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Abstract
A Sign Learning Kink (SiLK) based Quantum Monte Carlo (QMC) method is used to calcu-

late the ground state energies for H2O, N2 and F2 molecules. This method has two stages. The

first (learning stage) reduces the minus sign problem by optimizing the states which are used

in the second (QMC stage). I test the method in Single, Double excitations (SD), Single, Dou-

ble, and Triple excitations (SDT), and Full Configuration Interaction (FCI) vector spaces. I also

perform exact diagonalization in those vector spaces as a benchmark. In each vector space and

for each molecule, I perform SiLK QMC for different bond lengths demonstrating that the SiLK

QMC is applicable to many systems.
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Chapter 1
Introduction

Quantum Mechanics was the most important discovery in physics in the 20th century. It

changes the way we understand the world. It is the foundation of modern technologies such as

the transistor and laser. Transistors replaced vacuum tubes which made computers small enough

so everyone can own one, and this lead to the creation of the world wide web that links computers

all over the world. The laser is a crucial tool in biology, medicine, and other areas.

Quantum mechanics describes electrons and atoms by the Schrödinger equation, and one of

the main goals of this dissertation is to solve this equation:

ĤΨ = EΨ (1.1)

where Ĥ is the Hamiltonian of the system composed of N particles with coordinates ri, and

Ψ(r1, r2, · · · , rN) is the wavefunction for the entire N -particle system. The situation is that there

is no problem to solve the Schrödinger equation for a one-particle system but it is difficult to

solve the equation for the N -particle system where particles interact with each other. One way

to approach this problem is to convert the many-particle problem to a one-particle problem by

assuming each particle is experienced by the “mean field” potential provided by all the other

particles. This is the essence of the Hartree Fock (HF) approximation in fermionic systems. We

have extensive knowledge of systems which are described by one-body Hamiltonians, such as

non-interacting fermions and bosons. However, there are examples where one cannot ignore the

interactions. For example, we cannot ignore the Coulomb interactions between electrons since

the electron-electron interactions are strong in the transition metals (whose valance electrons

are in d or f orbitals). The interactions between electrons play a key part in describing physical

phenomena in strongly correlated materials. The HF approximation can only give an initial guess

in strongly correlated materials. The post HF methods (such as coupled cluster (CC) methods and

many body perturbation theory (MBPT) method can capture the electron-electron interactions
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beyond HF.

In this dissertation, I will briefly review some of the numerical methods that have been ap-

plied in treating strongly correlated systems. I will explain the basic concepts and show their

advantages and disadvantages. This will demonstrate the reasons why we need to implement the

SiLK QMC to treat strongly correlated systems.

It is worthwhile to note that some one-dimensional strongly correlated models can be solved

analytically. For example, the one-dimensional Hubbard model has been solved by Lieb and

Wu [1] and the one-dimensional Heisenberg model has been solved with the Bethe Ansatz [2].

SiLK QMC is capable of reaching highly chemical accuracy (around 10−6 Hartrees) com-

pared to other quantum chemical methods. The SiLK QMC consistently offers high accuracy

results while the coupled cluster methods simply do not work in the stretched geometries. The

standard chemical accuracy is 0.0016 Hartrees. To see why high chemical accuracy is important,

I need to introduce the Arrhenius equation,

k = Ae−
Ea
RT . (1.2)

Ea is the activation energy; R is the gas constant; T is the temperature. A is a pre-exponential co-

efficient, k is the reaction rate. The Arrhenius equation plays an important role in chemistry. This

equation agrees with common sense, as chemical reactions proceed faster in high temperatures

than in low temperatures. Svante Arrhenius concluded the relationship between reaction rate and

temperature in the above Arrhenius equation in 1899. As we can see from the equation, chem-

ical accuracy is crucial. The better chemical accuracy, the more accurate reaction rate we can

achieve. The reaction rate is more sensitive to the chemical accuracy in low temperatures since

even a small error in energy can lead to large errors in reaction rate, compared to its reference.

In this aspect, the SiLK QMC can predict better reaction rates than other methods, especially in

low temperatures.

Accurate simulation of a large number of molecules is an important goal in computational

2



chemistry. At the current stage, only Density Functional Theory (DFT) [3, 4] has the ability to

deal with thousands of molecules. For systems of N electrons in N orbitals, DFT method scales

as O [N2] − O [N3]. Other methods, however, can only simulate much smaller systems. The

CC methods haven often been regarded as the “golden” standard in chemistry since they can

provide highly accurate results. Unfortunately, the CC methods scale quickly in computational

time with the increase of the system size as O [N6] − O [N8]. In addition, the CC methods are

not variational since CC energies can fall below the exact energy in the stretched geometries. The

DFT method cannot give accurate result for strongly correlated systems [5].

We have multiple major numerical methods used in studying strongly correlated systems.

They are: exact diagonalization, density matrix renormalization group (DMRG), quantum Monte

Carlo (QMC). Exact diagonalization works only in small systems since the number of Slater

determinant scales exponentially with the lattice size. The DMRG algorithm is efficient in one

dimensional systems such as Hubbard chain. In addition, DMRG can provide highly accurate

results for the ground state and even multiple lowest excited states with an accuracy of at least

10−9 Hartrees [6] for the one dimensional Heisenberg chain. DMRG has been shown to be

reliable for one-dimensional quantum lattice systems but less accurate in two-dimensional sys-

tems [6]. Monte Carlo was first introduced by Fermi, Teller, and developed by Metropolis [7–9].

QMC, unlike exact diagonalization and DMRG, is a scalable method (O [N3]) and can be ap-

plied to multi-dimensional lattice systems. However, QMC suffers the “minus sign problem” in

fermionic systems, will be discussed in Chapter 2.

Through decades of effort, multiple methods have been proposed to alleviate the minus sign

problem in QMC. For example, the auxiliary field Monte Carlo (AFMC) formalism was first de-

veloped by Scalapino [10] and applied in molecular systems, but restricted only to small systems

(H2, He, and Be) since it suffers from the minus sign problem for larger molecules [11]. The

shifted contour auxiliary field Monte Carlo (SC-AFMC) is a new method based on AFMC. It has

been applied to molecules with larger basis sets compared to AFMC [12]. Ceperley and Alder

applied the fixed node diffusion Monte Carlo to the electron gas, which solves the Schrodinger

3



equation by treating it as a diffusion equation [13,14]. The result is stable but the accuracy is only

up to 10−3 Hartrees when comparing with the reference energy [15]. The reweighting method

for QMC offers a new way of sampling especially to treat the J1-J2 model in low temperature

regions [16]. The “thermo field QMC” method extends Monte Carlo at zero temperature to finite

temperatures [17], but this method is also hampered by the “minus sign problem” in fermionic

systems. Recently, Alavi proposed full configuration interaction QMC (FCIQMC) to calculate

the ground state energy in large basis sets. However, FCIQMC is not variational. Furthermore,

this method is only efficient for the equilibrium geometries, especially for single atoms, such as

Ne. For two atom molecules in stretched bond geometries, such as N2, the FCIQMC method

will exhaust computer memory for large basis sets [18, 19].

The main goal of this dissertation is to show the development and application of Sign Learn-

ing Kink (SiLK) QMC , which was first developed by Prof Randall W Hall [20, 21]. The dis-

sertation also shows that the SiLK QMC reaches the highest chemical accuracy in all the other

computational chemistry methods in a wide range of bond lengths.

In this dissertation, I first review a series of present computational chemistry methods, the

QMC methods, then follows the algorithm of SiLK QMC, which describes the reformulation of

the path integral Monte Carlo. In SiLK QMC, we improve the basis in the Slater determinant

space to address the negative sign problem.

In the results chapter, I present some SiLK QMC calculations on H2O, N2, F2. I use the

sign learning curve to demonstrate that SiLK QMC can address the minus sign problem. I then

demonstrate that the accuracy of SiLK QMC is greater than the accuracy in coupled cluster

methods. The desired chemical accuracy is 1 kcal mol−1 (0.0016 Hartrees) [22]. I will show that

the SiLK QMC can satisfy this accuracy. The SiLK energies reach 10−6 Hartrees accuracy in the

Double Zeta (DZ) basis (frozen core) for H2O. The DZ basis is the largest basis set I have studied

so far.

The dissertation contains two appendices (A and B). Appendix A includes: how to construct

the Hamiltonian matrix from NWChem software output; the derivation of partition function es-
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timator; how to evaluate the energy estimator. Appendix B offers the supporting data for figures

of H2O (except the sign learning curve due to space limitations) in this dissertation.
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Chapter 2
Quantum chemical methods and Monte
Carlo methods

In the introduction, I explained the reasons why solving the Schrödinger equation is chal-

lenging in strongly correlated materials. Our interest is to get the ground state energy in strongly

correlated systems where the electron-electron interactions are strong.

In this chapter, I will review a set of well established computational chemistry methods. I first

introduce the one-electron method, the Hartree Fock theory. The Hartree Fock theory provides

the one-electron and two-electron integrals which all other post Hartree Fock methods (such as

CC methods) based. I will introduce the full configuration interaction (FCI) method which, in

principle, equivalents to exact diagonalization on a full Hamiltonian matrix. I then describe the

coupled cluster theory.

I then review multiple Monte Carlo methods in physics, following with a discussion on the

path integral Quantum Monte Carlo, which introduces the minus sign problem in fermionic sys-

tems.

2.1 Basis set
I will briefly review some atomic basis functions used in computational chemistry. The

historical reviews are available in [23–29]. Detailed discussion of multiple types of atomic basis

functions is beyond the scope of this dissertation. In the Hartree Fock approximation, the HF

Slater determinant is composed of molecular orbitals which are the linear combinations of atom

basis sets, such as STO’s, GTO’s, STO-3G, and Double-Zeta (DZ) basis. It is worth mentioning

that different basis sets give different sizes of the Slater determinant space. General speaking, the

larger the basis set, the larger the Slater determinant space. In this section, I will talk about the

Slater Type Orbitals (STO’s), Gaussian Type Orbitals (GTO’s) and DZ basis set. The Cartesian
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Slater type orbitals (STO’s) are

φSTOabc (x, y, z, ζ) = Nxaybzce−ζr (2.1)

whereN is the normalization constant, a, b, c control the angular momentum, ζ controls the width

of the orbital. The Cartesian Gaussian Type Orbitals (GTO’s) are

φGTOabc (x, y, z, ζ) = Nxaybzce−ζr
2

. (2.2)

The STO’s are more accurate than GTO’s but they require more computational cost. A combina-

tion of n Gaussian to mimic STO is “STO-nG” (contracted GTO), whose expression is

φCGTOabc (x, y, z) = N
n∑
i=1

cix
aybzce−ζir

2

. (2.3)

In this dissertation, the basis set I am using is the Double-Zeta [30, 31]. It contains two basis

functions for each atomic orbital:

φDZabc = φSTOabc (x, y, z, ζ1) + dφSTOabc (x, y, z, ζ2). (2.4)

I use the Double-Zeta basis to construct the one-electron molecular orbitals for H2O, N2, F2. The

reason why I select the DZ basis set is that this is the largest basis set I can study in SiLK QMC,

for these three molecules, due to memory limitations.

2.2 Born-Oppenheimer approximation
The Born-Oppenheimer approximation plays a central role in quantum chemistry. Sut-

cliffe [32] has discussed this approximation quantitatively. Here, I only discuss this approxima-

tion qualitatively. Our main interest in computational chemistry is to find approximate solutions
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of the non-relativistic time-independent Schrödinger equation for many-body systems:

ĤΨ = EΨ (2.5)

where Ĥ is the Hamiltonian operator for a system which has electrons and nuclei, which are

described by {ri} and {RI} respectively. Ψ(r1, r2, · · · , rN , R1, R2, · · · , RNnuclei
) is the wave-

function for the whole system. The Hamiltonian operator Ĥ is

Ĥ = −
N∑
i=1

1

2
∇2
i −

Nnuclei∑
I=1

1

2MI

∇2
I −

N∑
i=1

Nnuclei∑
I=1

QI/riI

+
N∑
i=1

N∑
j=i+1

1

rij
+

Nnuclei∑
I=1

Nnuclei∑
J=1

QIQJ

RIJ

.

(2.6)

In this equation, N is the number of electrons, Nnuclei is the number of nuclei, MI is the ratio

of mass of nucleus I to mass of an electron, QI is the atomic number of nucleus I . ∇2
i is

the Laplacian operator with respective to the coordinate of the ith electron. ∇2
I is the Laplacian

operator with respective to the coordinate of the I th nucleus. The distance between the ith electron

and the I th nucleus is riI = |ri − RI |, the distance between the ith electron and the jth electron

is rij = |ri − rj|, the distance between the I th nucleus and the J th nucleus is RIJ = |RI − RJ |.

The first term is the kinetic energies for electrons. The second term is the kinetic energies for

nuclei. The third term is the interactions between electrons and nuclei. The forth term is the

electron-electron interactions and the last term is the nucleus-nucleus interactions.

Since the nucleus is way heavier in mass than an electron, the nucleus moves much slower

than electron. Based on this fact, its motion can be ignored when solving the electronic Hamil-

tonian equation. The assumption is made that the nuclei are stationary while the electrons are

moving around it. The term of nucleus-nucleus interactions is treated as a constant. The remain-

ing terms of Equation 2.6 is called electronic Hamiltonian:

Ĥelec = −
N∑
i=1

1

2
∇2
i −

N∑
i=1

Nnuclei∑
I=1

QI/riI +
N∑
i=1

N∑
j=i+1

1

rij
. (2.7)
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Electronic wavefunction Ψelec is the solution of Schrödinger equation of the electronic Hamilto-

nian 2.7,

ĤelecΨelec = EelecΨelec. (2.8)

Eelec depends on the coordinates of the nuclei so the electronic energy:

Eelec = Eelec({RI}). (2.9)

The total energy Etot of the electronic system should add the nuclear-nuclear interactions back as

(a constant cannot effect the electronic wavefunction)

Etot = Eelec +

Nnuclei∑
I=1

Nnuclei∑
J=1

QIQJ

RIJ

. (2.10)

Once the Schrödinger equation for the electronic Hamiltonian get solved the Hamiltonian of

nuclei in an average field of electrons in Equation 2.6 is:

Ĥnuclei = −
Nnuclei∑
I=1

1

2MI

∇2
I +

Nnuclei∑
I=1

Nnuclei∑
J=1

QIQJ

RIJ

〈−
N∑
i=1

1

2
∇2
i +−

N∑
i=1

Nnuclei∑
I=1

QI/riI +
N∑
i=1

N∑
j=i+1

1

rij
〉

= −
Nnuclei∑
I=1

1

2MI

∇2
I + Eelec({RI}) +

Nnuclei∑
I=1

Nnuclei∑
J=1

QIQJ

RIJ

= −
Nnuclei∑
I=1

1

2MI

∇2
I + Etot({RI}). (2.11)

Etot({RI}) is the potential energy of nuclei motion. It generates a potential energy surface by

different {RI}, so the nuclei move on this potential energy surface obtained by solving the elec-
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tronic Hamiltonian first. The Schrödinger equation for nuclear Hamiltonian is

ĤnucleiΨnuclei = EΨnuclei. (2.12)

E is the total energy in Equation 2.5 under Born-Oppenheimer approximation.

2.3 Hartree Fock approximation
The Hartree-Fock (HF) approximation plays important role in simplifying the many-electron

problem. It is a good starting point before trying better solutions (such as coupled cluster methods

and other post HF methods). Here, I will describe the basic ideas of Hartree-Fock approximation.

The spatial orbitals are linear combinations of a set of atomic basis functions [u1, u2, · · · , uM ].

Spatial orbitals are

φi(x) =
M∑
j=1

Cijuj(r)χi(ω) (2.13)

where x = (r, w), χi(ω) is the spin. The spin can be up or down. A given set of atomic

basis functions [u1, u2, · · · , uM ] can generate a set of HF spin orbitals (φ1, φ2, · · · , φ2M). N

electrons will occupy the N lowest HF spin orbitals in the HF Slater determinant. The HF Slater

determinant Φ is

ΦHF (x1,x2, ...,xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(x1) φ2(x1) · · · φN(x1)

φ1(x2) φ2(x2) · · · φN(x2)

...
... . . . ...

φ1(xN) φ2(xN) · · · φN(xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣
(2.14)

where xi is the coordinates of the ith electron. The Slater determinant automatically ensures the

Pauli-exclusion principle. The electronic Hamiltonian under the Born-Oppenheimer approxima-
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tion is

Ĥelec = −
N∑
i=1

1

2
∇2
i −

N∑
i=1

Nnuclei∑
I=1

QI/riI +
N∑
i=1

N∑
j=i+1

1

rij
. (2.15)

Finding an approximate solution at the level of chemical accuracy for the electronic Schrödinger

equation is a great challenge in chemistry and physics.

The one-electron term (ĥ(i)) includes its kinetic energy and the interaction to the nuclei:

ĥ(i) = −1

2
∇2
i −

Nnuclei∑
I=1

QI/riI . (2.16)

The electronic Hamiltonian operator Ĥ is:

Ĥ =
N∑
i=1

ĥ(i) +
N∑
i=1

N∑
j=i+1

1

rij
(2.17)

with N the total number of electrons. The Hartree Fock approximation transforms a many-

electron problem to a set of single-electron problems by treating electron-electron interactions as

an average potential. The Fock operator f̂(i) is

f̂(i) = ĥ(i) + vHF (i) (2.18)

where vHF (i) is the average potential experienced by ith electron from all other electrons. In other

words, the Hartree Fock potential vHF (i) depends on the spin orbitals of all the other electrons.

The Hartree Fock energy expression is

EHF = 〈ΦHF |Ĥ|ΦHF 〉 =
∑
a

〈a|ĥ|a〉+
∑
ab

1

2
〈ab||ab〉 (2.19)

where a and b are the occupied orbitals in the HF Slater determinant. ΦHF is defined in 2.14.
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The definition of 〈ab||ab〉 is in Appendix A. Now I introduce the HF equation,

ĥ(1)φa(1) +
∑
b 6=a

[

∫
|φb(2)|2r−1

12 dx2]φa(1)−
∑
b 6=a

[

∫
φ∗b(2)φa(2)r−1

12 dx2]φb(1) = εaφa(1) (2.20)

where

ĥ(1) = −1

2
∇2

1 −
∑
I

QI

r1I

. (2.21)

ĥ(1) is the kinetic energy and the potential energy of electron 1 to the nuclei. Introducing The

Coulomb and Exchange operators is to simplify the HF equation. The expression of Coulomb

operator Fb(1) is

Fb(1) =

∫
|φb(2)|2r−1

12 dx2. (2.22)

The expression of exchange operator Kb(1) is

Kb(1) =

∫
φ∗b(2)r−1

12 P̂12φb(2) dx2. (2.23)

The expression of Fock operator is

f̂(1) = ĥ(1) +
N∑
i

∫
dx2φ

∗
i (2)

1

r12

(1− P̂12)φi(2), (2.24)

where P̂12 is the operator to exchange electron 1 and 2, φi is the ith spin orbital. The Hartree

Fock equation is an eigenvalue equation; the spin orbitals are the eigenfunctions; the energy of

orbitals are the eigenvalues. The Hartree Fock equations are nonlinear equations and can be

solved iteratively. The Schrödinger equation for the Fock operator is

f̂ |φa〉 = ξa|φa〉. (2.25)
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ξa is the eigenvalue and it represents the orbital energy for orbital a. The Equation 2.25 is an

eigenvalue equation. The spin orbitals are the eigenfunctions and the spin orbital energy are the

eigenvalues of 2.25 The HF method is one-electron theory although it can catch the majority of

the total energy of a molecular system. HF theory cannot consider the electron-electron corre-

lation accurately. The difference between exact energy and the HF energy is the the correlation

energy Ecorr:

Ecorr = EHF − Eexact. (2.26)

Ecorr is the correlation energy; EHF is the Hartree Fock energy; Eexact is the exact energy. Corre-

lation energy is important for describing the bond formation and breaking in chemistry [33]. That

is why multiple post HF methods get developed to obtain the correlation energy. Post Hartree-

Fock methods use the molecular orbitals obtained from HF approximation. I will introduce a

number of post Hartree-Fock methods in the following.

2.4 Full Configuration Interaction
The full configuration interaction (FCI) is a benchmark method for other quantum chemical

methods since it offers the exact energy. FCI method is equivalent to the exact diagonalization

method in full Slater determinant space. FCI method is only feasible for small systems since the

size of Slater determinant grows exponentially with respect to the system size. To understand the

FCI space, I need to know the HF Slater determinant and consider all the excitations from the HF

Slater determinant.

Now, I want to calculate the size of Slater determinant for FCI space (NFCI). The number of

up electrons is equal to the number of down electrons (N
2

) in a closed shell system. The number

of up orbitals is also equal to the number of down orbitals,M . The total number of configurations

is

NFCI =

(
M
N
2

)(
M
N
2

)
=

(
M !

(M − N
2

)!(N
2

)!

)2

. (2.27)

13



NFCI is the size of Slater determinant in FCI space. Firstly, we consider the half filled example to

better illustrate how theNFCI grows exponentially with the system size. The number of electrons

is equal to the number of spatial orbitals (N=M). I have

NFCI =

(
M
N
2

)(
M
N
2

)

=

(
M !

(M − N
2

)!(N
2

)!

)2

=

(
N !

(N − N
2

)!(N
2

)!

)2

=

(
N !

(N
2

)!(N
2

)!

)2

'
(
eN lnN

eN ln N
2

)2

=
(
eN ln 2

)2

= e2N ln 2. (2.28)

NFCI grows exponentially with the number of spatial orbitals (M=N ).

Now, I introduce single and double excitations from the HF Slater determinant. Based on the

HF approximation, N electrons will occupy the N lowest HF spin orbitals, which will give the

HF Slater determinant ΦHF :

ΦHF (x1,x2, ...,xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

φ1(x1) φ2(x1) · · · φN(x1)

φ1(x2) φ2(x2) · · · φN(x2)

...
... . . . ...

φ1(xN) φ2(xN) · · · φN(xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣
. (2.29)

I define the occupied orbitals in HF determinant (a,b,c,...), and the unoccupied orbitals (r,s,t,...).

Φr
a represents a determinant where an electron occupied in the orbital φa in HF ground state has

been promoted to the unoccupied orbital φr. Φrs
ab represents a determinant where two electrons
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which occupied in the orbitals φa and φb in HF ground state have been promoted to the unoccu-

pied orbitals φr and φs. I define: Φr
a as single excitation, Φrs

ab as double excitation and Φrst
abc as

triple excitation. FCI includes determinants from all order excitations. If we truncate the FCI

basis to single and double excitations, it is configuration interaction singles and doubles (CISD).

If we truncate the FCI basis to single, double and triple excitations, it is configuration interaction

singles, doubles and triples (CISDT).

Here, I like to mention how to get the Hamiltonian matrix element. I define Φi(x1,x2, ...,xN)

as a Slater determinant (the label i being an orderedN distinct integers chosen from 1 to 2M spin

orbitals)

Φi(x1,x2, ...,xN) ≡ Φi1i2···iN (x1,x2, ...,xN) =
1√
N !

∣∣∣∣∣∣∣∣∣∣∣∣∣

φi1(x1) φi2(x1) · · · φiN (x1)

φi1(x2) φi2(x2) · · · φiN (x2)

...
... . . . ...

φi1(xN) φi2(xN) · · · φiN (xN)

∣∣∣∣∣∣∣∣∣∣∣∣∣
.(2.30)

Based on the Slater-Condon rules [34–36], the Hamiltonian matrix element is Hij = 〈Φi|Ĥ|Φj〉

where Φi and Φj are the ith and jth Slater determinants. The Hamiltonian operator contains

one-body and two-body operators. Ĥ is

Ĥ =
N∑
i=1

ĥ(i) +
N∑
i=1

N∑
j=i+1

1

rij
. (2.31)

The Hamiltonian elements are zeros for determinants which differ more than 2 occupied orbitals.

We will discuss the Slater-Condon rules in a great detail in Appendix A.

FCI method is equivalent to exact diagonalization of the whole Hamiltonian matrix. Naively

exact diagonalization requires the storage ofNFCI×NFCI matrix and the ability to diagonalize it

directly in a computer. For small systems, storage of NFCI×NFCI matrix is feasible in our com-

puter (usually with 4-8GB RAM). We can diagonalize the matrix easily by using Linear Algebra

PACKage (LAPACK) [37]. We need to introduce some tricks in reducing the memory storage in
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large systems. First of all, I only need to store the non zero elements for the Hamiltonian matrix

since it is sparse due to the nature of two-body interactions of Hamiltonian. In addition, it is

not necessary to know all the eigenvalues and eigenvectors from Hamiltonian matrix: I am only

interested in getting the lowest eigenvalue. A set of algorithms (such as Lanczos iteration [38,39]

and Arnoldi iteration [40]) have been developed to obtain multiple lowest eigenvalues and their

corresponding eigenvectors.

2.5 Coupled Cluster Theory
The coupled cluster (CC) theory was first proposed for solving many-body nuclear problems

by Coester and Kuemmel [41,42]. CC methods have been applied to atomic and molecular prob-

lems [43–49]. In addition, CC methods have been successfully implemented in popular quantum

chemistry software packages such as NWChem [50], GAMESS [51, 52] and Molpro [53].

CC methods are capable of achieving highly accurate results. As discussed previously, the

number of Slater determinants rises exponentially with the system size N . One way to reduce

the computational cost is to truncate the basis like the CISD and CISDT methods do. However,

the truncated configuration interaction methods are not size consistent so they are not suitable

for a solid. The CC methods are size consistent and start from the molecular orbitals obtained

from the HF approximation. The better the HF approximation, the better the starting point for the

CC methods. The HF approximation can catch the majority of energy for N -electron systems in

equilibrium geometries. The CC methods can run without any difficulty (only few iterations to

reach convergence for coupled cluster energies) since they have an excellent starting point (HF

energy). However, in non equilibrium geometries, the HF approximation offers poor results. For

this reason, the CC methods cannot converge even within thousands of iterations and usually get

poor results which are below FCI energy since CC methods are not variational.

In the following, I introduce the basic idea of the coupled cluster theory. In the CC theory [4]

the exact ground state wavefunction ΨCC is given by the exponential Ansatz,

|ΨCC〉 = exp
(
T̂
)
|ΦHF 〉. (2.32)
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Here, T̂ is the sum of different order excitation operators, ΦHF is the HF state. ΨCC is the CC

wavefunction. T̂ is written as

T̂ = T̂1 + T̂2 + T̂3 + T̂4 + · · · (2.33)

where T̂1; T̂2; T̂3 are the excitation operators corresponding to excite one; two; three electrons

from occupied orbitals to virtual orbitals. The definitions of different order excitation operators

are as follows,

T̂1 =
∑
i,a

cai t̂
a
i , (2.34)

T̂2 =

(
1

2!

)2 ∑
i,j,a,b

cabij t̂
ab
ij , (2.35)

T̂3 =

(
1

3!

)2 ∑
i,j,k,a,b,c

cabcijk t̂
abc
ijk . (2.36)

The indices i, j, k denote occupied orbitals and a, b, c denote unoccupied orbitals. The coeffi-

cients cai , c
ab
ij , c

abc
ijk are to be determined. The coupled cluster Schrödinger equation is given by

Ĥ|eT̂ΦHF 〉 = E|eT̂ΦHF 〉. (2.37)

By applying e−T̂ to both sides from the left, I have

e−T̂ ĤeT̂ |ΦHF 〉 = E|ΦHF 〉. (2.38)
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By applying the Hartree Fock state and excited states leads the following equations,

〈ΦHF |e−T̂ ĤeT̂ |ΦHF 〉 = E (2.39)

and

〈Φab···
ij··· |e−T̂ ĤeT̂ |ΦHF 〉 = 0. (2.40)

The coefficients of T̂ expansion are obtained in Equation 2.40 and the coupled cluster energy can

be obtain from Equation 2.39. ˆ̄H can be written as

ˆ̄H = e−T̂ ĤeT̂ . (2.41)

From Hausdorff expansion,

ˆ̄H = Ĥ + [Ĥ, T̂ ] +
1

2
[[Ĥ, T̂ ], T̂ ] +

1

3!
[[[Ĥ, T̂ ], T̂ ], T̂ ] +

1

4!
[[[[Ĥ, T̂ ], T̂ ], T̂ ], T̂ ] (2.42)

which must terminate in fourfold commutators since Hamiltonian operator Ĥ has only one-

electron and two-electron operators in it. In real calculations, T̂ is truncated at some level to

be feasible for large systems. When T̂ is restricted to singly and doubly excited clusters,

T̂ = T̂1 + T̂2 (2.43)

gives the CCSD result. The CCSD is a popular CC calculation in quantum chemistry. When T̂ is

restricted to singly, doubly, triply excited clusters,

T̂ = T̂1 + T̂2 + T̂3 (2.44)

gives the CCSDT result. CCSDT offers more accurate result than CCSD, but the computation
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time of CCSDT is much longer then CCSD. I will compare the computational cost for different

CC methods later. The weights in front of each order of excitation operators (such as cai , c
ab
ij , c

abc
ijk)

will be calculated from iteration in a set of non linear equations. Note that the number of non

linear equations is the number of unknown weight coefficients. After all the weight coefficients

are available, the coupled cluster energyECC can be calculated asECC = 〈ΦHF |H|ΨCC〉. CCSD

and CCSDT predict good results on equilibrium geometry in molecules. When atoms are out of

equilibrium, CCSD and CCSDT energies might fall below the exact energy. CCSD scales O [N6]

and CCSDT scales O [N8] with spacial orbital N . CCSD(T) includes a perturbative contribution

of triple excitations and scales O [N7]. It is worth mentioning that when the excitation operator

T̂ includes all the excitations from the HF state, ΨCI = ΨCC .

The coupled cluster methods can capture the electron-electron correlation energy success-

fully. I compare the exact CC solution and the Full CI:

ΨCI =
(

1 + Ĉ
)
|ΦHF 〉, Ĉ = Ĉ1 + Ĉ2 + Ĉ3 + Ĉ4 + · · · , (2.45)

ΨCC =
(
exp

(
T̂
))
|ΦHF 〉, T̂ = T̂1 + T̂2 + T̂3 + T̂4 + · · · (2.46)

and

exp
(
T̂
)

= 1 + T̂ +
1

2!
T̂ 2 +

1

3!
T̂ 3 + · · ·

= 1 +
(
T̂1 + T̂2 + · · ·

)
+

1

2

(
T̂1 + T̂2 + · · ·

)2

+ · · ·

= 1 + T̂1 +

(
T̂2 +

1

2
T̂1

2
)

+

(
T̂3 + T̂1T̂2 +

1

3
T̂1

3
)

+

(
T̂4 + T̂1T̂3 +

1

2
T̂2

2
+

1

2
T̂1

2
T̂2 +

1

4
T̂1

4
)
. (2.47)

The relationship between the coefficients in CI and CC is

Ĉ1 = T̂1, (2.48)
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Ĉ2 = T̂2 +
1

2
T̂ 2

1 , (2.49)

Ĉ3 = T̂3 + T̂1T̂2 +
T̂ 3

1

3!
, (2.50)

Ĉ4 = T̂4 +
T̂2

2

2!
+ T̂1T̂3 +

T̂1

2
T̂2

2
+
T̂1

4

4!
. (2.51)

In the CCSD calculation, T̂1T̂2 contributes the triple excitations and T̂2
2

2!
contributes the quadruple

excitations. In this way, CCSD captures more excitations than truncated configuration interaction

method (CISD). This is why the CC methods often provide more accurate results in equilibrium

geometries than their corresponding truncated CI methods. The main disadvantage of the CC

methods is that they are not variational.

2.6 Diffusion Monte Carlo
The Schrödinger equation is a differential equation. This equation can be solved analyti-

cally in a few models such as an infinite potential well and the harmonic oscillator for a single

particle. In most realistic systems, only numerical solutions are available. We need to write the

Schrödinger equation in imaginary time. It is equivalent to a diffusion equation. I can use the

Monte Carlo method to solve the diffusion equation to obtain the ground state energy and the

wavefunction. This method is diffusion Monte Carlo (DMC). The time-dependent Schrödinger

equation of particle with mass m in a potential V (x) is

i~
∂Ψ

∂t
= ĤΨ (2.52)

where the Hamiltonian is

Ĥ = − ~2

2m

∂2

∂x2
+ V (x). (2.53)
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To calculate the eigenfunctions of Ĥ , φn(x), the Schrödinger equation is

Ĥφn(x) = Enφn(x). (2.54)

En is the eigenvalue of the time-independent Schrödinger equation. The energies are labeled in

sorting order by n = 0, 1, 2, · · · , E0 < E1 < E2 < · · · < En. The solution of time dependent

Schrödinger equation is

Ψ(x, t) =
∞∑
n=0

cnφn(x)e−
i
~Ent. (2.55)

Now we perform an energy shift V (x) → V (x) − ER and En → En − ER. The Schrödinger

equation becomes

i~
∂Ψ

∂t
= − ~2

2m

∂2Ψ

∂x2
+ (V (x)− ER)Ψ. (2.56)

The solution is

Ψ(x, t) =
∞∑
n=0

cnφn(x)e−
i
~ (En−ER)t. (2.57)

Now I perform a Wick rotation [54] by setting τ = it. The imaginary time Schrod̈inger equation

is

~
∂Ψ

∂τ
=

~2

2m

∂2Ψ

∂x2
− (V (x)− ER)Ψ (2.58)

and its solution is

Ψ(x, τ) =
∞∑
n=0

cnφn(x)e−
(En−ER)

~ τ . (2.59)
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Now the asymptotic behavior for τ → ∞: when ER = E0, limτ→∞Ψ(x, τ) = c0φ0(x). The

wavefunction converges to the ground state of the time-independent Schrödinger equation. This

provides the foundation of DMC. By integrating the imaginary Schrödinger equation 2.58, we

can get the ground state wavefunction.

DMC has been applied toH+
3 ion successfully by Anderson [55], but it becomes complicated

when treating larger systems. Two types of DMC approximations can treat fermionic problems.

One is the fixed node approximation [13, 56, 57]. The accuracy of fixed node approximation has

been benchmarked for G1 set [58, 59] to show it is able up to reach chemical accuracy compare

with CCSD(T) in cc-PVQZ basis [60]. A good algorithm has been used with fixed node approx-

imation to reduce the time-step error [61]. The other is the released node approximation, which

is successful in small molecules such as H3, LiH, Li2 [62]. The drawback of the released node

approximation is that its statistical error is proportional to its total energy. The released node

approximation gives pretty large errors [62] in atoms and molecules which contain higher Z el-

ements. The released node approximation is not feasible for treating big molecules due to this

reason.

2.7 Full Configuration Interaction Quantum Monte Carlo
In 2009, Alavi proposed a new quantum Monte Carlo method, coined as the full configuration

interaction Quantum Monte Carlo (FCIQMC) and discussed its improvements and applications

in the following years [18,19,63–72]. FCIQMC borrows the idea of projection Monte Carlo and

applies it on the Slater determinant space. To better understand FCIQMC, I review the mechanism

of projector Monte Carlo first.

The projector Monte Carlo is a general term for methods (such as path integral QMC, world

line MC, auxiliary field QMC, diffusion Monte Carlo, and constrained path integral Monte Carlo)

that uses a projector P stochastically on a trial state ΨT to project out the ground state wave

function Ψ0 [14, 61, 73–84]

lim
n→∞

P n|ΨT 〉 ∝ |Ψ0〉. (2.60)
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Now I need to introduce the “walkers” in the projector Monte Carlo. The walkers carry all the

electron’s coordinates and also carry weights which can be negative or positive since walkers

represent quantum mechanical wavefunctions. The definition of projector operator Pij is

Pij = δij − τ(Hij − ET δij) (2.61)

where τ is the time step, δ is the Kronecker delta function, Hij is the Hamiltonian element be-

tween states labeled i and j. "ET ” is the trial energy. Usually it is the HF energy in the beginning

and can be updated during the simulation. Now I need to consider the diagonal elements and non

diagonal elements of the projector P . The diagonal elements of the projector defined in 2.61 is

Pii = 1− τ(Hii − ET ). (2.62)

I can always make Pii positive by adjusting the value of ET even Hii is large and positive. The

non diagonal elements of the projector defined in 2.61 is

Pij = −τHij. (2.63)

Pij solely depends on the sign of Hij . Its sign is out of our control and cannot be shifted to

a positive value by adding a constant. The projector Monte Carlo has been used successfully

for systems that are free of sign problem [77–79]. The fixed node approximation [80, 81] can

address the sign problem in projector Monte Carlo. The fixed node approximation brings “fixed

node error” which depends on the quality of the node structure. The ground state wavefunction

can be written as a linear combination of Slater determinants,

Ψ0 =
∑
i

Ci|Φi〉 (2.64)

where Ψ0 is the true ground state, Φi is the Slater determinant, Ci is the amplitude. In projector
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Monte Carlo, a walker represents a wavefunction. A walker carries a positive or negative sign and

also associated with a weight (a real number). The averaged weights on configuration i represents

the ground state wavefunction amplitudes Ci(∞) after the imaginary Schrödinger equation is

integrated over a long period of time. Mathematically speaking, the relationship is

Ci(∞) ∝
∞∑
n=0

wi(nτ) (2.65)

where wi(nτ) is the weight of a walk on configuration i at “time” nτ . The projector P influences

the evolution of walkers. Ci(t) is the wavefunction amplitude for configuration i at time t. With

projector P acting on it, the equation of evolution of Ci(t+ τ):

Ci(t+ τ) =
∑
j

PijCj(t) (2.66)

= (1− (Hii − ET ))Ci(t) +
∑
j 6=i

−τHijCj(t). (2.67)

Two terms appear in Equation 2.67. The first term represents the a diagonal move (taking the

amplitude of configuration i and scaling it with a factor (1 − (Hii − ET ))) of walkers. If the

walker’s weight increases, we say the walker “cloned”. If the walker’s weight decreases, we say

“some walkers have died”. The second term represents a non diagonal move which represents a

walker at configuration i may be thought as a “parent” to spawn child walkers at configuration j

at time t + τ based on the projection −τHij . There are multiple ways to control how the child

walkers can be spawned. Later I will explain the implementation in the FCIQMC.

The main advantage of FCIQMC is storage efficiency. FCIQMC only needs to store the

number of walkers at each time t. FCIQMC keeps a running average of some observables, such

as energy. Now I need to write down the energy of wavefunction Ψ by the mixed estimator Emix:

Emix =
〈Ψ|Ĥ|ΨT 〉
〈Ψ|ΨT 〉

(2.68)

where Ψ is the wavefunction and ΨT is the trial wavefunction I initially guess. Note the mixed
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energy estimator is equal to the ground state energy only when Ψ and ΨT are exact. This means

FCIQMC is not variational since the energy estimator can above or below the true ground state

energy. The expression of ΨT is

ΨT =
∑
i

gi|Φi〉. (2.69)

Φi is the Slater determinant and gi is the coefficient. The trial wavefunction is a linear combina-

tion of Slater determinants. I do not know wavefunction Ψ, but I know its projector representation

over Nl generations. I have

Ψ = lim
Nl→∞

ΨNl
(2.70)

and

ΨNl
=
∑
i

Ci|Φi〉 =

Nl∑
n=1

∑
i

wi(nτ)|Φi〉. (2.71)

So I have the expression for the mixed energy estimator:

Emix =
∑
Nl→∞

〈ΨNl
|Ĥ|ΨT 〉

〈ΨNl
|ΨT 〉

(2.72)

=
∑
Nl→∞

Nl∑
n=1

∑
i

wi(nτ)
∑
j

Hijgj

Nl∑
n=1

∑
i

wi(nτ)gi

. (2.73)

I can also define the energy of nth generation of walkers (t = nτ ), which is

Egen =

∑
i

wi(nτ)
∑
j

Hijgj∑
i

wi(nτ)gi
. (2.74)

For the off diagonal move, it contains two parts. The first one is the proposed move. p(j → i) is
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the proposed probability from configuration j to configuration i. The second one is the accepting

move. A(j → i) is the probability that the proposed move is successful. The total probability of

the diagonal move from parent walker at j to child walker at i is

A(j → i)p(j → i) = |τHij|. (2.75)

The weight of the child walker at configuration i contains of three components. They are the

weight of parent walk at configuration j, the acceptance probability A(j → i), the sign(−τHij).

The expression of child walker’s weight is

wchild = A(j → i)× wparent × sign(−τHij). (2.76)

In FCIQMC, the proposal probability from the parent walker at configuration j to the child walker

at configuration i is

p(j → i) =
|τHij|∑
k

|τHkj|
. (2.77)

Hij is non-zero only when configuration j and configuration i are linked (no more than two

different orbitals in their configurations). In this logic, the parent walk at configuration j will

only consider the proposed move at its linked configurations to spawn child walkers. So the

weight of child walker is

wchild =
wparent∑
k

|τHkj|
× sign(−τHij). (2.78)

Another important procedure in FCIQMC is the join operation. The purpose of the join operation

is to reduce the total number of walkers. The increasing number of walkers demands more

memory allocation after the progeny walkers have been spawned. We need the join operation to

control the total number of walkers. The join operation is that I combine a set walkers with the
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same sign to a new walker. The new walker’s weight will be the sum of the weight of the walkers

in the join operation.

For example, there are 6 walkers. Their weights are −0.1, 3,−0.4, 0.2, 0.3, 2. I can set the

threshold to 0.5 to reduce the number of walkers in small weights. Only walkers with weights

smaller than 0.5 participate the join operation. The walkers with weights 3 and 2 will not partic-

ipate the join operation in the example. The rest four weights of walkers are separated into two

groups with the same sign. The group 1 contain weights −0.1 and −0.4. The group 2 contains

0.3 and 0.2. The total combined weight of two walkers is−0.5(−0.1 + (−0.4) = −0.5) in group

1. It is worth mentioning that the weights of walker −0.1 and −0.4 may not in the same config-

uration. The two walkers combine together with their combined weight −0.5 as a new walker if

they are in the same configuration. If the two walkers are in two different configurations i and

j. The walker with weight −0.1 gets a full weight of −0.5 with 1/5 probability at the configu-

ration i and the walker with weight −0.4 gets a full weight of −0.5 with 4/5 probability at the

configuration j. The same procedure occurs on group 2. As we can see, the join operation is an

effective way to reduce the number of walkers. Another important procedure in FCIQMC is the

annihilation procedure. The walkers with opposite sign and same absolute weight on the same

Slater determinant get canceled each other. The total number of walkers will reduce by 2.

In FCIQMC, there is a parameter fc to describe the relative number of walkers required in

the simulation. The expression of fc is

fc =
Nc

NFCI

(2.79)

where Nc is total number walkers in FCIQMC and NFCI is the number of Slater determinant in

the FCI vector space. The ratio fc illustrates how much memory cost in the FCIQMC compared

with the FCI. The main memory allocation in FCIQMC is to store the total number of walkers

Nc. In this algorithm, it is not necessary to save all the Hamiltonian matrix elements, N2
FCI .
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2.8 Path Integral Monte Carlo
The path integral method was first proposed by Feynman. Here, I briefly introduce the formu-

lation of the path integral Monte Carlo and talk about negative sign problem. The thermodynamic

average of a variable A is

〈A〉 =
Tr
[
A exp

(
−βĤ

)]
Tr
[
exp

(
−βĤ

)] . (2.80)

In Equation 2.80, A is an observable, β = 1
kBT

, kB is the Boltzmann constant, T is the tempera-

ture, Ĥ is the Hamiltonian operator. The partition function Q:

Q = Tr
[
exp

(
−βĤ

)]
. (2.81)

The main problem for quantum systems is that we do not know the energy of each configuration

since Ĥ is an operator. The straightforward way to circumvent this is to perform exact diagonal-

ization of the Hamiltonian matrix to obtain all the eigenvalues. Then the partition function can

be written as

Q = Tr
(
e−βĤ

)
=
∑
c

e−βEc . (2.82)

Ec is the eigenvalue of each eigenstate. Exact diagonalization is not feasible for large systems.

For a system that is feasible for exact diagonalization, I can obtain all the eigenvalues of the

Hamiltonian matrix. I can calculate the partition function and the probability of each state occurs

directly. We do not need to perform Monte Carlo simulation for the system since we can calculate

any thermal average observable easily.

In the path integral Monte Carlo, I discretize the β by P slices, β/P = ∆τ . I have

exp(−∆τĤ) ≈ 1−∆τĤ, ∆τ � 1. (2.83)

The projector e−βĤ can be written

e−βĤ = (e−βĤ/P )
P

= (e−∆τĤ)
P
≈ (1−∆τĤ)

P
+O(∆τ). (2.84)
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In the limit P →∞, this approximation becomes exact. Then I insert the identity matrix,

1 =
∑
ji

|αji〉〈αji | (2.85)

where |αji〉 is a basis. The partition function Q is

Q (P ) =
∑

j1,j2,...,jP

〈
αj1| exp(−∆τĤ)|αj2

〉〈
αj2| exp(−∆τĤ)|αj3

〉
· · ·〈

αjP | exp(−∆τĤ)|αj1
〉

=
∑

j1,j2,...,jP

〈
αj1|(1−∆τĤ)|αj2

〉〈
αj2|(1−∆τĤ)|αj3

〉
· · ·〈

αjP |(1−∆τĤ)|αj1
〉
. (2.86)

The partition function Q is the sum of the weights for all possible configurations,

Q =
∑
c

pc (2.87)

where pc is the weight for its corresponding configuration c. Then the thermal average A can be

written as

〈A〉 =
Tr
[
A exp

(
−βĤ

)]
Tr
[
exp

(
−βĤ

)]
=

∑
c

Acpc∑
c

pc

(2.88)

with c = (αj1 , αj2 , ..., αjP ). The sequences of c are configurations. If all pc are positive, then I

can treat each of them as the probability that a configuration c occurs in the system. In this way,

standard Monte Carlo can be applied. However, pc corresponds to the total matrix product of

Hamiltonian in Equation 2.86 and the matrix element can be positive, negative, or zero, so pc is

not always positive. Thus, sampling pc directly in Monte Carlo is impossible. The solution is to
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rewrite Equation 2.88 equivalently as

〈A〉 =

∑
c

Acpc∑
c

pc

=

∑
c
Ac

pc
|pc|
|pc|∑

c
|pc|∑

c

pc
|pc|
|pc|∑

c
|pc|

=

∑
c
AcSign(pc)|pc|∑

c
|pc|∑

c
Sign(pc)|pc|∑

c
|pc|

. (2.89)

I have

〈A〉 =
〈A · Sign(pc)〉|pc|
〈Sign(pc)〉|pc|

. (2.90)

In Equation 2.90, I sample the absolute value of pc. If negative pc get sampled frequently, then

〈Sign(pc)〉|pc| → 0 occurs. It leads to large statistical errors in the measurement which is called

the “minus sign problem”. In the SiLK QMC algorithm, which I will explain later, the central

idea is to improve the basis to guarantee 〈Sign(pc)〉|pc| = 1. Then I can have the equation

〈A〉 =
〈A〉|pc|
〈1〉|pc|

= 〈A〉|pc|. (2.91)
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Chapter 3
Sign Learning kink based QMC

In the last chapter, we discussed multiple quantum chemical methods. They each have their

own advantages and disadvantages. In general, there are two main categories: the methods based

on constructing a ground state wavefunction and the methods based on Monte Carlo sampling.

Almost all Monte Carlo methods suffer from the minus sign problem at low temperature or large

system sizes. The sign problem makes the calculation of ground state energy difficult because of

the noise in the sampling. In this chapter, I introduce the Sign Learning Kink based (SiLK) QMC

for computing the ground state of energy in a system and address the sign problem.

3.1 Formalism
In this section, we introduce the SiLK QMC formalism [20,21]. We will show how the SiLK

QMC circumvents the minus sign problem. We assume there are a finite set of orthonormal,

N-particle states, {αi}. The partition function Q:

Q = Tr
{
e−βĤ

}
=
∑
j

〈
αj|e−βĤ |αj

〉
. (3.1)

By introducing P time slices,

e−βĤ = (e−βĤ/P )
P
. (3.2)

The identity can be written as

1 =
∑
ji

|αji〉〈αji |. (3.3)

By inserting the identity

Q = lim
P→∞

Q (P ) , (3.4)
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where

Q (P ) =
∑

j1,j2,...,jP

〈
αj1 | exp(− β

P
Ĥ)|αj2

〉〈
αj2| exp(− β

P
Ĥ)|αj3

〉
· · ·〈

αjP | exp(− β
P
Ĥ)|αj1

〉
. (3.5)

Figure 3.1: Kink definition. We define a matrix element
〈
αj1| exp(− β

P
Ĥ)|αj2

〉
with αj1 6= αj2

as a kink. A kink is the line from two different states. Configurations with 3 kinks and 4 kinks are
also shown in the figure. The 0 kink configuration means there is only one state in the system. The
2 kink configuration has only 2 distinct states in the system. The number of kinks and number of
states are not necessarily equal. For example, for a 2-state system, we can have 2 kinks, 4 kinks
(both show in the figure), and 6 kinks, etc.

We express the partition function Q using kinks expansion. The first term is the 0 kink con-

tribution (only j1 summation), the second term is the 2 kink contribution (αj1 and αj2 summation,

32



αj1 6= αj2), etc

Q (P ) =
∑
j1

[〈
αj1| exp(− β

P
Ĥ)|αj1

〉]P
+

∑
j1,j2

P−2∑
n=0

[〈
αj1| exp(− β

P
Ĥ)|αj1

〉]n [〈
αj2 | exp(− β

P
Ĥ)|αj2

〉]P−2−n

×

[〈
αj1| exp(− β

P
Ĥ)|αj2

〉]2

+ · · · . (3.6)

We can write the partition function Q in a more compact form. First, we define

∆τ = β/P. (3.7)

Then, the diagonal elements can be written as

xj =
〈
αj| exp(−∆τĤ)|αj

〉
. (3.8)

Assuming ∆τ is small, we can approximate xj as

xj ≈
〈
αj|1−∆τĤ|αj

〉
= 1−∆τHαj ,αj

. (3.9)

As we can see, xj is always bigger than zero since ∆τ is a small number. In addition, we define

the off-diagonal elements as

tij =
〈
αi| exp(−∆τĤ)|αj

〉
. (3.10)

Again, assuming ∆τ is small,

tij ≈
〈
αi|1−∆τĤ|αj

〉
= −∆τHαi,αj

. (3.11)

tij can be positive, negative or zero.
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The partition function Q now takes the compact form as a sum over contributions with different

numbers of kinks:

Q =
∑
j1

[xj1 ]
P +

∑
j1,j2

P−2∑
n=0

[xj1 ]
n [xj2 ]

P−2−n [tj1j2 ]
2 + · · · . (3.12)

We see that the zero kink term is positive, and the two kinks term is positive as well since t2j1j2 is

positive. However, the sign of higher order kinks can be negative. We can write Q as summation

of terms with up to P kinks:

Q = Q0 +Q2 +Q3 + · · ·+QP . (3.13)

As explained before, the minus sign problem is basis-dependent. Exact diagonalization can give

all eigenvalues so each configuration has a positive probability. There is no minus sign problem

after exact diagonalization. However, exact diagonalization is NP complex since the Hamiltonian

matrix dimension scales exponentially with the increase in the number of orbitals in molecular

systems or lattice size in fermionic systems. When we express the partition function using kinks

expansion, the n > 2 kink contributions are non trivial because there are non-diagonal elements

(which are non-zero) in the Hamiltonian matrix which may be negative. That is where the minus

sign comes from.

In the SiLK QMC, we periodically improve the wavefunctions, which are linear combi-

nations of the Slater determinants. In this way, the non-diagonal elements in the Hamiltonian

matrix become smaller, which reduces higher order kinks contributions in the partition function

Q. Eventually, there are only 0 and 2 kinks configurations present in Monte Carlo simulation. We

have proven that the weights for 0 and 2 kinks configurations are always positive. The thermal

average of an observable A:

〈A〉 =
〈A · Sign(p)〉|p|
〈Sign(p)〉|p|

. (3.14)
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The average sign is

〈Sign(p)〉|p| =

∑
c

sign (pc) |pc|∑
c

|pc|
= 1. (3.15)

Equation 3.15 holds when there are only 0 kinks and 2 kinks present in the system. Equation 3.15

demonstrates that the SiLK QMC indeed suppresses the minus sign problem. We use Quantum

Monte Carlo to choose the configurations that have large Boltzmann weights. We then perform

the exact diagonalization in this sub-set of selected configurations. Later on we use the eigen-

vectors of the sub-matrix to update the whole Hamiltonian matrix. We periodically perform the

sub-matrix diagonalization until the minus sign problem get suppressed.

3.2 Sampling in SiLK quantum Monte Carlo
As shown in [20], we have the expression for partition function Q(P )

Q (P ) =
∑
j

xPj +

P∑
n=2

P

n

(
n∏
i=1

∑
ji

)(
n∏
k=1

tjk,jk+1

)
S ({xj} , n,m, {sj}) . (3.16)

Function S ({xj} , n,m, {sj}) is the contribution from the zero kinks terms, {xj} is the diagonal

element, n is the number of kinks, m is the number of states, {sj} is the number of times state j

occurs in the system. Detailed derivation of function S is in appendix A.

Q (P ) =
P∑
n=1

(
n∏
i=1

∑
ji

)
ρn({αj}). (3.17)

In this equation, n represents the number of kinks (except n = 1 corresponding to 0 kinks), ρn is

the density matrix for n kinks which compose of a set of states {αj}. 〈Sign〉 is the average sign

of the configuration weights in QMC, the expression of 〈Sign〉 is

〈Sign〉 =
ρn({αj})
|ρn({αj})|

. (3.18)
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We can evaluate this expression in Monte Carlo algorithm by sampling the wavefunctions and

kinks.

The system will have only 0 and 2 kinks present after sufficient numbers of diagonalizations.

We then run MC steps without diagonalizations for N steps to calculate the total energy. To

calculate the energy:

〈E〉 = −∂ lnQ

∂β

=

∑
j,n

− ∂
∂β
Qj,n∑

j,n

Qj,n

(3.19)

where Qj,n is the estimator for Q shown in Equation 3.16 for a given value of j, n (set of states

and number of kinks) at the end of a MC pass. We have

∆τ ≡ β/P,

∂/∂β =
1

P
∂/∂∆τ,

〈E〉 =

∑
j,n

(
1
P

) (
− ∂
∂∆τ

Qj,n

)
∑
j,n

Qj,n

=

∑
j,n

(
1
P

)
Q
′
j,n∑

j,n

Qj,n

=

∑
j,n

(
1
P

) Q′j,n
Qj,n

Qj,n

|Qj,n| |Qj,n|/
∑
j,n

|Qj,n|∑
j,n

Qj,n

|Qj,n| |Qj,n|/
∑
j,n

|Qj,n|

=
〈
(

1
P

) Q′j,n
Qj,n

sj,n〉
〈sj,n〉

. (3.20)
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3.3 Metropolis Algorithm Application in SiLK QMC
Now we apply the Metropolis algorithm to the SILK Monte Carlo. We expand the partition

function Q using kinks expansion in the SiLK QMC. We use the Metropolis algorithm to insert

or remove kinks based on their Boltzmann weight. We have two steps in this procedure. The first

is to make the decision whether we insert a kink or remove a kink and the second is to determine

whether the proposed insertion or removal gets accepted. We use c to represent one configuration

and c′ to represent another configuration in SiLK QMC. The Metropolis algorithm uses T (c′|c) as

the proposed probability to choose configuration c′ from configuration c. The acceptance rate for

the new configuration c′ is A(c′|c) = min
[
1, ρ(c′)T (c|c′)

ρ(c)T (c′|c)

]
, where ρ(c) and ρ(c′) are the Boltzmann

weights for the configurations c and c′ respectively.

The acceptance rate T (c′|c) must include both kink insertion and removal to satisfy the detail

balance condition. If there are n kinks, labeled, 1, ..., n, then there are n+1 places to insert a new

kink (either as state 1, state 2, ...,state n+ 1). The new kink can be any one from the total number

of states (we call it N , which is the dimension of the Hamiltonian matrix) except when it cannot

produce a kink (for example, trying to insert state 23 between state 23 and state 30, all adjacent

states cannot equal to each other). In the removal step, beginning with n kink configuration, we

can remove any of the n kinks except when the new configuration has adjacent states equal to

each other (for example, 1 3 1 3 is a 4 kink configuration, if we remove the first state 3, then the

new configuration will be 1 1 3, the first state 1 and second state 1 cannot form a kink, so we

forbid this removal).

A sensible weight for each possible insertion or removal is a |ρ(c′)|, normalized. So we will

try

T (c′|c) = Tremove(c
′|c) + Tadd(c

′|c) (3.21)
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where T (c′|c) must be normalized. The probability that state k get removed is

Tremove(n− 1, k|n) =
|ρ(1, 2, ..., k − 1, k + 1, ..., n− 1)|

D(c′|c)
. (3.22)

The probability of adding a state at location k in the list and to state αj is

Tadd(n+ 1, k, αj|n) =
|ρ(1, 2, ..., k − 1, αj, k, k + 1, ..., n+ 1)|

D(c′|c)
(3.23)

with D(c′|c) the normalization for the probability. The expression of D(c′|c) is

D(c′|c) =
∑
k

|ρ(1, 2, ..., k − 1, k + 1, ..., n− 1)|+∑
k

∑
αj

|ρ(1, 2, ..., k − 1, αj, k, k + 1, ...n+ 1)|. (3.24)

We need to make the decision whether we propose to insert a kink or remove a kink first based

on the weights of all insertions and removals. The expression of Dadd(c
′|c) is

Dadd(c
′|c) =

∑
k

∑
αj

|ρ(1, 2, ..., k − 1, αj, k, k + 1, ...n+ 1)|. (3.25)

Dadd(c
′|c) is the sum of weight for all insertions (we propose total number of states in each n+ 1

places to insert), and D(c′|c) is all the weight for insertions and removals. The ratio ζ is defined

as

ζ = Dadd(c
′|c)/D(c′|c). (3.26)

We compare ζ with a random number, if the random number is bigger than ζ , we propose to

remove a kink, otherwise we propose to insert a kink. This is the first decision.

The next step is to decide whether the proposed insertion or removal is successful. Now we

consider each category separately.

Insertion: Assuming that we make an insertion in the first step and we select αj at site k. The
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probability to choose this new configuration c′ is T(c’|c). Its expression is

T (c′|c) = |ρ(1, 2, ..., k − 1, αj, k, k + 1, ..., n+ 1)|/[∑
i

∑
αm

|ρ(1, 2, ..., i− 1, αm, i, i+ 1, ..., n+ 1)|+

∑
i

|ρ(1, 2, ..., i− 1, i+ 1, ..., n− 1)|

]

≡ |ρ(c′)|
D(c′|c)

. (3.27)

To calculate T (c|c′), which is the probability of picking the configuration c from configuration c′,

we must begin with n+ 1 kink configurations (since configuration c′ is n+ 1 kinks) because we

need to consider all insertions and removals. The numerator will be the original ρ (Boltzmann

weight) associated with n kink configuration c. The expression of T (c|c′) is

T (c|c′) = |ρ(1, 2, ..., k − 1, k + 1, ..., n)|/[∑
i

∑
αm

|ρ(1, 2, ..., i− 1, αm, i, i+ 1, ..., n+ 2)|+

∑
i

|ρ(1, 2, ..., i− 1, i+ 1, ..., n)|

]

≡ |ρ(c)|
D(c|c′)

. (3.28)

So the acceptance of the insertion is

A(c′|c) = min

[
1,
ρ(c′)T (c|c′)
ρ(c)T (c′|c)

]
= min

[
1,
|ρ(c′)|
|ρ(c)|

× |ρ(c)|
D(c|c′)

× D(c′|c)
|ρ(c′)|

]
= min

[
1,
D(c′|c)
D(c|c′)

]
. (3.29)
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Removal: We propose to remove a state (which is αl) at site k. The expression of T (c′|c) is

T (c′|c) = |ρ(1, 2, ..., k − 1, , k + 1, ..., n− 1)|/[∑
i

∑
αm

|ρ(1, 2, ..., i− 1, αm, i, i+ 1, ..., n+ 1)|+

∑
i

|ρ(1, 2, ..., i− 1, i+ 1, ..., n− 1)|

]

≡ |ρ(c′)|
D(c′|c)

. (3.30)

The denominator has been calculated in the first selection step. To calculate T (c|c′), we must start

from n− 1 kinks configuration to consider all insertions and removals. The numerator of T (c|c′)

will be the ρ associated with original n kink configuration (with αl at site k). The expression of

T (c|c′) is

T (c|c′) = |ρ(1, 2, ..., k − 1, αl, k, k + 1, ..., n)|/[∑
i

∑
αm

|ρ(1, 2, ..., i− 1, αm, i, i+ 1, ..., n)|+

∑
i

|ρ(1, 2, ..., i− 1, i+ 1, ..., n− 2)|

]

≡ |ρ(c)|
D(c|c′)

. (3.31)

The expression of acceptance rate A(c′|c) is

A(c′|c) = min

[
1,
ρ(c′)T (c|c′)
ρ(c)T (c′|c)

]
= min

[
1,
D(c′|c)
D(c|c′)

]
. (3.32)

As we can see, the formula for acceptance of the removal is exactly the same as that of the

insertion, the only difference is in the D(c|c′) and D(c′|c). More precisely, configuration c′ has

n+ 1 kinks in insertion and n− 1 kinks in removal.
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Selection:

In Insertion, Dadd(c
′|c) is bigger than the random number ζ , how can we decide which state get

inserted and at which position? To choose a term in the sum, which corresponds to a particular

addition, we use the random number ζ we generated before, find the smallest value of L for which

L∑
k=1

T_add(c′|c) ≥ ζ. (3.33)

L is the selection to try. The order of looping weight over the states or positions does not influ-

ence the final result statistically.

In Removal, Dadd(c
′|c) is smaller than the random number ζ , similarly, we use the random num-

ber ζ we generated before, find the smallest value of L for which

L∑
k=1

T_remove(c′|c) +Dadd(c
′|c) ≥ ζ. (3.34)

L is then the selection to try. In removal step, we only need to loop over kinks.

3.4 Basis improvement
We accumulate all the configurations get sampled after a certain number of Monte Carlo steps

to a subset R. We periodically perform diagonalizations on this subset (which is keep changing

in each diagonalization) of states. It is the adaptive procedure. Matrix C is the coefficient matrix

composed by all the eigenvectors from diagonalization of the subset of N -electron states. We use

the C matrix to get the new Hamiltonian matrix (H ′) from the old Hamiltonian matrix (H).

H ′i,j =
∑
e,f

C−1
i,e He,fCf,j, i ∈ R, j ∈ R. (3.35)

C is unitary matrix, so we have C−1 = CT . We have

C−1
i,e = CT

i,e = Ce,i. (3.36)
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Equation 3.35 can be written as

H ′i,j =
∑
e,f

Ce,iHe,fCf,j, i ∈ R, j ∈ R,

H ′i,j =
∑
e

Ce,iHe,j, i ∈ R, j /∈ R,

H ′i,j =
∑
f

Hi,fCf,j, i /∈ R, j ∈ R,

H ′i,j = Hi,j, i /∈ R, j /∈ R.

(3.37)

Only a small portion of Hamiltonian matrix gets updated. For every diagonalization we perform,

we do the update. The new basis will be the linear combinations of the old basis. We use this

strategy to improve the basis. The weights of fewer kinks configurations will dominant in the

partition function Q with the improved basis. This procedure alleviates the minus sign problem

in Monte Carlo. When only 0 and 2 kinks present in the system the minus sign problem get

suppressed since the sign of the partition function estimator Q is always positive.
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Chapter 4
Results

This chapter contains two parts. The first part contains SiLK QMC calculations in three

different bond lengths in different P values in H2O, N2 and F2. The second part includes the

potential energy surfaces for each molecule. Specifically, we compare the SiLK QMC and other

post Hartree-Fock methods in different bond lengths for H2O in the DZ basis.

4.1 The reliability of SiLK QMC
Here, we perform the SiLK QMC calculation in three different bond lengths. The first one

is the equilibrium bond length (Re). The other two are the stretched bond lengths (1.5Re and

2Re). We perform the SiLK QMC calculation in different P values to get an optimized P value

for the future SiLK QMC calculations. The SiLK QMC energies converge to the exact results in

all three bond lengths with increasing P. This demonstrates that the SiLK QMC is reliable.

4.1.1 Water

We show SiLK QMC results in the three vector spaces with three different bond lengths.

The SiLK QMC energies converge to the exact diagonalization values in the SD and the SDT

vector spaces in all the three bond lengths. We also show the SiLK_Frozen converge to the exact

energy in the FCI (frozen) vector space in Table 4.1. The difference between the SiLK_SD and

the Exact_FCI is smaller than the difference between the SiLK_Frozen and the Exact_FCI. The

number of Slater determinants is 879 in the SD. The number of Slater determinant is 128829

in the FCI (frozen) vector space. (SD vector space do not have frozen core). We can conclude

that single and double excitations are dominant in the FCI vector space. When we add triple

excitations, we can see the SiLK_CISDT is better than the SiLK_CISD. We can consider adding

quadruples and quintuples to the SiLK QMC calculation. The table shows that the SiLK_Frozen

converge to the exact energies performed using Arnoldi method in the FCI (frozen) vector space

in the three bond lengths.

We also compare SiLK_Frozen with ECCSD and ECCSDT . The SiLK_Frozen result is better
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Table 4.1: Comparison of ground state energies using different methods. The table is for H2O
in the DZ basis set. Exact_FCI is the ground state energy in the FCI vector space [85]. P is
the number of time slices. SiLK_SD and SiLK_SDT are the SiLK QMC energies in the SD
and the SDT vector spaces. Re is the equilibrium O-H bond length in H2O. SiLK_Frozen is
the SiLK energy in the FCI vector space with frozen core (a pair of electrons locate in lowest
orbital). ECCSD is the CCSD energy. ECCSDT is the CCSDT energy. Exact_SD is the exact
diagonalization energy in the SD vector space. Exact_SDT is the exact diagonalization in the
SDT vector space. Exact_frozen is the exact diagonalization in the FCI vector space with frozen
core. We perform the SiLK QMC in the three vector spaces in different P values in the three
different bond lengths in H2O.

H2O (Unit:Hartree) # Re # 1.5Re #2Re

Exact_FCI -76.157866 -76.014521 -75.905247
SiLK_SD(P = 2× 107) -76.15001290(4) -75.99213770(5) -75.84481415(6)
SiLK_SD(P = 2× 108) -76.15001454(3) -75.99213974(3) -75.84481650(3)
SiLK_SD(P = 2× 109) -76.15001462(4) -75.99213984(4) -75.84481657(4)
SiLK_SD(P = 2× 1010) -76.15001461(4) -75.99213982(4) -75.84481657(4)
CISD -76.15001458 -75.992139867 -75.844816658
Exact_SD -76.15001464 -75.992139854 -75.844816604
SiLK_SDT(P = 2× 107) -76.15115179(6) -75.9958278(1) -75.85550650(5)
SiLK_SDT(P = 2× 108) -76.15115604(5) -75.9958401(4) -75.85552803(6)
SiLK_SDT(P = 2× 109) -76.15115625(6) -75.9958404(2) -75.85552842(4)
SiLK_SDT(P = 2× 1010) -76.15115629(6) -75.9958407(1) -75.85552844(6)
CISDT -76.151156425 -75.995842857 -75.855528567
Exact_SDT -76.151156416 -75.995842882 -75.855528604
SiLK_Frozen(P = 107) -76.14454978(3) -76.00126911(4) -75.89207225(4)
SiLK_Frozen(P = 108) -76.14455283(1) -76.00127344(3) -75.8920765(3)
SiLK_Frozen(P = 109) -76.14455284(2) -76.00127377(4) -75.8920767(3)
SiLK_Frozen(P = 1010) -76.14455319(3) -76.00127376(3) -75.8920767(3)
ECCSD -76.1427941 -75.9957729 -75.8828279
ECCSDT -76.1441193 -75.9998459 -75.8942800
Exact_Frozen -76.14455335 -76.00127408 -75.892077718

than the CCSD and the CCSDT energy in R = Re and R = 1.5Re. The CCSDT energy is lower

than the Exact_frozen energy in R = 2Re. This demonstrates that coupled cluster methods are

not variational. We cannot trust the coupled cluster methods when R = 2Re.

The three Figures 4.1, 4.2 and 4.3 are the SiLK QMC calculations on three different bond

lengths, Re, 1.5Re, 2Re for H2O. Re is the equilibrium bond length. These three figures demon-

strate that the SiLK QMC calculation is reliable since its results converge to the exact energies

with increasing P values in different vector spaces. The Y axis is the absolute error of energy, as
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Figure 4.1: Absolute error of energy versus P for H2O. In this figure, the units of absolute error
is Hartree. We perform the SiLK QMC in three vector spaces (SD, SDT, and FCI with frozen
core). P is time slices, which ranges from 2× 107 to 2× 1010. The absolute error of energy is the
difference between the SiLK QMC energy and the exact energy. The exact energy is independent
of P. Re is the theoretical equilibrium distance between O-H bond in H2O in the DZ basis. The
absolute error of energies converge to the zero points with increasing P in all the three vector
spaces. The data is from Table 4.1.
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Figure 4.2: Absolute error of energy versus P for H2O. SiLK QMC results in the FCI, the SD and
the SDT vector spaces. The bond length is 1.5Re. For more details, see figure 4.1.
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Figure 4.3: Absolute error of energy versus P for H2O. SiLK QMC results in the FCI, the SD and
the SDT vector spaces. The bond length is 2Re. For more details, see figure 4.1.

defined by 〈E〉 − E_exact, 〈E〉 is the SiLK energy, E_exact is the exact energy. The exact en-

ergy has different values in different vector spaces in different bond lengths. We set the learning

period to 3000 Monte Carlo (MC) steps in the SD vector space. Once another 2000 MC steps

occurs without diagonalizations, we stop the run. We then average these 2000 measured energies

to calculate the SiLK energy. The number of Slater determinant is large in the SDT and the FCI

vector spaces. We set the learning period to around 10000 in the SDT and 100000 in the FCI

vector space respectively.

4.1.2 Nitrogen molecule

The three Figures 4.4, 4.5 4.6 are from the SiLK QMC on three different bond lengths, Re,

1.5Re, 2Re for N2. Re is the equilibrium bond length. These three figures show the SiLK QMC

is reliable since SiLK QMC results converge to the exact energies in the SD, the SDT and the

FCI (frozen) vector spaces for different bond lengths. The absolute error of energies converge

to the zero points with increasing P in three distance in all vector spaces. This demonstrates the

SiLK QMC is a reliable method again.
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Table 4.2: Comparison of the calculated ground state energies in different methods. For N2, in the
DZ basis, freezing 2 lowest orbitals, we have 7 up electrons, 7 down electrons, 20 up spin orbitals,
20 down spin orbitals. We have both the SD and the SDT vector spaces in our measurement. The
number of configurations after the symmetry reduction in the SD and the SDT are as follows:
SD= 898, SDT= 14642. SiLK_SD and SiLK_SDT converge to the exact values in the SD and
the SDT vector spaces when P ranges from 2× 107 to 2× 1010.

N2 (Unit:Hartree) Re 1.5Re 2Re

SiLK_SD (P = 2× 107) -109.0817438(1) -108.8608499(1) -108.65750766(2)
SiLK_SD(P = 2× 108) -109.08175035(3) -108.86085801(4) -108.65752328(3)
SiLK_SD(P = 2× 109) -109.08175058(6) -108.86085821(6) -108.65752351(5)
SiLK_SD(P = 2× 1010) -109.08175054(4) -108.86085823(5) -108.65752355(5)
CISD -109.08175053 -108.86085827 -108.65752356
EXACT_SD -109.081750538 -108.860858279 -108.657523581
SiLK_SDT(P = 2× 107) -109.08722711(8) -108.87667412(9) -108.6840774(4)
SiLK_SDT(P = 2× 108) -109.08723227(3) -108.87668026(6) -108.68642060(7)
SiLK_SDT(P = 2× 109) -109.08723242(5) -108.87668040(5) -108.68642129(6)
SiLK_SDT(P = 2× 1010) -109.08723242(5) -108.87668044(4) -108.68642061(8)
CISDT -109.08723246 -108.87668045 -108.68642211
EXACT_SDT -109.087232472 -108.876680461 -108.686422127

4.1.3 Fluorine molecule

In table 4.3, the Exact_SD is from direct diagonalization using the Linear Algebra Package

(LAPACK). Since the SDT vector space is too large for the LAPACK to perform the exact di-

agonalization directly, we perform the exact diagonalization using the Arnoldi iteration method.

It shows the SiLK QMC result is converging to the numerical exact result performed using the

Arnoldi method in the SDT vector space.

The three Figures 4.7, 4.8 4.9 are the SiLK QMC calculations on three different bond

lengths, Re, 1.5Re, 2Re for F2. These three figures show that the SiLK QMC is reliable since

the SiLK QMC energy converges to the exact energy in each vector space for different bond

lengths. The absolute error of energies for F2 converge to the zero points with increasing P in

three distance in all vector spaces. This demonstrates the SiLK QMC is a reliable method again.

4.2 Potential energy surface
In this section, we perform the SiLK QMC calculation on a wide range of bond lengths for

H2O, N2, F2 molecules. For the equilibrium bond length in H2O, we show the sign learning curve
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Figure 4.4: Absolute error of energy versus P for N2. In this figure, the units of absolute error of
energy is Hartree. We perform the SiLK QMC in the SD and the SDT vector spaces. P is time
slices, which ranges from 2 × 107 to 2 × 1010. The absolute error of energy is the difference
between the SiLK QMC energy and the exact energy. The exact energy is independent of P. Re

is the theoretical equilibrium triple bond distance for N2 in the DZ basis. The absolute error of
energies converge to the zero points with increasing P in the SD and the SDT vector spaces. The
data is from Table 4.2.
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Figure 4.5: Absolute error of energy versus P for N2. SiLK QMC results in the SD and the SDT
vector spaces. The bond length is 1.5Re. For more details, see figure 4.4.
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Figure 4.6: Absolute error of energy versus P for N2. SiLK QMC results in the SD and the SDT
vector spaces. The bond length is 2Re. For more details, see figure 4.4.
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Figure 4.7: Absolute error of energy versus P for F2. In this figure, the units of absolute error of
energy is Hartree. We perform the SiLK QMC in the SD and the SDT vector spaces. P is time
slices, which ranges from 2 × 107 to 2 × 1010. The absolute error of energy is the difference
between the SiLK QMC energy and the exact energy. The exact energy is independent of P. Re

is the theoretical equilibrium triple bond distance for F2 in the DZ basis. The absolute error of
energies converge to the zero points with increasing P in the SD and the SDT vector spaces. The
data is from Table 4.3.
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Table 4.3: Comparison of the calculated ground state energies in different methods. For F2, in the
DZ basis, freezing 2 lowest orbitals, we have 9 up electrons, 9 down electrons, 20 up spin orbitals,
20 down spin orbitals. We have both the SD and the SDT vector spaces in our measurement. The
number of configurations after the symmetry reduction in the SD and the SDT are as follows:
SD= 1196,SDT= 24980. SiLK_SD and SiLK_SDT converge to the exact values in the SD and
the SDT vector spaces when P ranges from 2× 107 to 2× 1010.

F2 (Unit:Hartree) R=Re R=1.5Re R=2Re

SiLK_SD (P = 2× 107) -198.9456153(2) -198.8952589(2) -198.8678972(2)
SiLK_SD (P = 2× 108) -198.94568569(2) -198.89534757(2) -198.86797620(2)
SiLK_SD (P = 2× 109) -198.94568593(5) -198.89534776(4) -198.86797641(4)
SiLK_SD (P = 2× 1010) -198.94568600(5) -198.89534787(4) -198.86797649(4)
CISD -198.94568598 -198.89534787 -198.86797651
Exact_SD -198.9456859846 -198.8953478634 -198.86797651
SiLK_SDT(P = 2× 107) -198.9507528(2) -198.9117896(2) -198.8910570(2)
SiLK_SDT(P = 2× 108) -198.95083357(1) -198.91186536(3) -198.89112106(2)
SiLK_SDT (P = 2× 109) -198.95083373(3) -198.91186555(5) -198.89112124(4)
SiLK_SDT (P = 2× 1010) -198.95083374(3) -198.91186556(5) -198.89112122(5)
CISDT -198.95083374 -198.91186557 -198.8911212
Exact_SDT -198.9508337472 -198.9118655706 -198.8911212711
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Figure 4.8: Absolute error of energy versus P for F2. SiLK QMC results in the SD and the SDT
vector spaces. The bond length is 1.5Re. For more details, see figure 4.7.

to illustrate how the minus sign problem is perfectly suppressed in the SiLK QMC calculation.

In addition, we show the absolute error of energy of SiLK QMC and other post Hartree Fock

methods in log scale to demonstrate that SiLK QMC is a better method in calculating the chemical
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Figure 4.9: Absolute error of energy versus P for F2. SiLK QMC results in the SD and the SDT
vector spaces. The bond length is 2Re. For more details, see figure 4.7.

accuracy.

4.2.1 Sign evolution
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Figure 4.10: The evolution of the sign during the SiLK QMC learning period for H2O using
the DZ basis set and with the equilibrium geometry, whose O-H distance is 1.84345 Bohr. The
upper figure shows the number of states involved in each diagonalization. We manually set the
maximum number of states involved in diagonalization to 50. The lower figure shows the average
sign evolution in the learning period.

The average sign converges to 1 with increasing number of diagonalizations in SiLK QMC
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as shown in the Figure 4.10. There are only 0 and 2 kinks appear in the system with enough long

learning period. We define the learning period as the MC steps involved with diagonalizations.

After the learning period, we begin to collect the data. If more than 2 kinks configuration appears

in MC, then average sign drops. The diagonalization occurs once the number of kinks reach 10.

We average every 20 diagonalizations to get the average sign and its standard derivation.

4.2.2 Water

In this section, I will show how the SiLK QMC beats the coupled cluster methods in two

aspects. First, SiLK QMC offers higher chemical accuracy than coupled cluster methods. Sec-

ond, SiLK QMC is variational while coupled cluster methods are not variational. We will use the

following figures to support my arguments.

Water bond length:
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Figure 4.11: Potential energy curve for the DZ basis of H2O molecule. A comparison of the
results obtained by the SiLK QMC with the result of CCSD, CCSDT, CCSD(T), MBPT2, MR-
CCSD(T)(2,2), and MRCCSD(T)(4,4). The bottom figure is the absolute error of energy.

The advantage of the SiLK QMC is that it remains accurate in the stretched bond length. We

compare the SiLK QMC with: coupled cluster methods, many body perturbation theory (MBPT),

and multi-reference coupled cluster (MRCC) method in Figure 4.11. The equilibrium O-H bond
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length in H2O is 1.834 Bohr. The O-H bond ranges from 1.334 Bohr to 4.34 Bohr in SiLK QMC

and other methods in Figure 4.11. We can see two points from the Figure 4.11. First, the SiLK

QMC can obtain the best result (smallest absolute error of energy) of all methods. Second, the

coupled cluster methods, including CCSD, CCSDT, CCSDT(T) are not variational since they fail

for the extended bond length. The second order MBPT has the largest absolute error of ener-

gies in all bond lengths. The Multi-reference Coupled Cluster methods MRCCSD(T)(2,2) and

MRCCSD(T)(4,4) are better than the single reference coupled cluster methods, but the absolute

error of energies of MRCCSD(T) are still much bigger than the SiLK QMC offers . We used

the NWCHEM software to perform the CCSD, CCSDT, CCSD(T), MBPT2, and MRCCSD(T)

calculations [50].
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Figure 4.12: Potential energy curves for H2O in the SD and the SDT vector spaces in the DZ
basis. The figure shows the SiLK QMC results and exact results match.

The SiLK QMC is also feasible for both the SD and the SDT vector spaces. Usually we can

only include the SD and the SDT excitations in a large basis set. In figure 4.12, we set the O-H

bond length in H2O from 1.34 Bohr to 4.34 Bohr and the absolute error of energies are around

10−8 Hartrees in the SD vector space and 10−9 Hartrees in the SDT vector space.

Water Angles:

In this section, I show the SiLK QMC can provide better results than the coupled cluster methods

in different angles. Another advantage of the SiLK QMC is that it is feasible when we vary the
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angle. We compare the SiLK QMC with the CC methods, the MBPT, and the MRCC methods

in Figure 4.13. The equilibrium H-O-H angle in H2O is 110 degree around. We select the angle

from 95 degree to 125 degree. We can see an important point from Figure 4.13, the SiLK QMC

can reach the highest chemical accuracy of all methods. The MBPT2 has the largest chemical

accuracy.
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Figure 4.13: Potential energy curve for H2O in the FCI vector space in the DZ basis. A com-
parison of results obtained by the SiLK QMC with the results of the coupled cluster methods
truncated at various levels CCSD, CCSDT, CCSD(T), MBPT2, MRCCSD(T)(2,2), and MR-
CCSD(T)(4,4).

4.2.3 Nitrogen

Calculations of multiple chemical bonds with a wide range of bond length is a great chal-

lenging test in Chemistry [86]. Here, I report the results of the calculations for triple bonds N2

using the SiLK QMC and exact diagonalization in a wide range of bond lengths. The Figure 4.15

shows the SiLK QMC results converge to the exact results in a wide range of bond lengths in the

SD and the SDT vector spaces in the DZ basis for N2. In the paper [86], we can see for the same

DZ basis set, all the coupled cluster methods fail when the N -N bond length is larger than 4.0

Bohr in the FCI vector space.
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Figure 4.14: Potential energy curves for H2O in the SD and the SDT vector spaces in the DZ
basis. The figure shows the SiLK QMC results and exact results match.
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Figure 4.15: Potential energy curves for N2 molecule in the SD and the SDT vector spaces in the
DZ basis. The figure shows the SiLK QMC results and exact results match.

4.2.4 Fluoride

F2 is challenging for the coupled cluster methods too. Due to memory limitations, we can

only perform the SiLK QMC calculation in the SD and the SDT vector spaces in the DZ basis.

The Figure 4.16 shows the SiLK QMC results converge to the exact results in the SD and the SDT

vector spaces in the DZ basis in F2. The paper [87] discusses F2 in the cc-pVDZ basis set. It uses

the CCSDT method as a reference since the exact diagonalization is not feasible in the cc-pVDZ
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basis set. In our calculation, we do exact diagonalizations in the SD and the SDT vector spaces

by using the Linear Algebra PACKage (LAPACK) [37] and the Arnoldi method [40] respectively.
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Figure 4.16: Potential energy curves for F2 molecule in the SD and the SDT vector spaces in the
DZ basis. The figure shows the SiLK QMC results and exact results match.
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Chapter 5
Conclusion

The minus sign problem of Quantum Monte Carlo is a challenging problem in computational

physics. It has even been suggested that a general solution of this problem is a NP-complete

problem [88]. Therefore, one should not expect an effective solution for all the Monte Carlo

simulations which suffers from the minus sign problem. This does not exclude a solution for

particular systems even this is a NP-complete problem. Indeed, there are multiple fermion models

that are minus sign free. The typical example is the half-filled Hubbard model in bipartite lattices.

Multiple other methods have also been proposed to alleviate the minus sign problems in spin and

fermion models for certain range of parameters.

In this dissertation, we demonstrated that SiLK QMC can reduce the minus sign problem

in the learning stage by the diagonalization procedure. This is a conceptually new method in

attacking the minus sign problem. We have demonstrated that the energies obtained by the SiLK

QMC match the benchmark results from exact diagonalizations. The SiLK QMC is a versatile

method to calculate the ground state energies in atomic systems. The SiLK QMC can reduce the

severity of the minus sign problem even for larger system size. This is a big achievement since the

minus sign problem becomes worse with increasing system size for most of the QMC methods.

The bottleneck for the SiLK QMC in the present implementation is the memory allocation, it

needs to store the whole Hamiltonian matrix, which can be large for more complex molecules.

In the beginning of this dissertation, I gave a review on multiple computational chemistry

methods, including MBPT2, CC methods and FCI method. They are the commonly used meth-

ods in the computational chemistry. I then introduced the SiLK QMC (a new path integral Monte

Carlo method). In the results section, we see that the SiLK QMC can suppress the minus sign

by improving the basis. The SiLK QMC can achieve the accuracy of 10−5 Hartrees. This ac-

curacy far exceeds the desired chemical accuracy commonly defined as about 0.0016 Hartrees.

Furthermore, the SiLK QMC is variational, it provides the upper bound for the ground state en-
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ergy which can possibly be improved by other methods. Unlike other methods, the SiLK QMC

remains accurate for the calculations in stretched geometries.

The future improvements on the SiLK QMC are as follow: First, we want to develop a

parallel version of the SiLK QMC code. We need to distribute the allocation of the Hamiltonian

matrix to N core for the parallel version. This allows a much larger basis set to be used for the

parallel version. The main challenge of implementing the parallel version is to find an efficient

method to update the basis. This updating process requires data exchange between cores. There

will be millions of Message Passing Interface (MPI) send and receive calls in the Hamiltonian

matrix updating process. Second, the new feature of SiLK QMC allows us to perform geometry

optimizations [89]. The geometries of the molecules in all the calculations presented in this

dissertation are keep the same for each SiLK QMC run. We plan to use the SiLK method to

optimize the geometry during the Monte Carlo sampling for any initial given geometry. For

example, we start at R = 2Re (R is the O-H bond and Re is the equilibrium distance of the O-H

bond) for H2O. The bond length will converge to R = Re at the end of calculation.
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[43] Jiří Čížek. On the correlation problem in atomic and molecular systems. calculation of
wavefunction components in ursell-type expansion using quantum-field theoretical meth-
ods. The Journal of Chemical Physics, 45(11):4256–4266, 1966.

[44] J Čížek and J Paldus. Correlation problems in atomic and molecular systems iii. rederivation
of the coupled-pair many-electron theory using the traditional quantum chemical methodst.
International Journal of Quantum Chemistry, 5(4):359–379, 1971.

61
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Appendix A
Algorithm

The algorithm appendix contains two parts. The first is how to calculate Hamiltonian element
using the Slater-Condon rule. The second is the detailed derivation of the function S in the
partition function estimator.
A.1 Constructing the Hamiltonian matrix

The first part introduces the Slater-Condon rule, which largely follows by Szabo’s book [90].
I take H2 model in STO-3G basis as an example to illustrate how to build the Hamiltonian matrix
using the one-electron integrals (Fock operator) and the two-electron integrals using the Slater-
Condon rule. Based on the Hartree Fock (HF) approximation, the NWChem software package
will generate one electron integrals, two electron integrals and repulsion energy. We use this in-
formation to construct the Hamiltonian matrix. We introduce a few notations here: ψi, ψj, ψk, ψl
are spin orbitals, 〈ij|kl〉 is defined as

〈ij|kl〉 = 〈ψiψj|ψkψl〉 =

∫
dx1dx2ψ

∗
i (x1)ψ∗j (x2)r−1

12 ψk(x1)ψl(x2). (A.1)

We introduce a special symbol 〈ij‖kl〉 for an antisymmetrized two-electron integral as

〈ij‖kl〉 = 〈ij|kl〉 − 〈ij|lk〉 =

∫
dx1dx2ψ

∗
i (x1)ψ∗j (x2)r−1

12 (1− P̂12)ψk(x1)ψl(x2). (A.2)

P̂12 is an operator which interchanges the coordinates of electron one and two. We can easily see
that,

〈ij‖kk〉 = 0. (A.3)

Another notation for two electron integrals over spin orbitals is

[ij|kl] =

∫
dx1dx2ψ

∗
i (x1)ψj(x1)r−1

12 ψ
∗
k(x2)ψl(x2). (A.4)

We can see,
[ij|kl] = [kl|ij]. (A.5)

Based on Slater-Condon rule [34–36] we have the Table A.1 and Table A.2 [90].
The general matrix element of the Fock operator is written as

〈ψi|f |ψj〉 = 〈i|h|j〉+
∑
b

〈ib‖jb〉 (A.6)

where the sum over b is over all the occupied orbitals in the HF determinant.
Let’s take a simple example to show how to calculate the Hamiltonian matrix element from

NWChem output. I derive the Hamiltonian element for H2 molecule in STO 3G basis. There are
2 electrons (one is up spin electron, the other is down spin electron), 4 spin orbitals (two up spin
orbitals, two down spin orbitals). The orbitals are ψ1, ψ2, ψ3, ψ4. The Hamiltonian matrix is 4 by
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O1 =
N∑
i=1

h(i)

Case 1: |K〉 = | · · ·mn · · · 〉

〈K|O1|K〉 =
N∑
m

[m|h|m] =
N∑
m

〈m|h|m〉

Case 2: |K〉 = | · · ·mn · · · 〉
|L〉 = | · · · pn · · · 〉
〈K|O1|L〉 = [m|h|p] = 〈m|h|p〉

Case 3: |K〉 = | · · ·mn · · · 〉
|L〉 = | · · · pq · · · 〉
〈K|O1|L〉 = 0

Table A.1: Matrix elements between determinants for one-electron operators in terms of spin
orbitals [90]

O2 =
N∑
i=1

N∑
j>i

r−1
ij

Case 1: |K〉 = | · · ·mn · · · 〉

〈K|O2|K〉 = 1
2

N∑
m

N∑
n

([mm|nn]− [mn|nm]) = 1
2

N∑
m

N∑
n

〈mn‖mn〉

Case 2: |K〉 = | · · ·mn · · · 〉
|L〉 = | · · · pn · · · 〉

〈K|O2|L〉 =
N∑
n

([mp|nn]− [mn|np]) =
N∑
n

〈mn‖pn〉

Case 3: |K〉 = | · · ·mn · · · 〉
|L〉 = | · · · pq · · · 〉
〈K|O2|L〉 = 〈mn‖pq〉

Table A.2: Matrix elements between determinants for two-electron operators in terms of spin
orbitals [90]

4. In H2, occupied orbitals in HF determinant are 1 and 2. We have the two-electron integrals
〈ij‖kl〉 and the one-electron integrals 〈ψi|f |ψj〉 (Fock Matrix) which are both from NWChem
software package output.

The four Slater determinants are as follows,

ψ1 = |12〉, (A.7)

ψ2 = |14〉, (A.8)

ψ3 = |23〉, (A.9)

ψ4 = |34〉. (A.10)
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We calculate the diagonal elements in Hamiltonian matrix first. They are

〈12|Ĥ|12〉 = 〈1|h|1〉+ 〈2|h|2〉+ {〈11‖11〉+ 〈12‖12〉+ 〈21‖21〉+ 〈22‖22〉}/2, (A.11)

〈14|Ĥ|14〉 = 〈1|h|1〉+ 〈4|h|4〉+ {〈11‖11〉+ 〈14‖14〉+ 〈41‖41〉+ 〈44‖44〉}/2, (A.12)

〈23|Ĥ|23〉 = 〈2|h|2〉+ 〈3|h|3〉+ {〈22‖22〉+ 〈23‖23〉+ 〈32‖32〉+ 〈33‖33〉}/2 (A.13)

and

〈34|Ĥ|34〉 = 〈3|h|3〉+ 〈4|h|4〉+ {〈33‖33〉+ 〈34‖34〉+ 〈43‖43〉+ 〈44‖44〉}/2. (A.14)

Taking 〈12|Ĥ|12〉 for example, we convert the one electron integral of ĥ to a one electron integral
of Fock operator f̂ which is the one electron integral output from NWCHEM software package.
We have

〈12|Ĥ|12〉 = 〈1|h|1〉+ 〈2|h|2〉+ {〈11‖11〉+ 〈12‖12〉+ 〈21‖21〉+ 〈22‖22〉}/2
= 〈1|f |1〉 − 〈12‖12〉+ 〈2|f |2〉 − 〈21‖21〉+ {〈12‖12〉+ 〈21‖21〉}/2.

(A.15)

Due to
〈12‖12〉 = 〈21‖21〉, (A.16)

we have the Hamiltonian matrix element Ha(1, 1)

Ha(1, 1) = 〈12|Ĥ|12〉 = 〈1|f |1〉+ 〈2|f |2〉 − 〈12‖12〉. (A.17)

Following this logic , we have

Ha(2, 2) = 〈14|Ĥ|14〉
= 〈1|h|1〉+ 〈4|h|4〉+ {〈14‖14〉+ 〈41‖41〉}/2
= 〈1|f |1〉 − 〈12‖12〉+ 〈4|f |4〉 − 〈41‖41〉 − 〈42‖42〉
+ {〈14‖14〉+ 〈41‖41〉}/2
= 〈1|f |1〉 − 〈12‖12〉+ 〈4|f |4〉 − 〈42‖42〉,

(A.18)

Ha(3, 3) = 〈23|Ĥ|23〉 = 〈2|h|2〉+ 〈3|h|3〉+ {〈23‖23〉+ 〈32‖32〉}/2
= 〈2|f |2〉 − 〈21‖21〉+ 〈3|f |3〉 − 〈31‖31〉 − 〈32‖32〉+ {〈23‖23〉+ 〈32‖32〉}/2
= 〈2|f |2〉 − 〈21‖21〉+ 〈3|f |3〉 − 〈31‖31〉

(A.19)
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and

Ha(4, 4) = 〈34|Ĥ|34〉 = 〈3|h|3〉+ 〈4|h|4〉+ {〈34‖34〉+ 〈43‖43〉}/2
= 〈3|f |3〉 − 〈31‖31〉 − 〈32‖32〉+ 〈4|f |4〉 − 〈41‖41〉 − 〈42‖42〉+
{〈34‖34〉+ 〈43‖43〉}/2.

(A.20)

Now, we calculate the first row of non diagonal Hamiltonian matrix elements. They are

Ha(1, 2) = 〈12|Ĥ|14〉 = 〈2|h|4〉+ 〈21‖41〉
= 〈2|f |4〉 − 〈21‖41〉+ 〈21‖41〉 = 〈2|f |4〉,

(A.21)

Ha(1, 3) = 〈12|Ĥ|23〉
= −〈12|Ĥ|32〉
= −〈1|h|3〉 − 〈12‖32〉
= −{〈1|f |3〉 − 〈12‖32〉} − 〈12‖32〉 = −〈1|f |3〉

(A.22)

and
Ha(1, 4) = 〈12|Ĥ|34〉 = 〈12‖34〉. (A.23)

The second row of Hamiltonian matrix elements are

Ha(2, 1) = 〈14|Ĥ|12〉 = 〈4|h|2〉+ 〈41|21〉 = 〈4|f |2〉, (A.24)

Ha(2, 3) = 〈14|Ĥ|23〉 = 〈14‖23〉 (A.25)

and
Ha(2, 4) = 〈14|Ĥ|34〉

= 〈1|h|3〉+ 〈14|34〉
= 〈1|f |3〉 − 〈12‖32〉+ 〈14|34〉.

(A.26)

The third row of non diagonal Hamiltonian matrix elements are

Ha(3, 1) = 〈23|Ĥ|12〉
= −〈23|Ĥ|21〉
= −〈3|h|1〉 − 〈32‖12〉
= −〈3|f |1〉,

(A.27)

Ha(3, 2) = 〈23|Ĥ|14〉 = 〈23‖14〉 (A.28)

and
Ha(3, 4) = 〈23|Ĥ|34〉

= −〈23‖43〉
= −〈2|h|4〉 − 〈23‖43〉
= −{〈2|f |4〉 − 〈21‖41〉} − 〈23‖43〉.

(A.29)
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The non diagonal Hamiltonian matrix element in the forth row is

Ha(4, 1) = 〈34|Ĥ|12〉 = 〈34‖12〉, (A.30)

Ha(4, 2) = 〈34|Ĥ|14〉
= 〈3|h|1〉+ 〈34‖14〉
= 〈3|f |1〉 − 〈32‖12〉+ 〈34‖14〉

(A.31)

and
Ha(4, 3) = 〈34|Ĥ|23〉

= −〈34|Ĥ|32〉
= −〈4|h|2〉 − 〈43‖23〉
= −{〈4|f |2〉 − 〈41‖21〉} − 〈43‖23〉.

(A.32)
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A.2 Detailed derivation on building the partition function es-
timator

This part largely follows Prof Hall’s first paper on SiLK QMC formalism [20], but here I
give more derivation details. The partition function Q is

Q = Tr
{
e−βĤ

}
=
∑
j

〈
αj|e−βĤ |αj

〉
. (A.33)

We write this as

Q = lim
P→∞

Q (P ) ,

Q (P ) =
∑

j1,j2,...,jP

〈
αj1 | exp(− β

P
Ĥ)|αj2

〉〈
αj2| exp(− β

P
Ĥ)|αj3

〉
· · ·〈

αjP | exp(− β
P
Ĥ)|αj1

〉
. (A.34)

When P→∞, we express the partition function Q in terms of kinks,

Q (P ) =
∑
j1

[〈
αj1| exp(− β

P
Ĥ)|αj1

〉]P
+

∑
j1,j2

P−2∑
n=0

[〈
αj1| exp(− β

P
Ĥ)|αj1

〉]n [〈
αj2 | exp(− β

P
Ĥ)|αj2

〉]P−2−n

×

[〈
αj1| exp(− β

P
Ĥ)|αj2

〉]2

+ · · · . (A.35)

The first term is the 0 kinks contribution and second term is the 2 kinks contribution. In the
following equations, j1 6= j2, j2 6= j3, etc. If we set

ε = β/P, (A.36)

we have the diagonal matrix element xj

xj =
〈
αj| exp(−εĤ)|αj

〉
(A.37)

and non diagonal element tij
tij =

〈
αi| exp(−εĤ)|αj

〉
. (A.38)

The partition function Q is

Q (P ) =
∑
j

xPj +
P∑
n=2

(
n∏
i=1

∑
ji

)(
n∏
k=1

tjk,jk+1

)(
n∏
k=1

P−n∑
lk=0

)(
n∏
k=1

xlkjk

)
δl1+l2+···+ln,P−n.

(A.39)
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There are
(
P
n

)
ways putting the n kinks at the different P sites. After we fix the first kink, there

will be the coefficient,

P !
(P−n)!n!

(P−1)!
[(P−1)−(n−1)]!(n−1)!

=
P !

(P − n)!n!
× (P − n)!n!

(P − 1)!
=
P

n
. (A.40)

This coefficient appears in the next equation after we make the first kink fixed! Now the partition
function Q becomes

Q (P ) =
∑
j

xPj +

P∑
n=2

P

n

(
n∏
i=1

∑
ji

)(
n∏
k=1

tjk,jk+1

)
×

P−n∑
ln=0

P−n−ln∑
ln−1=0

· · ·
P−n−ln−ln−1−···l3∑

l2=0

xlnjnx
ln−1

jn−1
· · ·xl2j2x

P−n−ln−ln−1−···−l2
j1

. (A.41)

With the shorthand notation Sj ≡ ln + ln−1 + · · ·+ lj , we have

Q (P ) =
∑
j

xPj +

P∑
n=2

P

n

(
n∏
i=1

∑
ji

)(
n∏
k=1

tjk,jk+1

)
×

P−n∑
ln=0

P−n−Sn∑
ln−1=0

· · ·
P−n−S3∑
l2=0

xlnjnx
ln−1

jn−1
· · ·xl2j2x

P−n−S2
j1

. (A.42)

We first consider the second term

Qn =
P

n

(
n∏
i=1

∑
ji

)(
n∏
k=1

tjk,jk+1

)
P−n∑
ln=0

P−n−Sn∑
ln−1=0

· · ·
P−n−S3∑
l2=0

xlnjnx
ln−1

jn−1
· · ·xl2j2x

P−n−S2
j1

. (A.43)

We assume that xj1 6= xj2 6= · · · 6= xjn and define

S ({xj} , n) =
P−n∑
ln=0

· · ·
P−n−S3∑
l2=0

xlnjnx
ln−1

jn−1
· · ·xl2j2x

P−n−S2
j1

. (A.44)

Based on the Geometric sum, we have

N∑
n=0

qn =
1− qN+1

1− q
. (A.45)
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Based on the notation, Sj ≡ ln + ln−1 + · · ·+ lj , we have Sn ≡ ln, then we have

Sj ≡ ln + ln−1 + · · ·+ lj, (A.46)

Sj+1 ≡ ln + ln−1 + · · ·+ lj+1, (A.47)

Sj − Sj+1 ≡ lj (A.48)

and

Sj − lj ≡ Sj+1. (A.49)

We will use this equation in the following derivations. Using

M∑
l=0

(
xi
x1

)l
=

1−
(
xi
x1

)M+1

1−
(
xi
x1

) , (A.50)

we find

P−n−S3∑
l2=0

xl2j2x
P−n−S2
j1

=

P−n−S3∑
l2=0

(
xj2
xj1

)l2
x
P−n−(S2−l2)
j1

=

P−n−S3∑
l2=0

(
xj2
xj1

)l2
xP−n−S3
j1

= xP−n−S3
j1

1−
(
xj2
xj1

)P−n−S3+1

1−
(
xj2
xj1

)


=
xP−n−S3+1
j1

− xP−n−S3+1
j2

xj1 − xj2

=
xP−n−S3+1
j1

xj1 − xj2
+
xP−n−S3+1
j2

xj2 − xj1

=
2∑

k=1

xP−n−S3+1
jk

2∏
m 6=k

(xjk − xjm)

≡ S ({xj} , 2, n) . (A.51)
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We use induction to develop a general form for S ({xj} , n). Assuming that

S ({xj} , i− 1, n) =
i−1∑
k=1

x
P−n−Si+(i−2)
jk

i−1∏
k 6=m

(xjk − xjm)

,

we consider the next summation in Equation A.44:

S ({xj} , i, n) =

P−n−Si+1∑
li=0

xliji

i−1∑
k=1

x
P−n−Si+(i−2)
jk

i−1∏
k 6=m

(xjk − xjm)

=

P−n−Si+1∑
li=0

xlijiS ({xj} , i− 1, n)

=

P−n−Si+1∑
li=0

xliji

i−1∑
k=1

x
P−n−Si+1−li+(i−2)
jk
i−1∏
k 6=m

(xjk − xjm)

=
i−1∑
k=1

x
P−n−Si+1+(i−2)
jk
i−1∏
k 6=m

(xjk − xjm)

×
1−

(
xji
xjk

)P−n−Si+1+1

1−
(
xji
xjk

)

=
i−1∑
k=1

x
P−n−Si+1+(i−1)
jk

i−1∏
k 6=m

(xjk − xjm)(xjk − xji)

−
i−1∑
k=1

x
(P−n−Si+1+(i−2))+1−(P−n−Si+1+1)
jk

x
P−n−Si+1+1
ji

(xjk − xji)
i−1∏
k 6=m

(xjk − xjm)

=
i−1∑
k=1

x
P−n−Si+1+(i−1)
jk
i∏

k 6=m
(xjk − xjm)

−
i−1∑
k=1

xi−2
jk
x
P−n−Si+1+1
ji

(xjk − xji)
i−1∏
k 6=m

(xjk − xjm)

. (A.52)
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We have

−
i−1∑
k=1

xi−2
jk
x
P−n−Si+1+1
ji

(xjk − xji)
i−1∏
m6=k

(xjk − xjm)

=
x
P−n−Si+1+(i−1)
ji

i∏
k 6=i

(xji − xjk)

×
i−1∑
k=1

(
xjk
xji

)i−2 i∏
m 6=i

(xji − xjm)

(xji − xjk)
i−1∏
m6=k

(xjk − xjm)

=
x
P−n−Si+1+(i−1)
ji

i∏
k 6=i

(xji − xjk)

×
i−1∑
k=1

(
xjk
xji

)i−2 i−1∏
m 6=k

(xji − xjm)

i−1∏
m 6=k

(xjk − xjm)

=
x
P−n−Si+1+(i−1)
ji

i∏
k 6=i

(xji − xjk)

× 1

xi−2
ji

i−1∑
k=1

i−1∏
m6=k

(xji − xjm)

i−1∏
m6=k

(1− xjm
xjk

)

. (A.53)

Noticing that

i−1∑
k=1

i−1∏
m6=k

(xji − xjm)

i−1∏
m6=k

(1− xjm
xjk

)

≡
i−1∑
k=1

lk(xji), (A.54)

we have

1

xi−2
ji

i−1∑
k=1

i−1∏
m 6=k

(xji − xjm)

i−1∏
m6=k

(1− xjm
xjk

)

= 1. (A.55)
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We have

i−1∑
k=1

x
P−n−Si+1+(i−1)
jk
i∏

k 6=m
(xjk − xjm)

−
i−1∑
k=1

xi−2
jk
x
P−n−Si+1+1
ji

(xjk − xji)
i−1∏
k 6=m

(xjk − xjm)

=
i−1∑
k=1

x
P−n−Si+1+(i−1)
jk
i∏

k 6=m
(xjk − xjm)

+
x
P−n−Si+1+(i−1)
ji

i∏
k 6=i

(xji − xjk)

× 1

=
i∑

k=1

x
P−n−Si+1+(i−1)
jk
i∏

k 6=m
(xjk − xjm)

= S ({xj} , i, n) . (A.56)

By induction, we can show that

S ({xj} , n) =
n∑
k=1

x
P−n−Sn+1+n−1
jk
n∏

k 6=m
(xjk − xjm)

(A.57)

and

S ({xj} , n) =
n∑
k=1

xP−1
jk

n∏
k 6=m

(xjk − xjm)
. (A.58)

For the cases where some of the xjk are equal, see reference [20] for details. If we have m
different xjk’s, the number of times that each xjk appears is sjk , the function S becomes

S ({xj} , n,m, {sj}) =
m∏
k=1

[
1

(sjk − 1)!

dsjk−1

dx
sjk−1

jk

x
sjk−1

jk

]
m∑
l=1

xP−n+m−1
jl∏

i 6=l
(xjl − xji)

. (A.59)

We can evaluate the function S recursively. The expression for the partition function Q:

Q (P ) =
∑
j

xPj +

P∑
n=2

P

n

(
n∏
i=1

∑
ji

)(
n∏
k=1

tjk,jk+1

)
S ({xj} , n,m, {sj}) . (A.60)

A.3 Energy estimator and Partition Function estimator
This part largely follows Hall’s paper [21]. In here, I will first give the solution on how

to evaluate the partition function Q recursively. Then I explain how to evaluate on the energy
estimator recursively. Since the partition function Q is expressed in terms of different number of
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kinks, we have

Q (P ) =
∑
j1

[〈
αj1| exp(− β

P
Ĥ)|αj1

〉]P
+

∑
j1,j2

P−2∑
n=0

[〈
αj1| exp(− β

P
Ĥ)|αj1

〉]n [〈
αj2 | exp(− β

P
Ĥ)|αj2

〉]P−2−n

×

[〈
αj1| exp(− β

P
Ĥ)|αj2

〉]2

+ · · · . (A.61)

As was derived in great detail in [20], we have the expression of partition function Q(P )

Q (P ) =
∑
j

xPj +

P∑
n=2

P

n

(
n∏
i=1

∑
ji

)(
n∏
k=1

tjk,jk+1

)
S ({xj} , n,m, {sj}) (A.62)

where
xj =

〈
αj| exp(−∆τĤ)|αj

〉
and

tij =
〈
αi| exp(−∆τĤ)|αj

〉
.

S(xj, n,m, gj) is the contribution to the partition function Q(n) from m distinct states αj . The
number of times that each αj occurs is gj . As in the figure 3.1, S is the contribution from the
“horizontal line”, tij represents the “kink”. As is shown in [21], the explicit form of function S
is

S(xj, n,m, gj) =
m∑
l=1

1

(gl − 1)!

dgl−1

dxgl−1
l

xP−1
l

Πk 6=l(xl − xk)gk
. (A.63)

The function S can be calculated recursively. We define function F p
l

F
(p)
l =

dp

dxpl

xP−1
l

Πk 6=l(xl − xk)gk
. (A.64)

So function S is

S =
m∑
l=1

F
(gl−1)
l

(gl − 1)!
. (A.65)

Now we evaluate function F recursively first,

F
(n)
l =

n−1∑
m=0

(
n− 1

m

)
G

(m)
l F

(n−1−m)
l (A.66)
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where function G is defined as

G
(m)
l = (−1)mm!

[
P − 1

xm+1
l

−
∑
k 6=l

gk
(xl − xk)m+1

]
. (A.67)

We use Equation A.65, Equation A.66 and Equation A.67 to evaluate Function S recursively. To
estimate the energy estimator Eest, we need to build the function E and D as,

E
(m)
l = − d

dβ
F

(m)
l (A.68)

F 0
l =

xP−1
l

Πk 6=l(xl − xk)gk
(A.69)

E0
l =

1

P

[
(P − 1)xP−2

l x
′

l

Πk 6=l(xl − xk)gk
−
∑
k 6=l

xP−1
l gk(x

′

l − x
′

k)

(xl − xk)gk+1Πj,6=k,l(xl − xj)gj

]

=
1

P
F 0
l

[
(P − 1)x

′

l

xl
−
∑
k 6=l

gk(x
′

l − x
′

k)

xl − xk

]
, (A.70)

and

D
(m)
l = − d

dβ
G

(m)
l (A.71)

G
(m)
l = (−1)mm!

[
P − 1

xm+1
l

−
∑
k 6=l

gk
(xl − xk)m+1

]
(A.72)

D
(m)
l = − ∂

∂β
G

(m)
l =

1

P

(
− ∂

∂∆τ

)
G

(m)
l

=
1

P
(−1)mm!

[
−(P − 1)x

′

l

xm+2
l

+
∑
k 6=l

gk(m+ 1)(x
′

l − x
′

k)

(xl − xk)m+2

]
. (A.73)

Now we use the functions F,G,D,E to construct the energy estimator Eest,

Eest =
n∑
i=1

t′i,i+1

ti,i+1

+
1

S

m∑
l=0

1

(gl − 1)!

(gl−2)∑
j=0

(
gl − 2

j

)
× [D

(j)
l F

(gl−2−j)
l +G

(j)
l E

(gl−2−j)
l ], (A.74)

where ti,i+1 is the non diagonal element and S is the function we calculated already.
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Appendix B
Supporting data

Here, I give the data to provide the evidence for the figures of H2O. I do not put the data of
N2 and F2 in here due to space limitations. We give some notations first for our supporting tables.

• Lbond is the Bond length.

• Eexact is the exact energy from direct diagonalization.

• Eccsd is the CCSD energy.

• Eccsdt is the CCSDT energy.

• Eccsd(t) is the CCSD(T) energy.

• Emrccsd(t)2,2 is the MRCCSD(T) energy in model space (2,2).

• Emrccsd(t)4,4 is the MRCCSD(T) energy in model space (4,4).

• ESiLK is the SiLK QMC energy.

• σ is the statistical error.

• ipass is a particular Monte Carlo step.

• npass is the total Monte Carlo steps.

• learning period is the Monte Carlo steps involved with diagonalizations.
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B.1 Water
Table B.1: (This table supports figure 4.11). SiLK QMC results for H2O in the FCI in the
DZ basis. We use the DZ basis set with frozen core orbital, β =30000, P =20000000. The
diagonalization will be performed once the number of kinks reach 10 and every 30 MC steps.
We initially set the learning period to 59000 and total MC step (npass) to 60000 and we use the
last 1000 MC steps to calculate the average energy and the statistical error. However, after the
learning period, once the number of kinks increases to 10, diagonalization will be performed
and the total MC step will be increased (npass=ipass+1000). Ipass is the MC step when the
diagonalization performed. After 1000 MC steps appears without any diagonalization involved,
the simulation stops. The unit of Bond length is Bohr and the unit of energy is Hartree.

Lbond [Bohr] Eexact [Hartree] ESILK [Hartree] σ [Hartree]
1.343449964 -75.88680558 -75.8867906444 1.00E-007
1.443449964 -76.00186462 -76.0018529968 2.00E-007
1.543449964 -76.07430717 -76.0742981288 1.00E-007
1.643449964 -76.11671138 -76.1167045223 1.00E-007
1.743449964 -76.13799647 -76.1379908659 1.00E-007
1.843449964 -76.14455299 -76.1445483966 8.00E-008
1.943449964 -76.14099266 -76.140988278 1.00E-007
2.043449964 -76.13065282 -76.1306483038 8.00E-008
2.143449964 -76.11594521 -76.1159398518 8.00E-008
2.243449964 -76.09860464 -76.0985984753 1.00E-007
2.343449964 -76.07987054 -76.0798648402 8.00E-008
2.443449964 -76.06062072 -76.0606129885 8.00E-008
2.543449964 -76.04146983 -76.0414602052 8.00E-008
2.643449964 -76.02284145 -76.0228304462 8.00E-008
2.743449964 -76.00502073 -76.0050078558 8.00E-008
2.843449964 -75.98819281 -75.988178638 1.00E-007
2.943449964 -75.97247106 -75.9724561141 1.00E-007
3.043449964 -75.95791778 -75.9579016346 8.00E-008
3.143449964 -75.94455908 -75.9445424116 8.00E-008
3.243449964 -75.93239543 -75.9323784868 8.00E-008
3.343449964 -75.92140855 -75.921389611 8.00E-008
3.443449964 -75.91156581 -75.9115447385 1.00E-007
3.543449964 -75.90282269 -75.9027984155 8.00E-008
3.643449964 -75.89512415 -75.8951030272 8.00E-008
3.743449964 -75.88840572 -75.8883813923 8.00E-008
3.843449964 -75.88259461 -75.8825689434 1.00E-007
3.943449964 -75.87761144 -75.8775930987 1.00E-007
4.043449964 -75.87337256 -75.8733499609 1.00E-007
4.143449964 -75.8697928 -75.8697653871 8.00E-008
4.243449964 -75.86678837 -75.8667605586 8.00E-008
4.343449964 -75.86427949 -75.8642691561 1.00E-007
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Table B.2: (This table supports figure 4.11). The results of CCSD, CCSDT, CCSD(T), MBPT2
and MRCCSD(T) for H2O in the FCI in the DZ basis. The bond length is the O-H bond length,
which varies from 1.34 to 4.34 Bohr with fixed equilibrium angle.

Lbond [Bohr] Eccsd[Hartree] Eccsdt[Hartree] Eccsd(t)[Hartree] Embpt2[Hartree] Emrccsd(t)2,2 [Hartree] Emrccsd(t)4,4 [Hartree]
1.343449964 -75.8856429369 -75.8866895492 -75.8865759212 -75.8790862553 -75.8865850677 -75.8865960467
1.443449964 -76.0006346421 -76.0016996494 -76.0015840802 -75.994151881 -76.0015950162 -76.0016094357
1.543449964 -76.072986629 -76.0740858404 -76.0739668766 -76.0665952502 -76.0739804575 -76.074001236
1.643449964 -76.1152744849 -76.1164263906 -76.1163024847 -76.1089739337 -76.1163194479 -76.116342759
1.743449964 -76.1364145272 -76.1376406501 -76.1375102722 -76.1301799983 -76.1375309944 -76.1375570106
1.843449964 -76.1427941029 -76.1441193641 -76.1439811432 -76.1365714855 -76.1440069291 -76.1440314535
1.943449964 -76.1390213373 -76.1404743742 -76.1403273379 -76.1327238014 -76.140358079 -76.1403758928
2.043449964 -76.1284296553 -76.1300430974 -76.1298870139 -76.1219362892 -76.1299232618 -76.1299249528
2.143449964 -76.1134265941 -76.1152372546 -76.1150731012 -76.106583359 -76.1151151045 -76.1150885329
2.243449964 -76.0957427744 -76.0977916281 -76.097622267 -76.0883657335 -76.0976697964 -76.0976003345
2.343449964 -76.0766138947 -76.0789457762 -76.0787768298 -76.0684944211 -76.0788299694 -76.078700899
2.443449964 -76.056915207 -76.0595781415 -76.0594191039 -76.0478264886 -76.0594778565 -76.0592667502
2.543449964 -76.0372607974 -76.0403050327 -76.0401705639 -76.0269647252 -76.0402348177 -76.0399182663
2.643449964 -76.0180765335 -76.0215534254 -76.0214647725 -76.0063299715 -76.0210356424 -76.0210836618
2.743449964 -75.9996534777 -76.0036145189 -76.0036009641 -75.986213054 -76.0030187968 -76.0030522215
2.843449964 -75.9821870467 -75.9866833725 -75.9867836045 -75.9668118781 -75.9860038777 -75.9860186794
2.943449964 -75.9658059393 -75.9708884438 -75.9711519993 -75.9482578798 -75.9701144289 -75.9703557469
3.043449964 -75.9505934464 -75.956313738 -75.956802603 -75.9306347715 -75.9554278675 -75.9550291766
3.143449964 -75.9366030653 -75.9430152584 -75.9438060982 -75.9139913986 -75.9419935025 -75.9417711961
3.243449964 -75.923869512 -75.9310325667 -75.9322206942 -75.8983495081 -75.9298479292 -75.9294465433
3.343449964 -75.9124153872 -75.9203956897 -75.9221028015 -75.883705969 -75.9190319938 -75.9183783959
3.443449964 -75.902253459 -75.9111270603 -75.9135176054 -75.8700264779 -75.9096085265 -75.9083707879
3.543449964 -75.8933822663 -75.9032367919 -75.9065550341 -75.8572206189 -75.901684695 -75.899472227
3.643449964 -75.8857687 -75.8967082931 -75.901372324 -75.8450631866 -75.9061162688 -75.8916696091
3.743449964 -75.8792927707 -75.891464397 -75.8983494351 -75.8329270281 -75.9045358512 -75.8848983659
3.843449964 -75.8735448363 -75.8872708331 -75.8986997146 -75.8188295105 -75.9074249058 -75.8791025402
3.943449964 -75.867247962 -75.8835109076 -75.9055548212 -75.7978628083 -75.9208034314 -75.8741731943
4.043449964 -75.8586566848 -75.8795062938 -75.9170158745 -75.7693039959 -75.9494847739 -75.8698818318
4.143449964 -75.8484935135 -75.8753767245 -75.9161194965 -75.7420463556 -75.9786943952 -75.8663072495
4.243449964 -75.8426987933 -75.8714182809 -75.9059511422 -75.7209273965 -75.9774939787 -75.8633731265
4.343449964 -75.844939029 -75.8677783625 -75.9167187277 -75.7061578818 -75.9353479337 -75.8610976582

Table B.3: (This table supports figure 4.13). SiLK QMC results for H2O in the FCI vector space
in the DZ basis in different angles. Detailed explanation please see B.1.

Angle (Degree) Eexact [Hartree] ESiLK [Hartree] σ[Hartree]
95.56 -76.13837373 -76.1383694261 1.00E-007
100.56 -76.14188301 -76.1418786017 1.00E-007
105.56 -76.14391228 -76.1439082363 1.00E-007
110.56 -76.14455299 -76.1445489769 1.00E-007
115.56 -76.14391529 -76.1439114966 1.00E-007
120.56 -76.14212735 -76.1421236048 1.20E-007
125.56 -76.139335 -76.1393310508 1.00E-007

Table B.4: (This table supports figure 4.13). The results of CCSD, CCSDT, CCSD(T), MBPT2
and MRCCSD(T) for H2O in the DZ basis in different angles. Details please see B.2.

Angle (Degree) Eccsd[Hartree] Eccsdt[Hartree] Eccsd(t) [Hartree] Embpt2 [Hartree] Emrccsd(t)2,2 [Hartree] Emrccsd(t)4,4 [Hartree]
95.56 -76.136621163 -76.1379154627 -76.1377868264 -76.1303098073 -76.1378093224 -76.1378324113
100.56 -76.1401350237 -76.1414336236 -76.1413029672 -76.1338258547 -76.141327035 -76.1413505072
105.56 -76.1421615059 -76.1434711019 -76.1433371532 -76.135883994 -76.1433617193 -76.1433861719
110.56 -76.1427941029 -76.1441193641 -76.1439811432 -76.1365714855 -76.1440069291 -76.1440314535
115.56 -76.142144897 -76.1434886142 -76.1433454153 -76.1359953873 -76.1433721731 -76.1433968427
120.56 -76.1403439928 -76.1417071464 -76.1415585321 -76.1342819064 -76.1415866538 -76.1416109394
125.56 -76.1375391464 -76.1389209064 -76.1387667153 -76.131575797 -76.1387963551 -76.138820137
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Table B.5: (This table supports figure 4.12) SiLK QMC results for H2O in the SD and the SDT
vector spaces in the DZ basis. For SiLK QMC calculation in the SD, npass=10000, learning
period is 8000, we choose the last 2000 MC steps (without diagonalization involved) to calculate
the average energy. In the SDT, npass=30000, learning period is 28000. P=2×1010 in the SD,
and P=2×109 in the SDT, β = 30000 for both.

Lbond [Bohr] EexactSD [Hartree] ESiLKSD
[Hartree] σSD[Hartree] EexactSDT [Hartree] ESiLKSDT

[Hartree] σSDT [Hartree]
1.343449964 -75.8956659524 -75.8956659564 2.00E-008 -75.8965177472 -75.8965177147 4.00E-008
1.443449964 -76.0101597527 -76.0101597415 2.00E-008 -76.0110342325 -76.0110341905 4.00E-008
1.543449964 -76.0819860862 -76.0819860966 2.00E-008 -76.0828985493 -76.082898528 4.00E-008
1.643449964 -76.1237182129 -76.1237182364 2.50E-008 -76.1246861642 -76.124686163 4.00E-008
1.743449964 -76.1442677815 -76.14426778 1.50E-008 -76.1453112252 -76.145311157 4.00E-008
1.843449964 -76.1500146464 -76.1500146399 1.50E-008 -76.1511564164 -76.1511563409 3.00E-008
1.943449964 -76.1455561628 -76.1455561583 2.00E-008 -76.146822283 -76.1468222443 3.00E-008
2.043449964 -76.134211414 -76.1342114198 3.00E-008 -76.1356314506 -76.1356314005 3.00E-008
2.143449964 -76.1183700283 -76.11837001 1.70E-008 -76.1199773481 -76.1199773131 4.00E-008
2.243449964 -76.0997414748 -76.0997414683 1.50E-008 -76.1015732712 -76.1015732089 4.00E-008
2.343449964 -76.0795377385 -76.0795377398 2.00E-008 -76.0816346917 -76.0816346455 4.00E-008
2.443449964 -76.0586086381 -76.0586086499 2.50E-008 -76.0610141446 -76.0610140903 4.00E-008
2.543449964 -76.0375419141 -76.0375419181 2.00E-008 -76.040300953 -76.0403009111 4.00E-008
2.643449964 -76.0167367363 -76.0167367266 2.00E-008 -76.0198945789 -76.019894551 4.00E-008
2.743449964 -75.9964573345 -75.9964573348 2.00E-008 -76.0000583786 -76.0000583263 4.00E-008
2.843449964 -75.9768720264 -75.9768720183 2.00E-008 -75.9809590493 -75.9809590465 5.00E-008
2.943449964 -75.9580816411 -75.9580816333 1.50E-008 -75.9626957144 -75.9626956499 4.00E-008
3.043449964 -75.9401401975 -75.9401401965 2.00E-008 -75.9453214783 -75.9453214078 4.00E-008
3.143449964 -75.9230697934 -75.9230698097 2.00E-008 -75.9288594618 -75.9288594141 4.00E-008
3.243449964 -75.9068709691 -75.9068709632 1.50E-008 -75.913314848 -75.9133146966 4.00E-008
3.343449964 -75.8915292216 -75.8915292098 2.00E-008 -75.8986843508 -75.898684221 6.00E-008
3.443449964 -75.8770176007 -75.8770175999 2.00E-008 -75.8849649788 -75.8849646556 5.00E-008
3.543449964 -75.8632935839 -75.8632935583 1.20E-008 -75.8721659045 -75.8721657074 4.00E-008
3.643449964 -75.8502829327 -75.8502829383 2.00E-008 -75.8603346482 -75.8603327675 6.00E-008
3.743449964 -75.8378231644 -75.8378231797 2.50E-008 -75.8526911112 -75.8526899325 6.00E-008
3.843449964 -75.8254842452 -75.8254842366 2.00E-008 -75.8499761713 -75.8499760751 4.00E-008
3.943449964 -75.8124935037 -75.8124934883 2.50E-008 -75.8467297666 -75.8467297027 4.00E-008
4.043449964 -75.7996238636 -75.7996238633 2.00E-008 -75.842871427 -75.842871354 4.00E-008
4.143449964 -75.7888958519 -75.7888958333 1.70E-008 -75.8390336307 -75.83903348 4.00E-008
4.243449964 -75.7806200447 -75.7806200232 2.00E-008 -75.8356047047 -75.8356044889 5.00E-008
4.343449964 -75.7743873536 -75.7743873431 2.50E-008 -75.8336928349 -75.8336860575 8.00E-008

Table B.6: (This table supports Figure 4.14). SiLK QMC results for H2O in the SD and the SDT
vector spaces in the DZ basis in different angles. The parameters are the same with the reference
B.5 in the SD and the SDT vector spaces. The exception is P = 2×107 when the Angle is 125.56
degree.

Angle (Degree) EexactSD [Hartree] ESiLKSD
[Hartree] σSD[Hartree] EexactSD [Hartree] ESiLKSDT

[Hartree] σSDT [Hartree]
95.56 -76.1437170058 -76.1437169949 3.00E-008 -76.1448337748 -76.1448331453 6.00E-008
100.56 -76.147278758 -76.1472787649 2.50E-008 -76.1483990174 -76.1483984655 6.00E-008
105.56 -76.1493468279 -76.1493468116 2.00E-008 -76.1504760369 -76.1504749048 7.00E-008
110.56 -76.1500146464 -76.1500146399 1.80E-008 -76.1511564164 -76.1511558629 8.00E-008
115.56 -76.1493948074 -76.1493948016 2.00E-008 -76.1505510376 -76.1505504494 5.00E-008
120.56 -76.1476183333 -76.1476183399 2.50E-008 -76.1487892699 -76.148788794 7.00E-008
125.56 -76.1448341735 -76.1448341866 2.00E-008 -76.1460184062 -76.1460106087 6.00E-008
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