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Abstract

In this dissertation I will probe the innate uncertainty of quantum mechanics. After

deriving the necessary tools I will takle Popper’s experiment, a long misunderstood

thought experiment with recent experimental results. I will then discuss how un-

certainty changes when making measurements from different relativistic reference

frames and resolve some on the tension between quantum mechanics and relativ-

ity. Finally I utilize the practical aspect of quantum uncertainty and describe a

practical quantum key distribuition scheme.

v



Chapter 1
Introduction

1.1 General Introduction

The quantum world is fraught with uncertainty. This uncertainty is fundamental to

the workings of our universe. In the classical world uncertainty simply comes from

a lack of knowledge and if you measure a thing precisely enough then everything

can be known about it. In the quantum world there are things that just cannot be

known no matter how precise your measurement is. A fundamental understanding

of this innate and unavoidable uncertainty is crucial to understanding the physics

that govern our universe. Quantum uncertainty is strange and frustrating but is

ultimately a key that unlocks many mysteries. In this journey to understand quan-

tum uncertainty and use it for practical purposes I will delve into three problems

that are solved with uncertainty.

I will start with a review the concepts necessary to understand the three exam-

ples I am presenting in this dissertation. I will begin with quantum mechanics. I

will then move on to two fundamental demonstrations of quantum mechanics that

will be indispensable to further discussions; diffraction and the thought experi-

ment by Einstein, A; B Podolsky and N Rosen. After a short review of relativity

I will explain the three systems in which quantum uncertainty play a major role.

The first system discussed in chapter 2 involves uncertainty and entanglement in

the long misunderstood thought experiment of Karl Popper. I then, in chapter 3,

discuss uncertainty, entanglement and relativity and resolve some tension between

those concepts. Finally in chapter 4 the innate uncertainty in quantum mechanics

is used constructively to detect an eavesdropper.
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1.2 Quantum Mechanics

In the late 19th and early 20th century there were some mysteries that appeared in

which physical theory up to that time could not explain. One of these mysteries was

the photoelectric effect. If a electromagnetic source shines on metal surface then

electrons can be freed. However this only happens above a threshold frequency.

Below that threshold frequency, no matter the intensity of the source, electrons

are not produced. Einstein published a paper in 1905 [1] about the photoelectric

effect in which he states that light exists as discrete particles with discrete energy.

He states:

According to the assumption considered here, in the propagation of a

light ray emitted from a point source, the energy is not distributed

continuously over ever-increasing volumes of space, but consists of a

finite number of energy quanta localized at points of space that move

without dividing, and can be absorbed or generated only as complete

units.

This model postulated by Einstein has a source of electromagnetic radiation

emitting not a wave, but discrete photons with fixed direction and energy. Then

to observe the photoelectric effect these quanta of light would need to have an

energy greater than the energy needed to dislodge an electron from the metal. This

explains why a beam of great intensity but low frequency generates no electrons.

It also explains why when the frequency of the photons from the electromagnetic

source increases then the average energy of the freed electrons also increases. The

problem with these explanations is that they are at odds with the traditional

Maxwellian idea of radiation and infinite divisibility. It would seem that light

behaves as discrete quantized particles in the case of the photoelectric effect. We
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find later that photons have a both wave like and particle like behavior. We will

pick up this thread again in section 1.2.4, but for now more theoretical background

on the fundamentals of quantum mechanics.

1.2.1 Shrödinger’s Equation

It was shown by De Broglie in [2] that even massive particles, such as electrons,

have a wavelength. Shrödinger reasoned that if particles behave as waves then

they should be able to be described by a wave equation which when solved should

accurately describe a quantum system. He derived this wave equation which we

now call Shrödinger’s equation [3]. Much of quantum mechanics comes down to

solving his equation. It is shown below in it’s common differential form.

i~
∂Ψ(x, t)

∂t
= − ~2

2m

∂2Ψ(x, t)

∂2x
+ VΨ(x, t) (1.1)

Where Ψ(x, t) is called the time dependent wave function, m is mass, t is the

time, x is the position and V is the potential. Eqn. (1.1) is the time dependent

Shrödinger equation, but if Ψ can be separated into spatial and time components,

Ψ(x, t) = ψ(x)φ(t), then we can write down the time independent Shrödinger

equation as:

Eψ(x) = − ~2

2m

∂2ψ(x)

∂2x
+ V ψ(x) (1.2)

Where E is a separation constant related or equal to the energy. The goal for

defining a quantum mechanical system is to solve this equation.

1.2.2 Wave Functions and Plane Waves

It might be a natural question now to ask what ψ(x) is. The wave function is a

probability amplitude. If the probability amplitude is squared we get a probability

density which can tell you the likelihood of getting a certain value. Why do we need
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to square it and what does the unsquared wave function mean? Let’s ignore that

question, move on and just say that for ψ(x) the probability density ψ∗(x)ψ(x)

gives the probability of finding the particle at the position x. The probability of

finding a particle at any position −∞ < x <∞ should be unity so we also require

the wave function to be normalized
∫∞
−∞ ψ

∗(x)ψ(x) dx = 1.

The rest of this dissertation only uses one kind of particle, a photon in free space.

In free space all the infinite values of position and momentum are eigenvalues in

the Hilbert space. This can sometimes lead to trouble, so care is taken below to

fully derive all the tools necessary for the rest of the dissertation. As well as an

infinite eigenvalues, in free space there is no potential which reduces Shrödinger’s

equation to:

Eψ(x) = − 1

2m

∂2ψ(x)

∂2x
(1.3)

Where I have now set ~ = 1. A solution to Eqn. (1.3) is:

ψ(x) = eipx

Where p2 = −2mE. This is the time independent part. To get the time depen-

dent part we solve:

Eφ(t) = i
∂φ(t)

∂t

We then find the solution to the above equation φ(t) and write the complete

wave function Ψ(x, t):

φ(t) = e−iEt

Ψ(x, t) = ψ(x)φ(t) = ei(px−Et) (1.4)

4



This describes a plane wave and has everything we need to know about a particle

in free space. However, there is a problem with this wave function. It is usually

necessary for wave functions to be normalized, but the plane wave solution defies

all attempts at normalization.

∫ ∞
−∞

ψ∗(x)ψ(x)dx =∞ 6= 1

The probability density ψ∗(x)ψ(x) = 1, meaning that there is an equal proba-

bility of finding the particle anywhere −∞ < x <∞ in space. This does not mean

that the plane wave solutions are not useful though. A localized superposition of

plane waves as is found in most real circumstances and that is normalizable. An

example of such a superposition using a Gaussian function is:

ψG(x) =

(
2a2

π

) 1
4
∫ ∞
−∞

e−p
2a2eip(x−x0) dp =

(
1

2πa2

) 1
4

e−
(x−x0)

2

4a2

This represents a group of plane waves centered around position x0 with an

uncertainty in position of a. This state, unlike a lone plane wave, is normalizable

with:

∫ ∞
−∞

ψ∗G(x)ψG(x) dx =

(
1

2πa2

) 1
2
∫ ∞
−∞

e−
(x−x0)

2

2a2 dx = 1

We will use such superpositions of plane waves in chapters 2 and 3.

1.2.3 Notation and Operators

A Hilbert space is simply a set of vectors. In this space an inner product is de-

fined between two vectors that allows length and angle to be measured. The most

common example of a Hilbert space is Euclidean space consisting of all the possi-

ble three dimensional vectors and an inner product between two vectors gives the
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angle between them and a magnitude. Dirac notation gives a very clear way of

describing and manipulating Hilbert spaces. In this notation a vector in the space

is denoted by a ket, |Ψ〉. The conjugate is a bra, 〈Ψ| and a bra and a ket next to

each other is a bracket 〈Ψ|Ψ′〉 and denotes an inner product. States are constructed

out of one or more vectors in the Hilbert space. A basis is a group of vectors that

equal or can be summed to be equal to any other vector in the Hilbert space. An

orthogonal basis is basis with inner products of each element with each other are

zero. Operators, defined with a hat above them Ô, are functions that take one

state into another Ô|Ψ〉 = |Ψ′〉. An eigenstate is a state which is unchanged by an

operator except for a constant called the eigenvalue Ô|Ψ〉 = O|Ψ〉.

We are primarily interested in the one dimensional infinite Hilbert space con-

taining all position and momentum vectors |x〉 and |p〉. All states |x〉 with −∞ <

x < ∞ are eigenstates of the x̂ operator with eigenvalue x and all states |p〉 with

−∞ < p <∞ are eigenstates of the p̂ operator with eigenvalue p.

x̂|x〉 = x|x〉

p̂|p〉 = p|p〉

The Hamiltonian operator is the sum of the kinetic energy and potential energy

operators Ĥ = T̂ + V̂ . It has eigenvalues of total energy Ĥ|Ψ〉 = E|Ψ〉. If we look

back at the Shrödinger’s equation in Eqn. (1.2) and use T̂ = 1
2m
p̂2 we can see that

T̂ = − ~2
2m

∂2

∂x2
= 1

2m
p̂2, so we can define the momentum operator by p̂ = −i~ ∂

∂x
.

The converse is also true and we can define the position operator by x̂ = −i~ ∂
∂p

.

p̂|x〉 = −i~ ∂
∂x
|x〉

x̂|p〉 = −i~ ∂
∂p
|p〉

6



The order in how the position and momentum operators are applied matters,

x̂p̂|x〉 6= p̂x̂|x〉. This is because their commutator defined by [x̂, p̂] = x̂p̂− p̂x̂ = i is

not zero.

A wave function is a representation of a quantum state in a specific basis. The

wave function ψ(x) is the representation of |Ψ〉 in the position basis and the wave

function φ(p) is the representation of |Ψ〉 the momentum basis. In Dirac notation

they are written:

〈x|Ψ〉 = ψ(x)

〈p|Ψ〉 = φ(p)

A projector is defined by the projection operator P̂p = 1√
|ψ|2
|p〉〈p|. This will

take the wave function Ψ and project it onto the state with a momentum p. The

1√
|ψ|2

term is there for normalization. The integral of all the possible projectors,∫∞
−∞ |p〉〈p|dp = 1, is one. We can use the projector to transfer between the x and

p representation by projecting onto all possible momentum or position states.

〈x|Ψ〉 =

∫ ∞
−∞

dx〈p|x〉〈x|Ψ〉 =

∫ ∞
−∞

dxe+ixp〈x|Ψ〉

=

∫ ∞
−∞

dxe+ixpψ(x) (1.5)

〈p|Ψ〉 =

∫ ∞
−∞

dx〈x|p〉〈p|Ψ〉 =

∫ ∞
−∞

dpe−ixp〈p|Ψ〉

=

∫ ∞
−∞

dpe−ixpφ(x) (1.6)

Where 〈x|p〉 and 〈p|x〉 are found by solving the differential equation 〈x|p̂|x〉 =

p〈x|p〉 = −i ∂
∂x
〈x|p〉.
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〈x|p〉 = e−ixp

〈p|x〉 = e+ixp

Notice that Eqns. [1.5] and [1.5] are simply the Fourier transform of the conjugate

wave function. We can now test the orthogonality of the |x〉 and |p〉 states thusly:

〈x′|x〉 =

∫ ∞
−∞

dp〈x′|p〉〈p|x〉 =

∫ ∞
−∞

ei(x−x
′)p dp = δ(x− x′)

〈p′|p〉 =

∫ ∞
−∞

dx〈p′|x〉〈x|p〉 =

∫ ∞
−∞

ei(p−p
′)x dx = δ(x− x′)

The average value of the position operator x̂ in Dirac notation is derived by

twice projecting onto all possible position states.

〈x̂〉 =

∫ ∞
−∞

dx′
∫ ∞
−∞

dx′′〈ψ|x′〉〈x′|x̂|x′′〉〈x′′|psi〉

=

∫ ∞
−∞

dx′
∫ ∞
−∞

dx′′〈Ψ|x′〉x′′〈x′|x′′〉〈x′′|Ψ〉

=

∫ ∞
−∞

dx′
∫ ∞
−∞

dx′′〈Ψ|x′〉x′′δ(x′ − x′′)〈x′′|Ψ〉

=

∫ ∞
−∞

dx′
∫ ∞
−∞

dx′′ψ∗(x′)x′′δ(x′ − x′′)ψ(x′′)

=

∫ ∞
−∞

ψ∗(x′)x′ψ(x′) dx′

The average value of any operator is found the same way. As an example we can

find the average position 〈x̂〉 and the square of the average position 〈x̂2〉 of the

gaussian superposition in Eqn. (1.5).

8



〈ΨG|x̂|ΨG〉 =

∫ ∞
−∞

ψ∗G(x)xψG(x) dx

=

(
1

2πa2

) 1
2
∫ ∞
−∞

xe−
(x−x0)

2

2a2 = x0 (1.7)

〈ΨG|x̂2|ΨG〉 =

∫ ∞
−∞

ψ∗G(x)x2ψG(x) dx (1.8)

=

(
1

2πa2

) 1
2
∫ ∞
−∞

x2e−
(x−x0)

2

2a2 = a2 + x2
0

Where ψG(x) = 〈x|ΨG〉.

1.2.4 Measurement

Measurement in quantum mechanics not only returns a value, but also irreversibly

affects the quantum state. When a measurement is made by a detector the quantum

state is then projected onto one of the possible states of the detector’s subspace.

This is called the wave function collapse. Before the measurement the wave function

has a probability to be in many possible states and then when a measurement

is made the wave function collapses into only one of those possible states. For

example, a position measurement is made on |Ψ〉, which could have many or infinite

possible position values, and a value of x0 is returned. The state is then projected

into state which has a definite position x0. As can be seen below the state |Ψ〉 after

a measurement that returns a position x0 transforms into the position eigenstate

|x0〉

ψ′(x) = 〈x|Ψ′〉 =
〈x|x0〉〈x0|Ψ〉√
|ψ(x0)|2

= δ(x− x0)
〈x0|Ψ〉√
|ψ(x0)|2

= δ(x− x0) = 〈x|x0〉

|Ψ′〉 = |x0〉

(1.9)
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Returning to Einstein’s quote in chapter 1.2. He wrote that fully formed photons

are emitted from a beam of light with predetermined energy and direction. However

if the source randomly emits photons in any direction this is not necessarily the

case. Imagine a source of photons surrounded by a spherical detector that will

detect the position of the photon when it passes through the sphere. When the

sphere make a position measurement it is then tempting to believe that the photon

was emitted from the source and traveled to that point on the sphere. After all, this

is what Einstein stated. This is, however, not quite true. Before the detector makes

a measurement the behavior of the photon is regulated by its wave function which

has a probability to be in many difference states. The wave function in this case

being a radial plane wave at all possible points in the sphere ψ(r) = 〈r|Ψ〉 = e−irp

where r is a completely unknown variable. When the detector makes a measurement

on the photon it collapses the wave function and projects it into the state ψ′(r)

with an average position at 〈r̂〉 = r0.

ψ′(r) = 〈r|P̂r|Ψ〉 = 〈r|r0〉〈r0|Ψ〉

= δ(r − r0)〈r0|Ψ〉 = δ(r − r0)e−ir0p

〈r̂〉 = 〈ψ′(r)|r̂|ψ′(r)〉 = 〈ψ(r)|r0〉〈r0|r̂|r0〉〈r0|ψ(r)〉

=

∫ ∞
−∞

e+irpδ(r − r0)r0δ(r − r0)e−irp dr

=

∫ ∞
−∞

r0δ
2(r − r0) dr = r0

Where I have now dropped the cumbersome normalization from the projector.

Since we should always be able to normalize the wave function at the end of the

calculations, normalization will be assumed from now on. Before the measurement

the particle was at all points r within the sphere. The photon begins as a uniform

10



sphere of probability originating from the source until a measurement is performed

on it. Only then can we say that the photon was in a particular place. So while

Einstein was right about the photons in [1] he did not have the complete picture

yet. Even if our spherical detector had a radius of light years, the wave function

that spans that entire space collapses and coalesces into a point instantly over all

that distance when a measurement is made.

Until this point in this dissertation when a measurement is made we have only

projected into a single state of the detectors subspace. This is called a Von Neu-

mann measurement, but it is not the only kind of measurement. A positive oper-

ator values measurement (POVM) is a measurement that can project the initial

state into more than one possible states of the detectors subspace. The POVM M̂

transforms the quantum state |Ψ〉 into a state |Ψ′〉 like:

〈x|Ψ′〉 = 〈x|M̂ |Ψ〉 =

∫ ∞
−∞
〈x|M̂ |x′〉〈x′|Ψ〉dx =

∫ ∞
−∞

M(x′)ψ(x′)dx′

Where M(x′) is a function that describes the subspace in which the quantum

state is being projected into. A POVM is less restrictive, and therefore often more

useful, than a Von Neumann measurement. It will be used to explain the single

slit experiment in chapter 1.3.1, popper’s experiment in chapter 2 and extensively

in chapter 3. When a Von Neumann measurement is made, complete informa-

tion about the measured state is obtained. According to Heisenberg’s uncertainty

principle this means that no information about the conjugate variable can be ob-

tained. If we perform a POVM then we can get information about both conjugate

variables, but not too much information about either.

1.2.5 Heisenberg’s Uncertainty

In 1952 Werner Heisenberg wrote [4]:
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It can be expressed in its simplest form as follows: One can never know

with perfect accuracy both of those two important factors which de-

termine the movement of one of the smallest particlesits position and

its velocity. It is impossible to determine accurately both the position

and the direction and speed of a particle at the same instant.

This is not only true about position and momentum, but about any two non-

commuting observables. I should like to make one point very clear. When we are

talking about uncertainty we are not talking about the uncertainty of a single

measurement. For if you measure one particle to be at one position then that

particle is at that position with zero uncertainty. The uncertainty of which quantum

mechanics and Heisenberg speak of is the uncertainty of multiple measurements.

If that particle were to be measured many times, the value found for position may

change and so the range of values that the position took will have an uncertainty.

If we take the example of a spherical detector around a source of photons describes

in chapter 1.2.4, a single measurement will give a point on that sphere. There is

no uncertainty involved in that measurement, but if we keep collecting data we

would find that the detections will randomly happen over the entire sphere. This is

what has uncertainty and in this case the uncertainty spans the sphere. Quantum

mechanics is a probabilistic theory and suggesting that single measurements have

uncertainties can be dangerous.

Heisenberg’s uncertainty principle can be defined in terms of the commutator of

two operators, in this case x̂ and p̂.

σ2
xσ

2
p ≥ 〈

1

2i
[x̂, p̂]〉2

12



Where σx is the standard deviation of x̂ and is defined by σ2
x = 〈x̂2〉− 〈x̂〉2. The

commutator was already found in chapter 1.2.3 to be [x̂, p̂] = i. For the x̂ and p̂

operators the uncertainty relation is:

σ2
xσ

2
p ≥

1

4
(1.10)

This tells us that when measuring position and momentum at the same time

we are not able to have completely certain information about either. It is a com-

mon misconception that the uncertainty principle is due to the so called “observer

effect”. That the measurement of one variable disturbs the conjugate variable in

such a way to make it uncertain. While this is mostly a harmless assumption it is

not quite true. The Heisenberg uncertainty relation is a fundamental relation that

hold no matter how well an observer makes a measurement and can be considered

a tenant of quantum mechanics.

As an example of using the HUP we can find the uncertainty relation of the gaus-

sian superposition from Eqn. (1.5). Using Eqns. (1.7 - 1.8) we find the uncertainty

in position σx to be:

σ2
x = 〈ΨG|x̂2|ΨG〉 − 〈ΨG|x̂|ΨG〉2

= a2 + x2
0 − x2

0 = a2

Using the HUP we can quickly calculate the momentum uncertainty σ2
p =

(
1
2a

)2
.

This is easily verified by deriving the momentum uncertainty σp from the average

values of p̂ and p̂2.
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〈ΨG|p̂|ΨG〉 = 〈ΨG|p̂|ΨG〉 =

∫ ∞
−∞

dx′
∫ ∞
−∞
〈ΨG|x′〉〈x′|p̂|x〉〈x|ΨG〉 dx

= −i
∫ ∞
−∞
〈ΨG|x〉

∂

∂x
〈x|ΨG〉 dx

= −i
∫ ∞
−∞

ψ∗G(x)
∂

∂x
ψG(x) dx

= −i
(

1

2πa2

) 1
2
∫ ∞
−∞

1

2a2
(x− x0)e−

(x−x0)
2

2a2 dx = 0

〈ΨG|p̂2|ΨG〉 = 〈ΨG|p̂|ΨG〉 = −
∫ ∞
−∞

ψ∗G(x)
∂2

∂x2
ψG(x) dx

= −
(

1

2πa2

) 1
2
∫ ∞
−∞

e−
(x−x0)

2

4a2
∂2

∂x2
e−

(x−x0)
2

24a2 dx =
1

4a2

σ2
p = 〈ΨG|p̂2|ΨG〉 − 〈ΨG|p̂|ΨG〉2 =

(
1

2a

)2

σ2
xσ

2
p = a2

(
1

2a

)2

=
1

4

1.3 Diffraction

Now that the mathematical formalism and notation of the quantum mechanics

that will be used in this dissertation is over, we will use the tools above to explore

some important examples of which complete understanding will be needed for

the following chapters. The most instructive demonstration of the uncertainty in

quantum mechanics can be performed simply be shining a laser at one or more

slits. It is amazing how such a simple experiment exposes the core of quantum

mechanics.

1.3.1 Single Slit Diffraction

When coherent laser light passes through a slit it diffracts. If you put a screen after

the slit as shown in Fig. (1.1) you will observe the diffraction pattern in Fig. (1.2).

This phenomena can be seen with ocean waves passing through a narrow opening,

so the diffraction pattern from the laser passing through the slit can be explained
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Laser

FIGURE 1.1. When a laser shines through a slit the light that makes it through is
diffracted.
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FIGURE 1.2. The diffraction pattern produced on a screen by light that has passed
through a single slit.
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by assuming the light entering the slit is a coherent wave front and the interference

pattern results from that wave interfering with itself after it passes through the

slit. However, a very interesting thing happens when the laser is turned down so

that only single photons are emitted. The diffraction pattern, after many photons

have passed, remains the same. In this situation we can no longer consider a wave

front passing through the slit. Single photons are passing through the slit one at a

time.

The diffraction pattern can be explained by thinking of the slit as a position

measurement on the incoming photon which we will model as a plane wave ψ(y) =

〈y|Ψ〉 = e−iyp. If a photon passes through the slit we know that it was within

the width of the slit. We define the slit operator to be a unit box with 〈y|Π̂|y〉 =

Π(y) = 1
d

for −d
2
≤ y ≤ d

2
. The wave function for the photon after the slit is derived

below.

φ(p) = 〈y|Π̂|Ψ〉 =

∫ ∞
−∞
〈y|Π̂|y〉〈y|Ψ〉dy

=

∫ ∞
−∞

Π(y)e−iypdy =

∫ d
2

− d
2

e−iypdy =
sin(d

2
p)

p

|φ(p)|2 =
sin2(d

2
p)

p2
(1.11)

Which is exactly the intensity distribution in Fig. (1.2). Measuring the position

of the photon at the slit changed how certain we can be of the photons momentum

represented on the screen as the diffraction pattern. This is Heisenberg’s uncer-

tainty principle at work. The uncertainty in momentum from Eqn. (1.11) is σp = 1
d

and the uncertainty in position comes from the width of the slit σy = d
2
. This gives

the same uncertainty principle σ2
xσ

2
p = 1

4
as in Eqn. (1.10).
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Slit Width = d

Slit Spacing = w

Laser

FIGURE 1.3. When a laser shines through a double slit the light that makes it through
is diffracted.
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FIGURE 1.4. The diffraction pattern produced on a screen by light that has passed
through a double slit.
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1.3.2 Double Slit

The double slit experiment represented in Fig. (1.3) is treated much the same way.

The interference pattern shown in Fig. (1.4) resulting from the spacing of the slits

w and the slit width d can also be explained by assuming a wave front. Again the

same diffraction pattern is observed when the source is sending only single photons

and we can derive the wave function in the same way as above. T̂ represents the

double slit operator.

φ(p) = 〈y|T̂ |Ψ〉 =

∫ ∞
−∞
〈y|T̂ |y〉〈y|Ψ〉dy

=

∫ ∞
−∞

T (y)e−iypdy =

∫ w+d
2

w−d
2

e−iypdy +

∫ −w−d
2

−w−d
2

e−iypdy

=
e−ip

w
2 sin(d

2
p) + eip

w
2 sin(d

2
p)

p

=
cos(w

2
p) sin(d

2
p)

p

|φ(p)|2 =
cos2(w

2
p) sin2(d

2
p)

p2

Which is the exact intensity distribution shown in Fig. (1.4). The same mea-

surement principles apply as the single slit experiment. A measurement of the

photons’s position meant more uncertainty of the photons momentum.

There is another interpretation of the results of the double slit experiment which

will be useful in chapter 4. The photon incident on the double slits does not go

through one slit or the other. If that were so, all that would be produced on the

screen is two diffraction patterns. If there is no knowledge of which slit the photon

passed then the probability of the photon entering each slit is the same and the

wave function does not collapse. The photon goes through both slits, or more

accurately the probability for the photon to go through either slit is the same. If
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we measure which path the photon took, through the upper or the lower slit, then

the interference pattern disappears and we are again left with just the diffraction

pattern from a single slit. In fact if we have only partial which path information

then the interference pattern will only partially go away. There is a relationship

W + V = 1 where W is a number from zero to one and represents how much path

information we have about the photon and V is the visibility of the interference

pattern. In the absence of which path information the visibility is one and then

declines smoothly to zero as the the which path information goes to one.

1.4 Entanglement and EPR

Up until now we have only been describing states of one particle. It is possible for

two or more particles to share a state. When this happens it is called entanglement.

When two particles are entangled, a measurement on one particle will collapse

the wave function and determine the state of the other particle. These particles

need not be in the same place at the time of measurement for the wave function

collapse to affect both particles. The collapse of the wave function is thought to

occur simultaneously even if the two particles are far away from each other. In

fact, a series of experiments beginning with [21] proved that the speed of wave

function collapse is orders of magnitude greater than the speed of light and can be

considered instantaneous.

1.4.1 The EPR Paradox and States

In 1935 Einstein, A; B Podolsky and N Rosen (EPR) proposed a thought experi-

ment [8] that cut to the very heart of the strangeness of quantum entanglement.

They posited that if the position of one of two spatially entangled and spatially

separated particles were measured by Alice and simultaneously Bob measured the

momentum of the other particle then, because the two particles are entangled, both
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the position and momentum of the two particles will be precisely known. This is

forbidden according to Heisenberg’s uncertainty principle. The common solution

to this paradox was given by Bell in 1964 by his famous inequality [9] which I will

briefly explain in chapter 1.4.2. Bell’s solution, however, speaks to the non-locality

of entanglement and does not directly derive the results of a possible EPR exper-

iment. I will do that now and at the same time go over some of the mathematical

fundamentals of the EPR paradox that will be used throughout this document.

An EPR state is a state involving two particles that share a common variable. In

the original EPR paper, they used position and it’s conjugate variable momentum.

The position and momentum wave functions can be represented by a the dirac

delta function.

ψ(xA, xB) = 〈xA, xB|Ψ〉 = δ(xA − xB)

φ(pA, pB) = 〈pA, pB|Ψ〉 = δ(pA + pB)

Where xA, pA, xB, pB are the positions and momentums of the photons that are

measured at Alice and Bob’s detectors. The wave functions can also be defined in

terms of their conjugate variables which takes the form of a Fourier transform.

ψ(xA, xB) =

∫ ∞
−∞

∫ ∞
−∞

δ(pA + pB)ei(xApA+xBpB)dpAdpB = δ(xA − xB)

φ(pA, pB) =

∫ ∞
−∞

∫ ∞
−∞

δ(xA − xB)ei(xApA+xBpB)dxAdxB = δ(pA + pB)

When Alice measures the position of one of the particles, she projects the wave

function into her position eigenstate, |XA〉.
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ψA(xA, xB) = 〈xA, xB|xA = XA, xB〉〈xA = XA, xB|Ψ〉

=

∫ ∞
−∞

∫ ∞
−∞

e−i((xA−XA)pAδ(pA − pB)ei(xApA+xBpB)dpAdpB

= δ(XA − xB)

Since the wave function is collapsed into a definite state position, Heisenberg’s

uncertainty principle tells us that the momentum state should be completely un-

known, but the EPR paradox suggests that we can now measure the momentum

of the second particle and therefore have both position and momentum informa-

tion for both particles. We now find the average value of the momentum at Bob’s

detector after Alice’s position measurement.

〈ΨA|p̂B|ΨA〉 = 〈ΨA|pA, pB〉〈pA, pB|p̂B|pA, pB〉〈pA, pB|ΨA〉

=

∫ ∞
−∞
F [ψA(xA, xB)]∗pF [ψA(xA, xB)]dp

=

∫ ∞
−∞

e−i(XA−xB)ppei(XA−xB)pdp

=

∫ ∞
−∞

pdp =∞

Which tells us that after many measurements the average momentum of the

second particle is completely unknown. This agrees with Heisenberg’s uncertainty

principle and disagrees with the EPR thought experiment, which is expected since

the solution to the EPR paradox is well known. As in the spherical detector example

in chapter 1.2.4 the EPR state before measurement spans the entire space between

Alice and Bob (assuming the detector has been on for a long time). Only when Alice

or Bob performs a measurement does the state collapse into a position eigenstate

at Alice’s detector or a momentum eigenstate at Bob’s detector.
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1.4.2 The Solution: Bell Inequality

I will briefly discuss Bell Inequalities since a deep understanding of them is not

necessary for understanding the rest of this dissertation.

It can be speculated that the photons coming from an EPR source have some

as yet unknown hidden variable determining what state they will collapse into.

This would avoid the notion of the wave function collapsing instantaneously over

long distances or as Einstein called it, “spooky action at a distance”[10]. In the

above discussion pains have been taken to state that the wave function collapses

only when a measurement takes place and this delayed choice affects the Alice and

Bob’s statistics. If the state is predetermined by a hidden variable then it is no

surprise that this would affect the measurement statistics. Bell uses this fact to

construct an experiment that can tell the difference between an entangled states

such as the EPR states and states predetermined by a hidden variable. If there

are hidden variables then the statistics would obey an inequality and if not we say

that state violates a Bell inequality.

1.4.3 Impossible Communication and Marginal
Distributions

Even though the collapse of the wave function effects both particles of an EPR pair

simultaneously, this does not mean that faster than light (FTL) communication

is possible. If Alice measured one particle and Bob the other, they would still

need to compare measurement results over a classical, non FTL, channel for any

information to be sent.

Let us imagine a FTL communication scheme. There is a source of spin entangled

pair of particles. One particle goes to Alice and the other to Bob who are light

years apart. If Alice encodes here message by encoding the message in bits where

a 0 is encoded by measuring her particle in the spin ±z basis and a 1 is encoded
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by measuring in the ±x basis. She then she knows that Bob’s particle will also be

in those bases. Since the collapse of the wave function is instantaneous it would

seem that the both share a message that was sent faster than the speed of light.

This is not the case since Bob has no way of knowing which basis Alice measured

in. If Bob measures in the ±x basis when Alice is measuring in the ±z basis then

the message will be entirely scrambled. They must compare their basis choice over

a classical channel before any message can be distilled.

We can see this by introducing the concept of marginal probabilities. The joint

probability density |ψ(xA, xB)|2 is the function describing how the variables xA

and xB behave with respect to each other. The marginal probability density is

calculated by integrating out the value of which no information is known. This

gives the probability density for one variable when there is nothing known about

the other variable. If we wanted to know the probability density at Alice’s detector

before she and Bob have compared data, the marginal distribution is:

|ψ(xA)|2 =

∫ ∞
−∞
|ψ(xA, xB)|2dxB =

∫ ∞
−∞

δ2(xA − xB)dxB = 1

Which is an equal probability over all space of detecting a photon. This means

that Alice’s position measurement is completely random and unrelated to Bob’s

measurement until she communicates with Bob classically and compares data.

1.5 A Relativistic Tool Box

This section is meant to give use the tools necessary to explore topics in relativity

presented in chapter 3. We begin, of course, with Einstein.
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1.5.1 Relativity

The same year Einstein published his paper on the photoelectric effect he also

published the paper [5] on special relativity. In the paper he worked from two

basic assumptions, the first of which is:

...the same laws of electrodynamics and optics will be valid for all

frames of reference for which the equations of mechanics hold good.

... which will hereafter be called the Principle of Relativity.

More broadly this states that the physical laws of the universe are the same no

matter what reference frame you are in. This may seem trivial, but at the time

there were theories involving the aether which might change the mechanics of a

system dependent on relative velocity. Secondly he writes:

...light is always propagated in empty space with a definite velocity c

which is independent of the state of motion of the emitting body. These

two postulates suffice for the attainment of a simple and consistent

theory of the electrodynamics of moving bodies...

No matter how fast or slow an observer is going relative to a light source they

will always measure the speed of light to be the constant c. This is the more strange

of the two postulates as many people on trains with flashlights can tell you. This

is all it took for him to develop one of the most successful theories in history.

1.5.2 Lorentz Transforms

Working with the two postulates above and the work of Lorentz [6] Einstein was

able in the same paper [5] to mathematically explain how space and time transform

between different reference frames. Given an event at space-time coordinate (x, t)
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Einstein claimed the space-time coordinate (x′, t′) in a reference frame which has

a relative velocity of β can be found using the Lorentz transform equations below.

t′ = γ(t− βx)

x′ = γ(x− βt)

t = γ(t′ + βx′)

x = γ(x′ + βt′)

Where γ = 1√
1−β2

and I have set c = 1. As can be seen, as the relative velocity

β → 0, γ → 1 and the two observers will see the event happen at the same place

and the same time (x′ = x, t′ = t). As β → 1 the position and time in the boosted

frame go to infinity and the observer in the boosted frame will observe the event

to have happened an infinite time ago and at an infinite distance.

The Lorentz transforms can also be used to calculate how time intervals ∆t

and distances ∆x change in different reference frames. First we find the Lorentz

transforms for ∆t and ∆x.

∆t′ = t′A − t′B = γ(tA − βxA − tB + βxB) = γ(∆t− β∆x) (1.12)

∆x′ = x′A − x′B = γ(xA − βtA − xB + βtB) = γ(∆x− β∆t)

∆t = tA − tB = γ(t′A + βx′A − t′B − βx′B) = γ(∆t′ + β∆x′)

∆x = xA − xB = γ(x′A + βt′A − x′B − βt′B) = γ(∆x′ + β∆t′) (1.13)

If a clock is at rest in the lab frame then ∆x = 0 and ∆t is the time between

clicks, then the time interval in the boosted frame is calculated from Eqn. (1.12)

to be ∆t′ = γ∆t. As the velocity β → 1 the time between clicks in the boosted
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frame gets longer. An observer in the boosted frame would see a watch in the lab

frame run slow and vice-versa. This is called time dilation.

To see how distances change when observing from a different reference frame,

consider a ruler in the lab frame. When the measurement of the ruler is performed

in the boosted frame, the measurement happens at both sides of the ruler simul-

taneously, which gives ∆t′ = 0. We can use this along with Eqn. (1.13) to find

∆x′ = ∆x
γ

. An observer in the boosted frame sees distances shrink in the lab frame

and vice-versa. This is called length contraction.

1.5.3 Space-Time Diagrams

x

t

t=t'=0

x=x'=0

β

A BtA

-d +d

FIGURE 1.5. A space time diagram. The red boosted frame is traveling with a velocity
β relative to the lab frame. The green line with unity slope represents a trajectory of
a photon going through the origin. It can be seen that the event A and event B occur
simultaneously in the lab frame, but the observer in the boosted frame observes event A
to happen after event B.

To visualize relativistic scenarios in one dimension there is no better tool than

the space-time diagram. A space-time diagram is a graph with time on the y axis
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and position on the x axis. The reference frame with the observer at rest is called

the lab frame and the reference frame in motion relative to the lab frame is called

the boosted frame. Because distance and time are equivalent to a photon traveling

at the speed of light, a line with a slope of ±1 represents the trajectory of a photon.

If we assume that communication takes place with photons, then lines with slope

±1 also represent how information travels.

To represent a reference frame traveling with some velocity relative to the lab

frame on the same diagram we must find how the boosted frame relates to the lab

frame. If we draw the trajectory of the boosted observer on the space-time diagram

of the lab frame it makes a line with a slope 1
β

and we call this the world line of the

boosted observer. We assume that it passes the observer in the lab frame at the

origin. Because the speed of light is a limit there can be no world line with a slope

|m| > 1 since this would mean an observer is traveling faster than the speed of

light. Of course the boosted observer is at rest in his own reference frame, so this

line is the boosted observers time axis and it is called the boosted observers line of

constant position. The world line for an observer at rest would have an infinite slope

which then would match the axis of the lab reference frame. We can find the line

of constant time in the boosted frame by by solving the Lorentz transform at the

origin x = 0 = γ(x′ − βt′). Solving this gives the line of constant time to be a line

with a slope of β. As a check we can see how the boosted observer views the speed

of a photon. It should be obvious that the trajectory of a photon travels an equal

distance in an equal amount of time in the boosted reference frame, so the line of

a photon still has a slope of ±1 in the boosted frame. If we draw all these lines

as in Fig. (1.5), the red axes belong to the boosted frame which is traveling with

a velocity β relative to the lab frame. The green line with unity slope represents
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a trajectory of a photon going through the origin. Space-time diagrams easily and

visually represents how events are observed in different reference frames.

1.5.4 Simultaneity

If we look again at Fig. (1.5) there are two events on the plot, event A at space

time coordinate (−d, tA) and event B at (+d, tB = tA) where βd ≥ tA. It can be

seen that the event A and event B occur simultaneously at different positions to

an observer in the lab frame. To an observer in the boosted frame, however, the

order of the events change. The observer in the boosted frame observes event B

occur at a negative time t′A = γ(tA + βd) below their x′ axis and event A occur

at a positive time t′B = γ(tA − βd) above it. The observer in the boosted frame

perceives event A to happen before event B by an amount:

∆t′ = t′B − t′A = γ(tA − βd− tA − βd) = 2γβd (1.14)

This result forces us to abandon the notion of simultaneity and realize that

simultaneity is relative notion depending on the reference frame of the observer.

Is uncertainty then also a relative quantity? Will it change when viewed from a

different reference frame?
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Chapter 2
Uncertainty in Entangled Photons

While the EPR thought experiment discussed in chapter 1.4 is very useful for

discussing topics such as hidden variable and realism, a discussion of uncertainty

in entangled pairs is better viewed in the context of Popper’s thought experiment.

It is very similar to the EPR thought experiment, but it involves two dimensions

and the diffraction that was discussed in chapter 1.3. We are lucky that there are

recent experiments that tested Popper’s thought experiment.

In 1999 Kim and Shih implemented Popper’s thought experiment in the lab

[11]. The experiment, while well done with clear results, was not able to answer

all questions and has instigated many interpretations [12][13][14] of the results.

The results show some correlation between entangled photons, but not in the way

that Popper thought, nor in the way a simple application of quantum mechanics

might predict. A different experiment on ghost-imaging done in 1995 by Strekalov,

et al. [15] sheds light on the physics behind Popper’s thought experiment and the

results found by Kim and Shih, but does not try to directly test Popper’s thought

experiment.

I will use these experiments and the quantum mechanical tools from chapter 1.2

to build the physics of Popper’s thought experiment from the ground up and show

how the results of both of these experiments reinforce each other and the theory

of quantum mechanics. This chapter borrows heavily from work I did in [26]. A

handy table containing all the experimental constants is provided in appendix 5.
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FIGURE 2.1. What Popper’s original thought experiment may look like using a SPDC
source of photons. The source emits a pair of momentum entangled photons in opposite
directions. The photon on the left encounters a slit that causes diffraction. The “ghost”
slit is the theoretical slit that Popper and others think exist due to the action of the real
slit on the left.

2.1 Popper’s Thought Experiment

Karl Popper posed an interesting thought experiment in 1934 [7]. With it, he

meant to question the completeness of quantum mechanics. He claimed, in the

same way that Einstein, Podolsky and Rosen did [8], that the notion of quantum

entanglement leads to absurd scenarios that cannot be true in real life and that an

implementation of his thought experiment would not give the results that quantum

mechanics predicts. Unfortunately for Popper, it has taken until recently to perform

an experiment that tested his claims. However, the results of the experiment do

not refute quantum mechanics as Popper predicted, but neither do they confirm

what Popper claimed quantum mechanics predicted.

Popper proposed an experiment Fig. (2.1) in which two photons entangled in

position and momentum were sent in opposite directions [7]. The photon on the

left passes through a slit. The result of many of those photons passing through

the slit would produce an interference pattern on a screen behind the slit. This is

the well-understood single slit diffraction experiment. The action of the slit can be
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FIGURE 2.2. The theoretical distribution of photons on the right that Popper thought
quantum mechanics predicts. It is a single slit interference pattern governed by the real
slit width.

thought of as a measurement of the yL position of the photon. The diffraction of

the photon can be thought of as a direct consequence of Heisenberg’s uncertainty

principle. Since the photon’s yL position was measured, then it’s momentum pL

is uncertain. Now, since we are dealing with an entangled source, Popper claimed

that quantum mechanics tells us that if one photon’s position is measured, then the

other photon’s position yR is also known. Therefore, Popper argued the momentum

pR of the other photon must also be uncertain even though it did not pass through

a slit. Then, according to Popper, this photon too, when measured over many

trials, should produce an identical interference pattern Fig. (2.2) compared to the

photon that passes through the real slit.

Popper did not think that this would happen in an experiment. He claimed

that this sort of instantaneous action at a distance was incorrect. He argued that

the diffraction of the right side photon by a ghost slit is what quantum mechanics
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FIGURE 2.3. Kim and Shih’s experimental setup with a theoretical ghost slit. The SPDC
source emits a pair of momentum entangled photons in opposite directions. The photon
traveling to the left travels through a slit. All the photons on the left that make it through
the slit are collected into one fixed detector. The detector on the right is free to scan the
y axis. Only detection events in which detectors fired in coincidence are reported.

predicts, but when the experiment was performed, no diffraction of the undisturbed

photon would appear and this would therefore prove that quantum mechanics is

wrong or at least incomplete.

2.2 Kim and Shih’s Experiment

Kim and Shih’s experiment [11] tried to directly set up and run Popper’s original

thought experiment. They used a source of spontaneous parametric down conver-

sion (SPDC) photons and sent one half through a slit and then a lens to collect

all the photons that made it through the slit. On the other side, they scanned the

y-axis for coincidence counts Fig. (2.3). The difference between this experiment

and Popper’s original thought experiment is that all the photons on the left side

are collected through a lens and sent to one detector and the photons on the right

are scanned in the y axis instead of landing on some sort of screen. The lens should

have no bearing on what we see from the detector on the right, since the photon

on the left still traveled through the real slit.
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FIGURE 2.4. The inside curve is a reproduction of the results of Kim and Shih’s exper-
iment. The outside curve is the theoretical interference pattern from a single slit. The
experimental results show a momentum uncertainty less than that of single slit interfer-
ence pattern. If the photon on the right actually passes through a ghost slit of the same
width of the real slit, then some violation of the uncertainty principle is suggested.

What Kim and Shih found is that the momentum distribution of the photon

passing through the ghost slit is less than the the spread in momentum due to a

real slit, and also less than the original momentum distribution from the SPDC

source Fig. (2.4). This seems to be what Popper claimed would happen with an in-

complete quantum theory. The diffraction at both location is different even though

the photons are entangled. This could also suggest a violation the Heisenberg Un-

certainty Principle (HUP). If the photon at the ghost slit was located to a width,

d = 0.16 mm, then the uncertainty principle says that it’s momentum uncertainty

should have increased more than the experiment shows. The uncertainty in mo-

mentum from the experiment is ∆pR ≈ 3 ~mm−1, so calculating the product of the

position and momentum uncertainties for the photon passing through the ghost

slit gives ∆pR∆yR ≈ ~
4
< ~

2
. This would violate violate the HUP. Kim and Shih
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FIGURE 2.5. The experimental setup of Strekalov, et al. with a theoretical ghost slit.
The SPDC source emits a pair of momentum entangled photons in opposite directions.
The photon traveling to the left travels through a slit. The detectors on both sides are
free to scan the y axis, so not all of the photons that pass through the slit on the left
are collected. Only detection events in which detectors fired in coincidence are reported.

explain this by stating that the actual measurement taking place is the sum of

the momentum of the bi-photon and not the two photons individual momentum.

It is well known that while the position and uncertainty uncertainties of a single

photon cannot violate HUP, the uncertainties of the addition of momentum and

the difference of position commute with each other, [∆(yR − yL),∆(pR + pL)] = 0,

and therefore need not obey HUP. The inequality, ∆(yR− yL)∆(pR + pL) < ~
2
, can

be true. While we agree with Kim and Shih that the HUP is not violated, we have

a alternate interpretation of why.

2.3 Ghost Imaging Experiment

The experiment by Strekalov, et al. [15], was not meant to be a direct test of Pop-

per’s experiment. It was designed to observe ghost imaging using SPDC photons.

It does, however, give a great deal of insight into Popper’s experiment.

The experiment is setup in much the same way as Kim and Shih’s. A SPDC

source sends entangled photons in opposite directions. On one side there is a slit

and on the other there is not. This experiment differs from Kim and Shih’s in that
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FIGURE 2.6. Reproduction of experimental results of the experiment by Strekalov, et
al. The curve centered at the origin is the scan of the y axis of the detector on the right
side when the detector on the left side is stationary at the origin. The displaced curve is
the scan of the y axis of the detector on the right side when the detector on the left side
is displaced from the origin. Both curves are that of a single slit interference pattern,
although not of the width of what would be produced by a slit of the same width as on
the left side.

both sides can be scanned on the y-axis. In Kim and Shih’s experiment, all the

photons that passed through the slit were collected and detected, whereas in the

experiment by Strekalov, et al., there is no lens to collect all the photons and the

detector is free to scan the y-axis exactly like the detector behind the ghost slit.

The results of the Strekalov, et al. experiment are strikingly different from Kim

and Shih’s. When the detector behind the real slit is kept stationary and the

detector behind the ghost slit is scanned, a single slit interference pattern was

observed Fig. (2.6) in coincidence counts from the detectors. On the surface this

seems to be exactly what Popper claimed quantum mechanics predicts and exactly

what did not happen in Kim and Shih’s experiment. Strekalov, et al. noted two

other things about the results. When the detector behind the real slit was displaced
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from the center of the y-axis, the single slit interference pattern behind the ghost

slit was also displaced, but in the opposite direction. Also, the width between the

fringes was dependent on the distance between the real slit and the detector behind

the ghost slit, a distance they labeled as z2 Fig. (2.5).

The dependence of the fringe width on the distance z2 is interesting. As Tittel,

et al. have shown [16], entanglement is valid over extremely long distances. If one

entangled photon is measured to have a certain momentum then we know exactly

the other photon’s momentum, regardless of the distance between them. It does

not matter how far away two entangled particles are, their correlations are still

exact.

2.4 Analysis of Popper’s Experiment

In the following analysis the z component, the axis perpendicular to the slit, of

position and momentum will be ignored since it holds no surprises and does not

contribute to the analysis. In the simplest case, plane waves with wave functions

that are spread about the entire two dimensional space would be used. It is more

instructive to use a more real world starting point for the wave function from the

SPDC. We could start with a real life SPDC wave function, but the complexity

either does not add to the analysis or reduces to the following wave function. I will

start with a Gaussian distribution wave function describing a momentum entangled

pair of photons traveling in opposite directions. To get the position representation

of the wave function one starts by taking a Fourier transform of the momentum

wave function.

ψ(yR, yL) =

∫ ∞
−∞

Ne−p
2a2e−ip(yL−yR)dp (2.1)

= F(Ne−p
2a2) = Ne

−(yL−yR)2

4a2 (2.2)
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Where both photons have equal and opposite momentum p, F is a Fourier

transform, a is the width of the Gaussian packet, yL, yR are the left and right

components of position of the two photons and N is the normalization, which will

be dropped from further equations,.

The detectors are far away enough from the slit that we can use the far-field

Fraunhofer approximation to find what action the slit has on the wave function

after it passed through. The slit is taken to be a box function (Π(yL
d

)), or the sum

of two step functions, of width d. The probability amplitude in momentum space,

Φ(pR, pL), follows.

φ(pR, pL) = F [ψ(yR, yL)Π(
yL
d

)]

=

∫ d
2

− d
2

dyL

∫ ∞
−∞

Ψ(yL, yR)ei(yLpL+yRpR)dyR

= e−p
2
Ra

2 sin(d
2
(pL + pR))

(pL + pR)
(2.3)

Φ(pR, pL) = |φ(pR, pL)|2

= e−2p2Ra
2 sin(d

2
(pL + pR))2

(pL + pR)2
(2.4)

Where pL and pR are the inferred momentum and are functions of the slit width,

wavelength, distance from the slit and position of the detector. Note that the

presence of a Gaussian in equation (2.4), with the original SPDC source beam’s

width, shows that the spread in momentum due to a ghost slit can never be greater

than the original momentum spread of the SPDC source. If this were not so, then

one could signal faster than light (FTL) just by changing the real slit width and

watching for a y momentum spread change in the right side detector. It should

also be noted that only when an observer has the coincidence information from

both sides of the experiment can any correlation can be seen. This can be shown by
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finding the marginal probability distributions. These show the probability densities

for an observer on one side when they have no information about the other side.

Φ(pL) ≈
∫ ∞
−∞

δ(pR)
sin(d

2
(pL + pR))2

(pL + pR)2
dpR

=
sin(d

2
pL)2

p2
L

(2.5)

Φ(pR) =

∫ ∞
−∞

Φ(pR, pL)dpL = e−2p2Ra
2

(2.6)

The marginal distribution on the left, Eqn. (2.5), can be found by assuming the

beam width, a, is wide compared to the slit, a > d. In this case the Gaussian in the

joint distribution Eqn. (2.4) can be approximated as a Dirac delta function. After

integrating the joint distribution Eqn. (2.4) over pR, the marginal distribution Eqn.

(2.5) gives us the single slit interference pattern that we expect from a photon going

through a single slit. So with no information from the right side detector we get

exactly what we thought we should get, single slit diffraction. To get the marginal

distribution on the right side Eqn. (2.6), we integrate the joint distribution Eqn.

(2.4) over pL. Only a Gaussian with the original width remains. So, without any

information from the left side, we are left with what was originally emitted from

the SPDC source. Only in coincidence counts will any interference pattern be seen,

and since the coincidence counts are transmitted over a classical channel, we are

again safe from any FTL signaling.

These equations have the correct form for the results of the experiment by

Strekalov, et al., but there is one problem. Strekalov, et al. noticed that the proba-

bility distribution is dependent on the aforementioned distance z2 from the real slit

to the detector behind the ghost slit. But if we stay with the notion of a ghost slit,

then one would assume the probability distribution behind the ghost slit would
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only depend on the distance from the ghost slit to the detector and on the width

of the ghost slit. This is not the case.

2.5 Resolution of the Two Experiments
2.5.1 Bi-Photon

The problem comes from having assumed that the ghost slit is placed at a certain

position; that some measurement of the z position has been made. If this were so,

then we could justify the presence of a ghost slit at the position opposite that of

the real slit. For, as we know, if the position of one photon is measured, then the

position of the other is known. But, the z axis components of the wave function

has in no way, weak or otherwise, been measured or restricted. No ghost slit can

been made by only measuring the y-component of the wave function at the real

slit. So, we should not use the location of a ghost slit as a reference point. This

leaves the only point of reference for the partial collapse of the initial wave function

to be the position of the real slit. So all momentum changes must be referenced

from that point. This is where the notion of two entangled photons traveling in

opposite directions breaks down and is what has lead Shih and others to refer

to this entangled state as a “bi-photon”. The measurement due to the slit on

the left side can not be thought to measure only one photon and then through

entanglement have an effect on the other photon. The action of the real slit must

be understood to affect the bi-photon wave function.

Since we are abandoning the notion of a ghost slit, the distance between the

ghost slit and the detector on the right is not a number that can be used. The

momentum vectors of both sides need to have their origin at the real slit. Fig.

(2.7) shows that the angle, A′, referenced from the ghost slit will be larger than

the angle, A, referenced from the real slit. The translation has the effect on the

right side of extending the distance z1 that is normally seen in the distributions of
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FIGURE 2.7. The angle of diffraction changes depending on which reference frame you
choose. In this case, the angle from the reference frame of the real slit, A, is smaller than
the angle, A′, taken from the reference frame of the ghost slit.

single slit interference patterns to the much larger distance z2 that runs from the

plane of the real slit to the plane of the detector behind the ghost slit. Then the

probability amplitude at the detector on the right is:

Φ(yR, yL) = e
− 8π2y2Ra

2

λ2z22

sin(πd
λ

(yL
z1

+ yR
z2

))2

(yL
z1

+ yR
z2

)2

≈
sin(πd

λ
(yL
z1

+ yR
z2

))2

(yL
z1

+ yR
z2

)2
(2.7)

2.5.2 The two Experiments Resolved

Equation 2.7 gives us all the results that the experiment by Strekalov, et al. mea-

sured Fig. (2.9). Note that this theoretical figure is normalized by probability rather

than coincidence counts as is the case for the figure of experimental results Fig.

(2.6). One can see that the probability for detecting photons when the left detector

is displaced from the large central peak is much less.

Kim and Shih found that the width of the distribution after the ghost slit was less

then the original beam width and less than the width of the single slit interference

pattern of a real slit at the ghost slit’s position. This does not agree with the

assumption that the ghost slit will cause an increase in the momentum spread. It
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FIGURE 2.8. The experimental setup of Strekalov, et al. without the notion of a ghost
slit. The SPDC source emits a pair of momentum entangled photons in opposite direc-
tions. The left part of the bi-photon passes through a slit. This has a measurable effect
on the right side of the bi-photon, but the notion of a ghost slit on the right side is
discarded. The detectors on both sides are free to scan the y axis, so only some of the
photons that pass through the slit on the left are collected. Only detection events in
which detectors fired in coincidence are reported.

also does not seem to agree with Strekelov’s result that indicates the width will

be that of single slit interference pattern, augmented by the distance z2 between

the detector behind the ghost slit and the real slit. The key to understanding Kim

and Shih’s results is to realize that the only substantial difference between their

experiment and Strekelov’s experiment is that all of the photons were collected by

a lens after the real slit. They, in effect, took a weighted average of all the photons

that passed through the slit. With the weighting function, W (yR, yL), being that

of a single slit interference pattern. So if we multiply the probability amplitude of

joint detection by the weighting function and then integrate over all the detected

photons that came through the left slit, we get the counting rate, R(yR) that Kim

and Shih measured in their experiment:
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FIGURE 2.9. Theoretical probabilities for detecting photons at the detector on the
right for the experiment by Strekalov, et al. The curve centered at the origin is the
theoretical probability distribution of intensity on the y axis on the right side when the
detector on the left side is stationary at the origin. The displaced curve is the theoretical
probability distribution of intensity on the y axis of the detector on the right side when
the detector on the left side is displaced from the origin. Both curves are that of a single
slit interference pattern. The width of the pattern is governed by the distance between
the real slit on the left to the detector on the right. These theoretical results match those
given in experiment.

R(yR) =

∫ ∞
−∞

W (yR, yL)Φ(yR, yL)dyL

=

∫ ∞
−∞

e
− 8π2y2Ra

2

λ2z22

sin(πd
λ

(yL
z1

))2

(yL
z1

)2

sin(πd
λ

(yL
z1

+ yR
z2

))2

(yL
z1

+ yR
z2

)2
dyL

=
e

8π2y2Ra
2

λ2z22 (πyRd
z2λ
− sin[πyRd

z2λ
])

y3
R

(2.8)

And if we insert the values that Kim and Shih used in their experiment we get

Fig. (2.11); where the red line on the outside is what one would get for single slit
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diffraction at a real slit and the blue line on the inside is what Kim and Shih got

on the detector on the right, behind the ghost slit.

If one were to assume a ghost slit were present, that would mean that the po-

sition of the photon on the right was known to be in the region of the slit width,

but it’s momentum uncertainty is less than what would be allowed by Heisenberg’s

uncertainty principle. But as I have said, no measurement of the z position was

taken and there is no ghost slit, therefore no violation of the uncertainty principle.

What we end up with in Kim and Shih’s experiment is the sum of all those dis-

placed single slit interference patterns noticed in Strekelov’s experiment weighted

by the probability of the interference pattern of the real single slit. The intensity

distribution is something that looks like a Gaussian with a width dependent on

the distance between the real slit and the detector behind the ghost slit, the beam

width, the wavelength and the slit width. The edges of this curve are greatly at-

tenuated by the width of the beam. If one were to take the limit of R(yR) as the

beam width gets large, a→ 0, one could see from the rescaled Fig. (2.12) that the

curve becomes much broader.

The results from both experiments flow from the same fundamentals and do not

commit any egregious crimes against quantum mechanics such as FTL signaling

and HUP violation. The notion of a ghost slit never comes out of the analysis, it

is an artificial assumption forced onto the experiment. I agree that the ghost slit

sounds right and I imposed it when first looking into Popper’s experiment, but

the data from two well run experiments and the preceding analysis forces it to be

abandoned. The fact that the results of Popper’s thought experiment were never

correctly calculated in the seventy plus years since it was proposed illustrates just

how unintuitive and strange quantum mechanics can be. Unlike Popper, we are

fortunate to have decades of research showing just how correct quantum mechan-
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FIGURE 2.10. Kim and Shih’s experimental setup without the notion of a ghost slit.
The SPDC source emits a pair of momentum entangled photons in opposite directions.
The left part of the bi-photon passes through a slit. This has a measurable effect on the
right side of the bi-photon, but the notion of a ghost slit on the right side is discarded.
All the photons on the left that make it through the slit are collected into one fixed
detector. The detector on the right is free to scan the y axis. Only detection events in
which detectors fired in coincidence are reported.
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FIGURE 2.11. The inside curve is the theoretical probability distribution of intensity on
the y axis on the right side for the experiment by Kim and Shih. The outside curve is the
probability distribution of intensity for single slit diffraction. These theoretical results
match those given in experiment.
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FIGURE 2.12. The outside curve is the theoretical probability distribution of intensity
on the y axis on the right side for the experiment by Kim and Shih if the beam width
is taken to go to infinity. The inside curve is the probability distribution of intensity for
single slit diffraction.

ics is, so instead of using this experiment as a test of quantum mechanics it should

be viewed as an interesting and subtle application of quantum mechanical fun-

damentals that gives up a deeper understanding of quantum mechanics. Popper

argued that quantum mechanics was incomplete and that an experiment would

not show spooky action at a distance at a ghost slit. He was right about the ghost

slit, but wrong about quantum mechanics. Assuming that the photon on the right

that does not pass through the slit is still measured at a ghost slit is incorrect.

No measurement of the z component of the wave function was made, so placing

a ghost slit at a specific place on the z axis should not be done. Being able to

show that the two different experimental results come from the same quantum

mechanics principles gives credence to this conclusion.
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Chapter 3
Uncertainty with Entangled Pairs in
Different Reference Frames

The theories of quantum mechanics and relativity are both wildly successful with

a vast amount of empirical evidence to back them up. The basic postulates of both

theories do not contradict each other and even work well together in some cases.

For example, Dirac was able to derive a relativistic form of Shrödinger’s equa-

tion [18] and there is promising work on uniting general relativity with quantum

mechanics being done called loop quantum gravity by Gambini, Pullin [19] and

others. However, there are situations in which the two theories seem to clash. This

is most evident with the notion of wave function collapse. We have shown in chap-

ter 1.5.4 that simultaneity is relative, but we have also states in chapter 1.2.4 that

the collapse of the wave function is instantaneous across all space. The following

section explores and ultimately resolves some of this tension between relativity and

quantum mechanics.

3.1 The Zbinden, Brendel, Gisin and Tittel

Experiment

There is a paradox, first suggested by Suarez and Scarani [20] and later tested by

Zbinden, Brendel, Gisin and Tittel [21], in which two observers can both believe

that they measured one half of an entangled pair of photons before the other.

The collapse of the wave function is considered an irreversible and instantaneous

process and so for a pair of entangled photons that are spatially separated the

collapse occurs for both photons when a measurement is made on either of the

pair. Given this, it is reasonable to ask which photon was measured first or when

was the wave function collapsed, and expect a definite answer.
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FIGURE 3.1. This Franson interferometer can be used to violate a Bell inequality. The
possible paths the photons can take cause an interference at the detectors that can not
be reproduced by classical light.

I will resolve this paradox by proposing an experiment to test it. I will show

that the experiment constrains the system in such a way that an uncertainty is

induced into the system that makes the question unanswerable and therefore the

time ordering of entangled measurements does not change no matter the reference

frame.

To do this we must apply a couple simple concepts. The first is that measure-

ments in different reference frames may not yield the same answers. I are not saying

that the two reference frames obey different physical laws. This would contradict

the first of Einstein’s postulate from chapter 1.5.1. I am simply noting that two

observers in different reference frames may not always see the same thing, which

is completely consistent with Einstein’s relativity. The second being that in an ex-

periment involving two observers in different reference frames, the observers must

have information about both reference frames for reasonable communication to oc-

cur. When the observers communicate their results to each other, their respective

reference frames must be accounted for.

It was proposed by Suarez and Scarani [20] that if two observers both think they

measured one half of an entangled pair first then it in some way distinguishes them

and the correlations between the two should disappear. So if one were to perform a
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FIGURE 3.2. Possible paths a photon can take to get from the source to Alice and Bob’s
detectors: short-short (SS), long-long (LL), short-long (SL), and long-short (LS). The
SS and LL paths, which are indistinguishable from each other are used to violate a Bell
inequality.

FIGURE 3.3. Diagram of the experiment by Zbinden, Brendel, Gisin and Tittel [21]. An
entangled pair is released from a source(S) and travels to Alice(A) and Bob(B) who is
in motion relative to Alice. In the situation pictured, both Alice and Bob measure first.
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Bell inequality test, the inequality would only show only classical correlations and

not quantum ones. This is exactly the kind of experiment that Zbinden, Brendel,

Gisin and Tittel [21] performed. They used a Franson interferometer pictured in

Fig. (3.1) than ran under Lake Geneva to perform a Bell inequality test.

A photon in a Franson interferometer can take two paths, the long path (L) and

the short path (S) as seen in Fig. (3.2). Each side of the interferometer has the

same path length difference. Because the two photons are entangled in time, there

will be quantum interference visible when Alice and Bob compare data. To insure

that the interference is from two photon entanglement, the path length difference

is kept greater that the single particle coherence time and less than the two particle

coherence time. The state of the system is at first:

|Ψ〉 =
1√
2

(|S〉|S〉+ |L〉|S〉+ |S〉|L〉+ |L〉|L〉)

The LS and SL paths can be distinguished from their time of arrival information,

so they can be ignored in post-selection and the effective state becomes:

|Ψ〉 =
1√
2

(|S〉|S〉+ |L〉|L〉)

The detection probabilities for joint detection then become:

P (DA1 , DB1) = P (DA2 , DB2) =
1

4
(1 + cos(φA + φB)) (3.1)

P (DA1 , DB2) = P (DA2 , DB2) =
1

4
(1− cos(φA + φB)) (3.2)

In which quantum correlations can clearly be seen and in which a Bell inequality

can be violated. Part of what Zbinden, Brendel, Gisin and Tittel were testing

in their experiment was the possibility that Eqns. [3.1] and [3.2] were not valid.
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Building on the work by Suarez and Scarani they theorized that if both observers

believe they measure first then the probabilities at each observer reduce to those

determined only by the local states. In this case the probability for a photon to be

detected in either detector at Alice’s and Bob’s end is equal which gives:

P (DA1 , DB1) = P (DA2 , DB2) =
1

4

P (DA1 , DB2) = P (DA2 , DB2) =
1

4

The stated purpose of their experiment was to test the speed of wave function

collapse, but we will ignore that part and focus instead on what happened with

the Bell test. Their experiment is depicted in Fig. (3.3). An entangled two photon

source fed two photons under lake geneva to Alice and Bob. Alice is at rest relative

to the source and Bob is on a wheel that allows him to have a velocity relative to

Alice and the source. The path to Bob is slight longer than the path to Alice by an

amount cδt. The time difference δt is then the time difference between Alice and

Bob’s measurements when Alice and Bob are at rest. When Bob gains velocity the

time difference changes to:

δt′ = γ(δt− βL

c
)

Where β = v
c

and γ = 1√
1−β2

. So if the situation occurs when,

βL

c
≥ δt ≥ 0

Then δt′ becomes negative and the time ordering in Bob’s reference frame

changes and Bob thinks he measured first. However, in Alice’s reference frame,

she believes that she measured first. So, did this experiment show that when this
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p

Pitcher's Mound Second Base

FIGURE 3.4. Alice throws a baseball with momentum p to Bob. If Bob catches the ball
then Alice and Bob know that the ball was caught at the position of the pitcher’s mound.

situation happens that the quantum correlations disappear? No, they did not find

any change in quantum correlations when Bob was still, in which both Alice and

Bob agree that Alice measured first, versus when Bob was in motion, in which

both Alice and Bob believe that they measured first. And yet seemingly the wave

function must have been collapsed by someone first. In the following I will resolve

this paradox.

3.2 Motivation

Before diving into the proposed experiment it will be helpful to go over some

examples of systems in which two observers are not in the same reference frame.

The first example is a classical example with an observer in a reference frame in

motion with respect to the other observer. However, reference frames need not

only be based on difference in velocity. The second example has two observers

that observe the spin of a particle from two different reference frames. From these

two examples the notion of measurements between observers in different reference

frames should become clearer.

3.2.1 Batting Practice

Imagine Alice and Bob are at batting practice as is depicted in Fig. (3.4). It’s

Alice’s turn to bat, so she is hitting the ball and Bob is catching. Alice hits a

line drive and Bob catches it at the pitchers mound. Alice asks Bob the simple
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Pitcher's Mound Second Base

FIGURE 3.5. Alice throws a baseball with momentum p to Bob. Bob is moving with a
velocity β away from Alice and catches the ball at second base. If Bob catches the ball
then Alice and Bob not only know that the ball was caught as second base, but also that
it was traveling with a minimum speed of β.

question “Where did you catch the ball Bob?” Bob answers the obvious “I caught

the ball at the pitchers mound.” Alice also asks the question “How fast was the ball

going?”, but Bob, not having a speed sensor, cannot answer with any certainty.

Alice and Bob now change their relative reference frame by deciding that when

Bob hears the crack of the ball he should start running backwards as fast as he

can, which he knows is β, as is depicted in Fig. (3.5). When Alice hits the ball,

Bob starts running backwards and catches the ball at second base. Bob can still

tell Alice that he caught the ball at second base, but in addition Bob can now also

tell Alice that the ball had a velocity of at least β. If the ball went any slower

it would have never reached Bob. When Bob communicated his measurement to

Alice he gave her momentum information as well as position information. It is

because Bob knows something about Alice’s reference frame that he can make

such an inference about the baseballs momentum. This may seem trivial, but in

the quantum world Bob made a measurement of the balls momentum and that

measurement has consequences. A measurement of position made from a reference

frame in motion relative to Alice and then communicated to Alice also becomes a

measurement of momentum.
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FIGURE 3.6. Alice sends Bob a particle with spin in the +z direction. Bob does not
share the same reference frame as Alice. Bob’s frame is rotated about the by θ relative to
Alice’s reference frame. If Bob measures a particle with a spin of +z′ in his own reference
frame, he cannot tell Alice with certainty that the particle she sent had a spin in the +z
direction.

Now let us say that there is a maximum momentum that Alice can impart to the

baseball pmax = mvmax. Then if Bob were moving faster that β > vmax, he would

never detect the baseball. If Bob were traveling at just under the maximum velocity

of the baseball β ≈ vmax, then we can determine that the momentum baseball is

pmax = mvmax = mβ. The momentum of the baseball has completely determined

simply because Bob made the measurement. If this were a quantum baseball then

this begs us to ask what happens to the position. The HUP would tell us that the

position measurement over many trials would be completely uncertain. Baseballs

aren’t the best quantum particles which leads us to move to a simple example in

the next section using a particle with spin.

3.2.2 Spin Motivation

Imagine Alice and Bob agree on a reference frame and Bob has a measurement

device that measures spin in the z direction. If Alice sends Bob a particle of spin

+z and Bob measures that particle, Alice can ask Bob “Does the the particle have

spin in the +z direction?”. Bob can answer with certainty “Yes, the particle I
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detected has a spin in the +z direction.” This is an easy answer because when Bob

measures the particle, he projects it into the state with spin in the ±z direction.

However, if Alice and Bob change their relative reference frames by rotating in the

z, x plane by θ as depicted in Fig. (3.6), then when Bob makes a measurement in

his reference frame the state relative to Alice is projected into the rotated reference

frame. Now even though Bob is completely certain when he measures +z′ in his

own frame of reference the particle has a spin in the +z′ direction, if Alice asks

Bob the same question, Bob cannot answer with certainty what the spin would be

in Alice’s reference frame. The uncertainty would be σ+z = sin( θ
2
).

As Bob rotates further to Alice’s +x axis he becomes completely uncertain if

the particle has a spin in Alice’s +z direction. However, Bob can tell Alice that he

has some certainty that the particle has a spin component in Alice’s +x direction.

When Bob rotates completely to Alice’s +x axis he can tell Alice with complete

certainty that the particle has a spin in Alice’s +x direction even though in Bob’s

reference frame he measured in the +z′ direction. A measurement of spin by Bob

in the +z′ direction made from a rotated reference frame relative to Alice and

then communicated to Alice also becomes a measurement of the spin in the +z

and +x directions. Again, the change in reference frame gives information about

a conjugate variable.

3.3 The Proposed Experiment
3.3.1 The Experimental Device

Motivated by the Zbinden, Brendel, Gisin and Tittel experiment [21], I describe

a experiment that reproduces the paradox in which two observers measure first

which will measure the temporal order of two measurements in different reference

frames. The thought experiment is represented through space-time diagrams in

Figs. (3.7 - 3.10). The fundamental constants are set to unity, ~ = c = 1. Bob is
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FIGURE 3.7. Bob is stationary. At some time te after Bob passes the bi-photon source,
a bi-photon is emitted. In both Alice and Bob’s frame, Bob detects a photon after Alice.
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Source

FIGURE 3.8. At some time te where te < temin = d( 1
β−1) after Bob passes the bi-photon

source, a bi-photon is emitted. In both Alice and Bob’s frame, Bob detects a photon
before Alice.
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FIGURE 3.9. At some time te where d( 1
β − 1) = temin < te < temax = d1+β

1−β ( 1
β − 1) after

Bob passes the bi-photon source, a bi-photon is emitted. In Alice’s reference frame, the
lab frame, Bob detects a photon after Alice. In Bob’s reference frame the measurement
order is reversed.

ct

Bob

Alice

Source

FIGURE 3.10. At some time te where te > temax = d1+β
1−β ( 1

β − 1) after Bob passes the
bi-photon source, a bi-photon is emitted. In both Alice and Bob’s frame, Bob detects a
photon after Alice.
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in motion relative to Alice with a velocity β. At (xB0 , tB0) = (x′B0
, t′B0

) = (0, 0)

Bob passes a source a source of energy-time entangled particles and Alice is at

(xA0 , tA0) = (−d, 0). At some later time te the source emits a bi-photon. Alice

receives her photon at (xA, tA) = (−d, tA) and Bob receives his photon at (xB, tB).

It is assumed that Alice sends Bob a signal when her detector triggers and Bob can

use it to determine Alice’s measurement time and compare events. The Lorentz

transform in this case becomes:

∆t′ = t′B − t′A

= γ(∆t− β∆x)

= γ(∆t− β(2d− β∆t))

= γ(∆t(1− β2)− 2βd)

It is of vital importance to realize that to test the situation in which it is possible

for the measurement time to swap in Bob’s reference frame we must require that

tB ≥ tA and xB ≥ xA. In the experiment by Zbinden, Brendel, Gisin and Tittel

experiment [21] the time the entangled particles will be emitted can be determined

from how long the wheel is in a position to take a measurement. If it is known

what time the detector on the wheel will be in a position to take a measurement

then it is known when the bi-photon will be emitted. The wheel is, however, more

restrictive than necessary and will exaggerate the results. In this experiment the

photons must be emitted within a time ∆te otherwise no paradox will occur. If

they are emitted before or after, like in figures 3.8 and 3.10, there can be no result

since both observers will agree on the time ordering.
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The time constraint can be derived with some simple algebra. For Bob to be in

a position to measure after Alice in Alice’s frame, he must at least be equidistant

from the source, which puts Bob’s minimum position and time at:

xBmin = d

tBmin =
d

β

When Bob leaves the maximum time in which Alice believes she measured first,

we can make a line from Alice that has the slope of Bob’s velocity yA = βx +

d(1 + β) + t. When we set this equal to Bob’s line yB = x
β
, we get Bob’s maximum

position and time:

xBmax = d
1 + β

1− β
tBmax =

xBmax
β

=
d

β

1 + β

1− β

Then to get the constraint on the emission time ∆te we take Bob’s measurement

times and subtract the amount of time it took the photon to get to Bob.

temin = tBmin − d = d(
1

β
− 1)

temax = tBmax − xBmax

=
d

β

1 + β

1− β
− d1 + β

1− β

= d
1 + β

1− β
(
1

β
− 1)

Therefore, the time constraint ∆te is:
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∆te = temax − temin = 2d. (3.3)

Simply posing the thought experiment in such a way that allows Alice and

Bob to compare measurements in different frames adds this time constraint to

the bi-photon. This gives us information about the entangled pair or, in other

words a measurement on the bi-photon. Any knowledge about the bi-photon is a

measurement on the bi-photon and will reduce or collapse some of the entanglement

in the bi-photon system. This will lead to an uncertainty which balances the time

difference induced by the Lorentz transform of Alice’s measurement time.

3.3.2 Analysis of the Experiment

To begin I start with the original EPR [8] states translated into the energy-time

representation. This can be dangerous to do. After all, there is no real time operator

and I would hesitate to do this with a massive particle, but with photons the two

representations can be considered relatively interchangeable. For a photon, position

is time and momentum is energy and I will henceforth consider the arrival time of a

photon a measurement of it’s time. The EPR states in energy-time representation

are:

ψ(tA, tB) = 〈tA, tB|Ψ〉 = δ(tA − tB)

=

∫ ∞
−∞

e−iE(tA−tB) dE

φ(EA, EB) = 〈EA, EB|Ψ〉 = δ(EA + EB)

=

∫ ∞
−∞

e−it(EA−EB) dt

The time constraint ∆te = 2d when applied to ψ(tA, tB) will yield no additional

uncertainty when a time measurement is made. It will, however, in accordance
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with the HUP have an effect on any possible energy measurements. I have chosen

the function for the time constraint to be a Gaussian with width (2d). This choice

is completely arbitrary and substituting any well behaved probability distribution

would work just as well. If we apply the constraint and derive φ(EA, EB) we get:

φC(EA, EB) = 〈EA, EB|ΨC〉 =

∫ ∞
−∞

e
− t2A

4(2d)2 e−itA(EA+EB) dtA

= e−(EA+EB)2(2d)2

The above equation is a Gaussian with a width of 1
(2d)

. As (2d) → ∞, then

φL(EA, EB)→ δ(EA +EB) and entanglement is unchanged, as would be expected.

To find the wave function on Bob’s side after coincidence counting, we require

the wave function with full knowledge of Alice’s measurement. This is done by

projecting onto Alice’s basis and then tracing out her side.

ψB(tB) = 〈tB|ΨB〉 = 〈tA = t0|ΨC〉 = 〈tA = t0|tA, tB〉〈tA, tB|ΨC〉

= δ(tB − t0)

φB(EB) = 〈EB|ΨB〉 = 〈EA = E0|ΨC〉

= 〈EA = E0|EA, EB〉〈EA, EB|ΨC〉

=

∫ ∞
−∞

e−(EA+EB)2(2d)2δ(EA − E0) dEA

= e−(EB+E0)2(2d)2 (3.4)

Equation 3.4 would not usually make a difference since if Alice and Bob were in

the same reference frame, the energy component of the wave function would not be

measured. However, since the measurement is being done in a different reference

frame, we must project onto Bob’s reference frame. I have chosen the projector in

Eqn. (3.5) based on three assumptions. Firstly, a particle at rest is in an eigenstate
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of position. Secondly, a particle traveling at the speed of light is in a momentum

eigenstate. Thirdly, there should be a smooth transition between eigenstates as the

velocity goes from zero to the speed of light. The chosen projector that takes a

state from Alice’s reference frame into Bob’s reference frame is:

|t′B〉〈t′B| =
∫ ∞
−∞

dtB(1− β2)|tB〉〈tB|+
∫ ∞
−∞

dEBβ
2|EB〉〈EB| (3.5)

Where (1− β2) + β2 = 1 and projecting twice returns the original projector as

a well formed projector should:

|t′B〉〈t′B|t′B〉〈t′B| =

∫∫ ∞
−∞

dtB(1− β2)2|tB〉〈tB|tB〉〈tB|

|t′B〉〈t′B|t′B〉〈t′B| =

∫ ∞
−∞

dtB

∫ ∞
−∞

dtB(1− β2)2|tB〉〈tB|tB〉〈tB|

+

∫ ∞
−∞

dEB

∫ ∞
−∞

dEBβ
4|EB〉〈EB|EB〉〈EB|

+

∫ ∞
−∞

dtB

∫ ∞
−∞

dEBβ
2(1− β2)|tB〉〈tB|EB〉〈EB|

+

∫ ∞
−∞

dEB

∫ ∞
−∞

dtBβ
2(1− β2)|EB〉〈EB|tB〉〈tB|

=

∫ ∞
−∞

dtB(1− β2)2|tB〉〈tB|+
∫ ∞
−∞

dtBβ
4|EB〉〈EB|

+

∫ ∞
−∞

dtB

∫ ∞
−∞

dEBβ
2(1− β2)e+itBEB |tB〉〈EB|

+

∫ ∞
−∞

dEB

∫ ∞
−∞

dtBβ
2(1− β2)e−itBEB |EB〉〈tB|

=

∫ ∞
−∞

dtB(1− β2)2|tB〉〈tB|+
∫ ∞
−∞

dEBβ
4|EB〉〈EB|

+

∫ ∞
−∞

dtBβ
2(1− β2)|tB〉〈tB|

+

∫ ∞
−∞

dEBβ
2(1− β2)|EB〉〈EB|

=

∫ ∞
−∞

dtB(1− β2)|tB〉〈tB|+
∫ ∞
−∞

dEBβ
2|EB〉〈EB|

= |t′B〉〈t′B|
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The uncertainty in position, σ′tB , after a projective measurement of |t′B〉〈t′B| is:

〈t̂′B〉 = 〈ΨB|t′B〉〈t′B|t̂B|t′B〉〈t′B|ΨB〉

= 〈ΨB|[
∫ ∞
−∞

dtB

∫ ∞
−∞

dtB(1− β2)2|tB〉〈tB|t̂B|tB〉〈tB|

+

∫ ∞
−∞

dEB

∫ ∞
−∞

dEBβ
4|EB〉〈EB|t̂B|EB〉〈EB|

+

∫ ∞
−∞

dtB

∫ ∞
−∞

dEBβ
2(1− β2)|tB〉〈tB|t̂B|EB〉〈EB|

+

∫ ∞
−∞

dEB

∫ ∞
−∞

dtBβ
2(1− β2)|EB〉〈EB|t̂B|tB〉〈tB|]|ΨB〉

=

∫ ∞
−∞

dtB(1− β2)2〈ΨB|tB〉tB〈tB|ΨB〉

+

∫ ∞
−∞

dEBβ
4〈ΨB|EB〉

d

dEB
〈EB|ΨB〉

+

∫ ∞
−∞

dtB

∫ ∞
−∞

dEBβ
2(1− β2)〈ΨB|tB〉

d

dEB
e+itBEB〈EB|ΨB〉

+

∫ ∞
−∞

dEB

∫ ∞
−∞

dtBβ
2(1− β2)〈ΨB|EB〉

d

dEB
e−itBEB〈tB|ΨB〉

=

∫ ∞
−∞

(1− β2)ψBtBψBdtB +

∫ ∞
−∞

β2φB
d

dEB
φBdEB = 0

〈t̂′2B〉 =

∫ ∞
−∞

(1− β2)ψBt
2
BψBdtB +

∫ ∞
−∞

β2φB
d2

dE2
B

φBdEB = β2(2d)2

σ′2tB = 〈t̂′2B〉 − 〈t̂′B〉2 = β2(2d)2

So as β → 1, the uncertainty becomes our original time constraint. Alice now

asks Bob at what time he measured the photon and Bob answers:

∆t′ = γ(∆t± σt − β(2d− β∆t))

= γ(∆t(1− β2)− 2βd± σt)

= γ(∆t(1− β2)− 2βd± 2βd)

∆t′+ = γ(∆t(1− β2)− 2βd+ 2βd)

= γ(∆t(1− β2)) (3.6)
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Equation 3.6 will always have a positive value. The time uncertainty always out

paces the time difference induced by the change in reference frames. Neither Alice

nor Bob will ever, with certainty, observe the two measurements swap temporal or-

der. I would like to reiterate here what I said in chapter 1.2.5. Quantum mechanics

is a probabilistic theory. In the above it may seem like I have been talking about

the uncertainty of a single measurement, but that is not how quantum mechanics

works. In the analysis above it is completely possible that when Alice and Bob

measure one entangled pair they both get results which are consistent with them

both measuring first. It will only be after many runs of the experiment that the

uncertainty becomes evident. In the experiment proposed above Bob would have to

start from the source for each trial and only after many trials will the measurement

order, or lack thereof, become evident.

Using the above it can also be said that if a measurement on an entangled

bi-photon is simultaneous in one reference frame, then it can be considered simul-

taneous in all reference frames. I say this because if one were to try and determine

how the temporal order changes, the experiment will introduce enough uncertainty

to make it impossible. Therefore, there need not be a preferred reference frame for

wave function collapse. The attempt to determine what reference frame the wave

function collapse takes place in would lead to an uncertainty that would make it

impossible to determine. That is not to say that all measurements on entangled

particles are simultaneous. There are many situations in which one can determine

the order of measurement, but if it can be determined in one reference frame then it

will be the same in all reference frames. Simply posing a way to measure the para-

dox induces an uncertainty in the system that makes the paradox unanswerable. I

have turned a paradox into a catch-22.
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Chapter 4
A Practical Application in QKD

4.1 Quantum Key Distribution

Uncertainty was used in the previous examples to explain complex system, but we

can also treat uncertainty as a resource. From the discussion in chapter 1.2.4 we

know that a measurement collapses a wave function into one of the possible states

of the detector’s Hilbert space. If a subsequent measurement using a detector with

an alternate Hilbert space is done on that state then the result will be uncertain.

We can use this uncertainty to detect an eavesdropper if we use quantum states to

encode a secret message. To encode messages we first need to secretly distribute a

key.

Quantum key distribution is rapidly emerging as an elegant application of quan-

tum information theory with immense practical value. The advent of quantum

computing compromises classical encryption schemes which are dependent on com-

putational difficulty for security. Fortunately, quantum information theory solves

the exact problem it creates. If a transmitter, Alice, wants to exchange a mes-

sage with a receiver, Bob, then the fundamental principles of quantum mechanics

allow them to generate a key that cannot be obtained by an eavesdropper, Eve

[22][23][24]. The problem that we are addressing is that in real life QKD protocols

there are practical compromises that lead to security vulnerabilities. In the follow-

ing I discuss a decoy state scheme developed by me and others in [25] to combat

one of these vulnerabilities. The protocol that we will base our decoy scheme on is

the BB84 protocol.
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FIGURE 4.1. A representation of the BB84 protocol from [30]. Alice sends bits to Bob
in either the Horizontal-Vertical or the Diagonal (−45◦,+45◦) basis and Bob randomly
chooses which basis to measure in. When they compare their basis choice they can distill
a key. Ideally an Eavesdropper would upset the statistics which Alice an Bob would be
able to detect when they compare their basis choices.

4.2 The BB84 Protocol

In the theoretic framework of BB84, Alice sends a sequence of single photon pulses

to Bob. These photons are prepared in two randomly chosen bases. In the receiving

lab, Bob has the same two bases in which to measure the photon and randomly

alternates between them. So, if Alice send a key bit in the Horizontal-Vertical

(HV) bases and Bob happens to be receiving in that bases, then when Alice and

Bob get together to discuss which basis they measured in, they will know they

shared that bit of information and therefore a bit of the key. If Alice sends a bit in

the HV bases, but Bob measured in the Diagonal basis, then when they compare

basis for that bit they realize they don’t match up and it will not contribute to the

shared key. If Eve tries measuring Alice’s photon and then sending the result of her

measurement to Bob, the eavesdropper will introduce errors into the key, since she
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FIGURE 4.2. QKD implementations use attenuated lasers as single photon sources. The
average photon number of attenuated lasers follow a Poisson distribution. This makes
them vulnerable to a photon number splitting attack.

does not know in which basis the photon is being sent nor does she know in which

basis Bob will measure. For example if both Alice and Bob are in the Diagonal basis

and Eve is in the vertical basis then after Eve makes a measurement the photon is

then diagonal and Bob’s measurement may not be consistent with what Alice sent

him. Alice and Bob can then use these errors to detect the eavesdropper’s presence

and determine the security of the key [4].

4.3 PNS Attack

However, in many experimental settings, Alice does not have a true single photon

source, so she sends weak laser pulses (WLP) instead. This coherent light pho-

ton number probability follows a Poisson distribution. The probability of a pulse
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FIGURE 4.3. The eavesdropper replaces part or all of the lossy channel with a lossless
channel. Eve then performs a QND measurement of number Eve blocks a fraction of
single photon pulses and splits off multi-photon pulses If loss is high, she can obtain a
significant fraction of the key without being detected by Alice and Bob.

containing n photons is

Pn =
µn

n!eµ
(4.1)

where µ is the mean photon number which will be taken to be a positive number less

than one to avoid pulses with more than one photon. However, multiple photon

pulses will still occur with probability PM = 1 − e−µ − µe−µ. This exposes the

scheme to the photon number splitting (PNS) attack.

To perform the PNS attack, Eve replaces the high loss channel that Alice and

Bob are using with a lossless channel. Eve then performs a quantum non-demolition

(QND) measurement on each pulse to obtain number information without perturb-

ing the bases in which the information is encoded. When she determines a pulse

with a single photon is in the line, Eve simulates the loss of the original line by

blocking a fraction of these pulses. When Eve observes a pulse that has multiple

photons, she splits the pulse and stores a photon in a quantum memory. Eve then
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sends the rest of the pulse to Bob. After Alice and Bob perform public discussion

and announce the bases used for each pulse, Eve can retrieve the photons from

her quantum memory and obtain a significant fraction of the key without being

detected by Alice and Bob [5-9].

In general, all losses must be attributed to eavesdropping and privacy amplifi-

cation methods are used to distill a smaller secret key from the raw key generated

via the BB84 protocol. In single photon BB84, the distilled secure key rate has

approximately linear dependence on the transmittivity. However, for WLP BB84,

the PNS attack reduces the secure key rate to approximately quadratic dependence

on the channel’s transmittivity [10]. In a typical high loss situation, this presents

a major problem for the key rate. One solution is to use coherent decoy states,

a technique which has met with multiple experimental successes [11-18]. Another

alternative is to use entanglement to effectively trump Eve’s use of the PNS attack.

This is the impetus for the development of our entanglement enhanced scheme for

BB84. For convenience and clarity, we will refer to this entanglement enhanced

WLP BB84 as EE BB84.

Most entanglement based quantum key distribution schemes rely on violations

of Bell’s inequalities to ensure security [19]. However, this is not the strategy that

our EE BB84 employs here. Instead, we detect Eve by introducing an entangled

quantum state into the system that is not used to transmit key bits but only

to detect Eve’s QND measurements. In figure 1 we schematically illustrate how

such an entanglement ancilla may be generated. This allows for a recovery of

an approximately linear dependence on transmittivity for the key rate. EE BB84

shares this advantage with coherent decoy state protocols as well as schemes that

utilize strong phase reference pulses to eliminate Eve’s ability to send Bob vacuum

signals [10].
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FIGURE 4.4. In the entanglement ancilla, for each photon pair generated by Alice, one
is detected in her lab to obtain time information. The other is sent into a beamsplitter
and then recombined at a second beamsplitter in the lab to create a pulse with halves
that have a time delay that results from a length difference in the paths between the
two beamsplitters. This pulse is then sent through the channel to Bob, who passes the
pulse through two beamsplitters in his lab that have path differences identical to those
in Alice’s lab.

4.4 Using Entanglement to Detect a PNS

Attack
4.4.1 EE BB84 Scheme

In our EE BB84, Alice and Bob randomly alternate between implementing WLP

BB84 and an entangled decoy state ancilla. The entangled states are not primarily

used to distribute key bits. Instead, Alice and Bob use the entangled states to

detect the presence of an eavesdropper. Alice sends the entangled pulses randomly

mixed with the weak laser pulses to guard against the use of a QND measurement

device. When Eve measures photon number in the PNS attack on unaugmented

WLP BB84, she avoids detection. The QND measurement collapses the coherent

state into a number state, which Bob cannot distinguish from the coherent state.

This is related to the fact that the number operator commutes with the prepared

bases. However, phase and number do not commute, as they are conjugate vari-

ables. Therefore, Alice and Bob can use the phase information provided by phase
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FIGURE 4.5. Possible paths a photon can take to get from Alice to Bob’s detector:
short-short (SS), long-long (LL), short-long (SL), and long-short (LS). Alice’s time in-
formation allows the SL and LS paths, which are indistinguishable from each other to
be distinguished from both SS and LL.

entangled decoy states to detect Eve whenever she chooses an attack scheme that

involves measuring number.

In the entangled state mode, we generate two time-entangled photons using

spontaneous parametric down conversion (SPDC). Alice measures one photon in

the pair to obtain an accurate time of emission for the other photon. This com-

bination of pump laser, SPDC, and detection of one of the pair of photons gives

us a heralded single photon source. As in BB84, the heralded photon is randomly

assigned either a horizontal, vertical, diagonal, or anti-diagonal polarization. Then,

the heralded photon is sent to a beam splitter which leads to the state:

|Ψ〉 =
1√
2

(|10〉+ |01〉)

Half of the state travels down the longer arm, while the other half travels down

the shorter arm. The halves recombine at the second beam splitter where there is

a probability for the state to leave the quantum channel (see figure 1). A detector

will distinguish these possibilities and allows them to be ignored. However, when

the pulse does exit into the quantum channel, it is an entangled pulse, where half

is delayed in time due to extra path length of the long arm.
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When Bob receives the test pulse from Alice in his lab, he detects the pulse

by sending it through a beam splitter which puts the pulse through long and

short arms identical to the setup in Alice’s lab. The pulse then encounters the

final beam splitter. In this process, there are three possibilities for the pulse. The

strong time information from the photon initially detected by Alice allows for the

differentiation between these three outcomes. One possibility is that the photon

takes the short path both times, labeled SS in figure 4.5. Another outcome is that

the photon takes the long path both times, labeled as LL. These two possibilities do

not yield strong information about Eve’s activities. However, the other possibility

is that the photon travels down one long path and one short path, labeled LS or

SL. This possibility can detect the use of a quantum non-demolition measurement

device [44]. The photon’s self-interference will result in a bright port and a dark

port in Bob’s detection apparatus. Yet, if Eve is measuring number for the PNS

attack, then Bob’s dark port will not be completely dark. Obviously, it will not be

completely dark even without an eavesdropper, since a practical system will have

imperfections and not identically match the ideal case. Nevertheless, Eve’s actions

will still introduce additional error, which can be used to detect her presence.

In our setup, Bob’s detection scheme for the entangled pulses is different from

his detection scheme for the signal states. This is less than ideal, because if the

mode that Alice and Bob are operating in at any given time is not random, then

the security of the entire protocol is compromised. If Eve can predict whether a

signal state or a decoy state is being sent, then she can adjust her attack plan ac-

cordingly and render the entangled states useless. Therefore, it is critical that Eve

cannot distinguish between the entangled states and the signal states. Addition-

ally, Alice and Bob must randomly alternate between the signal and decoy modes.

Felicitously, the decoy mode does not need to be run with very high frequency in
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FIGURE 4.6. When Eve does a QND number measurement on the state she is effectively
providing which path information, so we can model the interferometer as a Mach-Zender
interferometer. The interference at Bobs end is destroyed when Eve makes a measure-
ment. Dephasing can be caused be Eve, the environment or both.

order to detect the use of a quantum non-demolition attack. Nevertheless, since

Alice and Bob must each run separate modes for the signal states and the decoy

states, a fraction of the pulses they exchange will be worthless. Alice and Bob runs

WLP BB84 protocol with frequencies fSA and fSB respectively. They implement

the entangled state decoy ancilla with frequencies fDA and fDB. Alice and Bob ex-

change key information with frequency fSAfSB +fDAfSB, and the entangled decoy

pulses yield information about the presence of a quantum non-demolition measure-

ment device with frequency fDAfDB. With frequency fSAfDB, Alice and Bob are

operating in incompatible modes, and these exchanges will provide no valuable in-

formation, because Bob does not obtain polarization information when measuring

phase. Since fSA and fSB are much larger than fDA and fDB, this inefficiency is

undesirable, but ultimately does not significantly diminish the practicality of the

scheme. Nevertheless, it is also indicative of the trade-off in quantum cryptography

between speed and security.
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FIGURE 4.7. It must be guarantied that the duration of Eves QND measurement is
shorter than the time difference of the two paths. If this is not the case, then Eves
measurement will only cause an overall phase difference and no path information will be
revealed. The path length difference must be greater than the time difference between
the pulses of key information.

4.4.2 EE BB84 Scheme Caveats
4.4.2.1 Pulse Timing

It is instructive to model the EE BB84 scheme as a Mach-Zender interferometer.

Mach-Zender interferometer like in Fig. (4.6) is a path entangling device. A photon

is inserted into the first beam splitter. It then travels in a superpoisiton of the

upper path and the lower path. At the second beam splitter it is recombined and

there is interference which results in a light and dark port dependent on the phase

change in the possible paths. If the path the photon took could be determined then

the interference would disappear and there would be an equal probability for the

photon to enter the light or dark port.

Our EE BB84 scheme is very similar to a Mach-Zender interferometer. There

are two paths the photon can take, the LS and SL paths, and there is a light port

and a dark port dependent on the action of an eavesdropper or the environment.

When Eve does a number measurement on the key bit, she is determining which
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FIGURE 4.8. Part of the coherent source is fed to a frequency doubler which is in turn
fed into the SPDC source. The frequency of the photons from the SPDC source will
match the frequency of the photons leaving the attenuator (ATTN).

path the photon travels and thus destroys the interference resulting in an equal

probability of the photon entering the bright and dark ports.

Using this representation it is easier to see that there is an important constraint

we must place on the scheme. The time delay between signal photons must be

shorter than the time delay inserted into the decoy state as in Fig. (4.6). If this

were not so, then Eve could do a number measurement of both halves of the decoy

state in a time interval that encompasses the whole decoy state as in Fig. (4.7).

If Eve did this, no path information will be revealed and the decoy state would

not collapse. We then would not detect the eavesdropper. The time delay in the

decoy state must be large enough to let many signal photons pass, so if Eve was

measuring over this long time, she would be measuring over many signal photons

and hence not get any usable information.
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4.4.2.2 Decoy Insertion

There is also the problem of how to insert the decoys into the attenuated beam

in a way that makes it indistinguishable to an eavesdropper. For the decoy states

to be indistinguishable from the key bits, they must have the same frequency. A

discussion with physicists at BBN Technologies led to the possible solution pictured

in Fig. (4.8). Part of the same coherent laser source used for the attenuated source

is bled using a beam splitter. This is then fed into a frequency doubler which is

then used to pump the SPDC source which will then halve the frequency. The two

beams are then recombined. This garauntees the frequency of the photons leaving

the SPDC source is the same as that of the photons from the attenuated source.

4.5 Symmetric Hypothesis testing and the

Chernoff Distance

We use Chernoff distance [45] and symmetric hypothesis testing to calculate the

confidence in which Eve is known to be listening or not listening [46]. For EE BB84

the null hypothesis is that Eve is not measuring number using a QND measurement

device, and the alternative hypothesis is that Eve is using such a device to measure

number. For the null hypothesis, the probability that the photon will enter the

bright port is p, and there is p = 1−p probability for the photon to enter the dark

port. When Eve is acting on the system in the alternative hypothesis, there is a

probability q for the photon to enter Bob’s light port and a probability q = 1− q

for it to enter the dark port. Furthermore, the maximum probability PMax
Error of a

false positive or of choosing the wrong hypothesis after n trials is:

PMax
Error =

1

2
e−nC(p,q) (4.2)
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where C(p, q) is the Chernoff distance given by the equation:

C(p, q) = ξln(
ξ

p
) + ξln(

ξ

p
) (4.3)

where ξ = 1− ξ and:

ξ =
ln( q

p
)

ln(p
p
) + ln( q

q
)

(4.4)

We use Eqns. [4.2], [4.3] and [4.4] to calculate the number of trials needed for a

given maximum uncertainty PMax
Error:

n =
−ln(2PMax

Error)

C(p, q)
. (4.5)

An application of the above analysis will determine the number of trials necessary

for a given confidence of detecting an eavesdropper for EE BB84 and coherent decoy

states.

4.6 EE BB84 Statistical Analysis

In an ideal scenario, with no dephasing from the environment, we can easily con-

struct the probabilities of the two symmetric hypotheses. For the null hypothesis,

the probability that the photon will enter the bright port is p = 1, and there is

p = 1 − p = 0 probability for the photon to enter the dark port. When Eve is

acting on the system in the alternative hypothesis, there is an equal probability,

q = q = 1
2
, for the photon to enter either of Bob’s detectors. This results in a Cher-

noff distance of .69. Therefore, if we define a trial to be a photon sent from Alice

and detected by Bob, the number of trials to detect Eve at the 99% confidence

level (PMax
Error = 0.01) requires an exchange of a maximum of just 6 photons between

Alice and Bob.

We are only investigating the photons that reach Bob with the proper time in-

formation. Thus, unlike the coherent decoy states, loss is not the most significant
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quantity to investigate quantitatively. Instead, dephasing (decoherence) is our pri-

mary concern. The environment can affect the entangled decoy state by changing

the phase information in it. Since the two states are sent down the line close to-

gether, it might be assumed that any environmental factor that would affect one

half of the state, would affect the other and therefore the total phase informa-

tion in the state would remain unchanged. Experiments such as the one performed

by Zbinden, Brendel, Gisin and Tittel [21] seem to confirm this. Phase entangled

photons in that experiment traveled over 10 kilometers under lake Geneva while

still retaining enough coherence to violate a Bell inequality. However, since in our

framework, dephasing is what would affect the scheme the most, we still want to

investigate its effect on the Chernoff distance.

When dephasing is included, the problem turns into that of determining whether

a coin is fair. The question becomes: how many trials does it take to be confident

that Eve is there or not? When dephasing is present, the probability for a photon

to be detected in the dark port increases. It becomes more difficult to tell Eve apart

from the environment. With complete dephasing the probability to find a photon in

either the bright port or the dark port becomes 50-50. Fig. (4.9) shows how many

trials are needed to have a 99% confidence of determining if Eve is listening or not

versus the probability of finding a photon in the dark port (dephasing) regardless

of Eve.

4.7 Coherent Decoy States Statistical Analysis

The alternative to EE BB84 is the popular coherent decoy state solution. In the

PNS attack, Eve assumes Alice’s photon source has a constant mean photon num-

ber. However, if Alice randomly alters the mean photon number of her source in

a way that is known to her, but not perceivable to Eve, then she can detect the
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FIGURE 4.9. Dephasing can be caused by the environment, an eavesdropper or both. As
the dephasing increases, the probability of finding a photon in the dark port increases.
This causes the number of trials needed to detect an eavesdropper with a 99% confidence
to increase. When the probability of detecting a photon at the light and dark port is
equal, it becomes impossible to tell an eavesdropper apart from the environment.

PNS attack. This is the idea that motivates coherent decoy states. Pulses from the

source with a higher mean photon number will contain a greater fraction of multi-

photon pulses, which Eve will not block. Therefore, when Alice and Bob discuss

the protocol, Alice can compare the loss in the line for when different mean photon

numbers were used. If there is a marked difference between the loss for the decoy

states and the loss for the signal states, then Alice can conclude that Eve is using

the photon number splitting attack [22-26].

We treat coherent decoy states in a similar manner to EE BB84, but instead of

dephasing being the key quantity of interest, loss is, because Eve hides in the loss

of the system. The coherent decoy state solution uses two (or more) attenuated
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FIGURE 4.10. If an eavesdropper is not listening then the probability, p, of measuring
a attenuated pulse with 〈n〉A = A vs. the pulse with 〈n〉B = B is simply equal to the
original distribution of the two pulses. If there is an eavesdropper performing a PNS
attack then the probability, q, of measuring a attenuated pulse with 〈n〉A = A vs. the
pulse with 〈n〉B = B becomes less with increases loss.

coherent sources with different average photon numbers n̄1 and n̄2. Alice determines

the percentage of each of these states that is sent down the channel. If Alice sends

Bob a total of 100 pulses, of which 70 (70%) have an average photon number of

n̄1 and 30 (30%) have n̄2 and we assume a loss of 50%, then Bob should receive 35

(70%) pulses with an average photon number of n̄1 and 15 (30%) with n̄2. In this

scenario, we define loss as losing the whole pulse. Loss affects the total number

of photons received, but not the percentage of n̄1 and n̄2. Eve performs a PNS

attack by replacing all or part of the lossy transmission line with a lossless line

and altering the percentage of n̄1 and n̄2 sent through to Bob. In this example we

assume Eve has replaced the entire transmission line with a lossless one. Eve sits

on the line and measures number until she finds a pulse containing more than one

photon and then she takes one of these photons and lets the other pass. She blocks

enough of the single photon pulses such that the initial loss is preserved. If n̄1 < n̄2,

The n̄2 pulse will have more photons on average than the other and therefore will

be allowed to pass through to Eve more than the other. So, in the presence of Eve,

if Alice sends 100 pulses, of which 70 (70%) have an average photon number of n̄1

and 30 (30%) have n̄2 and we assume a loss of 50% which Eve will take over, then

Bob would still receive a total of 50 pulses, but the percentages of n̄1 pulses will
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FIGURE 4.11. The solid line is the number of pulses sent by Alice (not necessarily
detected by Bob) for the coherent decoy state scheme to detect an eavesdropper with
a 99% confidence. The dotted and dashed lines are for the EE BB84 scheme at 10%
and 30% dephasing respectively. For cases of very high loss, decoy states outperform
EE BB84. However, for more moderate levels of loss, EE BB84 requires fewer pulses to
confidently detect the presence of an eavesdropper compared to coherent decoy states.
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FIGURE 4.12. The solid line is the number of pulses received by Bob for the coherent
decoy state scheme to detect an eavesdropper with a 99% confidence. The dotted and
dashed lines are for the EE BB84 scheme at 10% and 30% dephasing respectively.
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be less than 30% and the percentage of n̄2 pulses will be greater than 70%, which

is not identical to what Alice sent. Here, we are looking at the very worst possible

case of eavesdropping. We are assuming that Eve has replaced all of the noise with

a noiseless channel.

Alice looks at the percentage of n̄1 and n̄2 received by Bob and compares it

to the percentages she sent. If she can tell the difference between them with an

acceptable confidence, then Eve is detected. This is treated in the same way we

treated EE BB84 above. The Chernoff distance gives us a metric to determine the

presence of Eve. The number of pulses sent from Alice to Bob that are necessary

to be 99% confident of the presence of an eavesdropper can be seen in figure 4.11.

The efficiency of coherent decoy states improves as loss rises because it gives Eve

more space to sift the photons, but as the loss becomes too high, then obviously

transmission becomes difficult for any scheme. A can be seen, coherent decoy states

are poor performers at low loss, however at low loss it is more difficult for Eve to

hide and the necessity for decoy states declines. The number of pulses received

by Bob from Alice that are necessary to be 99% confident of the presence of an

eavesdropper can be seen in figure 4.12. The lines from the EE BB84 are simply

straight since decoherence is the quantity effects the necessary pulses and not loss.

Again, the coherent decoy states improves as loss rises.

The crux of the coherent decoy state solution is that Eve manipulates photon

number statistics in a way that Alice can detect. However, if Eve can gain infor-

mation, which allows her to not alter the statistics in a detectable manner, then

the coherent decoy state technique will not be a successful solution. This situation

would obviously justify the implementation of EE B84, yet EE BB84 is advanta-

geous in some other scenarios as well.
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The parameters and performance of EE BB84 and coherent decoy states can

vary greatly depending on environment and choice of variables. It can be seen

from the figures that for loss of less than 75% and dephasing less than 10% the

EE BB84 scheme outperforms the coherent decoy state scheme by requiring fewer

pulses. At 50% loss the EE BB84 scheme would need to send about a third the

number of pulses as the coherent decoy state to detect an eavesdropper with 99%

confidence.

Coherent decoy states are a popular solution to the photon number splitting

attack for a reason. They achieve linear scaling with transmittivity. Additionally,

coherent decoy states can be used to distill a secret key without Bob alternating

detection modes. However, in EE BB84, Bob must alternate between a polariza-

tion detection mode and a phase detection. This gives coherent decoy states an

advantage over the present version of EE BB84.

At the moment, EE BB84 does not possess general superiority to coherent decoy

states. Therefore, the appeal of EE BB84 is that it has some situational advantages

and approaches the problem of the photon number splitting attack in a manner

strategically different from that of coherent decoy states. The general strategy of

coherent decoy states is to improve the secret key transmission rate by focusing

on limiting the amount of information that Eve can possibly obtain while still

avoiding detection. Meanwhile, the strategy behind EE BB84 is direct detection of

an eavesdropper that might be performing quantum non-demolition measurements.

The strategy of EE BB84 is not superior to that of coherent decoy states. It is

simply different, and this difference helps generate situations where the EE BB84

scheme has specific advantages, like the case when the operation time for the key

transmission is not long enough for decoy states to be a robust defense. In cases
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such as this, EE BB84 has an advantage because of its ability to determine the use

of quantum non-demolition measurement with a rather meager number of pulses.
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Chapter 5
Conclusions

The uncertainty inherent in our world can be uncomfortable. Before Einstein ac-

cepted quantum mechanics he famously said in a letter [52] to Born in 1926:

I, at any rate, am convinced that He does not throw dice.

This was said in relation to the indeterminacy and spooky action at a distance

involved in systems like the EPR thought experiment. It is a strange concept

that something like a quantum state can be completely indeterminate until it is

observed. It is nonetheless true as the inequality introduced by Bell has shown [9]

many times over. However, instead of viewing quantum uncertainty as a strange

thing I have come to see it as a concept that makes strange things understandable

and useful.

Popper’s odd thought experiment from chapter 2 and the experimental results

that tested it can be completely explained with quantum uncertainty. The re-

sults from both of the experiments that tested Popper’s thought experiment flow

from quantum fundamentals. The notion of two entangled particles behaving like

two correlated particles is a concept that can lead to problems. This is evident

from continued confusion about Popper’s thought experiment. To understand this

thought experiment it was vital realize that two entangled particles are actually a

bi-photon that only present as two particles upon measurement. After we realize

this it follows that the uncertainty also does not behave as the uncertainty of two

particles but rather as the uncertainty of the bi-photon.
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Uncertainty explains a question that can never be answered. Performing an

experiment that could answer the question asked in chapter 3, “Who measured

first?”, makes answering the question impossible to know. Setting up an experiment

that can test the temporal order of measurement on a bi-photon when the two

observers are in different reference frames introduces an uncertainty that masks the

measurement order. There is no preferred reference frame in which wave function

collapse takes place. Trying to find such a reference frame would introduce an

uncertainty that makes it impossible to find. Relativity shows simultaneity to be

a relative concept and I have shown that the concept of wave function collapse,

while instantaneous and across all space, does not, thanks to uncertainty, contradict

relativity.

Uncertainty can be used to protect our secrets. The EE BB84 scheme in chapter

4 and quantum cryptography in general is completely dependent on uncertainty

introduced to a quantum system by an eavesdropper. Using fundamental quantum

mechanics it is easy to see what happens when a detector measuring in one basis

measures a state prepared in a different basis. The result becomes uncertain. This

is the basis for many quantum cryptography schemes. Fundamental quantum me-

chanics also describe what happens when a measurement determining the path of

a particle in a superposition of possible paths is made. The interference between

the possible paths disappears and the outcome becomes random. We use this to

simple fact to detect an eavesdropper.

We live in an uncertain world, but there is opportunity in uncertainty. It is an

explanation in itself and a useful tool. We can use it to dispose of paradoxes and

talk to each other. The best future is an uncertain one.
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Appendix

Experimental Constants
Kim and Shih Strekalov, et al.

Wavelength (λ) 0.0007 mm 0.000702 mm
Slit Width (d) 0.16 mm 0.4 mm
z1 500 mm 1000 mm
z2 1500 mm 1650 mm
Beam Width ( 1

a
) 3 mm not given

TABLE 5.1. Table of experimental constants used by Strekalov, et al., and Kim and
Shih.
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