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Abstract

In this thesis the author reports his collaborative e�orts on two distinct areas of research

that has been conducted. The �rst part of the thesis pertains to the author and his collab-

orators research on a particular class of organic magnets called the bimetallic oxalates. The

main theme of this research was to predict magnetic compensation (magnetization rever-

sal) in unsynthesized bimetallic oxalate structures, motivated by experiments which showed

that Fe(II)Fe(III) exhibited magnetic compensation. In addition it was known that a large

amount of anisotropy was present in the bimetallic oxalate structure which resulted from

the intermediate oxalate molecules between the transition metal ions which would drasti-

cally change the angular momentum of the transition metals. Consequently, because of the

large anisotropy, we predicted that, if neutron di�raction measurements were performed on

these materials, a spin-wave gap would exist of the order of 7.8 meV. The contribution to

the research that I did on the bimetallic oxalates was calculating numerically the regions

of magnetic compensation in chapter 3; where a large part of the theoretical calculation

was performed by R.S. Fishman. In chapter 4 I contributed equally to the thoeretical and

computational calculation of the spin wave gap in regions of magnetic compensation with

the assistance of my advisor R.S. Fishman.

The second half of this thesis is devoted to the author's and his collaborators' research on

the cerium volume collapse. Until 2004 the collapse was largely believed to be understood as

the result of Kondo screening of the local moment in cerium. However in 2004 it was realized

that, in addition to a large Kondo e�ect driving the cerium volume collapse, the phonon

frequency was very di�erent between the large and small volume phases, and consequently

the change in phonon frequency was the direct result of large electron-phonon correlations.

This upset the apple cart of Kondo correlation being solely responsible for the volume collapse

in cerium, and the change in phonon frequency must be accounted for to accurately describe

the cerium volume collapse. To this end the author and his collaborators' developed a model

which would include both of the correlations (Kondo and phononic) in the volume collapse.

To analyze this model we used Dynamical Mean Field Theory in conjunction with Continuous
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Time Quantum Monte Carlo. What we found in our simulations was that the small volume

Kondo phase was drastically in�uenced by the presence of the electron-phonon correlations.

My contribution to this research relating to the cerium volume collapse consisted of locating

the Kondo to local moment transition in the parameter space of the periodic Anderson model

with Holstein phonons coupled to the conduction electrons; this work is illustrated in section

5.7 of this thesis. Also I calculated the quasi particle renormalization fraction outlined in

sections 6.3 to 6.5 where the results and analysis are displayed in section 7.6. Additionally

I calculated the internal energy and high frequency behavior of this model which is outlined

in the appendix. This work was done with my collaborators Peng Zang, Dr. Ka Ming Tam,

Dr. Juana Moreno, Dr. Mark Jarrall and Dr. Fakher Assaad.
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Chapter 1

Introduction

1.1 Condensed Matter Physics

Condensed matter physics is a branch of physics which investigates the properties of ma-

terials in their solid or liquid form at the atomic and molecular level. Condensed matter

physics is an attempt to explain the electric, magnetic, thermodynamic, and the emergent

phenomena which arises as many atoms are assembled to form a macroscopic structure. A

successful understanding of condensed matter systems is achieved through experiments on

the material and theoretical investigations. Condensed matter covers a wide spectrum of

di�erent phenomena and has in�uenced other branches of science and mathematics such as

chemistry, materials science, high-energy physics, cosmology, nanotechnology and computer

science. Some of the most active areas of research in condensed matter physics are in strongly

correlated materials, semiconductors and Bose-Einstein condensation. In this thesis the au-

thor and his colleagues have attempted to further our knowledge of strongly correlated and

magnetic materials and increase their interconnection with other areas of condensed matter

physics, in an e�ort to ultimately increase the impact of condensed matter physics on other

closely related �elds.

1.2 Strongly Correlated Materials

Strongly correlated materials are interesting and challenging materials that exhibit many

unusual properties that would not be expected given the materials band-structure and ge-

ometry. Many materials which exhibit strongly correlated properties are high-temperature

superconductors, heavy fermion compounds, magnetic materials, Mott insulators and low di-

mensional spin chains. Why are these materials are so di�erent from conventional materials?

They are often insulating when band theory calculations demonstrate that they are metallic.

Why are these materials insulators at half �lling? This is primarily the result of the elec-
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trons strong repulsion with adjacent electrons in the lattice which decreases their mobility

and serves to localize the electron at the ionic core, which prevents the electrons from con-

ducting, which results in an insulating state. If one were to perform a simple Hartree-Fock or

single electron calculation on these materials they would �nd that these materials should be

metallic; however, if one performs a more complicated calculation on these materials which

includes the strong Coulomb correlations between electrons then one would discover that

the material is in fact an insulator since a Mott band gap opens at the Fermi-level in the

density of states. The properties of the materials mentioned at the beginning of this section

are the result of strong electron-electron Coulomb interactions in the material, consequently

these materials have posed many challenges for experimentalists and theoretical physicists

working with these materials, since in most cases there is no general approach to analyzing

these materials. Strongly correlated materials are currently at the forefront of research. In

the next section we describe three areas of strongly correlated materials in more detail, which

are high-temperature superconductors, magnetic materials and heavy fermion compounds.

1.2.1 High-Temperature Superconductivity

The discovery of high-temperature superconductivity (HTC) in 1986 by Karl Müller and

Johannes Bednorz was found in the ceramic compound LaBaCuO below the transition tem-

perature of 30K [1]. The discovery of superconductivity in LaBaCuO marked the beginning

of a new era of non-conventional superconductivity in which the superconducting state re-

sulted from large electron-electron correlations in the copper-oxide layer of this material. The

mechanism driving the superconductivity in LaBaCuO was thought to be very di�erent from

the traditional driving mechanism in standard superconductors in which the pairing binding

two electrons resulted from lattice vibrations. Soon after the discovery of superconductivity

in the compound LaBaCuO it was found a higher transition temperature occured in the

ceramic compounds yttrium barium copper oxygen Yba2Cu3O7 (YBCO) with Tc = 90K [2],

with the highest transition temperature reported in the compound mercury barium calcium

copper oxide HgBa2Ca2Cu3Ox with Tc = 133K [3].

Changing the electron concentration in the copper oxide planes of the cuprate supercon-

ductors resulted in a rich phase diagram which displayed anti-ferromagnetism to metallic and

superconducting properties Fig. 1.1. The undoped phase of the parent compound of these

materials exhibits long range anti-ferromagnetic Mott ordering for temperatures below the

Néel temperature TN ; upon hole doping the anti-ferromagnetism of the parent compound

is destroyed and the cuprates transition into two di�erent phases which depends on the the

doping density ρ, the pseudogap temperature T ∗ and the superconducting temperature Tc.

2



For the temperature T ∗ > T > Tc the parent compound transitions from Mott insulator

characteristics to pseudogap behavior. The pseudogap occurs in these materials mainly due

to a small but �nite density of states at the Fermi level which reemerges as the parent com-

pound is doped. As a result of the �nite density of states at the Fermi level the system is

not in a metallic phase because of the large Coulomb correlations between electrons. In fact

the physics of the pseudogap phase remains a mystery. A couple of scenarios have been pro-

posed. The �rst scenario suggests that the electrons in the pseudogap phase form preformed

superconducting pairs which are unable to superconduct because of large phase �uctuations

of the phase �eld at temperatures T > Tc; this approach has been supported by an attractive

pairing model approach. The second scenario of the physics of the pseudogap phase is that

the doped cuprate is in a state which has insulating behavior reminiscent of the undoped

parent compound.

The superconducting state occurs when T < Tc. The physics of the superconducting

state has been a major challenge to theorists since the discovery of HTC in 1986. One

theory that was put forward to explain HTC was the resonating valence bond (RVB) by

Anderson, which describes the ground state of the parent compound as an arrangement of

disordered spin states and was an attempt to explain the superconducting state by doping

the RVB state [5]. The RVB state was successful in describing the ground state of the

parent compound and the superconducting state within a mean-�eld approximation using a

Gutzwiller projection, however it is known that the true ground-state must include quantum

�uctuations inherent to the quantum ground-state, which are removed using the Gutzwiller

projection. For these reasons it is reasonable to believe that a more thorough understanding

of the superconducting phase of the HTC compounds will be achieved with the use of non-

perturbative methods such as Quantum Monte Carlo (QMC) and other methods in which

mean-�eld approximations are not employed.

1.2.2 Magnetism

Magnetism in materials is a direct consequence of strong electron-electron correlations. More

speci�cally magnetic phenomena in solid state arises from an exchange interaction J which

occurs between electrons due to Coulomb correlations between two electrons and the Pauli

principle requirement on the total electronic wave function. Di�erent types of magnetic

exchange can occur in materials; in general direct exchange occurs when the electronic wave

functions between two electrons directly overlap, and indirect magnetic exchange occurs

between two electrons where their electronic wave functions do not overlap, therefore the

magnetic exchange is mediated by itinerant conduction electrons as in double-exchange or by

3



Figure 1.1: Cuprate phase diagram as a function of temperature T vs. hole doping n. For
small values of n and T < TN the parent compound of the cuprates is an anti-ferromagnetic
Mott insulator. As the cuprates are doped the pseudogap phase occurs for temperatures in
the range T ? > T > Tc where Tc is the ordering temperature of the superconducting state.
When T < Tc the cuprates transition into the superconducting phase. The cuprates also
display other phases which include a Fermi-Liquid regime and a strange metal regime that
has properties dissimilar to the metallic Fermi-Liquid regime. At T = 0 a quantum critical
point is thought to exist under the superconducting dome. [After C. Varma 2010] [4].

intermediate orbitals (superexchange). From this analysis magnetism may arise in insulating

and conducting materials, where the macroscopic magnetic �eld which results from the

exchange can be either ferromagnetic (J > 0) or anti-ferromagnetic (J < 0), when the

temperature of the material is below the transition temperature Tc. In the ferromagnetic

case all the spins at each lattice site are oriented in the same direction and in the anti-

ferromagnetic case the spin orientation alternates in direction at adjacent lattice sites of a

bipartite lattice. Theoretically to solve for the properties of the magnetic phase of materials

is complicated, requiring the diagonalization of a matrix with Avogadro's number of entries

in order to calculate the magnetic ground-state, which is thus far an intractable problem.

To make the problem tractable requires a self-consistent mean-�eld calculation, or non-

perturbative methods such as quantum Monte Carlo are used in an attempt to allow theorists

to better understand the magnetic properties of materials. A more technical overview of

magnetism will be introduced in chapter 2 of this thesis.

4



1.2.3 Kondo Phenomenon

Another strongly correlated system which results from the magnetic exchange between itin-

erant and localized electrons occurs in the Kondo e�ect. A non-magnetic material, such as

gold, is doped with a small amount of iron ions. As the temperature of the material is re-

duced and as a result the spin degree of freedom of the conduction electrons, they scatter o�

the iron atoms resulting in an increase in the resistivity of these materials. This phenomenon

was discovered experimentally in the 1930's where the resistivity of the nonmagnetic material

was expected to linearly drop to zero. This did not happen but instead the resistivity at low

temperatures exhibited a minimum, and as the temperature decreased below this minimum

the resistivity increased. The increase in the resistivity was the result of a direct magnetic

interaction between the magnetic impurities and conduction electrons. This phenomenon

was explained theoretically by Jun Kondo in 1964 where he showed that perturbation theory

diverged at low temperatures as a result of the magnetic interaction between the magnetic

impurities and conduction electrons, and was able to link this divergence to a resistance min-

imum [6]. The Kondo e�ect is a central theme used to explain the cerium volume collapse

portion of this thesis and therefore we will elaborate on it extensively in Chapter 5.

1.3 Magnetic Materials

Magnetism in condensed matter physics occurs in two distinct contexts which have been

classi�ed as in-organic and organic magnetism. The distinction between inorganic and or-

ganic based magnets is that organic based magnets contain organic molecules in their unit

cell, whereas inorganic materials do not contain organic molecules. The most common type

of inorganic magnetic material is the transition metal iron (Fe), in which a unpaired elec-

tron spin residing in the 3d6 shell interacts directly with adjacent Fe ions, which results in

ferromagnetism in these materials. Magnetism can also occur in doped semi-conductors;

the best known case of this is gallium arsenide (GaAs) doped with small concentrations of

manganese (Mn) to form (Ga,Mn)As. This material becomes ferromagnetic at temperatures

below the transition temperature of Tc = 173K [7]. Theoretical calculations based on the

Zener and double exchange models show that (Ga,Mn)As could be magnetic at room tem-

perature with a Tc as high as 300K. In addition to ferromagnetism, (Ga,Mn)As still possesses

p-type semiconducting properties, and the magnetic phase displays a spin polarized current.

The duality of (Ga,Mn)As with regards to its magnetism and semiconducting properties, is

regarded as a smart material and is also a candidate for spintronic devices. (Ga,Mn)As is

5



not a material which occurs naturally. Instead it is grown using a method called molecular

beam epitaxy in which layers of the structure are grown . Growing magnetic semiconductors

in this way has proved to be very time consuming and cost ine�cient since it requires lots

of material resources to develop these magnetic materials, where one of the primary goals of

molecular beam epitaxy is to increase Tc of (Ga,Mn)As. In contrast to inorganic magnetic

materials, organic magnets do not require molecular beam epitaxy and the samples can be

grown chemically. Organic magnets have been proven to display a wide range of new mag-

netic functionality that inorganic magnets do not possess; these properties will be reviewed

in chapter 2. In the next section we describe brie�y one type of organic magnet that the

author extensively researched.

1.3.1 Magnetic 0rganic Materials: Bimetallic Oxalates

The magnetic properties of a class of organic magnets called the bimetallic oxalates were a

central theme of the author's research and are discussed extensively in chapters 2 through 4.

The bimetallic oxalates structure shown in Fig. 1.2 consists of a two dimensional hexagonal

network of transition metal ions M(II)M(III) situated at the vertices of the hexagon. The

oxalate molecule separates the M(II) and M(III) ions and mediates the anti-ferromagnetic

exchange between the two ions and it is responsible for the heavily induced crystal-�eld en-

vironment surrounding the ions and serves to change the orbital angular momentum of the

transition ions. The two dimensional hexagonal structure are separated by an organic cation

completing the three dimensional structure. As shown in chapter 2, the direction of the

magnetization of the bimetallic oxalate Fe(II)F(III) changed sign at a temperature T ≈ 35K

below the anti-ferromagnetic ordering temperature T ≈ 45K. The reversal in the magne-

tization is called magnetic compensation. The author explored how other combinations of

transition ions in the chemical formula M(II)M(III) would produce magnetic compensation

using static self-consistent mean-�eld theory. We predicted that a number of ions would ex-

hibit magnetic compensation, and this phenomenon depended critically on the crystal-�eld

induced environment surrounding the ions which changed the orbital angular momentum of

each ion. Additionally the mean-�eld calculations were also con�rmed by quantum Monte

Carlo methods which included quantum and temporal �uctuations not included within our

mean-�eld calculations[8]. This method showned that the bimetallic oxalate compounds we

predicted would exhibit magnetic compensation were also found to exhibit magnetic com-

pensation in the presence of thermal and quantum �uctuations. Chapters 2 through 4 of

this thesis pertain to the authors research on the bimetallic oxalates.

6



Figure 1.2: Bimetallic Oxalate honeycomb structure. Situated at the vertices in an alter-
nating fashion are M(II) and M(III) transition metal ions, which interact via an oxalate
molecule. [After Coronado 2006] [9].

1.4 Heavy Fermions

In condensed matter physics heavy fermions are another example of strongly correlated

electronic materials in which large Coulomb correlations account for many of their properties.

Heavy fermions are elements in which an electron resides in the partially �lled inner f

shell. Most atoms which ful�ll this criteria on the periodic table are rare earth and actinide

elements. Examples of compounds that exhibit heavy fermion properties are CeCu6, CeAl3
and UPt3. Heavy fermions material possess this name since the e�ective mass m? of the

electrons in the conduction band of these materials is up to m? = 1000m times larger than

the mass of a free electron in a normal metal m [10, 11]. The increase in m? is a result of the

Kondo phenomenon which is a spin interaction which occurs between electrons in the broad

s conduction band and impurity band formed by the f electrons residing in Ce, as a result a

narrow band appears at the Fermi level which is commonly referred to as an Abrikosov-Suhl

resonance which accounts for the increase in m? [13, 12]. The Abrikosov-Suhl resonance at

the Fermi level accounts for the increased resistivity and heat capacity of these materials at

7



Figure 1.3: Doniach phase diagram as a function of temperature T vs. chemical doping δ.
For small values of δ anti-ferromagnetic ordering results in heavy fermions for T < TRKKY .
Increasing the value of δ heavy-fermion compounds transition into the Fermi liquid regime
which occurs for TK > TRKKY . [After Doniach 1977] [17].

low temperatures. The increase in m? in heavy fermion compounds usually occurs when the

temperature of the compounds is below a coherence temperature T ? ∼ 10K.

In addition to the increased resistivity and speci�c heat of these materials it was found

experimentally that they exhibit a number of other interesting phenomena such as uncon-

ventional superconductivity and long range anti-ferromagnetic ordering associated with the

Ruderman-Kittel-Kasuya-Yosida (RKKY) exchange between the impurity and conduction

electrons [14, 15, 16]. The competition between these various phenomena resulted in the

Doniach criteria, which states that there is a competition between the RKKY and Kondo

e�ect at low temperatures depending on the concentration free carriers (Fig. 1.3) [17]. For

example as the density of the free carriers is increased in the heavy fermion compound by

chemical doping, the conduction band mediated anti-ferromagnetic interaction resulting from

the RKKY e�ect is reduced, which results in an increased Kondo e�ect increasing the Kondo

spin �ip exchange.
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1.4.1 Cerium Volume Collapse

Cerium in its solid form under a large pressure isostructurally collapses to a smaller volume

phase. This is called the cerium volume collapse (CVC). When cerium collapses its volume

is reduced by 18% relative to the large volume phase; this isostructural transition occurs

under large pressure of 1.5 GPa and at a temperature of 480 K. The large volume phase

of cerium is called the γ phase and the small volume phase is called the α phase Fig. 1.4.

Neutron spectroscopy experiments showed that close to the Fermi level a sharp peak in the

intensity occurred in the α phase reminiscent of a Kondo peak which was absent in the γ

phase. The presence of this peak indicated that the KVC was primarly the result of Kondo

quenching of the inner f electron in cerium by the conduction electron. Kondo phenomenon

required that the entropy of the α phase would be zero. Another scenario that was used to

explain the large peak in the spectral data was the Mott transition model. In this model the

electron's kinetic energy in the α phase was smaller than the kinetic energy in the γ phase

which resulted in a Mott insulator; however this picture was not able to explain that the

�xed valence of the 4f level in cerium in both the phases (local moment regime), therefore

this model was rejected. From pressure vs. temperature data used in conjunction with

the Clausius-Clapeyron equation it was possible to extrapolate the change in the entropy

∆Sα,γ as the temperature went to zero as cerium collapsed, and determine which state had

larger entropy and rule in favor of the Kondo or Mott pictures as the deciding factor of the

electronic collapse of cerium. What was found from extrapolating the Clausius-Clapeyron

equations to T = 0 and extracting the entropy of each phase was the following. When

cerium is in the γ phase the angular momentum of cerium given by Hund's rule is J = 5/2,

consequently the entropy of the γ phase is Sγ = kBln(6), and the paramagnetic ground

state is degenerate with magnetization MJ = +5/2, · · · − 5/2. However the entropy in the

α phase was found to be Sα = kBln(1) = 0 indicating that the ground state is in a singlet

|0〉 state which corresponds to the correct ground-state due to Kondo screening of the inner

f electrons by the conduction electrons. These values of entropy indicate strongly that the

reason for the electronic collapse of cerium was primarily due to Kondo screening which

invalidated the collapse as the result of a Mott transition [18]. This explanation of the KVC

is generally accepted, however it was recently found that as the temperature of cerium is

increased that the phonon becomes more active and its contribution to the entropy change

across the transition is nearly half of the electronic contribution ∆Sphonon
α,γ = kBln(3). It

would seem reasonable that at high temperatures that phonon's would become more active
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Figure 1.4: Phase diagram of Cerium in the vicinity of the α↔ γ transition, illustrating that
the slope of the coexistence line separating the small volume phase α from the large volume
phase γ is positive, and therefore using the Clausius Clapeyron equation dP

dT
= ∆Sα,γ

∆Ωα,γ
> 0,

which implies that the entropy change ∆Sα,γ < 0 since the volume collapses gives ∆Ωα,γ < 0.
[After Lipp (2008)][19].

since the speci�c heat due to phonon's is of the form C = AT 3. Consequently one would

expect the electron-phonon interactions to be more relevant at higher temperatures also.

1.5 Breakdown of Perturbation Theory

Strongly correlated systems in condensed matter physics illustrate the breakdown of con-

ventional perturbation theory. This happens because the kinetic energy and the potential

energy due to the large Coulomb correlations between electrons are of the same order of

magnitude, hence there is no small parameter to expand around to �nd the corresponding

eigenenergies of the electrons. In the previous sections both the cuprate superconductors

and the heavy fermion materials su�er from this problem since the physics of these problems

is driven by large Coulomb correlations. In the case of the cuprate superconductors the

ground state of the parent compound is an anti-ferromagnetic Mott insulator at half �lling,

thus large Coulomb correlations between electrons on adjacent sites prevent the electrons
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from hopping. However when the system is doped away from half �lling electrons can hop

from site to site on the lattice. In the case of magnetically doped metals the system is in the

Kondo phase since the RKKY interactions are negligible, and this phase only results from

large Coulomb correlations between the conduction and impurity electrons, thus once again

the kinetic and potential energies are of the same order of magnitude and conventional per-

turbation theory breaks down. These two primary examples of strongly correlated materials

illustrate the need for a non-perturbative method of attack which allows for the analysis of

strongly correlated materials, since conventional methods based on perturbation expansions

about the dominant energy fail. Traditionally in the ordered state after perturbation the-

ory breaks down theorists would resort to a mean-�eld argument with the knowledge of the

groundstate wave function, in this way they were able to obtain a closed set of self-consistent

equations which allowed them to solve for all the properties of the system. The most gen-

eral example of this type is the Bardeen, Cooper and Schrie�er theory of superconductivity

where perturbation theory breaks down. At this point any attempts to understand the

ground-state properties of the cuprate superconductors have been based on two approaches.

Either one can formulate the correct groundstate wave function, as Anderson proposed by

formulating the RVB state and doping it away from half �lling, or one can construct the

appropriate model which describes the doped system and calculate based on a method which

is self-consistent and without a priori knowledge of the groundstate. The latter approach has

become a widespread and useful method that has allowed physicists to uncover the nature of

highly correlated electronic materials, such as cuprate superconductors and heavy fermion

compounds, and the former approach is still an active area of research since the ground state

wave function of the cuprates is not known.

1.6 Dynamical Mean Field Theory

As mentioned in the last section, strongly correlated materials in which the electronic kinetic

and potential energies are of the same order can be analyzed with the use of the non-

perturbative self-consistent method called the Dynamical Mean Field Theory (DMFT) [20].

In DMFT one site within the lattice called the impurity site is singled out and electrons

can hop on and o� of the impurity with a hopping amplitude t and experience a Coulomb

repulsion when two electrons of opposite spin occupy the impurity site at the same time.

When the number of adjacent sites, z, to the impurity site goes to ∞ and the hopping is

scaled in such a way as to keep the kinetic energy �nite t? = t
√
z as z → ∞, a self-consistent
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set of equations are generated which describe the quantum-mechanical probability amplitude

GImpurity(ω) of the electron to be at the impurity. From the information of GImpurity(ω) it is

possible to extract all the physical properties of interest in strongly correlated systems. In

more traditional mean-�eld theories, where the spatial and temporal correlations are frozen

out, the impurity feels the presence of the lattice in a static way. This is not the case within

DMFT, one �nds that the spatial correlations of the impurity still remain frozen out, where

the temporal correlations are preserved hence the name Dynamical Mean Field Theory.

Here I will brie�y outline the self-consistency cycle of DMFT, and the goal is to calculate

the impurity quantum mechanical amplitude GImpurity(ω). In general the self-consistency

requires that the impurity amplitude GImpurity(ω) and the coarse grained lattice amplitude

GLattice(ω) =
∑

kG(k, ω) are the same at the end of the self-consistent calculation, thus

GImpurity(ω) = GLattice(ω). In general what this requirement means is that the impurity and

the lattice are in equilibrium. To achieve equilibrium there is an equation that connects

GImpurity(ω) and GLattice(ω) which is the bath function G(ω), which is calculated from the

Dyson's equation via Σ(ω) = G−1(ω)− G−1
{Impurity or Lattice}(ω), where Σ(ω) is the self-energy

functional which is just the di�erence between the bath function and the impurity or lattice

amplitudes. The following sequence is used to achieve self-consistency in DMFT. First we

calculate the following quantities in the order outlined using Σ(ω) as input:

I . GLattice(Σ(ω))

II . G−1(ω) = G−1
Lattice(ω) + Σ(ω)

III . GImpurity(G(ω))

IV . Σ(ω) = G−1(ω)−G−1
Impurity(ω)

After the �nal step has been completed and a new Σ(ω) has been calculated it is used as

input into the lattice amplitude in step I. GLattice(Σ(ω)) and the process is continued until

convergence is reached at which time GImpurity(Σ(ω)) = GLattice(Σ(ω)). At this point it

is clear how to compute GLattice(ω), G(ω) and Σ(ω); next I will outline how to calculate

GImpurity(ω).

In general GImpurity(ω) can be calculated in a number of di�erent ways. The di�erent

methods used to calculate GImpurity(ω) are the coherent potential approximation (CPA) for

disordered systems, numerical renormalization group method (NRG) and quantum Monte

Carlo (QMC) method. To obtain the ground-state properties of the system NRG is used to

calculate GImpurity(ω), however it is also desirable to know GImpurity(ω) at �nite temperatures

then one would use QMC as the impurity solver.
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1.7 Continuous Time Quantum Monte Carlo

Continuous Time Quantum Monte Carlo (CTQMC) is used in the DMFT cycle to calculate

the impurity amplitude GImpurity(ω) [22, 21]. Monte Carlo methods have been successfully

employed to calculate complicated transcendental integrals of the form I =
∫ b
a f(x)dx nu-

merically for years by randomly sampling the function f(x) over the interval from [a, b] and

arriving at an estimation of I using the mean value theorem I = 1
N

∑N
i f(xi)(b− a), where

xi is randomly distributed in the interval [a, b], or rather xi ε [a, b] and N is the number of

times the function f(x) was sampled in the interval [a, b]. Similarly the impurity amplitude

is also a multidimensional-dimensional integral

GImpurity(τ) =
∞∑
n=0

∫ β

0
dτ1 · · · dτnf(τ1, · · · , τn, τ) (1.1)

where the function f(τ1, · · · , τn, τ) will be explained in a later section and β = 1
kbT

is inverse

temperature. This integral for the impurity amplitude GImpurity(τ) is sampled using Monte

Carlo, where τ and n are randomly sampled in the intervals τ ε [0, β] and n ε [0,∞]. In

practice this integral is calculated at �nite temperature and convergence is achieved when

the average order of the sum
∑∞

n=0 in GImpurity(τ) is given by 〈n〉 ∼ βU where U is the

Coulomb repulsion between two electrons of opposite spin which occupy the impurity at the

same time; when this condition for the average order is satis�ed the Monte Carlo sampling of

GImpurity(τ) has reached thermal equilibrium. After equilibration we calculate the impurity

amplitude GImpurity(ω) by performing the Fourier transform

GImpurity(ω) =
1

β

∫ β

0
GImpurity(τ)e

iωτdτ . (1.2)

1.8 Structure of Thesis

The structure of this thesis will be presented in the following order according to subject mat-

ter. Chapters two through four of the thesis will outline and overview the author's research

on the bimetallic oxalates. Chapters 5 through 7 will overview the author's research on the

cerium volume collapse and chapter 8 will contain the conclusion of the thesis. Appendix A

will contain a detailed derivation of the internal energy; and will also incorporate a derivation

of the high frequency conditioning used to construct Σ(ω).
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Chapter 2

Molecule Based Organic Magnets

2.1 Introduction to Molecule Based Organic Magnetism

Historically magnetism derives from atomic based organic materials composed of transition

metals with a partially �lled d shell (e.g. Fe, Co, Ni), however recently magnetism has

also been found in molecular based inorganic materials. Since magnetic ordering was �rst

reported in hexacyanometallates [23] in 1956 with Tc < 50 K, organic magnets have been syn-

thesized in 1D chains, 2D layered structures and 3D structures which exhibit a wide range of

magnetic transition temperatures which vary from 1 K in nitronylnitroxide radicals to above

room temperature Tc ∼ 400 K in the compound V[TCNE]x [24, 25, 26, 27]. Traditionally

conventional inorganic magnetic materials require expensive metallurgical applications to

fabricate and manipulate their magnetic properties; in contrast the synthesis and fabrication

of organic magnets is based on synthetic organic chemistry methodologies which allows for

an easier construction and manipulation of the underlying properties such as the structure,

electric and magnetic properties of organic magnets. The synthesis of organic magnets is

similar to what is used in the pharmaceutical industry in the preparation of medicines. Since

the basic building blocks of organic magnets are molecules rather than atoms, the main focus

area of study of these materials has come from organic and coordination chemistry, with the-

oretical investigations being carried out by physicists in an e�ort to better understand these

materials from a microscopic view point, in an e�ort to assist in predicting other organic

magnets which hitherto have not been synthesized or characterized. The crystal structure of

the organic magnet and its resulting physical properties depend crucially on the underlying

geometry of the basis molecule, since the magnetic properties of the crystal are molecular

in origin rather than atomic (as in the case of inorganic materials), consequently one can

expect a wide variety of emergent and exotic phenomenan to occur, since molecular inter-

actions are much weaker than atomic interactions. As an example photomagnetic behavior

has been reported in the molecule-based magnet K0.2Co1.4[Fe(CN)6]6.9H2O in which elec-
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tromagnetic waves incident on this material serve to tune the magnetism of this compound

[28, 29]. Organic magnetic materials are one example of a smart material in which the mag-

netic properties can be controlled by the in�uence of an external stimuli such as pressure or

photo-responsiveness, these materials have many applications which will serve to be useful

in the coming years.

This chapter is structured in the following order in an e�ort to outline the magnetic prop-

erties of organic magnets: In section 2.2 we describe how magnetism results in molecule based

magnets from unpaired spins of electrons in atoms, which results in long range magnetic or-

dering in these crystals below a characteristic temperature called the transition temperature

Tc. Section's 2.3 and 2.4 will contain a detailed calculation of the spin wave spectrum of

the Heisenberg ferromagnet and anti-ferromagnet. In section 2.4 we will focus on a particu-

lar class of organic magnets called the bimetallic oxalates which have the chemical formula

A[M(II)M′(III)(ox)3], where M(II) and M′(III) are transition metal ions with valences +2

and +3 respectively that are coupled by an oxalate molecule ox = C2O4 which forms a two

dimensional open-honeycomb lattice, where A is an organic cation perpendicular to the two

dimensional structure [30].

2.2 Magnetic Characterization

Long-range magnetic order in magnetic materials is the result of unpaired electronic spins

residing in the atomic shells and how these unpaired spins in neighboring shells interact

with one another determines the magnetic order of the material. Magnetic ordering in

(e.g. Fe, Co, Ni) and most inorganic magnetic materials depends critically on the overlap

or covalent bonding of the wave functions of unpaired electrons on adjacent sites and the

Pauli exclusion principle. However the traditional magnetic exchange does not seem to

be the case in organic materials since the magnetic atoms with unpaired spins residing

in molecules are well separated and therefore no overlap of the wave-functions results in

the magnetic exchange process, rather the intermediate oxalate molecule in the case of the

bimetallic oxalates or the cations separating the magnetic ions is a necessary component in

order for magnetism to exist in molecular-based magnets. The long-range magnetic behavior

and magnetic coupling J between the unpaired spins in organic magnetics are determined

according to a Curie law [31, 32] which states that the magnetic susceptibility scales as,
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χ =
C

T − θ
. (2.1)

In the case that neighboring spins do not interact and the spin arrangements ↑↓ and ↑↑ or

↓↓ are distributed throughout the material randomly, magnetic ordering can only occur in

the presence of a non-zero magnetic �eld applied to the material. When the �eld is removed

the magnetic order is lost, this type of magnetism is called paramagnetism. Paramagnetism

requires that the Curie temperature θ = 0 since the material does not magnetically order.

The magnetic coupling J is a parameter in the Heisenberg Hamiltonian which describes

the magnetic coupling between adjacent atomic spins −JS · S′, if J > 0 then the adjacent

spins will tend to align parallel ↑↑. We call this ordering ferromagnetic where the Curie

temperature θ > 0. When J < 0 neighboring spins will align anti-parallel ↑↓ and the

resulting magnetic order is called anti-ferromagnitism. In this case the Curie temperature

is negative, θ < 0, and magnetic ordering might occur when T < |θ|. An additional type of

magnetic order may occur when the magnetic exchange coupling J < 0 when neighboring

electronic spins do not exactly cancel, the resulting magnetism is called ferrimagnetic and a

magnetic moment can exist in the ground state and the Curie temperature remains negative

θ < 0 which implies that the magnetic exchange J < 0 is also negative.

In experiments the determination of the variety of di�erent magnetic orderings which

may occur in organic magnets is primarily based on the susceptibility in the presence of

an external magnetic �eld H. Here we brie�y review how to calculate the paramagnetic

susceptibility of a free atom in a magnetic �eld H and how this measurement is the standard

benchmark used to determine other types of magnetism for instance ferromagnetism and

antiferromagnetism arising in other materials.

For a free ion within a solid the total moment can be written as g(JLS)J = L + g0S

, where g0 is the electronic g-factor which has a value close to 2.0023 in most solids, and

g(JLS) is a proportionality constant (which depends on the good quantum numbers (JLS)).

This theorem allows for the calculation of matrix elements of the orbital and spin angular

momentum 〈L+ g0S〉 involving the factor g0 to be calculated in terms of matrix elements of

the total angular momentum operator g(JLS)〈J〉 times the proportionality constant g(JLS)

which is diagonal for the expectation of 〈Jz〉 in the basis |JLSJz〉,

〈JLSJz|Lz + g0Sz|J ′
zSLJ〉 = g(JLS)JzδJz ,J ′

z
(2.2)
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This matrix element will be important in the derivation of the magnetic susceptibility χ of

a free ion.

Now when the free ion is placed into a magnetic �eld Hz which points in the z-direction,

Hz interacts with the z-component of the magnetic moment of the atom µz. The correspond-

ing interacting Hamiltonian is:

Hint = −µzHz

= −g(JLS)µBJzHz, (2.3)

as a consequence of the magnetic �eld Hz the degeneracy of the energy levels in the basis

|JLSJz〉 ranging from {−Jz,−Jz + 1, ... + Jz − 1,+Jz} is removed. µB is the the Bohr

magneton and has the value 0.579× eV/G. To calculate χ we will start from the calculation

of the partition function Z using (2.3) as the Hamiltonian as input,

Z =
+J∑

Jz=−J

e−βγHzJz (2.4)

here β = 1
kBT

is inverse temperature, and γ = g(JLS)µB. This sum in Z is geometric which

can be summed explicitly to give

Z =
eβγHz(J+1/2) − e−βγHz(J+1/2)

eβγHz/2 − e−βγHz/2
. (2.5)

Having calculated the partition function exactly we can now calculate thermodynamic quan-

tities of interest which are the magnetization M and susceptibility χ, by performing the

appropriate derivatives of − lnZ
β

with respect to the external �eld Hz. The magnetization per

unit volume is given by performing one derivative on − lnZ
β

with respect to Hz

M = − N

V β

∂lnZ

∂Hz

=
N

V
γJBJ(βγJHz). (2.6)

Here BJ(x) is called the Brillouin function and is de�ned to be

BJ(x) =
2J + 1

2J
coth(

2J + 1

2J
x)− 1

2J
coth(

1

2J
x). (2.7)

For comparison to experiment we are interested in howM initially varies in the presence of a
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small applied external magnetic �eld Hz such that the system is magnetically perturbed, and

at relatively high temperatures so any tendency for magnetic order is thermally removed. In

particular we want to study the limiting value of (2.6) for the case that γHz � kBT . In this

limiting case the the Brillouin function can be written as

BJ(βγJHz) ≈ J + 1

3J
(βγJHz) +O((βγJHz)

3), (2.8)

inserting this into (2.6) we �nd the limiting form of the magnetization to order O((βγJHz)
3),

M =
N

V

(gµB)
2

3

J(J + 1)

kBT
Hz. (2.9)

The magnetic susceptibility χ is calculated from (2.9) by performing the derivative

χ =
∂M

∂Hz

=
N

V

(gµB)
2

3

J(J + 1)

kBT
(2.10)

which is valid in the limit γHz � kBT . This result for χ in equation (2.10) is called Curie's

law for the magnetic susceptibility of a paramagnetic material in which the magnetic behavior

of the material is induced by the external �eld Hz. The Curie constant C may be deduced

from equation (2.10) to be

C =
N

V

(gµB)
2

3

J(J + 1)

kB
(2.11)

for a paramagnetic material θ = 0, this value of C holds fairly well in insulating crystals and

rare earth ions which have partially �lled f shells, where the resulting angular momentum of

the ion J is not a�ected by the surrounding crystal-�eld environment. In organic paramagnets

Curie's constant is also upheld as long as the crystal-�eld surrounding the magnetic atom

in the molecule does not a�ect the angular momentum of the partially �lled shell of the

magnetic ion; however, as we will demonstrate in a later section, the angular momentum of

the magnetic ion in organic magnets is heavily in�uenced by the crystal-�eld and therefore

the magnetic properties will deviate from that of a free ion.

Here we will overview how ferromagnetic and anti-ferromagnetic coupling between adja-

cent magnetic ions quantitatively di�ers from the Curie-like high-temperature paramagnetic

form of χ found in equation (2.10), where in that case the magnetic ions did not interact.
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In calculating the high-temperature magnetic susceptibility χ in the case of ferromagnetic

and anti-ferromagnetic exchanges between adjacent ions we will �nd that χ diverges at a

characteristic temperature θ 6= 0. The starting point for the calculation of the magnetic

susceptibility χ of ferromagnetic and anti-ferromagnetic ordering is the Heisenberg Hamil-

tonian in the presence of a magnetic �eld oriented along the z-axis Hz; this model describes

the magnetic exchange Ji,j between neighboring ion's, and each ion spin interaction with the

magnetic �eld

H = −
∑
i,j

Ji,jSi · Sj − gµBHz

∑
i

Sz,i,. (2.12)

If the magnetic exchange is positive, Ji,j > 0, then spin alignment between neighboring

ions will be parallel. If the magnetic exchange is negative, Ji,j < 0, then the spin alignment

between neighboring spins will favor anti-parallel alignment. To extract the high-temperature

magnetic susceptibility from the Heisenberg Hamiltonian in (2.12) we use mean-�eld theory

which isolates a particular spin at a lattice site Si which allows for the determination of

the magnetic properties of a single-site Hamiltonian, rather than solving the intractable

problem of diagonalizing the N site problem that (2.12) poses, where N is a number the

order of 0.6022 × 1024 atoms per mole (Avogadro's number). The mean-�eld Hamiltonian

for the single site problem at site i is

Hint,i = −Si ·
(∑

i 6=j

Ji,jSj + gµBHzz
)

= −gµBSi ·Heff . (2.13)

One will notice the close resemblance between the e�ective Hamiltonians in equation (2.3)

and (2.13). Consequently in order to calculate the magnetization M using our mean-�eld

Hamiltonian in equation (2.13) just requires that we replace Hz in equation (2.6) by Heff .

Then the high-temperature expansion of M within mean-�eld theory requires that we take

the limit γHeff � kBT which results in the same equation as (2.9) with Hz replaced with

Heff , and the magnetic susceptibility χ follows by constructing the ratio M
Hz
. Before calculat-

ing these quantities we need to make a mean-�eld argument that justi�es the linearization of

equation (2.13) into a single-site problem. This requires replacing Sj in Heff by its average

value which is related to the magnetization per unit volume M via the relation

〈Sj〉 =
V

N

M

gµB

. (2.14)
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Notice that the right hand side of (2.14) does not depend on the lattice site. The e�ective

interaction Heff can be written in the following way using (2.14)

Heff = Hz +
1

gµB

∑
j 6=i

Ji,j〈Sj〉

= Hz +
V

N

M

(gµB)2
∑
j 6=i

Ji,j

= Hz + λM (2.15)

where λ = V
N(gµB)2

∑
j 6=i Ji,j. In the high temperature limit γHeff � kBT within mean-�eld

theory M can be calculated from (2.9) with the replacement that Hz ⇒ Heff therefore the

mean-�eld magnetization depends on itself

M =
C

T
(Hz + λM) (2.16)

solving for M we �nd

M =
CHz

T − Cλ
. (2.17)

Therefore the magnetic susceptibility is given by

χ =
M

Hz

=
C

T − Cλ

=
C

T − θ
, (2.18)

where χ diverges at the critical temperature Tc = θ = Cλ. The critical temperature Tc for

which χ diverges depends critically on the value and sign of the magnetic exchange Ji,j; three

cases may arise as illustrated in the following table,

Tc =


θ > 0 if Ji,j > 0 ⇒ Ferromagnetic

θ = 0 if Ji,j = 0 ⇒ Paramagnetic

θ < 0 if Ji,j < 0 ⇒ Anti− Ferromagnetic.

Magnetic characterization of organic magnets where the magnetism results from the mag-

netic exchange Ji,j between localized atomic spins mediated by an intermediate oxalate

molecule makes use of the magnetic susceptibility χ in (2.18) extensively to properly deter-
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Figure 2.1: Plots of the inverse of the high temperature magnetic susceptibility χ−1 for
the case that magnetic exchange between atoms favors anti-parallel spin alignment (Anti-
Ferromagnetism) in this case the critical temperature θ < 0, in the case that no magnetic
exchange occurs between atoms (Paramagnetism) θ = 0, and when the magnetic exchange
between atoms favors parallel alignment (Ferromagnetism) the transition temperature is
given by θ > 0.

mine magnetic coupling and ultimately the onset of long-range magnetic behavior in these

materials. Experimentally a rough estimate of the critical transition temperature Tc = θ

and the magnetic ordering is determined by evaluating the inverse of the high-temperature

magnetic susceptibility χ−1 data which is compared against Figure 2.1 to determine whether

the material tends to order ferromagnetically, para-magnetically or anti-ferromagnetically.

2.3 Spin Waves

The low lying excitations in the ferromagnetic and antiferromagnetic Heisenberg model are

called spin waves and are of interest since they allow for the direct comparison to neutron

di�raction experiments of materials. In the next couple of sections we will calculate the spin

wave excitation spectrum in the ferromagnetic Heisenberg model and we will discover that the

excitation spectrum is quadratic, ω(k) ∼ k2. Also we will calculate the anti-ferromagnetic
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spin wave excitation spectrum and �nd it has a linear excitation relation ω(k) ∼ k. The

di�erences in the two spin wave excitation spectrums are a direct consequence of di�erent

magnetic exchanges in the ferromagnetic and anti-ferromagnetic case and this results in

di�erent thermodynamic properties between ferromagnetic and anti-ferromagnetic materials.

For example the speci�c heat of a ferromagnet will obey the Bloch law at low temperatures

T 3/2 and in the anti-ferromagnetic case will have the resulting form T 3.

2.3.1 Spin-Waves in the Ferromagnetic Heisenberg Model

Here we will calculate the spin wave excitation spectrum of the Heisenberg model by per-

forming a Holstein-Primako� transformation. The Heisenberg Hamiltonian in the presence

of an external magnetic �eld oriented along the z-direction has the following form

H = −J
∑
j,δ

Sj · Sj+δ − 2µ0H0

∑
j

Sjz. (2.19)

Here −J corresponds to ferromagnetic exchange between two adjacent atoms in the lattice,

the sum over j runs over all lattice sites and δ is summed over all the nearest neighbors sites;

the term Sj ·Sj+δ represents the spin interaction between the atom at site j with spin Sj and

the nearest neighbor site Sj+δ. µ0 is the magnetic moment of the atom with spin Sjz and

H0 is an external magnetic �eld which introduces anisotropy into the systems which serves

to break the spin symmetry.

The �rst step to calculate the excitation spectrum is to write the Hamiltonian in (2.19)

in terms of the independent operators S+, S−, Sz. This is possible since

S+
j = Sjx + iSjy

S−
j = Sjx − iSjy. (2.20)

Using S+
j and S−

j it is possible to invert these equations to solve for Sjx and Sjy and insert

them into (2.19)

Sjx =
1

2
(S+

j + S−
j )

Sjy =
1

2i
(S+

j − S−
j ) (2.21)

Using this representation for Sjx and Sjy in (2.19) the Heisenberg Hamiltonian has the
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following form

H = −J
∑
j,δ

{1
2
(S+

j S
−
j+δ + S−

j S
+
j+δ) + SzjSzj+δ} − 2µ0H0

∑
j

Sjz. (2.22)

Next we employ the Holstein-Primako� transformation of S+
j , S

−
j and Szj

S+
j =

√
2S(1−

a†jaj

2S
)
1
2aj

S−
j =

√
2Sa†j(1−

a†jaj

2S
)
1
2

Szj = S − a†jaj, (2.23)

into the bosonic variables a†j and aj, which satisfy bosonic commutation properties

[aj, a
†
l ] = δj,l. (2.24)

At low temperatures the number of magnons that are thermally excited is small so the ratio

< a†jaj > /S << 1 and therefore equations of S+
j and S−

j simplify

S+
j =

√
2Saj

S−
j =

√
2Sa†j. (2.25)

Performing the Fourier transform we �nd the following forms for S+
j , S

−
j and Szj

S+
j =

√
2S

N

∑
k

e−ik·xjbk

S−
j =

√
2S

N

∑
k

eik·xjb†k

Szj = S − 1

N

∑
kk′

ei(k−k′)b†kbk′ . (2.26)

Here S is the spin of the atoms in the lattice. Inserting equations (2.26) into the Hamiltonian

(2.19) and performing the sum over the lattice and nearest neighbor sites we obtain the

Fourier transformed Hamiltonian

H =
∑
k

{2JzS(1− γk) + 2µ0H0}b†kbk
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=
∑
k

ω(k)b†kbk. (2.27)

Here we see that the spin wave spectrum has the following form

ω(k) = 2JzS(1− γk) + 2µ0H0. (2.28)

Here γk = 1
z

∑
δ e

ik·δ. In the long wave length limit k ∼ small number and the eik·δ can be

expanded for a square lattice to give 1− (ka)2. So in the limit that the external �eld is set

to zero, H0 = 0, the spin wave excitation becomes

ω(k) = 2JzS(ka)2. (2.29)

When the external �eld is H0 6= 0 we see that as k → 0 that ω(0) = 2µ0H0; in this case there

exists a gap in the spin wave spectrum, therefore in order to excite a spin wave would require

an energy of 2µ0H0 to be applied by the external agent. Here we see that the spin wave

dispersion for the ferromagnetic exchange coupling has a quadratic dispersion in the spin

wave momentum k in the long wavelength limit. When the speci�c heat is calculated using

this dispersion relation one �nds that the speci�c heat of a ferromagnet at low temperature

obeys the Bloch law

C = aT 3/2. (2.30)

2.3.2 Spin-Waves lin the Antiferromagnetic Heisenberg Model

In this section we calculate the spin wave excitation spectrum of the Heisenberg Anti-

ferromagnetic Hamiltonian given by

H = J
∑
j,δ

Sj · Sj+δ − 2µ0H0

∑
j

Sa
jz + 2µ0H0

∑
j

Sb
jz. (2.31)

In this equation the superscripts on Sa
jz and Sb

jz represent the z-component of the spin of

sub-lattice a and b. In the case of antiferromagnetism the total spin S of sublattices a and

b are the same, thus the anti-ferromagnetic order does not reveal itself as a magnetic �eld

as in the case of the ferromagnet, since the spin of ions at adjacent lattice sites cancel.

All the terms in this Hamiltonian are equivalent to the ferromagnetic case with the same

understanding except the sign on the magnetic exchange is positive to re�ect that magnetic

exchange interaction between ions is positive in the case of antiferromagnetism. So to extract
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the low lying elementary spin wave excitations we need to perform exactly the same steps

as was done for the ferromagnet, however we need to keep track of the sub-lattice spin.

In order to achieve this we to transform equation (2.31) into the variables S+
aj, S

−
aj, S

a
zj

and S+
bj, S

−
bj, S

b
zj. This is possible using the relations

Sa
jx =

1

2
(S+

aj + S−
aj)

Sa
jy =

1

2i
(S+

aj − S−
aj)

Sb
jx =

1

2
(S+

bj + S−
bj)

Sb
jy =

1

2i
(S+

bj − S−
bj)

(2.32)

Inserting these values into (2.31) we �nd that the Hamiltonian has the following form

H = −J
∑
j,δ

{1
2
(S+

ajS
−
bj+δ + S−

ajS
+
bj+δ) + Sa

zjS
b
zj+δ}

− 2µ0H0

∑
j

Sa
jz + 2µ0H0

∑
j

Sb
jz. (2.33)

Next we perform the Holstein-Primako� transformation using the Fourier representation of

S+
aj · · ·Sb

jz

S+
aj =

√
2S

N

∑
k

e−ik·xjck

S−
aj =

√
2S

N

∑
k

eik·xjc†k

S+
bj =

√
2S

N

∑
k

e−ik·xjd†k

S−
bj =

√
2S

N

∑
k

eik·xjdk

Sa
jz = S − 1

N

∑
kk′

ei(k−k′)c†kck′

Sb
jz = −S +

1

N

∑
kk′

e−i(k−k′)d†kdk′ . (2.34)

Inserting these expressions into (2.33) and performing the sum over the j and δ we obtain
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the following expression for the Hamiltonian in momentum space,

H = 2JzS
∑
k

{A1(k)(ckdk + c†kd
†
k) + (A2 + A3)(c

†
kck + d†kdk)}. (2.35)

Here we have de�ned

A1(k) = 2JzSγk (2.36)

A2 = 2JzS (2.37)

A3 = 2µ0H0. (2.38)

The Hamiltonian in equation (2.35) is not in diagonal form. To diagonalize it we use the

equation of motion technique where we de�ned

i
duk
dt

= [uk, H] =Mk uk = ωkuk, (2.39)

here uk and Mk are de�ned by

uk =

 ck

d†k

 (2.40)

Mk =

 A2 + A3 A1(k)

−A1(k) −(A2 + A3)

 . (2.41)

To calculate the eigen-frequencies from (2.39) we calculate Det(Mk − Iωk) and we �nd that

the eigen-frequencies are given by

ωk =
√
(A2 + A3)2 − A1(k)2

=
√
(2JzS + 2µ0H0)2 − (2JzSγk)2. (2.42)

Just as in the case of the ferromagnetic on a square lattice when k → 0 one should expect

a spin gap to appear of the order 2µ0H0. In the case that the external �eld is zero, H0 = 0,

then 2.42 reduces to the following form

ωk = 2JzS
√
1− γ2k. (2.43)
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For a square lattice in the long wavelength limit this formula reduces to

ωk = 2JzS(ka). (2.44)

We obtained the very important result that the spin wave dispersion for an anti-ferromagnet

is a linear function of the spin wave momentum k, which is very di�erent from the quadratic

behavior in the ferromagnetic case. In addition using the anti-ferromagnetic spin wave dis-

persion one can show that the heat capacity of an anti-ferromagnetic will have the following

form

C = BT 3. (2.45)

2.4 Bimetallic Oxalates

The Bimetallic Oxalates are one particular family of organic magnets which have the chemi-

cal formula A[M(II)M′(III)(ox)3], where A is an organic cation that separates the negatively

charged hexagonal metallic layers and M(II) and M′(III) are transition metal ions with va-

lences of plus +2 and +3 respectively, and are separated by an oxalate molecule, ox = C2O4.

Magnetic exchange occurs between M(II) and M′(III) and the sign of the exchange depends

critically on the choice of the transition metal ion M(II) and M′(III); the magnetic exchange

can be either ferromagnetic or antiferromagnetic. Early theoretical attempts to better un-

derstand these materials was �rst carried out by Fishman and Reboredo on the ferrimagnetic

bimetallic oxalate compound Fe(II)FeIII which exhibits a magnetization reversal, where the

direction of the magnetization changed at a temperature of 28K below the ferrimagnetic

transition temperature of 45K. Modeling the bimetallic oxalate Fe(II)FeIII Fishman and Re-

boredo considered a model Hamiltonian that incorporated the e�ects of the crystal �eld due

to the ox = C2O4 molecule which changed the orbital angular momentum of the Fe(II) ion.

This model also incorporates the e�ects of the ferrimagnetic exchange JSII · SIII coupling

between the two ions and the e�ect of spin-orbit coupling λLII · SII on the Fe(II) ion [33].

To successfully capture the magnetization reversal in the bimetallic oxalates Fe(II)FIII the

inclusion of the crystal-�eld and spin-orbit coupling of about the Fe(II) ion was only relevant

because the angular momentum of Fe(II) and Fe(III) ions given by Hund's rule were LII = 2

and LIII = 0, therefore any crystal-�eld induced e�ect on Fe(III) could be neglected. X-ray

di�raction measurements data showed that the oxygen atoms around Fe(II) ion formed a
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triangle above and below the ion that were rotated by 48◦ from one another. From the sym-

metry of the crystal-�eld environment around the Fe(II) ion it was possible to construct the

crystal-�eld potential V (ρ, θ, φ). After constructing the crystal-�eld potential Fishman and

Reboredo formulated the matrix Hamiltonian Hcf = 〈m|V (ρ, θ, φ)|m〉 where m = 0,±1,±2

which they diagonalized and found a pair of degenerate low-energy orbital doublets |ψ1,2〉
with energies ε1,2 = ε0 = ((γ + γ′)− r)/2, where γ, γ′ and r were non-zero overlap integrals

of the crystal-�eld potential constructed in the Hilbert space of |m〉. These states also had a

non-zero value associated with the z component of the orbital angular momentum calculated

from the matrix elements

〈ψ1|Lz|ψ1〉 = −〈ψ2|Lz|ψ2〉

=
2|α|2 − (γ − γ′)2 − (γ − γ′)r

4|α|2 − (γ − γ′)2 + (γ + γ′)r
. (2.46)

It was found that the crystal-�eld induced angular momentum Lcf
z = |〈ψ1|Lz|ψ1〉| of Fe(II)

would vary from unquenched (Lcf
z = 2) to completely quenched (Lcf

z = 0) values depending

on the strength of the crystal-�eld. It was argued that if the temperature T << |ε0| then
the orbital double would have a lower energy than the singlet state |0〉 and therefore the

ground-state of Fe(II) in the presence of the crystal-�eld would be the low energy doublet

|ψ1,2〉 which would have a non-zero value of angular momentum Lcf
z 6= 0 in the presence of

the crystal-�eld.

The total magnetizationM =MII+MIII was calculated in the low energy subspace ε0 < 0

and Lcf
z > 0 where the magnetization of Fe(II) ion was MII = 〈2Sz +Lz〉 and magnetization

of MIII = 2〈Sz〉. The magnetization was calculated with the use of the reduced mean-�eld

Hamiltonians associated with the Fe(II) and Fe′(III) ions HII = λL · S + 3JSII · 〈SIII〉
and HIII = 3JSIII · 〈SII〉 respectively. Both Hamiltonians are diagonal in the subspace

of |ψ1, σ〉 σ = 0,±1,±2. The energy of 〈HII〉 in the state |ψ1, σ〉 was found to be ε1σ =

ε0 + (λLcf
z + 3JMIII)σ and in |ψ2, σ〉 the energy was ε1σ = ε0 + (−λLcf

z + 3JMIII)σ. The

anisotropy due to the crystal �eld lifted the degeneracy of the low energy subspace |ψ1,2, σ〉.
The ensemble average of MII was constructed with the use of ε{1,2},σ, however these energies

depend on the magnetization MIII which was calculated using the Brillioun function since

this site does not depend on spin-orbit coupling MIII(T ) = 2SIIIBSIII
(−3SIIIJ〈SII

z 〉/T ).
The total magnetization is calculated using the formula Mavg = (MII +MIII)/2 = (|MII | −
|MIII |)/2, since MII(MIII) and MIII(MII) require that MII and MIII be calculated self-

consistently. Within this mean-�eld calculation they found that for spin-orbit coupling λ =
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−8J and for the crystal-�eld angular momentum of Fe(II) between the values 0.54 < Lcf
z <

1, magnetization reversal was possible. This work indicated that the e�ect of the crystal

�eld and spin-orbit interactions were responsible for the magnetization reversal observed in

Fe(II)Fe(III).

Finally a Holstein-Primako� transformation was performed on the ferrimagnetic Hamil-

tonian in the presence of the crystal-�eld of the Fe(II) ion in an e�ort to extract the spin-wave

gap of these materials and it was found to be [34]

∆sw = λLcf
z /2− 3J(SIII − SII)/2

+ {9J2(SIII − SII)
2 + (λLcf

z )2 − 6λLcf
z J(SIII + SII)}1/2/2. (2.47)

Using this equation in conjunction with the values of Lcf
z in the region of magnetic compen-

sation they were able to predict the value of the spin-wave gap in Fe(II)Fe′(III) which was

found to be the order of ∆sw ≈ 1.65meV.

In chapters 3 and 4 the author extends the research of Fishman and Reboredo in an e�ort

to predict magnetic reversal in other compounds with the bimetallic oxalate structure that

have the the chemical formula A[M(II)M′(III)(ox)3] by considering various combinations of

transition metals M(II) and M′(III) ions . The extension involved incorporating spin-orbit

coupling on both the M(II) and M′(III) ions. We found that there are a number of other

bimetallic oxalates that should exhibit magnetic reversal and possess a large spin-wave gap

due to the anisotropy of the crystal-�eld situated around the M(II) and M(III) ions.
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Chapter 3

Magnetic Compensation in the

Bimetallic Oxalates

3.1 Introduction

Bimetallic oxalates 1 are layered molecule-based magnets with either ferromagnetic or antifer-

romagnetic interactions between transition metals M(II) and M'(III) on an open honeycomb

lattice. Some Fe(II)Fe(III) bimetallic oxalates exhibit magnetic compensation (MC) at a

compensation temperature Tcomp ≈ 30 K below the ferrimagnetic transition temperature

Tc ≈ 45 K. To see if MC is possible in other bimetallic oxalates, we construct a theoretical

model for bimetallic oxalates that exhibit antiferromagnetic interactions. By varying the

M(II) and M'(III) average orbital angular momentum, which can be controlled by the choice

of interlayer cations, we �nd regions of MC in the families M(II)Mn(III) with M = Fe, Co,

or Ni and V(II)M'(III) with M' = Cr or V but not in the family M(II)Ru(III) with M = Fe

or Cu.

One of the most intensively-studied molecule-based magnets, the bimetallic oxalates [50,

36] are isostructural layered compounds with the chemical formula A[M(II)M'(III)(ox)3],

where M(II) and M'(III) are transition-metal ions with valences +2 and +3. Coupled by the

oxalate molecules ox = C2O4, M(II) and M'(III) form the open honeycomb lattice sketched

in the inset to Fig.1. While the organic cation A between the bimetallic layers a�ects the

overall properties of the material, it does not change the sign of the magnetic interactions

between M(II) and M'(III), which can be either ferromagnetic or antiferromagnetic (AF)

with moments pointing out of the layer.

When the magnetic interactions are AF, the moments on the M(II) and M'(III) sublat-

tices may cancel at a compensation temperature Tcomp below the ferrimagnetic transition

temperature Tc. Magnetic compensation (MC) has been extensively documented in the

Fe(II)Fe(III) compounds [37, 38, 39, 40, 41], where it occurs only for certain cations A.

1This chapter �rst appeared as: P. Reis, et al., Phys. Rev. B, 77, 174433 (2008). c© APS. From the
website of the American Physical Society (APS).
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Fe(II)Fe(III) compounds that exhibit MC are reported to have higher values of the transi-

tion temperature Tc ≈ 45 K and of the Curie-Weiss constant C, with Tc ≈ 30 K [38]. In

earlier papers [58], two of us developed a model that explains the appearance of MC in some

Fe(II)Fe(III) compounds. In the present paper, we investigate three families of bimetallic

oxalates where the AF interactions permit MC but MC has not yet been observed. We

conclude that MC is possible in the M(II)Mn(III) (M = Fe, Co, or Ni) [9] and V(II)M'(III)

(M' = Cr or V) [55] families but not in the M(II)Ru(III) (M = Fe or Cu) [44] family.

Strong experimental evidence indicates that the coupling between layers is not primarily

responsible for the magnetic ordering of the bimetallic oxalates. In Fe(II)Fe(III) bimetallic

oxalates with A = N(n-CnH2n+1)4, the separation l between bimetallic layers grows from 8.2

Å to 10.2 Å as n increases from 3 to 5 [38]. If the magnetic order depended on the coupling

between the layers, then Tc would decrease as n increases from 3 to 5 rather than increasing

from 35 to 48 K. Perhaps even more compelling is the observation [45, 46] that the magnetic

s = 1/2 cation FeCp∗2 (Cp∗ = pentamethylcyclopentadienyl) hardly changes the transition

temperature and coercive �eld of a wide range of bimetallic oxalates. Therefore, some mecha-

nism besides interlayer coupling is needed to explain the magnetic ordering of well-separated

bimetallic layers. Recent studies of Fe(II)Fe(III) compounds [58] demonstrated that the

spin-orbit coupling on the Fe(II) (3d6) sites can produce long-range magnetic order even for

isolated two-dimensional layers. On the other hand, the spin-orbit coupling sums to zero on

the Fe(III) (3d5) sites.

We now extend that model to treat a more general class of bimetallic oxalates, where

the spin-orbit coupling a�ects both the M(II) and M'(III) moments. The susceptibility

measurements [9, 39, 55] discussed below reveal that the orbital angular momentum of most

bimetallic oxalates is incompletely quenched. MC occurs if the M(II) or M'(III) ions initially

order more rapidly with decreasing temperature, due to their stronger spin-orbit coupling,

than the M'(III) or M(II) ions with the larger saturation moments. So within our model,

spin-orbit coupling is responsible for both the two-dimensional order of well-separated layers

and the MC within a single bimetallic layer. The cation A can change the magnitude of

the spin-orbit coupling, which depends sensitively on the crystal-�eld potential, but not the

sign of the magnetic interaction between M(II) and M'(III), which depends on the overlap

between the metal and oxalate wavefunctions within a single plane. As demonstrated shortly,

the spin-orbit interaction is also responsible for the perpendicular magnetic anisotropy of the

bimetallic oxalates.
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3.2 Hamiltonian

The Hamiltonian for the bimetallic oxalates is assumed to contain three tiers of energies.

Because the spin correlations within each 3d ion are strong, we assume that Hund's �rst

rule is obeyed. So as con�rmed by measurements [9] of the magnetic susceptibility and

Curie constant C, the lowest-energy multiplet is in a high-spin state. The crystal-�eld

potential produced by the six oxygen atoms surrounding each 3d ion is the next largest

energy, inducing a splitting of the L = 2 multiplet. However, due to the larger spatial extent

of their wavefunctions, 4d transition metals such as Ru manifest stronger crystal-�eld e�ects

which favor a low-spin state [44]. The weakest energies are the AF exchange JcS2 ·S3 between

the ions and the spin-orbit coupling λiLi · Si (i = 2 or 3) on each metal ion. Also included

within this lowest energy scale are contributions to the crystal-�eld potential that violate C3

symmetry around the M(II) or M'(III) sites.

Surrounding each M(II) and M'(III) ion are six oxygen atoms that form a heavily-

compressed octahedron with C3 symmetry. Based on symmetry grounds, the crystal-�eld

potential can be expressed as the matrix [58]

Hcf =



γ 0 0 α 0

0 γ′ 0 0 −α
0 0 0 0 0

α∗ 0 0 γ′ 0

0 −α∗ 0 0 γ


, (3.1)

where the �ve-fold degenerate d-orbitals are used as the basis and a diagonal matrix has

been subtracted. The parameters γ, γ′ and α depend on the crystalline �eld at the M(II)

and M'(III) sites, which in turn depends on the positions and ionic states of the surrounding

oxygens.

Upon diagonalizing Hcf , we obtain two sets of degenerate doublets |ψ1,2〉 and |ψ4,5〉 and
a singlet |ψ3〉 [58]. The doublets can be higher or lower in energy than the singlet depending

on the crystal-�eld parameters γ/|α| and γ′/|α|. As shown in Fig.3.1, the singlet has the

highest energy below the bottom left curve γγ′ = −|α|2 and the lowest energy above the top

right curve γγ′ = |α|2. It lies between the two doublets in the central region. In addition,

Fig.3.1 displays lines of constant orbital angular momentum for both doublets: 〈ψ1|Lz|ψ1〉
and 〈ψ4|Lz|ψ4〉 = 1 − 〈ψ1|Lz|ψ1〉, both of which only depend on the ratio (γ − γ′)/|α|
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Figure 3.1: (Color online) Variation of the orbital angular momentum 〈Lz〉 of the two dou-
blets due to the crystal-�eld at the transition metal ion. The diagonal lines correspond to
constant values of 〈ψ1|Lz|ψ1〉 (upper-right value) and 〈ψ4|Lz|ψ4〉 (lower-left value). Three
possible electronic con�gurations depend on γ/|α| and γ′/|α|. Points of octahedral symmetry
are indicated by the two dots, located on the curved boundaries where the singlet and one
of the doublets are degenerate. Inset in the lower right is a portion of the open-honeycomb
structure of a single bimetallic layer.

[58]. For example, the black circle in Fig.3.1 located at γ/|α| = −0.5 and γ′/|α| = 1.25

corresponds to the values 〈ψ1|Lz|ψ1〉 = 1.5 and 〈ψ4|Lz|ψ4〉 = −0.5. Due to time-reversal

symmetry 〈ψ2|Lz|ψ2〉 = −〈ψ1|Lz|ψ1〉 and 〈ψ5|Lz|ψ5〉 = −〈ψ4|Lz|ψ4〉 within each doublet. In

this electronic con�guration it is possible for any combination of M(II) and M'(III) transition

metal ions to occupy the low energy doublet, such that the the ground state of these ions

in the presence of the crystal �eld has an uncompensated spin, which is ferrimagnetically

coupled to its neighboring spin.

The valence electron con�guration, Spin and spin-orbit coupling constants in units of

(meV), for M(II) and M(III) transition metal ions are listed in the following table.
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ion n S λ[meV]

V3+ 3d2 1 12.89

Cr3+ 3d3 3/2 11.28

V2+ 3d3 3/2 6.94

Mn3+ 3d4 2 10.91

Fe2+ 3d6 2 -12.64

Co2+ 3d7 3/2 -21.94

Ni2+ 3d8 1 -40.29

Cu2+ 3d9 1/2 -102.78

Ru3+ 4d5 1/2 (low

spin)

116.54

The occupation of the cyrstal-�eld levels is assumed to follow Hund's �rst rule and the

Aufbau principle with the L = 2 levels �lling independently [47]. The orbital con�gurations,

spins, and spin-orbit coupling constants λ [48] for the transition metals studied in this paper

are summarized in Table I. Using mean-�eld (MF) theory to treat the exchange interaction

JcS2 · S3, the Hamiltonians on the M(II) and M'(III) sites can be written

H2 = λ2L2 · S2 + 3Jc〈S3z〉S2z, (3.2)

H3 = λ3L3 · S3 + 3Jc〈S2z〉S3z. (3.3)

The spin-orbit and exchange interactions are assumed to be much smaller than the

crystal-�eld splittings. Therefore, each Hamiltonian can be restricted to a con�guration

where one doublet, carrying an average orbital angular momentum L2 or L3, is occupied by

an odd number of electrons. We can treat the case where each doublet is occupied by an

even number of electrons by setting L2 or L3 to zero. Of course, 〈Li〉 is only nonzero along

the z direction perpendicular to the bimetallic planes.

To demonstrate this approach, consider again the black circle in Fig.1. For a Mn(III)

(3d4) ion with these crystal-�eld parameters, the upper doublet |ψ4,5〉 would contain a single

electron so that L3 = 0.5. But for a Ni(II) (3d8) ion with the same crystal-�eld parameters,

the lower doublet |ψ1,2〉 would be completely �lled by 4 electrons and the upper doublet

|ψ4,5〉 would be half �lled by 2 electrons (both in the same spin state) so that L2 = 0. Since

the ratios γ/|α| and γ′/|α| will be di�erent on the M(II) and M'(III) sites, L2 and L3 are

independent of each other. Because 〈ψ1,2|L±|ψ1,2〉 = 〈ψ4,5|L±|ψ4,5〉 = 0, the matrix elements
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of L2 ·S2 and L3 ·S3 on the M(II) and M'(III) sites are diagonal with 〈ψi; σ2|L2 ·S2|ψi;σ2〉 =
±L2σ2 and 〈ψi;σ3|L3 · S3|ψi;σ3〉 = ±L3σ3, where σ2 and σ3 are the z components of the

spin for the M(II) and M(III)' ions. So the eigenvalues of H2 and H3 are ε±2σ2
= (±λ2L2 +

3Jc〈S3z〉)σ2 and ε±3σ3
= (±λ3L3 + 3Jc〈S2z〉)σ3.

The magnetic moments M2(T ) = 〈2S2z + L2z〉 and M3(T ) = 〈2S3z + L3z〉 on the M(II)

and M'(III) sites are evaluated self-consistently. The average magnetization is then given

by Mavg(T ) = (M2(T ) +M3(T ))/2, where we adopt the convention that M3(T ) > 0. The

magnetic moment M2(T ) is obtained from the equations

〈S2z〉 =
2

Z2

∑
σ2

σ2e
−3Jc〈S3z〉σ2/T cosh (λ2σ2L2/T ), (3.4)

〈L2z〉 = −2L2

Z2

∑
σ2

e−3Jc〈S3z〉σ2/T sinh(λ2σ2L2/T ), (3.5)

Z2 = 2
∑
σ2

e−3Jc〈S3z〉σ2/T cosh(λ2σ2L2/T ). (3.6)

Of course, M3(T ) is obtained by switching λ2 ↔ λ3, L2 ↔ L3, σ2 ↔ σ3, and 〈S2z〉 ↔
〈S3z〉.

We evaluate the critical temperature Tc by linearizing 〈S2z〉 and 〈S3z〉, which results in

the expression

(
Tc
Jc

)2

= 9

∑
σ2

σ2
2 cosh

(λ2σ2L2

Tc

)
∑
σ2

cosh
(λ2σ2L2

Tc

)

×

∑
σ3

σ3
2 cosh

(λ3σ3L3

Tc

)
∑
σ3

cosh
(λ3σ3L3

Tc

) . (3.7)

This relationship must be solved self-consistently for Tc/Jc, which appears on both sides of

Eq.(3.7). In the limit S2 = 2, S3 = 5/2, and L3 = 0, Eq.(3.7) reduces to an earlier result

[58] for the Fe(II)Fe(III) bimetallic oxalates. As T → Tc from below, M2, M3, and Mavg all

vanish within MF theory as (Tc − T )1/2. As T → 0, 〈S2z〉 → −S2, 〈S3z〉 → S3, whereas

M0 ≡ limT→0Mavg(T ) depends on the signs of λ2 and λ3. There are four possibilities:
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Figure 3.2: (Color online) MC regions for the family M(II)Mn(III) with M = Ni (region 1),
Co (region 2), or Fe (region 3) plotted as a function of the average orbital angular momenta
L2 and L3.
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3.3 Magnetic Compensation

To �nd the regions of MC, we use the conditions that eitherMavg(T ) changes sign near Tc or

Mavg(T ) vanishes at T = 0. MC regions are indicated in Fig.3.2 for the family M(II)Mn(III)

with M = Ni, Co, or Fe [9], denoted by the labels 1, 2 and 3, respectively. Fig.3.3 shows

MC regions 4 and 5 for the family V(II)M'(III) with M' = Cr or V, respectively. The

straight lines bordering the MC regions indicate that M0 = 0, which implies that the zero-
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Figure 3.3: (Color online) MC regions for the family V(II)M'(III) with M' = Cr (region 4)
or V (region 5) plotted as a function of the average orbital angular momenta L2 and L3.

temperature sublattice moments exactly cancel. The MC regions above and below these

lines are classi�ed by their saturation values, with M0 > 0 (below) when |M3(0)| > |M2(0)|
and M0 < 0 (above) when |M2(0)| > |M3(0)|. Curved boundaries indicate the onset of MC

near Tc. Consequently, Tcomp is small near the straight boundary and approaches Tc near

the curved boundary.

In Fig.3.2, the MC regions for Co(II) and Ni(II) have similar shapes but region 2 is shifted

with respect to region 1 due to the larger spin S2 = 3/2 for Co(II) compared to S2 = 1 for

Ni(II). Since Mn(III) has a spin of S3 = 2 and both Co(II) and Ni(II) have negative values

for λ2 (implying that L2 and S2 tend to be parallel), a smaller value of L2 is required for

MC in the Co(II)Mn(III) compound. MC for Ni(II) and Co(II) occurs in regions 1a and 2a

with M0 > 0 and in regions 1b and 2b with M0 < 0. In regions 1a and 2a with M0 > 0,

the Ni(II) and Co(II) moments are greater than the Mn(III) moment close to Tc; in regions

1b and 2b with M0 < 0, the Mn(III) moment dominates close to Tc. In Fig.3.4, we plot the

average magnetization for Co(II)Mn(III) compounds with L2 = 0.5 and L3 = 0.0, 0.26, or

0.52, traversing region 2a. The MC regions are distributed in an odd fashion with respect

to the M0 = 0 line because λ2 and λ3 have opposite signs. Because both Fe(II) and Mn(III)
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Figure 3.4: (Color online)Mavg versus T/Tc for Co(II)Mn(III) compounds with L2 = 0.5 and
L3 = 0.0 (solid), 0.26 (dashed), and 0.52 (dash-dotted), which traverse region 2a in Fig.3.2.

have the same spin S2 = S3 = 2, MC region 3 for Fe(II) in Fig.3.2 is restricted to small values

of L2. SinceM0 < 0, the Mn(III) moment (with λ3 > 0 or antiparallel spin-orbit coupling) is

greater than the Fe(II) moment (with λ2 < 0 or parallel spin-orbit coupling) close to Tc. For

larger values of L2, the Fe(II) moment would always dominate over the Mn(III) moment.

Our results for the V(II)M'(III) series [55] are displayed in Fig.3.3. Regions 4 and 5 have

di�erent shapes because Cr(III) has the same spin S3 = 3/2 as V(II) with S2 = 3/2, while

V(III) has the smaller spin S3 = 1. All of these ions have positive values for λ (see Table

I), so Si and Li tend to be antiparallel. For V(II)Cr(III) compounds, the majority of the

MC region (4a) occurs when M0 < 0 and L3 > L2 because λ3 > λ2. As a result, the Cr(III)

moment is usually larger than the V(II) moment close to Tc. In region 4b with M0 > 0, a

bubble of MC exists for small values of L3, where the V(II) moment dominates the Cr(III)

moment near Tc due to its stronger spin-orbit energy λ2L2S2 > λ3L3S3. Fig.3.5 plots the

average magnetization for V(II)Cr(III) compounds with �xed L2 = 0.25 and L3 = 0.0, 0.2,

and 0.4, traversing regions 4a and 4b. Notice that MC is absent for L3 = 0.2, which lies

between regions 4a and 4b. For V(II)V(III) compounds, MC exists in region 5 only for small

values of L3 with M0 > 0 so that the V(II) moment dominates near Tc.
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Figure 3.5: (Color online) Mavg versus T/Tc for V(II)Cr(III) compounds with L2 = 0.25 and
L3 = 0.0 (solid), 0.2 (dashed), and 0.4 (dot-dash), which traverse regions 4a and 4b in Fig.3.

We also investigated the series M(II)Ru(III) (M = Fe or Cu) [44]. MC is absent due to the

large spin-orbit coupling λ3 of Ru(III) (see Table I) and the resulting low-spin state S3 = 1/2

induced by the crystal-�eld potential. For Fe(II)Ru(III) compounds with S2 = 2, the Fe(II)

moment is always much larger than the Ru(III) moment despite the large spin-orbit coupling

of Ru(III). For Cu(II)Ru(III) compounds, the spins on the two sublattices are identical with

S2 = S3 = 1/2. Because λ2 and λ3 have approximately the same magnitudes but opposite

signs, the Cu(II) moment remains larger than the Ru(III) moment for all temperatures and

for all values of L2 and L3. Hence, the magnetic moments of Fe(II) and Cu(II) always

dominate in the family M(II)Ru(III).

Generally, MC occurs because the ion with the smaller saturation moment but stronger

spin-orbit coupling initially orders more rapidly with decreasing temperature than the ion

with the larger saturation moment. As demonstrated by region 3 of Fig.2 near L2 = 0 and

by region 4b of Fig.3 near L3 = 0, MC can even occur when S2 = S3 and with antiparallel

spin-orbit coupling (λi > 0) between Si and Li, despite the smaller saturation moment

|2Si − Li|, due to the stronger initial ordering of the spin Si. Without spin-orbit coupling,

the ion with the larger saturation moment would always dominate over the ion with the

smaller saturation moment.
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The MC regions in Figs.3.2 and 3.3 result from the interplay between S2, S3, L2, L3, λ2,

and λ3. WhenM3(T ) orders more rapidly belowMavg but |M2(0)| > |M3(0)|, MC appears in

regions 1b, 2b, 3, and 4a. WhenM2(T ) orders more rapidly below Tc but |M3(0)| > |M2(0)|,
MC appears in regions 1a, 2a, 4b, and 5. The relative magnitude of λ2 or λ3 changes the sizes

of the MC regions but not their overall placement: compare the sizes of regions 1a and 1b.

By contrast, the placement of the MC regions in Figs.3.2 and 3.3 are primarily determined

by S2, S3, L2, and L3.

Experiments reveal that the deviation in the paramagnetic susceptibility χ from its spin-

only value [39, 55, 9] is relatively small. For example, the Curie constant C for a Fe(II)Mn(III)

compound is about 30% higher than its spin-only value [9]. This implies that there is a small

but nonzero orbital contribution to the magnetic moment [49]. Earlier work [58] indicated

that Fe(II)Fe(III) compounds which exhibit MC have values of L2 just above the threshold

of 0.25. Correspondingly, in the families of ferrimagnetic compounds studied here, L2 and

L3 are probably smaller than 1. We conclude that MC is most likely in the compounds

Fe(II)Mn(III), Co(II)Mn(III), and V(II)Cr(III): see regions 2a, 3, 4a, and 4b in Figs.3.2 and

3.3. On the other hand, MC is less likely in the compounds Ni(II)Mn(III) and V(II)V(III),

where larger values of L2 and L3 are required for MC in regions 1 and 5.

In contrast to the wide range of cations that have been used in the synthesis of Fe(II)Fe(III)

bimetallic oxalates [38], only the single cation A = N(n-C4H9)4 has been employed in the

synthesis of Fe(II)Mn(III), Co(II)Mn(III), and V(II)Cr(III) compounds [55, 9]. While this

cation is associated with MC in the Fe(II)Fe(III) oxalates, there is no guarantee that it will

also produce MC in other ferrimagnetic compounds. Therefore, it may be worth investigating

Fe(II)Mn(III), Co(II)Mn(III), and V(II)Cr(III) compounds with some of the other cations

that produce MC in the Fe(II)Fe(III) oxalates like A = N(n-C5H11)4, N(C6H5CH2)(n-C4H9)3,

(C6H5)3PNP(C6H5)3, P(n-C4H9)4, CoCp∗2, and FeCp∗2. We are hopeful that at least some of

these compounds will yield values of L2 and L3 associated with MC in Figs.2 and 3. This

paper has investigated the possibility of MC in several families of bimetallic oxalates that

exhibit AF interactions between transition metals M(II) and M'(III). For certain cations, MC

may be possible within the families of M(II)Mn(III) and V(II)M'(III) bimetallic oxalates but

is not possible within the family of M(II)Ru(III) compounds.

Research was sponsored by NSF Grant Nos. DMR-0548011, OISE-0730290 and EPS-

0447679 (ND EPSCoR), by the Laboratory Directed Research and Development Program of

Oak Ridge National Laboratory, managed by UT-Battelle, LLC for the U. S. Department of

Energy under Contract No. DE-AC05-00OR22725, and by the Division of Materials Science.
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Chapter 4

Spin-waves in the Bimetallic Oxalates

4.1 Introduction

Bimetallic oxalates 1are molecule-based magnets with transition-metal ions M(II) and M'(III)

arranged on an open honeycomb lattice. Performing a Holstein-Primako� expansion, we ob-

tain the spin-wave spectrum of antiferromagnetically-coupled bimetallic oxalates as a func-

tion of the crystal-�eld angular momentum L2 and L3 on the M(II) and M'(III) sites. Our

results are applied to the Fe(II)Mn(III), Ni(II)Mn(III), and V(II)V(III) bimetallic oxalates,

where the spin-wave gap varies from 0 meV for quenched angular momentum to as high as

15 meV. The presence or absence of magnetic compensation appears to have no e�ect on the

spin-wave gap.

Bimetallic oxalates have been the source of intense experimental research since they were

�rst synthesized in 1992 [50]. Within each bimetallic layer, transition-metal ions M(II) and

M'(III) are coupled by oxalate molecules ox = C2O4 on the open honeycomb lattice sketched

in Fig. 1 with nearest-neighbor separation a ≈ 5.4 [51, 52]. The chemical formula for the

bimetallic oxalates is A[M(II)M'(III)(ox)3], where A is an organic cation that separates the

bimetallic layers. For di�erent transition-metal ions, bimetallic oxalates can magnetically or-

der as ferrimagnets, antiferromagnets, or ferromagnets [56, 53, 54, 55] with moments pointing

out-of-the-plane. The cation A lying between the layers does not change the sign of the ex-

change between the M(II) and M'(III) moments but can in�uence the optical and metallic

properties of the bimetallic oxalates [57]. Recent theoretical calculations [58, 59, 60] used a

simple model to explain many of the magnetic properties of these materials. We now extend

those calculations to evaluate the spin-wave (SW) spectrum of antiferromagnetically-coupled

bimetallic oxalates.
1This chapter �rst appeared as: P. Reis and R. Fishman, J. Phys. Condens. Matter, 21, 016005 (2009).

c© J. Phys. Condens. Matter. From the website of the Journel of Physics: Condensed Matter.
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Figure 4.1: (Color online) The open honeycomb lattice showing the alternating M(II) and
M'(III) sites. L2 and L3 are the crystal-�eld orbital angular momenta on each site.

Evidence that the cation A is not responsible for the magnetic order of bimetallic ox-

alates was found in the Fe(II)Fe(III) family, where it was observed that even compounds with

well-separated bimetallic layers can have high transition temperatures [53]. Additional sup-

port stems from the observation that a radical spin-1/2 cation does not appreciably change

the transition temperature and coercive �eld [52], suggesting that the bimetallic planes are

weakly coupled. Earlier work [58, 59] argued that the magnetic properties of the bimetallic

oxalates are controlled by the spin-orbit coupling, which can stabilize magnetic order within

an isolated layer.

When the exchange interaction between the M(II) and M'(III) moments is antiferromag-

netic, it is possible for the sublattice magnetizations to exactly cancel at a compensation

temperature Tcomp below the transition temperature Tc. Magnetic compensation (MC) has

been observed in the Fe(II)Fe(III) compounds only for certain cations A [53]. Compounds

that exhibit MC also possessed the highest values of Tc and of the Curie-Weiss constant

C [53]. Fishman and Reboredo [58, 59] suggested that MC occurs when the orbital angu-

lar momentum of the low-lying crystal-�eld doublet on the Fe(II) sites exceeds a threshold

value. To determine if other bimetallic oxalates could also exhibit MC for certain cations, we

included spin-orbit coupling on both the M(II) and M'(III) sites [60]. MC was found to be

possible in the M(II)Mn(III) (M = Fe, Co, or Ni) and V(II)M'(III) (M' = Cr or V) families.
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Spin-orbit anisotropy is also expected to generate a gap in the SW spectrum. So it is natural

to wonder if there is any connection between the presence of MC and the magnitude of the

SW gap.

This paper is divided into �ve sections. Section II discusses the important energy scales

in the bimetallic oxalates. Section III brie�y explains how we calculate the magnetization

of a bimetallic layer including spin-orbit coupling on both sublattices. The SW spectrum

of an antiferomagnetically-coupled bimetallic oxalate is derived in Section IV. A conclusion

appears in Section V.

4.2 Crystal-Field

Bimetallic oxalates are characterized by three di�erent energy scales. Since the spin cor-

relations within the 3d orbitals are large, Hund's �rst rule is obeyed [52]. Measurements

of the magnetic susceptibility χ, magnetic moment, and Curie constant C of the bimetallic

oxalates all con�rm that the 3d ions are found in their high-spin states [55, 53]. The C3-

symmetric crystal-�eld potential produced by the six oxygen atoms surrounding each ion is

the next-highest energy level. This potential induces a splitting of the degenerate 3d orbitals.

Lowest in energy are the spin-orbit coupling λrSr · Sr (r = 2 or 3) for each metal ion and

the antiferromagnetic exchange JcS2 · S3 mediated by the oxalate molecules.

With matrix elements given by the overlap integrals of the crystal-�eld potential with the

�ve-fold degenerate d orbitals, the crystal-�eld Hamiltonian of a single M(II) or M'(III) ion

can be written as a 5×5 matrix [58]. Upon diagonalizing this matrix, we obtain two doublet

energy levels and one singlet, with eigenvectors |ψ1,2〉, |ψ4,5〉, and |ψ3〉. The orbital angular
momenta of the low-lying doublets on the M(II) and M'(III) sites are given by ±L2 and

±L3: 〈ψ1,2|L|ψ1,2〉 = ±Lrz points in the out-of-the plane or z direction. Whereas the orbital

angular momenta of the doublets are generally nonzero, the orbital angular momentum of

the singlet vanishes. If the singlet on the M(II) or M'(III) site lies lowest in energy, we would

take L2 or L3 equal to zero.

Within the low-energy doublets, the e�ective Hamiltonian for an antiferromagnetically-

coupled bimetallic oxalate can be written

H = Jc
∑
〈i,j〉

S2i · S3j + λ2
∑
i

Lz
2iS

z
2i + λ3

∑
j

Lz
3jS

z
3j, (4.1)

where the 〈i, j〉 sum runs over all nearest-neighbors, the i sum runs over all M(II) sites, and
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the j sum runs over all M'(III) sites. The antiferromagnetic exchange Jc is positive. As

discussed above, Lz
2i = ±L2 and Lz

3j = ±L3 can each take two values on the low-energy

doublets.

We would like to emphasize that the orbital angular momenta of the low-energy doublets,

L2 and L3, are modi�ed by the crystal �elds. They are not the same as the total angular

momenta of the M(II) or M'(III) multiplets before the crystal �eld is taken into account.

For example, in an octahedral crystal �eld (which can be obtained as a limit of the C3-

symmetric potential [59]), the orbital angular momentum L3 of the eg doublet for a Mn(III)

ion is quenched although the 3d4 multiplet had L = 2 before it was split by the crystal �eld.

4.3 Magnetization and Magnetic Compensation

Mean-�eld (MF) theory is used to treat the exchange interaction JcS2 · S3 between the

antiferromagnetically-coupled M(II) and M'(III) spins. The MF Hamiltonians on M(II) and

M'(III) sites are then

H2 = λ2L
z
2S

z
2 + 3JcS

z
2〈Sz

3〉 (4.2)

H3 = λ3L
z
3S

z
3 + 3JcS

z
3〈Sz

2〉. (4.3)

Since Eqs.(4.2) and (4.3) are evaluated in the subspace of the M(II) and M'(III) doublets,

the energy levels εr are given by

ε2 = (±λ2L2 + 3Jc〈Sz
3〉)σ2, (4.4)

ε3 = (±λ3L3 + 3Jc〈Sz
2〉)σ3, (4.5)

where σ2 = S2, S2 − 1, . . . ,−S2 and σ3 = S3, S3 − 1, . . . ,−S3.

Taking g = 2 for both M(II) and M'(III) ions and setting µB = 1, the magnetic moments

on the M(II) and M'(III) sites are M2 = 〈2Sz
2 + L2〉 and M3 = 〈2Sz

3 + L3〉, which must be

solved self-consistently. The average magnetization is then given by Mavg = (M2 +M3)/2.

We adopt the convention that M2 > 0 and M3 < 0. Results in the next section also employ

the estimate Jc = 0.5 meV obtained from MF theory [58]. Although a recent Monte-Carlo

study [61] suggests that Jc is about twice as large, our results are insensitive to the precise

value of Jc provided that it is small compared to the spin-orbit coupling.

To characterize the magnetic behavior of a bimetallic layer as a function of the crystal-

�eld angular momenta L2 and L3, we make use of the limiting behavior of Mavg as T → Tc
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and T → 0. In the �rst case,

Mavg ∼
√
Tc − T , T → Tc. (4.6)

While the square-root behavior is an artifact of MF theory [61], the proportionality factor is

a function of L2 and L3. As T → 0, the ground-state magnetization depends on the signs of

the spin-orbit coupling on the M(II) and M'(III) sites. The spin-orbit coupling constant λ of

a 3dn electronic con�guration is negative when the d orbitals are more than half �lled (n > 5)

and positive when they are less than half �lled (n < 5). So for electronic con�gurations 3dn2

and 3dn3 on the M(II) and M'(III) sites, the average magnetization at T = 0 is given by

M0 =
(
S2 +

L2

2
sgn(n2 − 5)

)
−

(
S3 +

L3

2
sgn(n3 − 5)

)
. (4.7)

Knowing the sign of Mavg near Tc together with its sign at T = 0 allowed us to determine

possible regions of MC in the parameter space of {L2, L3}. For example, when Mavg < 0

as T → Tc and M0 > 0 then the sublattice magnetizations change from |M3| > |M2| above
Tcomp to |M2| > |M3| below Tcomp.

Regions of MC are presented in Fig. 4.2 for the three compounds M(II)Mn(III) (M = Fe

and Ni) and V(II)V(III). The prominent features that distinguish the MC regions are the

shapes of their boundaries. For Ni(II)Mn(III) and V(II)V(III), the MC regions have straight

diagonal boundaries along which the sublattice magnetizations exactly cancel at T = 0. The

curved boundaries represent the onset of MC at Tc. In all cases, the sublattice with the

smaller magnetization at T = 0 initially orders faster than the sublattice with the larger

magnetization at T = 0.

4.4 Spin-Wave Frequencies

We now calculate the SW spectrum for an antiferromagnetically-coupled bimetallic oxalate.

Because the spin-orbit interaction λ3L2i · S2i or λ3S3j · S3j can be replaced by λ2L
z
2iS

z
2i

or λ3Lz
3jS

z
3j within the low-energy doublet on the M(II) or M'(III) sites, there are no L±

2i

or L±
3j terms in the Hamiltonian of Eq.(4.1) that can �ip the orbital angular momentum.

Therefore, the crystal-�eld orbital angular momentum acts as an Ising variable and has no

intrinsic dynamics. At low temperatures, 〈Lz
2i〉 and 〈Lz

3j〉 are almost fully saturated and can
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be replaced by −sgn(λ2)L2 and sgn(λ3)L3. So the Hamiltonian at low temperatures can be

rewritten

H = Jc
∑
〈i,j〉

S2i · S3j − |λ2|L2

∑
i

Sz
2i + |λ3|L3

∑
j

Sz
3j. (4.8)

The absolute values insure that the energy is minimized with the convention that 〈Sz
2i〉 > 0

and 〈Sz
3j〉 < 0.

A Holstein-Primako� (HP) expansion about the classical limit is performed for the Hamil-

tonian in Eq.(4.8). The Heisenberg operators S2i and S3j can be transformed to boson cre-

ation and destruction operators a†i , b
†
j, ai, and bj provided that 〈a†iai〉 � S2 and 〈b†jbj〉 � S3.

These conditions are satis�ed at low temperatures and for large spins S2 and S3. To �rst

order in 1/Si, the Heisenberg operators take the form

S+
2i =

√
2S2ai, (4.9)

S+
3j =

√
2S3b

†
j, (4.10)

S−
2i =

√
2S2a

†
i , (4.11)

S−
3j =

√
2S3bj, (4.12)

Sz
2i = S2 − a†iai, (4.13)

Sz
3j = −S3 + b†jbj. (4.14)

Fourier transforming Eqs.(4.9)-(4.14) and substituting the results into Eq.(4.8), we obtain

the SW Hamiltonian

HSW =
∑
k

{
3Jc

√
S2S3(γ

∗
ka

†
kb

†
k + γkakbk)

+ (3JcS3 + |λ2|L2)a
†
kak

+ (3JcS2 + |λ3|L3)b
†
kbk

}
, (4.15)

where

γbfk =
1

3

{
eikxa + 2e−ikxa/2 cos

(√
3

2
kya

)}
(4.16)

is complex with γk = γ∗−k due to the lack of inversion symmetry. Generally, the error involved

in a HP expansion for spins of magnitude S at low temperatures is of order 1/(2S + 1).
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An equations-of-motion technique is used to diagonalize HSW. The vector

uk =

 ak

b†k

 , (4.17)

is a solution of

i
duk
dt

=
[
uk, H

SW
]
=M uk = ω(k)uk (4.18)

where M is a 2 × 2 matrix. This system of equations requires that Det{M − ω(k)I} = 0,

which yields a pair of solutions for ω(k). Replacing uk by u†k gives another pair of solutions.

The four solutions to the two determinental equations then consist of two equal and opposite

pairs. We retain the two positive solutions

ω±(k) = ±1

2

(
3Jc(S3 − S2) + |λ2|L2 − |λ3|L3

)
+

1

2

{(
3Jc(S2 + S3) + |λ2|L2 + |λ3|L3

)2
− 36J2

c |γk|2S2S3

}1/2
. (4.19)

When S2 = 2, S3 = 5/2, and λ3 = 0, this expression reduces to an earlier one Fish08 for

the Fe(II)Fe(III) bimetallic oxalates.

At k = 0, γk = 1 and the SW spectrum develops a gap ∆ due to the spin-orbit anisotropy.

De�ning the k = 0 SW frequencies by ∆± ≡ ω±(k = 0), the SW gap is given by ∆ =

min(∆+,∆−). To better appreciate the behavior of ∆ as a function of L2 and L3, we

have constructed the three contour plots in Fig. 4.2 for Fe(II)Mn(III), Ni(III)Mn(III), and

V(II)V(III) compounds. The contours represent constant values of ∆ in {L2, L3} parameter

space. It is clear that the SW gap is enhanced as L2, L3 → 2. The contours consist of

two channels, ∆+ and ∆−, running parallel to the L3 and L2 axis, respectively. Along the

diagonal lines in Fig. 4.2, ∆+ and ∆− are equal, which is satis�ed when

3Jc(S3 − S2) + |λ2|L2 − |λ3|L3 = 0. (4.20)

The slope of this diagonal separator is given by |λ2/λ3| which is noticable in the plot be-

low. The spin-wave gap channels are depend primarily only on one value of orbital angular

momentum. As described below.
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Figure 4.2: (Color online) Contour plots of the SW gap ∆(L2, L3) and the associated MC
region for Fe(II)Mn(III), Ni(II)Mn(III), and V(II)V(III). Each plot contains seven contours
with ∆ = 1, 2, 3, 4, 5, 10 and 15 meV, moving out from the origin as ∆ increases. The
diagonal separators satisfy the condition ∆+ = ∆−.

The result that the channels ∆+ and ∆− are essentially constant or parallel to the L3

and L2 axis, respectively, can be understood by expanding the frequencies in powers of Jc/f

∆+ ≈ |λ2|L2 + 3JcS3 + ϑ
(
J2
c

f

)
, (4.21)

∆− ≈ |λ3|L3 + 3JcS2 + ϑ
(
J2
c

f

)
. (4.22)

where f ≡ |λ2|L2 + |λ3|L3 � Jc. So to lowest order in Jc/|λi|, ∆+ and ∆− are given by

|λ2|L2 and |λ3|L3, respectively, and are independent of L3 and L2. From Eq.(4.19), the SW

gap vanishes in the limit L2, L3 → 0, independent of the channel ∆+ or ∆−.

The contours ∆(L2, L3) of Fig. 4.2 contain seven values ranging from 1 to 15 meV. To

illustrate the possible interplay between the SW gap and MC, each �gure also indicates the

region of MC for that compound. For Fe(II)Mn(III) compounds, the sublattice spins are

identical with S2 = S3 = 2 and the spin-orbit couplings λ2 = −12.64 meV and λ3 = 10.91

meV are similar in magnitude. Consequently, the �rst term in Eq.(4.20) vanishes and the

separator terminates at the origin with slope |λ2/λ3| ≈ 1.15. Notice that ∆ → 0 in both the

∆+ and ∆− channels as L2, L3 → 0. Because |λ2| ≈ |λ3|, ∆+ and ∆− are evenly distributed

in {L2, L3} parameter space. Also notice that the MC region for Fe(II)Mn(III) overlaps the

∆+ frequencies between 0 and 4 meV.
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Figure 4.3: (Color online) The SW gap ∆ versus L2 and L3 for Fe(II)Mn(III). Fixed values
of L2 and L3 are increased from 0 to 2 in steps of 0.5.

Another view of the contour plot for Fe(II)Mn(III) compounds is provided in Fig. 4.3,

which illustrates the behavior of ∆ versus L2 and L3. Below the kink on the left-hand or

right-hand panel, ∆ = ∆+ or ∆−; above the kink, ∆ = ∆− or ∆+. These plots clearly reveal

the behavior of Eqs.(4.21) and (4.22): above the kinks, ∆− depends weakly on L2 and ∆+

depends weakly on L3. The lowest curves in Fig. 4.3 indicate that ∆ → 0 in both the ∆+

and ∆− channels as L2 and L3 → 0.

A contour plot for Ni(II)Mn(III) compounds is shown in the center of Fig. 4.2. Unlike

the case for Fe(II)Mn(III) compounds, the sublattice spins are unequal and the magnitude

of the spin-orbit couplings are quite di�erent: Ni(II) has S2 = 1 and |λ2| = 40.29 meV while

Mn(III) has S3 = 2 and |λ3| = 10.91 meV. Since the �rst term on the right-hand side of

Eq.(4.20) is nonzero, ∆+ −∆− → 3Jc(S3 − S2) = 1.5 meV as L2, L3 → 0 and the separator

has a slope of |λ2/λ3| = 3.69. The nonzero intersect of Eq.(4.20) with the L3 axis allows

the ∆− channel to occupy a greater portion of the {L2, L3} parameter space. In the inset,

we have blown up the region from Lr = 0 to 0.5. Notice that the contours ∆ = 1 and 2

meV exist only in the ∆− channel. As the gap energy increases to 3 meV, the ∆+ channel

reappears. The two MC regions for Ni(II)Mn(III) compounds appear in Fig. 4.2. While the

SW channel ∆− traverses region 2a, ∆+ traverses region 2b.

On the right of Fig. 4.2, the last set of contours is drawn for V(II)V(III) compounds.

The V(II) and V(III) ions have spins S2 = 3/2 and S3 = 1, and spin-orbit coupling λ2 =

6.94 meV and λ3 = 12.89 meV, respectively. So ∆+ −∆− → 3Jc(S3 − S2) = −3/4 meV as
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Figure 4.4: (Color online) The SW frequencies ω±(k) versus kxa for Fe(II)Mn(III) with
L2 = L3 = 0.5 and ky = 0.

L2, L3 → 0. Because S3 < S2, Eq.(4.20) has a nonzero intersect with the L2 axis. Due to

the small slope |λ2/λ3| = 0.53 of the separator, the ∆+ channel occupies the majority of

parameter space. Notice that the contours in the ∆− channel transverse the region of MC

for V(II)V(III) compounds.

The SW frequencies ω±(k) are plotted as a function of kxa in Fig. 4.4 for the compound

Fe(II)Mn(III) with L2 = L3 = 0.5. As can easily be seen from Fig. 1, the wavevector of the

ferrimagnetic order on the open honeycomb lattice is given byQ = (4π/3a)x. The maximum

in the dispersion along the kx axis occurs at kx = 2π/3a, corresponding to a change of about

0.5 meV relative to the Γ point k = 0. Generally, Eq.(4.19) can be expanded in powers

of Jc/f to show that the width of the SW dispersion along the kx axis is approximately

8J2
c S2S3/f . The di�erence between the two frequencies ω±(k) is constant as kx crosses the

�rst Brillouin zone, with a value given by Eq.(4.20). The lower frequency at k = 0 gives the

SW gap ∆−, in agreement with the Fe(II)Mn(III) contours of Fig. 4.2.

We have calculated the SW frequencies for antiferromagnetically-coupled bimetallic ox-

alates. Our results for the SW gap were demonstrated by studying the compounds Fe(II)Mn(III),

Ni(II)Mn(III), and V(II)V(III) as a function of their associated crystal-�eld orbital angular

momentum L2 and L3. The SW gap varied from 0 meV to as high as 15 meV as the angular
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momentum L2 and L3 increased. There does not seem to be any relationship between the

SW gap and the presence or absence of MC. Indeed, the SW gap can achieve its largest value

outside regions of MC, as seen particularly in Fig. 2 for the Fe(II)Mn(III) compounds. These

results indicate that even compounds that do not exhibit MC may have sizeable SW gaps.

However, when the singlet levels on both the M(II) and M'(III) sites lie lowest in energy,

then both L2 and L3 would vanish and MC would be absent. Since any magnetic anisotropy

would then be produced by single-ion anisotropy Di ∝ λ2i , the SW gaps would tend to be

much smaller than those predicted here.

Depending on whether ∆+ or ∆− is smaller, the SW gap depends primarily on the orbital

angular momentum L2 or L3 of the M(II) or M'(III) ion, respectively. This surprising result

stems from the small value of the exchange interaction Jc compared to the magnitude of the

spin-orbit coupling constants λi. In addition to the above compounds, we also constructed

the contours ∆(L2, L3) for V(II)Cr(III), Co(II)Mn(III), Fe(II)Ru(III), and Cu(III)Ru(III).

For the V(II)Cr(III) and Co(II)Mn(III) compounds, we found similar behavior as in Fig. 4.2.

On the other hand, Ru(III) compounds with a 4d5 electronic con�guration displayed an

order-of-magnitude higher value of ∆ because of the large spin-orbit coupling λ3 = 116.54

meV and low-spin S3 = 1/2 state [54].

Hopefully, this paper will inspire future measurements of the SW excitations in the

bimetallic oxalates. Although almost all samples are polycrystalline, inelastic neutron-

scattering measurements on deuterated materials should be able to measure the SW gap

without di�culty.
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Chapter 5

Cerium Volume Collapse

5.1 Introduction to the Cerium Volume Collapse

Cerium possesses the fascinating property that at room temperature and pressure 0.8 GPa,

it undergoes an isostructural �rst order phase transition where its volume is reduced by 17%

[62, 63], see Fig. 5.1. On both sides of the transition the magnetic properties of Cerium are

very di�erent. In the γ phase (large volume) the magnetic order is described by a Curie-

Weiss susceptibility, and in the α phase (small volume) the susceptibility is Pauli-like; the

former is indicative of localized and the latter itinerant magnetic order.

The driving mechanism leading to the volume collapse and change in magnetic order has

been widely disputed, and many physical scenarios have been proposed. One of the �rst of

these was the (metal to insulator) Mott transition, in which the 4f 1 electrons transition from

itinerant in the α phase to localized in the γ phase, due to the strong Coulomb correlations

between f electrons [64]. Within the Mott picture, the di�erence between the kinetic energy

of the electrons in the α and γ phases was used to describe the volume change. However the

Mott transition does not properly describe the existence of a quasi-particle peak in the α

phase as seen in photo-emission spectroscopy measurements[65], or the increase in resistivity

below a characteristic temperature in both phases, leading many to believe that a Mott

transition does not capture the physics of the volume collapse.

The second explanation of the volume collapse which could explain most of the observed

experimental electronic features of experiment was the Kondo model [66]. In this model

the interaction between the conduction electrons in the 5d1 band and valance electrons

located in the 4f 1 magnetic ions results in very di�erent magnetic properties depending on

whether cerium is above or below the Kondo temperature TK . When cerium is above TK the

magnetic moment of the 4f 1 electrons are unscreened by the conduction electrons leaving

cerium magnetic and in the γ phase. However as the temperature is decreased below TK ,

the 4f1 electron is compensated by the conduction electrons, quenching the magnetic order,
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Figure 5.1: The P-V isotherm for the α-γ phase transition in Cerium. At room temperature
this transition occurs around 0.8GPa as indicated by the absence of data points at this
pressure for volumes between 33 Å3 and 28 Å3 , as displayed in reference [63].

and placing cerium in the α phase. The Kondo mechanism explained the disappearance of

the magnetic behavior as the transition from γ → α progressed and in addition was in good

agreement with the change in electronic entropy veri�ed by experiments at the time, alluding

to the fact that the entropy change was independent of phonons.

Recently pulsed neutron measurements have provided an indication that in addition to

strong electron correlations phonons do contribute to the volume collapse in cerium[62]. To

this end it was shown that the Debye temperature ΘD(V, T ) was di�erent in the α and

γ phases, corresponding to a �nite change in entropy across the transition. The volume

dependence of ΘD(V, T ) across the transition has it roots in the di�erent electronic structure

of the 4f orbital of each phase, where Kondo screening is relevant in the α phase and absent

in the γ phase. The di�erence in electronic structure in both phases results in di�erent inter-

atomic forces between the cerium ions, resulting in di�erent frequencies of the phonons in

the α and γ phases. Ultimately di�erences in ΘD(V, T ) between the phases α and γ provides

credence to the role of phonons during the transition.

In our investigation of the cerium volume collapse we will use the periodic Anderson

model (PAM), which will allow us to control the e�ect that pressure plays in �xing the 4f

level occupation nf ' 1 to provide the Kondo physics of the collapse. To better understand

the importance of electron-phonon interactions in the volume collapse we couple the phonon

to the conduction electrons. We believe this coupling to be the most important electron-

phonon interaction during the transition, and not the interaction of the phonons with the

4f 1 electron, which is in stark contrast to coupling the phonon to the localized f electrons

which would inhibit the Kondo physics of the collapse [67].

53



Extracting information of the γ → α transition of cerium from the PAM with the phonons

coupled to the conduction electrons will be done by using dynamical mean �eld theory

(DMFT) [70, 72] with Continuous Time Quantum Monte Carlo (CTQMC) as the impurity

solver [71, 73, 92]. Using this method we gain signi�cant insight into the nature of the

transition with respect to phonon frequency ω and hybridization V between the 4f1 and 5d1

orbitals, variables which are critical to our understanding of the volume collapse in cerium.

In particular our calculation will allow us to address the question, what electron phonon

interactions are important during the transition? Many suggest that the electron phonon

interaction during the transition may not be of standard form, but this is speculative, and we

wish to rule this in or out. This calculation is highly computational. We calculate the single

particle Green's function and the self-energy, among other quantities, to better understand

the nature of the α → γ volume collapse of cerium.

The structure of this chapter is as follows. First in section 5.2 we will describe the recent

experimental aspects of the cerium volume collapse. In particular we discuss the important

photoemission experiments [66], which suggest that the main driving mechanism of the α↔ γ

transition is due to the change in the overlap of the conduction band and the localized f

level, which tends to Kondo screen the localized electron in the f level. Additionally in

section 5.2 we discuss the more recent experiments which suggest that lattice vibrations are

di�erent in the α and γ phases. After identifying that Kondo screening of the inner f electron

and lattice vibrations (phonons) are very important constituents in the α ↔ γ transition,

the remainder of this chapter will focus on the di�erent models that have been put forth to

explain the Kondo e�ect and phonon correlations. Then we merge the two purposed models

in an e�ort to explain the Cerium α ↔ γ phase transition. Therefore in section section 5.3

we overview the Kondo problem and how its physics leads to a characteristic temperature

scale called the Kondo temperature TK. In section 5.4 we demonstrate the equivalence of

the Anderson and Kondo models at low temperatures. In section 5.5 the Periodic Anderson

model (PAM) is introduced which also exhibits the Kondo e�ect for temperatures below the

coherence temperature T ?, and is the appropriate model to explain the Kondo physics of

the α ↔ γ phase transition. Next in section 5.6 we will overview an appropriate phononic

model called the Holstein model which we �nd is relevant to properly describe the electron-

phonon interactions in the Cerium volume collapse. Finally in section 5.7 we will describe

our e�ective model for describing the Kondo and phononic correlations in the Cerium volume

collapse, which will amount to merging the PAM and the Holstein models.
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5.2 Experiments of the Cerium Volume Collapse

Here we will brie�y review some of the key experimental aspects of the Cerium Volume

Collapse[74]. In particular we will overview three important experiments which show that

di�erent electronic and phononic correlations exist in the α and γ phases of Cerium [75, 76].

Early experiments used a number of di�erent spectroscopy measurements such as photoemis-

sion (PES), Bremsstrahlung (BIS) and x-ray photoemission (XPS) in an e�ort to determine

the change in the band-structure of cerium as it collapsed; additionally these measurements

were used to determine the 4f level occupancy, e�ective hybridization function ∆ between

the f and conduction electrons and relative position of the f energy level εf in cerium on

both sides of the collapse. Theoretical investigation using the 1/N expansion of the single

impurity Anderson model were also used to assist in calculating the spectroscopic parameters

concerning the valence of the 4f occupancy. The convincing early spectroscopy measure-

ment of Cerium across the collapse using BIS which indicated that the transition in cerium

was Kondo driven as a result of the large change in the hybridization between the f and

conduction electrons as shown in Figure 5.2. In Figure 5.2 a sharp peak appears in the

intensity for energies in the interval [0,−1.0]eV which is reminiscent of a Kondo peak in the

small volume phase α. Clearly this peak is absent in the large volume phase γ as indicated

in the lower panel; this data was obtained using (BIS) spectroscopy measurements.

More recently experiments have shown that in addition to di�erent electronic structures

in the α and γ phases the phononic frequencies in the two phases are also very di�erent [62].

The pioneering work of Jeong using high-pressure, high-resolution neutron and synchrotron

x-ray powder di�raction was used to estimate the thermal lattice displacements across the

α↔ γ transition. It was found that a signi�cant change in the lattice displacement occurred

as Cerium collapsed. From the thermal lattice displacements it was found that the Debye

temperatures ΘD were di�erent in the α and γ phases, in the γ phase Θγ
D = 104(3)K and

in the α phase Θα
D = 133(3)K. Clearly these changes indicate that inter-atomic spacing

associated with the FCC crystal structure of cerium in the α phase is smaller than the FCC

inter-atomic spacing in the γ phase, since ΘD ∼ π/a, where a is the lattice spacing between

cerium atoms in the direct lattice. From the di�erences in ΘD they were able to extract the

vibronic entropy di�erence between the α and γ phase and it was found to be

∆Sγ−α
phonon ≈ 3kbln

Θα
D

Θγ
D
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≈ kB(0.75± 0.15). (5.1)

This data clearly indicated that electron-phonon correlations were important in understand-

ing the volume collapse, since this entropy change accounted for half of the total change in

entropy. The electronic entropy change across the volume collapse of cerium is calculated as

follows. The degeneracy of the f 1 electron in the γ phase is (2J + 1) where J = 5/2, and in

the α phase the f1 state is Kondo quenched so the electronic entropy change is given by

∆Sγ−α
electronic = kBln(2J + 1)

= kBln(6)

≈ kB1.79 (5.2)

Comparing the phonon and electronic entropy changes it is clear that a substantial change

in entropy of the Cerium volume collapse results from di�erences in phonon frequencies in

the α and γ phases.

The temperature and pressure of the critical point in the α − γ phase diagram has also

been located using X-ray di�raction measurements and was located at a pressure of 1.5±0.1

GPa and temperature of 480± 10 K [63]. The nature of the α ↔ γ phase transition closely

resembles that of a liquid-gas transition in that the slope of the coexistence line separating the

α and γ phases increases and ends at a critical point. However there is a distinct di�erence

between the liquid-gas and α ↔ γ phase transition around the critical point. In the case of

the liquid gas transition one can go from the liquid phase to the gas phase by increasing the

pressure and volume in such a way as to go around the critical point without a discontinuous

change in the order parameter characterizing the phase. Owing to the close analogy to the

liquid-gas transition in the Cerium volume collapse the critical point was obtained through

the analysis of the pressure-volume (P-V) isotherms from x-ray di�raction data. It was found

that a free energy functional that included the e�ects of phonons and Kondo correlations

could be used to explain the curvature of the P-V isotherms indicating that phonons are

indeed an important ingredient for a successful understanding of the volume collapse in

cerium. From this analysis it was clear that the volume collapse was a �rst order solid to

solid transition as a result of the absence of data points in the neutron di�raction data for

temperatures below the critical temperature 480± 10 K and critical pressure 1.5± 0.1 GPa.

The e�ects of electron-phonon correlations in the volume collapse of cerium has also

been resolved through the use of x-ray di�raction measurements of the phonon dispersion of
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Figure 5.2: Spectroscopy measurement which shows the presence of an enhancement in the
spectroscopic intensity of Cerium in the heavily compressed α phase relative to the γ phase.
[After Wuilloud (1983)] [74].

cerium in the γ and α phases [69]. In this work it was shown that a large phonon softening in

the phonon dispersion occurred in the α phase of cerium around the X point of the reciprocal

lattice of the FCC structure in the �rst Brillouin zone. In addition the Gruneisen parameter

was also measured γq = −∂lnE(q)
∂lnV

, which measures the change in the phonon energy with

respect to changes in the volume. This measurement was largely negative in the vicinity of

the X point, which indicated that increasing electron-phonon correlations were responsible

for softening of the phonon dispersion in the α phase of cerium.

5.3 Kondo Physics

It was found experimentally in the 1930's that when a metal with a small amount of magnetic

impurities was cooled to very low temperatures its resistivity did not obey the relation

ρ(T ) = ρ0 + AT 2 +BT 5, (5.3)
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where ρ0 is a residual metallic resistivity, AT 2 is the Fermi-liquid or metallic resistivity,

and BT 5 is the resistance due to electron-phonon scattering. Rather it was found that the

resistance had a minimum given by

ρ(T ) = ρ0 + AT 2 +BT 5 − Cln(
kBT

W
). (5.4)

The last term of (5.4) was explained in 1964 by Jun Kondo. This minimum occurs at a

characteristic temperature TK [77]. What Kondo realized was that when the conduction

electrons in the host material interacted with the magnetic impurities a spin exchange would

occur which would �ip the spin of the scattered conduction electron. The Hamiltonian which

Kondo used to describe this e�ect is

H =
∑
k,σ

c†k,σck,σ + JS · s (5.5)

where the �rst term describes the kinetic energy of the conduction electrons, and the second

term describes the interaction between the conduction electron with spin s and localized

electron with spin S. Kondo used second order perturbation theory on this Hamiltonian

to show that a resistance minimum would result at a low temperature called the Kondo

temperature TK. Here we brie�y explain Kondo's second order calculation and how it results

in the resistance minimum of equation (5.4). After writing the interacting term of (5.5)

which involves the spin of the impurity S using second quantization operators f † and f , the

interactions between the localized and conduction electrons has the form,

Hint = J
∑

k,α,α′,β,β′
(σα′α · Sβ′,β)f

†
β′c

†
k,α′ck,αfβ (5.6)

Here the sums are over the momentum k and spin α, α′ of the conduction electrons, and the

spin of the impurity ion β, β′. This interaction describes two electrons that interact via their

spin degree of freedom. In fact the Kondo e�ect is the result of the spin degrees of freedom

of the conduction and impurity electrons forming a singlet state at low enough temperature

TK, so the interacting Hamiltonian does incorporate the correct spin interactions. Most

many-body perturbation calculations start from the Green's function, which describes how

one electron propagates from one point in space to another point in space in the presence of a

complicated interacting Hamiltonian like (5.6). As the temperature is lowered the probability

that an electron can propagate freely without feeling the e�ects of the spin interaction is
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not likely. The Dyson equation is a self-consistent equation that allows us to determine the

Green's function

G(k, ω) = G0(k, ω) +G0(k, ω)Σ(k, ω)G(k, ω)

=
1

G−1
0 (k, ω)− Σ(k, ω)

=
1

ω − εk − Σ(k, ω)
. (5.7)

Here we have chosen to write G(k, ω) in terms of the variables k, ω where εk is the

dispersion of the conduction electrons in the material and Σ(k, ω) is the self-energy of the

electron. This is a complex number in which the real part ReΣ(k, ω) changes the e�ective

energy dispersion of the conduction electrons εk+ReΣ(k, ω). The imaginary part of the self-

energy ImΣ(k, ω) provides information about the life-time τ of the propagating particle, in

this case the propagating conduction electron. The resistivity of the material is also related

to the scattering life-time through R ∝ τ−1 = ImΣ(k, ω). In order to utilize this result we

must decompose Σ(k, ω) into another function called the vertex function Γ(k, ω) which will

allow us to examine the nature of the instability in G(k, ω) [77]. Σ(k, ω) may be written in

terms of the vertex function in the following way,

Σ(k) =
∑
ω1,ω2

∫
d3p1d

3p2Γ
0(k, p1 + p2 − k; p1, p2)Gcc(p1)Gff (p2)Gff

× Γ(p1, p2; p1 + p2 − k, k) (5.8)

where we have related Σ(k) to the interacting vertex function Γ(p1, p2; p1 + p2 − k, k). The

interacting vertex function is directly related to the second order diagram that Jun Kondo

showed would diverge at very low temperatures. To show this Γ has to be expanded to

second order which we call Γ2

Γ2 = J + J
∑
α′,β′

(σα′α · Sβ′,β)(σα′′,α · Sβ′′,β)J

× 1

β

∑
l,ωm

G0,cc(l, ωn)G0,ff (ωm − ωn). (5.9)

The last term in equation (5.9) is the source of the divergence when the temperature is

lowered. We analytically continue the last term (iωm → ω + iδ). Upon performing the
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integral over frequency ω and momentum l the integral has the following form,

K(0 + iδ) ≈ Jρln(
D

2πT
) (5.10)

In the last equation, clearly as the temperature is lowered K diverges, which causes Γ, Σ

and consequently the resistance R to diverge at low temperatures. Therefore we �nd that

the resistance diverges at very low temperatures:

R ∝ J2[1 + Jρln(
2πT

D
)] (5.11)

which coincides with equation (5.4) given above for the Kondo portion of the resistivity of

a metal which incorporates a dilute concentration of magnetic impurities. We still need to

connect this divergence to the Kondo Temperature TK. It turns out that we can sum the

vertex function which only incorporates the singular term K(iωm) by performing a power

series expansion in the form of

Γ(iωm) =
J

1 + 2K(iωm)
(5.12)

Once again to obtain meaningful results we must analytically continue the vertex function

in (5.12)

Γ(0 + iδ) =
J

1 + 2K(0 + iδ)
(5.13)

which is singular when the denominator of (5.13) is zero which is true when any of the

following conditions are upheld

0 = 1 + 2K(0 + iδ)

or

1 = 2|J |ρln( D

2kBT
)

or

TK =
D

2kB
e−

1
2|J|ρ . (5.14)

The singularity in the vertex function Γ(0 + iδ) is the result of spin-�ip correlations

building up between the conduction and localized electrons. At the Kondo temperature TK,

the local spins form bound states with the conduction electrons which is called a Kondo
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Figure 5.3: Small concentrations of Fe are dissolved into di�erent transition metals as in-
dicated on the horizontal axis. As the electron concentration of the transition metal ions
increases a magnetic moment appears. This phenomenon was explained through the use of
the Single Impurity Anderson Model (SIAM). Changes in electron concentration were di-
rectly related to the model by changes in the position and width of the impurity level. [After
Clogston (1962)] [80].

singlet state since the conduction and localized electrons form an anti-ferromagnetic spin

singlet state with coupling constant J . It has been observed that the net e�ect of the Kondo

spin-exchange interaction is to modify the density-of-states at the Fermi energy EF by adding

a Lorentzian peak

DT∼TK
(E) = D(E) +

c

π

γ

(E − EF )2 + γ2
. (5.15)

The Lorentzian is the result of the spin-�ip physics of the Kondo problem. This additional

density-of-states at Ef drastically changes the transport properties of materials. Next we

will discuss more of the microscopic origins of the Kondo problem when we consider the

Anderson model, which is a model more appropriate to Cerium than the Kondo model, but

nevertheless still incorporates the important physics of the Kondo model.
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5.4 Anderson Impurity Problem

The solution to the single impurity Anderson model (SIAM) was found before the solution to

the Kondo problem, however at the time it was not clear how the Anderson impurity problem

could explain the low temperature resistivity given by equation (5.4) [78]. The explanation of

this phenomenon would wait until Schrie�er and Wol� in 1966 closely examined the model at

low temperatures [79]. The SIAM was originally established to explain why when magnetic

impurities such as Fe are dissolved into various transition metals, they became magnetic (see

Fig. 5.3). This indicated that the impurity ion was able to retain its magnetic moment in a

nonmagnetic host. The SIAM Hamiltonian is

H =
∑
k,σ

εkc
†
k,σck,σ + εf

∑
σ

f †
σfσ +

∑
kσ

Vk(c
†
k,σfσ + f †

σck,σ) + Unf
↑n

f
↓ . (5.16)

The �rst term in the SIAM Hamiltonian represents the kinetic energy of the conduction

electrons with dispersion εk, the second term corresponds to the impurity electrons located

at the impurity level εf . The third term represents the hybridization Vk of the conduction

and impurity electrons. The last term corresponds to the Coulomb repulsion between two

impurity electrons attempting to occupy the impurity site at the same time. This term along

with the hybridization Vk were essential ingredients in explaining the magnetic behavior

illustrated in Figure 5.3.

In the following we brie�y demonstrate the essential properties of the SIAM for U = 0

and U 6= 0. When U = 0 the SIAM can be solved exactly. The quantity of interest is the

local Green's function Gff which has the following structure

Gff (ω) =
1

ω − εf − Σff (ω)
, (5.17)

where the self-energy Σff (ω) is

Σff (ω) =
∑
k

|Vk|2

ω − εk + iη

= P
∑
k

|Vk|2

ω − εk
− iπ

∑
k

|Vk|2δ(ω − εk)

= ReΣff (ω) + iImΣff (ω). (5.18)
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In the last line we identi�ed the real and imaginary parts of Σff (ω). It turns out that we

can approximate −ImΣff (ω) = ∆ = π|V |2D(ε), where D(ε) is the conduction band density-

of-states. For this model, since U = 0, and the Hamiltonian is spin independent, the density

of states pro�le at the impurity level is found to be

ρf (ω) = − 1

π
ImGff (ω)

=
1

π

∆

(ω − εf − ReΣ(ω))2 +∆2
(5.19)

which is also spin-independent. This result is important for a couple of reasons, �rst it shows

that the density-of-states at the impurity has a width associated width ∆. Since the result

is in the form of a Lorentzian, that the impurity electron quasi-particle life-time is given

by τ = ∆−1. In the absence of interactions U = 0, ρf (ω) is centered around the localized

orbital at εf , which indicates that the localized electron in the energy level εf can quantum

mechanically tunnel via Vk into the conduction band in the form of a Friedel resonance, see

Fig. 5.4. Additionally, since this result is spin-independent ρ↑f (ω) = ρ↓f (ω), if we calculated

the magnetic moment in the z-direction we would �nd Sz = 〈nf
↑ −n

f
↓〉 = 0. So for U = 0 it is

not possible for the impurity to form a moment! So for magnetism to exist we must include

electron-electron correlations between spin ↑ and ↓ impurity electrons.

When U 6= 0 it is possible for the impurity electron in a metal to possess a magnetic

moment Sz = 〈nf
↑ − nf

↓〉 6= 0. The formation of the magnetic moment at the impurity is

measured by the susceptibility at the impurity. So we look for a divergence in the local mag-

netic susceptibility χff (ω) as a function of increasing Coulomb repulsion U . The magnetic

susceptibility at the impurity has the form

χff (ω) =
Γff (ω)

1− UΓff (ω)
, (5.20)

where Γff (ω) is given by

Γff (ω) =
1

2π

∫ +∞

−∞
Gff (ω + ε)Gff (ε). (5.21)

Just as in the case of a bulk ferromagnet we now consider the instability of the impurity to

occur when the denominator of 5.20 is zero or rather the interaction U times Γff (ω = 0) in
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the static response case must satis�es

UΓff (0) = 1. (5.22)

So the Green's function for U 6= 0 in the ferromagnetic state when the spin symmetry is

broken requires making the replacement εf → εf + U〈nf
σ〉 ≡ εfσ in the denominator of the

impurity Green's function given in equation (5.17). With this replacement the impurity

Green's function becomes spin-dependent in the ferromagnetic state

Gff,σ(ω) =
1

ω − εf σ − Σff (ω)
. (5.23)

Since Gff,σ(ω) is spin-dependent in the ferromagnetic state any other quantity that depends

on Gff,σ(ω), for instance the impurity density ρf (ω) in equation 5.19 will also be spin-

dependent in the ferromagnetic state

ρf,σ(ω) = − 1

π
ImGff,σ(ω)

=
1

π

∆

(ω − εf σ − ReΣ(ω))2 +∆2
. (5.24)

Anderson showed that if the ratio
U

∆
>

1

π
then it was possible for a magnetic moment to

exist at the impurity site. When
U

∆
>

1

π
the resonance given by equation 5.24 splits into two

resonances ρf,↑(ω) and ρf,↓(ω) situated above and below the Fermi energy Ef see Fig. 5.5.

As mentioned in the introduction, Schrie�er and Wol� found in 1966 that the SIAM

incorporated the physics of the Kondo Hamiltonian. The SIAM is a much richer model

than the Kondo model since it possesses a local moment phase described above. We will

now demonstrate that it also incorporates the spin-�ip phenomenon of the Kondo model by

performing a Schrei�er and Wol� transformation on the SIAM. Schrie�er and Wol� realized

that the two spin states of the impurity electron associated with the resonances (ρf,↑ and

ρf,↓) are mixed due to the hopping of conduction electrons on and o� the local orbital as a

result of the hybridization Vk. Hence there is a Kondo resonance which occurs in the SIAM

for U 6= 0 and
U

∆
>

1

π
. They asked the following question, "under what conditions can this

hopping quench the localized moment?� To answer this question we perform a canonical

transformation in the spirit of Schrie�er and Wol�, on the SIAM in the local moment regime
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Figure 5.4: Schematic illustration of impurity electron quantum-mechanically tunnel out of
a centrifugal barrier into a continuum resulting in a resonance width of ∆ = π|Vk|2D(0).
[After Anderson (1961)] [78].

U

∆
>

1

π
to eliminate the linear terms in Vk

H = eSHe−S. (5.25)

In the Hamiltonian of equation (5.16) we include in H0 all terms that do not contain the

hybridization term and in H1 the hybridization term only. With this understanding the

SIAM can be written as

H = H0 +H1. (5.26)

Expanding equation (5.25) in powers of S

H = H0 +H1 − [H0, S]− [H1, S] + ... (5.27)

we can eliminate H1, if we choose S in such a way that its commutator with H0 in 5.27

cancels H1, that is

H1 = [H0, S] (5.28)
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which results in the following transformed equation for H

H = H0 +
1

2
[S,H1] + ... (5.29)

plus higher order commutators which are of order O(V 3). Since V is small in the local

moment regime we can safely neglect these contributions. After working out the commutator

in 5.28 it is found that S has the following form

S =
∑
k,σ

ak,σVk(f
†
σck,σ − c†k,σfσ). (5.30)

the parameter ak when evaluated at the Fermi level kF the magnetic exchange JkF
has the

following value,

JkF
= 2

|V |2U
εf (εf + U)

. (5.31)

The commutator in equation (5.29) yields the Kondo interaction between the conduction

and localized electrons, so our transformed Hamiltonian reduces to

H = H0 −
1

2

∑
k,k′,σ,σ′

JkF
f †
σck,σc

†
k′,σ′fσ′ (5.32)

It is clear by looking at the last term that it is of the form of a spin-�ip interaction, a

conduction electron ck,σ with spin σ interacts with a localized electron fσ′ which has spin σ′

anti-ferromagnetic-ally through the exchange coupling JkF
= 2|V |2 U

ef (ef + U)
which �ips the

spin of each electron to c†k,σ′ and f †
σ. This type of spin-exchange only involves a transfer of the

spin degree of freedom of the electron, the charge degree of freedom isn't transferred through

the exchange because of the large Coulomb repulsion between the conduction and impurity

electrons. At low temperature just as in the case of the Kondo problem this interaction will

diverge at a critical temperature which is the Kondo temperature TK, which is given by, the

same formula as in the Kondo problem

TK =
D

kB
exp

(
− 1

N(0)JkF

)
=

D

kB
exp

(
− 1

N(0)2|V |2 U
ef (ef+U)

)
(5.33)
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Figure 5.5: In the case that the resonance width ∆ divided by U satis�es the condition
that ∆/U < π a magnetic solution exists for the SIAM as shown above. This is a plot of
the density-of-states showing that the resonances have split into two magnetically polarized
solutions with one above the Fermi-level and the other below. [After Anderson (1961)] [78].

where in the last line we were able to link the microscopic parameters of our model to the

Kondo temperature.

5.5 Periodic Anderson Model

In this section we extend the single impurity Anderson model to the case where there is a

magnetic ion located at every lattice site. This leads us into the physics of heavy fermions

and the periodic Anderson model [78]. Examples of materials which fall into the heavy

fermion category are the rare earth elements such as the Cerium and Praseodymium. When

many Cerium atoms are brought closes together to form a crystal, emergent phenomena

occur associated with the occupancy of the 4f level in Cerium, such as the Cerium volume

collapse into the α phase. These new behaviors cannot be explained by the SIAM alone.

The 4f 2 level of Cerium is approximately 10 eV above the 4f 1 state so there is a strong

Coulomb repulsions between electrons, however the 4f 1 and 4f 0 levels are pretty close in

energy so one would expect that the electron could �uctuate out of the f level into the

conduction band. This phenomenon is called mixed-valence-regime of Cerium. Cerium is

called a heavy fermion because its resistance follows a formula similar to a metal ρ(T ) =

ρ(0) + AT 2, where A is the contribution from the Fermi-liquid phase, which is proportional

to the reduced mass m? of the electron. This quantity in heavy fermions is often one-
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hundred to a thousand times larger than the mass of the electron. Other experiments which

indicate that m? is increased in heavy fermion compounds are calculations of the speci�c

heat C(T ) = γT + BT 3 where γT is the metallic contribution and BT 3 is the phononic

contribution to the speci�c heat. It turns out γ is up to three orders of magnitude larger

than in normal metals.

In these examples of heavy fermions the constant A in the resistivity and γ in the speci�c

heat are proportional to the density of states at the Fermi level, D(Ef ), so the mysterious

increase in these quantities is directly related to an increase in D(Ef ). The increase in D(Ef )

is the result of a resonance appearing at the Fermi-level, which was shown in the previous

section to be related to the Kondo spin-�ip interactions.

Another emergent phenomenon in heavy fermion materials is the so called Doniach com-

petition, which is a competition between the Kondo e�ect and magnetic ordering as a func-

tion of hybridization [81]. The magnetic ordering results because the magnetic moment on

one impurity site polarizes the conduction electrons which propagates the polarization to

another impurity site. This interaction tends to align the impurity magnetic moments an-

tiferromagnetically. The interaction responsible for the magnetic ordering is referred to as

RKKY (or Ruderman-Kittel-Kasuya-Yosida) interaction [82]. However the RKKY interac-

tion competes with the Kondo e�ect, for instance in the dilute limit when the hybridization

between the local moment and conduction band is small the system will favor the will anti-

ferromagnetically order through the RKKY interaction since the RKKY ordering energy is

J2N(0); when the hybridization is large the the system will favor the Kondo e�ect, since the

Kondo energy is TK ∼ e−
1

JN(0) .

In the following we brie�y outline a few of the important aspects of the PAM, following

Rice and Ueda's variational Gutzviller calculation [85], and then report on Jarrell's numerical

investigations of the model [86]. First we note that the periodic Anderson model has the

following Hamiltonian

H =
∑
k,σ

εkc
†
k,σck,σ + εf

∑
i,σ

f †
i,σfi,σ +

∑
k,i,σ

Vk(c
†
k,σfi,σ + f †

i,σck,σ)

+
∑
i

Unf
i,↑n

f
i,↓. (5.34)

The PAM has the same structure as the SIAM, the di�erence is that the PAM contains a

sum over lattice sites where the SIAM did not.

Rice and Ueda derived an e�ective low energy Hamiltonian that describes the basic

properties of the PAM at low temperatures and in the Kondo regime. In the Kondo regime
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the Coulomb repulsion energy U is large and the �lling of the impurity satis�es nf ' 1. The

low energy e�ective Hamiltonian they used was the following,

Heff =
∑
k,σ

εkc
†
k,σck,σ + εf

∑
i,σ

f †
i,σfi,σ +

∑
i,σ

V σ(c
†
i,σfi,σ + f †

i,σci,σ). (5.35)

Notice that the Hubbard term is absent and the hybridization function was replaced by the

renormalized hybridization function V σ which depends on the occupancy of the f electrons ,

V σ =
√
qσV

=

√
1− nf

1− nf,σ

V. (5.36)

When nf ≈ 1 in the local moment regime the re-normalized hybridization is very small, and

it is very di�cult for an electron to hop from site to site since U is very large. Nevertheless

if V σ is �nite the impurity electrons can hybridize into the conduction band and hybridize

back into another impurity site somewhere else in the lattice, so they identify an e�ective

bandwidth associated with the impurity electrons

W ≈ (1− nf )V. (5.37)

Since U is large in the Kondo regime, nf ≈ 1, the e�ective bandwidth for the electrons

W narrows. The bandwidth is related to a number of physically interesting properties, for

instance the e�ective mass m?, the coherence temperature T ? which is the temperature when

the Kondo scattering becomes coherent. Finally the density of states at the Fermi level can

be calculated from the result of band narrowing. The e�ective mass is found to be related

to the Fermi-energy TF and the characteristic temperature T ? in the following way

m?

m
≈ TF

T ?
. (5.38)

The coherence temperature possesses the following form in the Kondo regime for the PAM

using Rice and Ueda's variational Gutzviller approach,

T ? = We−
1

2|J|N(0) . (5.39)
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Figure 5.6: (a) Plot of the total density-of-states N total(ω) (b) and f electron density-of-states
N f (ω), as the temperature is reduce a sharp peak develops close to ω = 0, indicating that
the Kondo single state is forming since T < TK. [After Jarrell (1995)] [86]

The density-of-states at the Fermi level is found to be enhanced indicating that a Kondo

resonance develops for temperatures T < T ?

ρf (EF ) ≈ ρ(EF )
TF
T ∗

≈ ρ(EF )
m?

m
. (5.40)

The increase in ρf (EF ) was independently con�rmed by Jarrell who used dynamical-mean-

�eld-theory (DMFT) with Hirch-Fye quantum Monte Carlo as the impurity solver. He used

the case of the symmetric PAM with the parameters in his Hamiltonian set to εf = −U
2
, nf =

1 and nc = 1, which required his simulations to be particle-hole symmetric. Shown in Figure

5.6 one notices that a sharp peak (Kondo peak) develops around ω = 0 in the total density-

of-states N total(ω) and the f electron density-of-states N f (ω) for T < T ?. As the temperature

is decreased further below T ? the Kondo peak increases and a pseudogap begins to develop

which indicates that the system is transitioning from a metal to an insulator. In the limit

that T → 0 one would expect that the pseudogap would become a full gap; Jarrell estimated

this gap to be ∆ ≈ 0.5T ?.

Here we have surveyed most of the important properties of the PAM which are relevant

to the Cerium volume collapse. We observed that the PAM in the strong coupling regime
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provides an explanation of the increased e�ective massm? in heavy fermions, and it possesses

a Kondo crossover at temperature T ?. Finally we observe that all of the phenomena stated

here are directly related to the fact that the localized electrons form an form a narrow band

W at half �lling nf = 1, the localized electrons cannot hop easily from one site to another

because of the large Coulomb repulsion U . As a consequence the localized electrons are

associated with a large mass. As U increases the narrow bandwidth W decreases, which

implies that the characteristic temperature T ? also decreases. This implies that increases

in U correspond to a decrease in the Kondo resonance close to the Fermi-level (i.e. T ?

decreases). These arguments are in good agreement with Rice and Ueda and also Jarrell's

early investigations of the PAM.

The PAM is the model that we have chosen to capture the Kondo-like correlations of the

α↔ γ phase transition of Cerium, however it does not include any of the necessary phononic

correlations which have recently been proved to play an important role in the transition. So

in the next section we set up a model Hamiltonian called the Holstein model which describes

how phonons interact with electrons.

5.6 Holstein Model

Lattice vibrations in the Cerium volume collapse play a crucial role in renormalizing the

electronic correlations as Cerium collapses. It has been shown that 50% of the total entropy

change is directly related to di�erent phonon frequencies in the α and γ phases, which

indicates that the phonon involvement in the collapse of Cerium is very signi�cant. The

other half of the total entropy change is the result of di�erent electronic correlations in the

α and γ phases. This leads one to believe that the changes in phononic and electronic

correlations during the Cerium volume collapse are not independent of each other but in fact

in�uence one another. For this reason we will use a model that incorporates the e�ect of

electron-phonon correlations which has the following form [87, 88]

H =
∑
k,σ

εkc
†
k,σck,σ +

∑
i

(
P 2
i

2M
+

1

2
kx2i

)
+ g

∑
i

nc
ixi. (5.41)

This is the Holstein Hamiltonian. It describes the interaction of electrons with the motion

of the ions in the lattice. In this Hamiltonian the �rst term describes the energy of the

conduction elections, the second and third terms correspond to the mobility of the ions

which are constrained to move about their equilibrium positions, and the last term is the
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electron-ion or electron-phonon interaction, which will be used to describe the cooperative

electronic and phononic correlations in Cerium.

The Holstein Hamiltonian has been used extensively to explain phenomena such as con-

ventional superconductivity where close to the Fermi surface interact through an attractive

interaction which is cause by lattice vibrations. This interacting mechanism ultimately will

lead to a breakdown of the Fermi surface, in which all the electrons reside in a new ground

state which is called the superconducting state.

Another e�ect which the electron-phonon interaction has explained is the Peierls transi-

tion [89] which occurs in one-dimensional chains of Polyacetylene, where at half-�lling one

would expect this material to be metallic, however, due to the strong electron-phonon inter-

actions, dimerization occurs in which Polyacetylene becomes insulating [90]. This transition

requires a rearrangement of the unit cell which e�ectively increases it, which sets up a charge

density wave in the system.

Some of the earliest e�ects of the electron-phonon interactions were to slow down the

mobility of the electrons in a material; as a result of Coulomb interaction the electrons

would polarize the electronic cloud around the atom which causes a distortion in the phonon

�eld and the electron would essentially drag a cloud of phonons as it propagates through

the material. The electron and resulting phonon cloud was called a polaron [91]. When the

frequency of the lattice vibrations are small the electron-phonon interaction may tend to

favor polaron formation over superconductivity.

As a result the Holstein Hamiltonian is capable of exhibiting most of the phenomena

that could arise when electron-phonon interactions in materials are important. Now the

interesting question is what physics will emerge when the PAM and Holstein Hamiltonian

are merged together? Will it provide an explanation of the α ↔ γ transition in Cerium?

We believe that these two models independently contain most of the important phenomena

needed to provide a good quantitative explanation of the α↔ γ transition in Cerium.

5.7 Periodic Anderson-Holstein Model

Here we introduce the Hamiltonian which will be the basis for our investigation of the

Cerium volume collapse. As mentioned in the previous sections the volume collapse in

Cerium involves changes in electronic and phonic correlations across the α↔ γ transition;
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Figure 5.7: Plot of the Kondo order parameter ∂F
∂V

as function of hybridization V , and
electron-phonon coupling gc. As V increases ∂F

∂V
also increase indicating a transition to the

Kondo phase where the conduction electrons screen the localized moment. Notice as gc
increases that ∂F

∂V
decreases resulting in an unscreened local moment phase.

our prospective model which we will use to capture these correlations will be the PAM plus

Holstein model which has the following form,

H =
∑
k,σ

εkc
†
k,σck,σ + εf

∑
i,σ

f †
i,σfi,σ +

∑
k,i,σ

Vk(c
†
k,σfi,σ + f †

i,σck,σ)

+
∑
i

Unf
i,↑n

f
i,↓ +

∑
i

(
P 2
i

2M
+

1

2
kx2i

)
+ g

∑
i

nc
ixi. (5.42)

The �rst four terms correspond to the PAM; as mentioned in previous sections this portion

of the model will incorporate the Kondo-like correlations of the α phase and include the

local-moment physics of the γ phase, where the last three terms plus the �rst term represent

the Holstein model which will introduce the polaronic correlations which are essential for an

accurate description of the Cerium volume collapse within our model calculation. What type

of physics do we expect to emerge from this Hamiltonian? Clearly there will be a competition

between the Kondo e�ect and phononic correlations. We have just introduced two energy

scales into the problem: one is the Kondo energy given by TK and the other is the phonoic

deformation energy g. Early in the simulations of (5.42) which we solved using Dynamical-

Mean-Field-Theory (DMFT), it was very important to understand which electron-phonon

73



coupling was the most relevant during the collapse. From our early simulation of (5.42) we

found that when the phonon was coupled to the conduction electrons induced a large change

in the Kondo order parameter give by

∂F

∂V
= 〈c†f + f †c〉. (5.43)

Figure 5.7 is a plot of the Kondo order parameter, calculated using our model Hamiltonian

in (5.42). The parameters of the Hamiltonian were �xed to U = 4.0t?, ω0 = 0.01t?, g
2

2k
=

0.375t?, 0.8t?, 1.2t?, 1.5t?, 1.8t? and the temperature was set to T = 0.1t?, where the hy-

bridization V was varied as indicated on the horizontal axis. t? is the band width of the

density of states used in DMFT. Notice as V is increased for all values of g2

2k
that ∂F

∂V
also

increases indicating that Kondo screening of the local moment has occurred. Observe as
g2

2k
increases that Kondo screening of the local moment is reduced, thus the electronic and

phononic correlations are conspiring in such a way as to reduce the Kondo screening which

results in a unscreened local moment!
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Chapter 6

The Theory of Correlated Systems

6.1 Dynamical Mean Field Theory

The method that we use to extract information from our model Hamiltonian in (5.42) is the

Dynamical Mean Field Theory (DMFT) [95]. DMFT allows us to construct all the physical

correlation functions required to arrive at an understanding of the physics of our model. The

basic idea of DMFT that makes our complicated Hamiltonian (5.42) tractable is that the self

energy which arises from the electron-electron and electron-phonon interactions Σ(k, ω) =

Σ(ω) is momentum k independent, where the temporal correlations ω are preserved. The

basic system of equations of DMFT which are solved self consistently are the following. The

derivation of these equations can be found in [95]. First we start with Σ(ω) = 0 as the

initial condition for the self energy, we calculate the local propagator by coarse graining over

momentum k or integrate out over the density of states

Gσ(iωn) =
∫ ∞

−∞
dε

D(ε)

iωn − ε+ µ− Σσ(iωn)
(6.1)

where D(ε) = 1
t
√
2π
exp(− ε2

2t2
) is the non-interacting density of conduction electron states in

the limit that the dimensionality d → ∞ or the coordination number Z → ∞, and t is the

bandwidth. After calculating the local propagator, we calculate the bath function

G−1
σ (iωn) = Gσ(iωn)

−1 + Σσ(iωn) (6.2)

which is used as input to recalculate the local propagator using the path-integral represen-

tation where all the other degrees of freedom have been integrated out except for the local

site,

Gσ(τ) = − 1

Z

∫
{DΨσ(τ

′)DΨσ(τ
′)}[Ψσ(τ)⊗Ψσ(τ

′)]exp(−Sloc(G−1
σ )) (6.3)
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here we have de�ned a two component vector

Ψσ(τ) =

 cσ(τ)

fσ(τ)

 . (6.4)

Sloc is the impurity action which includes the local electron-electron correlations of the Hub-

bard interaction Unf
↑n

f
↓ and the non-local temporal electron-electron phonon correlations∫ β

0 dτD0(τ)〈Tnc(τ)nc(0)〉 produced by the Holstein coupling, and also includes the bath

function ∆(iωn) representing the hybridization of the local site with the bath. This step is

calculated using Continuous Time Quantum Monte Carlo (CTQMC) which is outlined in

section 6.2. After calculating the local propagator using CTQMC we can calculate a new

self energy from Dyson's equation

Σσ(iωn) = G−1
σ (iωn)−G−1

σ (iωn) (6.5)

where G−1
σ (iωn) is the bath function. The new value of Σσ is used for input into the lo-

cal propagator (6.1) and the sequence of steps is repeated for another value of Σσ(iωn).

Convergence is reached once Σn−1
σ (iωn) ≈ Σn

σ(iωn) for the n and n− 1 interations.

6.2 Continuous Time Quantum Monte Carlo

The local propagator Gσ(iωn) at the impurity is calculated using Continuous Time Quantum

Monte Carlo [96], [97]; I will follow the notation in reference [97]. CTQMC is a Monte Carlo

procedure that samples an integral stochastically in accordance with Boltzmann statistics.

The integral we would like to sample is the partition function Z which is a multi-dimensional

integral in which the integrand depends on the form of the electron-electron interaction in

(5.42),

Z

Z0

=
〈
T exp

[
−

∫ β

0
dτ [U(nf

↑(τ)− α(s))(nf
↓(τ)− α(s))

+
∫ β

0
dτ ′D0(τ − τ ′)(nc(τ)− α(s))(nc(τ

′)− α(s))]
]〉

0
. (6.6)

Notice that within DMFT the exponent is independent of lattice site i. The Hubbard

interaction is instantaneous in τ since the electron obeys the Pauli exclusion principle, so

only two electrons with spin ↑ and ↓ can interact via the Hubbard term, however the phonon

term is not instantaneous so two electrons can interact at di�erent times τ and τ ′ with four
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di�erent combinations of electronic spin for the two interacting electrons [σ, σ′] = [↑, ↑], [↑, ↓],
[↓, ↑], and [↓, ↓]. α(s) is an Ising variable that reduces the fermion sign problem, notorious

in fermionic QMC simulations, when summed over it leaves the partition function invariant.

The sum of the two terms in the exponent in (6.6) can be written as one term,

Z

Z0

= 〈T exp[−
∫ β

0
dτ

∫ β

0
dτ ′

∑
[σ,σ′,s=±1],b=[0,1]

Fb(τ − τ ′)(nb,σ(τ)− α(s))(nb,σ′(τ ′)− α(s))]〉0

(6.7)

for b = 0

F0(τ − τ ′) =
U

2
δ(τ − τ ′)δσ,−σ′ (6.8)

and b = 1

F1(τ − τ ′) = −D0(τ − τ ′). (6.9)

Expanding the exponential in 6.7 in a power series,

Z

Z0

=
∞∑
n=0

(−1)n

n!
Sn(β, 0) (6.10)

where

Sn(β, 0) =
∫ β

0
dτ1dτ1′

∑
[σ1,σ′

1,s1=±1],b1=[0,1]

...
∫ β

0
dτndτn′

∑
[σn,σ′

n,sn=±1],bn=[0,1]

× F (τ1 − τ1′)...F (τn − τn′)

× 〈T [(nb1,σ1(τ1)− α(s1))...(nbn,σ′
n
(τ ′n)− α(sn))]〉0 (6.11)

we now de�ne a con�guration of order n

Cn = [[σ1, σ
′
1, τ1, τ

′
1, s1, b1]

... [σn, σ
′
n, τn, τ

′
n, sn, bn]]. (6.12)

77



The sum over n in (6.10) can be replaced by a sum over the con�gurations Cn making the

replacement,

Z

Z0

=
∞∑
n=0

(−1)n

n!
Sn(β, 0)

=
∑
Cn

detM(Cn) (6.13)

where in this equation we identify,

∑
Cn

=
∞∑
n=0

(−1)n

n!

∫ β

0
dτ1dτ1′

∑
[σ1,σ′

1,s1=±1],b1=[0,1]

...
∫ β

0
dτndτn′

∑
[σn,σ′

n,sn=±1],bn=[0,1]

× F (τ1 − τ1′)...F (τn − τn′) (6.14)

and

detM(Cn) = 〈T [(nb1,σ1(τ1)− α(s1))...(nbn,σ′
n
(τ ′n)− α(sn))]〉0. (6.15)

We do not calculate (6.13) directly but we sample it using the Metropolis algorithm, after the

system has equilibrated. Then we can measure the local propagator Gσ(iωn) required for the

DMFT self-consistency. In order to equilibrate the sum in (6.13), we propose the addition or

removal of one con�guration Ck = [σk, σ
′
k, τk, τ

′
k, sk, bk] from the total con�guration Cn using

the detailed balance criteria of the Metropolis algorithm. In this way we either promote the

system to a con�guration Cn+1 or demote the system to a con�guration Cn−1. The detailed

balance equation is the central equation which allows us to establish the criteria which

determines whether the proposed move from the con�guration Cn → Cn+1 or Cn → Cn−1 is

accepted or rejected. The detailed balance equation for Cn → Cn+1 is

P (Cn)A(Cn → Cn+1)detM(Cn)=P (Cn+1)A(Cn+1 → Cn)detM(Cn+1). (6.16)

P (Cn) = 1
Z
exp(−βE(Cn)) is the equilibrium probability (Boltzmann weight) of con�gura-

tion Cn with energy E(Cn), A(Cn → Cn+1) is the probability of proposing a move from

con�guration Cn → Cn+1, and detM(Cn) is the weight of the con�guration Cn. Rearranging

this equation we can write it as

exp(−β(E(Cn+1)− E(Cn))) =
A(Cn+1 → Cn)detM(Cn+1)

A(Cn → Cn+1)detM(Cn)
. (6.17)
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Generally the Metropolis acceptance criteria is argued as a function of the energy of the new

con�guration E(Cn+1) and the energy of the old con�guration E(Cn). If E(Cn+1) < E(Cn)

then the probability of accepting the new con�guration Cn+1 is %100 since this state has a

lower energy than the previous con�guration Cn. In the case that E(Cn+1) > E(Cn), the

energy of the new con�guration is larger than the old con�guration the new state may be

accepted as long as its energy is not too much larger than the energy of the old state; to

establish this criterion, we pick a random number R ∈ [0, 1] and the new con�guration Cn+1

is accepted when exp(−β(E(Cn+1) − E(Cn))) > R and rejected when exp(−β(E(Cn+1) −
E(Cn))) < R. Using this reasoning the probability of accepting the new con�guration Cn+1

is

PCn→Cn+1 = min(1, exp(−β(E(Cn+1)− E(Cn))

= min(1,
A(Cn+1 → Cn)detM(Cn+1)

A(Cn → Cn+1)detM(Cn)
). (6.18)

The probability of accepting the change Cn → Cn−1 is

PCn→Cn−1 = min(1, exp(−β(E(Cn−1)− E(Cn))

= min(1,
A(Cn−1 → Cn)detM(Cn−1)

A(Cn → Cn−1)detM(Cn)
). (6.19)

After the system has reached equilibrium in the Monte Carlo process we perform our mea-

surements of the correlation functions, in particular we can calculate the local propagator

Gσ(iωn) essential for convergence of the DMFT cycle. We measure local propagator in

imaginary time Gσ(τ) in the following way,

Gσ(τ) = 〈Tc†σ(τ)cσ(0)〉

=

∑
Cn

detM(Cn)〈〈c†σ(τ)cσ(0)〉〉Cn∑
Cn

detM(Cn)
. (6.20)

In the last expression 〈〈c†σ(τ)cσ(0)〉〉Cn is the estimator used to construct the correlation

function Gσ(τ). This quantity is calculated as follows,

〈〈c†σ(τ)cσ(0)〉〉Cn =
〈T [(nb1,σ1(τ1)− α(s1))...(nbn,σ′

n
(τ ′n)− α(sn))]c

†
σ(τ)cσ(0)〉0.

〈T [(nb1,σ1(τ1)− α(s1))...(nbn,σ′
n
(τ ′n)− α(sn))]〉0

(6.21)
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The estimation for the thermal average of the local propagator sampled within Monte Carlo

is

Gσ(τ) =
1

M

M∑
l=1

〈〈c†σ(τ)cσ(0)〉〉Cl
, (6.22)

where the sum over l runs over the number of measurements made M , and Cl is the con�g-

uration of the system during the lth measurement. Performing the Fourier transform

Gσ(iωn) =
∫ β

0
dτe−iωnτGσ(τ) (6.23)

yields the local propagator required for the self-consistency of the DMFT.

6.3 Non-Interacting Green's Function for the PAM

Here we will brie�y outline the important steps in calculating the Green's function G(k, ω)

of the non-interacting Periodic Anderson Model (PAM) starting from the spectral represen-

tation at temperature T = 0. The spectral representation for G(k, ω) is given by

G(k, ω) =
∫ ∞

0
dε

{ ρ+(k, ε)

ω − ε+ iη
+

ρ−(k, ε)

ω + ε− iη

}
. (6.24)

In order to use this equation to calculate G(k, ω) requires that we have computed the spectral

densities ρ+(k, ε) and ρ−(k, ε). From an analytic view point we will only focus on calculating

ρ+, since ρ− is similarly calculated with a change in the the variable ε → −ε. To calculate

ρ+(k, ω) requires that we already know G(k, ω), from which we can calculate ρ+(k, ω) in the

following way since G(k, ω) is a discontinuous function of ω,

ρ+(k, ω) = − 1

π
Im(G(k, ω))

= − 1

2πi
(G(k, ω)−G?(k, ω)). (6.25)

This equation for the density of particles ρ+(k, ω) with momentum k and frequency ω will

be �nite for ω > µ. For the non-interacting Anderson model all the elements in G(k, ω)
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posses the same denominator and G(k, ω) can be factored in the following way,

G(k, ω) =
∆(k, ω + iη)

(ω − ω+ + iη)(ω − ω− + iη)
. (6.26)

The matrix elements of ∆(k, ω) are the following,

∆cc(k, ω) = ω − εf + iη

∆ff (k, ω) = ω − ε(k) + iη

∆fc(k, ω) = ∆cf (k, ω) = V, (6.27)

additionally

ω± =
−b±

√
b2 − 4c

2
(6.28)

with b = −(ε(k) + εf ) and c = ε(k)εf − V 2. Inserting (6.26) into (6.25) and removing the

imaginary part in ∆(k, ω)( which is consistent with ρ having poles in the lower half complex

plane, since the imaginary part is negligible ) allows us to write,

ρ+(k, ω) = −∆(k, ω)

2πi

{ 1

(ω − ω+ + iη)(ω − ω− + iη)
− 1

(ω − ω+ − iη)(ω − ω− − iη)

}
(6.29)

Setting ω+ = ω − ω+ and ω− = ω − ω− the denominators in 6.29 can be simpli�ed

(ω − ω+ − iη)(ω − ω− − iη) = (ω+ − iη)(ω− − iη)

= (ω+ω− − η2)− i(ω+ + ω)η

= γ(
α

γ
− iη) (6.30)

where in the last line we de�ned α = ω+ω− − η2 and γ = ω+ + ω−. Simplifying (6.29) with

the above notation and taking the limit as η → 0+ to ensure convergence in the lower half
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plane gives the following form for ρ+(k, ω),

ρ+(k, ω) = lim
η→0+

−∆(k, ω)

2πiγ

{ 1
α
γ
− iη

− 1
α
γ
+ iη

}
= lim

η→0+
−∆(k, ω)

2πiγ

{ −2iη

(α
γ
)2 + η2

}
=

∆(k, ω)

γ
δ(
α

γ
). (6.31)

In the last step we invoked the limit η → 0+, therefore α and γ are independent of η.

Next we have to evaluate the delta function in the last equation, the delta has the form

δ(α
γ
) = δ(f(ω)), which means that we have to �nd the zeros of f(ω) and calculate f ′(ω).

Clearly the zero's are found by setting α
γ
= (ω−ω+)(ω−ω−) = 0, therefore δ(α

γ
) is given by

δ(f(ω)) =
∑
i

δ(ω − ωi)

|f ′(ωi)|
= δ(ω − ω+) + δ(ω − ω−) (6.32)

where the sum goes over the roots of f(ω) and f
′
(ω+) = f

′
(ω−) = 1. Therefore the spectral

function has the following form

ρ+(k, ω) =
∆(k, ω)

γ

{
δ(ω − ω+) + δ(ω − ω−)

}
(6.33)

which corresponds to two spectral lines located at ω+ and ω−, as a result of two hybridized

bands due to V 6= 0 . Inserting (6.33) into (6.24) performing the integration yields equation

(6.26) for G(k, ω). More instructive is performing the integration over ω of (6.33)

G(k, t) = −i
∫ ∞

0
dωρ+(k, ω)e−iωte−η+t

= −i
∫ ∞

0
dω

∆(k, ω)

γ

{
δ(ω − ω+) + δ(ω − ω−)

}
e−iωte−η+t

= −i
{∆(k, ω+)

γ
e−iω+t +

∆(k, ω−)

γ
e−iω−t

}
e−η+t

= G(k, t)ω+ +G(k, t)ω− , (6.34)

which yields G(k, t). Here we see that the propagation of an electron can occur two ways,

either the electron can propagate on the upper branch with energy ω+ and momentum k

for a time t with a probability amplitude G(k, t)ω+ , or it propagates on the lower branch
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with energy ω− and momentum k for a time t with a probability amplitude G(k, t)ω− . Here

η+ ⇒ η+ → 0+ is used to aid in the convergence of the integral in (6.34).

6.4 Fermi-Liquid Green's Function for the PAM

In this section we will calculate the properties of the PAM with electron-phonon interaction

in the conduction band, within the Fermi-liquid (FL) region [100, 101, 102, 103] . Originally

the FL concept was developed to describe the low lying excitations in a metal and He3, where

the quasi-particles in both systems obeyed Fermi statistics. The FL concept was developed

by L.D. Landau in a phenomenological way in close analogy with the non-interacting electron

gas, in which the mass of the quasi-electron was renormalized to m? and its life-time in an

excited state was not in�nity as in the case of a non-interacting electron gas but obeyed the

relation τ−1 = B(ω− µ)2 due to quasi-particle interactions at very low temperatures, where

the interaction between quasi-particles was very strong. Since the interactions between quasi-

particle's at low temperatures resulted in quasi-particle excitations close to the Fermi-surface

which e�ectively re-normalized the electron mass m? and introduced a lifetime τ , Landau

realized that all this information could be included in a theory that closely resembled a

non-interacting Fermi-gas in which the Green's function was re-normalized by a factor Z

G(k, ω) =
Z

Iω − ZH0 + iΓ(O(ω2))
. (6.35)

In the case of the PAM this equation forG(k, ω) is a matrix equation, where the re-normalized

dispersion relation is ZH0 and the quasi-particle decay is given by Γ(O(ω2)) = B(ω − µ)2

here B is a 2 × 2 matrix. Calculating using equation (6.35) within the FL regime ω → 0

we can neglect the term Γ(O(ω2)) and reincorporate it at the end of the calculation since

it is responsible for the quasi-particle life-time. Using (6.35) Landau calculated the spectral

function and found it to be for ω > µ

ρ+(k, ω)FL = Zδ(Iω − ZH0). (6.36)

Which states that the quasi-particle spectrum has a resonance at the re-normalized en-

ergy given by ZH0. Later it was found by L.D. Landau, A. Abrikosov, L. Gor'kov, G. M.

Eliashberg, L. P. Pitaevskii and J. M. Luttinger that a microscopic description of Landau's

FL theory could be established using the diagrammatic techniques of perturbation theory.
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For our purpose this equates to linking the phenomenological Green's function of equation

(6.35) with the Green's function one would �nd from an analysis of Dyson's equation from

perturbation theory

G(k, ω) =
Z

Iω − ZH0

=
1

Iω −H0 − Σ(ω)
. (6.37)

Inverting this equation and performing a derivative with respect to ω allows us to calculate

the renormalization factor Z from the microscopic self-energy Σ(ω) which is calculated within

DMFT,

∂G−1

∂ω
(k, ω)|ω=0 =

1

Z

= I − ∂Σ(ω)

∂ω
|ω=0

= I − ∂ReΣ(ω)

∂ω
|ω=0 (6.38)

In the last step we used the fact that in order to relate the microscopic self-energy Σ(ω) which

has a real and imaginary part to the phenomenological form of the self-energy given by ZH0

requires taking the real part of ReΣ(ω)|ω=0 and evaluating at ω = 0 since ZH0 is frequency

independent. Using the spectral representation for the self energy it is possible to calculate

the ∂ReΣ(ω)
∂ω

|ω=0 in terms of the imaginary time or Matsubara self-energy ΣM(iπT ) evaluated

at the lowest fermionic Matsubara frequency ωn=0. We will demonstrate the equivalence

starting from the spectral representation of Σ(ω) and ΣM(iωn) in the limit that T → 0

ReΣ(ω) =
∫ ∞

−∞
dx

1
π
ImΣ(x)

x− ω
(6.39)

and for ΣM(iωn)

ΣM(iωn) =
∫ ∞

−∞
dx

1
π
ImΣ(x)

x− iωn

. (6.40)
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Performing the derivative ∂ReΣ(ω)
∂ω

|ω=0 on equation (6.39) gives

∂ReΣ(ω)

∂ω
|ω=0 =

∫ ∞

−∞
dx

1
π
ImΣ(x)

x2
, (6.41)

complex conjugating equation (6.40) and taking limn→0 ImΣM(iωn) gives

ImΣM(iπT ) = πT
∫ ∞

−∞
dx

1
π
ImΣ(x)

x2
. (6.42)

Clearly equation (6.41) and (6.42) are equivalent up to a constant πT . Therefore ∂ReΣ(ω)
∂ω

|ω=0

can be calculated with the use of the Matsubara self-energy through the relation

∂ReΣ(ω)

∂ω
|ω=0 =

ImΣM(iπT )

πT
. (6.43)

Therefore the quasi-particle weight can be calculated from

Z =
{
I − ImΣM(iπT )

πT

}−1
, (6.44)

which will be a useful form for calculating Z since no analytic continuation of Σ(ω) is required

since ΣM(iωn) is calculated directly from quantum Monte Carlo data.

Starting from the phenomenological form of the Green's function in (6.37) we will show

that the spectral function ρ+(k, ω)FL, as a result of the interactions between quasi-particles,

will have excitation energies ω± which are shifted from the non-interacting excitation energies

ω±, and re-normalized by a factor Z. The Green's function for the PAM with electron-phonon

coupling to the conduction electrons in the FL regime can be written

G(k, ω)FL =
Z

Iω − ZH0

. (6.45)

ZH0 has the following form,

ZH0 =

 Zcc Zcf

Zfc Zff


 ε(k) V

V εf


=

 Zccε(k) + ZcfV ZccV + Zcfεf

Zfcε(k) + ZffV Zffεf + ZfcV


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=

 ε(k) V cf

V fc εf

 . (6.46)

Constructing the denominator of (6.45) we �nd has the following form,

Iω − ZH0 =

 ω − ε(k) −V cf

−V fc ω − εf

 . (6.47)

Performing the inverse (Iω−ZH0)
−1 we �nd that the matrix of co-factors has the following

form

∆(k, ω)FL =

 ω − εf V cf

V fc ω − ε(k)

 , (6.48)

and Det(Iω − ZH0) can be factor as

Det(Iω − ZH0) = (ω − ω+)(ω − ω−) (6.49)

where the eigenfrequencies are given by

ω± =
−b±

√
b2 − 4c

2
(6.50)

with b = −(ε(k)+εf ) and c = ε(k)εf−V cfV fc. Therefore we �nd G(k, ω)FL has the following

form after inverting (6.45)

G(k, ω)FL =
Z∆(k, ω)FL

(ω − ω+ + iη)(ω − ω− + iη)
(6.51)

where we have included iη into the denominator to ensure convergence in the lower half

plane; in the FL theory this convergence factor is of order (ω−µ)2 and gives the attenuation

of the quasi-particle. Clearly the form of 6.51 for G(k, ω)FL is identical to the non-interacting

form given in (6.26) for G(k, ω) within the renormalization factor Z. Therefore we can write

down the spectral density with this observation,

ρ+(k, ω)FL = Zδ(Iω − ZH0)

=
Z∆(k, ω)FL

γ(ω)

{
δ(ω − ω+) + δ(ω − ω−)

}
(6.52)
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where γ(ω) = ω+ − ω−. Integrating ρ+(k, ω)FL with respect to ω we �nd,

G(k, t)FL = −i
∫ ∞

0
dωρ+(k, ω)FLe

−iωte−η

= −i
∫ ∞

0
dω
Z∆(k, ω)FL

γ(ω)

{
δ(ω − ω+) + δ(ω − ω−)

}
e−iωte−ηt

= −iZ
{∆(k, ω+)FL

γ(ω+)
e−iω+t +

∆(k, ω−)FL

γ(ω−)
e−iω−t

}
e−ηt

= G(k, t)ω+ +G(k, t)ω− , (6.53)

which yields the probability amplitude G(k, t)FL in the FL regime. Here we see that the

propagation of an electron can occur two ways just as in the non-interacting case, either the

electron can propagate on the upper branch with re-normalized energy ω+ and momentum

k for a time t with a renormalized (Z) probability amplitude G(k, t)ω+ , or it propagates

on the lower branch with a re-normalized energy ω− and momentum k for a time t with a

re-normalized (Z) probability amplitude G(k, t)ω− . Here η ∝ τ−1 ∼ (ω − µ)2 which results

in the attenuation of the quasi-particle amplitude G(k, t)FL for times t > τ , which is due

to the interactions between quasi-particles in the Fermi-Liquid regime of the PAM with the

inclusion of electron-phonon interactions in the conduction band, therefore the exponential

decay of G(k, t)FL ∼ e−
t
τ for t > τ .

6.5 The Fermi-Liquid Quasiparticle Fraction Z

In this section we extract the quasi-particle fraction Z from the Fermi Liquid Green's func-

tion,

G(k, ω)FL =
Z

Iω − ZH0

=
Z∆(k, ω)FL

(ω − ω+(k) + iη)(ω − ω−(k) + iη)
(6.54)

where

Z∆(k, ω)FL =

 Zcc Zcf

Zfc Zff


 ω − εf V cf

V fc ω − ε(k)

 , (6.55)
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with

ε(k) = Zcc(ε(k)− µ+ ΣH
cc) + ZcfV

V cf = ZccV + Zcf (εf − µ+ ΣH
ff )

V fc = Zfc(ε(k)− µ+ ΣH
cc) + ZffV

εf = Zff (εf − µ+ ΣH
ff ) + ZfcV. (6.56)

Here ΣH
cc = −g2

k
nc and ΣH

ff = U
2
nf are the constant Hartree terms which change the po-

sition of the conduction and impurity levels respectively (see appendix A.3). The renor-

malization factors Zcc, Zff , Zcf and Zfc are calculated from the Matsubara self-energies

Σcc(iπT ),Σff (iπT ),Σcf (iπT ) and Σfc(iπT ) using the Fermi liquid relations,

Z−1 = I − ∂ReΣ(ω)

∂ω
|ω=0

= I − ImΣ(iπT )

πT
. (6.57)

The diagonalized bands have the following form

ω±(k) =
1

2

{
ε(k) + εf ±

√
(ε(k) + εf )2 − 4(ε(k)εf − V cfV fc)

}
. (6.58)

In the following we calculate the quasi-particle renormalization fraction of the upper and

lower bands Z+ and Z−. This is done by performing the trace of (6.54)

N

V
= − 1

π
ImTr(G)

=
∫

dkdω{ − 1

π
ImGcc(k, ω)−

1

π
ImGff (k, ω)}

=
∫

dk{Z+(ω+(k)) + Z−(ω−(k))}

=
∫

dkρ(k). (6.59)

We �nd that ImGcc(k, ω) and ImGff (k, ω) have the following form

ImGcc(k, ω) =
(Zcc(ω − εf ) + ZcfV fc)

ω+(k)− ω−(k)
[− πδ(ω − ω+(k)) + πδ(ω − ω−(k))] (6.60)
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and

ImGff (k, ω) =
(Zff (ω − ε(k)) + ZfcV cf )

ω+(k)− ω−(k)
[− πδ(ω − ω+(k)) + πδ(ω − ω−(k))].(6.61)

Therefore the sum is given by

ImGcc(k, ω) + ImGff (k, ω) =
(Zcc(ω − εf ) + ZcfV fc + Zff (ω − ε(k)) + ZfcV cf )

ω+(k)− ω−(k)

× [− πδ(ω − ω+(k)) + πδ(ω − ω−(k))] (6.62)

from which we can identify Z+(ω+(k)) and Z−(ω−(k)) in (6.59) as

Z+(ω+(k)) = − 1

π

∫
dωZ+(k, ω)πδ(ω − ω+(k)) (6.63)

and

Z−(ω−(k)) = − 1

π

∫
dωZ−(k, ω)πδ(ω − ω−(k)) (6.64)

where

Z±(ω±(k)) = ±Tr
[Z∆(k, ω±(k))FL

ω+(k)− ω−(k)

]
= ±Zcc(ω±(k)− εf ) + ZcfV fc + Zff (ω±(k)− ε(k)) + ZfcV cf

ω+(k)− ω−(k)
. (6.65)

We evaluate the quasi-particle fraction Z−(EF ) at the Fermi Energy EF and in the lower

band since our �lling is �xed to nc+nf = 1.8. To determine EF it follows that the excitation

energy of a quasi particle lower band is zero ω−(EF ) = 0. This provides us with a condition

which allows us to extract EF from equation (6.58) which we �nd has the following form

EF =
α(µ)ZffV − ZcfV

Zcc − α(µ)Zfc

+ µ− ΣH
cc (6.66)

where

α(µ) =
ZccV + Zcf (εf − µ+ ΣH

ff )

Zff (εf − µ+ ΣH
ff ) + ZfcV

. (6.67)
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Chapter 7

Kondo to Local Moment Transition

7.1 Overview of the Kondo to Local Moment Transition

Cerium is a prototype for the strongly correlated f electrons materials. One of the most

spectacular properties of Cerium is the pressure induced isostructural volume transition

between the large volume local moment phase (γ phase), and the small volume paramagnetic

phase (α phase). It has been studied for over six decades, however, even with extensive e�orts

[104, 105, 106, 107, 108, 64, 66], there is still no consensus on the mechanism of this transition.

There are three main theories which may explain the volume collapse transition. The

�rst theory is based on the promotional model [109, 110]. In this model, the 4f electrons

are pushed into the conduction band of the 5d or 6s orbital. As the 4f orbital has a larger

radius, the 4f electrons promoted to the conduction band must be less screened by the

nucleus, thus the 5d and 6s orbitals will be less screened and their volume collapses. This

model requires the Fermi energy to stay close to that of the energy of the 4f electrons.

However, photoemission experiments suggest that there is a substantial di�erence between

them. The second theory is based on the Mott transition [64]. The bandwidth of the 4f

electrons is enhanced as the pressure is increased. This e�ectively increases the overlap

among the 4f orbital and thus allows the 4f electrons to be delocalized. The Hubbard

bands formed from the 4f merge with the conduction band to form the α phase with no

local moment.

A di�erent explanation from the above two theories is given by Allen and Martin which

focuses on the hybridization between the localized 4f moment and the conduction band

[111, 66, 112, 113]. The localized moment hybridizes with the valence band to form a Kondo

resonance. In the small volume α-phase, the J is enhanced due to the pressure, and the

Kondo singlet is formed below the Kondo temperature. As the pressure decreases, the Kondo

temperature goes down, and the entropy from the free localized moment contributes to the

free energy. Allen and Martin described the system in terms of the Kondo lattice model;
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they found that using the result of the single Kondo impurity model and general arguments

from thermodynamics, they could reproduc the �rst order transition in their calculation.

Speci�cally, they calculated the Gibbs free energy given by G = F + PΩ = U − TS + PΩ,

where F,U, S, and Ω are the free energy, internal energy, entropy, and volume per Cerium

atom respectively. With the input of the free energy from the single impurity Kondo model,

they showed that the P,Ω, T relation for low enough temperature always has points with

dP/dV = 0 which indicates the �rst order transition. As it has been pointed out in the

original paper [66], the detailed form of the contribution from Kondo e�ects is not critical;

what is important is the non-linear relation between the Kondo coupling and its contribution

in the free energy. The Kondo volume collapse theory seems to be able to describe many

di�erent experiments [111]. Importantly, it can describe the Abrikosov-Suhl resonance as

observed in the experiment [111]. Based on initial inelastic neutron scattering experiment the

contribution to the entropy from the phonon was suggested to be negligible. However recent

high resolution neutron and x-ray di�raction experiments suggest that the lattice degree of

freedom may play a role in the α − γ transition. In particular, it has been suggested that

the phonons contribute almost half of the entropy across the transition [69, 63, 19].

In light of these recent experimental results, we propose a minimal model based on the

Kondo Volume collapse model to explain the e�ects of the electron-phonon coupling. We

begin from the standard periodic Anderson model and incorporate the electron-phonon cou-

pling by replacing the metallic band with the local electron-phonon coupling to the Einstein

phonon, that is the Holstein model. Within the Kondo volume collapse model, the α ↔ γ

transition can be explained by the Kondo lattice model, in the α phase the small volume

provides large e�ective Kondo coupling, J . A Kondo singlet is formed below the Kondo tem-

perature. Along this line of thought, there are two possible scenarios with the introduction of

electron-phonon coupling in the conduction band: 1. Long range ordering (charged density

wave or pairing) formed in the conduction band opens a gap at the Fermi level, e�ectively

destroying the Kondo e�ect and thus the α-phase. 2. No long range ordering is formed in

the conduction band; the correlated band only a�ects the Kondo temperature. In the case

where the conduction electrons are described by the Hubbard Hamiltonian, the repulsive and

attractive Hubbard interaction will enhance and reduce the Kondo temperature respectively.

Therefore, at least in the anti-adiabatic limit and not too strong electron-phonon coupling

or not too low temperature (where long range ordering is avoided), even though no long

range ordering is formed in the conduction band, the α-phase is likely to be pushed to lower

temperature or larger pressure.
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Figure 7.1: HV vs. V is plotted for �xed Hamiltonian parameters U = 4.0, g2

2k
= 1.0, and

ω0 = 0.01, where the hybridization was varied from V = [0.8, 1.5] for four values of inverse
temperature β = 10, 20, 30 and 40. When V ≈ g2

2k
= 1.0 a sudden increase in the HV

occurs for V ∼ 1.0 indicating that Kondo screening of the impurity has occurred. As the
temperature is lowered the discontinuity in HV at V = 1.0 is more apparent indicating a
sudden transition in the dominant correlations. Consequently for V > 1.0 (large pressure)
the system is in the α phase where the Kondo correlations are enhanced. For V < 1.0 (small
pressure) the system moves to the γ phase where Kondo correlations are reduced.

Here we will illustrate our DMFT results of the PAM [104, 105, 106, 107, 108] with

the inclusion of electron-phonon coupling in the conduction band, in an attempt to better

understand the e�ects of phonon correlations in the α↔ γ transition of the Cerium volume

collapse[109, 110, 64, 66, 112, 113]. All the simulations were performed with the �xed

Hamiltonian parameters and t? = 1. The Hubbard interaction U between impurity electrons

was �xed to U = 4.0 to place the simulation in the Kondo regime and the phonon frequency

was set to the adiabatic limit of ω0 = 0.01 which re�ects that the Debye temperature relative

to the Fermi Energy in Cerium is small [69]. The electron-phonon g2

2k
interaction, inverse

temperature β = 1
kBT

and hybridization V were varied. The hybridization was varied to
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re�ect changes in pressure in the α↔ γ transition of Cerium. For a �nite range of electron-

phonon coupling as the hybridization was varied from small (small pressure) to large ( large

pressure) an abrupt transition occurred from dominant phononic correlations at small values

of hybridization to dominant Kondo correlations at larger values of hybridization. This

transition suggests that the phononic correlations are more active for small values of pressure

and not as signi�cant at larger values of pressure where Kondo screening of the inner f electron

occurs. The transition between phononic and Kondo phase in our simulations occurred when

the phononic and Kondo energies were of the same order g2

2k
≈ V . Interestingly we found

that increasing g2

2k
was similar to decreasing the temperature T in our simulations. At low

T or large g2

2k
it was found that a hysteretic solution resulted from the competition between

the phononic and Kondo correlations resulting in two distinct minima of the thermodynamic

potential Ω. In the following sections we will cover the correlation functions that have allowed

us to come to these conclusions. As stated above all the simulations were done with U = 4.0

(indicative of the Kondo regime of cerium) and ω0 = 0.01 (adiabatic phonons applicable

to cerium) where the hybridization was varied from V = [0.8, 1.5] in an e�ort to simulate

changes in pressure across the collapse. All the results of the simulations were performed for

inverse temperatures β = 10, 20, 30, 40 and 60.

7.2 Kondo Correlation Function

The Kondo order parameter was calculated by di�erentiating the free energy with respect

to hybridization

HV = − 1

Nβ

∂F

∂V
= 〈c†f + f †c〉. (7.1)

Here 〈c†f〉 is the amplitude that an electron propagates from the impurity band (f), hy-

bridizes via V and propagates in the conduction band (c†), and 〈f †c〉 is just the inverse

process. As shown in Fig. 7.1 HV was plotted as a function of V for g2

2k
= 1.0 and inverse

temperatures β = 10, 20, 30 and 40. The most salient feature of the Kondo order parameter

is the abrupt increase in HV around V = 1.0, which becomes sharper as the temperature is

lowered resulting in a step function appearance. For V > 1.0 the system is in the Kondo

phase since HV is enhanced, which corresponds to the large pressure α phase of cerium, hence

large Kondo screening. For small values of pressure when V < 1.0 the Kondo correlations

are reduced signi�cantly; this phase is indicative to the γ phase of cerium.
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Figure 7.2: Df vs. V is plotted for �xed Hamiltonian parameters U = 4.0, g2

2k
= 1.0, and

ω0 = 0.01, where the hybridization was varied from V = [0.8, 1.5] for four values of inverse
temperature β = 10, 20, 30 and 40. A sudden increase in Df occurs around V ∼ 1.0 which
becomes more discontinuous as the temperature is lowered. Df is larger in the α phase
V > 1.0 because Kondo screening is enhanced. For V < 1.0 Df is signi�cantly reduced in
the γ phase since Kondo screening is absent.

7.3 Double Occupancy

Double occupation of the impurity site was calculated by performing a functional derivative

of the free energy with respect to U

Df = − 1

β

∂F

∂U
= 〈n↑

fn
↓
f〉. (7.2)

In this equation n↑
f and n↓

f are the density of spin-up and spin-down impurity electrons,

therefore 〈n↑
fn

↓
f〉 is a measure of the double occupation of the impurity site by spin-up and

spin-down electrons at the same time. DF is displayed in Fig. 7.2 as a function of V . One
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Figure 7.3: χf vs. V is plotted for �xed Hamiltonian parameters U = 4.0, g2

2k
= 1.0, and

ω0 = 0.01, where the hybridization was varied from V = [0.8, 1.5] for four values of inverse
temperature β = 10, 20, 30 and 40. For V > 1.0 χf is signi�cantly reduced indicating that
the impurity spin is Kondo screened. For V < 1.0 in the γ phase χf is signi�cantly enhanced
as a result of the absence of the Kondo screening which implies that the impurity site is
singly occupied.

will notice that a sharp increase occurs in DF around V = 1.0 which also has the appearance

of a step function as the temperature is reduced. For V ∼ 1.0 the transition from the γ to

the α phase occurs. The double occupation has it largest value in the α phase V > 1.0 since

Kondo screening is largest (Fig. 7.1) in this phase and therefore two electrons of opposite spin

can occupy the impurity site in accordance with the Pauli exclusion principle. For V < 1.0

Df is reduced in the γ phase since Kondo screening of the impurity electrons is suppressed

see (Fig. 7.1) and double occupation of the impurity site is reduced.
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Figure 7.4: χc vs. V is plotted for �xed Hamiltonian parameters U = 4.0, g2

2k
= 1.0, and

ω0 = 0.01, where the hybridization was varied from V = [0.8, 1.5] for four values of inverse
temperature β = 10, 20, 30 and 40. For V > 1.0 χc in the conduction band is signi�cantly
reduced since Kondo screening is present. However when V < 1.0 χc is signi�cantly enhanced
in the γ phase since the Kondo correlations are reduced.

7.4 Impurity Spin Correlations

The z component of the local impurity susceptibility χf was calculated from

χf =
∫ β

0
dτ(〈TSz

f (τ)S
z
f 〉 − 〈Sz

f (τ)〉〈Sz
f 〉) (7.3)

In this equation Sz
f = n↑

f − n↓
f is the z-component of the spin of the f electron, which is zero

when n↑
f = n↓

f . In Fig. 7.3 χf increased for V < 1.0 indicating that the local electron is not

correlated with an additional electron bound in a Kondo singlet state. For V < 1.0 the state

of the system is in the local moment regime γ. When V > 1.0 χf is signi�cantly reduced

as a consequence of the binding of two impurity electrons, this indicates the formation of
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the Kondo singlet state, which is indicative of the small volume α phase in cerium. As

the temperature is reduced in the γ phase χf increases indicating single occupancy of the

impurity site.
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Figure 7.5: Z−(EF ) vs. V is plotted for the Hamiltonian parameters U = 4.0, g2

2k
= 1.0,

and ω0 = 0.01, where the hybridization was varied from V = [0.94, 1.5] the temperature was

varied from β = 10, 20, 30 and 40 and the total �lling was �xed to n = 1.8. Observe when

V > 1 the quasi-particle fraction is reduced from its Fermi-liquid value as the temperature is

decreased; which is the result of an increase in polaronic correlations in the conduction band.

Similarly for V < 1.0 the quasi-particle fraction is signi�cantly reduced from its Fermi-liquid

value, since the polaronic correlations are enhanced for V < g2

2k
= 1.0. This plot indicates

that decreasing the temperature enhances the e�ective electron phonon coupling g2

2k
, which

increases electron mass m? resulting in polaron formation, thus reducing the Fermi-liquid

quasi-particle fraction Z = m
m? .
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7.5 Phononic Correlations

The conduction band susceptibility χc was calculated using the formula

χc =
∫ β

0
dτ(〈Tnc(τ)nc〉 − 〈nc(τ)〉〈nc〉). (7.4)

In this equation nc = n↑
c + n↓

c is the total conduction band density. As the correlations in

time build up the correlation function is enhanced 〈nc(τ)nc〉. In (Fig. 7.4) for V < 1.0 the

electronic correlations in the conduction band are enhanced as a result of the strong electron-

phonon interaction between electrons where g2

2k
= 1.0. This correlation function suggests that

for V < 1.0 the electron phonon correlations in the conduction band are responsible for the

reduction of the Kondo correlations for V < 1.0 see (Fig. 7.1). This suggests in the large

volume phase γ there will be an enhancement in the polaronic correlations in the conduction

band of cerium. In the small volume α phase the Abrikosov Suhl resonance at the Fermi

level will reemerge indicative of large Kondo spin �ip correlations between the conduction

and localized electrons.

7.6 Quasi-Particle Renormalization Fraction

The renormalization of the quasi-particles at the Fermi energy EF in the lower band with

�lling nf +nc = 1.8 was calculated using the phenomenological Fermi Liquid approximation

applied to the α phase in our model for V > 1.0, since this phase is known to possess all the

properties of a Fermi liquid[100]. In particular we were interested in how the mass of the

quasi-particles changed as the temperature was reduced and as a function of hybridization

V ; the results are displayed in (Fig. 7.5). The formula used to calculate the quasi-particle

fraction of the lower band Z−(EF ) has the following form

Z−(ω−(kF )) = −Tr
[Z∆(k, ω−(k))FL

ω+(k)− ω−(k)

]∣∣∣
k=kF

= −Zcc(ω−(kF )− εf ) + ZcfV fc + Zff (ω−(kF )− ε(kF )) + ZfcV cf

ω+(kF )− ω−(kF )
. (7.5)

Here kF is the Fermi momentum. As shown in (Fig. 7.5) we observe as the temperature is

reduced for V > 1.0 in the α phase that Z−(EF ) decreases; this indicates that the e�ective

mass of the electrons m? increases. This is consistent with the increase in the density-
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Figure 7.6: HV vs. V is plotted in the hysteretic region for inverse temperature β = 60 for
the �xed Hamiltonian parameters U = 4.0, g2

2k
= 1.0, and ω0 = 0.01, where the hybridization

was varied from V = [0.8, 1.5]. The historetic region exists in the interval V ε [0.85, 1.1]. The
upper branch possesses dominant Kondo correlations while the lower branch has dominant
phononic correlations. The inset shows the stability of upper and lower branches as a function
of DMFT iterations.

density correlations χc in the conduction band for V > 1.0 see (Fig. 7.4); which shows that

the polaronic correlation increases as the temperature decreases, hence the electron phonon

correlations become more active at lower temperatures. The increase in the density-density

correlations in the conduction band will reduce the TK since Z−(EF ) decreases. Therefore we

postulate that the Kondo temperature is reduced as the electron phonon coupling increases in

the following way: TK ∼ exp(−g2/2k
V

). Physically TK approximated in this way indicates that

increasing the electron-phonon interactions prevents conduction electrons from hybridizing

and screening the impurity electron thus reducing TK.

7.7 First Order Phase Transition: Hysteresis

As the temperature is reduced to β = 60 the phononic correlations continue to increase in

the conduction band which reduces the Kondo temperature TK. At this temperature the
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energy of the phononic correlations in the conduction band are comparable to the energy of

the Kondo correlations, which creates two possible states that minimize the thermodynamic

potential Ω. For temperatures T < Tc if the system is prepared initially in the γ phase and

pressure is exerted on the system in the hysteretic region the system will be stable in the

local minimum of Ω with dominant phononic correlations in the conduction band. On the

other hand, if the system is initially prepared in the α phase at large pressure, as the pressure

is gradually reduced and the system enters the hysteretic region it will be in a state of stable

equilibrium of Ω with dominant Kondo correlations. This situation is illustrated in (Fig. 7.6).

The inset of this �gure corresponds to the stability of the upper and lower branches of the

hysteresis as a function of DMFT interactions. The historetic region exists for V ε [0.85, 1.1],

where the critical value of hybridization is given by Vc ≈ 0.975 at this temperature. Clearly

the �rst order terminus or the critical point where the hysteresis initially opens exists at

a higher temperature, but not higher than β = 40 since no hysteresis was found at this

temperature.

The �rst order terminus for the PAM + Holstein model can be characterized by the

triplet (Vc, Tc, g
2

2k c
) in a three dimensional space. Increasing g2

2k
increases the critical point in

the three dimensional space thus the opening of the hysteresis will occur for larger values

of Vc and Tc. The reasoning here is that increasing the electron phonon coupling increases

the density density correlations between conduction electrons which requires a larger value

of hybridization to initiate the Kondo e�ect. As a consequence we predict that there is an

energy scale such as TK ∼ exp(−g2/2k
V

) which determines the Kondo temperature for an

attractive interaction in the conduction band based on the behavior of Hv, Df , χf , χc and

Z−(EF ) depicted in Figures 7.1 through 7.6.
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Chapter 8

Conclusion

In this thesis we predicted that other bimetallic oxalates would exhibit magnetic compensa-

tion, in which the direction of the magnetization �ipped at a temperature below the initial

ferrimagnetic transition temperature. In addition we predicted that bimetallic oxalates that

exhibited magnetic compensation would also possess a measurable spin-wave gap of the order

of 8.0 meV, which could be detected in neutron di�raction experiments of these materials.

With regards to the cerium volume collapse, we showed that the inclusion of electron-

phonon coupling in the conduction band in our model Hamiltonian, would result in a phase

with dominant phononic correlations in the γ phase which existed for small values of V

(small pressure). In the limit of the α phase (large pressure) which occurred in our model

at large values of hybridization V between the conduction and impurity electrons, we ob-

served an increase in Kondo correlation and subsequent reduction in phononic correlation.

In particular we were able to show that the α↔ γ transition of our model simulations using

DMFT resulted in a �rst order phase transition, in which a hysteresis loop developed for

temperatures below the Kondo TK and phononic transition TFC temperatures.
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Appendix A

A.1 Model Hamiltonian in Spinor Notation

To simplify our calculations of the periodic Anderson model with Holstein phonons coupled

to the conduction electrons we compress the impurity Hamiltonian

H =
∑
k,σ

εkc
†
k,σck,σ + εf

∑
i,σ

f †
i,σfi,σ +

∑
k,i,σ

Vk(c
†
k,σfi,σ + f †

i,σck,σ)

+ Unf,↑nf,↓ −
∫ β

0
dτD0(τ)nc(τ)nc

+ ω0(a
†a+

1

2
) (A.1)

using the spinor representation

Ψk,i =

 ck

fi

 (A.2)

into a form more reminiscent of a one band model. Where the �rst term has the form of

the one band kinetic energy model, the second term has the form of a single band potential

energy model and the last term corresponds to the kinetic energy of a non-interacting phonon

located at the impurity,

H =
∑
k,i,σ

Ψ†
k,i,σε(k, i)Ψk,i,σ

+
∑

k,i,σ,σ′,j=1,2

∫ β

0
dτdτ ′Vσ,σ′(k, i, j, τ − τ ′)(Ψ†

k,i,σ′(τ)αjΨk,i,σ′(τ))(Ψ†
k,i,σ(τ

′)αjΨk,i,σ(τ
′))

+ ω0(a
†a+

1

2
). (A.3)

The kinetic energy matrix is given by
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ε(k, i) =

 ε(k)δi,0 V (k)

V (k) εfδk,0

 . (A.4)

The potential energy reproduces the impurity Hubbard and impurity electron-phonon inter-

actions when j = 1 and j = 2 respectively. The Hubbard interaction has the following form

at the impurity,

Vσ,σ′(k, i, j = 1, τ) =
U

2β
δσ′,−σδk,0δi,0δ(τ) (A.5)

where

α1 =

 0 0

0 1

 . (A.6)

We �nd that the electron-phonon interaction has the following form at the impurity

Vσ,σ′(k, i, j = 2, τ − τ ′) = − 1

β
D0(τ − τ ′)δk,0δi,0 (A.7)

with

α2 =

 g 0

0 0

 . (A.8)

Having cast our two band model into a single band model with the use of a spinor Ψ allows

us to calculate ANY quantity we wish within Feynman-Dyson perturbation theory as if our

model were a single band model. This is possible just by rewriting the Hamiltonian in a

spinor form! In the next couple of sections we will illustrate the usefulness of doing this.

A.2 Internal Energy E = 〈H〉

In this section we will demonstrate how to calculate the internal energy E of our model

Hamiltonian in A.3. The most straightforward way to do this would be to perform the

thermal expectation value of equation A.3

E = 〈H〉, (A.9)
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where 〈· · ·〉 = Tre−βH · · ·. However there is another way to do this which we will overview

the details of the calculation, it will be Green's function based. We will use the equation

of motion technique to arrive at an equivalent expression as in A.9. First we compute the

imaginary time derivative of Ψp,z,α(τ)

∂Ψp,z,α(τ)

∂τ
= −[Ψp,z,α(τ), H]

= −[Ψp,z,α(τ), H0]− [Ψp,z,α(τ), Hint]

= −ε(pz)Ψp,z,α(τ)

−
∑

σ,j=1,2

∫ β

0
dτ ′Vσ,α(p, z, j, τ − τ ′)βαjΨp,z,α(τ)(Ψ

†
p,z,σ(τ

′)αjΨp,z,σ(τ
′)).(A.10)

In the last equation perform −1
2

∑
p,z,α

1
β

∫ β
0 dτ〈Ψ†

p,z,α(τ)⊗ · · ·〉 on both sides of the equation

to arrive at an expression for the potential energy of the system,

P.E. = 〈Hint〉

=
∑

p,z,α,σ,j=1,2

1

2

∫ β

0

∫ β

0
dτdτ ′Vσ,α(p, z, j, τ − τ ′)〈(Ψ†

p,z,α(τ)αjΨp,z,α(τ))(Ψ
†
p,z,σ(τ

′)αjΨp,z,σ(τ
′))〉

= −1

2

∑
p,z,α

[
I
∂

∂τ
+ ε(p, z)

]
Gp,z,α(−η). (A.11)

In the last step the trace Tr is implied since the Green's function

Gp,z,α(−η) = 〈Ψ†
p,z,α(0)⊗Ψp,z,α(−η)〉 (A.12)

is evaluated in the limit that η → 0. With this understanding A.11 can be written as

P.E. = −1

2

∑
p,z,α

[
I
∂

∂τ
+ ε(p, z)

]
Gp,z,α(−η)

= −1

2

∑
p,z,α

∫ β

0
dτδ(τ + η)

[
I
∂

∂τ
+ ε(p, z)

]
Gp,z,α(τ)

= −1

2

∑
p,z,α

∫ β

0
dτ

1

β

∞∑
ωn=−∞

eiωn(τ+η)
[
I
∂

∂τ
+ ε(p, z)

]
Gp,z,α(τ).

(A.13)
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The integration by parts with respect to τ is done so the derivative term can be evaluated,

∫ β

0
dτeiωnτI

∂

∂τ
Gp,z,α(τ) = −

∫ β

0
dτIiωne

iωnτGp,z,α(τ) + const.. (A.14)

Inserting this back into the equation for P.E. we �nd

P.E. =
1

2β

∑
p,z,α,ωn

eiωnη
[
Iiωn − ε(p, z)

] ∫ β

0
dτeiωnτGp,z,α(τ)

=
1

2β

∑
p,z,α,ωn

[
Iiωn − ε(p, z)

]
Gp,z,α(iωn)e

iωnη

=
1

2β

∑
p,z,α,ωn

Go,−1
p,z,α(iωn)Gp,z,αe

iωnη. (A.15)

In the last equation we replace Go,−1
p,z,α(iωn) using the Dyson's equation where the self-energy

Σ is momentum independent within DMFT,

Go,−1
p,z,α(iωn) = G−1

p,z,α(iωn) + δpz,0Σp,z,α(iωn). (A.16)

Then the equation for P.E. has the following form

P.E. =
1

2β

∑
p,z,α,ωn

δpz,0Tr[Σp,z,α(iωn)Gp,z,α(iωn)]e
iωnη. (A.17)

This expression for P.E. expresses that the potential energy within DMFT is an impurity

quantity. The kinetic energy (K.E.) can be calculated in the following manner

K.E. =
∑
p,z,α

〈Ψ†
p,z,αε(p, z)Ψp,z,α〉

=
∑
p,z,α

Tr[ε(p, z)Gp,z,α(−η)]

=
1

β

∑
p,z,α,ωn

Tr[ε(p, z)Gp,z,α(iωn)]e
iωnη. (A.18)

The K.E. is a lattice quantity. Summing the kinetic and potential energies and adding back

the energy from the non-interacting phonon, the internal energy of the PAM with Holstein

phonons coupled to the conduction electrons is

E = K.E.+ P.E.+ ω0(〈a†a〉+
1

2
)
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=
1

β

∑
p,z,α,ωn

Tr[ε(p, z)Gp,z,α(iωn)]e
iωnη

+
1

2β

∑
p,z,α,ωn

δpz,0Tr[Σp,z,α(iωn)Gp,z,α(iωn)]e
iωnη

+ ω0(〈a†a〉+
1

2
). (A.19)

The internal energy is depicted in (Fig. A.1) in terms of Feynman diagrams. The Kinetic en-

ergy of the system corresponds to the closed fermion loop times ε. The second term represents

the many-body two particle potential energy located at the impurity site, which diagrammat-

ically represents
1

2
TrΣG, where in the �gure we have depicted Σ using the Schwinger-Dyson

equation which includes the vertex function F. The last term represents a non-interacting

phonon which oscillates with frequency ω and is located at the impurity site.

Closing this section we show that our derivation of E in equation (A.9) is consistent

with an action S based determination of E up to an indeterminate additive constant C.

Moreover in this way we were able to deduce the Hamiltonian of equation (A.1). To show

the equivalence we consider two equivalent representations of the partition function Z subject

to the variation β + δβ

Z(β + δβ) = Tre−(β+δβ)H

=
∫

DΨDΨe−(S(β)+ δS
δβ

δβ). (A.20)

Taylor expanding both representations of Z with respect to δβ yields two equivalent changes

in the partition function
δZ

δβ
δβ, which results in the important relationship

〈H〉 =
〈δS
δβ

〉
. (A.21)

This expression allows one to calculate the internal energy E from an action S based formu-

lation. Next we justify the validity of this equation. To do this we perform
δS

δβ
starting from

the fact that S is the imaginary time integral of the Lagrangian density

S =
∫ β

0
L(Ψ(τ), Ψ̇(τ),Ψ(τ), Ψ̇(τ))dτ. (A.22)
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Performing the variation of S with respect to β we �nd

〈δS
δβ

〉
=

〈 δ

δβ

∫ β

0
L(Ψ(τ), Ψ̇(τ),Ψ(τ), Ψ̇(τ))

〉
= 〈L(Ψ(β), Ψ̇(β),Ψ(β), Ψ̇(β))〉

= 〈L(Ψ(0), Ψ̇(0),Ψ(0), Ψ̇(0))〉

= 〈Ψ(0)Ψ̇(0)〉+ 〈H(Ψ(0),Ψ(0))〉

= C + 〈H(Ψ(0),Ψ(0))〉. (A.23)

In the last line we observed that the Hamiltonian is normal ordered in accordance with the

Grassmann algebra (fermionic coherent states), which di�ers from the fermionic ordering in

the Hamiltonian of equation (A.1) which is not normal ordered. Therefore the value of E

calculated via
〈
δS
δβ

〉
using (A.23) and E calculated from (A.9) using the Hamiltonian in (A.1)

di�er by an indeterminate additive constant C which appears in the de�nition of the internal

energy E, and is well known to be an essential feature of the concept of the internal energy.

Figure A.1: Feynman Diagram representation of the internal energy of the PAM with Hol-
stein phonons coupled to the conduction electrons. The �rst term corresponds to the elec-
tronic kinetic energy, where the second term represents the two particle interaction in the
impurity and conduction band, and the last term corresponds to the kinetic energy of the
non-interacting phonon located at the impurity site.

A.3 High-Frequency Conditioning of Σ(iωn)

Here we derive the high-frequency behavior of the self-energy Σ(iωn). This is most easily

done by calculating the high-frequency behavior of the Hartree and Hartree-Fock terms in
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perturbation theory which are found to be

Σ0,0,α(iωn) =
∑
j,σ

αj

∫ β

0
dτVσ,α(0, 0, j, τ)Tr(αjG0,0,σ(−η))

− 1

β

∑
j,iωm

V j(iωm)αjG0,0,σ(iωn − iωm)αj. (A.24)

In the limit that the Matsubara frequencies become large, n→ ∞ the Green's function scales

as I 1
iωn

then the Fock term simpli�es to

Σ0,0,α(iωn) =
∑
j,σ

αj

∫ β

0
dτVσ,α(0, 0, j, τ)Tr(αjG0,0,σ(−η))

− 1

β

∑
j,iωm

V j(iωm)αjI
1

iωn

αj

=
∑
j,σ

αj

∫ β

0
dτVσ,α(0, 0, j, τ)Tr(αjG0,0,σ(−η))

−
∑
j

V (0, 0, j, 0)αjI
1

iωn

αj. (A.25)

The Fock term contains the e�ective potential V j(0, 0, j, 0) (Fig. A.2) which has the following

form for the Hubbard and electron-phonon interactions

V (0, 0, j = 1, 0) =
∑

k,i,σ,σ′

∫ β

0

∫ β

0
dτdτ ′Vα,σ(k, i, j = 1, 0− τ)

×
{
− 〈(Ψ†

k,i,σ(τ)α1Ψk,i,σ(τ))(Ψ
†
k,i,σ′(τ ′)α1Ψk,i,σ′(τ ′))〉

+ 〈(Ψ†
k,i,σ(τ)α1Ψk,i,σ(τ)〉〈(Ψ†

k,i,σ′(τ ′)α1Ψk,i,σ′(τ ′))〉
}
Vσ′,α(k, i, j = 1, τ ′ − 0)

= −U(〈nf
−αn

f
−α〉 − 〈nf

−α〉〈nf
−α〉)U

= −U2〈nf
−α〉(1− 〈nf

−α〉)

= χU . (A.26)

The e�ective potential for the electron phonon interaction is

V (0, 0, j = 2, 0) =
∑

k,i,σ,σ′

∫ β

0

∫ β

0
dτdτ ′Vα,σ(k, i, j = 2, 0− τ)

×
{
− 〈(Ψ†

k,i,σ(τ)α2Ψk,i,σ(τ))(Ψ
†
k,i,σ′(τ ′)α2Ψk,i,σ′(τ ′))〉

+ 〈(Ψ†
k,i,σ(τ)α2Ψk,i,σ(τ)〉〈(Ψ†

k,i,σ′(τ ′)α2Ψk,i,σ′(τ ′))〉
}
Vσ′,α(k, i, j = 2, τ ′ − 0)
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− Vα,σ(k, i, j = 2, 0)

= −
∫ β

0

∫ β

0
dτdτ ′

g2

2mω0

D0(0− τ)(〈nc(τ)nc(τ
′)〉

− 〈nc(τ)〉〈nc(τ
′)〉) g2

2mω0

D0(τ
′ − 0)

− g2

2mω0

D0(τ = 0)

= χD. (A.27)

The high-frequency behavior of the self-energy Σ(iωn) as n → ∞ to order c
iωn

has the

following matrix structure

Σ0,0,α(iωn) =

 −g2

k
(nc − 1) + χD

iωn
0

0 U(n−α − 1
2
) + χU

iωn

 (A.28)

in which the constants added to the Hartree terms re�ect the case of a particle-hole symmetric

Hamiltonian. If the Hamiltonian is not written in particle-hole symmetric form then the

constant terms added to the Hartree term are absent.

Figure A.2: Feynman Diagram representing the e�ective potential V (k, i, j, τ) used to cal-
culate the numerator of ImΣ0,0,α(iωn) .
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