d-wave susceptibility.

This work has been published in Phys. Rev. Lett. 106, 047004 (2011). The following
sections in this chapter are from that paper.

Reprinted by permission of “Phys. Rev. Lett.”.

4.1 Introduction
The unusually high superconducting transition temperature of the cuprates remains an
unsolved puzzle, despite more than two decades of intense theoretical and experimen-
tal research. Central to the efforts to unravel this mystery is the idea that the high
critical temperature is due to the presence of a quantum critical point (QCP) which is
hidden under the superconducting dome [18, 19]. Numerical calculations in the Hubbard
model, which is accepted as the de-facto model for the cuprates, strongly support the
case of a finite-doping QCP separating the low-doping region, found to be a non-Fermi
liquid (NFL), from a higher doping Fermi-liquid (FL) region [20, 21]. Calculations also
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show that in the vicinity of the QCP, and for a wide range of temperatures, the doping
and temperature dependence of the single-particle properties, such as the quasi-particle
weight [20], as well as thermodynamic properties such as the chemical potential and
the entropy, are consistent with marginal Fermi liquid (MFL) behavior [22]. This QCP
emerges by tuning the temperature of a second-order critical point of charge separation
transitions to zero and is therefore intimately connected to q = 0 charge fluctuations [23].
Finally, the critical doping seems to be in close proximity to the optimal doping for su-
perconductivity as found both in the context of the Hubbard [23] and the t-J model [24].
Even though this proximity may serve as an indication that the QCP enhances pairing,
the detailed mechanism is largely unknown.

In this project, we attempt to differentiate between two incompatible scenarios for
the role of the QCP in superconductivity. The first scenario is the quantum critical BCS
(QCBCS) formalism introduced by She and Zaanen (She-Zaanen) [25]. According to
this, the presence of the QCP results in replacing the logarithmic divergence of the BCS
pairing bubble by an algebraic divergence. This leads to a stronger pairing instability and
higher critical temperature compared to the BCS for the same pairing interactions. The
second scenario suggests that remnant fluctuations around the QCP mediate the pairing
interaction [26, 27]. In this case the strength of the pairing interaction would be strongly
enhanced in the vicinity of the QCP, leading to the superconducting instability. Here,
we find that near the QCP, the pairing interaction depends monotonically on the doping,
but the bare pairing susceptibility acquires an algebraic dependence on the temperature,
consistent with the first scenario.

4.2 Formalism
In a conventional BCS superconductor, the superconducting transition temperature, Tc,
is determined by the condition V χ′0(ω = 0) = 1, where χ′0 is the real part of the q = 0 bare
pairing susceptibility, and V is the strength of the pairing interaction. The transition is
driven by the divergence of χ′0(ω = 0) which may be related to the imaginary part of the
susceptibility via χ′0(ω = 0) = 1

π

´
dωχ′′0(ω)/ω. And χ′′0(ω) itself can be related to the

spectral function, Ak(ω), through

χ′′0(x) =
π

N

∑
ζ,k

ˆ
dωAk(ω)Ak(ζx− ω) (f(ω − ζx)− f(ω)) (4.1)

where the summation of ζ ∈ {−1,+1} is used to anti-symmetrize χ′′0(ω). In a FL,
χ′′0(ω) ∝ N(ω/2) tanh (ω/4T ), and χ′0(T ) ∝ N(0) ln(ωD/T ) with N(0) the single-particle
density of states at the Fermi surface and ωD the phonon Debye cutoff frequency. This
yields the well known BCS equation Tc = ωD exp (−1/(N(0)V ). In the QCBCS formu-
lation, the BCS equation is V χ′(ω = 0) = 1, where χ′ is fully dressed by both the self
energy and vertices associated with the interaction responsible for the QCP, but not by
the pairing interaction V . In the Hubbard model the Coulomb interaction is responsible
for both the QCP and the pairing, so this deconstruction is not possible. Thus, we will
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use the more common BCS Tc condition to analyze our results with V χ′0(ω = 0) = 1
where χ′0 is dressed by the self energy but without vertex corrections. Since the QCP
is associated with MFL behavior, we do not expect the bare bubble to display a FL
logarithm divergence. Here, we explore the possibility that χ′0(ω = 0) ∼ 1/Tα.

The two-dimensional Hubbard model is expressed as:

H = Hk +Hp =
∑
kσ

ε0kc
†
kσckσ + U

∑
i

ni↑ni↓ , (4.2)

where c†kσ(ckσ) is the creation (annihilation) operator for electrons of wavevector k and
spin σ, niσ = c†iσciσ is the number operator, ε0k = −2t (cos(kx) + cos(ky)) with t being
the hopping amplitude between nearest-neighbor sites, and U is the on-site Coulomb
repulsion.

We employ the dynamical cluster approximation (DCA) [28, 29] to study this model
with a Quantum Monte Carlo (QMC) algorithm as the cluster solver. The DCA is a
cluster mean-field theory which maps the original lattice onto a periodic cluster of size
Nc = L2

c embedded in a self-consistent host. Spatial correlations up to a range Lc are
treated explicitly, while those at longer length scales are described at the mean-field
level. However the correlations in time, essential for quantum criticality, are treated
explicitly for all cluster sizes. To solve the cluster problem we use the Hirsch-Fye QMC
method [30, 31] and employ the maximum entropy method [32] to calculate the real-
frequency spectra.

We evaluate the results starting from the Bethe-Salpeter equation in the pairing
channel:

χ(Q)P,P ′ = χ0(Q)P δP,P ′ +
∑
P ′′

χ(Q)P,P ′′Γ(Q)P ′′,P ′χ0(Q)P ′ (4.3)

where χ is the dynamical susceptibility, χ0(Q)P [= −G(P + Q)G(−P )] is the bare sus-
ceptibility, which is constructed from G, the dressed one-particle Green’s function, Γ
is the vertex function, and indices P [...] and external index Q denote both momentum
and frequency. The instability of the Bethe-Salpeter equation is detected by solving the
eigenvalue equation Γχ0φ = λφ [33] for fixed Q. By decreasing the temperature, the
leading λ increases to one at a temperature Tc where the system undergoes a phase tran-
sition. To identify which part, χ0 or Γ, dominates at the phase transition, we project
them onto the d-wave pairing channel (which was found to be dominant [21, 34]). For χ0,
we apply the d-wave projection as χ0d(ω) =

∑
k χ0(ω, q = 0)kgd(k)2/

∑
k gd(k)2, where

gd(k) = (cos(kx) − cos(ky)) is the d-wave form factor. As for the pairing strength, we
employ the projection as Vd =

∑
k,k′ gd(k)Γk,k′gd(k

′)/
∑

k gd(k)2, using Γ at the lowest
Mastsubara frequency [35].

To further explore the different contributions to the pairing vertex, we employ the
formally exact parquet equations to decompose it into different components [35, 36].
Namely, the fully irreducible vertex Λ, the charge (S=0) particle-hole contribution, Φc,
and the spin (S=1) particle-hole contribution, Φs, through: Γ = Λ + Φc + Φs. Similar
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Figure 4.1: (Color online) Plots of leading eigenvalues for different channels at the critical
doping for Nc = 12 and Nc = 16 site clusters. The inset shows the phase diagram with
superconducting dome, pseudogap T ∗ and FL TX temperatures from Ref. [20]

to the previous expression, one can write Vd = V Λ
d + V c

d + V m
d , where each term is the

d-wave component of the corresponding term. Using this scheme, we will be able to
identify which component contributes the most to the d-wave pairing interaction.

4.3 Results
We use the BCS-like approximation, discussed above, to study the proximity of the
superconducting dome to the QCP. We take U = 6t (4t = 1) on 12 and 16 site clusters
large enough to see strong evidence for a QCP near doping δ ≈ 0.15 [20, 22, 23]. We
explore the physics down to T ≈ 0.11J on the 16 site cluster and T ≈ 0.07J on the 12-
site cluster, where J ≈ 0.11 [20] is the antiferromagnetic exchange energy. The fermion
sign problem prevents access to lower T .

Fig. 4.1 displays the eigenvalues of different channels (pair, charge, magnetic) at the
QC filling. The results for the two cluster sizes are nearly identical, and the pairing
channel eigenvalue approaches one at low T , indicating a superconducting d-wave tran-
sition at roughly Tc = 0.007. However, in contrast to what was found previously [35],
the q = 0 charge eigenvalue is also strongly enhanced, particularly for the larger Nc = 16
cluster, as it is expected from a QCP emerging as the terminus of a line of second-order
critical points of charge separation transitions [23]. The inset shows the phase diagram,
including the superconducting dome and the pseudogap T ∗ and FL TX temperatures.

In Fig. 4.2, we show the strength of the d-wave pairing vertex Vd versus doping for
a range of temperatures. Consistent with previous studies [37], we find that Vd falls
monotonically with increasing doping. At the critical doping, δc = 0.15, Vd shows no
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Figure 4.2: (Color online) Plots of Vd, the strength of the d-wave pairing interaction for
various temperatures with U = 1.5 (4t = 1) and Nc = 16. Vd decreases monotonically
with doping, and shows no feature at the critical doping. In the inset are plots of the
contributions to Vd from the charge V c

d and spin V s
d cross channels and from the fully

irreducible vertex V Λ
d versus T at the critical doping. As the temperature is lowered,

T � J ≈ 0.11, the contribution to the pairing interaction from the spin channel is clearly
dominant.

feature, invalidating the second scenario described above. The different components of
Vd at the critical doping versus temperature are shown in the inset of Fig. 4.2. As the
QCP is approached, the pairing originates predominantly from the spin channel. This
is similar to the result of Ref. [35] where the pairing interaction was studied away from
quantum criticality.

In contrast, the bare d-wave pairing susceptibility χ0d exhibits significantly different
features near and away from the QCP. As shown in Fig. 4.3, in the underdoped region
(typically δ = 0.05), the bare d-wave pairing susceptibility χ′0d(ω = 0) saturates at
low temperatures. However, at the critical doping, it diverges quickly with decreasing
temperature, roughly following the power-law behavior 1/

√
T , while in the overdoped or

FL region it displays a log divergence.
To better understand the temperature-dependence of χ′0d(ω = 0) at the QC doping,

we looked into T 1.5χ′′0d(ω)/ω and plotted it versus ω/T in Fig. 4.4. When scaled this
way, the curves from different temperatures fall on each other such that T 1.5χ′′0d(ω)/ω =
H(ω/T ) ≈ (ω/T )−1.5 for ω/T & 9 ≈ 4t/J . For 0 < ω/T < 4t/J , the curves deviate from
the scaling function H(x) and show nearly BCS behavior, with χ′′0d(ω)/ω|ω=0 which is
weakly sublinear in 1/T as shown in the inset. The curves away from the critical doping
(not displayed) do not show such a collapse. In the underdoped region (δ = 0.05) at
low frequencies, χ′′0d(ω)/ω goes to zero with decreasing temperature (inset). In the FL
region (δ = 0.25) χ′′0d(ω)/ω develops a narrow peak at low ω of width ω ≈ TX and height
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Figure 4.3: (Color online) Plots of χ′0d(ω = 0), the real part of the bare d-wave pairing
susceptibility, at zero frequency vs. temperature at three characteristic dopings. The
solid lines are fits to χ′0d(ω = 0) = B/

√
T + A ln(ωc/T ) for T < J . In the underdoped

case (δ = 0.05), χ′0d(ω = 0) does not grow with decreasing temperature. At the critical
doping (δ = δc = 0.15), χ′0d(ω = 0) shows power-law behavior with B = 0.04 for the
12 site, and B = 0.09 for the 16-site clusters (in both A = 1.04 and ωc = 0.5). In the
overdoped region (δ = 0.25), a log divergence is found, with B = 0 obtained from the
fit.

∝ 1/T as shown in the inset.

4.4 Discussion
χ′′0d(ω)/ω reveals details about how the instability takes place. The overlapping curves
found at the QC filling contribute a term T−1.5H(ω/T ) to χ′′0d(w)/w or χ′0d(T ) ∝ 1/

√
T

as found in Fig. 4.3. There is also a component which does not scale, especially at
low frequencies. In fact, χ′′0d(ω)/ω at zero frequency increases more slowly than 1/T
as expected for a FL. From this sublinear character, we infer that the contribution of
the non-scaling part of χ′′0d(ω)/ω to the divergence of χ′0d(T ) is weaker than BCS and
may cause us to overestimate A and underestimate B in the fits performed at the critical
doping in Fig. 4.3. In addition, if H(0) is finite, it would contribute a term to χ′0d(T ) that
increases like 1/T 1.5, so H(0) = 0. From Eq. 4.1 we see that the contribution to χ′′0d(ω)/ω
at small ω comes only from states near the Fermi surface. H(0) = 0 would indicate that
the enhanced pairing associated with χ′0d(T ) ∝ 1/

√
T is due to higher energy states.

The vanishing of χ′′0d(ω)/ω in the pseudogap region (δ = 0.05) for small frequency when
T → 0 indicates that around the Fermi surface, the dressed particles do not respond
to a pair field. Or, perhaps more correctly, none are available for pairing due to the
pseudogap depletion of electron states around the Fermi surface. Thus, even the strong

29



0 20 40 60 80 100
1/T

0

10

20

30

40

50

60

χ
" 0

d
(ω

)/
ω

| ω
=

0

δ=0.25
δ=0.15
δ=0.05

0 20 40
ω/T

0

0.1

0.2

0.3

T
1

.5
χ

" 0
d
(ω

)/
ω

0.200
0.125
0.083
0.056
0.036
0.025
0.017
0.012

(ω/T)
-1.5

T=

T
s
/T

Figure 4.4: (Color online) Plots of T 1.5χ′′0d(ω)/ω versus ω/T at the QC doping (δ =
0.15) for Nc = 16. The arrow denotes the direction of decreasing temperature. The
curves coincide for ω/T > 9 ≈ (4t/J) defining a scaling function H(ω/T ), corresponding
to a contribution to χ′0d(T ) = 1

π

´
dωχ′′0d(w)/w ∝ 1/

√
T as found in Fig. 4.3. For

ω/T > 9 ≈ (4t/J), H(ω/T ) ≈ (ω/T )−1.5 (dashed line). On the x-axis, we add the
label Ts/T ≈ (4t/J), where Ts represents the energy scale where curves start deviating
from H. The inset shows the unscaled zero-frequency result χ′′0d(ω)/ω|ω=0 plotted versus
inverse temperature.

d-wave interaction, seen in Fig. 4.2, is unable to drive the system into a superconducting
phase. In the overdoped region, χ′′0d(ω)/ω displays conventional FL behavior for T < TX ,
and the vanishing Vd suppresses Tc.

Together, the results for χ0d and Vd shed light on the shape of the superconducting
dome in the phase diagram found previously [23]. With increasing doping, the pairing
vertex Vd falls monotonically. On the other hand, χ′0d(T ) is strongly suppressed in the
low doping or pseudogap region and enhanced at the critical and higher doping. These
facts alone could lead to a superconducting dome. Futhermore, the additional algebraic
divergence of χ′0d(T ) seen in Fig. 4.3 causes the superconductivity to be enhanced even
more strongly near the QCP where one might expect Tc ∝ (VdB)2, with B = 1

π

´
dxH(x),

compared to the conventional BCS form in the FL region.
Similar to the scenario for cuprate superconductivity suggested by Castellani et

al. [26], we find that the superconducting dome is due to charge fluctuations adjacent to
the QCP related to charge ordering. However, we differ in that we find the pairing in
this region is due to an algebraic temperature dependence of the bare susceptibility χ0d

rather than an enhanced d-wave pairing vertex Vd, and that this pairing interaction is
dominated by the spin channel.

Our observation in the Hubbard model offers an experimental accessible variant of
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She-Zaanen’s QCBCS. We use the bare pairing susceptibility χ0 while She-Zaanen use
the full χ, which includes all the effects of quantum criticality but not the correction
from the pairing vertex (the pairing glue is added separately). This decomposition is
not possible in numerical calculations or experiments since both quantum criticality
and pairing originate from the Coulomb interaction. However, the effect of quantum
criticality already shows up in the one-particle quantities, and the spectra have different
behaviors for the three regions around the superconducting dome. She-Zaanen assume
that χ′′(ω) ∝ 1/ωα for Ts < ω < ωc, where ωc is an upper cutoff, and that it is irrelevant
(α < 0), marginal (α = 0), or relevant (α > 0), respectively in the pseudo gap region,
FL region and QCP vincity. We find the same behavior in χ0 and we have the further
observation that near the QCP Ts ≈ (4t/J)T and α = 0.5.

Experiments combining angle-resolved photo emission (ARPES) and inverse photo
emission results, with an energy resolution of roughly J , could be used to construct
χ0d and explore power law scaling at the critical doping. Since the energy resolution
of ARPES is much better than inverse photo emission, it is also interesting to study
χ′′0d(ω)/ω|ω=0, which only requires ARPES data, but not inverse photo emission.

4.5 Conclusion
Using the DCA, we investigate the d-wave pairing instability in the two-dimensional
Hubbard model near critical doping. We find that the pairing interaction remains dom-
inated by the spin channel and is not enhanced near the critical doping. However,
we find a power-law divergence of the bare pairing susceptibility at the critical dop-
ing, replacing the conventional BCS logarithmic behavior. We interpret this behavior
by studying the dynamic bare pairing susceptibility which has a part that scales like
χ′′0d(ω)/ω ∼ T−1.5H(ω/T ), where H(ω/T ) is a universal function. Apparently, the NFL
character of the QCP yields an electronic system that is far more susceptible to d-wave
pairing than the FL and pseudogap regions. We also suggest possible experimental
approaches to exploit this interesting behavior.
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Chapter 5

Dual Fermion Dynamical Cluster
Approach

In this chapter, we will propose another multi-scale approach for the strongly correlated
systems by combining the DCA and the recently introduced dual-fermion formalism.
This approach employs an exact mapping from a real lattice to a DCA cluster of linear
size Lc embedded in a dual fermion lattice. Short-length-scale physics is addressed by the
DCA cluster calculation, while longer-length-scale physics is addressed diagrammatically
using dual fermions. The bare and dressed dual fermionic Green functions scale as
O(1/Lc), so perturbation theory on the dual lattice converges very quickly. E.g., the
dual Fermion self-energy calculated with simple second order perturbation theory is of
order O(1/L3

c), with third order and three body corrections down by an additional factor
of O(1/Lc).

In this project, I worked out the formalism with other collaborators. And I imple-
mented the serial and MPI versions of dual fermion code, and carried out most of the
calculation and analysis.

This work has been published in Phys. Rev. B 84, 155106 (2011). The following
sections in this chapter are from that paper.

Reprinted by permission of “Phys. Rev. B”.

5.1 Introduction
Dynamical mean-field theory [38, 39, 40] has been remarkably successful at capturing
the physics of strongly correlated systems dominated by spatially local correlations.
Successes include the description of the Mott transition in the Hubbard model, screening
effects in the periodic Anderson model, as well as the description of correlation effects
in realistic systems [41, 42, 43].

Since the introduction of the dynamical mean-field approximation (DMFA) there
have been a number of attempts to develop formal extensions around the DMFA that
incorporate non-local corrections. These include cluster extensions of the DMFA, such as
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the dynamical cluster approximation (DCA) [28, 29, 31] or the cellular dynamical mean-
field theory (CDMFT) [44], and multi-scale approximations where the DMFA or DCA
vertices are used to parametrize two-particle field theories and longer ranged correlations
can thus be captured [45, 17, 46]. One of the main limitations of these theories is that
they converge slowly with the linear cluster size Lc, especially for the calculation of
transition temperatures.

The dual fermion formalism [47, 48, 49] is however, distinctly different from other
cluster extensions of the DMFA. In the dual fermion formalism, the lattice action is
first mapped onto a dual fermion action where the interaction vertices are the n-body
reducible vertices of the cluster. This mapping is exact, so the dual fermion formalism
provides a complete and exact formalism for the lattice problem. Thus far, the dual
fermion formalism has only been explored using the DMFA or the CDMFT as cluster
solvers [50]. However, the CDMFT has the disadvantage in this context that it violates
translational invariance, so that the CDMFT vertices are rank-4 tensors in the spatial or
momentum indices, which are too large to be stored and manipulated on most comput-
ers, especially for large clusters. Thus in this manuscript we propose the dual fermion
dynamical cluster approach (DFDCA), within which the long-ranged correlations can be
systematically incorporated through the dual fermion lattice calculation. Since the DCA
preserves the translational invariance of the lattice system, the DCA two-body vertices
are rank-3 tensors which, for modest cluster sizes, will fit in the memory of modern
computers. Another difference, which we will discuss in detail, is that the small param-
eter for the DFDCA is the dual fermion single-particle Green function, which scales as
Gd ∼ O(1/Lc) with Lc being the linear cluster size. As a result, perturbation theory on
the dual fermion lattice converges very quickly. Simple second order perturbation theory
on the dual fermion lattice already yields a dual fermion self-energy of order O(1/L3

c)
with two-body and three-body corrections down by an additional factor of O(1/Lc).
Higher order approximations are also possible, since, e.g., the three-body vertex correc-
tions to the DFDCA self-energy are small, O(1/L4

c). Therefore, the resulting DFDCA
formalism converges very quickly with increasing cluster size, with corrections to the
self-energy no larger than O(1/L4

c).

5.2 Mapping the DCA Formalism to Dual Fermions
We will derive the DFDCA formalism with the example of the Hubbard model. Its
Hamiltonian is

H = −
∑
<ij>

tij(c
†
iσcjσ + H.c.) + U

∑
i

(ni↑ − 1/2)(ni↓ − 1/2) (5.1)

where tij is the matrix of hopping integrals, c(†)
iσ is the annihilation (creation) operator

for electrons on lattice site i with spin σ, niσ = c†iσciσ, and U the intra-atomic repulsion.
The DMFA, and its cluster extensions such as the DCA, are based upon the common

idea of embedding a cluster in a lattice. We assume that the cluster, of size Nc = LDc ,
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dimensionality D, sites labeled by I and wavevectors K, is embedded in a large but
finite-sized lattice of size N with sites i and wavevectors k. In the DCA, the reciprocal
space of the lattice is divided into Nc cells of identical geometry and linear size ∆k. The
cell centers are labeled by K, and the points surrounding K within the coarse-graining
cell are labeled with k̃. We will also invoke a dual space lattice which is of the same size
and geometry as the real lattice.

The action for this model is

S[c∗, c] = −
∑
ω,k,σ

c∗ω,k,σ[(iω + µ)1− hk]cω,k,σ +
∑
i

Sloc[c
∗
i , ci], (5.2)

where Sloc[c∗i , ci] is the local part of the action including the Hubbard interaction term, c∗i
and ci are now Grassmann numbers corresponding to creation and annihilation operators
on the lattice, µ the chemical potential, hk the lattice bare dispersion, and ω = (2n+1)πT
the Matsubara frequencies. Decomposing the wavevector according to k = K + k̃, the
lattice action becomes

S[c∗, c] =
∑
i

Sloc[c
∗
i , ci]−

∑
ω,K,k̃,σ

c∗
ω,K+k̃,σ

[(iω + µ)1− hK+k̃]cω,K+k̃,σ. (5.3)

The goal is to express this action in terms of the DCA cluster problem 1

Scluster[c
∗, c] =

∑
I

Sloc[c
∗
I , cI ]−

∑
ω,K,σ

c∗ω,K,σ[(iω + µ)1− hK −∆(K, iω)]cω,K,σ, (5.4)

where c∗I and cI are now Grassmann numbers corresponding to creation and annihilation
operators on the DCA cluster, and ∆(K, iω) is the cluster hybridization function. To
this end, we add and subtract the hybridization function and coarse-grained dispersion,
i.e.,

∑
ω,K,k̃,σ

c∗
ω,K+k̃,σ

[hK + ∆(K, iω)]cω,K+k̃,σ =
N

Nc

∑
ω,K,σ

c∗ω,K,σ[hK + ∆(K, iω)]cω,K,σ, (5.5)

where the last line follows from the DCA coarse-graining identity

c∗ω,K,σcω,K,σ ≡
Nc

N

∑
k̃

c∗
ω,K+k̃,σ

cω,K+k̃,σ (5.6)

and the coarse-grained dispersion is given by

hK =
Nc

N

∑
k̃

hK+k̃. (5.7)

1Note that since the interaction is assumed to be local, it is unaffected by coarse-graining. Non-local
interactions however will be coarse-grained.
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The DCA coarse-graining identity preserves the Fermionic Lie algebra, despite the fact
that it is not a canonical transformation,{

c†K,σ, cK′,σ′

}
=
Nc

N

∑
k̃

{
c†
K+k̃,σ

, cK′+k̃,σ′

}
= δKσ,K′σ′ , (5.8)

where the last step follows since the coarse graining cells surrounding K and K ′ have the
same geometry and contain the same number of states which, therefore, may be labeled
with the samek̃. We then obtain

S[c∗, c] =
∑
i

Sloc[c
∗
i , ci]−

∑
ω,K,k̃,σ

c∗
ω,K+k̃,σ

[(iω + µ)1− hK −∆(K, iω)]cω,K+k̃,σ

−
∑
ω,k,σ

c∗ω,k,σ[∆(M(k), iω) + hM(k) − hk]cω,k,σ. (5.9)

In the third line of this equation we have introduced the function M(k) which maps the
momentum k in the DCA momentum cell to the cluster momentum contained in that
cell. Coarse-graining the first and the second terms on the right hand side of the above
equation yields the cluster action (5.4). Since the latter is independent of k̃, we may
write

S[c∗, c] =
∑
k̃

Scluster[c
∗, c]−

∑
ω,k,σ

c∗ω,k,σ[∆(M(k), iω) + hM(k) − hk]cω,k,σ. (5.10)

Again, up to this point, we have only re-arranged terms and employed an identity which
defines c. No approximation has been made.

The dual fermions are now introduced by means of the following Gaussian identity

ˆ
exp(−f ∗αaαβfβ − f ∗αbαβcβ − c∗αbαβfβ)Πγdf

∗
γdfγ = det(a) exp[c∗α(ba−1b)αβcβ] (5.11)

for Grassmann variables in the path integral representation for the partition function
ˆ

exp(−S[c∗, c])D[c∗, c]. (5.12)

To be specific, we choose the (diagonal) matrices according to

aω,k,σ = ḡ−2(M(k), iω)[∆(M(k), iω) + hM(k) − hk]−1;

bω,k,σ = ḡ−1(M(k), iω). (5.13)
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where ḡ is the single-particle Green function calculated on the DCA cluster. Applying
the above identity to the second term in (5.10) yields∑

ω,k,σ

f ∗ω,k,σ fω,k,σ

ḡ2(M(k), iω)[∆(M(k), iω) + hM(k) − hk]

+
∑
ω,k,σ

[f ∗ω,k,σḡ
−1(M(k), iω)cω,k,σ +H.c.]. (5.14)

The essential observation now is that, since ḡ−1(M(k), iω) ≡ ḡ−1(K, iω) is independent
of k̃„ the second line of (5.14) may be coarse grained using again the DCA coarse-graining
identity

f
∗
ω,K,σcω,K,σ ≡

Nc

N

∑
k̃

f ∗
ω,K+k̃,σ

cω,K+k̃,σ. (5.15)

As a consequence the lattice action, Eq. (5.10), can be expressed in the form

S[c∗, c; f ∗, f ] =
∑
k̃

Srestr[c
∗, c; f

∗
, f ] +

∑
ω,K,k̃,σ

f ∗
ω,K+k̃,σ

fω,K+k̃,σ

ḡ2(K, iω)[∆(K, iω) + hK − hk]
(5.16)

where

Srestr[c
∗, c; f

∗
, f ] = Scluster[c

∗, c] +
∑
ω,K,σ

[f
∗
ω,K,σḡ

−1(K, iω)cω,K,σ + h.c.] (5.17)

is the action restricted to the cluster.
The transformation to dual fermions is completed by integrating out the fermionic

degrees of freedom corresponding to c and c∗. Since Srestr is independent of k̃, this can
be done individually for each cluster

1

Zcluster

ˆ
exp(−Srestr[c

∗, c; f
∗
, f ])D[c∗, c]

= exp

(
−
∑
ω,K,σ

f
∗
ω,K,σḡ

−1(K, iω)fω,K,σ − V [f
∗
, f ]

)
. (5.18)

Eq. (5.18) defines the dual potential which can be obtained by expanding both sides and
comparing the resulting expressions order by order. It is given by [51]:

V [f
∗
, f ] =

1

4

∑
KK′Q

∑
ωω′ν

∑
σ1,σ2,σ3,σ4

γσ1,σ2,σ3,σ4(K,K
′, Q; iω, iω′, iν)

×f ∗ω+ν,K+Q,σ1
fω,K,σ2f

∗
ω′,K′,σ3fω′+ν,K′+Q,σ4 + . . . (5.19)
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where γ is the full (reducible) vertex of the cluster quantum impurity model, and the
higher order contributions involve the n-body (for n > 2) reducible vertices as the bare
interaction. Integrating out the lattice fermions results in an action which depends only
on the dual fermion degrees of freedom given by

Sd[f
∗, f ] = −

∑
kωσ

f ∗ωkσG
0
d(k, iω)−1fωkσ +

∑
k̃

V [f
∗
, f ], (5.20)

where G0
d is the bare dual Green function defined by

G0
d(k, iω) = − g(K, iω)2

g(K, iω) +
(
∆(K, iω) + hK − hk

)−1 . (5.21)

This quantity together with the dual potential V [f
∗
, f ] provides sufficient input for a

many-body diagrammatic perturbation calculation on the dual lattice.
Note that besides the DCA coarse-graining process introduced here, the above deriva-

tion is a natural generalization of the dual fermion DMFA formulation of Rubtsov et al.
[47]

5.2.1 Self-consistency Condition

In rewriting the lattice action in terms of the cluster impurity model in the above deriva-
tion, the DCA hybridization function has been added and subtracted and hence is an
arbitrary quantity. In order to fix this quantity we impose the condition

G0
d(K, iω) =

Nc

N

∑
k̃

G0
d(K + k̃, iω)

!
= 0. (5.22)

To appreciate the consequences of this condition, first consider the DCA lattice Green
function

G−1
DCA(K + k̃, iω) = (iω + µ)1− hK+k̃ − Σc(K, iω), (5.23)

which can be expressed in terms of the cluster Green function

ḡ−1(K, iω) = (iω + µ)1− hK − Σc(K, iω)−∆c(K, iω), (5.24)

as
G−1

DCA(K + k̃, iω) = ḡ−1(K, iω) + ∆c(K, iω) + hK − hK+k̃. (5.25)

Using the last expression, one may straightforwardly derive the following identity relating
the DCA lattice Green function to the bare dual Green function

Gd,0(K + k̃, iω) = GDCA(K + k̃, iω)− ḡ(K, iω). (5.26)

Hence the above condition (5.22) is equivalent to requiring that the coarse-grained DCA
lattice Green function be equal to the Green function of the cluster impurity model. This
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is exactly the DCA self-consistency condition. The DCA solution is therefore obtained if
no diagrammatic corrections are taken into account and the hybridization is determined
such that (5.22) holds. Consequently, we have a perturbation theory around the DCA
as the starting point. While the DCA solution only depends on the cluster momentum
K, the dependence onk̃ can be introduced by solving the dual problem perturbatively.

5.2.2 Scaling of the Dual Fermion DCA Approach with Cluster
Size

The bare dual Green function is given by Eq. (5.21). If we introduce the linear cluster
size Lc through Nc = LDc , one finds that the term

(
∆(K, iω) + hK − hk

)
∼ O(1/Lc). The

small nature of this term for large Lc should ensure rapid convergence of the DFDCA.
In particular, we then have

G0
d(k, iω) = −g(K, iω)

(
∆(K, iω) + hK − hk

)
g(K, iω) +O(1/L2

c), (5.27)

i.e., the bare dual Green function also scales like

G0
d(k, iω) ∼ O(1/Lc). (5.28)

However, at points of high symmetry, where hK−hk ∼ O(1/L2
c), G0

d(k, iω) will fall more
quickly than O(1/Lc).

To illustrate the typical scaling behavior of the bare dual Green function, we plot in
Fig. 5.1, as a function of 1/Lc, the ratio of |G0

d(k, iω = iπT, Lc)| averaged over k to the
average |G0

d(k, iω = iπT, Lc = 1)|. We also plot the average of the ratios. The former
initially falls more quickly than O(1/Lc), while the latter displays a slower initial slope.
However, for Lc ≥ 4 both fall roughly linearly in 1/Lc. This behavior is found to be
independent of temperature (not shown), since it is a purely algebraic effect.

Applying the standard tools to the dual fermion action, one obtains the formal ex-
pression

Gd(k, iω) = G0
d(k, iω) +G0

d(k, iω)Td(k, iω)G0
d(k, iω), (5.29)

for the full dual fermion Green function Gd(k, iω), where the reducible self-energy or
scattering matrix Td(k, iω) of the dual system is introduced. We will show later, that
Td(k, iω) will be at most of order O(1/L3

c), and we can infer the scaling

Gd(k, iω) ∼ O(1/Lc) (5.30)

for the full dual fermion Green function too.
Once the dual fermion Green function is known, one can reconstruct the real lattice

Green function as

G(k, iω) = g(K, iω)−2
(
∆(K, iω) + hK − hk

)−2
Gd(k, iω)

+
(
∆(K, iω) + hK − hk

)−1
. (5.31)
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Figure 5.1: Scaling plot for the bare dual Green function. Here we have used the 1-D
Hubbard model to analyze its scaling behavior. Except for very small Lc values, the two
ratios scale linearly according to Eq. (5.28).

Since G(k, iω) is the Green function of the real lattice, it should scale as

G(k, iω) ∼ O(1) (5.32)

with respect to any length scale. On the other hand, for the two terms on the right hand
side in (5.31) we find

g(K, iω)−2
(
∆(K, iω) + hK − hk

)−2
Gd(k, iω) ∼ O(Lc) (5.33)

and (
∆(K, iω) + hK − hk

)−1 ∼ O(Lc) . (5.34)

Thus, the two O(Lc) terms must cancel each other. To verify this requirement, we insert
the zeroth order contribution of the dual Green function into the original Green function,
and after some algebra we indeed obtain

G(k, iω) ∼ g(K, iω) ∼ O(1), (5.35)

with a correction given by

∆G(k, iω) ∼ Td(k, iω). (5.36)

Therefore, the correction to the real Green function through the dual fermion approach
scales the same way as the dual self-energy.
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Presently, the dual potential Eq. (5.19) still contains an infinite hierarchy of vertices.
The previous discussion now provides a very important insight into the contributions
of these vertices to a perturbative expansion: Each n-body diagrammatic insertion will
involve a vertex and n Green function lines. In the parameter region away from a critical
point the dual potential will be of order O(1). As noted before, the dual Green function
is of order O(1/Lc), i.e., each dual space diagrammatic insertion is of order O(1/L2

c)
when it involves the two-body dual space interaction, of order O(1/L3

c) for the three-
body interaction, and so on. This means that the two-body contribution to V , explicitly
shown in Eq. (5.19), will actually dominate and low-order perturbation theory will be
sufficient to accurately capture the corrections to the DCA from the dual fermion lattice.

5.2.3 Mapping Back from the Dual Fermion to the Real Lattice

The relation of the real fermion Green function to the dual Green function has been
been established in Eq. (5.31). This is an exact relation which follows by taking the
functional derivative of two equivalent partition functions. They are linked through the
same Gaussian identity that has been used to introduce the dual fermions (Eq. (5.11)).
Higher order derivatives then allow us to derive relations between higher order cumulants.
From this recipe, we find the following relation between the two-particle reducible vertex
functions

Fk,k′,q;iω,iω′,iν = T (k + q, iω + iν)T (k, iω)F d
k,k′,q;iω,iω′,iν

× T (k′, iω′)T (k′ + q, iω′ + iν) (5.37)

in real and dual space, where

T (k, iω) =
Gd(k, iω)

G(k, iω)(∆(K, iω) + hK − hk)ḡ(K, iω)

= −[1 + ḡ(K, iω)Σd(k, iω)]−1. (5.38)

Similar relations hold for many-particle vertex functions. With the help of the two-
particle vertex function we can now express the corresponding susceptibility as χ =
χ0 + χ0Fχ0. Since from Eq. (5.38) it follows that T (k, iω) is always finite, a divergence
of χ, signaling an instability or phase transition in real space, necessarily corresponds
to an instability in the quantity F d in the dual fermion space. In order to locate the
instabilities, it is hence sufficient to search for a divergence of the Bethe-Salpeter equa-
tion in the dual space. For the special case when no diagrammatic corrections to the
dual self-energy and vertex are taken into account, T (k, iω) = −1 and both DFDCA
and DCA would produce the same phase diagram. In general cases, the DFDCA will
produce results more realistic than DCA due to the inclusion of additional long-ranged
correlations from the dual fermion lattice diagrammatic calculation.
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5.3 Dual Fermion Diagrams
In the DFDCA formalism, the dual fermion Green function is O(1/Lc)(c.f. Eq. (5.28)),
i.e., it acts as the small parameter in the diagrammatic expressions. In addition, in
the strong coupling limit, the Green function is proportional to the hopping t/U ,[51]
so each Green function leg contributes a factor of O((t/U)/Lc). In the weak coupling
limit, the Green function remains O(1/Lc), but the vertices are now small, with the
two-body vertex behaving like O(U/t), the three-body vertex like O(U2), and so on.
Each two-body diagrammatic insertion, composed of a two-body vertex and two dual
fermion Green function legs, then scales like O(1/L2

c), with an additional factor of U or
t2 in the weak and strong coupling limits, respectively. Each three-body diagrammatic
insertion, composed of a three-body vertex and three dual fermion Green function legs,
scales like O(1/L3

c) with additional factors U2 or t3 in the weak and strong coupling
limits, respectively.

Figure 5.2: Lowest order contributions to the dual fermion self-energy from the two-body
interaction (left) and to the two-body interaction from the three-body term (right). Since
the bare n-body vertices depend only upon the small cluster K, the dual Green function
line may be coarse-grained and are therefore zero according to Eq. (5.22).

The boundary condition Eq. (5.22) also constraints the diagrammatics. For example,
the first-order contribution to the dual self-energy from the 2-body interaction is the
Hartree-Fock contribution shown in Fig. 5.2. Since the vertex depends only upon the
small cluster K, the dual Green function line may be coarse-grained. The result is zero
by virtue of Eq. (5.22). Physically, this term must be zero since the Hartree term is
already included in the cluster contribution to the self-energy. Therefore, the first finite
contribution to the dual fermion self-energy comes from the second order graph which
contains three dual fermion Green function lines. This and all higher order contributions
described by the Schwinger-Dyson equation already are of order O(1/L3

c), or smaller.
Therefore, the fully dressed dual fermion Green function retains the scaling of the bare
dual fermion Green function

Gd(k, iω) ∼ O(1/Lc) (5.39)

as anticipated earlier.
Similarly, the first-order 3-body contribution to the dual two-body vertex, also shown

in Fig. 5.2, is zero. To see this, suppose the top leg is labeled by momentumk = K + k̃.
Since the remainder of the 3-body vertex does not depend upon k̃, we may freely sum
over this label. Again, the result is then zero through Eq. (5.22).
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As the cluster size becomes large, the DFDCA cluster problem may be accurately
solved using low order perturbation theory, keeping only the 2-body interaction vertex.
As described above, two-body vertex insertion contributes an extra factor of O(1/L2

c),
while three-body vertex insertion contributes an extra factor of O(1/L3

c). It is therefore
possible to use standard perturbation theory based on a two-body vertex to solve the
dual fermion DCA cluster problem, with an accuracy which turns out to be at least of
order O(1/L4

c).
For example, simple second order perturbation theory yields a self-energy O(1/L3

c).
Two-body corrections, composed of a two-body vertex and two further Green function
legs will contribute an extra factor O(1/L2

c) . The first three-body contribution is the
second order graph composed of one 2-body vertex and one 3-body vertex. It has four
internal Green function legs, and is of order O(1/L4

c) so that the first three-body correc-
tion is smaller than the simple second order dual fermion self-energy composed of 2-body
vertices by a factor of O(1/Lc). Self consistency, needed to impose the boundary con-
dition Eq. (5.22), is more important for the self-energy than higher order or three-body
contributions.

Generally, the leading non-trival n-body (n ≥ 3) vertex contribution to the self-energy
is constructed from an n-body vertex and an (n−1)-body vertex, which are connected by
(2n−2) internal legs, as shown in Fig. 5.3. Thus this contribution scales as O(1/L2n−2

c ).

2n− 2

γ(n−1)

γ(n)

∼ O(1/L2n−2
c )

Figure 5.3: Leading non-trivial n-body vertex contribution to the self-energy. It is con-
tructed by one n-body vertex and one (n-1)-body vertex. Since there are (2n-2) internal
legs, this contribution scales as O(1/L2n−2

c ).

As another example, consider the equation for a transition, in the pairing matrix
formalism (Fig. 5.4)

Γdχ
0
dΦ = Φ (5.40)

where Φ is the leading eigenvector of the pairing matrix Γdχ
0
d. A transition is indicated

by the corresponding eigenvalue approaching one. To lowest order, the irreducible dual
fermion vertex Γd ≈ γ is just the bare dual fermion interaction, and the legs in χ0

d are
not dressed by the dual fermion self-energy. In this case the transition temperatures of
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the DCA are reproduced (e.g., see Fig. 5.5). The lowest order corrections to the DCA
come from the second order corrections to the vertex, which contain two dual fermion
Green function legs and are therefore O(1/L2

c). The low order contributions to χ0
d are

χ0
d ≈ G0

d(1 + ΣdG
0
d + · · · )G0

d, and thus the lowest relative correction to χ0
d is of order

O(1/L4
c). Therefore, the cross channel second order corrections to the vertex are more

important than the second-order corrections to the self-energy when the DCA cluster size
is large. We note that this is not only true for the DFDCA, but also for the DFDMFA
in the strong coupling limit where the small parameter t/U replaces 1/Lc. Furthermore,
higher order approximations such as the ladder approximation that do not include these
cross channel contributions are not appropriate for the solution of the dual fermion lattice
in the limit of large DCA cluster size or small t/U .

Γd γ + O(1/L3
c)

Σ

+ +

+ O(1/L4
c)c γ γ

b

γ

γ

γ

γ

Φ = ΦΓda

≈

≈

Figure 5.4: (a) Equation for Tc. Transition temperatures on the dual fermion lattice are
identical to those calculated on the real lattice. (b) The low order corrections to the dual
fermion irreducible vertex Γd. The second order terms are of the order O(1/L2

c) with
corrections O(1/L3

c). (c) Contributions to the dual fermion self-energy. It is dominated
by the second-order term which is of the order O(1/L3

c) with corrections O(1/L4
c). The

self-energy adds relative corrections to χ0
d of order O(1/L4

c) (see the text for the detail),
so the most important contributions to the equation for Tc come from the second-order
cross channel contributions to Γd.

Higher order approximations like the fluctuation-exchange approximation (FLEX) [6],
which include the cross channel contributions to Γd, should on the other hand be quite
accurate. In fact, the FLEX contains all two-particle diagrams to third order. The first
diagram neglected by the FLEX is composed of one three-body and one two-body vertex
and would contribute a correction O(1/L4

c) to the self-energy or O(1/L3
c) to the vertices.

5.4 Results
In this section, we will present numerical results from a DFDCA calculation, where the
interaction expansion continous-time quantum Monte Carlo method[52] is employed to
solve the cluster problem within the DCA calculation. We will restrict the discussion
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Figure 5.5: (Color online) Plots of leading eigenvalues for different cluster sizes for the
anti-ferromagnetic channel with U = 6t and filling 〈n〉 = 0.95. Lines without symbols are
results from the DCA calculation for clusters with sizes Nc = 8, 12 and 16, while lines
with symbols are results from the DFDCA calculation without self-energy correction.
For the latter, we have used a linear size of the dual fermion lattice as large as several
hundreds (N = L × L, L ∼ 200). The inset is an enlarged view around the transition
point. Note that both calculations produce the same transition temperatures as expected.

to the two-dimensional Hubbard model on the square lattice with only nearest neighbor
hopping. Thus, for half-filling we expect strong antiferromagnetic correlations, which
will drive an antiferromagnetic transition within DCA. In this case, as the Mermin-
Wagner theorem prohibits long-range order except at zero temperature, we expect strong
renormalization of the Néel temperature, TN , from DFDCA.

To check the correctness of our implementation of the DFDCA approach, we first
carry out calculations with the correction from the dual fermion lattice turned off. For
this trivial case, one expects DFDCA to reproduce the same physics as DCA. Fig. 5.5
displays the leading eigenvalues for different cluster sizes at filling 〈n〉 = 0.95 for the
antiferromagnetic channel. Note that for each cluster size, both the DFDCA and the
DCA leading eigenvalues cross the line λ = 1 at the same temperature, which is the mean-
field Néel temperature, and that with increasing cluster size TN decreases, as expected.
It is also interesting to note that the DFDCA provides a sensitive way to monitor the
finite-temperature transitions since the DFDCA leading eigenvalues have a steeper slope
when crossing the λ = 1 line.

For the non-trivial DFDCA calculation, we expect to see for a fixed cluster size a
reduction of the Néel temperature since correlations beyond the cluster scale are now
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Figure 5.6: (Color online) Plots of leading eigenvalues for the anti-ferromagnetic channel.
They are calculated with different approximate methods in the dual fermion lattice. The
parameters used are U = 4t, 〈n〉 = 1, the DCA cluster of size Nc = 1, and the dual
fermion lattice of a size N = 4× 4.

incorporated by the dual fermion calculation. For the dual fermion lattice, we employ
different approximation schemes: the self-consistent second-order perturbation theory
(SOPT), FLEX and the parquet approximation (PA) [36]. The results are collected in
Fig. 5.6, where the power of DFDCA manifests itself clearly. The simple second-order
correction from the self-energy is already able to reduce the Néel temperature by ten
percent. Taking into account more Feynman diagrams with higher orders, for example
by FLEX or PA, continues to reduce the Néel temperature. However, the inclusion
of vertex correction tends to increase the Néel temperature again. For example, the
eigenvalues labeled ΣFLEX are calculated with a bare dual fermion vertex and FLEX
dressed legs, while those labeled ΣFLEX + ΓFLEX are calculated with both FLEX dressed
legs and vertex (see b and c in Fig. 5.4 for contributions up to second-order in the bare
dual fermion vertex γ).

Up to now we have only discussed the leading eigenvalues of the vertex function.
Of course, the DFDCA also allows to calculate the full susceptibility from the Bethe-
Salpeter equation. Two typical results for an Nc = 2 × 2 DCA cluster are shown in
Fig. 5.7, as function of temperature for U = 8t. In the left panel, the inverse staggered
susceptibility for half filling is displayed, while the right one contains results for the
inverse d-wave pairing susceptibility at a filling 〈n〉 = 0.95. Due to the heavy computa-
tional cost for the parquet calculation, here we only use the SOPT and FLEX in our dual
fermion lattice calculation. Although Lc = 2 is not really large, the DFDCA is still able
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Figure 5.7: (Color online) Plots of the inverse anti-ferromagnetic and d-wave pairing
susceptibilities calculated with different approximate methods in the dual fermion cal-
culation. The parameters used are U = 8t and Nc = 4. The linear dependence of the
results with 1/L2 (see Fig. 5.8) is used to extrapolate the L =∞ limit results.

to significantly reduce the mean-field Néel and the abnormally large superconducting
transition temperatures.

It is quite interesting to note, that for the anti-ferromagnetic channel at half-filling,
SOPT and FLEX produce similar results, both being different from the DCA results.
The effect of vertex correction is small in this case. For the d-wave pairing susceptibility
at 〈n〉 = 0.95, on the other hand, SOPT in dual space makes almost no difference from
the DCA results, but the FLEX tends to significantly reduce the pairing susceptibility.
Again, the inclusion of vertex correction has the opposite effect, i.e., it leads to a slight
increase of the critical temperatures.

In the derivation of the DFDCA approach, we have assumed that the dual fermion
lattice is infinite. However, in practical calculations, the size is limited due to the alge-
braic increase of the computational cost. This results in some deviations from the infinite
size system. Fig. 5.8 shows the L (N = L × L) dependence of the leading eigenvalues
for different DCA clusters. The nice linear dependence of the leading eigenvalues on
1/L2 can be readily observed. This is due to the periodic boundary conditions used in
the dual fermion calculation. This property allows us to reduce the computational cost
of our calculation by using two small L′s and extrapolating to obtain a rather accurate
approximation of the L =∞ result.
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Figure 5.8: (Color online) The L dependence of the leading eigenvalue for different DCA
clusters. The parameters used are U = 8t, 〈n〉 = 1, Σdual = 0 and β = 4t/T . The nice
linear dependence of 1/L2 can be readily observed, which is due to the periodic boundary
conditions used in the dual fermion calculation.

5.5 Discussion
The dual fermion mapping as discussed in section 5.2 is exact, and the approximation
is made only when performing the diagrammatic calculation for the dual fermion lat-
tice. Justified by the scaling behavior of the dual fermion Green function, it suffices
to consider the 2-body term of the interaction and use low order perturbation theory.
Correlations beyond the DCA cluster size are systematically restored through the dual
fermion calculation on the lattice. In this sense, the DFDCA can be seen as a diagram-
matic expansion around DCA. This is manifested in Fig. 5.5 and 5.6 where we see that
not including the dual fermion self-energy and vertex corrections reproduces the DCA
transition temperature. When these corrections are included, we observe a systematic
suppression of the DCA transition temperature resulting in a more realistic value. This
is clearly seen in Fig. 5.6 and 5.7. Since correlations at intermediate length-scale are
taken into account by the dual fermion lattice calculation, we can use small clusters in
the underlying DCA calculation. As a result, we are able to greatly reduce the adverse
effect of the minus sign problem encountered in QMC simulations for larger clusters, and
access a wider region of parameter space.

The DFDCA has an additional advantage that it is parameterized by the full (re-
ducible) vertex function calculated on the DCA cluster. Other multi-scale methods[45,
17, 46] rely upon the calculation of the cluster irreducible or fully irreducible vertices.
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Our recent numerical experiments show that inverting the Bethe-Salpeter equation to
obtain the irreducible vertex, which is also the first step in the calculation of the fully
irreducible vertex, fails in some parameter regions, especially for large U or near half
filling. This difficulty is avoided in the DFDCA.

The dual fermion mapping also assumes that the dual fermions are treated on an
infinitely large lattice. In practice however, they are treated on a finite-size lattice.
Thanks to the finite-size scaling behavior observed in Fig. 5.8, finite-size calculations are
used to extrapolate to the infinite-size lattice, leading to a reduction of the computational
cost in the dual fermion lattice calculation.

Note that in the calculations presented here, we have not performed the full self-
consistency where the dual fermion result is used to determine the DCA cluster hy-
bridization that is fed back into the DCA calculation until convergence. However, this
first iteration already produces more satisfactory values for the Néel temperature as well
as the d-wave superconducting transition temperature. We can anticipate that the full
self-consistency will further improve the performance of this approach.

With the full self-consistency implemented and tested, we are planning to apply this
approach to map out the phase diagram for the 2-D Hubbard model in the hole-doped
region. In addition, we are also working on applying this approach to the Falicov-Kimball
model and the Anderson disorder model recently.

5.6 Conclusion
We have designed a new multi-scale many body approach, the dual fermion dynamical
cluster approach (DFDCA), by combining the DCA and the recently introduced dual
fermion formalism. The DFDCA uses both single and two particle quantities calculated
in DCA as the input for the dual fermion calculation. Different self-consistent dia-
grammatic approximations can be used in the dual fermion lattice, which systematically
restores the long-ranged correlation ignored during the DCA calculation.

This approach is a systematic expansion around the DCA calculation. Our numerical
experiments show that the zeroth order result (Σd = 0) reproduces the original DCA,
and for any non-trivial dual fermion calculation, it is an improvement on the DCA
calculation. We applied different self-consistent diagrammatic methods, self-consistent
2nd-order, FLEX and parquet approximation, on the dual fermion lattice. They all
improved the DCA calculation by reducing the mean-field Néel temperature by different
amounts. In addition, the abnormally large superconducting transition temperature of
the four site cluster calculation can be reduced by this approach as well.
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Chapter 6

Response to Dynamical Modulation of
the Optical Lattice for Fermions in the
Hubbard Model

In this chapter, we studied the responses to dynamical modulation of the optical lat-
tice potential by studying properties of the repulsive fermionic Hubbard model in an
optical lattice. With the help of quantum Monte Carlo simulations and Maximum En-
tropy Method as well as Hubbard-I approximation, the numerical evidence shows that
the modulations by on-site local interaction cannot be ignored, and can even strongly
contribute to the dynamical behaviors of the system in highly-doped cases. The filling
of the system plays a very important role to the responses and it also determines the
non-equilibrium dynamics of the system under perturbation.

In this project, I was involved in the derivation of the formalism needed for the QMC
measurement, and helped to implement the measurement part of code in the DCA code.

This work has been published in Phys. Rev. A 84, 021607(R) (2011)[53]. The
following sections in this chapter are from that paper.

Reprinted by permission of “Phys. Rev. A”.

6.1 Introduction
A number of key properties of strongly correlated electron systems appear to be well
described by simplified tight-binding Hamiltonians. For example, the square lattice
Hubbard model, with one particle per site, is known to possess the long range antiferro-
magnetic order manifest in the parent compounds of high temperature superconductors,
whose CuO2 sheets have square arrays of copper atoms with one hole per 3d shell. There
are many analytic and numerical clues that suggest the doped Hubbard model might
also possess the d-wave superconducting phase exhibited by the cuprates, as well as
other non-trivial properties including stripes and pseudogap physics [54]. If this could
be demonstrated rigorously, it would provide important insight into the mechanism of

49



superconductivity in these materials.
Ultracold atomic systems offer an opportunity for closer connection between ex-

periments and calculations for such model Hamiltonians. At present, experiments on
fermionic atoms are exploring temperatures T which are of the order of the hopping in-
tegral J0, probing correlations such as double occupancy, D, and short range spin order
that develops at that temperature scale. In particular, the evolution of D with the ratio
of interaction strength U to hopping J0 has been shown to indicate the presence of a
Mott metal-insulator transition [55, 56]. The presence of a Mott gap in the excitation
spectrum has also been inferred through peaks in D which arise through a dynamic
modulation of the optical lattice depth V [55].

The possibility that such a modulation might provide a useful probe was first sug-
gested by Kollath et al. [57], based on earlier work with bosonic systems [58]. Using
a time dependent Density Matrix Renormalization Group method, it was shown that
a peak existed in the induced double occupation at a frequency ω which matched the
interaction strength U . In this treatment, the response kernel was approximated to in-
clude only changes δJ in the hopping operator, neglecting corresponding variation δU
in the on-site interactions. Within this approximation, the authors emphasized that the
measurement was sensitive to near neighbor spin correlations, and the exchange gap, as
well as the charge gap.

This ‘modulation spectroscopy’ has been further explored theoretically by Huber[59]
and Sensarma[60]. In the former work, the frequency dependence of the shift in D was
studied in the atomic and two particle limits, and within a slave boson mean field theory.
The latter work focused on observing local antiferromagnetic order at the superexchange
scale. As with the earlier study of Kollath, in both of these papers, the modulation was
assumed to couple only to the kinetic energy.

In this chapter, we extend previous work by studying the effect of both the mod-
ulation of the tunneling strength δJ and of the on-site interaction strength δU due to
varying the optical lattice depth V , for the two dimensional repulsive fermionic Hubbard
Hamiltonian. The modulation by δU is shown to be quite significant in the parameter
range of interest to current experiments. We find that the filling of the system plays a
very important role in the response. Crucially, through the use of Determinant Quantum
Monte Carlo (DQMC) [61] and the maximum entropy method [62, 32], we provide results
which treat the electron-electron correlations exactly.

6.2 Formalism
In the low energy limit, two species of repulsively interacting fermions confined to a
periodic optical potential with wavelength λ and amplitude V (t) can be described by
the one-band Hubbard model [63],

Ĥ = −JK̂ + UD̂ − µN̂, (6.1)
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where the hopping or kinetic-energy operator is K̂ =
∑

<ij>,σ[ĉ†iσ ĉjσ+h.c.], D̂ =
∑

i N̂i↑N̂i↓

is the double occupancy, and N̂ =
∑

i N̂i↑ + N̂i↓, the total number of particles, with
ĉ†iσ(ĉiσ) the fermion creation (annihilation) operator, σ =↑,↓ the spin index, N̂iσ = ĉ†iσ ĉjσ,
and µ the chemical potential. The hopping (J) and interaction (U) can be expressed
as [63] J ≈ (4 /

√
π)ER v

3/4 exp(−2
√
v) and U ≈ 4

√
2π (as/λ)ER v

3/4, where v = V/ER
is the ratio of lattice depth to recoil energy, and as is the short ranged s-wave scattering
length.

It is clear from these expressions that a small time-dependent modulation of V
changes both J and U . Writing V (t) = V0 + δV sin(ωt) and expanding J and U in the
limit δV � V0 yields Ĥ = Ĥ0 + δĤ sin(ωt) with Ĥ0 given by Eq. (6.1) with J replaced
by J0 and U by U0, and δĤ = −δJK̂ + δUD̂ with the time-dependent perturbations

δJ = J0(
3

4
−
√
V0/ER)

δV

V0

δU =
3

4
U0
δV

V0

(6.2)

For δV > 0, we have δJ < 0 and δU > 0 so that an increase in the optical lattice
amplitude suppresses hopping and increases the Hubbard repulsion. We emphasize that
one cannot a priori neglect δJ or δU as they can be of the same order of magnitude if
using the experimental parameters as in Ref. [55].

Our aim is to understand how such a simultaneous modulation of the hopping and in-
teraction parameters, as provided by fermions in a time-dependent optical lattice, probes
fermion correlations in the Hubbard model. To this end, we study the time dependence
of the average double occupancy D(t) = 〈D̂〉. Within standard time-dependent pertur-
bation theory, D(t) satisfies, to linear order,

D(t) = D(t0)− i
ˆ t

t0

dt′ 〈[D̂(t), δĤ(t′)]〉0sin(ωt′), (6.3)

where 〈Ô〉0 = Z−1
0 Tr e−βĤ0O and O(t) = eiĤ0tÔe−iĤ0t. Equation (6.3) can be sim-

plified by rewriting δĤ in terms of Ĥ0 as δĤ = (δJ/J0) (Ĥ0 + U0[α − 1]D̂), with
α = (1− 4

3

√
V0/ER )−1. When inserted into Eq. (6.3), the first term will give a vanishing

contribution, leading to

D(t) = D(t0) +
U0

J0

(α− 1)

ˆ ∞
t0

dt′ δJ χDD(t− t′)sin(ωt′), (6.4)

where χOO(t − t′) = −i〈[Ô(t), Ô(t′)]〉0θ(t − t′). Formally setting α = 0 amounts to ne-
glecting the modulation of the interaction term. In contrast, experimentally, α typically
varies within the range −0.41 < α < −0.28. The simplification leading to Eq. (6.4), can
be generalized to show that χDD(t) = (J0/U0)2χKK(t), a fact that we shall use below in
our analysis.
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Numerically, we calculate the imaginary-time quantity χDD(τ) from Determinant
Quantum Monte Carlo simulations [61] and analytically extrapolate to the corresponding
imaginary part of the real frequency quantity χ′′DD(ω) by inverting

χDD(iνn) = − 1

π

ˆ ∞
−∞

dω
χ′′DD(ω)

iνn − ω
, (6.5)

via the Maximum Entropy method [62, 32]. In Eq. 6.5 iνn = 2nπT is the bosonic
Matsubara frequency, T is the temperature, and ω the real frequency.

6.3 Results
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Figure 6.1: (Color online). Top panel (a) shows data for half filling, and panel (b) for a
filling of n = 1.4, for a two-dimensional 4×4 Hubbard lattice. Red curves (squares) show
the quantity (1 − α)χDD, that appears in the linear response of the double occupancy,
evaluated at zero Matsubara frequency as a function of U0/J0. Neglecting the modulation
of the Hubbard interaction amounts to setting α = 0, yielding a smaller result (black
curve, circles). For comparison, the green diamonds in the insert in both (a) and (b) are
exact results for (1−α)χDD for a two-site Hubbard model. α is determined by assuming
as/λ = 0.0119, where as = 240a0 (a0 is Bohr radius) and λ = 1, 064 nm (following
Ref. [55]), thus α can be found as a single-valued function of U0/J0.

To illustrate the importance of incorporating the modulation of the interaction pa-
rameter U , in Fig. 6.1 we show the dependence with U0/J0 of the double-occupancy
response function χDD(iνn = 0) (black curves), for n = 〈ni↑ + ni↓〉 = 1.0 and n = 1.4
along with this quantity multiplied by (1 − α) (red curve). Therefore, the black curves
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is the result from modulating δJ only, while the red curve also includes the effect of
modulating δU . The difference between the curves illustrates that δU should not be
neglected. We observe from Fig. 6.1 that at half-filling (n=1), the double occupancy
response is largest in the intermediate interaction region and decreases with increasing
U0/J0. This is in striking contrast to the behavior at n = 1.4, in which the double
occupancy response is small at weak coupling and saturates at large U0/J0. To confirm
our numerical calculation, we analytically solved the case of a two-site Hubbard model
and found qualitatively similar behavior. (See green curves in Fig. 6.1.)
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Figure 6.2: (Color online). The imaginary component of the double-occupancy suscep-
tibility χ′′DD(ω)/N for U0/J0 = 10.0, a 4× 4 square lattice, and various values of inverse
temperature (β = 1/T ). Panel (a) shows half-filling n = 1.0 results, and panel (b) a
filling of n = 1.4. N = 16 is the system size.

We now turn to the full frequency dependent dynamical susceptibility, which deter-
mines the response to the dynamical modulation, showing its evolution as a function
of temperature (expressed in terms of βJ0 = J0βBT ) in Fig. 6.2. Panel (a) displays
results at half-filling, where Mott-insulating physics dominates. At this filling the low
frequency response is strongly suppressed for temperatures approaching zero (so that
this quasi-peak represents thermally-excited states, not coherent excitations), with the
predominant response occurring at frequencies close to U0. This energy scale, corre-
sponding to the Mott gap, is consistent with recent experimental results [55] which find
a strong response in the double occupancy when ω ∼ U0. The presence of the Mott gap
also accounts for the much smaller values of χ′′ in the top panels of Figs. 6.1 and 6.2.
Panel (b) shows a filling n = 1.4, where an ω = 0 peak remains robust for T → 0. We
attribute this peak to the presence of gapless excitations reflecting Fermi liquid behavior
in this region. The peak at high ω represents coherent excitations at the band-gap scale
which should be the distance between the lower and upper Hubbard bands.

In Fig. 6.3, we show the interaction dependence of χ′′DD(ω). Panel (a) displays the half-

53



0

0.025

0.05

0.075

χ
" D

D
(ω

)/
N 4x4, U

0
/J

0
=10.0

4x4, U
0
/J

0
=16.0

-0.025

0

0.025

0.05

0.075

χ
(t

)/
N

4x4, U
0
/J

0
=10.0

4x4, U
0
/J

0
=16.0

0 10 20

ω/J
0

0

0.25

0.5

χ
" D

D
(ω

)/
Ν 6x6, U

0
/J

0
=10.0

4x4, U
0
/J

0
=10.0

4x4, U
0
/J

0
=16.0

0 5 10 15 20

t*J
0

0

0.025

0.05

χ
(t

)/
N

4x4, U
0
/J

0
=10.0

4x4, U
0
/J

0
=16.0

(a) n=1.0 (c) n=1.0

(b) n=1.4 (d) n=1.4

Figure 6.3: (Color online). Left column: The imaginary part of the double-occupancy
susceptibility χ′′DD(ω)/N for U0/J0 = 10 and 16. Panel (a) shows half-filling n = 1.0
results for a 4 × 4 lattice, U0/J0 = 10.0 (black solid curve) and U0/J0 = 16.0 (red solid
curve). Panel (b) shows results for a filling n = 1.4 and for U0/J0 = 10.0, 6 × 6 square
lattice (orange curve), U0/J0 = 10.0, 4× 4 (green curve), and U0/J0 = 16.0, 4× 4 (blue
curve). Right column: The real-time double-occupancy response function χDD(t) for a
4 × 4 square lattice at half filling (panel (c)) for U0/J0 = 10.0 (black solid curve) and
U0/J0 = 16.0 (red solid); and for n = 1.4 (panel (d)) with U0/J0 = 10.0 (green curve)
and U0/J0 = 16.0 (blue curve). All results are at a temperature T/J0 = 2/3.

filled case where the peaks are centered at U0. In panel (b), filling n = 1.4, we include the
case of a larger lattice size (6× 6) to show that finite size effects are small. These results
further verify the important role of filling in the response to dynamical modulation. Our
findings can be qualitatively reproduced by neglecting vertex corrections in χKK and
expressing the single particle Green’s function in the Hubbard-I approximation. The
latter corresponds to using a approximate self-energy of the form

Σσ(ω) ∼ U2
0 nσ̄(1− nσ̄)

ω + iδ
. (6.6)

We find that χ′′KK(ω) (and hence χ′′DD(ω)) possess poles at ω ∼ 0,±
√

(εk)2 + 4U2
0 nσ(1− nσ),

where εk is the energy of a non-interacting quasiparticle with momentum εk. In the low
energy region, there are quasi-elastic peaks at approximately ω ∼ 0. Note that the peak
vanishes at ω = 0 because the imaginary part of the real frequency susceptibility is an
odd function χ′′KK(−ω) = −χ′′KK(ω). In the high energy region, the peaks are located at

roughly ω ∼ U0 +
ε2k

2U0

. Therefore, at half-filling, the peaks are at ω = U0 but they sit

at higher frequencies away from half filling.
We now turn to the question of how the features in χDD(ω) would be reflected in a
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experimental measurement of the double occupancy, by inserting our results for χDD(t)
into Eq. (6.4). For this task, we need to obtain the real part of χDD(ω) via Kramers-
Kronig; upon Fourier transforming we find the real-time dynamical response functions
for the double occupancy to be strikingly different at half filling and away from half
filling, as seen in panels (c) and (d) of Fig. 6.3. We see that filling n = 1 shows a
response function that is tightly peaked at t → 0, characterized by a single frequency
scale ω ∼ U0, while at n = 1.4 we see a broad behavior dominated by the two distinct

frequencies associated with ω ∼ 0 and ω ∼ U0 +
ε2k

2U0

.
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Figure 6.4: (Color online). The frequency dependence of the double occupancy linear
response for a 4× 4 lattice, interaction strength U0/J0 = 10.0, and temperature T/J0 =
2/3 . Panel (a) shows half-filling results; panel (b), n = 1.4. Solid (black) curves shows
the amplitude D(ω) while the dashed (red) curves display the phase shift φ(ω) induced
by the dynamical modulation.

As in standard linear response theory, the real and imaginary parts of χDD(ω) cor-
respond to the in-phase and out of phase parts of the response, respectively. Thus,
to linear order, an oscillatory driving of the optical lattice potential yields an oscilla-
tory response at the same frequency, but with a phase lag characterized by the ratio of
tanφ(ω) = χ′′DD(ω)/χ′DD(ω). This response has recently been observed directly [64]. We
can then write the time-dependent double occupancy as

D(t) = D(0) +D(ω)sin[ωt− φ(ω)] (6.7)

where D(ω) = U0/J0(α − 1)δJ |χDD(ω)|. We plot D(ω) and φ(ω) in Fig. 6.4 for the
case of U0/J0 = 10. We first note that, at low frequency ω → 0, Eq. (6.7) implies
the time dependence of D(t) to be precisely π out of phase with δV (t). Therefore, an
adiabatic increase of the optical lattice amplitude leads to a corresponding suppression
of the double occupancy. At higher ω these plots show how the time-dependent linear
response of the double occupancy probes the underlying fermion correlations. As we

55



expected, the half filled case shows the strongest response when the driving frequency
ω ∼ U , and with a phase that is shifted, by φ ≈ π/2, relative to the imposed modulation.
At 〈n〉 = 1.4, however, the predominant response is for ω = 0, with phase shift φ ≈ 0.

6.4 Conclusion
In conclusion, we have investigated the dynamical properties of fermions in an optical
lattice, realized by the Hubbard model subject to a periodic optical lattice modulation.
We show that the modulation of the on-site interaction cannot be neglected and that,
even at the level of linear response, the dynamical double occupancy provides a sensitive
probe of fermion correlations. Recent cold-atom experiments [64] studying the dynamical
modulation of the optical lattice find a linear in time contribution to the double occu-
pancy, known to emerge at quadratic order in the modulation parameter δV [57]. Thus,
we expect that our linear-response results apply at smaller δV/V0, or after subtracting
off this t-linear contribution to focus on the oscillatory component. A future extension of
our work will analyze the linear and quadratic-order contributions in detail. In addition,
the effects of inhomogeneity due to trapping effects is an issue for future calculations.
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Chapter 7

General Conclusion and Outlook

Vertex decomposition technique can be used widely to analyze the underlying mechnism
of the second-order phase transition. Since we have known that the proximity of the
superconducting dome to the phase seperation Quantum Critical Point provides the es-
sential glue for the forming of superconducting pairing, we might ask what the underlying
driving force for the phase separation is, which will be of much theoretical importance
and interest.

In the thesis, we have developed formalism for the dual fermion dynamical cluster
approach, and implemented an initial working code for this method. It is far from
mature, and further development is required. As a future application, we can use this
method to quickly map out the phase diagram for the 2-D Hubbard model in the holed
doped region. We can also apply it on the Falicov-Kimball model. For this model an
analytical dynamical mean field solution exists and the dual fermion mapping results in
a very simpled t-V model, rendering it an ideal paradigm to test this new approach.

The cold atom system provides a large playground for the theoretical and numerical
work. One can suggest different experiments to explore new physics and vary both
theoretical and numerical results. We might apply our new dual fermion approach on
the cold atom system.
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Appendix B

Minus Sign Problem for QMC
Simulations

Although it has been proved that the minus-sign problem in QMC simulations is NP-
hard, many people are still proposing different approaches to eliminate this minus-sign
problem. Recently Efetov et al. propose an exact mapping of an interacting fermion
system onto a new model that is supposed to allow sign-problem free Monte Carlo sim-
ulations. In our comment published in Phys. Rev. Lett. 105, 159701 (2010), we show
that their formalism is equivalent to the standard approach of Blackenbecker, Scalapino
and Sugar (BSS) for fermionic systems and has the same sign statistics and minus sign
problem.

B.1 Minus-Sign Problem
For high-dimension integration, the Monte Carlo (MC) method is often the only practical
method. Instead of dividing the phase space evenly and summing up all the contributions
at each small cell, the MC method samples in the phase space and sum over those
sampling point contributions. In this way, the complexity can be controlled with a
polynomial, instead of exponential, dependence of the dimension of the system. One can
use the importance sampling technique, in which the more important contributions are
sampled more frequently, to accelerate the calculation.

For any physical quantity, we can measure it as

〈A〉 =
1

Z
Tr[Ae−βH ] =

∑
cA(c)p(c)∑

c p(c)
. (B.1)

The D-dimension quantum system can be mapped into a (D + 1)-dimension classical
system by using the path integral formalism, forming the so-called quantum Monte Carlo
(QMC) method. For a quantum fermionic system, it happens that the “probability” p(c)
can be negative, then we cannot interpret it as the possibility weight any more. To avoid
this difficulty, we separate its sign from its magnitude, namely
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Figure B.1: (Color online) The inverse temperature dependence of the average sign. The
exponential dependence can be easily identified. And the larger the Coulomb interaction,
the larger the rate of the dependence. The data is from Ref. [65].

p(c) = s(c)|p(c)|. (B.2)

Thus the weight is positive definite again, as required in the MC simulation. The mea-
surement formula then has a different form

〈A〉 =

∑
cA(c)s(c)|p(c)|∑

c s(c)|p(c)|

=

∑
cA(c)s(c)|p(c)|/∑c |p(c)|∑

c s(c)|p(c)|/
∑

c |p(c)|

=
〈As〉|p(c)|
〈s〉|p(c)|

. (B.3)

The price we pay is that we have to measure the combination 〈As〉|p(c)| and the sign
〈s〉|p(c)| . The minus sign problem is exemplified in the exponentially decreasing values
of 〈s〉|p(c)| with increasing system size or decreasing temperature, see Fig. B.1 for an
example.

The minus sign problem in QMC for the fermionic system is proved to be non-
deterministic polynomial (NP) hard [1]. This means that there is no generic solution,
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which only needs polynomial time, for this problem. In spite of this, a variety of new
approaches aimed at solving the minus sign problem are proposed from time to time.
The recently proposed bosonization scheme [66] is one of them. In the following, we will
provide a comment on this proposal.

B.2 Comment on the Bosonization Proposal 1

In a recent Letter [66] Efetov et al. propose an exact mapping of an interacting fermion
system onto a new model that is supposed to allow sign-problem free Monte Carlo sim-
ulations. In this Comment, we show that their formalism is equivalent to the standard
approach of Blackenbecker, Scalapino and Sugar (BSS) [61] for fermionic systems and
has the same sign statistics and minus sign problem.

Our first observation is that the partition function for a given configuration of the
auxiliary fields φ is the same in the standard formulation Zf [Eq. (8) in Ref. [66]] and
in their new bosonized scheme Zb [Eq. (9)]:

Zf [φ] = Zb [φ] . (B.4)

This observation is trivial in the limit of the time step ∆τ → 0, where both schemes
reproduce the same partition function. Since Zf can be negative also in this limit [61],
Zb is also not sign-positive. Both Zf and Zb are positive if φ is a smooth path [61], but
restricting the configuration space to smooth paths amounts to a semi-classical approx-
imation.

We next show that Zf [φ] = Zb [φ] also holds for finite ∆τ and piecewise constant
paths where the field φr(τ) is constant on the interval [(l + 1)∆, l∆]. Efetov et al.’s Eq.
(9) is equivalent to Zb [φ] = Tr

(
e−βH0UI(β, 0)

)
where ∂

∂τ1
UI(τ1, τ0) = −HI,1(τ1)UI(τ1, τ0)

and HI,1(τ) = −∑r φr(τ)eτH0mz,re
−τH0 . Since UI(τ2, τ0) = UI(τ2, τ1)UI(τ1, τ0), Zb [φ] =

Tr
[
e−βH0

∏N
n=0 UI(l∆, (l − 1)∆)

]
. We are left with the task of evaluating UI (l∆, (l − 1)∆)

on the lth time interval where the fields are constant and take the values φrl. For
this constant in time field configuration, UI(l∆, (l − 1)∆) = el∆H0e−∆hle−(l−1)∆H0 with
Hl = H0 −

∑
r φr,lmz,r. Hence,

Zb [φ] = det

[
1 +

N∏
l=0

e−∆hl

]
≡ Zf [φ] . (B.5)

We also demonstrate that the proposed formalism is equivalent to that of BSS [61].
Starting from the expression for Z found between Eq. (9) and Eq. (10) and using a
matrix notation the partition function reads

ln
Zb [φ]

Z0

=

ˆ 1

0

du
∑
σ

TrΦGσ, (B.6)

1This work has been published in Phys. Rev. Lett. 105, 159701 (2010).
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where Φ is a matrix with elements Φ (rl, r′l′) = φr,lδrr′δll′ , the trace is over the space
time indices and

Gσ = G0 + uσG0ΦGσ =
(
1− uσG0Φ

)−1
G0, (B.7)

where G0 is the non interacting Green function. From Eqs. (B.6) and (B.7) we get

ln
Zb [φ]

Z0

=

ˆ 1

0

du
∑
σ

Tr
1

1− uσG0Φ
σG0Φ. (B.8)

The integral in terms of u and σ can be carried out analytically yielding the BSS partition
function

Zb [φ] = Z0 exp
(
−Tr

[
ln
(
1− (G0Φ)2

)])
=

Z0

det (1− (G0Φ)2)
=
∏
σ=↑↓

1

detGσ

. (B.9)

A sign problem is present in Eq. (B.6), but is hidden in the u integral. If G0Φ has
eigenvalues on the real axis with absolute value greater than 1, then the u integral runs
over poles. This will give phases of iπ in the exponent which can lead to negative values
of the exponential.

Finally, Efetov’s et al. suggest an alternative way of evaluating the same weight Zb
from a bosonic field Arr′ (τ); however, the equation of motion that A satisfies, [their Eq.
(13)], is singular. Furthermore, the equation of motion cannot uniquely determine A –
not even with their additional constraint

∑
r Arr (τ) = 0. The latter can be shown, for

example, using a two site cluster and a single time slice.
In conclusion, we have shown that for piecewise continuous paths the partition func-

tion obtained from Efetov et al.’s method [66] is equivalent to the standard BSS formu-
lation and has, in particular, the same sign problem. However, their method provides a
new perspective on the minus sign problem, as it can be viewed as originating from poles
of the coupling constant (u) integral, or as branch cuts of a logarithm when the integral
over u is performed analytically.
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Appendix C

Measurement of Two-Particle Green
Function

In the multi-scale quantum simulations, we employ the quantum Monte Carlo (QMC)
algorithm to analyze the prorperties of strongly interacting systems with small clus-
ter sizes. Within QMC, the interacting system is cast into a non-interacting system of
electorns scattered off a set of Ising fields, thanks to the Hubbard-Stratonavich transfor-
mation. The averaging of those Ising spin fields would restore the full interaction. We
thus introduce an extra degree of freedom, but the benefit is that we can make use of the
Wick’s theorem for the non-interacting system during the QMC simulation, and we can
construc n-particle Green function by the single-particle Green function readily. We are
most interested in the two-particle quantities which are essential in the determination of
phase diagrams. In this chapter we will show explictly how to measure the two-particle
Green functions for different scattering channels in the QMC simulation.

C.1 Definitions of Green Functions
Single-particle Green’s function is defined as (ignoring the k or r labels):

G(τ) ≡ − < Tτc(τ)c†(0) > (C.1)

Its Fourier transform is:

G(iωn) =

ˆ β

0

eiωnτG(τ)dτ (C.2)

and the inversed Fourier transform

G(τ) = T
∑
iωn

e−iωnτG(iωn) (C.3)

Noting that the Green function in the imaginary time space is dimensionless, the Green’s
function in the frequency space thus has the inverse energy unit:

G(iωn) ∼ 1

E
(C.4)
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Note that
G(iωn, iωn′) ∼ 1

E2
(C.5)

which is used in the QMC measurement.
The two-particle Green’s function for the p-h channel is defined as:

χph(τ1, τ2; τ3, τ4) ≡< Tτc(τ1)c†(τ2)c(τ4)c†(τ3) > − < Tτc(τ1)c†(τ2) >< Tτc(τ4)c†(τ3) >
(C.6)

while for p-p channel

χpp(τ1, τ2; τ3, τ4) ≡< Tτc(τ1)c(τ2)c†(τ4)c†(τ3) > (C.7)

in which other degrees of freedom can be added accordingly as the imaginary time index.
Its Fourier transform:

χ(iνm)iωn,iωn′ =

ˆ β

0

e(iωn+iνm)τ1dτ1

ˆ β

0

e−iωnτ2dτ2

ˆ β

0

e−(iωn′+iνm)τ3dτ3χ(τ1, τ2; τ3, 0)

(C.8)
which is of the unit:

χ(iνm)iωn,iωn′ ∼
1

E3
(C.9)

C.2 Particle-Particle Channel

C.2.1 Definition and Measurement

χpp↑↓;↑↓:

+= { }1
2

=

↑ ↑

↓↓

↑

↓
↑

↓ ↑

↓

P ′ +Q

−P ′ −P

P +Q

χp(Q)P,P ′ ≡ χpp↑↓;↑↓(Q)P,P ′ =
1

2Ncβ
{< G↓(−P,−P ′)G↑(P +Q,P ′ +Q) >{QMC}(C.10)

+ < G↑(−P,−P ′)G↓(P +Q,P ′ +Q) >{QMC}}

Note that the volume of the space-time is divided on the righ hand side of the equation
to fix the dimension. β ≡ 1/T and Nc is the number of cluster sites.

In the QMCmeasurement, this quantity is represented by gamats(i,j,l)=chi_p(Q)_P,P’.
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χpp↑↓;↓↑:

= −

↓ ↑

↓↑−P ′

P ′ +Q

−P

P +Q
↑ ↑

↓↓

P +Q

−P

−P ′

P ′ +Q

χpp↑↓;↓↑(Q)P,P ′ = −χp(Q)P,−P ′−Q (C.11)

Here we have used the crossing symmetry, so that for the particle-particle channel, we
only need to measure the quantity χpp↑↓;↑↓.

Singlet and Triplet Channels:

Quantities for singlet and triplet channels, if needed, can be thus defined as

χs/t(Q)P,P ′ = χpp↑↓;↑↓(Q)P,P ′ ∓ χpp↑↓;↓↑(Q)P,P ′

= χp(Q)P,P ′ ± χp(Q)P,−P ′−Q (C.12)

and for the reducible and irreducible vetices, they are

Fs/t(Q)P,P ′ = F pp
↑↓;↑↓(Q)P,P ′ ∓ F pp

↑↓;↓↑(Q)P,P ′

= F p(Q)P,P ′ ± F p(Q)P,−P ′−Q (C.13)

and

Γs/t(Q)P,P ′ = Γpp↑↓;↑↓(Q)P,P ′ ∓ Γpp↑↓;↓↑(Q)P,P ′

= Γp(Q)P,P ′ ± Γp(Q)P,−P ′−Q (C.14)

C.2.2 Bethe-Salpeter Equation for χp

−P−P ′

P ′ +Q P +Q

χp = − F p

χp(Q)P,P ′ = Ncβ ∗G(−P )G(P +Q)δP,P ′

− G(P +Q)G(−P )F p(Q)P,P ′G(P ′ +Q)G(−P ′) (C.15)
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−P−P ′

P ′ +Q P +Q

χp = − Γp χ
p

χp(Q)P,P ′ = Ncβ ∗G(−P )G(P +Q)δP,P ′

− 1

Ncβ

∑
P ′′

χp(Q)P,P ′′Γp(Q)P ′′,P ′G(P ′ +Q)G(−P ′) (C.16)

One should be very careful about the minus sign for the second terms in the above
equations. The first order contribution of U to the two-particle Green’s function is

χp(Q)
(2)
P,P ′ = −UG(P +Q)G(P ′ +Q)G(−P )G(−P ′) (C.17)

and noticing that the high-frequency limit of both F P and ΓP is U , thus we would have
to conclude that the sign for the second terms should be minus.

If we define the un-perturbed two-particle Green’s function as:

χp0(Q)P,P ′ ≡ Ncβ ∗G(−P )G(P +Q)δP,P ′ ≡ χp0(Q)P δP,P ′ (C.18)

then we have

χp(Q)P,P ′ = χp0(Q)P,P ′ − 1

(Ncβ)2

∑
P ′′,P ′′′

χp(Q)P,P ′′Γp(Q)P ′′,P ′′′χp0(Q)P ′′′,P ′ (C.19)

Thus

Γp(Q)P,P ′ = − (Ncβ)2(χp0(Q)−1 − χp(Q)−1)P,P ′ (C.20)

and similarly,

F p(Q)P,P ′ = − χp0(Q)−1
P (χp(Q)− χp0(Q))P,P ′χp0(Q)−1

P ′ (C.21)
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C.3 Particle-Hole Channel

C.3.1 Definition and Measurement

χph↑↑;↑↑:

−

= { }−1
2

=

↑ ↑ ↑

↑

↑
↓

↑↑↑↑
+

+

{ }+1
2 +

P ′

P ′ +Q

P

P +Q

↑↑

↑ ↑ ↑

↓

↓

↓

+−1
4 { }

↑↓
( )()+

↑ ↓

−

χph↑↑;↑↑(Q)P,P ′ =
1

Ncβ
[−1

2
{< G↑(P

′, P )G↑(P +Q,P ′ +Q) >{QMC}

+ < G↓(P
′, P )G↓(P +Q,P ′ +Q) >{QMC}}

+
1

2
{< G↑(P +Q,P )G↑(P

′, P ′ +Q) >{QMC}

+ < G↓(P +Q,P )G↓(P
′, P ′ +Q) >{QMC}}

−1

4
{< (G↑(P +Q,P ) + G↓(P +Q,P )) >{QMC})

< (G↑(P
′, P ′ +Q) +G↓(P

′, P ′ +Q)) >{QMC}}] (C.22)
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χph↑↑;↓↓:

=

=

↑

↑

↓
↓

−
↑↓ ↑

{ }1
2 +

↑ ↑

↓

↓

↓

P ′

P ′ +Q

P

P +Q

+−1
4{ }

↑↓
( )()+

↑ ↓

χph↑↑;↓↓(Q)P,P ′ =
1

Ncβ
[
1

2
{< G↑(P +Q,P )G↓(P

′, P ′ +Q) >{QMC}

+ < G↓(P +Q,P )G↑(P
′, P ′ +Q) >{QMC}}

−1

4
{< (G↑(P +Q,P ) + G↓(P +Q,P )) >{QMC})

< (G↑(P
′, P ′ +Q) +G↓(P

′, P ′ +Q)) >{QMC}}] (C.23)

χphd :

PP ′

P ′ +Q P +Q

χd =

↑ ↑

↑

↑

↓

↓
+

= { }−1
2

↑ ↑

↑ ↓

↑ ↓

+

++1
2{ }

↑↓
( )()+

↑ ↓

+−1
2{ }

↑↓
( )()+

↑ ↓
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χphd (Q)P,P ′ = χph↑↑;↑↑(Q)P,P ′ + χpp↑↑;↓↓(Q)P,P ′

=
1

Ncβ
[−1

2
{< G↑(P

′, P )G↑(P +Q,P ′ +Q) >{QMC}

+ < G↓(P
′, P )G↓(P +Q,P ′ +Q) >{QMC}}

+
1

2
{< (G↑(P +Q,P ) + G↓(P +Q,P ))

(G↑(P
′, P ′ +Q) +G↓(P

′, P ′ +Q)) >{QMC}}

−1

2
{< (G↑(P +Q,P ) + G↓(P +Q,P )) >{QMC})

< (G↑(P
′, P ′ +Q) +G↓(P

′, P ′ +Q)) >{QMC}}] (C.24)

In the QMCmeasurement, this quantity is represented by gamatc(i,j,l)=chi_d(Q)_P,P’.

χphm0:

PP ′

P ′ +Q P +Q

χm0 =

↑ ↑

↑

↑

↓

↓
−

−

= { }1
2

+1
2{ }

↑ ↑

↑ ↓

↑ ↓

↑↓
( )()

+

−
↑ ↓

χphm0(Q)P,P ′ = χph↑↑;↑↑(Q)P,P ′ − χpp↑↑;↓↓(Q)P,P ′

=
1

Ncβ
[−1

2
{< G↑(P

′, P )G↑(P +Q,P ′ +Q) >{QMC}

+ < G↓(P
′, P )G↓(P +Q,P ′ +Q) >{QMC}}

+
1

2
{< (G↑(P +Q,P )− G↓(P +Q,P ))

(G↑(P
′, P ′ +Q)−G↓(P ′, P ′ +Q)) >{QMC}}] (C.25)

In the QMCmeasurement, this quantity is represented by gamat(i,j,l)=2*chi_m(Q)_P,P’.
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C.3.2 Bethe-Salpeter Equations

χphd :

PP ′

P ′ +Q P +Q

χd = − Fd−

χphd (Q)P,P ′ = −Ncβ ∗G(P )G(P +Q)δP,P ′

− G(P +Q)G(P )Fd(Q)P,P ′G(P ′ +Q)G(P ′) (C.26)

The situation of determining the sign for the second term is exactly the same as that
for χP (Q)P,P ′ . So it should be a minus sign.

χphm0:

PP ′

P ′ +Q P +Q

χm = − Fm−

χphm0(Q)P,P ′ = −Ncβ ∗G(P )G(P +Q)δP,P ′

− G(P +Q)G(P )Fm0(Q)P,P ′G(P ′ +Q)G(P ′) (C.27)

The minus sign for the second term is due to the first order contribution of U

χpm0(Q)
(2)
P,P ′ = UG(P +Q)G(P ′ +Q)G(−P )G(−P ′) (C.28)

and that Fm0 approaches to −U for the large frequency limit.
The un-perturbed two-particle Green’s function for the p-h channel can be defined

as:

χph0 (Q)P,P ′ ≡ −Ncβ ∗G(P )G(P +Q)δP,P ′ ≡ −Ncβ ∗ χph0 (Q)P δP,P ′ (C.29)

So

Γd/m(Q)P,P ′ = −(Ncβ)2(χph0 (Q)−1 − χd/m(Q)−1)P,P ′ (C.30)

and similarly,

Fd/m(Q)P,P ′ = − χph0 (Q)−1
P (χd/m(Q)− χph0 (Q))P,P ′χph0 (Q)−1

P ′ (C.31)
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Appendix D

High-Frequency Expansion of
Two-Particle Quantities

Both the vertex functions and the two-particle Green functions are represented by 3-D
arrays, which are imposing a great challenge in either the memory requirement or com-
putational complexity. On the other hand, there is a huge redundancy in the information
contained in these 3-D arrays, especially in the high-frequency sector. This property can
be used to greatly reduce the computational and memory requirement for any calculation
at the two-particle level. In the following, we will show how to derive a complete form
for the high-frequency expansion of those two-particle quantities, by closely analyzing
the parquet equation and Bethe-Salpeter equation, and doing the Taylor expansion on
the Coulomb interaction. And we will also present some numerical results, showing that
the high-frequency information is captured very well by the high-frequency expansion up
to second-order in U .

D.1 Analytical Results

Vertex Ladders

Let us consider the particle-particle channel first. The vertex ladder is defined as

Φp(Q)P,P ′ ≡ 1

Ncβ

∑
P ′′

Γp(Q)P,P ′′χpp0 (Q)P ′′F p(Q)P ′′,P ′ (D.1)

where the un-perturbed two-particle Green function is defined as

χpp0 (Q)P ≡ −G(P +Q)G(−P ) (D.2)

From Eq. C.15 and Eq. C.16, we have

G(P +Q)G(−P )F p(Q)P,P ′ =
1

Ncβ

∑
P ′′

χp(Q)P,P ′′Γp(Q)P ′′,P ′ (D.3)
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Then we have

Φp(Q)P,P ′ = − 1

(Ncβ)2

∑
P ′′

Γp(Q)P,P ′′χp(Q)P ′′,P ′′′Γp(Q)P ′′′,P ′ (D.4)

= − 1

(Ncβ)2

∑
P ′′,P ′′′

Uχp(Q)P ′′,P ′′′U +O(U3) (D.5)

= −U2χp(Q) +O(U3) (D.6)

in which we have used the particle-particle polarization function

χp(Q) ≡ 1

(Ncβ)2

∑
P,P ′

χp(Q)P,P ′ (D.7)

Similarly, for the particle-hole channel, we have

Φd/m(Q)P,P ′ = −U2χd/m(Q) +O(U3) (D.8)

and

χd/m(Q) ≡ 1

(Ncβ)2

∑
P,P ′

χd/m(Q)P,P ′ (D.9)

χph0 (Q)P ≡ G(P +Q)G(P ) (D.10)

In the high-frequency limit, we have

Φ∞p (Q)P,P ′ = −U2χp(Q) (D.11)

and

Φ∞d/m(Q)P,P ′ = −U2χd/m(Q) (D.12)

Note that in this limit, the two fermionic indices P and P ′are not relevant.

Vertex Functions

Now we can start to derive the expression of the high-frequency expansion for the vertex
functions. Parquet equations read

Γd(Q)PP ′ = Λd(Q)PP ′ − 1

2
Φd(P

′ − P )P,P+Q −
3

2
Φm(P ′ − P )P,P+Q

+ 2Ψ(P + P ′ +Q)−P−Q,−P −Ψ(P + P ′ +Q)−P ′,−P(D.13)
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Γm(Q)PP ′ = Λm(Q)PP ′ − 1

2
Φd(P

′ − P )P,P+Q +
1

2
Φm(P ′ − P )P,P+Q

− Ψ(P + P ′ +Q)−P ′,−P (D.14)

Γp(Q)PP ′ = Λp(Q)PP ′ +
1

2
Φd(P

′ − P )−P ′,P+Q −
1

2
Φm(P ′ − P )−P ′,P+Q

−Φm(P + P ′ +Q)−P ′,−P (D.15)

Inserting the asymptotic expression of the vertex ladders derived from the above, we
have for the p-p channel

Γ∞p (Q)PP ′ = U − 1

2
χd(P

′ − P )U2 +
1

2
χm(P ′ − P )U2 + χm(P + P ′ +Q)U2 (D.16)

And since

Fp(Q)P,P ′ = Γp(Q)P,P ′ + Ψ(Q)P,P ′ (D.17)

we have

F∞p (Q)PP ′ = Γ∞p (Q)PP ′ − χp(Q)U2 (D.18)

= U − χp(Q)U2 − 1

2
χd(P

′ − P )U2 +
1

2
χm(P ′ − P )U2 + χm(P + P ′ +Q)U2

Similarly for particle-hole channel

F∞d (Q)PP ′ = Γ∞d (Q)PP ′ − χd(Q)U2 (D.19)

= U − χd(Q)U2 +
1

2
χd(P

′ − P )U2 +
3

2
χm(P ′ − P )U2 − χp(P + P ′ +Q)U2

F∞m (Q)PP ′ = Γ∞m (Q)PP ′ − χm(Q)U2 (D.20)

= −U − χm(Q)U2 +
1

2
χd(P

′ − P )U2 − 1

2
χm(P ′ − P )U2 + χp(P + P ′ +Q)U2

Two-Particle Green Functions

We can derive similar high-frequency expansion for the 2-p Green’s functions by using
the two-particle Dyson equations

χp(Q)PP ′ = −χ0
pp(Q)P δP,P ′ − T ∗ χ0

pp(Q)PFp(Q)PP ′χ0
pp(Q)P ′ (D.21)

79



χd/m(Q)PP ′ = −χ0
ph(Q)P δP,P ′ − T ∗ χ0

ph(Q)PFd/m(Q)PP ′χ0
ph(Q)P ′ (D.22)

Therefore

χ∞p (Q)PP ′ = −χ0
pp(Q)P δP,P ′ − T ∗ χ0

pp(Q)PF
∞
p (Q)PP ′χ0

pp(Q)P ′ (D.23)

χ∞d/m(Q)PP ′ = −χ0
ph(Q)P δP,P ′ − T ∗ χ0

ph(Q)PF
∞
d/m(Q)PP ′χ0

ph(Q)P ′ (D.24)

Hubbard Atom

The hamiltonian for Hubbard atom at half-filling is:

H = −U
2

(n↑ + n↓) + Un↑n↓ (D.25)

For this toy model, the susceptibilities are

χp(iν) =
β

Z
δiν,0 ≡ χpδiν,0 (D.26)

χd(iν) =
β

Z
δiν,0 ≡ χdδiν,0 (D.27)

χm(iν) = β(
1

2
− 1

Z
)δiν,0 ≡ χmδiν,0 (D.28)

in the above, Z is the partition function

Z = 2(eβU/2 + 1) (D.29)

Therefore, we have

F∞p (iν)iωniωn′ = U − χpU2δiν,0 −
1

2
χdU

2δiωniωn′ +
1

2
χmU

2δiωniωn′ + χmU
2δiωn+iωn′+iν,0

(D.30)

F∞d (iν)iωniωn′ = U − χdU2δiν,0 +
1

2
χdU

2δiωniωn′ +
3

2
χmU

2δiωniωn′ − χpU2δiωn+iωn′+iν,0

(D.31)

F∞m (iν)iωniωn′ = −U − χmU2δiν,0 +
1

2
χdU

2δiωniωn′ −
1

2
χmU

2δiωniωn′ + χpU
2δiωn+iωn′+iν,0

(D.32)
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D.2 Numerical Results of the High-Frequency Expan-
sion

In the following, we will show numerical results for the Hubbard atom system from the
above exact result compared with the high-frequency expansion result. The parameters
used are: U = 0.73, T = 0.3333, 〈n〉 = 1, iν = 0, and we only look into the charge
channel.

Results for Feducible and Irreducible Vertex Functions

• One of the fermionic frequencies is set to be ωn′ = 21πT , which is in the high-
frequency sector. See Fig. D.1.
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Figure D.1: (Color online) Comparison of the numerical result and the high-frequency
expansion result for the reducible vertex (left) and the irreducible vertex (right).

• Diagonal part. See Fig. D.2.

• Anti-diagonal part. See Fig. D.3.

Results for the Two-Particle Green Function

See Fig. D.4.

81



-60 -40 -20 0 20 40 60

iω
n

1

1.5

2

F
oo

F
X(iν=0)

iω,iω’

ω’=ω

-60 -40 -20 0 20 40 60

iω
n

1.5

2

2.5
Γ

oo

Γ
X(iν=0)

iω,iω’

ω’=ω

Figure D.2: (Color online) Comparison of the numerical result and the high-frequency
expansion result for the reducible vertex (left) and the irreducible vertex (right) for the
diagonal part.
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Figure D.3: (Color online) Comparison of the numerical result and the high-frequency
expansion result for the reducible vertex (left) and the irreducible vertex (right) for the
anti-diagonal part.
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Figure D.4: (Color online) Comparison of the numerical result and the high-frequency
expansion result for the two-particle Green function.
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Appendix E

Parquet Approximation for
Anharmonical Classical Oscillator
System

In this chapter, we will show how the parquet formalism can be developed for the an-
harmonical classical oscillator system. A hierarchy of approximate methods can then
be designed and numerical results are shown, which exemplifies that the lower level the
approximation is made on, the better result would yield by comparing with the exact
result.

E.1 Parquet Formalism
Starting from the hamiltonian for the anharmonical classical oscillator system, one can
form the functional representatin of the system. From the latter, one has the bare
Green function and bare interaction, which are all the input needed for any conventional
digrammatic perturbation theory. And thus one can develop the parquet formalism
and design the hierarchy of different approximate methods. Especially for this system,
we have a analytical form for the solution of the parquet equation and Bethe-Salpeter
equation.

Hamiltonian and Generating Functional

The Hamiltonian for the classical anharmonic oscillator is

H =
p2

2m
+

1

2
mω2

0x
2 + ux4 (E.1)

Its partition function is

Zc
Zc,0

=
1

Zc,0

ˆ ∞
−∞

dp

ˆ ∞
−∞

dxe−βH =
1√

2πG0

ˆ ∞
−∞

dψe−
ψ2

2G0 e−
g
4!
ψ4

(E.2)

84



where G0 = 1/(βmω2
0), βu = g/4! and ψ ≡ x. Note that this is a classical system,

therefore, there is no dynamical information. Both the Green function and the self-
energy are thus scalars instead of functions of frequencies.

Feynman’s Rule for the Self-Energy

The Feynman’s rule is essentially the same as the one for the Bosonic system. The only
difference is that the function in the quantum case is reduced to a single number (in this
sense, the generating funcional is actually a generating function).

1. Each bare Green function G0 is represented by a single solid line

2. The bare interaction is denoted by a cross

3. Draw all topologically different and linked diagrams using the solid line and cross

4. When evaluating the contribution of each diagram, one will have the following
result

Σ = α
1

n!
(
−g
4!

)
n

G2n−1 (E.3)

in which n is the order of perturbation, α the symmetry factor and G can be the
bare Green function or the mean-field dressed one. As for the symmetry factor,
there are some examples in the following section.

One-Particle Quantities

• Dyson equation

G =
1

G0
−1 − Σ

(E.4)

• first-order (Hartree) contribution to the self-energy

Σ(1) = −g
2
G (E.5)

Σ(1) =
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For this case, the symmetry factor is estimated as

α = C2
4 =

4!

2
(E.6)

• 2nd-order contribution to the self-energy

Σ(2) =
1

4
g2G3 +

1

6
g2G3 =

5

12
g2G3 (E.7)

Σ(2) = +

The symmetry factor for the first term is

α1 = C2
2C

2
4C

2
4 =

2!(4!)2

4
(E.8)

and the second term

α2 = C2
2C

1
4C

3
4 =

2!(4!)2

6
(E.9)

Note that the first one is non-skeleton type of diagram. Thus it shouldn’t be included
in the Mean-Field calculation of the self-energy. Instead we should use the second one
only

Σ(2) =
1

6
g2G3 (E.10)

Schwinger-Dyson Equation

Σ = −g
2
G− 1

6
gFG3 (E.11)

F
= +Σ

Note that the 2nd-order self-energy is recovered if one replaces the reducible F by
the bare interaction g.
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Bethe-Salpeter Equations

• Horizontal channel

F = Γh + Fχ0Γh (E.12)

Γh χ0 FΓhF +=

• Vertical channel

F = Γv + Fχ0Γv (E.13)

ΓvF

Γv

χ0

F

+=

• Crossed channel

F = Γc + Fχ0Γc (E.14)

ΓcF +=

Γc

χ0

F

From the above three Bethe-Salpeter equations, we have

Γ = Γh = Γv = Γc =
F

1 + Fχ0

(E.15)

in which the non-perturbed susceptibility χ0 is defined as

χ0 ≡
1

2
GG (E.16)

the one-half factor is needed to avoid the double-counting.

87



Parquet Equations

• Horizontal channel

Γh = Λ + Fχ0Γv + Fχ0Γc (E.17)

Γc

ΛΓh

Γv

χ0 χ0

F F

+ +=

• Vertical channel

Γv = Λ + Fχ0Γh + Fχ0Γc (E.18)

Γc

Γh χ0 χ0F

F

+ΛΓv +=

• crossed channel

Γc = Λ + Fχ0Γh + Fχ0Γv (E.19)

Γv

Γh χ0 χ0F

F

+ΛΓc +=

Because of the result(E.15) from the Bethe-Salpeter equations, the three Parquet
equations are reducible to one

Γ = Λ + 2Fχ0Γ (E.20)

Inserting result(E.15), then we end up with the following equaiton

2χ0ΛF 2 + (χ0Λ− 1)F + Λ = 0 (E.21)

whose solution is

F =
(1− χ0Λ)−

√
(χ0Λ− 1)2 − 8χ0Λ

4χ0

(E.22)

Note that another solution is ruled out since F → −Λ for small g.
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Parquet Approximation

We have a closed formalism (Eq (E.4), (E.11) and (E.22)) to determine the Green func-
tion if given addtionally the information of fully irreducible vertex Λ. The simplest
approximation on Λ is just letting it approximated by the bare interation −g, then we
have the Parquet approximation equations

G =
1

G0
−1 − Σ

(E.23)

Σ = −g
2
G− 1

6
gFG3 (E.24)

F =
(1− gχ0)−

√
(gχ0 − 1)2 − 8gχ0

4χ0

(E.25)

in which the non-perturbed susceptibility χ0 is defined as

χ0 ≡
1

2
GG (E.26)

and G0 is chosen to be one in the calculation.

E.2 Numerical Results
After self-consistently iterating the above equations, one can get almost exact result for
the self-energy (See Fig. E.1). In addition to the good result for the parquet approxima-
tion, it’s interesting to observe that the Hartree method always converges and produces
quite good result, while the higher-order methods (2nd-order, self-consistent 2nd-order
and fluctuation exchange (FLEX)) diverge at some critical g.
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Figure E.1: (color online) Results from different methods. From 2nd-order approxima-
tion, FLEX, to parquet approximation, the results become better and closer to the exacct
result.
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Appendix F

Crossing-Symmetric Parquet
Formalism

Our numerical experiments on the parquet approximation show that the instability prob-
lem encountered in the parquet calcualtion is partially due to the violation of the crossing
symmetries, which are the consequence of the Pauli exclusion principle. How to preserve
the crossing symmetries thus becomes an essential point in stablizing the parquet calcu-
lation. In the following, we will show how these crossing symmetries can be encoded in
the parquet formalism, forming so-named crossing-symmetric parquet formalism. With
the crossing symmetries built in, the parquet calculation would become much more sta-
ble, and both the number of independent variables and the number of equations can also
be reduced.

F.1 Two-Particle Quantities

Vertex Functions

The full vertex F and the fully irreducible Λ have all the crossing symmetries, and
thus only one out of four of them (density, magnetic, particle-particle singlet and triplet
channels) is truly independent. The irreducible vertex Γ only has the crossing symmetries
within the particle-particle channel, so that we need three channels to describe these
vertices.

• Particle-Particle Channel

For the particle-particle channel, we only need the vertex function defined in the follow-
ing:

X

P +QP ′ +Q

−P ′ −P

X(Q)P,P ′ ≡
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X(Q)P,P ′ ≡ Xpp
↑↓;↑↓(P +Q,−P ;P ′ +Q,−P ′). (F.1)

Due to the crossing symmetry, the other component can be written down as

=X

P +QP ′ +Q

−P ′ −P

X

P +Q

P ′ +Q

−P ′

−P

−

Xpp
↑↓;↓↑(P +Q,−P ;P ′ +Q,−P ′) = −Xpp

↑↓;↑↓(P +Q,−P ;−P ′, P ′ +Q) = −X(Q)P,−P ′−Q.
(F.2)

We can thus construct the singlet and triplet vertices according to the following definition:

Xs/t = Xpp
↑↓;↑↓ ∓Xpp

↑↓;↓↑, (F.3)

so that

Xs/t = X(Q)P,P ′ ±X(Q)P,−P ′−Q. (F.4)

• Particle-Hole Channel

For the particle-hole channel, we can express the two components in terms of X(Q)P,P ′

(for F and Λ only) as

=X

P +QP ′ +Q

P ′ P

X

P +QP ′ +Q

−
P ′P

Xph
↑↑;↑↑(P +Q,P ;P ′ +Q,P ′) = −Xpp

↑↑;↑↑(P +Q,P ′;P ′ +Q,P )

= −Xt(P + P ′ +Q)−P ′,−P

= −X(P + P ′ +Q)−P ′,−P +X(P + P ′ +Q)−P ′,−P ′−Q

(F.5)

and

= −X

P +QP ′ +Q

P ′ P

X

P +Q

P ′ +QP ′

P

= X

P +Q

P ′ +Q P ′

P
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Xph
↑↑;↓↓(P +Q,P ;P ′ +Q,P ′) = −Xph

↑↓;↑↓(P +Q,P ′ +Q;P, P ′)

= Xpp
↑↓;↑↓(P +Q,P ′;P, P ′ +Q)

= X(P + P ′ +Q)−P ′,−P ′−Q. (F.6)

Since the definition for the density and magnetic vertices is

Xd/m = Xph
↑↑;↑↑ ±Xph

↑↑;↓↓, (F.7)

we have

Xd = 2X(P + P ′ +Q)−P ′,−P ′−Q −X(P + P ′ +Q)−P ′,−P (F.8)

Xm = −X(P + P ′ +Q)−P ′,−P . (F.9)

Two-Particle Green Functions

From the Bethe-Salper equations, we can easily derive the expressions for the two-particle
Green functions as

χ(Q)P,P ′ ≡ χpp↑↓;↑↓(P +Q,−P ;P ′ +Q,−P ′) (F.10)

χs/t(Q)P,P ′ = χ(Q)P,P ′ ± χ(Q)P,−P ′−Q (F.11)

χd(Q)P,P ′ = 2χ(P +P ′+Q)−P ′,−P ′−Q−χ(P +P ′+Q)−P ′,−P − 2G(P )G(P ′)δQ,0 (F.12)

χm(Q)P,P ′ = −χ(P + P ′ +Q)−P ′,−P . (F.13)

Note that for the density channel, the vacuum term should be subtracted explicitly.

F.2 Two-Particle Equations

parquet equations
Now that we have expressed the vertices in terms of only the p-p channel vertex, next
we will re-write the parquet equations.

In the parquet equations, we need to rotate the vertices according to the following
four different rotation patterns:

• rotation 1:
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Fd(P
′ − P )P,P+Q = 2F (P + P ′ +Q)−P−Q,−P ′−Q − F (P + P ′ +Q)−P−Q,−P

= 2F (P + P ′ +Q)−P ′,−P − F (P + P ′ +Q)−P−Q,−P (F.14)

Fm(P ′ − P )P,P+Q = −F (P + P ′ +Q)−P−Q,−P (F.15)

• rotation 2:

Fs(P + P ′ +Q)−P−Q,−P = F (P + P ′ +Q)−P−Q,−P + F (P + P ′ +Q)−P−Q,−P ′−Q

= F (P + P ′ +Q)−P−Q,−P + F (P + P ′ +Q)−P ′,−P (F.16)

Ft(P + P ′ +Q)−P−Q,−P = F (P + P ′ +Q)−P−Q,−P − F (P + P ′ +Q)−P−Q,−P ′−Q

= F (P + P ′ +Q)−P−Q,−P − F (P + P ′ +Q)−P ′,−P (F.17)

• rotation 3:

Fd(P
′ − P )−P ′,P+Q = 2F (Q)−P−Q,−P ′−Q − F (Q)−P−Q,P ′

= 2F (Q)P,P ′ − F (Q)−P−Q,P ′ (F.18)

Fm(P ′ − P )−P ′,P+Q = −F (Q)−P−Q,P ′ (F.19)

• rotation 4:

Fd(P + P ′ +Q)−P ′,−P = 2F (Q)P,−P ′−Q − F (Q)P,P ′ (F.20)

Fm(P + P ′ +Q)−P ′,−P = −F (Q)P,P ′ (F.21)

Therefore, we can re-write the parquet equations as:

parquet equation 1:

Γd(Q)PP ′ = Λd(Q)PP ′ − 1

2
Φd(P

′ − P )P,P+Q −
3

2
Φm(P ′ − P )P,P+Q

+
1

2
Ψs(P + P ′ +Q)−P−Q,−P +

3

2
Ψt(P + P ′ +Q)−P−Q,−P

= Λd(Q)PP ′ + 4F (P + P ′ +Q)−P−Q,−P − 2F (P + P ′ +Q)−P ′,−P

+
1

2
Γd(P

′ − P )P,P+Q +
3

2
Γm(P ′ − P )P,P+Q

−2 Γ(P + P ′ +Q)−P−Q,−P + Γ(P + P ′ +Q)−P ′,−P (F.22)
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parquet equation 2:

Γm(Q)PP ′ = Λm(Q)PP ′ − 1

2
Φd(P

′ − P )P,P+Q +
1

2
Φm(P ′ − P )P,P+Q

− 1

2
Ψs(P + P ′ +Q)−P−Q,−P +

1

2
Ψt(P + P ′ +Q)−P−Q,−P

= Λm(Q)PP ′ − 2F (P + P ′ +Q)−P ′,−P

+
1

2
Γd(P

′ − P )P,P+Q −
1

2
Γm(P ′ − P )P,P+Q

+Γ(P + P ′ +Q)−P ′,−P (F.23)

parquet equation 3&4:

Γ(Q)PP ′ = Λ(Q)PP ′ +
1

2
Φd(P

′ − P )−P ′,P+Q −
1

2
Φm(P ′ − P )−P ′,P+Q

−Φm(P + P ′ +Q)−P ′,−P

= Λ(Q)PP ′ + 2F (Q)P,P ′

−1

2
Γd(P

′ − P )−P ′,P+Q +
1

2
Γm(P ′ − P )−P ′,P+Q

+Γm(P + P ′ +Q)−P ′,−P (F.24)

Parquet equations + Bethe-Salpeter equations

To summarize, we have

Γd(Q)PP ′ = 2Λ(P + P ′ +Q)−P ′,−P ′−Q − Λ(P + P ′ +Q)−P ′,−P

+ 4F (P + P ′ +Q)−P−Q,−P − 2F (P + P ′ +Q)−P ′,−P

+
1

2
Γd(P

′ − P )P,P+Q +
3

2
Γm(P ′ − P )P,P+Q

− 2 Γ(P + P ′ +Q)−P−Q,−P + Γ(P + P ′ +Q)−P ′,−P (F.25)

Γm(Q)PP ′ = − Λ(P + P ′ +Q)−P ′,−P − 2F (P + P ′ +Q)−P ′,−P

+
1

2
Γd(P

′ − P )P,P+Q −
1

2
Γm(P ′ − P )P,P+Q

+ Γ(P + P ′ +Q)−P ′,−P (F.26)

Γ(Q)PP ′ = Λ(Q)PP ′ + 2F (Q)P,P ′

− 1

2
Γd(P

′ − P )−P ′,P+Q +
1

2
Γm(P ′ − P )−P ′,P+Q

+ Γm(P + P ′ +Q)−P ′,−P (F.27)
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F = Γ + Γχpp0 F (F.28)

Fd/m = Γd/m + Γd/mχ
ph
0 Fd/m (F.29)

F.3 Other Symmetries
There are extra symmetries associated with the vertex functions. The first one is the
graphic symmetry. For particle-particle vertex X(Q)P,P ′ , we can rotate it by an angle of
π around the vertical axis without changing its value. Thus we have

=X

P +QP ′ +Q

−P ′ −P

X

P ′ +QP +Q

−P −P ′

= X∗
P ′ +QP +Q

−P −P ′

X(Q)P,P ′ = X(−Q)−P ′,−P = X∗(Q)P ′,P (F.30)

With this symmetry (the first identity), we can store vertex functions with positive
external momenta and frequencies, and the other half of the information is implied. The
second identity is a manifestation of the inversion symmetry, which can be used to further
reduce the size of vertex functions.

As another graphic symmetry, we can rotate the vertex graph around the horizontal
axis, such that

=X

P +QP ′ +Q

−P ′ −P

=X

P +QP ′ +Q

−P ′ −P

X

P +QP ′ +Q

−P ′ −P

X(Q)P,P ′ = X↓↑;↓↑(Q)−P−Q,−P ′−Q = X(Q)−P−Q,−P ′−Q (F.31)

The second identify is from the rotation invariance in spin space. The special case is for
Q = 0, then we have

X(Q = 0)P,P ′ = X(Q = 0)−P,−P ′ = X∗(Q = 0)P,P ′ (F.32)

So X(Q = 0)P,P ′ is real.
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Appendix G

Determination of the Phase Digram for
the 2-D Hubbard Model

Around the phase transitions, most of the interesting physics happens. The paramters
at which these phase transitions happen define the boundaries of different phases in
the phase diagrams of a given material. In nature, almost all of the phase transitions
are either the first-order or the second-order. For the cuprate materials, we are most
interested in the second-order transitions, such as the anti-ferromagneticphase transition
or the d-wave superconducting phase transition. In the following, we will discuss how to
determin a second-order phase transition numerically, and then show how to get a phase
diagram for the 2-D Hubbard model.

G.1 Pairing Matrix Formalism
There are two ways to detect a second-order phase transition. One can explicitly in-
troduce the symmetry breaking fields and thus define the order parameter. The tem-
perature where the order parameter begin to vanish is the phase transition temperater.
Equivalently, one can start from a symmetric system and look into the susecptibility of
perturbed field. The divergence of suscepbiltiy would also tell the happening of phase
transition, just as shown in Fig. G.1.

Note that the susceptibility can be expressed as

χ(T ) =
χ0

1− Γχ0

(G.1)

Obviously, the singularity is caused by the zeros in the dominator. This happens when
the LEV of the so-called paring matrix, which is constructed by the irreducible vertex
and the bare susceptibility as

M ≡ Γχ0 (G.2)

goes across the unity. Namely, at the transition temperature, we have λ → 1 in the
eigen-equation

97



0 0.1 0.2 0.3 0.4 0.5
T

0.6

0.8

1λ
AF

0

0.5

1

1.5

χ
-1

Tc

Nc=1, U=2, 4t=1,<n>=1

AF

Figure G.1: (color online) Temperature dependence of the inversed anti-ferromagnetic
susceptibility and the leading eigen value of the paring matrix. Note that at the transition
temperature, the susceptibility diverges and the leading eigen values crosses unity.

Γχ0φ = λφ (G.3)

As shown in Fig. G.1, the LEV going across unity at the same temperature where
the susceptibility diverges for the anti-ferromagnetic channel. Therefore, monitoring the
change of λ by changing other control parameters, such as temperature, provides anther
way to detect whether the system goes through a transition.

G.2 Determination of Phase diagram of the 2-D Hub-
bard Model

In the following section, we will show to determine the phase diagram for the 2-D Hub-
bard model.
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Figure G.2: (color online) Temperature dependence of the inversed d-wave paring sus-
ceptibility for different cluster geometries at filling 〈n〉 = 0.90. . The solid line are fitted
using the formula χ(T ) = a0 ∗ abs(T − a1)a2/(T − a1), from which one can extract the
transition temperature (results are shown in the inset).

G.2.1 Determination of the Superconducting Phase Transition
Line

G.2.2 Determination of the Pseudo-Gap Temperature Line

The pseudo-gap temperature is defined where the pseudo-gap is formed in the density of
states. This happens at the same temperature where the bulk spin susceptibility achieves
its maximum value [21]. Therefore, by looking into the temperature dependence of the
spin susceptibility, one can detect the pseudo-gap temperature.

G.2.3 Determination of the Fermi-liquid Cross-Over Tempera-
ture Line

The Fermi-liquid cross-over temperature TX is determined by fitting the quasi-particle
weight to the combined expression of marginal Fermi-liquid and Fermi-liquid behaviors
(see ref [20] for more details).

Collecting all the information extracted from the above procedure, we can thus de-
termine the phase diagram for the 2-D Hubbard model. See Fig. G.4 for the resulting
phase-diagram.
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Figure G.3: (color online) Temperature dependence of bulk magnetic susceptibility for
different cluster geometries at filling 〈n〉 = 0.95. The temperature where the suscepti-
bility has maximum value is identified as the pseudo-gap temperature T ∗. The cluster
dependence of T ∗ are shown in the inset.
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Figure G.4: (color online) Phase diagram for the 2-D Hubbard model. The x-axis is
the hole doping. Tc denotes the d-wave superconducting transition temperature, T ∗ the
pseudo-gap temperature, and TX the Fermi-liquid cross-over temperature.
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Appendix H

Vertex Decomposition

With the paring formalism, one can analyze the underlying mechanism driving the phase
transition with more detailed. By looking into the behaviors of these two quantities
around the transiton temperature, one can tell whether the transiton is driven by the
bare susceptibility driven, or by the vertex. And to further analyze what happens for
the system around the transition point, we will employ the parquet equations to decom-
position the irreducible vertex.

H.1 Vertex Decomposition Scheme
One can further look into the different contributions to the irreducible vertex by using
the parquet equation and decompose the irreducible vertex into different components.
In this way, one can tell which scattering channel is responsible for the phase transion,
and get much information about how the paring is formed.

H.2 Application on the Spin Instability
The 2-D Hubbard model at half-filling has an anti-ferromagnetic ground state. For
high temperature, the system is paramagnetic. The paramagnetic to anti-ferromagnetic
transition happens at the so-called Neel temperature. People believe that the transition
is caused by the Anderson’s super-exchange interaction

J ∼ 4t2

U
(H.1)

Spin instability is caused by the fully irreducible vertex, in which the bare interaction
has the largest contribution.
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Figure H.1: Spin channel vertex decomposiontion results for the Nc=1 case (left) and
Nc=8 case (right). For both cases, the divergence is dominated by the fully irreducible
vertex contribution, while the crossed channel contribution is almost zero.. And note that
for this two set of parameters, the contributions to the fully irreducible vertex mainly
come from the first-order of U.
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Figure H.2: (color online) Leading eigen-value result for q = (π, π), iν = 0 spin channel
for different U’s. For small U, the divergence comes from the bare interaction contribu-
tion. As U increases, high-order contribution become important as well, which explains
the increasing difference from λΓ and λU .
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Appendix I

Inability to Extract the Irreducible
Vertex Function

In this appendix, we will show that the conventional two-particle formalism breaks down
in some parameter regions, due to its inability to extract the irreducible vertex functions.
Since the DF approach is parameterized by the reducible cluster vertex, which can always
be calculated, while other multiscale approaches are parameterized by the irreducible or
fully irreducible vertices[45, 17], this breakdown further justifies the DF based methods.

Conventional two-particle formalisms rely upon either the reducible or the irreducible
vertices (F or Γ) [36]. They are related by the well-known Bethe-Salpeter equation:

F = Γ + Γχ0F. (I.1)

Given that the bare susceptibility, χ0, is known, the knowledge of either one of them is
enough to calculate the other. For example, F can be expressed as

F (Q)P,P ′ =
Γ(Q)P,P ′

1− Γ(Q)P,P ′χ0(Q)P ′
. (I.2)

A divergence in F, and then in χ since χ = χ0 +χ0 ∗F ∗χ0, denotes a second-order phase
transition, which is used to identify the boundary lines in the phase diagram.

By inverting the above Bethe-Salpeter equation, we can write formally the irreducible
vertex in terms of the full vertex and bare susceptibility as

Γ(Q)P,P ′ =
F (Q)P,P ′

1 + F (Q)P,P ′χ0(Q)P ′
. (I.3)

Note that the above equation involves the inversion of a matrix. We would thus expect to
encounter similar situation as in solving the Bethe-Salpeter equation. Namely, Γ could be
divergent in some parameter region. And the region of convergence for this equation can
be defined by the boundary where the leading eigenvalue (LEV) for −F (Q)P,P ′χ0(Q)P ′

becomes equal to one. Fig. I.1 displays the LEV’s for different channels. The LEV for
the iν = 0 charge channel, the most singular channel and frequency, approaches one
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Figure I.1: (color online) The external frequency dependence of the leading eigen-values
(LEV’s) for different channels. Note that the LEV for iν = 0 charge channel goes across
one. This is the reason for the divergence of the irreducible charge vertex in the low
frequency region. The parameters used are: Nc = 1, U = 6t, β = 4t/T = 4, 〈n〉 = 0.95.

for the set of parameters we show, for which the irreducible vertex diverges (not shown
here). For this set of parameters, LEV’s for all the other channel are less than one.

Since this divergence exists already at high temperatures and only for strong enough
interaction, it is not likely to be driven by the temperature, but instead by the interac-
tion. For a fixed temperature, as we increase the interaction, we can observe the LEV’s
increasing nicely (Fig. I.2). It suggests that there is a critical U , above which we cannot
invert the Bethe-Salpeter equation. At half-filling, this Uc is about 1.35 for the infinite
cluster size limit. Also note that in Fig. I.2, DCA and finite-size simulation (FSS) results
converge to the same infinite cluster size limit from different directions. This is consis-
tent with the fact that DCA tends to over-estimate the correlation, while FSS tends to
under-estimate the correlation, so that DCA and FSS results converge complementarily.

Note that this breakdown does not invalidate the phase diagrams calculated through
the DCA or the DMFA even for large U or near half filling. Here, Γc is only implicitly
needed, and its calculation can be avoided by using another form of the Bethe-Salpeter
equation to obtain the lattice reducible vertex

Flattice =
Fc

1− Fc(χ̄0 − χ0,c)
(I.4)

instead of the conventional one [42, 67]

Flattice =
Γc

1− Γcχ̄0

. (I.5)
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Figure I.2: (color online) The U-dependence of the leading eigen-values for different
DCA cluster sizes. The inset shows the DCA cluster size dependence of the critical U
determined from the leading eigen-value crossing one. Finite-size simulation (FSS) data
is also displayed. The parameters used are: β = 4t/T = 4, 〈n〉 = 1.

One can also thus construct the pairing matrix as M = Fc(χ̄0 − χ0,c), which exactly
corresponds to the DFDCA calculation when corrections from the dual fermion lattice
calculation are turned off.

So far, we are not able to discern a physical explanation for the existence of Uc. Nev-
ertheless, this inability to extract the irreducible vertex renders two-particle approaches
based on the irreducible or even fully irreducible vertex questionable, and partially ex-
plains the difficulty associated with the parquet approximation calculation [36]. However,
the DFDCA scheme is parameterized by the reducible cluster vertex, so we do not need
to invert the Bethe-Salpeter equation and thus do not have this problem.
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Appendix J

Perturbation Theory for the Dual
Fermion Lattice Calculation

J.1 Some Conventions
In the dual fermion calculation, we use K to label the DCA cluster momentum, k̃ for the
momentum inside the DCA coarse-graining cell, and k for the lattice momentum. And
they are related by k = K + k̃ (see Fig. J.1).
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Figure J.1: Momentum index convention for the dual fermion lattice calculation. Shown
is for Nc=8 DCA cluster. The DCA momentum is denoted by the captical letter K, the
dual lattice momentum by small letter k, and the momentum inside the DCA coarse-
graining cell by k̃, so that k = K + k̃.

It is convenient to use the combined index for the frequency and momentum p =
(iωn, k) for the lattice, and P = (iωn, K) for the DCA cluster. So assuming the DCA
cluster is of size Nc1 and latticle of size Nc2, and nf number of Matsubara frequencies
is used, we have the system size nt1 for the DCA cluster system and nt2 for the lattice
system.
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J.2 Hartree-Fock Contributions

VV

ba

Figure J.2: Hartree-Fock contributions to the dual fermion self-energy from the particle-
hole (p-h) channel.

As the lowest-order correction to the dual fermion self-energy, the Hartree-Fock con-
tributions can be easily calculated according to (see Fig. J.2 for the Feynman diagrams)

Σ(1)(p) = −
∑
q

(
1

2
Vd(q)p,pG(p+ q) +

3

2
Vm(q)p,pG(p+ q)) (J.1)

from the p-h channel. Since we are using the DCA cluster reducible vertex to ap-
proximate the bare vertex for the dual lattice system

Vd(q)p,p′ = Vd(Q)P,P ′ = F (Q)P,P ′ , (J.2)

thus we have

Σ(1)(p) = −
∑
q

(
1

2
Vd(Q)P,PG(p+ q) +

3

2
Vm(q)p,pG(p+ q)) (J.3)

Or equivalently, we might calculate it from the p-p channel

Σ(1)(p) =
∑
q

(V p(Q)−P,−PG(p+ q) + Vt(Q)−P,−PG(p+ q)) (J.4)

=
∑
q

(2V p(Q)−P,−PG(p+ q)− V p′(Q)−P,−PG(p+ q)) (J.5)

where we have used

Xp(q)p,p′ ≡ Xp
↑↓;↑↓(q)p,p′ (J.6)

and

Xt(q)p,p′ = Xp
↑↓;↑↓(q)p,p′ +Xp

↑↓;↓↑(q)p,p′ (J.7)
= Xp

↑↓;↑↓(q)p,p′ −Xp
↑↓;↑↓(q)p,−p′−q (J.8)

= Xp(q)p,p′ −Xp(q)p,−p′−q (J.9)
≡ Xp(q)p,p′ −Xp′(q)p,p′ (J.10)
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The computational complexity for the calculation of the self-energy can be easily
identified as O(nt22).

J.3 Second-Order Contributions
Similarly we can also calculate the second-order contributions to the dual fermion self-
energy. The Feynman diagrams for contributions from the p-h channel are shown in Fig.
J.3.

a b c

V V V VV V

Figure J.3: Second-order contributions to the dual fermion self-energy from the particle-
hole (p-h) channel.

The first and second contributions ( a and b in Fig. J.3) are from the longitudinal
spin-charge channel (ring-type diagrams), and can be written down as (in a matrix form)

−1

2
(Vdχ

ph
0 Vd + Vmχ

ph
0 Vm)G (J.11)

where

χph0 (q)p ≡ G(p+ q)G(p) (J.12)

while the third contribution ( c in Fig. J.3) from the transverse spin channel (ladder-
type diagrams)

−Vmχph0 VmG (J.13)

Note that for the second-order contributions, it turns out contribution c is topologi-
cally the same as contribution b. So the second-order contribution is

Σ(2) = −(
1

2
Vdχ

ph
0 Vd +

1

2
Vmχ

ph
0 Vm)G (J.14)

This expression can be simplified by introducing the vertex ladder ( see Fig. J.4)

Φd/m(q)p,p′ ≡
∑
p′′

Fd/m(q)p,p′′χ
ph
0 (q)p′′Vd/m(q)p′′,p′ (J.15)

For the second-order contribution, F ≈ V , therefore

109



V FΦ =

p+ q p+ qp′′ + qp′ + qp′ + q

p′ p p′ p′′ p

Figure J.4: Definition of the vertex ladder.

Φ
(2)
d/m(q)p,p′ = Φ

(2)
d/m(q)P,P ′ ≡

∑
p′′

Vd/m(Q)P,P ′′χph0 (q)p′′Vd/m(Q)P ′′,P ′ (J.16)

=
∑
P ′′

Vd/m(Q)P,P ′′χ̄ph0 (q)P ′′Vd/m(Q)P ′′,P ′ (J.17)

where we have introduced the coarse-grained bare susceptibility

χ̄ph0 (q)P ≡
Nc1

Nc2

∑
k̃

χph0 (q)p. (J.18)

Thus
Σ(2)(p) = −

∑
q

(
1

2
Φ

(2)
d (q)P,PG(p+ q) +

1

2
Φ(2)
m (q)P,PG(p+ q)) (J.19)

The computational complexity for forming the vertex ladder scales as O(nt21 ∗ nt2)
(we only need the diagonal elements), and for the calculation of self-energy and the
coarsed-grained bare susceptibility, it scales as O(nt22).

V VV VV V

a b c

Figure J.5: Second-order contributions to the dual fermion self-energy from the particle-
particle (p-p) channel.

The second-order contribution can also be written down in the p-p channel as (see
Fig. J.5)

Σ(2) = (V pχpp0 V
p + Vtχ

pp
0 Vt)G (J.20)

where

χpp0 (q)p ≡ −G(p+ q)G(−p) (J.21)
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V FΦ =

p+ q p+ qp′′ + qp′ + qp′ + q

−p′ −p −p′ −p′′ −p

Figure J.6: Definition of the vertex ladder for the p-p channel.

Similar to the p-h channel, we define the vertex ladder as

Φ(q)p,p′ ≡
∑
p′′

F (q)p,p′′χ
pp
0 (q)p′′V (q)p′′,p′ (J.22)

and

Φ(2)(q)p,p′ = Φ(2)(q)P,P ′ ≡
∑
p′′

V (Q)P,P ′′χpp0 (q)p′′V (Q)P ′′,P ′ (J.23)

=
∑
P ′′

V (Q)P,P ′′χ̄pp0 (q)P ′′V (Q)P ′′,P ′ (J.24)

where

χ̄pp0 (q)P ≡
Nc1

Nc2

∑
k̃

χpp0 (q)p. (J.25)

Thus

Σ(2)(p) =
∑
q

(Φp(2)(q)−P,−PG(p+ q) + Φ
(2)
t (q)−P,−PG(p+ q)) (J.26)

=
∑
q

(2Φp(2)(q)−P,−PG(p+ q)− Φp′(2)(q)−P,−PG(p+ q)) (J.27)

J.4 FLEX Contributions

V V

F

V V

Mσ

σ

σ′

σ′
F

a) b)

Figure J.7: FLEX contributions to the dual fermion self-energy from the p-h channel.
a), longitudinal spin-charge channel, and b), transverse spin channel.
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Similar to second-order contributions, for the FLEX, some contributions to the self-
energy are from p-h longitudinal spin-charge and transverse channels (see Fig. J.7).
They are (second-order excluded to avoid the double counting)

Σph(p) = −
∑
q

[
1

2
(Φd − Φ

(2)
d )(q)P,PG(p+ q) +

3

2
(Φm − Φ(2)

m )(q)P,PG(p+ q)] (J.28)

And for the contributions from the p-p channel, they are (see Fig. J.8)

Σpp(p) =
∑
q

[2(Φp − Φp(2))(q)−P,−PG(p+ q)− (Φp′ − Φp′(2))(q)−P,−PG(p+ q)] (J.29)

V V

F

V V

σ

σ̄

σ′

σ̄′
F

a) b)

Figure J.8: FLEX contributions to the dual fermion self-energy from the p-p channel.
Note that the two different spin arrangements for the internal two Green function lines
in a) are actually corresponding to the same self-energy contribution due to the crossing
symmetry of the vertex functions.

Note that they are topologically different contributions.
Therefore, we have

ΣFLEX(p) = Σ(1)(p) + Σ(2)(p) + Σph(p) + Σpp(p) (J.30)
The vertex ladder Φ(q)P,P ′ can be easily calculated by using the Bethe-Salperter

equation

F (q)P,P ′ = V (Q)P,P ′ +
∑
P ′′

V (Q)P,P ′′χ̄0(q)P ′′F (q)P ′′,P ′ (J.31)

= V (Q)P,P ′ + Φ(q)P,P ′ (J.32)

where we have made the FLEX approximation Γ(Q)P,P ′ ≈ V (Q)P,P ′ . Thus

Φ(q)P,P ′ = F (q)P,P ′ − V (Q)P,P ′ (J.33)
and

F (q)P,P ′ = [
V (Q)

1− V (Q)χ̄0(q)
]P,P ′ (J.34)

It scales as O(nt31∗nt2) and is thus the computational bottle-neck of the dual fermion
lattice calculation.
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