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Abstract
We demonstrate the capabilities of a new hybrid scheme for simulating dynamical fluid

flows in which cylindrical components of the momentum are advected across a rotating
Cartesian coordinate mesh. This hybrid scheme allows us to conserve angular momentum
to machine precision while capitalizing on the advantages offered by a Cartesian mesh, such
as mesh refinement. The work presented here focuses on measuring the real and imaginary
parts of the eigenfrequency of unstable axisymmetric modes that naturally arise in massless
polytropic tori having a range of different aspect ratios, and quantifying the uncertainty in
these measurements. Our measured eigenfrequencies show good agreement with the results
obtained from the linear stability analysis of Kojima (1986) and from nonlinear hydrody-
namic simulations performed on a cylindrical coordinate mesh by Woodward et al. (1994).
When compared against results conducted with a traditional Cartesian advection scheme,
the hybrid scheme achieves qualitative convergence at the same or, in some cases, much lower
grid resolutions and conserves angular momentum to a much higher degree of precision. As
a result, this hybrid scheme is much better suited for simulating astrophysical fluid flows,
such as accretion disks and mass-transferring binary systems.
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1 Introduction

1.1 Context

Binary star systems, especially those containing compact components, are of great cur-
rent interest in astrophysics. Most binary systems have a separation much larger than the
radii of either star, and thus only interact gravitationally as point masses throughout most
of their lifetimes. While these systems are more interesting than single stars, they pale in
comparison to the richness of information that can be gleaned from studying stars which, by
some process, have come into contact (Frank, King, & Raine 2002).

In order to understand the interactions of close binaries, an understanding of an idealized
potential field known as the Roche potential is crucial. When the orbital separation of a
binary system becomes comparable to the radius of one of the components, it becomes useful
to approximate the gravitational potential field as one given by two point masses in a circular
orbit. Any matter co-rotating with the binary will feel this potential field, plus a Coriolis
force. This is a good approximation for most stars, as they are usually centrally condensed.

The Roche lobes are equipotential surfaces inside of which matter co-rotating with
the binary system is bound to the star it surrounds. The Roche lobes of the two binary
companions meet at the first Lagrange point, L1. It is a saddle point in the potential
surface. When a star fills its Roche lobe, matter will flow over the L1 point and toward
the companion star. This process is known as Roche Lobe OverFlow (RLOF) and it is the
primary way mass can transfer between two binary companions.

Binaries can be classified in many different ways, but when studying the dynamics of
close binary systems a classification system based on how the companion stars fill their Roche
lobes is typically most useful. We can break these down into three categories. In a detached
binary system, neither component fills its Roche lobe, and no RLOF mass transfer occurs.
In a semi-detached binary system, one of the two components (known as the donor) fills its
Roche lobe, and matter from the donor flows over the L1 point onto the other component
(known as the accretor). If both stars fill their Roche lobes, a contact binary is formed.

Consider a binary system that starts as a pair of main-sequence stars. The evolutionary
path of this system depends on several factors, including the total mass of the system, the
ratio of the masses of the two component stars, and the distance between the two stars.
Yungelson et al. (2004) review many possible evolutionary paths of binary systems. For ex-
ample, when one of the components leaves the main sequence and expands beyond its Roche
lobe, a common envelope is formed. The two cores of the stars orbit around each other
inside this common envelope, and angular momentum is transferred from the orbit to the
common envelope, reducing the separation of the binary. A second common envelope phase
occurs when the second star evolves off of the main-sequence. The resulting binary has a
much smaller separation than the original binary. At this smaller radius, angular momen-
tum loss due to the general-relativistic effect of gravitational radiation becomes important.
Eventually this process will drive the two degenerate binary companions together, causing
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them to eventually begin mass transfer. Double white dwarf (DWD) binaries, in particular,
are estimated to number ∼ 2.5× 108 in our Galaxy (Nelemans et al. 2001).

While the Phillips relation (Phillips 1993) allows astronomers to use type Ia super-
novae (SNeIa) as standard candles (which led to the Nobel prize winning discovery of the
acceleration of the universe by Riess et al. (1998) and Perlmutter et al. (1999)), the exact
mechanism of the explosion, and the nature of the progenitors, continue to be investigated.
The consensus is that SNeIa occur when a carbon-oxygen (CO) white dwarf undergoes a
runaway fusion reaction (Hillebrandt & Niemeyer 2000), as a result of either accretion from
the companion star (single-degenerate model, Whelan & Iben 1973), or the merger of a
DWD binary (double-degenerate model, Webbink 1984). This debate over which channel
dominates continues (Geier et al. 2007; Rosswog et al. 2009; Fryer et al. 2010). Schaefer &
Pagnotta (2012) in particular point to the lack of an ex-companion object in the vicinity of a
400 year old supernova remnant, which they argue rules out all published single-degenerate
models. Efforts to reduce the intrinsic Hubble scatter (deviations in the magnitude-redshift
relationship) have not been very successful. Better theoretical models of SNeIa are needed to
understand the nature of this intrinsic scatter, which will ultimately help to reduce measured
uncertainties in cosmological parameters (Diemer et al. 2013).

DWD binary mergers are also thought to produce R Coronae Borealis (RCB) stars
(Webbink 1984), although again the exact mechanism is not well understood. Extremely
hydrogen deficient with an overabundance of carbon and nitrogen, these enigmatic objects
have attracted the attention of astronomers since their discovery over 200 years ago (Clayton
1996). Efforts by our group (Staff et al. 2012) are underway to reproduce with hydrodynamic
simulations the unusual abundances and isotopic ratios of these stars.

Our desire is to employ computational fluid techniques to model, in a self-consistent
manner and to a high degree of accuracy, mass-transfer in a wide variety of interacting binary
star systems over hundreds, if not thousands, of orbits. Such a capability would allow us
not only to better understand the behavior of binaries that are dynamically unstable toward
merger or tidal disruption of the donor, but also to examine how spin-orbit coupling – for
example, the exchange of angular momentum between the donor star and a disk surrounding
the accretor – facilitates dynamical stability and leads to long phases of quasi-steady mass
transfer. With such a tool we could simulate how slow accretion can bring an initially sub-
Chandrasekhar-mass accretor to the brink of critical collapse; how a transition from sub- to
super-Eddington accretion rates affects common-envelope development and evolution; and
the steady-state structure of mass-transferring AM CVn type binaries.

Examples of our group’s efforts, to date, include the code introduced in Motl et al.
(2002), which conserves angular momentum, ∆Jz/Jz, to ≈ 10−4 per orbit, and successfully
evolved DWD binaries through over 5 orbits. Modifications to that code presented in D’Souza
et al. (2006) include a corrected handling of the pressure gradients that accounts for gradients
in the fluid’s specific entropy, which slightly improved the angular momentum conservation
to ∆Jz/Jz ≈ 5×10−5 per orbit, allowing the code to evolve a binary for over 30 orbits. This
research has been continued by Motl et al. (2007), Even & Tohline (2009), and Marcello &
Tohline (2012). The work presented in this dissertation builds on this group experience and
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offers a new numerical technique for simulating astrophysical fluid flows at even higher levels
of precision.

In simulating interacting binary systems numerically, a faithful representation of the flow
can be achieved only if the grid resolution is sufficiently high across a range of dynamically
interesting flow regions. These regions can vary in structure as well as in identity over time,
so the grid needs to adapt accordingly. For example, even when only considering double
degenerate binaries, the smallest length scales (surface layers of both stars, scale height of
the disk, and fluid flow through the L1 Lagrange point) can be tiny compared to the binary
separation. At the other extreme, an envelope consisting of an optically thick atmosphere
engulfing both stars can develop shortly after accretion begins, quickly filling the original
computational domain. This “common envelope” structure may expand to a size many
times larger than the binary separation. Adaptive mesh refinement (AMR) techniques can
be called upon to provide an appropriately high degree of spatial resolution in various, as
well as in time-varying, regions of the flow. Astrophysical simulation codes that employ
AMR include FLASH (Fryxell et al. 2000), ZEUS (Hayes et al. 2006), PLUTO (Mignone
et al. 2007), and Scorpio, recently developed by Marcello et al. (2014, in preparation). AMR
techniques can be straightforwardly implemented on a Cartesian mesh but are quite difficult
to employ across curvilinear grids.

On the other hand, advection schemes implemented on Cartesian meshes are most nat-
urally designed to conserve linear momentum, rather than angular momentum. Because
binary evolutions can be faithfully followed through hundreds of orbits only if the simulation
conserves angular momentum to a high degree of accuracy, in the past we have chosen to
use a cylindrical computational grid, which more naturally facilitates conservation of orbital
angular momentum. However, even a cylindrical grid does not match the symmetry of each
individual binary component. And in the absence of a mesh refinement capability we have
not had the full freedom to distribute resolution where it is needed.

Alternative curvilinear meshes designed to address some of these shortcomings have
been used in previous disk and torus simulations. For example, Zink et al. (2008) discuss
a multi-patch technique meant for spherically symmetric or axisymmetric simulations, and
Fragile et al. (2009) introduce a “patched-sphere” mesh similar to the multi-patch technique.
But, as with a cylindrical coordinate grid, such schemes do not easily accommodate mesh
refinement techniques. Ultimately, Zink et al. (2008) say that Cartesian mesh-refinement
is likely better suited for problems like binary mergers. Historically, therefore, it has been
difficult to achieve both high – and adaptive – spatial resolution while at the same time
achieving a high degree of angular momentum conservation. The hybrid advection scheme
designed by Call et al. (2010) and implemented here, allows us to have our cake and eat
it, too. It facilitates conservation of angular momentum to machine accuracy on a refined
Cartesian mesh. Other Cartesian AMR codes have not demonstrated an ability to conserve
angular momentum to the degree we believe necessary for simulating binary orbits. Hawley
et al. (2012) perform zero impact parameter white dwarf collisions in FLASH. The lack of
published simulations of binary orbits despite the recent evidence of DWD SNeIa progenitors
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may indicate that existing Cartesian AMR astrophysics codes lack the ability to perform such
simulations.

1.2 Overview of this Work

In this dissertation we demonstrate the utility of the hybrid scheme by focusing on a
quantitative analysis of nonaxisymmetric, dynamical instabilities that arise spontaneously in
Papaloizou-Pringle tori (Papaloizou & Pringle 1984), hereafter referred to as PP tori. Each
PP torus is a non-self-gravitating, differentially rotating, geometrically thick, axisymmetric
disk in orbit about a central point mass. Its internal structure is defined by a balance be-
tween gas pressure gradients and gradients in the effective potential. The vertical thickness
of the disk/torus relative to its radial extent is determined by the choice of the polytropic
index for the gas and an initial angular momentum distribution. (See §2 for details.) These
configurations are suitable for demonstrating the capabilities of our hybrid scheme because:
They each have a simple analytically definable initial state; while each initial state is ax-
isymmetric, the system is unstable to the development of nonaxisymmetric structure, hence,
its evolution has a fully three-dimensional character; the eigenvector of the most unstable
mode for each chosen initial configuration, while not known analytically, should be well de-
fined and its measured properties – for example, its complex eigenfrequency – should be
reproducible and independent of the specific numerical scheme that is used to perform the
dynamical simulation. At the same time, the PP torus provides a good test for hydro codes
such as ours because of the challenges it provides. A Cartesian mesh is not ideally suited for
the initially axisymmetric torus problem, and thus gives the hybrid scheme an opportunity
to prove its worth, for example, by partially overcoming the spurious m = 4 modes that are
excited by the structure of an underlying Cartesian grid.

Each of our simulations is carried out on a rotating and refined Cartesian grid. The
hydrodynamic code we are using (see §§2.2-2.3) has AMR capabilities, but for simplicity we
have chosen not to activate the AMR feature. Instead, for each simulation the volume of
the grid that is occupied by the initial torus is resolved using a time-invariant, fixed level of
refinement (LOR). The effect of grid resolution is assessed by repeating individual simulations
several times, using a different (fixed) number of refinement levels. (Typically, we employ 4,
5, or 6 LOR.) In addition, for each initial state and for each specified LOR, the dynamical
evolution is carried out using two separate advection schemes: (1) A traditional “Cartesian”
scheme in which the x, y, and z components of the linear momentum are advected across
the refined Cartesian grid; and (2) our new “hybrid” scheme in which radial momentum and
angular momentum – instead of the x and y components of the momentum – are advected
across the refined Cartesian grid. In total, results from 23 simulations are reported here.

For each simulation, the real and imaginary components of the complex eigenfrequency
of the fastest growing unstable mode are measured and, as appropriate, compared with
previously published results from the nonlinear hydrodynamic simulations performed on a

4



uniformly zoned cylindrical mesh by Woodward, Tohline, & Hachisu (1994) and from the
linear stability analysis presented by Kojima (1986).

In an effort to eliminate any subjective bias that might be introduced into the measure-
ment of these eigenfrequencies and, at the same time, to facilitate future efforts to reproduce
our results, we introduce a mathematically prescriptive method for quantifying both the
value of and uncertainty in each eigenfrequency measurement. In doing this we are able to
meaningfully assess the performance of our new hybrid advection scheme, relative to the
performance of the traditional Cartesian advection scheme. We show that qualitative con-
vergence is achieved with the hybrid scheme at the same, or sometimes at significantly lower,
grid resolutions.

At the same time, we show that the hybrid scheme allows conservation of the system’s
total angular momentum to machine accuracy. As explained above, this is a highly desirable
feature that is not possible to achieve using a familiar Cartesian advection scheme. This is
perhaps the most significant attribute of our hybrid scheme. Historically, the expectation has
been that angular momentum conservation can be achieved when modeling an astrophysical
disk or binary system only if one adopts a coordinate grid – for example, cylindrical or
spherical coordinates – whose underlying basis vectors accommodate the curvilinear features
of the flow. Our hybrid scheme facilitates conservation of angular momentum on a Cartesian
grid.

The hydrocode that has been used to carry out the primary set of simulations reported
in this dissertation employs OpenMP to enable multiple execution threads within a single,
multi-core compute node. All of the models in our primary set of simulations – totaling
22 in number and using up to 6 LOR – fit within a single node of our high-performance
computing system. In §3 of this dissertation we present results from one simulation that was
conducted on a rotating Cartesian grid with 7 LOR. This single simulation was run using
Octopus, a closely aligned hydrocode built on top of High Performance ParalleX (HPX), a
newly emerging parallel runtime system.
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2 Methods

2.1 Initial Models

As has already been stated, the initial axisymmetric equilibrium models used in this
study were all geometrically thick (uniform specific angular momentum) massless tori with
structures as derived by Papaloizou & Pringle (1984). There have been a number of published
studies of the nonaxisymmetric stability of these massless tori. Some of these are linear
stability analyses (Papaloizou & Pringle 1984; Kojima 1986; Frank & Robertson 1988),
while others are nonlinear hydrodynamics simulations, either in two dimensions (Hawley
1987, 1990), or in full three dimensions (Zurek & Benz 1986; Hawley 1990; Woodward et al.
1994). Our initial models have been chosen to provide a direct comparison with the linear
stability analysis of Kojima (1986) and the nonlinear hydrodynamic results of Woodward,
Tohline, & Hachisu (1994, hereafter WTH).

We generated the same sequence of seven initial models used by WTH, as detailed here
in Table 2.1; Figure 2.1 displays the cross-sectional surface of each. The models in this
sequence vary in the ratio of the inner radius R− to the outer radius R+.

Following PP, we assume a polytropic equation of state for the fluid,

p(ρ) = Kρ1+ 1
n , (2-1)

where, n is the polytropic index and K is the polytropic constant, and we impose a power-law
rotation profile given by,

Ω(R) = Ω0

(
R0

R

)q
, (2-2)

where Ω0 = Ω(R0) is the angular velocity in the equatorial plane at the radius of pressure
maximum, R0. Throughout this section we assume n = 3 and q = 2 (uniform specific angular
momentum). As PP have shown, a solution of the hydrostatic balance equation,

−1

ρ
∇p−∇Φeff = 0, (2-3)

where,

Φeff ≡ −
GMpt

(R2 + Z2)1/2
+

1

2
Ω2

0(R)R2, (2-4)

yields the following axisymmetric equilibrium density distribution:

ρA(R,Z) =

(
GMpt

4K

)3 [
1

(R2 + Z2)1/2
− R−
R2(1 +R−/R+)

− 1

(R+ −R−)

]3

, (2-5)

where, Mpt is the specified mass of the central point mass. In our simulations, we normalize
all lengths to the outer edge of the torus, such that R+ = 1.0, and vary R−. (For illustration
purposes, Figure 2.1 is handled differently.) The mass Mpt is chosen such that ρmax =
ρA(R0, 0) = 1.0.
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Fig. 2.1.— Meridional-plane cross sections of the seven different axisymmetric equilibrium
disks evolved in this dissertation, listed in Table 2.1. Each disk has a n = 3 polytropic index
and a uniform specific angular momentum (q = 2). Lengths have been normalized to the
radius of pressure maximum, R0.

Before each model was introduced into the hydrocode, the initial axisymmetric density
distribution was perturbed by a single-mode “kick”,

ρ(R,Z, θ) = ρA(R,Z)[1 + a cos(mkickθ)],

where, mkick is the specific azimuthal mode that we choose to excite, and a = 10−2. No
velocity perturbation was introduced.

2.2 Hydrodynamics Code

The perturbed models are evolved on a rotating Cartesian grid using Scorpio (Marcello
et al. 2014, in preparation) with modifications as detailed here. Following the description
provided in that work, the code’s mesh structure is a refined oct-tree of sub-grids as also
introduced by MacNeice et al. (2000) in PARAMESH. Each sub-grid is composed of an
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8× 8× 8 three-dimensional mesh. Each node contains its own sub-grid and up to eight child
sub-grids. Child sub-grids have one-half the grid spacing (twice the spatial resolution) of
their parents. The code adheres to “proper nesting,” which requires that there be no more
than one jump in refinement level across a sub-grid boundary.

We use the piecewise parabolic (PPM) reconstruction scheme of Colella & Woodward
(1984), the semi-discrete central scheme described in Kurganov & Tadmor (2000), and the
explicit 3rd order Runge Kutta integrator of Shu & Osher (1988). We enforce a polytropic
equation of state that is evolved with the same polytropic index, n = 3, that was used to
construct the initial models, and a mass density floor of 10−10ρmax. Since the PP torus
is massless, we evolve the system in a time-independent gravitational potential given by a
central object of mass Mpt.

This work presents simulations run at different resolutions. Because we use an octree-
based grid, it is convenient to speak in terms of the number of levels of refinement of the
coarsest 8 × 8 × 8 grid. Each additional level of refinement doubles the resolution in the
most refined region. A simulation run at “N” LOR has a maximally refined grid spacing
∆x = (xmax − xmin)/(8 · 2N), where xmax and xmin are the maximum and minimum extents
of the simulation domain, respectively. For the purposes of this study, we use a fixed mesh
refinement based on the geometry of the torus, rather than an adaptive mesh. As illus-
trated in Figure 2.2, the grid is fully refined throughout the volume occupied by the initially
axisymmetric torus.

Table 2.2 gives three different numbers for each model at each LOR in an effort to fully
reveal the grid properties. For each model, the top row repeats the ratio of the inner radius
to the outer radius, R−/R+, shown in Table 2.1; a measure of the slenderness of the torus.
The next three rows give three different numbers for 4 LOR: the number (in millions) of
fully-refined (smallest grid spacing) zones, the number of fully-refined (leaf) subgrids (each
containing 8 × 8 × 8 zones), and the ratio of the radius at pressure maximum to the finest
grid spacing, R0/∆x. The next six rows give the same set of numbers for 5 and 6 LOR.
The first two numbers are related by a factor of 83 = 512, so Table 2.2 gives two potential

Table 2.1. Torus Geometries

Model R−
R+

R0

R+

R−
R0

1 0.1 0.1818 0.55
2 0.2 0.3333 0.60
3 0.3 0.4615 0.65
4 0.4 0.5714 0.70
5 0.5 0.6666 0.75
6 0.6 0.7500 0.80
7 0.7 0.8235 0.85
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Fig. 2.2.— A comparison of the mesh structure of a R−/R+ = 0.7 torus simulation taken
from three different resolutions. From left to right are 4, 5, and 6 LOR. All simulations
run using Cartesian momentum advection. 4 LOR simulation shown at t = 1.5torb, 5 LOR
simulation shown at t = 2.0torb, and 6 LOR simulation shown at t = 2.8torb.

metrics for quantifying how well a torus is resolved. The first is simply the total number
of fully-refined zones inside of the torus, which decreases with increasing R−/R+; while the
ratio R0/∆x increases with R−/R+. These two metrics seem to contradict each other. The
first (number of fully-refined zones) suggests that at any given LOR, a fatter (lower R−/R+)
torus is better resolved, while the second (R0/∆x) would indicate that a skinnier (higher
R−/R+) torus is better resolved. This illustrates that comparing resolution between different
models is not straightforward.

It seems clear that determining whether or not the resolution used to simulate a par-
ticular model is sufficient must be done on a model-by-model basis. Hawley et al. (2013)
distinguish between true numerical convergence and “qualitative” convergence. In our hy-
drodynamic simulations, we do not expect to be able to achieve true numerical convergence,
characterized by errors in the solution approaching zero. Rather, we strive to achieve qual-
itative convergence, a condition that is obtained when physically important macroscopic
quantities do not change by a significant amount with an increase in resolution. However,
one must be cautious when using this criterion, as the lack of change from one resolution
to another may only be an indication that neither resolution is resolving some important
physical process. In the case of our rather idealized toroidal models, the physically relevant
dynamic processes that determine the eigenvectors of unstable modes should be resolved
sufficiently well that this will not be a problem.

2.3 Description of Hybrid Angular Momentum Conservation Scheme

We evolve the following two coupled equations,

∂

∂t
ρ+∇ · ρu = 0, (2-6)
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and
∂

∂t
(ρv) +∇ · (ρvu) = −∇p− ρ∇Φ, (2-7)

where ρ is the mass density, p is the gas pressure, and both v and u are the same fluid
velocity (that is, u = v), and Φ is the gravitational potential generated by a central point
mass, Mpt, specifically,

Φ = − GMpt

(x2 + y2 + z2)1/2
. (2-8)

Following Call et al. (2010), we have the freedom to choose different coordinate bases
for each of the velocity terms, u and v, that appear in the dyadic tensor product vu in
the nonlinear advection term of equation (2-7). Our hybrid scheme, which combines the
advantages of a Cartesian mesh (e.g., easily refinable) with the advantage of angular mo-
mentum conservation offered by a cylindrical coordinate representation, employs a Cartesian
base for the transport velocity, u, and a cylindrical-coordinate base for the velocity vector,
v, associated with the momentum. In our hybrid scheme we furthermore choose to advect
components of the momentum as viewed from the inertial frame through a Cartesian grid
that is rotating with angular velocity Ω0. See the Appendix for a more detailed description.
More specifically, in our simulations that are carried out using the hybrid scheme, the chosen
components of the momentum density are the radial momentum density,

sR ≡
ρ

R
(xux + yuy) =

ρ

R

(
xu′x + yu′y

)
, (2-9)

Table 2.2. Resolution

LOR R−/R+ 0.1 0.2 0.3 0.4 0.5 0.6 0.7

zones (×106) · · · · · · 0.303 · · · · · · · · · 0.106
4 subgrids · · · · · · 592 · · · · · · · · · 208

R0/∆x · · · · · · 19.23 · · · · · · · · · 34.31

zones (×106) 2.43 2.07 1.64 1.38 0.987 0.844 0.668
5 subgrids 4,744 4,040 3,208 2,696 1,928 1,648 1,304

R0/∆x 15.15 27.78 38.46 47.62 55.56 62.50 68.63

zones (×106) · · · · · · 10.73 · · · · · · · · · 3.232
6 subgrids · · · · · · 20,952 · · · · · · · · · 6,312

R0/∆x · · · · · · 78.22 · · · · · · · · · 139.58

zones (×106) · · · · · · · · · · · · · · · · · · 19.31
7 subgrids · · · · · · · · · · · · · · · · · · 37,712

R0/∆x · · · · · · · · · · · · · · · · · · 279.16

Note. — Information is shown only for simulations performed here.
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the z component of the inertial-frame angular momentum density,

`z ≡ ρ (xuy − yux) = ρ
(
xu′y − yu′x

)
+ ρΩ0R

2, (2-10)

and the vertical momentum density,

sz ≡ ρuz = ρu′z, (2-11)

where ux, uy, and uz are the x, y, and z components of the fluid velocity as viewed from
the inertial frame, respectively; u′x, u

′
y, and u′z are the components of the fluid velocity in

the frame rotating with angular velocity Ω0. In our simulations that are carried out using a
traditional Cartesian advection scheme, we advect inertial frame Cartesian momentum, that
is, we advect the x, y, and z components of the momentum density, defined as sx ≡ ρux,
sy ≡ ρuy and sz ≡ ρuz.

When rewriting equation (2-7) in individual components, we choose between two sets
of momentum equations:

∂

∂t
sx +∇ · sxu′ = − ∂

∂x
p− ρ ∂

∂x
Φ + syΩ0, (2-12)

∂

∂t
sy +∇ · syu′ = − ∂

∂y
p− ρ ∂

∂y
Φ− sxΩ0, (2-13)

∂

∂t
sz +∇ · szu′ = − ∂

∂z
p− ρ ∂

∂z
Φ, (2-14)

when we choose to advect Cartesian momentum; and

∂

∂t
sR +∇ · sRu′ = − 1

R

(
x
∂

∂x
+ y

∂

∂y

)
p− ρ

R

(
x
∂

∂x
+ y

∂

∂y

)
Φ +

`2
z

ρR3
, (2-15)

∂

∂t
`z +∇ · `zu′ =

(
y
∂

∂x
− x ∂

∂y

)
p+ ρ

(
y
∂

∂x
− x ∂

∂y

)
Φ. (2-16)

∂

∂t
sz +∇ · szu′ = − ∂

∂z
p− ρ ∂

∂z
Φ, (2-17)

when we choose to use the hybrid scheme, where again u′ is the velocity expressed in a
Cartesian coordinate frame that is rotating with constant angular frequency, Ω0, about the
z-axis.

It is important to note exactly what quantities are being reconstructed at the cell faces,
as this can affect the results of the simulation, as discussed for example in Norman et al.
(1980). The momentum density quantities (sx, sy, sz, sr) are divided by the mass density
before reconstruction. Those reconstructed quantities are then multiplied by the recon-
structed mass density. The rotating frame tangential velocity that is required to determine
the components of the transport velocity, u′, are extracted from the inertial frame angular
momentum, `z, by first dividing `z by ρR, then subtracting the velocity of the frame, Ω0R.
This reconstructed quantity is then converted back to `z by reversing the process, now using
the reconstructed mass density.
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2.4 Postprocessing

We want to quantify small deviations from the initial axisymmetric density distribution,
which can be described by,

δρ

ρ
= f(R,Z)e−i[ωt−mθ], (2-18)

where, m is the azimuthal mode number and ω is a complex frequency. In order to do this,
we describe the mass density in the system in terms of a discrete Fourier series,

ρ(J, L,K, t) =
1

2
c0(J,K, t) +

Lmax∑
m=1

cm(J,K, t) cos

[
m

2πL

Lmax

+ φm(J,K, t)

]
, (2-19)

where J is the radial index, K is the vertical index, and L is the azimuthal index. For each
Z we use a two-dimensional bivariate spline technique to interpolate mass density values
from the Cartesian grid (x, y) to a polar coordinate grid (R, θ). We then employ a Fourier
transform to determine the coefficient of the discrete Fourier series as follows:

am(J,K) =
2

π

Lmax∑
L=1

ρ(J, L,K) cos(mLδθ)δθ,

bm(J,K) =
2

π

Lmax∑
L=1

ρ(J, L,K) sin(mLδθ)δθ,

cm(J,K) = [am(J,K)2 + bm(J,K)2]1/2,

φm(J,K) = arctan[−bm(J,K)/am(J,K)],

Dm ≡ cm∑Lmax

i=0 ci
.

After running each simulation and plotting the time variation of Dm and φm for various
modes, the components of the complex frequency ω for a dynamically growing eigenmode of
the system can be written as,

Re(ω) =
dφm
dt

,

Im(ω) =
d ln cm
dt

.

In order to compare with Kojima (1986), we use the quantities,

y1 ≡ [Re(ω)/Ω0 −m] =

[
1

Ω0

dφm
dt
−m

]
, (2-20)

and

y2 ≡ Im(ω)/Ω0 =

[
1

Ω0

d ln cm
dt

]
, (2-21)
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to describe the properties of the unstable modes. When plotting lnDm vs time (a “Dm− t”
diagram, as shown, for example, in Figure 2.3a), where t is normalized to torb ≡ 2π/Ω0,
the value of y2 is the slope of the line divided by 2π. Similarly, y1 is straightforwardly
obtained when plotting φm versus time (a “φm − t” diagram, Figure 2.3b) by taking the
period measured from the graph, dividing by 2π, and then subtracting m. Note that φm
must be plotted in the inertial frame. Here we usually will present results only at the radius of
pressure maximum, R0, and in the equatorial plane. In order to gain a better understanding
of the structure of these fluctuations at different radii, however, we can perform the same
Fourier transform at many different radii along the equatorial plane. We can then obtain
a more complete picture of the structure of the unstable eigenvector by plotting, for one
particular point in time, the amplitude of a single Fourier mode as a function of radius (a
“Dm − r” diagram, Figure 2.3c), and the phase angle of a single Fourier mode as a function
of radius (a “φm − r” diagram, Figure 2.3d).

2.5 Quantifying Results

We have devised a formulaic method for quantifying both the growth rate and the quality
of the measurement. The idea is that an analysis of simulations that display long, relatively
quiet periods of exponential growth should produce much smaller error bars than the analysis
of simulations that display only short, noisy segments of exponential growth. A formulaic
method of this type minimizes human judgment and helps ensure that the measurements
are reproducible.

As is illustrated in Figures 2.4a and 2.5a we begin the analysis by generating a Dm − t
plot from the results of each simulation. (A full suite of Dm − t plots from our 5 LOR
evolutions is shown in Figure 3.1.) This plotted Dm − t curve contains 100 individual data
points for each orbit. Starting at t = torb/8, with a window of width torb/4 centered on
that time, a linear regression is used to determine the slope, S. This window is moved
continuously across the Dm− t plot to generate a set of data, S(t), as shown in Figures 2.4b
and 2.5b.

The relatively flat portion of the Figure 2.4b S(t) curve – bounded by the two vertical
solid lines at tstart = 1.7 torb and tend = 3.76 torb – corresponds to the period of relatively
clean exponential growth in the Figure 2.4a Dm − t plot. In order to determine the best
portion of the simulation over which to measure a slope of the Dm− t graph, that is, in order
to determine the best time boundaries, tstart and tend, we first define the error bar size as,

δy2 =

√√√√ 1
iend−istart

iend∑
i=istart

(Si − S̄)2

tend − tstart

, (2-22)

where istart and iend are the starting and ending points of the selected section respectively,
and Si is the value of S(t) at each time ti. Every allowable combination of istart and iend is
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Fig. 2.3.— Data from the Cartesian advection simulation of Model 3 (R−/R+ = 0.3) is
used to demonstrate four diagnostic diagrams, providing a direct comparison to Figure 2
in Woodward et al. (1994). (a) A “Dm − t” diagram showing the Fourier amplitude of
modes m = 1, 2, 3, 4 at the radius of pressure maximum in the equatorial plane. (b) A
“φm − t” diagram showing the phase angle of the m = 1 mode, again at the radius of
pressure maximum in the equatorial plane. (c) A “Dm− r” diagram showing the amplitude
of the m = 1 mode as a function of radius in the equatorial plane at time t = 2.5 torb. (d)
A “φm − r” diagram showing the azimuthal location of the density maximum (m = 1) as a
function of radius in the equatorial plane at time t = 2.5 torb.
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Fig. 2.4.— Data from a simulation of Model 3 (R−/R+ = 0.3) using the hybrid scheme and
5 LOR. (a) Shows a Dm−t plot, with vertical lines marking the starting and ending points of
the region used to determine S̄; the portion of the curve used to measure this slope is shown
in bold. A dashed line with a slope equal to the S̄ is also shown. (b) Shows the windowed
slope measurement, S(t), with vertical lines marking the starting and ending points of the
region used to measure S̄. The horizontal dashed line identifies the measured slope.
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Fig. 2.5.— Same as Figure 2.4, but from a simulation of Model 7 (R−/R+ = 0.7) using the
Cartesian momentum advection scheme and 5 LOR.

considered (as long as tend − tstart ≥ 1.0 torb), and the best time boundaries are defined by
the interval which generates the smallest error bar, δy2 |min. We then define the measured

16



slope to be the mean of S(t) in the selected region,

2πy2 = S̄ =
1

iend − istart

iend∑
i=istart

Si. (2-23)

The magnitude of δy2|min is not meaningful by itself, but it can be used to compare the
relative quality between two separately measured slopes.

Figures 2.4 and 2.5 show examples of Dm − t plots (top) with their corresponding
S(t) plots (bottom). The dashed lines shown in both the Dm − t and S(t) plots represent
the measured slope, S̄, for the relevant model simulation. Figure 2.4 shows data from a
simulation that generated a relatively small δy2|min. In contrast, Figure 2.5 shows data
that generated a larger δy2|min. Notice that, when compared to Figure 2.4, the region of
exponential growth is shorter and S(t) is much less constant in the selected region identified
in Figure 2.5.

Additionally, we sought to measure the y1 parameter in a way that minimized human
interaction. The portion of the φm− t graph that corresponds with the region selected above
(tstart to tend) was fitted to a line using a least-squares method. The slope of this line is used
to compute y1, and the residuals of this fit are then used to compute δy1 .
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3 Results

3.1 Uniform Specific Angular Momentum Tori

Figure 3.1 shows Dm − t plots resulting from 14 separate simulations, all run at 5
LOR, with the selected linear portion of the plot in bold, and a dashed line representing
the linear fit. Table 3.1 contains a separate row of data corresponding to each of these 14
simulations. Column 1 identifies the initial model configuration as specified in Table 2.1,
column 2 identifies the azimuthal mode perturbation that we introduced at the start of
each run, and column 3 indicates whether the simulation was carried out using a standard
Cartesian (C) advection scheme or our new hybrid (H) scheme. The measured slope, S̄,
associated value of y2, and error bar, δy2|min, corresponding to the Figure 3.1 plots are
tabulated in columns 4, 5, and 6, respectively, of Table 3.1. From the φm − t plot of each
simulation (not shown), we measured dφ/dt, y1, and δy1 and recorded the results in columns
7, 8, and 9, respectively, of Table 3.1.

When we apply the post-processing algorithm to the results of our simulations, we
see a good match with both the results of Kojima and WTH, although error bars were
not provided in either of these earlier works. In Figures 3.2 and 3.3 we plot, respectively,

Table 3.1. Torus Mode Characteristics (5 LOR)

Model mkick Schemea S̄ y2 δy2
dφ
dt

y1 δy1
(1) (2) (3) (4) (5) (6) (7) (8) (9)

1 1 C 0.760 0.121 0.007 2.294 0.365 0.0006
1 1 H 0.752 0.120 0.009 2.103 0.335 0.0005
2 1 C 0.792 0.126 0.005 1.885 0.300 0.0002
2 1 H 0.780 0.124 0.005 1.834 0.292 0.0004
3 1 C 1.031 0.164 0.006 1.578 0.251 0.0004
3 1 H 0.994 0.158 0.005 1.579 0.251 0.0003
4 1 C 1.047 0.167 0.008 1.064 0.169 0.0005
4 1 H 1.064 0.169 0.011 1.064 0.169 0.0002
5 2 C 1.253 0.199 0.020 1.251 0.199 0.0017
5 2 H 1.093 0.174 0.016 1.256 0.200 0.0027
6 2 C 1.313 0.209 0.027 0.594 0.095 0.0011
6 2 H 1.320 0.210 0.011 0.792 0.126 0.0007
7 3 C 1.220 0.194 0.037 0.468 0.074 0.0017
7 3 H 1.208 0.192 0.014 0.553 0.088 0.0005

aH denotes hybrid advection scheme, C denotes Cartesian momentum
advection.
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Fig. 3.1.— A series of Dm − t plots from every initial model listed in Table 2.1 labeled with
either “H” or “C” for simulations using the hybrid scheme or the Cartesian momentum ad-
vection scheme, respectively, followed by the model number. All simulations were performed
using 5 LOR. In each case the portion of the plot used to measure S̄ is highlighted in bold,
and a dashed line with the measured slope is also plotted.

the imaginary (y2) and real (y1) components of the eigenfrequency as determined from our
simulations, from WTH, and from the linear analysis of Kojima. The three dashed curves
connect discreet points from the Kojima linear analysis. Because the modes are completely
uncoupled in his simulations, Kojima is able to measure growth rates for all modes over
most of the range of R+/R− that we are interested in. Results from WTH are marked by
solid diamonds. Our current results, shown as symbols with error bars, represent the m = 1
growth rate for the four fattest tori (the points marked by red boxes), the m = 2 growth
rate for the next 2 models (points marked by green circles), and the m = 3 growth rate for
the slimmest torus (points marked by blue triangles). Results from simulations performed
with the traditional Cartesian advection scheme are indicated by open symbols while results
using our hybrid scheme are indicated by filled symbols. For each model these symbols
are separated horizontally on the graph purely for visibility; both runs were started from
identical initial states.

While comparison to Kojima’s results provides a good sanity check for our results, they
do not really provide an ideal solution to our problem. Kojima’s linear analysis problem has
different boundary conditions than the nonlinear simulations performed here and by WTH.
Kojima assumes that the surface of the torus remains fixed in space, whereas the hydrocodes
allow the torus surface to distort. In the linear analysis, the individual modes do not couple,
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Fig. 3.2.— Comparison of the imaginary component (y2) of the eigenfrequency of various
unstable modes between this work and Woodward et al. (1994) and Kojima (1986). The
red, green, and blue dashed curves connect discreet points from Kojima’s linear analysis
for m = 1, 2, and 3 respectively. The points marked with red boxes, green circles, and
blue triangles show values measured in this work for m = 1, 2, and 3 respectively; open
symbols represent the Cartesian momentum advection scheme and filled symbols represent
the hybrid scheme. Red and green diamonds represent m = 1 and 2 results published in
WTH, respectively. Our measured growth rates show good agreement with both previous
studies. As described in the text, error bars on data points from this work represent the
relative quality of measurements.

whereas in the nonlinear hydrocode they do. Thus we do not expect that our results will
converge to Kojima’s, no matter how much resolution we use.

In addition to the information displayed in Figure 3.2 highlighting the fastest growing
modes, we observe in all simulations an unphysical development of m = 4 distortions. This
is undoubtedly due to the 4-fold symmetry of the underlying Cartesian grid. As is illustrated
more fully below, in all simulations the time-evolutionary development of m = 4 distortions is
strongly resolution dependent. The simulations using the hybrid scheme show less unphysical
m = 4 growth than do the simulations advecting Cartesian momentum.

Figure 3.4 shows the global conservation of angular momentum for a R−/R+ = 0.7
torus at 3 different LOR. These curves show the difference between the initial total angu-
lar momentum, L0, and the angular momentum, L, at time t, divided by the initial total
angular momentum. The red, green, and blue dashed curves show data from the Cartesian
momentum advection scheme at 5, 4, and 3 LOR respectively; the red, green, and blue solid
curves show data from the hybrid scheme at 5, 4, and 3 LOR respectively. The simulations
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Fig. 3.3.— As in Figure 3.2, but showing the real component (y1) of the eigenfrequency of
various unstable modes. Our measured frequencies show good agreement with both previous
studies.

run with the hybrid scheme (solid curves) show non-conservation at levels ∆L/L0 . 10−13

due only to machine truncation error. The hybrid scheme simulation at 3 LOR (solid blue
curve) seems to display better conservation than the 4 and 5 LOR simulations (overlapping
solid green and red curves), however this is only because the 3 LOR simulation takes far
fewer timesteps than the higher resolution simulations and thus accumulates less error due
to truncation. The simulations run with the Cartesian momentum advection scheme display
resolution dependent global angular momentum conservation, at levels of ∆L/L0 ≈ 10−5,
10−4, and 10−3, for 5, 4, and 3 LOR, respectively.

Figures 3.5 - 3.10 present data from two initial models, each evolved in 6 separate
simulations (2 schemes × 3 LORs). Figures 3.5 - 3.7 present data from Model 3 (R−/R+ =
0.3); Figures 3.8 - 3.10 present data from Model 7 (R−/R+ = 0.7). In Figures 3.5 and 3.8,
each of the six panels shows the Dm − t plot for the fastest growing unstable mode (either
m = 1 or m = 3, solid curves) and for m = 4 (dashed curves) from that initial model evolved
in a separate simulation. The plots shown in the left column were produced from simulations
evolved with the hybrid scheme; plots in the right column were produced from simulations
evolved advecting Cartesian momentum. Figures 3.6 and 3.9 show the same data, but each
frame combines all three LOR and separates the plots of the two modes (m = 1 and m = 4
for Figure 3.6, m = 3 and m = 4 for Figure 3.9). Figures 3.7 and 3.10 combine the hybrid
scheme and Cartesian plots while separating out the different LOR.

In Figure 3.5 we see that all six evolutions show virtually identical behavior of the
growth of the m = 1 mode with time. Hence the measured growth rate is quite independent
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Fig. 3.4.— The accumulated change in Model 7’s total angular momentum (L − L0), mea-
sured relative to its initial value, L0, is shown as a function of time, t/torb, for 6 different sim-
ulations – 3 different levels of refinement and using Cartesian momentum advection (dashed
curves) or the hybrid scheme (solid curves). In the case of both schemes, the red, green, and
blue curves show data from simulations conducted with 5, 4, and 3 LOR respectively. When
using the Cartesian momentum advection scheme, the level of angular momentum conser-
vation shows clear resolution dependence. The hybrid scheme conserves angular momentum
at a level set by machine truncation error.

of the chosen advection scheme or selected LOR. However, from Figure 3.5 we can also
see that the time-dependent behavior of the amplitude of the m = 4 distortion seems to be
strongly resolution dependent. As stated earlier, this likely reflects the 4-fold symmetry of the
Cartesian grid structure. In Figure 3.6 the two upper panels (m = 1) show more clearly that
results from both the hybrid scheme and Cartesian scheme are nearly identical, with the lower
resolution simulations displaying only slightly noisier Dm−t plots. The lower two panels show
how the amplitude of m = 4 fluctuations decreases dramatically with increasing resolution.
We can see from the left column of Figure 3.7, showing m = 1, the difference between the
Cartesian and hybrid scheme plots differs less with increasing resolution, suggesting that
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Fig. 3.5.— Data from Model 3 (R−/R+ = 0.3) simulations. Each of the six panels shows
the Dm− t plot for m = 1 (solid curve) and m = 4 (dashed curve) obtained from, as labeled,
either the hybrid scheme or the Cartesian advection scheme for 4, 5, or 6 LOR. While the
time-dependent growth of the unstable m = 1 mode is very similar in all cases, the amplitude
of m = 4 appears to be strongly resolution dependent, reflecting the 4-fold symmetry of the
Cartesian grid structure.
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Fig. 3.6.— The same information as shown in Figure 3.5, but grouped differently. Each
frame shows all three levels of refinement for either m = 1 (top row) or m = 4 (bottom row),
using either the hybrid scheme (left column) or Cartesian momentum advection scheme (right
column). The two upper panels (m = 1) show that both the hybrid and Cartesian seem to
converge, as the lower resolution simulations display noisier Dm − t plots. The lower two
panels show how the amplitude of m = 4 fluctuations decreases dramatically with increasing
grid resolution.
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Fig. 3.7.— The same information as shown in Figure 3.5, but grouped differently. Each frame
compares hybrid (solid curve) to Cartesian (dashed curve) momentum advection schemes, for
either m = 1 (left column) or m = 4 (right column), and at 4, 5, and 6 levels of refinement
(bottom, middle, and top rows, respectively). The left column (m = 1) illustrates how
the difference between the Cartesian and hybrid scheme plots differs less with increasing
resolution, suggesting that they are both converging to the same answer. The right column
(m = 4) shows that, at each specified resolution, the hybrid scheme generally produces
slightly lower amplitude m = 4 distortions than the Cartesian advection scheme.
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they are both converging to the same answer. In the right column, showing m = 4, we see
that at each resolution the hybrid scheme has slightly lower amplitude.

In contrast to the previous set of figures, Figures 3.8-3.10 (the slimmest torus evolutions)
show a dramatic difference between the hybrid scheme and Cartesian momentum advection
scheme. In Figure 3.8, the differences are quite apparent not only between the left and right
columns (hybrid scheme and Cartesian, respectively) but also between each row (different
LOR). This is a model in which the most rapidly growing mode should be m = 3, but
development of unphysical m = 4 distortions can dominate. Note that for the hybrid scheme,
m = 4 dominates only at 4 LOR. For the Cartesian, m = 4 dominates at 4 and 5 LOR,
and is only matched by m = 3 at 6 LOR. The increasing amplitude of the m = 3 mode
compared to the m = 4 mode with resolution is indicative that a dominant m = 3 is the
true character of the most unstable eigenmode for this model. This is also consistent with
the relative amplitudes measured by Kojima (1986), as shown in Figure 3.2. Focusing on
the top row of Figure 3.9, we see that the m = 3 mode amplitude tracks the amplitude of
the next higher level of resolution until a certain point where it turns off (for hybrid 4 LOR,
Cartesian 4 and 5 LOR). Looking below to the m = 4 plots, we can see that these turn-off
points correspond to a time where the m = 4 amplitude has risen to lnD4 ≈ −3. Apparently,
once a mode reaches this amplitude, the modes are no longer sufficiently decoupled, and the
m = 3 cannot continue to grow exponentially at the rate predicted by simulations that do
not allow different modes to couple. We also observe that the amplitude of the m = 4
mode decreases with increasing resolution. In Figure 3.10 we again see dramatic differences
between the hybrid scheme and Cartesian momentum scheme, especially in m = 4.

For the R−/R+ = 0.7 model, simulations that relied on Cartesian momentum advection
failed to achieve qualitative convergence even at 6 LOR. So, in order to show that both
schemes (the Cartesian momentum advection and the hybrid scheme) ultimately converge
to the same answer, the model was re-run advecting Cartesian momentum at 7 LOR. This is
impossible using the OpenMP version of the code, so the simulation was run using Octopus,
which employs computational fluid algorithms identical to those used in Scorpio, but built
within the HPX parallel programming framework1. The Octopus code exposes a greater
degree of parallelism than the OpenMP code, making the simulation practical. Octopus
parallelizes the invocation of various “kernels” to every subgrid in the octree-based grid
structure. In contrast, the OpenMP code only parallelizes local loops inside these kernels
while the invocation of the kernels is done serially. For example, in Octopus, the computation
of fluxes for all subgrids is done in parallel; in the OpenMP code, the computation of the
fluxes contained within each subgrid are computed in parallel, but only one subgrid’s fluxes
are computed at a time.

The Dm − t plots presented in Figure 3.11 show the development of the m = 3 mode
from seven separate simulations of Model 7 (R−/R+ = 0.7). Combining the top two panels of
Figure 3.9, three different resolutions, 4, 5, and 6 LOR, are shown for both the hybrid scheme

1http://stellar.cct.lsu.edu/
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Fig. 3.8.— Data from Model 7 (R−/R+ = 0.7) simulations. Each of the six panels shows
the Dm− t plot for m = 3 (solid curve) and m = 4 (dashed curve) obtained from, as labeled,
either the hybrid scheme or the Cartesian advection scheme for 4, 5, or 6 LOR.
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Fig. 3.9.— The same information as shown in Figure 3.8, but grouped differently. Each
frame shows all three levels of refinement for either m = 3 (top row) or m = 4 (bottom row),
using either the hybrid scheme (left column) or Cartesian momentum advection scheme (right
column).
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Fig. 3.10.— The same information as shown in Figure 3.8, but grouped differently. Each
frame compares hybrid (solid curve) to Cartesian (dashed curve) momentum advection
schemes, for either m = 3 (left column) or m = 4 (right column), and at 4, 5, and 6
levels of refinement (bottom, middle, and top rows, respectively).
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Fig. 3.11.— Dm − t plots showing the development of the m = 3 mode from seven different
simulations of Model 7 (R−/R+ = 0.7). The hybrid scheme simulations (solid curves) show
qualitative convergence at 5 LOR, while the Cartesian momentum advection scheme (dashed
curves) does not converge until 7 LOR, requiring a factor of ∼ 30 more computational zones.

and the Cartesian momentum advection; additionally, 7 LOR is shown for the Cartesian sim-
ulation (red dashed curve). While the 4, 5, and 6 LOR curves for the Cartesian simulations
don’t agree with the results of the converged hybrid scheme curves (at 5 and 6 LOR), the
7 LOR Cartesian does lie almost directly on top of those curves. This demonstrates that
both schemes do ultimately converge to the same answer, but that, in this case, the hybrid
scheme achieves qualitative convergence a full 2 levels of refinement sooner, and with a factor
of ∼ 30 fewer fine zones. Figure 3.12 shows the behavior of the m = 4 distortion for the same
set of simulations. We see that the amplitude of the m = 4 fluctuation is strongly resolution
dependent and, furthermore, that the hybrid scheme demonstrates much lower levels of the
unphysical m = 4 distortion than the Cartesian advection scheme.

Figure 3.13 illustrates what the nonlinear amplitude structure of these modes looks like
physically. These equatorial (z = 0) plane mass density plots drawn from the Cartesian
momentum advection simulations confirm what the Figure 3.11 and 3.12 Dm − t plots tell
us about the relative amplitudes of the m = 3 mode and the m = 4 distortion. Specifically,
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Fig. 3.12.— Dm − t plots showing the development of the m = 4 distortion in Model 7
(R−/R+ = 0.7). At each specified LOR, the hybrid scheme (solid curves) shows much lower
levels of development of this unphysical distortion than the Cartesian advection scheme
(dashed curves).

at 4 and 5 LOR, the m = 4 distortion is clearly dominant. At 6 LOR, the m = 3 mode and
m = 4 distortion are approximately the same amplitude, and the mass density distribution
shows this. At 7 LOR, the mass density distribution shows a dominant m = 3 mode.

3.2 Near-Keplerian Disk Simulation

As an additional test of the method, we simulated a disk with a near-Keplerian rotation
profile. As with the constant specific angular momentum tori, we assume a polytropic
equation of state (equation 2-1) and n = 3. Instead of q = 2, we use q = 1.52 to determine
the rotation profile in equation (2-2). Figure 3.14 shows the meridional-plane cross section of
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Fig. 3.13.— Mass density plots from the Cartesian momentum advection simulations of the
Model 7 (R−/R+ = 0.7) torus, showing the progression from m = 4 dominated evolutions
at lower resolutions to m = 3 dominated evolutions at the highest resolution. Each slice
shows the mass density in the z = 0 plane, and is labeled with the number of LOR used in
the simulation. Data for 4, 5, 6, and 7 LOR are taken from t = 1.8torb, 2.1torb, 3.0torb, and
2.5torb respectively.
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the disk (dashed blue curve) compared to the thickest (Model 7, solid red curve) and thinnest
(Model 1, dashed green line) uniform specific angular momentum tori described in §2.1. We
selected a ratio R−/R+ = 0.1 and a rotational profile index q = 1.52 to generate a disk with
a height approximately equal to that of the Model 7 torus and a width approximately equal
to that of the Model 1 torus. The initial axisymmetric density distribution is given by,

ρ =

[
H

4K

]3

, (3-1)

where,

H =
GMpt√
R2 + Z2

−Ψ(R) + C, (3-2)

and,

C = −GMpt

R0

(
1 +

1

2(1− q)

)
, (3-3)

and,

Ψ(R) = − 1

2(1− q)

[
GMpt

R0

(
R

R0

)2(1−q)
]
, (3-4)

and finally,

R0 =

[
R

2(1−q)
− −R2(1−q)

+

−2(1− q)(1/R− − 1/R+)

] 1
3−2q

. (3-5)

This simulation was performed with Octopus using the hybrid scheme. It was run on
256 Intel Sandy Bridge processors on SuperMike II, and took approximately 89 hours to
complete. The simulation used a grid rotating at the same rate as the disk at pressure
maximum, Ω0 = Ω(R0). The simulation ran for 9.87torb, where torb = 2π/Ω0. During the
time it took for the fluid at R0 to complete 9.87 orbits, the fluid at the inner edge of the disk
completed approximately 30 orbits, and the fluid at the outer edge of the disk completed
approximately 0.92 orbits.

Dm− t plots for the disk evolution (Figure 3.15) show that the m = 4 distortion begins
at a much higher level than the other modes. By the end of the simulation, the other modes
had risen to approximately the same level as the m = 4 distortion. None of the modes seem
to have entered any period of exponential growth, although the m = 4 distortion did display
a brief segment of exponential change in amplitude.

Figures 3.16 and 3.17 present the φm − t plots for the disk evolution in the lab and
the rotating frames, respectively. The lack of a clean saw-tooth shape in any of the plots
points to a lack of global organization. The m = 4 plot in Figure 3.17 shows that the m = 4
disturbance moves very little in relation to the computational grid.

Lastly, Figure 3.18 presents φm − r plots for all four modes (m = 1, 2, 3 and 4), taken
from the end of the simulation (t = 9.87torb). The lack of any distinctive shape in these plots
shows that there is no global organization in any of the modes.
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Fig. 3.14.— Meridional-plane cross sections of the q = 1.52 near-Keplerian disk (dashed blue
curve) and the Model 1 and Model 7 q = 2 uniform specific angular momentum tori (red
solid curve and green dashed curve, respectively). Lengths are normalized to the radius of
the outer edge, R+.
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Fig. 3.16.— φm − t plots for the near-Keplerian disk evolution, taken from the radius
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Fig. 3.18.— φm − r plots for the near-Keplerian disk evolution, taken from the equatorial
plane at time t = 9.87torb. The inner and outer edges of the disk are marked by solid lines
and the radius of pressure maximum, R0 ≈ 0.209R+, is marked by a dashed line. None of
the four modes show any global organization.36



4 Conclusion

4.1 This Work

Our ultimate goal is to model in as realistic a manner as possible the dynamical evolution
of mass-transferring binary systems. This can only be accomplished if the hydrodynamic
code that is used to perform each simulation conserves angular momentum extremely well.
We also need to have the flexibility of AMR to adequately resolve spatial features across
many orders of magnitude in length scales simultaneously. The hybrid scheme described
here allows us to conserve angular momentum to high accuracy on a refined Cartesian mesh,
facilitating the use of AMR.

Our hybrid scheme is an implementation of the theoretical formulation developed by
Call et al. (2010), which shows that we have the freedom to choose different coordinate bases
for the transport velocity relative to the grid and the advected momentum quantities. In
the past, these chosen basis sets typically have been the same – resulting in the advection
of Cartesian momentum components on a Cartesian mesh, or cylindrical momentum com-
ponents on a cylindrical mesh. In the hybrid scheme implemented here, we have chosen to
advect cylindrical momentum components across a rotating Cartesian mesh. This allows us
to conserve angular momentum to machine precision while capitalizing on the advantages of
a Cartesian mesh, such as mesh refinement.

In order to test this method, we followed the development of nonaxisymmetric insta-
bilities in massless PP tori having n = 3 and q = 2 (uniform specific angular momentum).
This is a well-defined, fully three-dimensional problem with a reproducible solution. We
evolved seven different initial tori with aspect ratios ranging from R−/R+ = 0.1 to 0.7. We
chose to evolve two particular models, R−/R+ = 0.3 and 0.7, using several different grid
resolutions. We compared our results to the linear stability analysis of Kojima (1986) and
to the nonlinear hydrodynamics results of Woodward et al. (1994). Our code achieved good
agreement with results from these previous studies.

We also introduced a prescriptive method for measuring the real and imaginary parts of
the eigenfrequency of unstable modes, attaching an uncertainty to those measurements. This
was done in an effort to increase transparency, reduce the influence of human judgment, and
facilitate the reproducibility of these simulations. Through this work we have illustrated
the utility of the PP tori as a new test problem, to be added to the standard suite of
hydrodynamic test problems, that provides a means for measuring the ability of a particular
code to correctly transport and conserve angular momentum.

A comparison of the resolution dependence of the hybrid scheme compared to the Carte-
sian momentum advection scheme shows that the hybrid scheme achieves qualitative conver-
gence at grid resolutions that are equal to or lower than the Cartesian scheme. Specifically,
we observe that in the R−/R+ = 0.7 torus, the hybrid scheme achieves qualitative conver-
gence at only 5 LOR, whereas the Cartesian advection scheme required 7 LOR to achieve
the same convergence – requiring a factor of ∼ 30 more computation zones. The hybrid
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scheme also reduces the level of unphysical m = 4 distortions that characteristically appear
in simulations involving angular motion across a Cartesian grid.

Here we have demonstrated the utility of the hybrid scheme, which is only one very
specific implementation of the formalism presented by Call et al. (2010), which can be applied
in a fully relativistic generalized coordinate system.

4.2 Future Goals

We strive to eventually achieve the ability to simulate binary systems with enough accu-
racy to make meaningful comparisons to observations. In order to do this, these simulations
must be as realistic as possible. Much work has been done by groups worldwide to incor-
porate important physics (i.e. gravity, magnetohydrodynamics, realistic equations of state,
radiation transfer, nuclear burning) into current codes. However, the more critical problem is
the inability of current codes to simultaneously resolve all of the important time and length
scales. Lack of computational resources is not an issue – we have very large computers –
but current algorithms are unable to utilize them efficiently. Scaling is the problem – past
a certain point, using more computational resources will not speed up a simulation. As we
move forward into the future, supercomputers will continue to become larger, increasing the
gap between the maximum available computational power and the amount of this power we
are able to effectively utilize.

Supercomputers are not only becoming larger, but more heterogeneous as well. At-
taching accelerators, either graphics-processing units (GPUs) or the new Intel Xeon Phi
coprocessor is becoming more common. For example, China’s Tianhe-2 supercomputer (#1
on the TOP500 as of November 2013) has three Xeon Phi coprocessors attached to each com-
pute node. Current algorithms not only scale poorly, but can’t utilize coprocessors without
complicated application-specific code.

We have to turn our algorithms “upside-down” – this is what Octopus has done in
order to take advantage of HPX’s message-driven computational model. HPX naturally
utilizes the inhomogeneous nature of today’s supercomputers and easily handles the load
balancing problem inherent in AMR algorithms. HPX will eventually provide the ability to
scale up to millions of computing cores, enabling us to perform astrophysics simulations of
unprecedented size.

Our hybrid scheme provides the ability to conserve angular momentum on a refined
Cartesian mesh to the degree needed by a astrophysics code to perform binary orbits. We
believe the combination of our hybrid scheme, Cartesian AMR, and HPX – implemented in
Octopus and demonstrated here – can be the key to more fully utilizing the computational
resources available today and enabling transformative astrophysics simulations. If combined
with the physics already implemented by other groups, such a tool would bring the goal of
simulating binary systems with enough physical realism to compare to observational data
closer than ever before.
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Appendix: Momentum Equation Formulation
This appendix is meant to more completely explain the origin of the momentum equa-

tions used in this work, and their place in the larger context of astrophysical hydrodynamics
codes. The theoretical justification for the equations we use comes from Call, Tohline, &
Lehner (2010), which describes a generalized version of the hybrid advection scheme used
in this work, expanded to general relativity and to any curvilinear coordinate system. The
equations used in this work differ from those typically seen in the community because they
exploit two key advantages of the formalism described by Call, Tohline, & Lehner (2010):

• We are allowed to advect inertial-frame quantities on a rotating grid.

• We are allowed to choose different coordinate bases for the advected momentum quan-
tities and for the grid on which we choose to advect these quantities.

Specifically, in the hybrid scheme as implemented here, we choose to advect cylindrical
momentum quantities (that is, radial momentum, angular momentum, and z-direction mo-
mentum) measured in the inertial frame on a Cartesian mesh rotating with a fixed angular
velocity. Below we will show how this simplifies and in certain cases eliminates the source
terms from individual components of the momentum equation.

A.1 Statements of Conservation

We typically encounter hyperbolic PDEs of the following form:

d

dt
Ψ + Ψ∇ · u = S, (A1)

where u is the velocity of the fluid as viewed from an inertial frame of reference, and the
total time derivative is the Lagrangian derivative, following an individual fluid element as
it moves through space. When the source term S is zero, then Ψ represents the volume
density of a conserved quantity. Mass density, ρ, for example, is a conserved quantity, and
the continuity equation does in fact have the form:

d

dt
ρ+ ρ∇ · u = 0. (A2)

We should then expect that in the case of an axisymmetric distribution of fluid moving
in an axisymmetric potential, when the azimuthal component of the angular momentum is
conserved, that we will encounter an equation of the form,

d

dt
(ρRuϕ) + (ρRuϕ)∇ · u = 0, (A3)

where R is the cylindrical radius, and uϕ = Rϕ̇ is the azimuthal component of the inertial
velocity field u.
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A.2 Rotating Frame of Reference

In order to reduce the motion of the fluid through the computational grid (thereby
reducing the effects of numerical diffusion and artificial viscosity), we often wish to view the
fluid from a rotating reference frame. Mathematically, we will accomplish this by changing
the velocity in the divergence term to account for the frame velocity field, that is, we will
replace u with,

u′ = u− uframe. (A4)

If the velocity field, uframe, is divergence-free, then the transformation is trivial. For a frame
rotating with angular velocity Ω0,

uframe = RΩ0êϕ, (A5)

and, utilizing cylindrical coordinates,

∇ · uframe =
∂

∂R
(0) +

1

R

∂

∂ϕ
(RΩ0) +

∂

∂z
(0) = 0. (A6)

Hence,
d

dt
Ψ + Ψ∇ · u′ = d

dt
Ψ + Ψ∇ · [u− uframe] =

d

dt
Ψ + Ψ∇ · u (A7)

so the new hyperbolic PDE becomes,

d

dt
Ψ + Ψ∇ · u′ = S, (A8)

and we are confident that this new PDE represents the physics of the system as well as the
original PDE.

A.3 Eulerian Representation

In order to follow the time-rate of change of a quantity with respect to a point in space
fixed with respect to the chosen frame of reference, we must use the following transformation
from the Lagrangian to the Eulerian representation:

d

dt
Ψ→ ∂

∂t
Ψ + u′ · ∇Ψ. (A9)

We can then rewrite the hyperbolic PDE as,

∂

∂t
Ψ + u′ · ∇Ψ + Ψ∇ · u′ = S (A10)

or, more succinctly,
∂

∂t
Ψ +∇ · (Ψu′) = S. (A11)
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We can recover the inertial-frame version of the equation simply by setting Ω0 = 0, which is
equivalent to setting u′ = u,

∂

∂t
Ψ +∇ · (Ψu) = S. (A12)

While the underlying physics is identical, a distinction must be made regarding how the
two equations are interpreted. Equation (A12) represents the time-rate of change of Ψ at a
fixed point in inertial space, while equation (A11) provides the time-rate of change of Ψ at a
fixed point in the rotating coordinate frame. Notice that this is totally independent of what
quantity, Ψ, we choose to advect.

A.4 Angular Momentum Conservation

When the three vector components of the Euler equation of motion are projected onto
a non-rotating cylindrical coordinate grid, the azimuthal component may be written as,

d

dt
(ρRuϕ) + (ρRuϕ)∇ · u = − ∂

∂ϕ
p− ρ ∂

∂ϕ
Φ. (A13)

For this equation, the source term is,

S = − ∂

∂ϕ
p− ρ ∂

∂ϕ
Φ, (A14)

and Ψ = (ρRuϕ) is the inertial-frame angular momentum density with respect to the z-
coordinate axis. This corresponds to “Case B (η = 3)” in Call, Tohline, & Lehner (2010).
Angular momentum will be conserved locally if the source term, S = 0. This will happen if
the azimuthal derivative of the gravitational potential and the azimuthal derivative in the
pressure are both zero, or if these two terms balance one another (i.e., ∂p/∂ϕ = −ρ∂Φ/∂ϕ).
Based on the discussion above, it is perfectly valid to view the flow from a rotating frame of
reference, in which case the equation is simply,

d

dt
(ρRuϕ) + (ρRuϕ)∇ · u′ = − ∂

∂ϕ
p− ρ ∂

∂ϕ
Φ. (A15)

We can also rewrite these two equations in their Eulerian form,

∂

∂t
(ρRuϕ) +∇ · [(ρRuϕ)u] = S, (A16)

and, when we want to follow the fluid on the rotating coordinate grid,

∂

∂t
(ρRuϕ) +∇ · [(ρRuϕ)u′] = S. (A17)

When comparing equations (A16) and (A17), notice that the conserved quantity is the same
– the z-component of the angular momentum measured in the inertial frame. The only
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difference in the two equations is the “transport” velocity (u for the nonrotating frame, u′

for the rotating reference frame).
Equation (A17) is different from the more familiar formulation, where the angular mo-

mentum density as well as the transport velocity is measured with respect to the rotating
frame, i.e., where the angular momentum density is expressed in terms of the azimuthal
component of the transport velocity, u′ϕ. But, as a consequence, the source term in the more
familiar formulation is more complicated. We can derive the more familiar formulation from
equation (A17) by recognizing that,

uϕ = u′ϕ +RΩ0. (A18)

So we can write,

∂

∂t
[ρR(u′ϕ +RΩ0)] +∇ · {[ρR(u′ϕ +RΩ0)]u′} = Sϕi, (A19)

where, as shorthand, we have used,

Sϕi ≡ −
∂

∂ϕ
p− ρ ∂

∂ϕ
Φ. (A20)

This implies,

∂

∂t
(ρRu′ϕ) +∇ · [(ρRu′ϕ)u′] = Sϕi −

∂

∂t
[ρR(RΩ0)]−∇ · {[ρR(RΩ0)]u′} (A21)

= Sϕi −R2Ω0

{
∂

∂t
ρ+∇ · (ρu′)

}
− ρu′ · ∇(R2Ω0)(A22)

= Sϕi − 2ρRu′RΩ0, (A23)

where the last step is accomplished by making use of the continuity relation, ∂ρ/∂t + ∇ ·
(ρu′) = 0. Notice that all velocities now refer to u′, the velocity as measured in the rotating
frame, which is the more familiar formulation. The appearance of a Coriolis term is the
result of choosing to measure angular momentum in the rotating frame rather than in the
inertial frame. This corresponds to “Case B (η = 3′)” in Call, Tohline, & Lehner (2010). In
our hybrid scheme we have chosen to use equation (A17) instead of (A23) primarily because
equation (A17) presents a simpler source term.

A.5 Summary of Equations

The z-component of the momentum will always be advected with the following equation,

∂

∂t
sz +∇ · (szu) = − ∂

∂z
p− ρ ∂

∂z
Φ, (A24)

where,

Φ = − GMpt

(R2 + Z2)1/2
. (A25)
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For momentum quantities in the plane normal to the z-axis, the equations will depend
on the coordinate bases chosen to describe the advected quantities and whether the quantities
are measured in the rotating frame or inertial frame.

A.5.1 Non-rotating frame

When we advect Cartesian momentum components, we will evolve the following equa-
tions,

∂

∂t
sx +∇ · (sxu) = − ∂

∂x
p− ρ ∂

∂x
Φ, (A26)

∂

∂t
sy +∇ · (syu) = − ∂

∂y
p− ρ ∂

∂y
Φ. (A27)

When we advect cylindrical momentum components, we evolve,

∂

∂t
sR +∇ · (sRu) = − ∂

∂R
p− ρ ∂

∂R
Φ +

`2
z

ρR3
, (A28)

∂

∂t
`z +∇ · (`zu) = − ∂

∂ϕ
p− ρ ∂

∂ϕ
Φ. (A29)

Notice that in the Cartesian equations, A26 and A27, there are no source terms other
than pressure and gravity. The `2

z/ρR
3 term in equation A28 comes from the transformation

from the Lagrangian form of the equation to the Eulerian form in cylindrical coordinates.
This corresponds to Case B, η = 2, 3 from Table 2 in Call, Tohline, & Lehner (2010).

A.5.2 Rotating Frame, Rotating Frame Quantities

This is the more familiar formalism for hydrodynamics codes that use a rotating frame
of reference. Advecting momentum quantities in a frame rotating with constant Ω = Ω0,
where the momentum quantities are measured with respect to the rotating frame. These
equations are found in Norman & Wilson (1978) and New & Tohline (1997), and correspond
to Case C, η = 2, 3′ from Table 2 in Call, Tohline, & Lehner (2010).

In terms of Cartesian momentum components and derivatives,

∂

∂t
s′x +∇ · (s′xu′) = − ∂

∂x
p− ρ ∂

∂x
Φ + 2Ω0s

′
y + ρΩ2

0x, (A30)

∂

∂t
s′y +∇ · (s′yu′) = − ∂

∂y
p− ρ ∂

∂y
Φ− 2Ω0s

′
x + ρΩ2

0y. (A31)

Rewritten in terms of cylindrical momentum components and derivatives,

∂

∂t
sR +∇ · (sRu′) = − ∂

∂R
p− ρ ∂

∂R
Φ +

`
′2
z

ρR3
+ ρΩ2

0R +
2Ω0`

′
z

R
, (A32)

∂

∂t
`′z +∇ · (`′zu′) = − ∂

∂ϕ
p− ρ ∂

∂ϕ
Φ− 2Ω0RsR, (A33)
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where u′ = u− uframe, uframe = êϕ(RΩ0), and `′z = `z − ρR2Ω0.

A.5.3 Rotating Frame, Inertial Frame Quantities

When advecting inertial frame quantities on a rotating grid, we see that the source terms
are simplified from the previous case (advecting rotating frame quantities on a rotating grid).
These correspond to Case C, η = 2, 3 from Table 2 in Call, Tohline, & Lehner (2010).

In terms of Cartesian momentum components and derivatives,

∂

∂t
sx +∇ · (sxu′) = − ∂

∂x
p− ρ ∂

∂x
Φ + Ω0sy, (A34)

∂

∂t
sy +∇ · (syu′) = − ∂

∂y
p− ρ ∂

∂y
Φ− Ω0sx. (A35)

Notice that the source terms in equations A34 and A35 are 1/2 of the more familiar Coriolis
source terms. This source term is a consequence of the fact that the coordinate bases that the
momenta are measured in change in time compared to the bases that define the coordinate
grid. Rewritten in terms of cylindrical momentum components and derivatives,

∂

∂t
sR +∇ · (sRu′) = − ∂

∂R
p− ρ ∂

∂R
Φ +

`2
z

ρR3
, (A36)

∂

∂t
`z +∇ · (`zu′) = − ∂

∂ϕ
p− ρ ∂

∂ϕ
Φ. (A37)

We also choose to rewrite the previous two equations in terms of Cartesian derivatives,
since in practice the code looks at these differences on a Cartesian grid,

∂

∂t
sR +∇ · (sRu′) = − 1

R

(
x
∂

∂x
+ y

∂

∂y

)
p− ρ

R

(
x
∂

∂x
+ y

∂

∂y

)
Φ +

`2
z

ρR3
, (A38)

∂

∂t
`z +∇ · (`zu′) =

(
y
∂

∂x
− x ∂

∂y

)
p+ ρ

(
y
∂

∂x
− x ∂

∂y

)
Φ. (A39)

In this work, we use equations A34 and A35 when performing simulations advecting
Cartesian momentum, and equations A38 and A39 when performing simulations advecting
cylindrical momentum.
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