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Abstract 

Ticks are \ el l  known to transmit various pathogens inc luding bacteria, viruses and 

protozoa to humans and animals. The soft t ick (Omithodoro mllesebecld) was 

common on a breeding colon of the Socotra co mloran t (Phalacrocorax 

Jligrogu/ari ) in iniya Is land, the United Arab Emirates (UAE). The a ims of the 

stud were: i) in est igat ing the preva lence and conduct genetic characterization of 

the inlportant bacterial pathogens Borrelia spp. (causal agents of relapsing fe er), 

Rickettsia spp. (cau aJ  agents of spotted fe er), and Coxiella burnetii (causal agent of 

Q fever) ;  ii) understanding the overall bacterial community associated with 0. 
11111e ebecld by using I l lwnina-based metagenomic approach;  and i i i )  establ ishing a 

molecular record of 0. mZle ebecld based on molecu lar markers. Ticks were col lected 

from the largest breeding co lony of Socotra Cormorant in 2 0 1 3  and 20 1 6. 

Subsequent ly, genomic D A was extracted from each t ick, and conventional PCR 

assays were used to detect certain pathogens. Borrelia spp. and Rickettsia spp . ,  were 

not detected. Howe er, PCR assay and metagenomic analys is indicated the presence 

of the Coxiella genus. Sequencing results revealed 809 bacterial operat iona l 

taxonomic units (OTUs) within the five samples from 20 1 3  and 2 686 OTUs within 

the 5 samples from 20 1 6. Metagenomic analysis showed that Firmiclltes, 

Proleobacteria, and Bacteroidete are the most dominant phyla. C. bumetit was the 

most prevalent spec ies in all samples in 2 0 1 3  and 20 1 6. This data provides the 

complete p ic ture to date of the bacteria l communit ies present within 0. muesebecki 

under natural condit ions in the UAE using high-throughput sequencing technologies. 

I n  addit ion, th is study provided the first DNA mo lecular record of O. mZle ebecki in 

GenBank. Further invest igat ions regarding the functional role of Coxiella in seabird 

colonies is needed. 

Keywords: Metagenomics; Socotra cormorant ;  Ornithodoros muesebecki; Coxiella 

bU771etii Bacterial community d iversity ;  Next-generation sequenc ing ; I l lurn ina. 
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Title and Abstract (in Arabic) 
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o�I��1 
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.J �I)I �\ �yJ �\ (Borrelia spp.) �fo. � �� �ji-, 

�I (Coxiel1a burnetii) �fo.-, �\ �\ �yJ �\ (Rickett ;a spp.) 

2ll�-, �\yJ\ � �yJ\ 4�1 G� 4jtS � wy.J.lI (2) �Q � � �yJ 
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.4..;�\ .J�\ G\� � �fll �� �)\ .J.J�\ 

yUJ\ ��\.JA)U �\ t�)U\ L.»U\ �\yJ\ ����\ �I :�yl �\ �liA 

.�)J �(,,7\,,!\"',1I �\ lJ-a ��W\ Ji..:JI �l,?�1 �\ t.iU �l,?�\ 



lX 

Acknowledgements 

I v ould fir t like to thank both Dr. Mohammad I-Deeb and Dr. Sabir bin Muzaffur 

for their help and guidance. I \ ould also like to thank Dr. Mohammad Taber, Dr. 

Gaber Ramadan, Dr. Mohammad Anan and Ms Raja Al Muskari wbo assisted me 

" ith my laboratory work. I am grateful for your help and support . My sincere thanks 

extended to Ahmed Taha ( Library Research Desk) for his thorough work of edit ing 

and proofreading. 

I appreciate my wonderful family for their constant encouragement and support, in 

particular, my mother, Azza aif AlKayoumi. She is tbe greatest mom, an extremely 

good listener and a good thinker too. Whenever I fee l  I would l ike to talk to 

someone, she is the one who immediate ly comes to my mind.  She always cult ivates 

positi e thoughts in my mind, and I never start my day without ber prayers. She 

taught me that I shou ld keep on learning and make some mistakes in this l ife because 

as she says, 'you won't learn if you ha en't  made mistakes in your l ife ' .  I would l ike 

to associate myself with Jubran Khal i l  Gibran, the Lebanese scho lar, who said that 

'The three most beautifZlI women in the world: my mother, her shadow, and her 

reflection'. I total ly agree with him that you are a truly beaut iful woman on the inside 

and out. May A llah bless you and protect you. 

I would like to thank my friends and colleagues. Their contagious energy motivated 

me every single day. Their prec ious words were the fuel which enabled me to 

accomplish my project. I wil l  never forget their empathy toward me when I felt 

down. They strengthened me and took out the pain inside my soul. Thank YOll! 



IX 

Acknowledgements 

I would first like to thank both Dr. Mohammad AI- Deeb and Dr. Sabir bin Muzaffur 

for their help and guidance. I would also l ike to thank. Dr. Mohammad Taher Dr , . 

Gaber Ramadan, Dr. Mohammad Anan and Ms Raja Al Muskari who assisted me 

\\ ith my laboratory work. I am grateful for your help and support . My sincere thanks 

e 'tended to Ahmed Taha ( Library Research Desk) for his thorough work of edit ing 

and proofreading. 

I appreciate my wonderful family for their constant encouragement and support, in 

particular, my mother, Azza Saif A lKayoumi. She is  the greatest mom, an extremely 

good l istener and a good thinker too. Whenever I feel I would like to talk to 

someone, she is the one who immediately comes to my mind. She always cult ivates 

posit ive thoughts in my mind, and I never start my day without her prayers. She 

taught me that I should keep on learning and make some mistakes in this l ife because 

as she says, ' you won't learn if you haven't made mistakes in your l ife ' .  I would like 

to associate myself with Jubran Khalil G ibran, the Lebanese scholar, who said that 

' The three most beautiful women in the world: my mother, her shadow, alld her 

reflection'. I totally agree with him that you are a truly beautiful woman on the inside 

and out. M ay Allah bless you and protect you. 

I would like to thank my friends and colleagues. Their contagious energy motivated 

me every single day. Their prec ious words were the fuel which enabled me to 

accomphsh my project. I will never forget their empathy toward me when I felt 

down. They strengthened me and took out the pain inside my soul. Thank you! 



x 

Dedication 

This thesis is dedicated to my beloved family, with love and respect 



Xl 

TabJe of Contents 

Tit le . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . i  

Declaration of Origina l  Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i i  

Copyright . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  i i i  

Advisory Committee . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . iv 

Approva l of the Master Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .  v 

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  vi i  

Tit le and Abstract ( in Arabic) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  v i i i  

Acknow ledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ix 

Dedicat ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . .  x 

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  x i  

L ist of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xiv 

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xv 

L ist of Abbreviat ions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  xvii 

Chapter 1 :  Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

1 . 1  Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

1 . 2 Statement of the Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 

1 .3 Tick Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 

1 .4 Morphology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 

1 . 5 Tick Bio logy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 

1 . 5 . 1 Life Cyc les of I xodid Ticks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  6 

1 . 5 . 2  Life Cyc les of Argasid Ticks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 

1 .6 Tick Ecology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9 

1 .  7 Tick Distribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 0  

1 .7. 1 Europe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 0  

1 .7 .2  A frica . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 2  

1 .7.3 The M iddle East Region . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 3  

1 .8 Tick-Borne D iseases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 5  

1 . 9 Tick-Borne- Bacterial Diseases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  1 6  

1 . 9. 1 Borre l ios is  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  · · · · . · · · · · · · · · · · · · · · · · · · · ·  1 6  

1 . 9 .2  Rickettsiosis and Rickettsiae . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  · · · · · · · · · · · · ·  1 8  

1 . 9.3 Q fever . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2 1  

1 . 1 0 Omilhodoros mllesebecki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 

1 . 1 1 Migratory B irds and Transmitted Diseases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  23 

1 . 1 1 . 1  Socotra Cormorant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  · · · · · · · · · · · · · · · · ·  . . . . . . . . . . .  25 

1 . 1 2  ext Generation Sequenc ing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  27 



Xll 

1 . 1 3 Metagenomic and Tick Gut Microbiota . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  28 

Chapter 2: lateria ls and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30 

2 . 1 Ticks and Collection ites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30 

2.2 Tick Genomic D Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3 1  

2 .3  Detection o f  Bacteria in Ticks- PCR Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33 

2 .3 . 1 Detection of Borrelia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33 

2.3 .2 Detection of Rickettsia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34 

2 . 3 . 3  Detect ion of Coxiella bumeti; . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  34 

2.4 Gel E lectrophoret ic Analys is . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35  

2 . 5  D A Preparation for Metagenomic Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35  

2 .6  ext Generation equencing (NGS)  M i-Seq Workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . .  35  

2 .6 . 1 Sample Preparation and Library Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37 

2.6 .2  Sequenc ing Data and Resu lts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37 

2 . 7  Molecular I dent ification of 0. mue ebecki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  37 

2 .8  Scanning E lectron M icroscopy (SEM) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  39 

Chapter 3 :  Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  42 

3 . 1 PCR Amplification of Bacterial 1 6S rDNA . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 42 

3 . 2  Bacterial Infection Prevalence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43 

3 .2 . 1 Rickettsia spp. Detection in 0. muesebecki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  43 

3 .2 . 2  Bonelia spp. Detect ion in 0. mlle ebecki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 44 

3 .2 .3  Coxiella Detection in 0. mue ebecki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 45 

3 . 3  Metagenomic Profile of  Tick M icrobial Communit ies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 47 

3 . 3 . 1 Sequenc ing Data Quality Analysis- Sample 20 1 3  . . . . . . . . . . . . . . . . . . . . . . . . . .  .47 

3 .3 . 2  Taxonomic Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  49 

3 . 3 . 3  Ecological Parameters: Richness and D iversity I nd ices . . . . . . . . . . . . . . . . . .  54 

3 . 3 .4 Determination of Species R ichness by Rarefaction Curve . . . . . . . . . . . . . .  56 

3 . 3 . 5  OTU Heatrnap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  57 

3 . 3 .6  C lassificat ion of Bacterial Taxa - RDP and NCBI . . . . . . . . . . . . . . . . . . . . . . . . . . .  59 

3 . 3 . 7  Sequenc ing Data Quality Analysis- Sample 20 1 6  . . . . . . . . . . . . . . . . . . . . . . . . . . .  62 

3 . 3 . 8  Taxonomic Assignment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  64 

3 9 D · 
. 

S 
. . 68 .3. Iverslty tat lsttcs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  . 

3 . 3 . 1 0  Rarefact ion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  · · · . · · · · · · · · · · · · · · · · · · · · · · · · · · ·  7 1  

3 . 3 . 1 1 OTU Heatrnap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  72 

3 .4 Molecular I dent ificat ion of O. muesebecki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  74 

3 . 5  Scanning E lectron M icroscopy (SEM) and Stereoscope . . . . . . . . . . . . . . . . . . . . . . . . . . . .  83 

Chapter 4: Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . .  86 

4 . 1 Molecular Detection and Prevalence of Tick-borne Diseases . . . . . . . . . . . . . . . . . . . .  86 

4 .2  Metagenomic Profile of Tick M icrobial Communit ies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  88 

4 . 3  Molecular I dentification of 0. muesebecki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9 1  

4 .4  Scanning E lectron Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  92 

Chapter 5 :  Conc lusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  93 



Xlll 

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  94 



XlV 

List of Tables 

Table I :  ummary of al l  primers used in this study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .4 1 

Table 2 :  Total os of bases, reads, and GC (%), Q20 (%), and Q30 (%) 

calcu lated for the 5 samples in 20 13 . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . ... . . . . . . . . . . . . . . . . . . . .  .48 

Table 3:  Pre-processing & Clustering (by CD-HIT-OTU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .49 

Table 4 :  Taxonomy of the operat ional units (OTU) at the phylum level . . . . . . . . . . . . . . . . . .  52 

Table 5: Abundance/taxonomy of dominant bacteria in 5 samples from 20 1 3  . . . . . . . . . .  53 

Table 6 :  Estimated OTU for five samples of 0. mue ebecki in 20 13 . . . . . . . . . . . . . . . . . . . . . . .  55 

Table 7 :  Total os of bases, reads, GC (%), Q20 (%), and Q30 (%) 

calculated for the 5 samples in 20 16 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  62 

Table 8 :  Preprocessing & Clustering (by CD-HI T-OTU) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63 

Table 9: Operationa l tCL'(onomic units (OTU) at the phylum level . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67 

Table 1 0: Abundance/taxonomy of dominant bacteria in 5 samples from 20 1 6  . . . . . . . .  68 

Table 1 1 : Estimated OTU for five samples of  0. muesebecki in 20 1 6  . . . . . . . . . . . . . . . . . . . . . .  70 



x 

List of Figures 

Figure 1 :  External structure of adu lt argasid ticks (e.g. ,  Ornithodoros) . . . . . . . . . . . . . . . . . . . . .  .4 

Figure 2: External structure of adu lt I xodid t icks (e.g., Hyalomma) . . . . . . . . . . . . . . . . . . . . . . . . . . .  5 

Figure 3: A typ ical l ife-c c le of a soft tick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 

Figure 4: Col lect ion site of ticks in  the midd le and south regions of  I raq . . . . . . . . . . . . . . .  14 

Figure 5 :  Geographical distribut ion of RM F in the American continent . . . . . . . . . . . . . . . .  20 

Figure 6: 0. mue ebecki adult female-(A) ventral and (B)  dorsal sides . . . . . . . . . . . . . . . . . . . .  23 

Figure 7: ini a I s land map, Urnm AI  Quwain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  30 

Figure 8: Ne t-generat ion sequencing workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36 

Figure 9: Ne t-generat ion sequenc ing workflow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  36 

Figure 10:  Bacterial 16 rDNA gene length per lane 1 00 bp laddeL . . . . . . . . . . . . . . . . . . . . . .  .42 

Figure 1 1 : PCR ampl ificat ion of the spotted fever group Rickettsia spp . . . . . . . . . . . . . . . . .  .44 

Figure 11 : Amplificat ion of Borrelia spp. from 0. muesebecki . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .45 

F igure 1 3 : Coxiella positive samples produced by icdtrg-r & icdtrg-f primers . . . . . . . .  .46 

Figure 1 4 : Difference ofC'oxie/la presence in 20 13 and 20 1 6  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  .47 

Figure 1 5 : Bacterial d i  ersity at the family level in 0. muesebecki t icks . . . . . . . . . . . . . . . . . .  50 

Figure 16: Bacteria l d iversity at genus level in 0. muesebecki t icks . . . . . . . . . . . . . . . . . . . . . . . .  5 1  

Figure 1 7 : Bacterial d i  ers ity at the spec ies level in 0. mllesebecld t icks . . . . . . . . . . . . . . . . .  5 1  

F igure 1 8 : D ifferences in bacterial  d iversity within t ick samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  54 

Figure 1 9 : Rarefact ion curves per number of observed spec ies in t ick 

samp les . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . .. . . . . . . . . . . . . . .  57 

Figure 20: Rarefied abundances heatmap of most abundant spp. in each 

sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  58 

Figure 2 1 :  0. muesebecki tick c lassified at  the geneus level used NCBI  

database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  60 

F igure 22 : 0. muesebecki tick c lassified at genus level used RDP c lassifier . . . . . . . . . . . .  60 

Figure 23 : 0. mllesebecki t ick c lassified at species level used NCB! database . . . . . . . . .  6 1  

Figure 24:  0. muesebecki t ick c lassified at species level used RDP c lassifier . . . . . . . . . .  6 1  

Figure 25 : Bacterial d iversity at the family level in 0. muesebecld t icks . . . . . . . . . . . . . . . . . .  65 

Figure 26 :  Bacterial  d iversity at genus level in 0. muesebecki t icks . . . . . . . . . . . . . . . . . . . . . . . . 66 

Figure 27: Bacterial d iversity at the spec ies level in 0. muesebecki t icks . . . . . . . . . . . . . . . . .  66 

Figure 28 :  Difference of bacterial d ivers ity with in five t ick samples . . . . . . . . . . . . . . . . . . . . . . .  69 

Figure 29 :  Rarefact ion curves per number of observed spec ies for t ick 

samples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  7 1  

Figure 30 :  Rarefied abundances heat map o f  most abundant spp. in each 

sample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  73 

Figure 3 1 :  Agarose gel  of PCR products of 0. l71uesebecki samples with 

Fish IF/ Fish l R  pr imer set. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  75 



XVI 

Figure 32: Agarose gel of PCR products of 0. muesebecki. samples 

with Fish F2 ish R2 primer set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  76 

Figure 3 3 :  Agarose gel of peR products of 0. muesebecki samples 

w ith LCOfHCO primer set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  _ . . . . . . . . . . . . . . . . . . . . . . .  77 

Figure 34: Agarose ge l e lectrophoresis of peR products of O. mllesebecki 

samples with 1 6S+ 1I 1 6S- 1 primer set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . .  78  

F igure 35 :  Agarose ge l  e lectrophoresis of peR products of 0. muesebecki 

samples with Tm 1 6S+ II Tm1 6S- l primer set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  79 

Figure 36 :  Agarose gel e lectrophoresis of PCR products of 0. muesebecki 

samples with the NS31 S4 primer set . . . . . . . . . . . . . . . . . .  _ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . _ _  80 

Figure 37 :  e ighbour-join ing homology tree of the 0. muesebecki 

cytochrome c-ox idase I gene compared with other sequences 

of the GenBank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  8 1  

F igure 3 8 :  Neighbor-Joining homology tree of the 0. muesebecki 

I 8S rDNA gene compared with 84 sequences of the GenBank . . . . . . . . . . . . . . . .  82 

Figure 39: Scanning e lectron micrographs showing (a) dorsal and (b) ventral 

v iew of 0. muesebecki collected in UAE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  83 

F igure 40 : Scanning e lectron micrographs of 0. muesebecki: A. ventral view; 

B .  Capitulum, ventral v iew ; C.  midgut ;  D.  execratory system . . . . . . . . . . . . . .  84 

F igure 4 1 :  O. muesebecki adult showing (a) dorsal and (b) ventral surfaces . . . . . . . . . . . . .  85  



L 

ATL 

BCL 

BL ST 

CDC 

cor 

EDTA 

lCD 

IUNCN 

LB 

MCS 

MSF 

OTUs 

PCA 

PCR 

QC 

RDP 

RMAF 

RTA 

SEM 

SFG 

STG 

TBE 

TrBE 

TBP 

NCBl  

NGS 

List of Abbreviations 

Anima 1 Buffer 

Animal Tissue Lysis 

Base Cal l s  

Basic Local Al ignment Search Too l  

Centre for D isease Control  and Pre ention, The USA 

Cytochrome Oxidase Subunit I 

Ethylene-Diamin e-Tetra-Acet ic Acid 

I socitrate Dehydrogenase Gene 

I nternational Union for Conservat ion of Nature 

Lyme Borreliosis 

M iseq Control Software 

Mediterranean Spotted Fever 

Operat ional Taxonomic Units 

Principal Component Analysis 

Polymerase Chain Reaction 

Quality Control  

R ibosomal Database Project 

Rocky Mountain Spotted Fever, The USA 

Real-T ime Analysis 

Scanning E lectron M icroscope 

Spotted Fever Group 

Scrub Typhus Group 

Tick-Borne Encephal it is 

Tris-Borate-EDTA 

Tick-Borne Pathogen 

Nationa l Centre for Biotechno logy Informat ion 

Next Generation Sequenc ing 

XVll 



1 

Chapter 1: Introduction 

1 . 1 Overview 

Ticks are vectors of many t ick-bome pathogens that can affect human and anima l 

health worldwide. Recent ly, t ick-bome diseases bave become signi ficant concems in 

epidemio logical stud ies espec ial ly the bacteria l d iseases. Tick-bome bacteria l 

d iseases are more diverse than any other t ick-borne group such as Bon-elta, 

Rickett ia Frallcisella, Ehrlichia, A naplasma and Coxiella (Noda el aI. , 1 997). 

M igratory birds are hosts and act as vectors of tick-borne pathogens. They play a 

s ignificant role in maintenance and transmission of many infect ious d iseases 

including B017-elia, Rickettsia and Coxiella bumetii. The recent development of 

molecular techniques such as h igh-throughput sequenc ing al lows us to understand 

t he microbial communit ies in vectors and reservoirs (H iergeist et aI. , 20 1 6). 

1 . 2 Statement of the Problem 

Ticks are known d isease vectors worldwide. I n  the UAE Socotra Cormorant birds 

have been reported to be infested by soft t icks. The hypothesis is that t icks on 

Socotra Cormorant birds in the UAE have disease-causing agents, which may pose a 

threat to people l iving or working in nearby areas. This concern init iated tbis study to 

fulfi l  the fo l lowing object ives: 

1. To investigate the prevalence and conduct genetic characterizat ion of the 

important bacterial pathogens Borrel ia spp. (causal agents of relapsing fever), 

R ickettsia spp . (causal agents of spotted fever), and Coxiel1a bumetii (causa l  

agent of Q fever) . 
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2. tudying metagenomic profile of  the bacterial communit ies assoc iated with 

argasid t icks (0. mile ebecld) from a Socotra Cormorant colony in the 

Emirate of Umm 1 Quwain, the United Arab Emirates. 

3 .  Establishing a molecu lar of the t ick record based o n  molecular markers. 

1.3 Tick Taxonomy 

Ticks are sma l l  obl igate blood-feeding ectoparasites that infect vertebrates and 

d istributed in almost every region in the world. More than 850 different species have 

been d iscovered grouped in two main fami l ies, soft t icks (Argasidae) and hard t icks 

( Ixodidae) (B lack and Piesmant, 1 994).  The third fami ly is (Nuttal l ie l l idae) with only 

one s ingle spec ies Nu//al/iel/a namaqua found in South Africa and Tanzania share 

s imi lar structures of both Argasidae and I xodidae in addition of some unique features 

( B lack and P iesmant, 1 994; Estrada-Pena et al. , 20 1 0) .  Interestingly, South Africa 

a lone has been demonstrated 80 ixodid , 25 argasid spec ies and N namaqua since 

1908 where 25 of ixodid and two of argasid are restricted to this area (Horak, 2009). 

Ticks were c lassified by usmg convent ional techniques such as morpho logica l 

features, l ife histories, and host associations ( B lack and Piesmant, 1 994). A lthough 

the molecular analysis and phylogenic approach of lxodida were used, and record but 

t icks are st i l l  c lassified according to the ir morpho logical characteristics (Nava e/ al. , 

2009; Guglie lmone et aI. , 20 1 0). Several systematic types of research in term of the 

genus- level c lassificat ion of the family I xodidae have been intensely studied and 

publ ished in large scale because of its role in the transmission of pathogens ( Estrada

Pena et al. , 20 1 0) ;  however, the genus- level taxonomy of the fami ly Argasdae, 

which consist of 1 93 species st i l l  remains unc lear due to inadequate studies on stable 

morp ho logica l  features and the disagreements at the genus level between taxonomy 
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schools makes the detemlinat ion hard to be defIned (Estrada-Pena el al., 20 1 0; 

Estrada-Pena, 20 1 5 ) .  Addit ional ly, lots of Argasidae species ha e been ignored. 

This finding clearly explained by (Barros-Battest i et aI. , 20 1 3) who had proved the 

d ifficulty to d isti.nguish between adult and nymphal stages in some Aragasid species 

in part icular Omifhodoros due to morphological s imi larity among them and l i t t le 

data at genetic level turn studies to use larval morphological feahlfes as standard. 

Consequent ly, the phylogeny of the A rgasidae group is less specifIc than that of the 

I xodidae and most spec ies of Argasidae can be categorized into more than one 

genus. (Guglielrnone et aI. , 20 1 0) remarks that 1 33 out of 1 93 Argasid species lack 

correct ly generic c lassifIcation. Ticks based on morphological characteristics are 

belonging to: 

Phylum: Arthropoda 

Class: Arachnida (spiders and scorpions) 

Subclass: Acari ( mites) 

1 .4 Morphology 

Order: Parasit iformes 

Suborder: Ixodida 

Family-I: Argasidae (soft t icks) 

Family-2: I xodidae (hard t icks) 

Family-3: Nuttall iel l idae eN namaqua) 

The t ick  body is divided into two sections (Sonenshine, 2009). The capitulum is 

anterior; contain the mouthparts, and the posterior is  idiosoma, which contain the 

legs, d igest ive tract and reproduct ive organs. The capitu lum consists of specia l ized 

feeding structures cal led hypostome, used to penetrate host's skin and to suck blood 
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and the chelicerae, a pair of appendages located in front of the mouth. On the upper 

surface of  each foreleg, a sensoria l organ present cal led Hal ler's organ used for host 

ident ificat ion. In argasid t icks, the cap itu lum is beneath the anterior end of the body 

and is not visible from abo e. Ticks start with three pairs of legs at the larva l stage, 

and it becomes four pairs at adult stage ( Brites-Neto el 01. , 20 1 5 ) .  

The I xodidae can be easi ly ident ified by the presence of the sclerot ised scutum, a 

thick p late located on the dorsa l body surface that a lmost covers the ent ire back of 

the male but  only part ly covers the female ( Estrada-Perra, 20 1 5 ) .  Soft t icks; however, 

lack of a scutum, so the se es look al ike. 

[nPfDJll structun of aduH argas.d ticks (tbf n:amplf I S  Om,fllodoros) claws 
/ 

'OO'P,,\'''' ....-Y 
mouthparts 

DORSAL VIEW VENTRAL VIEW 

F igure 1: External structure of adult argasid t icks (e.g. ,  Omithodoro ) 

(Walker, 2003 ) 
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u(froJI �troCtul f of adult uodJd licks (Ihf fLlmplf is H.I a/ommo) 
pa� conscutum 

FEMALE, DORSAL VIEW MALE, DORSAL VIEW 

� pulvllius 

� ------daw 

FEMALE, VENTRAL VIEW MALE, VENTRAL VIEW 

Figure 2 :  E xternal structure of adult Ixodid t icks (e.g. ,  Hyalomma) 

( Source: Walker, 2003)  
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1.5 Tic k  B iology 

Tick ha\ e a complex l ife cycle, and a l l  l i fe stages of t icks are obl igate blood feeders 

( Estrada-pen a el a/. , 20l3). The de elopmental stages of t icks consist of eggs and 

three necessary stages namel , larva, nympha l and adult (male and female) 

( onenshine, 2009) .  I xodid and argasid t icks differ in l i fe stages. The former has 

only one single nymphal instar. In contrast, argasid t ick l ife cycle has mult iple 

numbers of  nympha l stages ( Manzano-roman e/ al. , 20 1 2). All t icks obtain the blood 

mea l from the host during some or al l  stages to moult to the next l ife stage and for a 

female tick to lay eggs (Estrada-Pena, 20 1 5 ) .  Addit ional ly, at each blood meal the 

t ick has the opportunity to transmit the pathogens among bosts from infected to the 

new one. Mostly, males stay on tbe bost and mate with several females, but some 

species mate in vegetat ion while quest ing for a host ( Estrada-pena et aI. , 20 1 3 ) .  

1 .5 . 1  Life Cycles of I xodid Ticks 

General ly, Ixodid t ick goes through three primary l ife stages; larva wruch hatches 

from eggs, one single nymph and the adult . Most of the I xodid spec ies exhibit a 

three-host l ife cyc le which seeks three separate hosts in each act ive stage (Walker et 

a1. , 2003; Estrada-Pena, 2015) .  A few hard t ick species exhibit either a two host- l ife 

cyc le where the l i fe cyc le is completed in two different hosts or only one host - life 

cycle.  After each blood meal, the t ick drops to the ground, moults and finds a new 

host. The feeding process in hard t icks goes s lowly, and duration varies from severa l 

days too long periods. Usual ly, the mat ing occurs during feed ing, but some species 

may mate in vegetation or in tbe nest. Fol lowing mating, the adu lt females drop from 

the ir hosts into tbe leaf l it ter to lay thousands of eggs under the suitable 

env ironmental condit ion to ensure the ir survival and final ly the adu lt female die. 
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Once oyiposition bas been completed, the larvae disperse into the vegetat ion or nest 

to seek hosts. fter the attached to a host, the larvae start feeding slowly, feeding 

usual ly takes few days. The engorged larvae drop from their bosts and find a 

sheltered microhabitat such as so il or leaf l itter, or in host nests to mou lt to nymph. 

Then, nymph attaches to another host for feeding and return to tbe ground for a 

further mou lt .  The final stage is the adult in which it attaches to a tbird host for 

feeding and mating. More tban 90% of the I xodid l ife cyc le is spent off tbe host. 

1.5 .2 Life Cycles of Argasid Ticks 

The Argasidae l i fe cyc le is ent ire ly d ifferent from that of the Ixodidae. Argasid l ife 

cyc le involves numbers of nymphal instar vary from two to eight depends on tbe 

species and the quality and tbe amount of blood ingested (Via l, 2009) .  This 

characteristic and their abi l ity  to resist starvat ion al low the argasid t icks to l ive for 

many years ( Manzano-roman e! of., 20 1 2 ).  Thus, the soft t ick l ife cyc le may take 

from 1 0  to 20 years (Sonenshine, 2009) .  The feeding behaviour is very rapid among 

soft t ick, espec ia l ly on  nymphs and adults which feed within 1 5-60 minutes while it 

takes a longer t ime on larvae which feed for 1 2  bours to several days (Vial, 2009). 

Argasid  ticks are able to surv ive for long periods between blood meals from months 

to several years depending on host availabi l ity. Each immature stage obtains at least 

one blood mea l  on a vertebrate host before mOUlt ing, except larvae of some 

Ornithodoros spec ies l ike 0. moubala, which d irectly mou lt to tbe nymphal stage 

w ithout feeding. Tbe soft t ick adults have long l i fespan reach up to 25 years for some 

species. The majority of argasid t ick larvae seek hosts, feed rapidly, then drop off 

from their host and mou lt to the fust nympbal instar (Sonenshine, 2009). The fust 

nymph seeks hosts again, feeds rapidly then mou lts  to further nymphal stage. This 
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cont inued process of host-seeking, feeding and moult ing may create a number of 

nymphal instars prior to the format ion of adults. After the last nymphal moult, an 

adult is fonned, and then it feeds rapidly on an indi idual bost, then produces a smal l  

batch of eggs from each blood meal. Usual ly, mating occurs off tbe bosts. F igure 3 

i l lustrates the typical l ife-cyc le of the soft tick.  

AS- a 

nymphs .�::: 

1 

... '@ 
eggs 

O� 
©l @ @ 

larvae in ,/ e�shells 

....... ___ )� OJ�J 
Figure 3: A typical l ife-cyc 1e of a soft t ick 

(Source: Via� 2009) 
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1.6 T ick  Eco logy 

A ll Argasids t icks and some I xodid t icks of the genus Ixodes possess endophi l ic 

behaviour, where the restr icted to the shelters of their hosts (Manzano-roman et 01. , 

20 1 2) .  These pecies mainly survive away from the weather variables; l iving in 

caves, burrows, houses, cracks, and crevices occupied by hosts and feeding when the 

host arrives. These features give them the abil ity to complete the ir l ife cycle (Vial, 

2009) .  S ince endophi.l ic spec ies l ive in c lose proximity to their hosts, they do not 

exhibit seasonal activity, and they show indiscriminate host feeding which they are 

able to feed in too many hosts. lxodids, on the other hand, have exophi l ic behaviour. 

They l ive in the open environment , and they don't seek shelter (Parola and Raoult, 

200 1 ) . 

Parola et 01. , (2001 )  have po inted that more than 90% of the Ixodid l ife is spent off 

the host. Thus, they are likely to be seasonally active, wait ing for the ir hosts when 

environmental condi t ions are suitable. Exophi l ic  species typically find their potentia l 

hosts by detecting stimul i  from them including chemical st imul i  such as C02 and 

NH3, body heat, humidity, and vibrations. Most Ixodid t icks have two host-seeking 

s: an ambush strategy in which the t icks c limb on tbe vegetation and wait for any 

passing host, then c l ing on the host and hunting strategy in which t icks emerge from 

t he ir she lters and run toward their hosts when they receive animal stimu l i .  

More than 85% o f t icks are parasit iz ing spec ific hosts that considered to  be similar to 

each other or infect different host species which share the same eco logical habitat 

requ irements  t ick habitat (Sonenshine, 2009 ; K iewra and Lonc, 20 1 2) .  Host 

spec ificity is a phenomenon in which t ick feeds on only a l imited spec ies of hosts. 

For example, Ixodes uriae occur in a lmost all the cont inent targeting different spec ies 
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o f  seabirds in the ir breed ing sites (e .g . ,  Muiioz-Leal and Gonzalez-Acuna, 20 1 5) .  

This t ick adapts in aries habitat as long as the birds are dispersed or congregate in 

their breed ing colonies. 

ccord ing to of Hoogstraal and Aeschlimann ( 1 982) study on the host preferences of 

different ticks on their bosts, they examined that at least 700 of 800 species of 

superfami ly Ixodoidea are strict to host spec ific i ty and half of Arags t ick spec ies 

attack on specific birds nest ing compared to few of Orl7ilhodoras species. Such vital 

hosts availab i l ity in a region may strongly influence the presence of a specific t ick 

that feeds on them ( Estrada-Perra and De La Fuente, 20 1 4) .  Thus, the geographic 

d istr ibut ion of such ticks can be read ily determined by that of their hosts ( Hoogstraal 

et al. , 1 982) .  Host preference varies among t ick l ife stages ranging from very host 

spec ial ist to broad host general ist . For example, larvae and nymphs are considered as 

a general ist while adults are restricted in their choice of hosts (Esser el aI. , 20 1 6). 

1. 7 Tick Distribu tion 

Various ecological and environmental factors present in t icks'  habitat influence their 

d istribut ion. The d iversity of t icks depend on variat ion within its habitat ; this 

inc ludes vegetation type, host avai labil ity, weather, c l imate change and human 

activities ( Dantas-Torres, 20 1 5) .  

1.7. 1 E u rope 

Two most popular t ick-borne d iseases were highly observed during the past two 

decades in Europe (Rando lph, 2004) . These are zoonotic t ick-borne encephal it is 

(TBE) and Lyme borrel ios is ( LB), caused by agents and transmitted by Ixodes 

ricinus and 1. persulcalus, respect ively. Tick-borne encephalit is (TBE) inc idence, for 
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example, sho\! ed a 3 -fold step increase from 1 983 to 1 986 in Sweden, doubled in 

1 993 in the Czech Republic, increased e en more dramat ical ly in the same year in 

Lithuania and Poland, but decl ined markedly in  1 997 in Hungary, Croatia and 

lovenia. 

In Europe, the t ick distribut ion and abundance are the impact of c l imate change, and 

relat ively it affects d isease prevalence (Gray et aI. , 2009) .  For example, 1. ricinus and 

1. per ulcatlls prefer certain environmental condit ions to adapt where humidity in the 

area shou ld be at least 80%, high precipitation and dense vegetation to avoid t ick 

mortality. I n  contrast, low rainfa l l  and high temperature in summer adversely effect 

on surv ival activity and d istribut ion of these t icks. Moreover, the abundance of the 

host such as rept i les, birds, small  and large mammals maintain immature and adult 

tick popu lation on these habitats as wel l  as contribute to c irculat ing pathogens. I n  

addit ion to c l imate change, human activities impact on the inc idence of t ick disease 

l ike crucial  European t ick  spec ies Rhipicephalus sanguilleus and Dermacentor 

reticl/latlls. 

A long-term study about the dispersal of 1. ricinus in Sweden and Russia conclude 

that mild w inters affect the expansion of t ick from a certain region to another 

(Dantas-Torres, 20 1 5 ). The main reason was said is the c l imate change aid to extend 

growing season of t icks and the possibi l ity of c l imate change to affect host 

populat ion and human activity. Thus, it was suspected to increase the niche of 1. 

ricinus. Several tick spec ies in Sweden have been l isted by ( Jaenson el aI. , 1 994) and 

their interact ion with hosts. Out of these, 1. ricinus is widespread in most regions, 

from south to north of Sweden and the primary vector of Lyme borreliosis, tick

borne encephalit is (TBE) and Babesia divergens for human and domest ic animals. 
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Once 0\ iposit ion has been completed, the larvae disperse into the vegetation or nest 

to seek hosts. fter they attached to a host , the larvae start feeding s lowly, feeding 

usually takes few days. The engorged larvae drop from their hosts and fInd a 

sheltered microhabitat such as sail or leaf Litter, or in host nests to moult to nymph. 

Then, nymph attaches to another host for feeding and return to the ground for a 

further moult .  The ftnal stage is the adu lt in which it attaches to a third host for 

feeding and mating. More than 90% of the I xodid l ife cycle is spent off the host . 

1 .5.2 L ife Cycles of Argasid Ticks 

The A rgasidae l ife cycle is ent ire ly different from that of the I xodidae. Argasid l ife 

cyc le involves numbers of nymphal instar vary from two to eight depends on the 

species and the qua lity and the amolmt of blood ingested (Vial, 2009).  This 

characteristic and their abi l ity to resist starvation al low the argasid t icks to live for 

many years (Manzano-roman el ar , 20 1 2) .  Thus the soft t ick l ife cyc le may take 

from 10 to 20 years ( Sonenshine, 2009). The feeding behaviour is very rapid among 

soft t ick, espec ial ly on nymphs and adu lts which feed within 15-60 minutes while it 

takes a longer t ime on larvae which feed for 1 2  hours to several days (Via� 2009). 

Argasid ticks are able to survive for long periods between blood meals from months 

to several years depending on host avai labi l ity. Each immature stage obtains at least 

one b lood meal on a vertebrate host before moult ing, except larvae of some 

Ornithodoros spec ies l ike 0. moubata, which directly moult to the nymphal stage 

without feeding. The soft tick adults have long l ifespan reach up to 25 years for some 

spec ies. The majority of argasid t ick larvae seek hosts, feed rapid ly, then drop off 

from their host and mou lt to the first nymphal instar (Sonenshine, 2009). The ftrst 

nymph seeks hosts aga in, feeds rap idly then moults to further nymphal stage. This 
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continued process of ho t- eek ing, feeding and moult ing may create a number of 

nymphal instars prior to the format ion of adults .  After the l ast nymphal moult, an 

adult is formed, and then it feeds rapidly on an individual bost, then produces a smal l  

batch of eggs from each blood meal .  Usual ly, mating occurs off tbe bosts .  Figure 3 

i l lustrates the typical l ife-cyc le of the soft tick. 

• & 

, 

nymphs .�: : :  

larvae in / 
e�shells 

., ) � (Ji 
Figure 3: A typ ical  l ife-cyc le ofa  soft t ick 

(Source: Vial., 2009) 
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1.6 Tick Ecology 

All  Argasids t ick and some I odid t icks of  the genus hade possess endophi l ic 

beha iour, where the restricted to the she lters of their hosts (Manzano-roman et af. , 

20 1 2) .  These species ma inly survi  e away from the weather variables; l iving in 

caves, burrows, houses, cracks, and crev ices occupied by hosts and feeding when the 

host arrives. These features give them the abil ity to complete the ir l ife cyc le (Vial, 

2009) .  Since endophi l ic spec ies l ive in c lose proximity to their hosts, they do not 

exhib it seasonal act ivity, and they show ind iscriminate host feeding which they are 

able to feed in too many hosts. I xodids, on the other hand, have exophi l ic behaviour. 

They l ive in the open environment, and they don 't  seek shelter (Parola and Raoult, 

200 1) .  

Parola el  af. , (200 1 )  have po inted that more than 90% of the Ixodid l ife is spent off 

the host. Thus, they are l ikely to be seasona l ly active, wait ing for their hosts when 

environmental condit ions are suitable. Exophi l ic spec ies typica l ly find their potentia l 

hosts by detect ing st imuli from them including chemical st imuli such as C02 and 

NH3, body heat, humidity, and vibrat ions. Most Ixodid t icks have two host-seeking 

s: an ambush strategy in which the t icks c l imb on the vegetation and wait for any 

passing host, then c l ing on the host and hunt ing strategy in which t icks emerge from 

their shelters and run toward their hosts when they receive animal st imul i .  

More than 85% of t icks are parasit izing spec ific hosts that considered to  be simi lar to 

each other or infect d ifferent host spec ies which share the same eco logical habitat 

requirements t ick habitat ( Sonenshine, 2009; Kiewra and Lonc, 20 1 2) .  Host 

specificity is a phenomenon in which t ick feeds on only a L imited spec ies of hosts. 

For example, Ixodes uriae occur in a lmost al l  the cont inent targeting different spec ies 
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of seabirds in their breed ing s ites (e .g . ,  1ufioz-Lea l aod Gonzalez-Acuna, 20 1 5 ) .  

This t ick adapts in varies habitat as long as the birds are d ispersed or congregate in 

their breed ing colonies. 

According to of Hoogstraal and eschlimann ( I  982) study on the host preferences of 

different t icks on their hosts, they examined that a t  least 700 of 800 species of 

superfamily Ixodoidea are strict to  host spec ific i ty and half  of Arags t ick spec ies 

attack 00 specific birds nest ing compared to few of Ornithodoras species. Such vita l  

hosts availabi l ity  in a region may strongly influence the presence of a spec ific t ick 

that feeds on them (Estrada-Perra aod De La Fuente, 20 1 4) .  Thus, the geographic 

d istribut ion of such ticks cao be read ily determined by that of the ir hosts (Hoogstraal 

ef al. , 1 982) .  Host preference varies among t ick l ife stages ranging from very host 

special ist to broad host genera l ist .  For example, larvae and nymphs are considered as 

a general ist while adults are restricted in their choice of hosts (Esser et aI. , 20 1 6) .  

1 .7 Tick Distribution 

Various eco logical and environmental factors present in t icks' habitat influence their 

d istribut ion. The di ersity of t icks depend on variat ion within its habitat ; this 

includes vegetation type, host availabi l ity, weather, c l imate change and human 

activities (Dantas-Torres, 20 1 5) .  

1.7 . 1  E u rope 

Two most popular tick-borne d iseases were highly observed during the past two 

decades in Europe ( Randolph, 2004) .  These are zoonotic t ick-borne encephalit is 

(TBE) and Lyme borreliosis ( LB), caused by agents and transmitted by Ixodes 

ricinus and 1. persu/catlls, respect ive ly. Tick-borne encephal it is  (TBE) incidence, for 
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example sho\: ed a 3-fo ld step increase from 1 983 to 1 986 in Sweden, doubled in 

1 99 in the Czech Republ ic, increased e en more dramat ical ly in the same year in 

Lithuania and Po land, but decl ined markedly in  1 997 in Hungary, Croatia and 

S lo\'enia. 

In Europe, the t ick di stribut ion and abundance are the impact of c l imate change, and 

relat ively it affects d isease prevalence (Gray et aI. , 2009).  For example, 1. ricinus and 

1. per uicatlls prefer certain en ironrnental conditions to adapt where humidity in the 

area should be at least 80%, high prec ipitat ion and dense vegetation to avoid t ick 

mortality. I n  contrast, low ra infa l l  and high temperature in summer adversely effect 

on survival, activity and d istribut ion of these t icks. Moreover, the abundance of the 

host such as rept i les, birds, sma l l  and large mammals maintain immature and adult 

t ick popu lation on these habitats as well as contribute to c ircu lat ing pathogens. I n  

addit ion to c l imate change, human activities impact on the inc idence o f  t ick disease 

l ike cruc ial European t ick spec ies Rhipicephalus sal7gllineus and Dermacentor 

retieulatus. 

A long-term study about the dispersal of 1. ricinZls in Sweden and Russia conclude 

that mild winters affect the expansion of t ick from a certain region to another 

( Dantas-Torres, 20 1 5 ). The main reason was said is the c l inlate change aid to extend 

growing season of t icks and the possibi l ity of c limate change to affect host 

populat ion and human act ivity. Thus, it was suspected to increase the n iche of 1. 

ricinus. Several t ick species in Sweden have been l isted by ( J  aenson et a!. , 1 994) and 

their interaction with hosts. Out of  these, 1. ricinus is widespread in most regions, 

from south to north of Sweden and the pr imary vector of Lyme borreliosis, t ick

borne encephalit is (TBE) and Babesia divergens for human and domest ic animals. 
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H igh bost abundance such as that o f  ertebrates, plays a ro le in distribut ing this t ick. 

I t  is found in 29 mammal species, 56 bird spec ies and two spec ies of l izards. 

The s imi lar t ick is a lso a common spec ies along witb other 20 endemic spec ies in the 

UK (Medlock and Leach, 20 1 5 ). This t ick has significantly more densit ies due to 

increasing number o f \  i ld ani mals and influence of human activities. Spread o f  deer 

and land use and expansion of  urban area resu lts in increasing of Lyme disease cases 

in tbe UK, more than 1 000 confirmed human cases each year. Host individual 

features and t ick-borne pathogen (TBP) epidemio logy is an undoubtedly subject in 

t ick abundance.  I n  the northern Iberian Peninsula, 1. ricinus prevalence is related to 

c limate and environmental  factors while the ungulate abundance in part icu lar cat t le 

was considered as a reservo ir of B. burgd0l1eri sensu late and A .  phagocytophilum, 

the agent of Lyme disease, with  1. ricinus nymph being it s main vector (Ruiz-Fons et 

01. , 20 1 2). 

1 .  7.2 Africa 

In Africa, some c limat ic variat ion influence on t ick distribution and abundance 

within the cont inent . Humidity and vegetat ion type are the significant parameters 

affect ing the distribution of  the genus Rhipicephalus (Perry et 01. , 1 990). This genus 

i s  the most w idely distributed ixodid in temperate and subtropical regions where the 

precip itation and vegetation are common c limatic features. Rhipicephalus everlsi 

evertsi, Rhipicephalus appendiculafus and Rhipicephalus (Boophilu ) microplus 

were frequently reported in l ivestock and wi ld l ife animals particu larly in southern 

Africa and Mozambique ( Horak et al. , 2009). A lso, many common species of  

Rhipicephalus were found in catt le affect ing aninlal production and their abundances 

throughout Zambia (S imuunza et 01. , 20 1 1 ). Other t ick species of Theileria, Babesia, 
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Once 0\ iposit ion has been completed, the lar ae d isperse into the vegetation or nest 

to seek hosts. ftef they attached to a host, the larvae start feeding slowly, feeding 

usually takes few da s. The engorged lar ae drop from their hosts and fmd a 

sheltered microhabitat such as sa il or leaf lit ter, or in host nests to moult to nymph . 

Then, nymph attaches to another host for feeding and return to the ground for a 

further moult .  The final stage is the adult in which it attaches to a third host for 

feeding and mat ing. More than 90% of the Ixodid l ife cycle is spent off the host . 

1.5.2 L ife Cycles of A rgasid Ticks 

The AJgasidae l i fe cyc le is ent irel d ifferent from that of the Ixodidae. Argasid l ife 

cyc le involves numbers of nymphal instar vary from two to eight depends on the 

species and the qual ity and the amount of blood ingested (Vial, 2009) .  This 

characteristic and their abi l ity  to resist starvation a l low the argasid t icks to live for 

many years ( Manzano-roman et al. , 20 ] 2) .  Thus, the soft t ick l ife cyc le may take 

from I O ta 20 years (Sonenshine, 2009). The feeding behaviour is very rapid among 

soft tick, especial ly on nymphs and adults which feed within 1 5-60 minutes while it 

t akes a longer t ime on larvae which feed for 1 2  hours to several days (Vial, 2009). 

Argasid t icks are able to survive for long periods between blood meals from months 

to several years depending on host availabi l ity. Each immature stage obtains at least 

one b lood meal on a vertebrate host before mou lt ing, except larvae of some 

Omithodoros spec ies l ike O. moubata, which d irectly moult to the nymphal stage 

without feeding. The soft t ick adults have long l i fespan reach up to 25 years for some 

spec ies. The majority of argasid t ick larvae seek hosts, feed rapidly, then drop off 

from their host and mou lt to the first nymphal instar (Sonenshine, 2009). The first 

nymph seeks hosts again, feeds rap idly then moults to further nymphal stage. This 
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continued proces of ho t- eeking, feeding and moult ing may create a number of 

n mpbal ins tars prior to the format ion of adults .  After the l ast nymphal moult, an 

adult is formed, and then it feeds rapidly on an indi idual host, then produces a smal l  

batch of eggs from each blood meal .  Usua l ly, mating occurs off the hosts. Figure 3 

i l lustrates the typ ical  l i fe-cyc le of the soft t ick.  

.. & 

. 
nymphs .�:: : 

1 
' . .  � r�) 

larvae in  � 
e�shel\s tfII' 

• ) � (JJ 
Figure 3 :  A typ ical  l i fe-cyc le of a soft t ick 

( Source: Via� 2009) 
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1.6 Tick Eco logy 

Al l  Arga ids ticks and some I odid ticks of the genus lxode possess endophi l ic 

beha iour, where they restricted to the shelters of  their hosts (Manzano-roman et al. , 

20 1 2 ) .  These species mainly survi e away from the weather variables; living in 

caves, burrows, houses, cracks, and crevices occupied by hosts and feeding when the 

host arrives. These features give them the abil ity to complete the ir l i fe cyc le (Vial, 

2009). S ince endophi l ic spec ies l ive in c lose proximity to their hosts, they do not 

exhibit seasonal act ivity, and they show indiscriminate host feeding which they are 

able to feed in too many hosts. I xodids, on the other hand, have exophi l ic behaviour. 

They l ive in the open environment , and they don ' t  seek shelter ( Paro la and Raoult, 

200 1 ). 

Parola ef aI. , (200 1 )  have pointed that more than 90% of the Ixodid l i fe is spent off 

the host. Thus, they are l ikely to be seasonal ly act ive, wait ing for their hosts when 

environmental  condit ions are suitable. Exophi l ic spec ies typica l ly find their potentia l 

hosts by detect ing st imul i from them inc luding chemical st imu l i  such as C02 and 

NH3, body heat, humidity, and vibrat ions. Most Ixodid t icks have two host-seeking 

s: an ambush strategy in which the t icks c l imb on the vegetation and wait for any 

passing host, then c l ing on the host and hunt ing strategy in which ticks emerge from 

their shelters and run toward their hosts when they receive animal st imul i .  

More than 85% of t icks are parasit izing spec ific hosts that considered to be simi lar to 

each other or infect d ifferent host species which share the same eco logical habitat 

requirements tick habitat ( Sonenshine, 2009; Kiewra and Lonc, 20 1 2) .  Host 

spec ificity is a phenomenon in which t ick feeds on only a l i.nllted spec ies of hosts. 

For example, Ixodes uriae occur in a lmost all the continent target ing different spec ies 
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o f  seabirds in their breed ing sites (e .g . ,  Muiioz-Lea l and Gonzalez-Acuna, 20 1 5 ) .  

ThIs t ick adapts in aries habitat as long as tbe birds are d ispersed or congregate in 

their breed ing co 10nies. 

Accord ing to of Hoogstraal and Aeschlimann ( 1 982) study on tbe bost preferences of 

different t icks on their hosts, they examined that at least 700 of 800 spec ies of 

superfami ly Ixodoidea are strict to host spec ificity and ha lf  of A rags t ick spec ies 

attack on specific birds nest ing compared to few of Omilhodoras spec ies. Such vita l 

hosts availabi l ity  in a region may strongly influence the presence of a specific t ick 

that feeds on them (Estrada-Pena and De La Fuente, 20 1 4 ) .  Thus, the geographic 

d istribut ion of such t icks can be read ily determined by that of the ir hosts (Hoogstraal 

et al. , 1 982) .  Host preference varies among t ick l ife stages ranging from very host 

special ist to broad host general ist . For example, larvae and nymphs are considered as 

a general ist while adults are restricted in their choice of hosts (Esser el aI. , 20 1 6). 

1 . 7 Tick Distribution 

Various eco logical and env ironmental factors present in t icks' habitat influence their 

d istribut ion. The d iversity of t icks depend on variat ion within its habitat ; this 

includes vegetation type, host availabi l ity, weather, c l imate change and human 

activities (Dantas-Torres, 20 1 5 ) .  

1 .7. 1 E u rope 

Two most popular t ick-borne diseases were highly observed during the past two 

decades in Europe ( Rando lph, 2004) .  These are zoonotic tick-borne encephal i t is 

(TBE) and Lyme borreliosis (LB), caused by agents and transmitted by Ixodes 

ricinus and 1. persZl/calus, respect ively. Tick-borne encephal it is  (TBE) inc idence, for 
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example, showed a 3-fo ld step increase from 1983 to 1 986 in Sweden, doubled in 

1 993 in the Czech Republ ic, increased e en more dramat icaUy in the same year in 

Lithuania and Poland, but dec l ined marked ly in 1 997 in Hungary, Croatia and 

S lo enia. 

In Europe, the t ick distribut ion and abundance are the impact of c l imate change, and 

relat ively it affects d isease prevalence (Gray et al. , 2009). For example, 1. ricinZls and 

1. per. ulcalu prefer certain en ironmental condit ions to adapt where humidity in the 

area should be at least 80%, high prec ipitat ion and dense vegetation to avoid tick 

mortality. I n  contrast, low rainfa l l  and h igh temperature in summer adversely effect 

on survival, act iv ity and d istribut ion of these t icks. Moreover, the abundance of the 

host such as reptiles, birds, sma l l  and large mammals maintain immature and adult 

t ick population on these habitat s as well as  contribute to c ircu lat ing pathogens. I n  

add it ion to c l imate change, human activities impact o n  the inc idence of t ick d isease 

l ike crucia l  European t ick spec ies Rhipicephalus sal7g11ineus and Dermacelltor 

reticlilatlis. 

A long-term study about the dispersal of 1. ricinus in Sweden and Russia conc lude 

t hat mild w inters affect the expansion of t ick from a certa in region to another 

( Dantas-Torres, 20 1 5 ). The main reason was said is the c l imate change aid to extend 

growing season of ticks and the possibi l ity  of c l imate change to affect host 

populat ion and human activity. Thus, it was suspected to increase the niche of 1. 

ricinus. Several t ick spec ies in Sweden have been l isted by ( Jaenson el al. , 1994) and 

their interaction with hosts. Out of  these, 1. ricinus is widespread in most regions, 

from south to north of Sweden and the pr imary vector of Lyme borrel iosis, tick

borne encephalit is (TBE) and Babesia divergens for human and domestic animals. 
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H igh host abundance such as that o f  vertebrates, plays a role in distribut ing this t ick. 

I t  is found in 29 mammal spec ies, 56 bird species and two spec ies of l izards. 

The sinlilar t ick is also a common spec ies along with other 20 endemic spec ies in the 

UK (Med lock and Leach, 20 1 5 ). This t ick has significantly more densit ies due to 

increasing number o f  wi ld animals and influence of human activit. ies. Spread of deer 

and land use and expansion o f  urban area resu lts in increasing of Lyme disease cases 

in the U K, more than 1 000 confirmed human cases each year . Host indiv idual 

features and t ick-borne pathogen (TBP) epidemiology is an undoubted ly subject in 

tick abundance. In the northern Iberian Peninsula, 1. ricinus prevalence is related to 

c l imate and environmental  factors whi le the ungulate abundance in part icular cattle 

was considered as a reservo ir of B. burgdolferi sensu late and A. phagocytophilllm, 

the agent of Lyme disease, with 1. ricinus nymph being its main vector (Ruiz-Fons et 

aI. , 20 1 2) .  

1 . 7.2 Africa 

In Africa, some c l imatic variat ion influence on t ick distribution and abundance 

w ithin the cont inent . Humidity and vegetation type are the significant parameters 

affect ing the distribution of the genus Rhipicephalus (perry et al. , 1 990). This genus 

is the most widely d istributed ixodid in temperate and subtropical regions where the 

prec ipitation and vegetat ion are common c l imatic features. Rhipicephalus evertsi 

evertsi, Rhipicephalus appendiculatus and Rhipicephalus (Boophilus) microplus 

were frequent ly reported in l ivestock and wi ld l ife animals particularly in southern 

Africa and Mozambique ( Horak et a/. , 2009). Also, many common spec ies of  

Rhipicephalus were found in catt le affect ing animal production and their abundances 

throughout Zambia ( S imuunza et al. , 20 1 1 ). Other t ick spec ies of Theileria, Babesia, 
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Anapla ma and Ehrlichia are distr ibuted in Sub- aharan Africa and often ident ified 

from domestic animals causing health and economic problems. 

According to Fantahun and Mohamed (20 1 2) ,  60 different species of t ick are wel l  

recognized i n  eastern frica o f  which Amblyomma variegafwl1 and Boophilus 

dec% ratu speC les are wide ly spread in Ethiopia and adversely affect anima l 

product ion by transmitt ing several d iseases. Another most wide geographic 

d istribut ion in south-east Africa is A mblyomma HebraeZlln the vector and reservoir of 

R ickettsia Africa, the agent of African bite fever (Snape and Po l lard, 2006; Paro la et 

aI. , 20 1 3 ; Halaj ian et a/. , 20 1 6) .  In North Africa, notably Algeria and Egypt, 

Hyalomma dromedarii t icks co llected from camels ( Camelus dromedarius) were 

recorded caused African bite fever. E lsewhere in sub-Saharan Africa, Amblyomma 

mriegatum, the tropical Bont t ick, is a documented vector of R. africae. 

1 .7.3 The M idd le East  Region 

Tick prevalence across middle east countries has been mainly reported from camels, 

goats, sheep and cattle. I n  the Kingdom of Saudi Arabia, t ick spec ies were 

investigated from domestic animals  by ( Hoogstral and Kaiser, 1 959; Banaja and 

Roshdy, 1 978 ;  Banaja and Ghandour, 1 994). The Hyalomma genus was the highest 

t ick recorded in camels (Banaja el al. , 1 994) and it has been distributed in many parts 

of  the country causing Theileria d isease in sma l l  ruminants mainly, in sheep (EI

Azazy et aI. , 200 1 ). In addition, Coxiella burnelii the causat ive agent of Q fever has 

been found in camel, goats and catt le transmitted through faeces, urine and milk and 

its primary effects reproductive system ( Mohammed el aI. , 20 1 4) .  In  Lebanon, a 

survey has been conducted of tick species infesting ruminants in six Lebanese 

provinces and it has reported four different t ick genera, among which Rhipicephalus 
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genu represented the highest frequent (72 .4%) with respect to the other ident ified 

genera: Heamaphy alis, Dermacentor, and Hyalomma (Dabaja et 01. , 20 1 4) 

I n  Iraq, surveys of  t ick fauna of domest ic and wild animals are well documented 

from d ifferent ecological zones (Shamsuddin and Mohammad, 1 988 ;  Mohammad 

and Jassim, 20 1 1 ) . For instance, d ifferent regions of the middle and south of Iraq 

ha e e amined many i odid t ick spec ies belonging to two genera Hyalomma and 

Rhipicephalu in sheep and goat ( Mohammad, 20 1 6) .  In the same region, Hyalomma 

spp. has a lso constituted the majority of infestat ion cases in water buffalo (Shubber 

el 01. , 20 1 3) .  Figure 4 shows the geographical locations where the t icks co l lected in 

I raq. 
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Figure 4: Collec t ion sites of hcks in the middle and south regions of I raq 

( Source: Shubber et 01. , 20 1 3 ) 
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1.8 Tick-Borne D isea e 

Ticks are commonl known as a ector for a wide ariety of disease causrng

pathogens to human and animals including viruses, bacteria and parasites (Aktas, 

20 1 4; 1aia et 01. , 20 1 4; M iche let el 01. , 20 1 6; Liu el 01. , 20 1 7 ; Papa el 01. , 20 1 7) .  

Ticks are a second common arthropod group behind mosquitoes of human diseases 

and most common ectors of infect ious diseases in domest ic and wild animals. It has 

been est imated that most of  the vector-borne diseases transmitted to humans in the 

world were by t icks (de la Fuente ef a/. , 2008). A stat ist ic (Dantas-torres ef 01. , 

20 12) showed that the most popular d isease in the United States from 2000 to 20 12 

was Lyme borreliosis affecting more than 250,000 humans in addit ion to more than 

50,000 cases in human are reported annuaUy in Europe. Tick has a sure way to 

transmit the pathogen to the host during a b lood meal .  In most cases, a tick becomes 

infected with virus, bacteria or protozoa whi le feed ing on the host that carries the 

infect ious pathogen on its blood (Wi lson, 2002). Subsequent ly, this pathogen 

concentrates in the gut of t icks where the sal ivary glands secret ion, in turn, transmits 

the disease to the other hosts. 

I n  the recent decades, t ick-borne d isease gains more attention in the epidemiologica l 

studies because of  its importance of deadly transmission diseases to humans and 

animals. I dent ificat ion of potential d iseases associated with t icks by using molecular 

b io logy assay has become w idely described. Molecular methods with newly 

developed too ls are assisting in determining t ick species and t ick-borne pathogens at 

the genomic and population levels (de la Fuente et 01. , 2008; de la Fuente and 

Estrada-Pena, 2012 '  Dantas-torres e( 01. , 20 1 2 ; Berggoetz et 01. , 20 1 4) .  Among 

infect ious diseases, t ick-borne bacterial d iseases are most often d iagnosed group 
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compared to other tick-vectored d iseases (Mediann ikov and Feno L lar, 20 14). The 

genera Borrelia, Ricke/f. fa, Frallci ella, EhrhciJia, Anaplasma, COlvdria, and 

Coxiella are most bacterial communit ies transmit ted by a t ick (Noda e/ al. , 1 997). 

The significant ro le of studying the tick pathogens is to pre ent t ick-borne diseases 

and to impro e control measures (Medianniko ef al. , 20 14). 

1 .9 Tick-Borne- Bacteria l  D iseases 

1 .9. 1 Borreliosis 

Bon'elia is a genus of Spirochaetes bacteria which causes Borre/iosis, a group of 

zoonotic d iseases transmitted by ticks or lice ( Ehlers et aI. , 20 1 6; Ehounoud, 20 1 7) .  

Borre/iosts is  primarily c lassified into two groups of human d isease: Lyme disease 

and relapsing fever ( Ras et aI. , 20 1 7) .  Lyme borrel iosis is transmitted by the hard 

I xodes t icks and as for relapsing fevers; they are usually transmitted by soft ticks 

(Argasidae) of the genus Ol7lithodoro . Lyme d isease is among the most important 

borreliosis caused by members of the Bon·elia burgdoiferi sensu lato complex and 

other related spec ies mainly concerning orth America and Eurasia (Kernif and 

Leulmi, 20 1 6) .  

Tick-borne relaps ing fever i s  caused by several Borrelia speC ies. For instance, 

Borrelia coriaceae was iso lated from the soft tick of the genus Ornifhodoro and 

much more of Borrelia anserine, the avian borreliosis agent was recognized in Argas 

persicus soft t ick (Masuzawa and Asia, 2004) .  In assoc iated with hard t icks three 

pathogenic Borrelia spec ies were found, namely, B. theileri in Rhipicephalu 

(Boophilus), B. miyamotoi in Ixodes persulcall1s and rodents in Japan and B. 
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!olles/ari in Amblyomma spec ies in the Un ited tates ( Ras el aI. , 20 1 7 ; Ehlers e/ a/. , 

20 1 6) .  

1 .9. 1 . 1  Lyme Borreliosi 

Lyme bOlTe/io is is a zoonot ic d isease transmjtted by hard ticks of the genus I xodes 

( largos el a/. , 2009; Arco el aI. , 20 1 7) . This disease is caused by many borrelia 

spec ies belonging to the Borrelia burgd07feri sensu /ale ( sl )  complex including 22 

genospec ies (Wa indok e/ aI. , 20 1 7) . In  Europe, e leven of them were reported for 

cases of  Lyme borrel ios is ; the most three common agents are B. Bllrgdoiferi sensll 

stricto (ss), B. garil1ii and B. af=elii. Lyme borreliosis is enderllic in the Northern 

Herllisphere, occurs in orth America, Europe and Asia ( I zac ef aI. , 20 1 7). 

Based on many cases, Lyme borreliosis vary from rlli ld to severe symptoms in 

humans such as fever, elythema migrans, cardiac disease, nervous system d isorders 

and other manifestat ions ( Raja ef at. , 20 1 6; Ms el aI. , 20 1 7) .  I n  1 99 1  around 1 0,000 

cases of human Lyme d isease per year reported in North America, showing higher 

increased in 20 1 4  to more than 25,000 cases according to the Centers for Disease 

Control and Prevent ion (CDC) (Ms  et af. , 20 1 7) .  I n  veterinary medicine, Lyme 

disease has been documented in canines and equines ( Izac e/ aI. , 20 1 7) .  According to 

Comparuon Arumal Parasite Counc i l, over 250,000 cases of positive canine Lyme 

d isease test were d iagnosed based on only 30% of col lected test data; however, the 

actual number of th is d isease is suspected to reach 800,000 cases. 

1 .9. 1 . 2 Tick-Borne Relapsing  Fever 

Many of  Borrelia spirochetes are considered causing t ick-borne relapsing fever a 

d isease transrllitted via soft ticks ma in ly by Ornithodoros spec ies ( Parola et aI. , 
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20 1 1 ) . soft t ick Ol77ithodoro transmits multiple of relapsing fever borreliae 

except for Borrelia recurren/i (D\ orkin e/ 01. , 2008) which is usua l ly vectored by 

louse (Cutler, 20 1 0) .  Tick-bome relapsing fever is a worldwide endemic d isease. For 

instance, B. crocidllrae pathogen transmitted by the endemic t icks Ornithodoros 

sonrai ca ing relapsing fever \: as reported in enegal, Mali ,  Mauritania, and the 

Gambia where 2° 0-70<}0 of animal burrows are inhabited by this t ick vector, and an 

average of 3 1 0 0 of t icks are infected by B. crocidurae (Cut ler e/ al. , 2009; Parola el 

a1. , 20 1 1 ) . 

I n  addition to that, the same pathogen transmitted by the same t ick has been recorded 

in West Africa as high pathogen affect ing human popu lat ion (Vial et 01. , 2006a; 

Cutler e( al. , 2009). This infected t ick inhabited on rodents and insect ivores affecting 

people during their s leep causing i l lness and fever (Via l  et al. , 2006a).  I n  North 

America, the sp irochete Bon'elia hermsii also causes the relapsing fever to human 

which is transmitted by Ornithodoros herm i (Schwan et al. , 2007). Dworkin e/ a1. 

(2008) state that this disease spreads in many regions; the western United States, 

southern Brit ish Co lumbia, the p lateau regions of Mexico, Central and South 

America, the Mediterranean, Central Asia, and t hroughout much of Africa. 

1 .9.2 Rickettsiosis and Rickettsiae 

Tick-borne ricketts ios is  is  infect ious diseases caused by obl igate intracellu lar, gram

negat ive bacteria Rickellisa ( family Rickettsiaceae, order Rickettsiales) (Eremeeva 

and Dasch, 200 1 ;  Parola et ai. , 2005 ). The Rickeffsia genus is c lassified into three 

groups inc luding the spotted fever group (SFG)  which has the most conUTIon agent 

Rickettsia ricketlsii that causing Rocky Mountain spotted fever, the typhus group 
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consists of two human pathogens, Ricketf fa prowa:::eki; and Ricketlsia Typhi and the 

scrub typhus group ( TG) (Wood and Artsob, 20 1 2; Orkun et aI. , 20 1 4). 

1 .9 .2 . 1 Medi terranean potted Fever 

Ricke! 'fa conorii, the causat ive agent of Mediterranean spotted fever (MSF) is 

transmitted to humans by a t ick bite, main ly by brown dog t ick Rhipicephalus 

angu;neu (Mouffok el al. , 2009; Kuloglu el aI. , 20 1 2) .  The main symptoms of 

MSF are fever, rash, and skin eschar at  the t ick b i te  site. MSF has been known to be 

endemic in the Mediterranean area, inc luding northern Africa and southern Europe 

( Papa et aI. , 2009) .  In sub-Saharan Africa, a l l  cases of spotted fevers were reported 

to be MSF with Rickettsia cOllorii as an agent, and many cases of the d isease and 

iso lations of the agent were ident ified in Kenya, Somal ia, South Africa, and Chad 

(Mediannikov et a/. , 20 1 0). M F, however, has been observed in Portugal with the 

h ighest annual inc idence of 9 .8  cases per 1 00,000 persons (Papa ef al. , 2009; Seixas, 

20 1 2) .  Most cases ( 87%) were observed during the summer ( 87%), from July to 

September which indicates that this pathogen is correlated with high temperatures 

and attack humans more in warmer temperatures. 

1 .9.2.2 Rocky M o u n ta in  Spotted Fever 

Rocky Mountain spotted fever ( RMSF) is a zoonotic disease caused by the infection 

with Rickettsia rickettsii, which is a member of the spotted fever group (Nelson, 

20 1 5) .  Hard ticks are the natural reservo irs of R;ckettsia rickel/sii which are 

transmitted to larger mammals such as humans and dogs (Warner and Marsh, 2002). 

Today, most cases of RMS F  are known in most of the USA. The American dog tick 

Dermacentor variabilis is t he primary vector and reservo ir of RMSF in the Eastern 
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and the Rocky Mountain \ ood t ick, Dermacentor ander oni, is the vector in the 

Western states ( Lin and Decker, 20 1 2 ) .  

Other tick spec ies contr ibute in transmitting RMSF is Rhipicephalus sanuineus, the 

brown dog t ick that ha been recently found in Arizona and Mexico and suggested to 

d isplay in dog owners homes ( Warner ef al. , 2002; L in el al. , 20 1 2) .  In addit ion, 

Amblyomma caje1771en e and A mblyomma arueolatum ( Lone Star t ick) t icks are 

primary ectors concerning Lat in American countries, such as Argent ina, Brazil ,  

Colombia, Panama, and Costa R ica, as shown in Figure 5 .  

F igure 5 :  Geographical distr ibut ion of RMSF i n  the American continent 

(Source: Dantas-Torres, 2007) 

The fever, ch i l ls, myalgia, and headache are the primary symptoms of the Rocky 

Mountain spotted fever disease begin after the bite by an infected t ick (Socolovschi 

et al. , 2009).  The fo l lowing symptoms are severe health disorders including anorexia, 

nausea, vomit ing, abdominal pain, diarrhoea and cough. Many R ickettsial diseases 
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are d istributed tbroughout the world causmg i l lness to humans (DzeJal ija et 01. , 

20 1 6) .  In  outh frica, three Rickettsia spec ies have been detected in humans' , 

Rickett to cOl1ori;, the agent of Mediterranean spotted fever, R. aeschlimallnii and R. 

mOllg% tirnonae ( Pretorius and B irt les, 2004). 

The H. InmcalUm t icks ha e been suspected the transmission of these Rickettsia 

spec ies via parasit ized migratory birds where they distributed in African countries, 

including South Africa. In addit ion, d iverse Ricketlsia spec ies have been reported 

\ ith potential  pathogens in Ethiopia from t icks, fleas, l ice, and mites (Pader et aI. , 

20 1 2) . R. africae spec ies have been documented from hard t icks in Ethiopia as well  

as high prevalence of Candida Ius R. hoogstraalii among Ar. persicus t icks selected 

from poultry areas but without recording any infect ion occurring in l ivestock and 

humans. With much of  Rickett ia d iversity in Ethiopia, the same study showed some 

cases from an indigenous population with numbers of tourists who had infected by 

Rickettsia . 

1 .9.3 Q fever 

Coxiella burnetii is an obl igate intracel lu lar gram-negative bacterium, a common 

agent of Q fever ( Wegdam-blans et aI. , 20 1 2 ; Tejedor-junco et aI. , 20 1 6) .  C. bumetii 

found in several t ick spec ies. However the early discovery was in Dermacentor 

anderson; t ick (Riemann el al. , 1 979) .  Q fever is spread t broughout the world, and it 

reported in many countries espec ial ly in the African continent in part icular sub-

Sahara and West Africa ( Kanoute et 01. , 20 1 7) .  C burnetif infect wild and domestic 

mammals, birds, and artbropods and it a lso affects humans (Garc ia et af. , 20 1 7) .  I t  

was highly documented among domestic ungu lates such a s  sheep, goats, cattle and i n  
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wild ungulates inc ludin g Oryx and gazelle. Tbis agent poses a threat to both humans 

and domest ic animals. 

In humans, it considered as an occupational disease in several Med iterranean 

countries whi le they are c lose contact with tbe numerous domestic animals (Ejerc ito, 

1 993;  Rizzo et al. , 20 1 6). In it ial ly, Fever, beadacbe, myalgias, and anorexIa are 

primary symptoms of acute infection that may affect humans and cont inues to 

chronic infection manifested in l iver inflammat ion which appears later. While 111 

ruminants, Q fever is associated with  reproductive disorders including abortions, 

st i l lbirths and del ivery. Tick-borne encepha l it is (TBE) is tbe most distributed viral 

d isease in Europe wbich is transmitted by the main vector Ixodes spp. (1. ricinus and 

Ixodes persulcallls) ( Rodriguez et al. , 20 1 8 ) . Mammals such as rodents and smal l  

ruminants are reservoirs of t ills agent, in addition to migratory birds wbicb contribute 

in the c ircu lat ion of the disease. Anotber, deadly viral disease transmitted to buman 

is Crimean-Congo hemorrhagic fever. This virus is  widely distr ibuted in Asia, 

Africa, and Europe. The hard t ick main ly tbe genus Hyalomma, is tbe main vector of 

the d isease and some other tick species from the genera Dermacentor, Amblyomma, 

Rhipicephalus, and Haemaphysalis have been found to harbour this agent (Estrada-

Pena ef at. , 20 1 4) .  

1 . 1 0  Ornithodoros m ue ebecki 

Arabian t ick Omithodoros muesebecki has been init ial ly found in Arabian coast from 

B lue-footed Boobies co lony (Sula dactylatra) ( Hoogstraal and Ol iver, 1 970). The 

fust recorded of 0. muesebecki in the UAE was in Zirqa I sland in the area of Abu 

Dhabi col lected from infected birds. It was suggested to serve as a vector of 
, 

pathogens transrrlitted to workers in the island, whom typical ly sbow different s igns 
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and s mptoms l ike fe er, skin irritat ion, rashes and headaches (Hoogstraal and 

Ol iver, 1 970; Estrada-Perra and Jongejan, 1 999· AI-Deeb ef aI. , 20 1 6) .  

0. mue ebecki is ectored of oxiella- l ike endosymbiont bacteria in  the largest 

seabirds colonies in the U AE (AI-Deeb e/ at. , 20 1 6),  but no study has uncovered the 

total bacterial communities harboured by this species or any pathogenic agents yet, 

which could transmit these pathogens to the animal or human hosts during a bite. 

Figure 6 shows the morpho logical features of 0. muesebecki from both sides. 

4 . 6  
m m  

Figure 6 :  0. muesebecki adult female-(A) ventral and ( B )  dorsal s ides 

· ( Source: AI-Deeb ef aI. , 20 1 6) 

1 . 1 1 Migratory B i rd s  a n d  T ra n s mitted Diseases 

General ly, birds are deflned as reservo irs and d isseminators of tick-borne pathogens 

which they represent a threat to humans and animals health (Estrada-perra e/ at. , 

20 1 5 ) .  B irds have the capabi l ity  to transport t ick-borne pathogens in different ways 

including transportat ion of infected ticks, through being infected with TBP and 

carried to feeding t icks. In Fact,  factors such as years, season, local ity and different 

b ird spec ies determine the prevalence of ticks on birds as ( Hasle, 20 13 )  state, 
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whereas the d istribut ion of t icks on different species is associated on the degree of 

feeding on the ground. This e idence is strongly supported by tbe high prevalence of 

t ick infestat ion in Turdll spp. espec ially tbe blackbird in Europe. 

Another study evaluated the prevalence of ticks on wild avian hosts explaining that 

birds may harbour both diverse and straightfonvard infestations ( Sparagano el aI. , 

20 1 5 ) _  For instance, 37  species of a bird caught from two different s ites in Portugal 

between 20 1 0  and 20 1 1 showed the t ick spec ies d iversity in infested birds mainly on 

Eurasian blackbirds, spotless starl ings, and European robins. On the other hand, only 

one s ingle spec ies 1. ricinus ( larvae and nymphs) was detected in 20 bird species 

captured between 2008 and 2009 in France. Various tick-borne pathogens were 

observed in birds in Europe such as Borrelia burgdoiferi sensu lato (s . 1 . ) ,  Anaplasma 

phagocytophilwn, Babesia divergens, Babesia vena/onlln, Coxiella burnelii, various 

Rickettsia species including the most popular Rickettsia Helvetica (Capl igina el aZ. , 

20 14).  Among these diverse spec ies, Bon-elia spp. is frequent ly establ ished in studies 

to be transported v ia birds in Europe, North America and Asia (H ildebrandt ef al_ , 

20 1 0; Lommano et aI. , 20 1 4) .  

Migratory birds contribute to dispersing pathogenic microorganisms as a result of 

their migratory behaviour. I ndeed, through their long seasonal passage and travel 

across different habitats, b irds stop at different s ites for rest and feed ing, thus various 

t icks and other organ isms have the potent ial to attach on them, travel with them and 

detach a long the migration route or in breeding areas ( Johnson, 1 989; Jaenson and 

BergstfO, 1995; Bjoersdorff et aI. , 200 1 ). Significant ly, seabirds p lay a role in 

epidemiological d isease and g lobal c ircu lat ion of tick-borne pathogens s ince they 
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travel a long distance, distributed widely and breed in aggregations in specific colony 

locat ions (Wi lkinson ef aI. , 20 1 4) .  

The prevalence of Lyme borreliosis- infected t icks was detected highly on migratory 

birds throughout the world. B irds movement across Europe and the M iddle East 

confirmed their role in the distribut ion of arboviruses and the Lyme borrel iosis agent, 

Borrelia burgdo.,.feri sensu lato via infected ticks (Jaenson ef aI. , 1 995) .  For instance, 

B. BurgdOlferi sensu strict pathogen was detected from passerine b irds in Ixodes 

scapulari t ick in the United States. L ikewise, a total of 40 migratory b irds species 

have been determined in North Africa as carriers of t icks, including  Ixodes ricinius 

which cause Lyme disease pathogen, Bon'elia brgdorferi (Johnson, 1989). Simi larly, 

another study demonstrates the occurrence of A naplasma species and Lyme 

bon-eliosis (LB) spirochetes as vector-borne pathogens in infected birds in North 

America and Eurasia (Comstedt et al. , 2006). 

1 . 1 1 . 1  Socotra Cormorant  

Cormorants (Phalacrocoracidae) are one of the w idely distributed fami ly of  water 

birds worldwide (Threlfal� 1 982) . They inhabit both freshwater and seacoast 

environments. In the U nited Arab Emirates, Arabian endemic Socotra Cormorant 

(Phalacrocorax lligrogularis) is observed on many islands. Years ago, 20 breeding 

s ites in Abu Dhabi and Sharjah existed before they became a lmost ext inct (Wi lson, 

20 12) .  In 20 1 0, other new co lon ies were reported from 1 0  different locations across 

UAE inc luded few pairs of birds in each locat ion. Currently, the most significant 

breeding co lony of Socotra Cormorants (P. nigrogularis) represents on S in iya I sland ; 

Umm Al  Quwain recorded w ith  28,000-35,000 pairs (Muzaffar, 20 1 5 ). 
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ocotra Cormorant is endemic seabird restricted to the Arabian Gulf and ea of 

Oman. The global popu lat ion is rapidly dec l in ing and today is est imated at 1 1 0,000 

breed ing pa irs (Muzaffar et al. , 20 1 2) thereby, they are l isted as Vu lnerable on 

the I nternat ional Union for Conservat ion of Nature e I UCN) Red List . A great effort 

is establ ished to study this species in term of breeding bio logy, habitat ecology and 

behavior. Anthropogenic activities and natural  threats are behind the dec l ine of their 

colonies. Despite the l imitat ion, studies on natural threats cause on their colonies, but 

one assumpt ion was e amined to study predat ion over the thousands mortal ity of 

cormorant populat ion on S in iya I sland, the UAE .  The study showed that two 

predators fox and feral cats introduced on colony are impl icated on praying Socotra 

Cormorants based on observat ion of ki l led birds .  

The abundance of ( 0  muesebecki) t ick was observed on the same colony suggest ing 

the ir potent ial ro le towards bird mortality. I n  fact, t ick abundance in seabird nests 

adversely affect s  chick growth and survival and in most cases is catastrophic to chick 

health which resulted from d iseases transmission ( Ramos et aI. , 200 1 ) . Other harmful 

organisms inhabit ing Socotra cormorant such as parasites has not been studied yet .  

Parasites whi le they present i n  the food web, they influence the ecosystem i n  various 

ways by affect ing the hosts causing mortality and behavioural changes (Moles and 

Heintz, 2007). 

Most studies recorded mortality in marine and shorebirds is primari ly caused by 

parasites. Delayed development and reduce long-term survival of host 's offspring 

were determined in breed ing s ites ( Brown el aI. , 1 995). There are 234 species of 

tapeworms known from seabirds ( Hoberg, 1 996), and more than 700 species of 

helminth parasites were reported in at least 1 65 seabirds hosts ( Muzaffar, 2009). A 
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fnII study of parasites in adults and chicks ocotra cormorants with tbe assoc iat ion of 

the ir diet is not done, although of above-discussed evidence determine their impact 

on seabirds.  

1 . 1 2  ext Generat ion Sequenc ing  

The first generat ion, a lso known by Sanger sequenc ing was first described in  1 977 

by Frederick anger (Liu ef af. , 20 1 2 ) .  This sequencing based on chain termin at ion, 

a l lowed few base pairs of D A to be sequenced . Sanger sequenc ing produces a read 

length reach to 700bp with low error rate (Adamiak el aI. , 20 1 6). Fol lowing the fIrst 

generat ion, the rapid advance o f  D A sequencing and data analysis were developed, 

and this was named next-generation sequenc ing. NGS platforms adopt paral lel  DNA 

sequencing ( Behjati and Tarpey, 20 1 3 ) .  

The p latforms include 454 pyrosequencmg I l lumina p latform and recently 

establ ished Ion Torrent. DNA sequenc ing by Roche. The 454 pyrosequenc ing 

concept is  based on pyrophosphate re leased during nuc leotide incorporation (Liu e( 

af. , 20 1 2) .  This technique generates long read length and relatively high speed. The 

I l lumina p latform, however, sequenced DNA by synthesis and uses bridge 

ampl ificat ion for polony generation ( Buermans and den Dunnen, 20 1 4) .  It works by 

detect ion of the l ight emitted during synthesis of  a complementary DNA strand for 

each added nuc leotide. This method is low cost and produces large numbers of  reads 

compared to 454, but they are short length, only 35 bp long (Van Dijk el aJ. , 20 1 4). 

Another GS approach sequenced by synthesis is Ion Torrent . In this method, DNA 

is sequenced by detect ion of  hydrogen ions concentration (Adamiak et aI. , 20 1 6) .  It 

used in broad range of app l icat ions because of its faster and low cost. 
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Despite many con ent ional methods which have been used to identify the microbial 

communit ies assoc iated with ticks, l imitation on detection and analys is of target 

bacteria st i l l  exists (Carpi t 01. , 20 1 1 ) . Next-generation sequencing techno logies are 

an a lternati e approach and among the most remarkable and powerful tools for 

examin ing microbial communit ies (Vayssier-Taussat et 01. , 20 1 3 ) .  This technology 

was used widely for metagenornic profiles of the bacterial communities associated 

with Ixade ricin liS where 1 6srRNA gene had been ampl ified and sequenced 

( ayssier-Taussat el 01. , 20 1 3 ; Bonnet el 01. , 20 1 4) .  The 1 6s ribosomal RNA is a 

highly conserved bacteria l  gene used for bacterial ident ificat ion and usually 

sequenced using NOS ( Fouhy el 01. , 20 1 6; H iergeist and Reischl, 20 1 6 ; Sperling el 

01. , 20 1 6). There are nine s ignificant variable regions of 1 6srRNA with no studies 

showed which spec ific region and which best primer has to be examined and used for 

bacterial assessment . 

Metagenomic analysis is the study of  the ent ire genetic material or the variation of 

the species isolated from the environmental samples (Thomas et or, 20 1 2) .  It  is a 

method used in both the molecular b io logy and genetics in order to identify and 

characterize the genet ic material of the sample. It provides a broad description of the 

functional genes in the microbial communities associated with the hosts.  

1 . 1 3  Metagenorni c  a n d  Tick  G u t  M ic robiota  

Recent ly, so many complex ecosystems have been tested by metagenomics to  

characterize the microbial communities in  the so i l ,  ocean water, and for medical and 

veterinary purposes (Carp i ef 01.,  20 1 1 ) . An invo lved ecological community within 

the organism its gut microbiota, which involves interactions of diverse bacteria l 

species within the host . Many researchers have studied the gut microbial community 
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structure and its funct ion in different mammal ian host species l ike mouse, human and 

domestic animals ( Mandai el al. , 20 1 5 ) .  In ticks, diverse pathogens and symbiotic 

bacteria l ike Coxiella- l ike bacteria inhibit its gut and these bacteria act as infect ious 

d isease or Ii e peaceful ly with unrecognized role (Qiu el al. , 20 1 4; Narasimhan et 

al. , 20 1 5) .  

I n  Japan, metagenomic approach faci l itated the finding of  1 63 different genera of 

bacteria in t ick sal ivary glands, the presence of the prevalent infect ious pathogens 

such as Eh,./ic!1ja, Rickettsia, and Coxiella (Qiu ef al. , 20 1 4) .These resu lts were 

based on three different t ick species (1. ovatus, I.per ulcalus, and H. Jlava) and 

evident ly, the differences in tbe bacteria l population were c lear between tick spec ies 

as determined by Principal Component Analysis ( PCA). Similarly, 454 

pyrosequencmg had reported a diversity of bacterial phyla and genera from 

neotropical t ick and b irds blood DNAs in the US .  Ca17didalus Rickettsia amblyommii 

in infected neotropical t icks carr ied by migratory birds during seasonal migrat ion 

(Budachetri et al. , 20 l 7a). 
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Chapter 2 :  Materials and Methods 

2 . 1 T icks a n d  Co l lec t ion  S ite  

Ticks used in  this study ere col lected from lll lya I sland. S iniya I s land is a 

nearshore island located off the Umm Al Quwain Emirate, UAE. The island is about 

1 2  km in total length with a tear-drop shape with numerous lagoons and inlets, as 

shown in Figure 7. Part of the is land contains  planted Prosopis juliflora and Acacia 

tortilis trees. cattered throughout are poor communit ies composed mostly of 

Halo:\.·yloll I Arlhrocnell7Z11n spec ies. Some areas are bordered with mangroves, 

A l.'icel1l1ia marina. The island hosts the largest populat ion of breeding Socotra 

Cormorants in the U AE ,  totaling to about 35 ,000 breeding pairs (Muzaffar, 20 1 4) .  

25 3 5 '  

5 5  3 6 '  

Figure 7 :  Siniya I sland map, Umm Al  Quwain 

The t icks (adu lts and nymphs) used in the current study were col lected in 20 1 3  and 

20 1 6  as part of a project led by Sabir bin Muzaffar. The col lected t icks were stored in 
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plast ic tubes ( 1  tick per tube) in a -20°C freezer. The col lected ticks inc luded 1 50 

individuals from each ear (20 1 3 , 20 1 6) were later subject to analysis ( total n=300). 

2.2 Tick Gen o mi c  D N A  Ext ract ion 

Three different methods were used for t ick genomic DNA extraction. Genomic DN A 

was extracted from indi idual who le t icks (0=300) using automated DNA extraction 

machine ( M axwel l  1 6, Promega, Madison, USA) ( 1 35 samples) and an animal t issue 

extraction k it ( 1 3 3  samples) ( Promega, Madison, USA). For the metagenomic study, 

D A was extracted using Q I Aarnp Tissue Kit (32  samples) (Qiagen, H i lden, 

Germany) to get the maximum amount of DNA. Al l  extractions were conducted 

fol lowing the manufacturer's protocol .  The extracted DNA was stored in the freezer 

at -20°C. 

In the animal t issue extraction k it ( Prornega, Madison, USA), each tick separately 

was manua l ly crushed with a t issue grinder in a steri le 1 . 5 ml Eppendorf tube 

containing 600 II I of chi l led nuc lei lysis buffer and 1 7 . 5  II I of proteinase K and 

incubated overnight at 55°C. Afterward, 3 II I of RNase solution was added to each 

tube and was gent ly mixed for incubated again at 3 7°C for 1 5  min. Then, 200 II I of 

protein precipitation so lut ion was added to each tube; vortexed and chi l led on ice for 

5 min fo l lowed by centrifuging at 1 6000 x g (ful l  speed) for 4 min . 

Each supernatant in every tube was transferred to a fresh tube containing 600 II I of 

isopropanol which is mixed gent ly by inversion and was incubated again on ice for 

1 0  min fo l lowed by centrifuging at 1 6000 x g (fu l l  speed) for 1 min . Each 

supernatant was removed and rep laced with 600 II I of 70% ethanol and centrifuged 

once again at 1 6000 x g (fu l l  speed) for 1 min . The supernatant was again removed, 
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and the tubes were dried. The D A from each t ick spec imen was eluted in 1 00 ).1 1 of  

DN rehydration so lut ion, and the e tracted DNA was stored 0 emight at 4°C unti l  

the agarose gel  e lectrophoresis. 

In  the QIAamp T issue Kit (Qiagen, H ilden, Germany), each sample was crushed 

using t issue grinder in a ster ile 1 . 5 ml Eppendorf tubes with tbe addit ion of 1 80 ).11 of 

Buffer ATL (animal t issue lys is) and 20 ).11 of Proteinase K to each tick sample. 

Samples then were incubated at 56°C overnight on a beating b lock.  The next 

morning, samples were centrifuged at ful l  speed ( 1 4,000 rpm) for 1 min, and 200 ).11  

of a buffer AL ( lysis buffer) was added to eacb sample and mixed by vortexing for 

1 5  s .  Subsequent ly, 200 ).11  of  70% ethanol was added, and samples were mixed in a 

vortex in 1 5  seconds. Thereafter, the mixture incubated for 5 minutes at room 

temperature to have centrifuged for separating and removing the liquid from the tube 

cap .  

The samples were then loaded onto the Qiagen M inE lute column and centrifuged at 

8,000 rpm for 1 min. The flow-through was d iscarded, and the remain ing sample was 

loaded onto the co lumn. Successive washes with 500 ).11 of buffer AW l and Buffer 

AW2 fo l lowed with centrifugation at 8,000 rpm for 1 min in eacb wash. The wash 

steps were carried out, and a fresh 2.0 rnl co l lect ion tube was used in eacb step. The 

fIna l  product was e luted by adding 50 ).1 1 of AE elut ion buffer (Qiagen) to tbe 

column, incubating at room temperature for 5 min, and centrifuging for 1 min at 

1 4,000 rpm. 

Quant ity and quality of the extracted DNA samp les were determined with a 

spectrophotometer (NanoDrop ND- I OOO, Erlangen, Germany) and a Quantus 

F luorometer ( Promega, Madison, USA). The spectrophotometer was blanked with 
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sterile nano-pure water before reading, and D A samples were stored at -20°C unt i l  

use. Additional ly, the quality of  the extracted DNA was assessed by 1 . 5% agarose 

gel e lectrophoresis in TBE (Tris-Borate-EDTA) which was stained by ethidium 

bromide to enhance the visual ization of D A bands. A vo lume of 5 � l  of each t ick 

genomic DNA was loaded on to 1 . 5 % agarose gel and was visualized under UV 

light . 

2.3 Detect ion  o f  Bacter ia i n  T i c ks- peR A na lys is  

In  order to  ensure the presence of  bacteria l DNA in the total genomic DNA extracted 

from each t ick and to avoid having false negat ives in disease detection, the 1 6S 

rD A bacterial gene was detected using the fo l lowing spec ific primers: FD I ( 5 ' 

AGAGTI 'I 'GATCCTGGCTCAG - 3 ' )  and rp2 ( 5 '  ACGGCTACCTTGTrACGACTT-

3 ' ) (Noda et aI. , 1 997) .  Al l  D A samples ( n=300) were individual ly screened for the 

presence of Borrelia spp. , Rickett ia spp. and Coxiella bumelii using convent iona l 

PCR. Briefly, the convent ional PCR experiment was performed in a total react ion 

vo lume of 25 � l, and each peR react ion contained 1 2 . 5  �l Taq PCR master mix 

(Qiagen, H i lden, Germany), 1 �l of each primer, 5 � l  of genomic DNA and 5 .5  � l  

nuc lease-free water. Al l  PCR amplificat ions were performed o n  the Swift MaxPro 

thermo-cyc ler ( ESCO, Singapore) .  

2.3. 1 Detection of Borrelia 

Al l  DNA samples (n=300) were individua l ly tested for the presence of Bon'efia spp. 

using OspC l /OspC2 primer set ( Fukunaga et af. , 1 996), as shown below: 

• OspC l : 5 '-TAATGAAAAAGAATACATTAAGTG - 3 '  

• OspC2:  5 ' - TTAAGGTTTTTTTGGACTTTCTGC-3 '  
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Amplification was carried out for 35  c c les consisting of denaturation at 93°C for 1 

min, annealing at 4° below the denaturat ion temperature of the primer used for 1 

min, and extension at 72°C for 1 min, and there was a fInal extension step consisting 

of 7 min at 72°C. 

2.3.2 Detect ion of Rickettsia 

Rickell ia pathogen was detected according to a published method (B la ir ef af. , 

2004) .  Briefly, the detection invo lved conducting a nested PCR of the outer 

membrane protein ( ompA ) gene. In the flIst PCR, the amp lification of a 590 bp 

fragment was obta ined by USlllg the forward pruner ( 5 ' -

ATGGCGAATATTTCTCCAAAA-3 ' )  and the reverse pruner ( 5 ' -

GTTCCGTTAATGGCA GCATCT- 3 ' ) .  In the second PCR, the amplificat ion o f  a 

540 bp fragment was obtained by using the forward/reverse primers ( 5 '

AAGCAATACAACAAGGTC-3 ' )  and ( 5 '- TGACAGTTATTATACCTC -3 ' ), 

respecti e ly. Fo l lowing init ia l  denaturation for 1 min at 94°C, 35  cycles of 

denaturation for 30 s at  94°C, anneal ing for 1 min at  50°C, and extension for 4 min at 

68°C were performed. A final extension step was done for 20 min at 72°C. 

2.3.3 Detection of Coxiella burnetii 

Al l  DNA samples (n=300) were individual ly tested for the presence of C b1l171etii 

using specific ol igonucleotide primers ( de Bru in et af. , 20 1 1 ) : 

• I CDTRG _f ( 5 '  -CGGAGTT AACCGGAGT ATCCA-3 ' )  

• I CDTRGJ ( 5 ' -CCGTGAATTTCAT-GATGTTACCTTT-3 ' )  
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The pnmer were specific for the isocitrate dehydrogenase gene ( ied). The 

thermoc c l ing condit ions were the fo l lowing: 95°C for 1 5  rn.in, 35 cyc les at 95°C for 

30 s, 60°C for 30 s, and 72°C for 60 s, fol lowed by tbe last step at 72°C for 1 0  min. 

2.4 Gel E lect ro p h o ret ic  A n a lysis  

After tbe PCR cycles \ ere complete, a l l  react ions were analysed by agarose gel 

e lectrophoresis. The PCR products were loaded on 1 . 5% agarose gels sta ined with 

ethid ium bromide to enhance tbe visual izat ion of DNA bands. A 1 00bp ladder 

( Promega, 1adison, USA) was used as a reference for determin ing tbe PCR product 

s ize. Fol lowing agarose gel e lectrophoresis, gels were examined under UV l igbt. 

2.5 D N A  P reparat ion for M etage n o mic A n a lys i s  

Samples from each of 20 1 3  and 20 1 6  were prepared as  fo Hows: a total of 28 D A 

samples were co l lected from ticks and grouped into 5 poo ls for conduct ing tbe next 

generat ion sequenc ing. Each one of the first four pools conta ined DNA from 5 t icks 

and while the fiftb pool contained DNA from 8 t icks. A volume of 5 Jl I of DNA was 

t aken from each individual t ick and combined to form one pool (25 JlI) .  The DNA 

concentration of each pool was measured using a Quantus Fluorometer ( Promega, 

Madison, USA) to prevent false negat ive resu lts. Prior to testing, pools of DNA were 

created from the extracted samples as described above. 

2 .6 ext Generat ion Seq u e n c i n g  (NGS) M i-Seq Workflow 

The NGS was done ent irely by Macrogen, South Korea and the report below 

describes the procedures from tbe company. Tbe I l lumina NGS workflows inc luded 
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these necessary steps : i) sample preparat ion ; i i )  l ibrary construct ion ; i i i )  sequencing ; 

and iv) generation of raw data as detai led in Figure 8 .  

equencmQ 

• 

• 
• 

Figure 8 :  ext-generation sequencing workflow 

( Source :  https://dna.macrogen.com) 

The analysis of data invo lved the fo l lowing three steps :  i) pre-processrng and 

c lustering; i i )  taxonomic assignment; and i i i )  d iversity statist ics, as detailed in Figure 

9 .  
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Qualit control of the D of  each sample was performed to detemune the 

concentration and qual ity. All sample must pass this step before proceeding to the 

l ibrary construction. The sequenc ing l ibrary was prepared by random fragmentat ion 

of the D A sample, fo l lowed by 5' and 3' adapter l igat ion. Alternat ively, 

"tagmentat ion" combines the fragmentat ion and l igation react ions into a single step 

that greatly increases the efficiency of the l ibrary preparat ion process. Adapter

l igated fragments are then PCR ampl i fied and gel purified. 

2.6.2 Sequencin g Data and Results  

For c luster generation, the l ibrary was loaded into a flow cel l  where fragments were 

captured on a lawn of  surface-bound ol igos complementary to the library adapters. 

Each fragment was then amplified into distinct, c lonal c lusters through bridge 

amp lification. When c luster generat ion was complete, the templates were ready for 

sequencing. Raw data was produced through sequenc ing. The microbial communit ies 

were determined by Macrogen, South Korea, according to their establ ished protocols. 

2 . 7  Molec u la r  Iden tifi c atio n  of O. m uesebecki 

S ix 0. muesebecki specimens from both 20 1 3  and 20 1 6  were first used for the 

genet ic analys is. A molecu lar profile was estab l ished for ticks by using the fo l lowing 

two primer pairs of (Ward et a7. , 2005) :  

• Fish l F: 5 '-TCAACCAACCACAAAGACATTGGCAC-3 ' 

• Fish l R: 5 '- TAGACTTCTGGGTGGCCAAAGAATCA-3 ' 

• FisbF2: 5 '-TCGACTAATCATAAAGATATCGGCAC-3 ' 

• FishR2 : 5 '-ACTTCAGGGTGACCGAAGAATCAGAA-3 ' 
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These primers ampl ify a region in  the cytochrome ox idase c subunit I (COl ) of the 

mitochondrial D A. mplification was started with an init ia l  denaturation for 2 min 

at 95°C fo l lowed by 30 cyc les of  denaturation for 1 min at 94°C, anneal ing for 1 min 

at 54°C, and extension for 90 s at 72°e. A final extension step was performed for 1 0  

min at 72°e . The PCR products were visual ized using an agarose gel and examined 

under UV l ight . Additiona lly, a universal COl primer was used (Fo lmer el af. , 1 994) :  

• LC0 1 490: 5 '-GGTCAACAAATCATAAAGATATTGG-3 ' 

• H C02 1 98 :  5 '-TAAACTTCAGGGTGACCAAAAAATCA-3 ' 

React ions were amplified through 3 5  cyc les at the fo l lowing parameters: 1 min at 

95°C, 1 min at 40°C, and 1 . 5 min at 72°C, fo l lowed by a final extension step at 72°C 

for 7 min. A negative control was included in the test . Also, three primers were 

added to ampl ify the mitochondrial 1 6S rDNA and the nuc lear 1 8S rDNA of the t ick, 

to resolve the t ick ident ificat ion sequenc ing resu lts in which CO 1 primers were used. 

For 1 6S rD A ampl ificat ion, a spec ific primer which amplifies 460 bp product was 

used ( Wo lf el af. , 20 1 6):  

• 1 6S+ 1 : 5 '-CCGGTCTGAACTCAGATCAAGT-3 ' 

• 6S- 1 :  5 '  -GCTCAA TGATTTTTT AAA TTGCTGT -3 ' 

Ampl ification was carried under the fo l lowing cond it ions: init ial denaturation of 

94°C for 5 minutes was fo l lowed by 32 cycles, each cycle consist ing of a 

denaturation step of 1 min at 94°C, an anneal ing step of 1 min at 52 .  9°C and an 

extension step of 1 min at 72°e. F inal extension was provided at 72°C for 1 5  min . A 

second primer set was also used to ampl ify 1 6S rDNA (Vial  el aI. , 2006b) :  

• Tm 1 6S+ 1 : 5 '-CTGCTCAATGATTTTTTAAATTGC-3 '  

• Tm I 6S- 1 : 5 '-CCGGTCTGAACTCAGATCATGTA-3 ' 
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To obtain an ampi icon of 475-pb, PCR condit ions was fo l lowed by 1 0  cyc les of 1 

min at 92°C, 1 . 5 min at 48° , and 1 . 5 min at 72°C and 32  cyc les of 1 min at 92°C, 1 . 5 

min of  54°C, and 1 . 5 min of  72°C. P R detection of 1 8  rD A of  the t ick was 

performed using the spec ific primers N 3 5 ' -GCAAGTCTGGTGCCAGCAGCC-3 ' 

and 4 5 ' -CTTCCGTCAATTCCTTTAAG-3 ' ( Vial ef aI. , 2006b), which ampl ify a 

600 bp fragment of the 1 8S rD A of  t ick spec ies. The ampl ificat ion protocol 

cons isted of30  cyc les of 1 min at 92°C, 1 . 5 min at 54°C, and 1 .5 min at n°c. A fina l 

extension step was carried out for 1 0  min at 72°C. 

The PCR products were erified by e lectrophoresis in 1 . 5% agarose gel sta ined with 

ethid ium bromide and examined under UV l ight . The PCR purified ampl icons were 

sent to Macrogen ( Seoul, South Korea) for Sanger sequenc ing. To verify the identity 

of the sequences, they were analysed by BLAST ( National Centre for Biotechno logy 

Informat ion, http://blast .ncbi.nlm. nih .govlBlast .cgi) sequence analysis tool in the 

GenBank database. D A sequences were compared to publ ished sequences available 

in the NCBI GenBank. Sequences of PCR products and those obtained from 

GenBank were a l igned using Musc le alignment tool performed by MEGA 7 software 

( Kumar ef aI. , 20 1 6) .  A concatenat ion of these a l ignments was subjected to 

phylogenet ic analysis by using the neighbour-jo ining method in the MEGA7 

software performing 1 000 bootstrap replicat ions. All primers used in this study are 

summarized in Table 1 .  

2 . 8  Sca n n i n g  E lectro n M ic roscopy ( S E M) 

Prior to image capturing, ticks were c leaned with a soft brush submerged in disti l led 

water to remove all dust and impurit ies. After that, the samples were go ld coated in a 

sputter coater ( Polaron-SC7620) and were examined under S EM ( FE I -Quanta, 
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operated at l SkV).  Al l  scanmng Images were taken in the high vo ltage mode. 

crummg e lectron microscopy was done in the Physics Department at the UAB 

University. 



pec ificity 
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Nucleus 

Table 1 : Ull1ITIary of aU primers used in this study 

Ta rget Primer Primer Seq uence 

Gene a rne 

1 6S FDI 5 ' -AGAGTI'I'GATCCTGGCTCAG-3 ' 

rD A rp2 5 '  -ACGGCT ACCITGTr ACGACTT-3 ' 

OspC 1 5 '  -T AA TGAAAAAGAA T ACATT AAGTG-3 ' 

OspC OspC2 5 ' - TTAAGGITTITTIGGACITTCTGC-3' 

R R J 90-70 5 ' - ATGGCGAATAITTCTCCAAAA-3 ' 

ompA RR 1 90-70 1 5 ' - GITCCGTTAATGGCAGCATCT- 3 '  

1 90-FN 1 5 ' -AAGCAATACAACAAGGTC-3 ' 

1 90-RN 1 5 ' - TGACAGTIAITATACCTC -3 ' 

iedtrgj 5 '-CGGAGTTAACCGGAGTATCCA- 3 '  

led iedtrg_[ 5 '  -CCGTGAA TTICATGATGIT ACCTIT -3 ' 

Fisb l F  5 '  -TCAACCAACCACAAAGACA ITGGCAC-3'  

COX! Fisb 1 R  5 ' - TAGACTICTGGGTGGCCAAAGAATCA-3' 

FishF2 5 '-TCGACTAATCATAAAGATATCGGCAC-3'  

FisbR2 5 '-ACTTCAGGGTGACCGAAGAATCAGAA -3 '  

LC0 1 490 5 '-GGTCAACAAATCATAAAGATATTGG-3'  

COX! HC02 1 98 5 '  -T AAACITCAGGGTGACCAAAAAA TCA-3'  

1 6S 1 6S+ 1 5 '  -CCGGTCTGAACTCAGATCAAGT -3 '  

rRNA l 6S- 1 5 '-GCTCAATGAITTTTTAAAITGCTGT-3 , 

1 6S Tm 1 6S+ 1 5 ' -CTGCTCAATGATTTTTTAAATTGC-3'  

rDNA Tm 1 6S - 1  5 ' -CCGGTCTGAACTCAGATCATGTA-3 ' 

1 8S NS3 5' -GCAAGTCTGGTGCCAGCAGCC-3 ' 

rDNA NS4 5 '  -CTTCCGTCAA TTCCTIT AAG-3 '  

4 1  

Ref. 

(Noda et 

01., 
1 997) 

(Fukuna 

ga et 01. ,  
1 996) 

( Blair ef 

01. , 
2004) 

(de 

Bruin el 

01. , 
201 1 )  

(Ward et 

01. , 
2005 ) 

(Folmer 

el 01. , 
1 994) 

(Wolf el 

01. , 

2 0 1 6) 

(Vial, L. 

et 01. , 
2006) 

(Vial, L. 

et 01. , 
2006) 



Cha pter 3 :  Resu l ts 

3. 1 P R Ampl i ficat ion of  Bacteria l  1 6  rDNA 
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total of 3 00 adult and n mphs were col lected between 20 1 3  and 20 1 6  from Siniya 

I s land ( see Figure 7; p. 30) .  11 t icks were ident ified morpho logical ly as O. 

mue ebecki ( I xodoidea: Argasidae) .  0. mlle ebecki t icks were analysed for the 

pre ence of t ick-borne pathogens. They were col lected from a Socotra cormorant 

colony on the Is land. The primer set fD 1 and rP2, which ampl ify the bacteria1 1 6S 

rD was tested against all D A samples (n=300) to ensure each one of them 

contained bacterial  D A ( 1 6  rD A gene) .  The primer was found to work in a l l  t ick 

D A, as shown in F igure 1 0. The D A fragment, which was produced by this 

primer set was about 1 ,425-bp long. 

Figure 1 0 : Bacterial 1 6S rDN A gene length per lane 1 00 bp ladder 

( the gene in 1 . 5% agarose gel e lectrophoresis stained by ethidium bromide) 
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3 .2  Bacteri a l  I n fect ion P revalence 

total of 300 t icks col lected from bird hosts were e amined by peR for the 

presence of Rickert. ia spp . ,  Borrelia spp. ,  and Coxiella bUl7Ierii. Results were 

negat ive for Rickett ia spp. and Borrelia spp. On the other hand, 286 out of 300 

spec imens yie lded peR products for the Coxiella genes. 

3.2 . 1  Rickettsia spp.  Detect ion in O. 111ue ebecki 

The spotted fever group Rickettsia spp. in col lected t icks using ompA gene-spec ific 

primers in a nested peR was not detected from 0. ml.lesebecki. The results show that 

t ick D A extracts did not contain DNA from Rickettsia spp. and this is not related to 

the PCR because the peR conditions and primers produced the right target peR 

products (S40-bp) in the posit ive control react ions (F igure 1 1 ) .  Add itionally, based 

on the results of the 1 6S rD A PCR react ions it can be conc luded that all the tested 

DNA samples contained bacterial DNA. Thus the negat ive results reported here are 

not false posit ives, but are the result of zero pre alence of the Rickettsia spp. 
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F igure 1 1 : PCR ampl ificat ion of the spotted fever group Rickettsia spp. 

[PCR amplification was from 0. mue ebecki using the primer set RR 1 90-70 IRR 1 90-70 1 

fol lowed by 1 90-F 1 / l 90-RN I in 1 . 5% agarose gel stained with ethidiurn bromide. The gel 

is sho\>,ring negative results of Rickettsia spp. C is negative control; PC is positive control 

(Rickettsia endosymbiont of Amblyomma macu latum ompA, GenBank# JX I 34638); M 

is l OO-bp D A ladder (prom ega, Maclison, USA)] 

3.2.2 Borrelia pp.  Detection in O. muesebecki 

A total of 300 ticks were examined by peR for the presence of the Borrelia spp. , 

which was not detected by PCR in any of  the specimens (Figure 1 2 ). Detection was 

carried out using spec ific primers targeting the OspC gene. 
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F igure 1 2 : Ampl ification of Borrelia spp. from 0. mue ebecki 

[ PCR Ampl ification using the primer set OspC l and OspC2 in 1 . 5% agarose gel stained with 
etb.idium bromide. The gel is showing negative resu lts of Borrelia spp. NC is negative 

control; M is l OO-bp D A ladder (promega, Madison, USA)] 

3.2.3 Coxiella Detect ion i n  O. l11uesebecki 

I n  th is work, Coxiella prevalence was studied for al l  spec imens to check if these t icks 

on breeding colonies harbour this bacterium. In peR the primer ;cd amplified the 

expected 738-bp region when tested with the nymph and adult ticks and accordingly 

bands were produced on an agarose gel ( as shown in F igure 1 3 ) .  A total of 1 39 out of 

1 50 samples from 20 1 3  were positive compared to 1 47 posit ive samples out 1 50 

from 2 0 1 6. F igure 1 4  shows the percentage of Cox;ella in 20 1 3  and 20 1 6. 
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F igure 1 3 : Coxiella posit ive samples produced by icdtrg-r & icdtrg-fprirners 

[Agarose gel electrophoresis ( 1 .5%) stained with ethidium bromide showing bands of 

Coxiella positive samples produced by the icdtrg-r and icdtrg-f primers and amplified by 

PCR. The band represents the expected 738-bp PCR product of the isocitrate dehydrogenase 

(lcd); C is negative control; PC is positive control (C  burnetti). M is l OO-bp DNA ladder 

(promega, Madison, USA)] 
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Figure 1 4 : Difference of Coxiella presence in 20 1 3  and 20 1 6  

3 .3 l\1etage n o mi c  P rofile o f  Tick M ic rob ia l  Commu n it ies 

3 .3. 1 Sequencing Data Qua lity Ana lysis- Sample 20 1 3  

I n  this study, the total microbiota assoc iated with the t ick 0. muesebecki was 

ident ified via l 6S rRNA gene using M iseq system sequencer. Details on total 

numbers of bases, sequencing reads, and percentage of GC (%), Q20 (%), and Q30 

(%) are provided in (Table 2) .  A total of 2,69 1 ,632 reads were produced from five 

pooled groups, and total read bases were 208.2 Mbp. The number of reads per 

sample ranged from 294, 1 56 to 34 1 ,203. The GC content (%) was 55 . 1 76%, and Q30 

was 74.003%,  
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Table 2: Total os of bases, reads, and GC (%), Q20 (%), and Q30 (%) calcu lated 

for the 5 samples in 20 1 3  

Read Quality by Sample 

a mplc 'lamc Tot a l  Basc'i Read Cou n t  'i ( % )  GC( % )  

0 1  1 51 ,9· P . 3 7 7  33� ,  1 1 7 0 0  5� .53  

02 1 3 5 .-+0:\ 1 49 294, 1 56 0 0  5� .39  

03 1 5 1 .506, 1 82 3 3 1 .830 0 0  54 3 1  

04 1 44 .942.96 1 3 1 4 .993 0 0  54. 1 9  

05 1 5 6, .33 �O5 5 34 1 ,203 0 0  53 63 

* Total Bases The tolal number of bases in reads ident i tied 
* Read COlU1t : The total number of sequence reads 
* . ( 0 0 )  The 1 1 percentage in sequence reads 
* GC( 0 0) The GC percentage equence reads 

Q20(%) 

97.75 

97 .76 

97 .73  

97 .68  

97. 7 1  

* Q20 0 0 )  The percentage of bases i n  \\ h i c  h the Phred score i s  aboye �o 
* Q30lo 0) TIle percentage of bases in which the Phred score is abO\ e 30 

Q30(%) 

93 .06 

93.07 

92.93 

91 . 8 1  

92 . S6 

* OTLTs Oper:ltional Taxonomic Umt IS an operaLonal dcfimt lOI1 of a specIes or group or 

specie- often lIsed \\ hen only Dl TA sequence datJ is a\ aiJable 

C-,;) 1 r('tums the Chao ) richness cst 1111..1te for In OTL defil1ll 10n 

S hannon' The �hannon index takes mlo account the number and eyenness of species. 

SImpson The S impson l l1dex represents the probJbi l i ry (hat two random)) selected 

j .. .li\ .ul.; ... b III the habitat will belong to the same spec ies. 

* Good,> CO\ erage C 0\ erage is calcu lated as C 1-(\ 11) . 
\\ here \ IS the number of unique OTUs and 11 is the number of I 11diYlduals 1 11 the sample 

*Thls mdex gi\ es a relati\ e meJsure of ho\\ \\ el l the sample represents the larger 

em rronment 

Sequence quality trimming and filtering rel ied upon the perfect ident ity of paired-end 

read overlaps. This approach generates very h igh-quality reads by el iminat ing the 

majority of sequenc ing errors. Quality fi ltering was carried out using strict criteria of 

no ambiguous bases and no N bases. Chimeric sequences were detected and 

removed, leaving 50,756 unique sequences (Table 3). Reads were c lustered into 
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operat ional taxonomic units ( OTUs) at 970 0 sequence identity level .  Cluster analysis 

at  97° 0 ident ified 270,508 OTUs across the entire data. 

Table 3 :  Pre-processing & Clustering (by CD-HIT-OTU) 

Sample N a me Read Count 

0 1  60,927 
Re ults  of  CIustel' ing O� 56,207 

( c ut-off: 97% ) 03 53,756 

04 5 1 ,689 

05 47,929 

Sample Count 5 

R esul ts  of Pre-proces i n g  Read Count 270,508 

Gamma-diversity 323 

Min 47,929 

Counts/s ample s u m mary Max 60,927 

Median 53 ,756 

Mean 54, 1 0 ]  

Ambiguous 0 

Fi l tered Read Count  Low-Qual ity 1 83 ,356 

Chimera 50,756 

Other 1 , 1 09,679 

* Sample Count: The total number of sample 

* Read  Count : The total number of sequence reads 

* Sample Count : The total number of sample 

* Gamma-diversity represents the diversity across an entire landscape. (alpha + beta 

diversity ) 

* Alpha-diversity corresponds to species diversity in sites/habitats at a local scale 

* Beta-diversity comprises species diversity among siteslhabitats 

* Min : Minimum number of sequence per samples 

* Max : Maximum number of sequence per samples 

* Median : The number separating the higher half of a data samples 

* Mean : The average number of the sequence of samples 

* Ambiguous : Filtered seqs with ambiguous base calls 

* Low-Qual ity : Fi l tered seqs with low-qual i ty bases (Quality score offset 33 )  

3.3.2 Taxonorrllc Assign ment 

The bacterial d ivers ity associated with 0. muesebecki is  presented here at 

t axonomical levels as dominant bacterial phyla, genera, and spec ies. Of the s ixteenth 

total bacterial p hyla present in the whole 0. muesebecki t ick samples, the Firmicufes, 
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Profeobacferia, and Bacteroidefe were found to be the most dominant (Table 4) .  

The percent abundance \ as  ariable with an average 74.6% Finniclite , 1 4 .5% 

ProfeohaCferia and only 6 .7  % Bacferoidefe . 

There was a total of 1 05 bacterial fami l ies observed in the a. lJ7uesebecki whole t ick 

microbiome. Only three bacterial famil ies were detected at more than 1 5% 

abundance ( Figure 1 5 ) and (Table 6), and the most dominant was Bacillaceae 2 

fo llo\ ed by Staphylococcaceae. Overa l l, there were 1 50 bacterial genera present in 

the whole a. muesebecl..:i t ick samples. Of these, Salil1icocclis ( 1 7%), Bacillus and 

T 'irgibacillus (9 . 8%) were the dominant genera observed based on the number of  

reads ( Figure 1 6) and (Table 6 ) .  The overal l  t ick rnicrobiota in this study was less 

d iverse, with only one dominant bacterial spec ies ( Figure 1 7) and (Table 6). The 

most prevalent spec ies observed, with greater than 1 %  abundance in the ticks, was 

the Coxiella bumefii. 
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• Bacillaceae 2 

SlaphyJococcaceae 

Others 

Figure 1 5 : Bacterial diversity at the famjly level in a. muesebecki ticks 

[The percentage of sequence reads of each bacterial family was presented from individual 

ticks. The bacterial fami l ies with less than 1 % pooled together were presented as 'others'] 
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[The percentage of sequence reads of each bacterial genus were presented from inclividual 

tIcks . The bacteria l  genera with less than I % pooled together were presented as 'others'] 
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Figure 1 7 : Bacterial diversity at the spec ies level in 0. mllesebecki t icks 

[The percentage of sequence reads of each bacterial species were presented from inclividual 
ticks. The bacteria l species with less than 1 % pooled together were presented as 'others ' ]  
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Table 4 :  Taxonomy o f  the operat ional units COTU) at the phylum level 

K i nodom Ph l u m  D N A  Samples 

0 1  02 03 04 OS 

Bacteria Other 0.03% 0.00% 0.00% 0.06% 0.00% 

Bacteria 1 .26% 0.66% 0.76% 0.79% 0.62% 

ACldobacteria 
Bacteria 0 .00% 0.29% 0.07% 0.00% 0.00% 

Bacteria Actinobacteria 3 .05% 2 .84% 1 .75% 2.07% 1 .47% 

Bacteria Bacteroidetes 3 .32% 6.03% 5 .07% 4.99% 1 4 .23% 

BacterIa Ch10 roflexi 0.08% 0.38% 0. 1 5% 0. 1 0% 0.07% 

Bacteria Fusobacteria 0. 1 4% 0.4 1 %  0. 39% 0.33% 0.48% 

Bacteria Gemmatimonadetes 0.02% 0.00% 0.08% 0.00% 0.03% 

Bacteria Planctonl) ,celes 0.40% 0. 1 7% 0. 1 0% 0.05% 0.03% 

Bacteria Proteobacteria 1 3 . 34% 1 3 .85% 1 1 .2 1  % l 7 . 1 7% l 7.06% 

Bacteria Spirochaetes 0.00% 0.00% 0.00% 0.07% 0.00% 

Bacteria Tenericutes 0.00% 0.00% 0.00% 0.06% 0.00% 

Bacteria VemJcomicrobia 0.00% 0.00% 0.06% 0.00% 0.03% 

Candidatus 
Bacteria Saccharibacteria 0.00% 0.00% 0.00% 0. 1 3% 0.00% 

Bacteria Firmiclltes 78. 3 7% 75 . 1 5% 80.0 1 %  74. 1 3% 65.68% 

Bacteria candidate div. WPS- l 0.00% 0.00% 0.00% 0.00% 0.08% 
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Table 5 :  Abundance/taxonomy of dominant bacteria i n  5 samples from 20 1 3  

[The top five taxa/groups are shown for each of these fi e ranks] 

Level OUT I D  DNA Samples 

0 1  02 03 04 OS 

C ia s Bacilli 76.56% 73 . 1 5% 78.53% 72. 1 7% 62.99% 

Gammaproteobacteria 4.49% 5 .92% 5 .56% 1 2 .07% 1 3 .42% 

Flavobacteriia 1 .40% 2 .30% 2 .45% 3 . 1 1 %  9.42% 

A lphapro{eobacteria 4 .85% 3 .30% 3 .62% 3 .22% 2 . 1 2% 

C;'{ophagia 1 .80% 2 .23% 2.0 1 %  1 .44% 4.22% 

Order Bacillales 7 1 .65% 68.33% 73 . 56% 68. 58% 59.75% 

Legionellales 1 .29% 1 .85% 2 .30% 8. 1 3% 8.42% 

Lacfobacillales 4.9 1 %  4 .38% 4.97% 3 .60% 3 .24% 

Flavobacferiales 1 .40% 2.30% 2.45% 3 . 1 1 % 9.42% 

(vtophaga/es 1 . 80% 2 .23% 2 .0 1 %  1 .44% 4.22% 

Family Bacillaceae 2 1 2.43% 1 6.48% 1 7.62% 1 8 . 54% 28. 50% 

Staph) '!ococcaceae 25 .72% 2 1 . 1 5% 1 5 .44% 1 6.02% 1 0.79% 

Bacillaceae 1 1 5 . 65% 1 7 .56% 20. 1 1 % 1 8 . 79% 9. 1 8% 

Planococcaceae 1 2 .40% 7.99% 1 2 .23% 6.87% 8.23% 

Coxiellaceae 1 .29% 1 .85% 2 .30% 8. 1 3% 8.42% 

Genus Salinicocclls 25 . 37% 20.07% 1 4. 89% 1 4.65% 1 0.36% 

Bacillus 1 5 .65% 1 7. 56% 20. 1 1 % 1 8 .79% 9. 1 8% 

Virgibacillus 5 .99% 8.09% 7 .9 1 %  9.99% 1 7 .22% 

Sporosarcina 1 0. 8 1 %  6.06% 1 0.24% 5 .36% 7.08% 

Coxiella 1 .29% 1 . 85% 2 .30% 8. 1 3% 8 .42% 

Species Other A 25 . 37% 20.00% 1 4. 89% 1 4.65% 1 0. 36% 

Other B 1 5 . 29% 1 6. 78% 1 9. 75% 1 8.35% 9.06% 

Other C 1 0. 8 1 %  6.06% 9.67% 5 . 36% 6.86% 

uncultured bacterium 3 .44% 5 . 73% 2 .36% 3 . 52% 1 3 .65% 

Coxiella bW7Ielii 1 . 29% 1 . 85% 2 . 30% 8. 1 3% 8 .42% 
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3.3.3 Ecological  Pa ra meter : Richness and Diversity I ndices 

Rarefaction curves and alpha-di ersity indices, based on the spec ies richness, were 

calcu lated to obtain informat ion on ecological parameters. The alues obtained for 

the a lpha-d iversity indices are presented in (Table 6) .  The OTU number ranged from 

1 38 to 1 83 ,  with a total of 809 OTU detected at 97% sequence ident ity (cut-off level 

of 3%) (Table 6).  The Chao 1 ,  Shannon and S impson indices measured of the 

r ic hness and d iversity percentage in the community (Table 6). Good's coverage was 

calculated to demonstrate the sample coverage. 

As for Chao 1 ,  values were quite s imi lar in all samples, whereas the highest and 

lowest values were reached in sample 5 and sample 1 ,  respectively. Shannon-Wiener 

index values were between 4.73 ( sample 1 )  and 5 .09 (sample 2) .  The S impson index 

values were near to 1 in a l l  samples. 

Community Diversity 

- Sharum - Slmpsm 
5 1  
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O �  
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� 8 4 9  j 0 92  

Ib � .c: U) (I) 0.91 4 8  

4 7  0.00 
01 02 03 04 05 

Sampe 

F igure 1 8 : Differences in bacterial d iversity within t ick samples 

[using Shannon and S impson Index] 
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Table 6 :  Est imated OTU for five samples o f o. mue ebecki in 20 1 3  

[OUT regarding richness, diversity indices, and estimated sample coverage] 

ample  
OT t-. s C hao l 

'\ a me 

l l } P3 0 I -U ( )  

( )�  1 3 � .()  1 3", . 0  

03 1 75 II 1 75 . 0  

O...J. 1 70.0 1 70 0  

05 1 , 3 .0 1 , 7 . 5  

OTUs 

Community Diversity 

h a n n o n  Si mpson Goods COHrage 

-l 735( )( l53� 1 o l)()()R3 .. Hi3�)-; I � O. l)l)l)t)X35 'hl) 1 5  

- . ()l)5-l 1 7l)3()  I t)  ( ) . l)�6l)( l() 1 73555 I . ( )  

-+.  96-l0�9...J.( )3()5 o 92(150690 1 7n I 1 . 0 

5 0266725()9LJ...J. O.lJ3 1 ...J. I ()R3(l O'::: 3 1 . ( )  

...J. 905663959 1 3  O .  Y3l}()9�()5LJY36 ( )  999R I 22222-l5 

* OTUs : Operational Taxonorruc Unit is an operational definit ion of a species or group 

of species often used when only D A sequence data is avai lable 

* Chao l : returns the Chao l richness estimate for an OTU definition 

* Shannon : The Shannon index takes into account the number and evenness of species. 

* S impson : The Simpson index represents the probabi l ity that two randomly selected 

individuals in the habitat will belong to the same spec ies. 

*Goods Coverage: Coverage is calculated as C= l -(sln), where s is the number of 

unique OTUs and n is the number of individuals in the sample. 

*This index gives a relative measure of how wel l  the sample represents the broader 

environment. 
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lpha rarefaction graph sbO\ s whether the number of reads used in the analysis was 

sufficient in ident ifying species/OTU. If the curve becomes flattered to the riaht it o , 

ind icates that a reasonable number of reads have been used in the analysis .  Thus 

additional sequenc ing is not necessary. In contrast, if the graph does not plateau, the 

addit iona l reads are l ikely to discover more OTUs for the sample ( x-axis: read 

number; y-axis: number of OTUS) .  

I n  th is thesis, rarefaction curves were calcu lated as  shown in  (F igure 1 9) .  Al l  samples 

were rarefied to a depth of 53 ,750 sequence reads. The rarefact ion curves for the first 

three samples ( 1 -2-3)  reached saturation at 53 ,750 sequence reads indicating 

different OTU levels ·  1 43 ,  1 38, 1 75 respectively. In  sample 4, however, rarefaction 

curve reached saturation at 48,376 sequence reads indicating that the sampling effort 

covered a lmost 1 70 different OTUs. The h ighest OTUs was observed in sample 5 

which was about 1 83 OTUs at 43,002 sequences read. The rarefaction curves for al l  

samples reached the saturation p lateau, demonstrating that our sequencing depth was 

sufficient, and the sequence database was enough to capture the d iversity of bacterial 

communit ies in the present study. 
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Figure 1 9 : Rarefact ion curves per number of observed species in t ick samples 

[Curves are horizontal with the x-axis indicating that additional sequencing would Dot yield 
additional novel data ] 

3.3.5 OTU Heatmap 

The OTU heat map displayed raw OTU counts per sample, where the counts were 

coloured based on the contribution of each OTU to the total OTU count present in 

that sample (blue: contributes a low percentage of OTUs to sample; red: contributes a 

high percentage of OTUs). The heatmap in (F igure 20) shows the relat ive preva lence 

of the dominant t ick bacterial species across the t ick samples. Only pathogenic 

Coxiella bumelii was observed in a pooled sample of t icks as the highest dominant 

bacteria. 
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[ Species are arranged i n  order of i ncreasing preva lence from top to bottom. Sampl es on the x-axis are ordered. The gap represents deleted low percentage 

OTUs (b lue  colour)] 
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3.3.6 Classi ficat ion of Bacterial Taxa - R D P  and NCBI  

Two database namely the Ribosomal Database Project ( RDP) classifier and the 

ational Center for Biotechnology Information (NCBI )  taxonomy were used to 

assign taxonomic levels to the samples col lected in 20 1 3 . Each OTU produced by the 

Q I I M E  pipeline was c lassified to the bacterial k ingdoms. Between 47,929 and 

60,927 sequence reads of 0. mel/sbeei t ick, were assigned from phylum to the 

spec ies level. There were no differences on microbial population analysis between 

RDP and NCBI databases in the genus (Figure 2 1 ,  F igure 22)  and species levels 

(Figure 23 ,  Figure 24).  A large number of bacteria was categorized into the phylum 

Finnieu/e from the tick samples, therefore a phylum with relative abundance 2: 5% 

was defined as a dominant phylum 

At the phylum level these reads were c lassified as Proteobaeteria, Bacleroideles, 

A cfinobaeferia, Aeidobaeteria, Chlorof!exi, Fusobacteria, Gemmatimonadetes, 

Plallct07l1)'eetes, Spirochaetes, TenericZltes, Verrueomierobia, Candidatus 

Saecharibacteria and Candidate division WPS- J by the RDP and NCBI databases. A 

high percentage of sequence reads in these samples were unclassified at the species 

leve l .  Coxiella bumetii, however, accounted for most of the microbial populat ion in 

al l  samples. 
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Figure 2 1 :  0. lnuesebecJ.d t ick c lassified at the geneus level used NCBI database 

[Prevalence of the bacteria was sim ilar to RDP classifier] 

..... 
c 
Q) 
(oJ 
.. 
Q) 

� 

L 

70.000'0 T 

60.00% + 

50.00% 

40.00�� 

30.00% 

20.00% + 

1 0.00% + 

0.00% 
1 2 3 

Sample 
4 5 

• Sailnicoccus 

• BaClllus 

VirgibadJJlls 

Omers 

Figure 22 :  0. lnuesebecki tick c lassified at genus level used RDP c lassifier 
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F igure 23 : 0. 177uesebecki t ick c lassified at species level used NCB! database 

[Prevalence of the bacteria was s im i lar to RDP c lassifier] 
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3.3.7 equencing Data Qual i ty Ana ly i - ample 20 1 6  
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total of 9 1 5 , 7 1 5  effecti e equences were obta ined from the 5 samples. The 

number of reads per sample ranged from 1 8 1 ,003 and 1 86,079 with an average of 

1 83 . 1 43 reads per ample. Table 7 i l lustrates numbers of bases, sequencing reads, 

and percentage ofGC (0 0), Q20 (%), and Q30 (%) per a group of t icks. 

fier quality filtering, reads were c lustered into operational taxonomic units (OTUs) 

at 970 0 sequence identity level (Table 8 ) .  Through clustering, a total of 3 1 0,579 

OTUs were recovered at the cutoff level of 3% across the ent ire data. 

Table 7 :  Total  os  of bases, reads GC (%), Q20 (%), and Q30 (%) calculated for the 

5 samples in 20 1 6  

Sam p le .\" ame Total Bases Read Cou n t  N(% ) GC( % )  

06 H3.05\}. ,)32 1 .  1 , 7% ( l .O 53 1 9  

0"7 , 5 . 3 3-lA 1 6  I :(),( )79 0.0 53  ())  

0.' "3 7 1 -l.093 I R5 . 3( )9 O.ll 52 . 9 

(jl) ,'2. 1 -l L9:9 I ' 1 ,003 ( J .O 53 03 

1 0  �2.q8KOO� I X I ,526 0.0 5 2 3 X  

* Toral BJses The total number of bJses in reads identl fied 
* Read Count The tOI:11 number of sequence reads 
* ( 0) :  The • .  percentage IJ1 sequence reads 
* GC(O u): The GC percentage sequence reads 

Q20( % )  

9 .'  26 

9X 2-l 

9X 3 

9X 06 

l)X. I () 

* Q20(o o) :  The percentage of bases 111 \\ hlch the phred score IS abO\ e 20 

* Q30( 0): The percentage of bases 1 11 which the phred score IS aboye 3() 

Q30(% ) 

9-U 

l)-l 2 7  

9 -+  4-l 

\}3 . 1< 7  

l} -l  O-l 
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Table 8: Preprocessing & Clustering (by CD-H IT-OTU) 

Sample N a me Read Count  

06 62, 1 77 
Res u l t  of 07 67,852 

Clustering (cut-o ff: 08 63,50 1 
97% ) 09 56,7 1 8  

10 60,33 1 

Sample Count 5 

Res ul t  o f  Pre- Read Count 3 1 0,579 

p rocessmg Gamma-diversity 1 920 

Min 56,7 1 8  

Counts/sample 1\1ax 67,852 

s u m mary Median 62, 1 77 

Mean 62, 1 1 5  

Ambiguous 0 

Fil tered Read Count  Low-Quahty 1 8,628 

Chimera 56,836 

Other 529,672 

* Sample Count : The total nwnber of sample 

* Read Count : The total nwnber of sequence reads 

* Sample Count: The total nwnber of sample 

* Gamma-diversity represents the diversity across an entire landscape. (alpha + beta 

diversity) 

* Alpha-diversity corresponds to species diversity in sites/habitats at a local scale 

* Beta-diversity comprises species diversity among siteslhabitats 

* M in: M inimwn number of sequence per samp les 

* Max: Maximwn nwnber of sequence per samples 

* Median : The number separating the higher half  of a data samples 

* M ean:  The average number of the sequence of samples 

* Ambiguous :  Filtered seqs with ambiguous base calls 

* Low-Quality : F i ltered seqs with low-quality bases (Quality score offset 33 )  

* Chimera: Fi ltered seqs with chimeric reads 
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3.3.8 Taxonomic As ign ment 

For 20 1 6  specimens, the taxonomy-based analyses were performed using the RDP 

database, and al l  reads were c lassified to the Archaea and Bacterial k ingdoms. The 

diversity of the bacteria in t ick spec imens ind icated that the ident ified OTUs were 

c lassified into 38 phyla 84 c lasses, 1 45 orders, 264 fami l ies, 539 genera and 836 

species at a 97°� sequence simi larity level Furthermore, four main phyla, six c lasses, 

five orders, five fami l ies, five genera and four spec ies (>5% abundance) were found 

in the five samples (Table 9 and Table 1 0) .  I n  detail, at the phylum level, 

Profeobacleria and Firmicutes were the two main phyla, account ing for 37% of the 

total phyla (Table 9) .  

The most dominant phylum was Proleobacferia in samples 6, 8, 9 and 1 0; whereas 

FinnicZlles was the most h ighly represented phylum in sample 7 (Table 9) .  Members 

of other phyla such as Bacteroidetes and Cj anobacterialChloroplast were a lso 

commonly presented in these samples at a relative ly lower abundance (Table 9) .  

A lso, similar trends were observed in these samples at the c lass level, where 

Gammaprofeobacteria and Bacilli were dominant with populat ions ranging from 

1 1 . 36  to 58 . 77% (Table 1 0) .  

A total of 1 45 orders were detected, and about 4 1  of which were shared by  the five 

samples, including A cidimicrobiales, Bijidobacteriales, Coriobacteriales, 

Bactero ida les, Cytophagales, C/ostridiales, Vern(comicrobiales, Pseudomonadales, 

Bacillales, Lactobacillales and so on, and accounted for 1 . 74% of al l  tbe sequences. 

Moreover, 1 04 orders appeared only in spec ific samples, such as Mycoplasmatales in 

sample 9 ( 1 . 84%), Acholeplasmatales in 1 0  ( 1 .49%), Gaiel7ales in sample 7 (0 .03%), 

and otbers. 
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There was a total of 264 bacterial fami l ies observed in the 0. muesebecki whole t ick 

microbiome. Only three bacterial famil ies were detected at more than 2% abundance 

(F igure 25),  and the most dominant was Coxiellaceae fo l lowed by Bac i l laceae 1 and 

Bacillaceae 2. In terms of genus, the top five most abundant genera were Coxiella, 

Bacillus, T 'irgibacillll , Sporo arcina and Laclobacil/u and al l  of them occupied 

more than 8 .50 0 among a l l  of the detected sequences ( Figure 26). The overall t ick 

bacterial species in this study was less d i  erse, with only one dominant bacteria l 

spec ies ( Figure 27) .  Coxiella bZlmelii was the most prevalent spec ies observed in the 

t icks with greater than 1 0% abundance. 
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Figure 25 :  Bacterial diversity at the fami ly level in O. muesebecld ticks 

[The percentage of sequence reads of each bacterial family was presented from individual 

ticks. The bacterial fami l ies with less than 1 % pooled together were presented as 'others'] 
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Figure 26:  Bacterial diversity at genus level in 0. muesebecki t icks 
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[The percentage of sequence reads of each bacterial genus was presented from inruvidual 
ticks. The bacterial genus with less than 1 % pooled together was presented as 'others'] 
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Figure 27 :  Bacterial diversity at the spec ies level in 0. muesebecki t icks 

[The percentage of sequence reads of each bacterial species were presented from individual 
ticks. The bacterial species with less than 1 % pooled together were presented as 'others ' ]  
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Table 9 :  Operat iona l taxonomic units (OTU) at the phylum level 

Kingdom Phyl u m  DNA Samples 

06 07 08 09 10 

Archaea 0.00% 0.00% 0.00% 0.04% 0.00% 
Archaea Crenarchaeota 0.00% 0.00% 0.00% 0.00% 0.00% 
A rchaea Euryarchaeota 0.44% 0.02% 0.33% 0.22% 0.33% 
Archaea Thaumarchaeota 0.01% 0.00% 0.05% 0.01% 0.00% 
A rchaea Woesearchaeota 0.00% 0.00% 0.00% 0.02% 0.00% 
Bacte ria Other 0.02% 0.03% 0.02% 0.05% 0.39% 
Bacte ria 0.44% 0 .51% 0.96% 2 .81% 2 .35% 
Bacte ria Acidobacteria 0. 16% 0. 67% 0.07% 0.59% 0.01% 
Bacte ria Actinobacteria 5 .55% 3 .91% 4. 17% 10. 54% 0. 54% 
Bacte ria Arma timonadetes 0.05% 0.02% 0.00% 0.44% 0.00% 
Bacteria Bacteroidetes 3 .60% 2 .38% 4.46% 10.27% 2 1 . 10% 
Bacte r ia  Chlamydiae 0.00% 0.00% 0.00% 0.00% 0.02% 
Bacte r ia  Chloroflexi 0.09% 0.08% 0.24% 0.22% 0.46% 
Bacte ria Oeferribacteres 0.09% 0.08% 0.02% 0.00% 1 .42% 
Bacte ria Oeinococcus- Thermus 0.09% 0 .22% 0. 10% 0.08% 0.04% 
Bacteria Elusimicrobia 0.00% 0.00% 0.00% 0.00% 0.01% 
Bacte r ia  Fibrobacteres 0. 35% 0.00% 0.00% 0.00% 0. 37% 
Bacteria Fusobacteria 0.01% 0. 23% 0. 1 1% 0.48% 0.46% 
Bacteria Gemmatimonadetes 0.01% 0.06% 0.01% 0.08% 0.00% 
Bacte ria Len tisphaerae 0.01% 0.00% 0.05% 0.00% 0.02% 
Bacte ria Planctomycetes 0.03% 0. 36% 0.34% 0.56% 0. 14% 
Bacter ia Proteobacteria 43. 56% 2 2 . 5 1% 58. 18% 41 .44% 36.47% 
Bacte ria Spirochaete 0.02% 0.00% 0.03% 0.00% 1 . 2 1% 
Bacte ria Synergistetes 0.00% 0.00% 0.07% 0.00% 1 . 2 1% 
Bacteri a Tenericutes 0.05% 0.00% 0.00% 1 .84% 1 .49% 
Bacte ria Thermotogae 0.00% 0.01% 0.00% 0.00% 0. 15% 
Bacteria Verrucomicrobia 0. 17% 1 . 35% 0 .21% 5 .49% 0.89% 
B a cter ia BRCl 0.03% 0.00% 0.00% 0.00% 0.00% 
Bacte ria Candidatus Saccharibacteria 0. 1 7% 0. 19% 0.05% 0.02% 1 . 17% 
Bacteria Cloacimonetes 0.02% 0.00% 0.00% 0.00% 0.23% 
Bacte r ia  Cyanobacteria/Chloroplast 2 . 27% 4.82% 2 . 16% 7.07% 1 .41% 
Bacte r ia  Firmicutes 42. 36% 61 .97% 28. 29% 15.09% 27. 1 1% 
Bacte r ia  Ignavibacteriae 0.00% 0.00% 0.00% 0.00% 0.00% 
Bacter ia Latescibacteria 0.03% 0.03% 0.00% 0.04% 0.00% 
Bacte r ia  Nitrospirae 0.04% 0.04% 0 .00% 0.00% 0.00% 
Bacter ia  Parcubacteria 0.00% 0.09% 0.00% 0.56% 0.02% 
Bacte ria SRl 0. 16% 0.00% 0.00% 0.00% 0.02% 
Bacteria candidate division WPS-2 0.00% 0.07% 0.00% 0.00% 0.00% 
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Table 1 0 : Abundance/taxonom of dominant bacteria in 5 samples from 20 1 6  

Le\ el 

C ia s 

Order 

Fami ly 

Genus 

Species 

I Taxonomy at c lass, order, family, genus, and species l evels. The top ii, e 

taxa/groups are shown for each of these five ranks ] 

OTU I D  DNA Samp Jes 

06 07 08 09 1 0  

Gammaproteobacteria 40.77% 1 6 .59% 49.84% 25 . 54% 3 1 . 1 5% 

Bacilli 37 .30% 58 . 77% 1 5 .44% 1 1 .36% 1 8. 1 6% 

Afphaproteobacteria 5 .4 1 %  6.6 1 %  

Ac/inobacteria 5 . 55% 1 0.39% 

Bac/eroidia 1 2.63% 

C/o tridia 1 2 .05% 8.04% 

Bacillales 29.38% 55 . 1 2% 1 3 . 1 9% 9.39% 1 7 .54% 

Leg;onellales 38 . 1 6% 1 4.66% 45.89% 2 1 . 86% 28. 7 1 %  

C/os/ridiale 1 2 .03% 8.03% 

Lactobacil/ales 7.92% 

Bacteroidales 1 2.63% 

Cox;ellaceae 3 8 . 1 6% 1 4 .65% 45.89% 2 1 .86% 28. 7 1 %  

Bacillaceae 1 1 5 .42% 2 1 . 58% 6. 32% 6. 54% 

Bacillaceae 2 9.28% 1 7 .26% 

Planococcaceae 1 3 .03% 6.94% 

Lactobacillaceae 5 .26% 

Coxiella 38. 1 6% 1 4 .54% 45 . 89% 2 1 . 86% 28.7 1 %  

Bacillus 1 5 . 1 9% 2 l . 39% 6.29% 6.47% 

Virg;bacillus 9.23% 

Sporosarcina 9.72% 6 .73% 

Lactobacillus 5 .26% 

Coxiella burneti; 38 . 1 6% 1 4. 54% 45.89% 2 1 . 86% 28.7 1 %  

uncultured bacterium 1 4. 33% 1 8 .77% 5 .9 1 %  5 . 38% 

Sporosarcil1a nev.ryorkens;s 8 .27% 

uncultured bacterium - - - - 5. 09% 

3.3.9 Diversity Statist ics 

The a lpha diversity of the bacterial community in the different samples of t icks was 

calcu lated using S impsons and Shannon-Wiener based on the amp licon sequenc ing 

data (F igure 2 8 ). The OTU number ranged from 404 to 65 1 ,  with a total of 2686 

OTU detected at 97% sequence ident ity (cut-off level of 3%) (Table ] 1 )  . The Chao 

1 and Shannon-Wiener ( H ') indices measured the richness and d iversity present in 

the community, respect ive ly. As for Cbao 1 ,  va lues were entirely different in a l l  
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samples, whereas the h ighest and lowest values were reached in samples 08 and 1 0, 

respect ively. hannon-Wiener ( H t) index values were between 4.4 (06) and 6.6 (09), 

and only sample 08 showed a lower Ie el of diversity. As for the S impson index 

analyzed, it represented a measure of the evenness and values were near to 1 except 

for samples 06 and 08. 
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Figure 28 :  Difference of bacterial diversity with in five t ick samples 
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Table 1 1 : Est imated OT for fi e samples of 0. muesebecki in 20 1 6  

[OUT regarding richness, di, crsity indices, and estimated sample coverage ] 

OTUS 

Community Di ersity 

ample OTUs C ha o !  S h a n n o n  Si mpson Goods Coverage 
ame 

06 444.0 445 .0 4.463365746 1 1  0. 826962 1 89 95 0.9999 1 95844 1 2 

07 573 .0  573 .857 1 42857 5 . 559 1 688095 1 0.927437732284 0.99994 1 048 164 

0 404.0 406.0 4 .7382547422 0.782999468357 0.999937008866 

09 6 1 4.0 6 1 4 . 1 42857 1 43 6.66999 1 7 1 39 0.944334774096 0.999964737826 

1 0  65 ] .0  658.0 5 .96759 1 1 6485 0.90752579 1 7  0.999867398 1 87 

* OTUs: Operational Taxonomic Unit is an operational definition of a species or 
group of species often used when only DNA sequence data is available 
* C hao l : returns tbe Cbao l richness est imate for an OTU definition 
* S hannon: The Shannon index takes into account the number and evenness of 

species .  
* S impson: The Simpson index represents the probability that two randomly selected 
individuals in the habitat wil l  belong to the same species. 
* Goods Coverage: Coverage is calculated as C= l-(sln), where s is the number of 
unique OTUs and n is the number of individuals in the sample. 

*This index gives a relative measure of how wel l the sample represents tbe larger 
environment. 
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3.3. 1 0  Rarefact ion 

Rarefact ion curves were calcu lated to eva luate spec ies richness within t ick samples 

( Figure 29) .  All samples were rarefied to a depth of 62, 1 70 sequence reads. The 

rarefaction curves for the first three samples (06-07-08) reached saturation at 62, 1 70 

equence reads indicat ing at different OUT Ie el ;  444, 573,  404 respect ively. In  

sample 09, however, rarefact ion curve reached saturation a t  55 ,954 sequence reads 

indicat ing that the sampling effort covered a lmost 6 1 4  different OTUs. The highest 

OTUs was observed in sample 1 0  which is about 65 1 OTUs at 55,954 sequence 

reads. Rarefact ion curves demonstrated that the majority of curves plateaued, tbus 

addit ional  sequencing was unlikely to yield novel data in most cases. 
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Figure 29: Rarefaction curves per number of observed species for t ick samples 

[Curves are horizontal with the x-axis indicating that additional sequencing would 

not yield additional novel data] 
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3.3 . 1 1 OT Heatmap 

The heatmap in  ( Figure 30) shows the relat ive prevalence of the dominant t ick 

bacterial species across the t ick samples. Only pathogenic Coxiella burne/ii was 

ob erved in a pooled sample oft lle t ick as tbe h igbest dominant bacteria. 
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Figure 30 :  Rarefied abundances heatmap of  most abundant spp. in each sample 
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[ Spec i es are ananged in order of i ncreas ing preva l ence from top to bottom. Samp l es on the x-axis are ordered. The gap represents deleted l ow 

percentage OTUs (blue colour)] 
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3.4 M o lec u la r  I d e n t ification  of  O. m ue ebecki 

In the PCR, both primer sets of Fisb l FIFish l R and FisbF2lFishR2 cl id not amplify 

any fragment and accordingly no bands were produced on an agarose gel  (Figure 3 1 )  

and ( Figure 32) .  Howe er, the LCO 1 490IHC02 1 98 primer amplified the target 

region and produced the e pected 7 1 0-bp band on an agarose gel (Figure 33) .  Tbe 

primer set 1 6s+ 1 I 1 6s- 1 amplified 6 samples and produced bands at the expected size 

460-bp ( Figure 34) .  In contrast, none of the analyzed ticks yielded 475-bp sequences 

with the Tm 1 6S+ 1 1  Tm 1 6S- 1 primer set (F igure 35) .  In addit ion, the amplification of 

1 8S rDNA was successfu l  for 3 samples and as a resu lt band appeared in the gel 

(F igure 36) .  

Based on the search ill the BLAST database of the GenBank the 0. 

ll7uesebecki cytochrome c oxidase 1 part ial gene sequence did not show high 

s imi larity \v i th other t ick sequences. The e ighbor-Jo ining homology tree 

revealed O. lJ7Z1esebecki in a separate group while the other analyzed sequences 

were clustered in t\l.O dist inct groups name ly Carios vesper{i/ionis and 

Heal11aphysa/is C017Cil711a ( Figure 3 7). The Bootstrap values which were generated 

from 1 000 permutat ions showed strong support ( values near or equal to 1 00) for 

the grouping of  the sequences within the C vespertiliol7ts and H. cOl/cil/Jla 

c lusters, but th is  was not t he case with O. l71 Z1esebecki. Also, when the primer NS3 

was used i t  successfully produced the target band in  PCR, however, the results of 

DNA sequence analysi s  revea led that 0. muesebecki was very c lose to Carios spp. 

as wel l  as to some other Ornithdoros spp. ( Figure 3 8).  This finding was manifested 

by the Ne igbbor-Jo ining homology tree in  which several Cario and Ornithdoros 

appeared in one group ( c lade) .  So, the scale of the tree was 0.0050, which 
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ind icated ery c lose homology among al l  of the analyzed sequences including O. 

ll7ue ebecki. 

Figure 3 1 :  Agarose gel of peR products of 0. muesebecki samples with 

Fish l FfFish l R primer set 

[NC is negative control ;  M represents l OO-bp DNA ladder (Promega, Mawson, USA)] 
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Figure 32 :  Agarose gel of peR products of 0. muesebecki samples with Fish F2/Fish 

R2 primer set 

C is negative control; M represents ] OO-bp D A ladder (promega, Madison, USA) ] 
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F igure 3 3 :  Agarose gel of PCR products of 0. mue ebecki samples with LCOfHCO 

primer set 

[NC is negative control ;  M represents l OO-bp D A ladder (Promega, Madison, USA) ] 
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Figure 34: Agarose gel e lectrophoresis of peR products of 0. mZlesebecki samples 

with 1 6S+ 1 1 1 6  - 1  primer set 

C is negative control ;  M represents I OO-bp D A ladder (Promega, Madison, USA) ] 
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Figure 35 :  Agarose gel e lectrophoresis of peR products of 0. mue ebecki samples 

with Trn 1 6S+ 1 /  Tm 1 6S- l primer set 

[ M  represents I OO-bp DNA ladder (promega, Madison, USA)] 
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Figure 36: Agarose gel e lectrophoresis of PCR products of 0. mue ebecki samples 

with the NS31 NS4 primer set 

[M represents l OO-bp 0 A ladder (promega, Maruson, USA)] 
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Figure 3 8 :  Neighbor-Joining homo logy tree of the 0. muesebecld I 8S rDNA gene 

compared with 84 sequences of the GenBank 

[These are a l l  the sequences produced after a BLAST search, and they were used for 

phylogenetic analysis. Bootstrap values ( 1000 repl icat ions) are indicated at each 

node] 
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Figure 39: Scanning electron micrographs showing (a) dorsal and (b) ventral view of 

0. mlle ebecki collected in UAE 

The dorsal s ide of  0. muesebecki, dorsal ( Figure 39 and Figure 4 1 ) . The sbape i s  

o a l  or pear-shaped. The texture of integument has mammil lae, and the surface i s  

without a scutum. The ventral s ide (Figure 40) shows short mouthparts and absence 

of eyes. The legs end in a pair of c laws but without a pulvi l lus between the claws. 
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F igure 40: Scanning electron micrographs of 0. muesebecki: A. ventral view; B .  
Cap itulum, ventral view ; C.  midgut; D.  execratory system 
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a b 

Figure 4 1 : 0. muesebecki adult showing (a) dorsal and (b) ventral surfaces 
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Chapter 4 :  Discuss ion 

4. 1 1\ 1 01ec u l a r  Detect ion and Preva lence of Tick-borne Diseases 

The current study did not detect any of the targeted diseases using pathogen-specific 

primers. I n  this work as well as in previous studies this t ick has been suspected to 

harbour infect ious d iseases. One objective of this research was to detect specific t ick

borne diseases using PCR Ticks ( 0.  muesebecki) from a Socotra Cormorant colony 

were invest igated for the presence of three genera of common tick-borne pathogens 

namely Borrelia, spotted fever group Rickettsia and Coxiella burne/ii. Based on the 

results, Bon"elia spp. and Rickettsia spp. were not detected in any t ick spec imen. I n  

the U AE, data on t ick d istribution and their abi l ity t o  vector pathogens causing 

d isease in wi ldl ife and domestic animals is l imited . Similarly, l imited information on 

the t icks associated w ith wi ldl ife was documented in neighbouring countries 

compared to an extens ive survey of tick fauna on domestic animals. 

Borrelia spp. are well known to cause zoonotic disease is usual ly transmitted by soft 

t icks of the genus Ol71ithodoros ( Humair, 2002) .  Several TBRF borreliosis have 

frequent ly been invest igated in l ivestock transmitted by several Ornithodoros species 

including a. sonrai in countries l ike Morocco, Libya, Egypt, I ran, Syria, and I raq 

( Rebaudet and Parola, 2006) .  Unlike several studies in which Borrelia species were 

ident ified in OmUhodoros t icks which vector them to mammals, l imited data 

documenting their vectoring of these pathogens to seabird colonies. The dispersal of 

a. muesebecki in S in iya I sland w ith in Socotra cormorant co lony raises expectat ions 

on the presence of some avian Borrelia species such as B. anserine, the a ian 

borreliosis agent which is known to be transmitted by the soft t ick Arags persicus 
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( H umair, 2002). lthough this would happen very rarely in this regIon, the 

d istribut ion of the Arabian Gazelle on islands could contribute to the l ife cyc le of 

tick and to the maintenance of the pathogen in nature. For example, B. burgdOlferi, 

the causat ive agent of Lyme disease available in every stage of t ick l ife cycle was 

found to be present in different hosts (Humair, 2002) .  Birds were found to be 

parasit ized by the immature ticks ( larvae and nymphs) .  Large-sized mammals such 

as rodents and deer are the host for this agent and these mammals contribute to the 

l ife cycle and in the maintenance of B. burgdolferi in nature (Capligina et aI. , 20 1 4; 

Lee et al. , 20 1 4; Pereira el aI. , 20 1 7) .  Several studies suggested that wild animals 

such as deer have been considered to be the potent ial reservo ir for a large number of 

tick-borne pathogens including bacteria (Overzier et aI. , 20 1 3 ; Han et al. , 20 1 7). 

Spotted fever group Rickettsia were not detected in any of  the ticks col lected in this 

study. Rickettsia spp. , however, has been well  documented in Tunisia, Algeria, 

Morocco and Egypt ( Parola et aI. , 20 1 3 ) .  Only one study has shown the presence of 

R.alldeanae in Hyalomma dromedarii camel t ick in the U AE (Al-Deeb et  al. , 20 1 5 ) .  

In Morocco, four pathogenic Rickeltsiae have been documented from domestic 

animals: R. slovaca, R. helvetica, R. monacensis and R. raoul/ii. These are 

transmitted via d ifferent ixodid t ick species (Sarih el al. , 2008). S imi lar ly, in Egypt, 

severa l ixodid ticks such as Hyalomma, Boophilus, and Rhipicephalus have been 

ident ified in camels and cows vectored of Rickettsia spp. inc luding R. africae 

( Abde l-Shafy el al. , 20 1 2).  Studies on the prevalence of Rickettsia spp. in argasid 

ticks parasitizing b irds are rare. 

In A lgeria, a study by Lafri et aI. , (20 1 5 ) detected novel Rickeltsia species in four 

different Omithodoros species from rodent burrows and seabird nests. The detection 
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of this non-pathogenic agent was on n mphal and adult stages. This and other studies 

did not present a full picture on maintenance and distribut ion of soft t ick 

transmission of Rickettsia spp. in nature espec ial ly within wild animals ( H i ldebrandt 

el 01. , 20 1 0; Obiegala ef 01. , 20 1 7) .  We can say that soft t icks generally play a ro le in 

the spread of vectored arbovITuses and relapsing fever spirochetes (Borreha spp. ), 

but they are rarel found to transmit of rickettsial agents naturally ( Lafri ef 01. , 20 1 5) .  

Coxiella- like endosymbiont has already been detected in 0. mue ebecki ticks from 

iniya Is land using  DNA-based techniques (AI-Deeb el 01. , 20 1 6).  In this research, 

detection of Coxiella in the same species was also found in t ick spec imens in 20 1 3  

and 20 1 6. The high preva lence of Coxiella endosymbiont was shown in samples 

20 1 6  ( 98%) compared to samples 20 1 3  (93%) (Figure 1 4 ). This indicates that this 

microorganism is st i l l  present in the area and is wide ly distributed on the island. 

The present study showed that the three above-mentioned t ick-borne pathogens were 

not present in 0. muesebecki t icks from U AB habitat, according to the screened t ick 

sample. However, further investigations are recommended to detect other bacterial or 

viral communities using specific primers, which wi l l  be helpful in understanding 

t ick-borne d iseases in general .  

4.2 Metagenomi c  P rofi le  of Tick M ic robia l  Com m u n it ies 

The work reported in this thesis represents the fust study to characterize all bacteria 

in 0. muesebecki t icks using next-generat ion sequencing. This method has not been 

applied yet in the ident ification of detai led micro biota profiles in any other t ick study 

in this region. T ick fauna in the UAB is not well studied, and a comprehensive 

invest igat ion of bacteria in 0. muesebecki was needed. In Saudi Arabia and Yemen 
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( H oogstral and Kaiser, 1 959; Banaja and Roshdy, 1 978;  Banaja and Ghandour, 

1 994), the endemic t ick fauna is well documented, however, our understanding of 

bacterial population and communit ies in those two countries st i l l  l imited. 

The data presented in the current study was co l lected from one habitat ( Siniya Is land) 

within two different t ime periods ( 20 1 3  and 20 1 6) .  I l lumina- MiSeq based 

metagenomic analysis was successful ly appl ied to detect and characterize the 

bacterial community residing in whole 0. muesebecki t icks. The MiSeq sequenc ing 

p latform used in this study demonstrated a higher resolution for bacterial diversity 

and structure analys is as evidenced by the 2,530,0 1 4  total sequences in all 1 0  

samples and a total o f  809 OTUs within 5 sample from 20 1 3  and 2686 OTUs within 

5 sample from 20 1 6  (3% cutoff level) .  A significant difference in OTU number was 

shown (Table 5 and 1 0), where ticks from 20 1 6  had a h igher number of OTUs than 

20 1 3 , indicat ing high d iversity in 20 1 6, which was further confirmed by the a lpha 

d iversity indices. The se lected OTUs in the heatmap also conflfmed the difference of 

bacterial diversity between two years. OTUs had appeared in h igher numbers in 20 1 6  

samples but with a low proportion o f  cultured bacteria compared to the low number 

of OTUs in samples of 20 1 3  but with a high proport ion of defined bacteria. 

Metagenomic analysis for the samples of 20 1 3  ident ified 1 6  phyla, 33 classes, 59 

orders, 1 24 fan:Ul ies, 1 82 genera, and 229 species whereas for the 20 1 6  samples were 

c lassified into 3 8  phyla, 84 c lasses, 1 45 orders, 264 famil ies, 539 genera, and 836 

species based on the ident ified OTUs. When characterizing bacteria in t icks, bacterial 

endosymbionts were predominant, and there was also a h igh percentage of 

uncultured bacteria. With respect to non-pathogenic bacteria, Fim7icules, 

Proteobacteria, and Bacferoidetes were detected in pooled 0. mZlesebecki, indicat ing 
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that these bacteria are part of the t ick microbiome. Evidence of the presence of 

simi lar bacteria in t icks assoc iated with migratory birds has been previously shown 

by the use of pyrosequencing (Budachetri el af. , 20 1 Th) . Regarding the unculturable 

bacteria in this study, further studies need to be conducted to identify whether these 

bacteria are pathogenic or primary endosymbiollts  that aid in this t ick 's  survival. 

Both the results of metagenornic and convent ional PCR assay revealed that the t icks 

were infected with a member of the genus Coxiella. The metagenomic analysis in al l 

poo led samples showed in both years that ticks were infected by Coxiella bumefii. 

However, results from the more specific PCR analysis in this study which is based on 

and gene-specific primer from 300 samples and on phylogenetic analysis from a 

previous study indicate the presence of Coxiella endosymbionts and not the 

pathogenic C bumeri;. This finding indicates that although NGS is an advanced and 

easy method to invest igate bacterial communit ies and provides high sequence depth 

of data our results demonstrated that it might not be able to confirm the presence of 

some pathogenic spec ies of bacteria such as C. burne/ii. 

I n  conc lusio n, this study showed the presence of h igh and d iverse bacterial 

communities in 0. muesebecki. Our study enhanced our understanding of bacteria 

communit ies in seabird co lony and expanded our knowledge of microbial eco logy. 

The analysis also indicated the existence of many unknown bacteria which means 

t hat more studies are required to invest igate the undefined bacterial communities 

assoc iated w ith 0. muesebecki. 
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4.3 <Mo lec u l a r  I d e n t i ficat ion of  O. muesebecki 

The tick on ocotra cormorant nest ing s ites was morpho logically ident ified as 

Omifhodoros muesebecki (Acari :  Argasidae) .  It  was previously identified from 

seabirds breed ing in a U AE island and studied morphological ly ( Hoogstraal et af. , 

1 970) . This thesis provided the ftrst molecular record of 0. muesebecki in the 

GenBank. The BLA T search resu lts and the eighbor-Join ing analysis provided 

molecu lar evidence that the t ick in this study was not Carios 1'esperfiliollis or 

Heal7laphysali C017CillllO, which was something a lready established based on the 

morpho logica l  ident ification. 

The ga ined resu lts a lso ind icated that the universal pruner paIr 

LCO 1 -+90/HC02 1 98, which is used in the molecular ident ification of animals 

annealed successfu l ly to the target gene but was not su itable for mak ing a good 

comparison between the 0. mllesebecki and other organisms ( mainly t icks) in the 

GenBank. The same can be sa id about the primer NS3 .  Although, these primers are 

most ly used in populat ion studies and phylogenet ic inferences (Nava et 01. , 2009) but 

detect ing phylogenet ic relationship to other Omithodoros spec ies was not successfu l 

in the current study. Moreo er, the current study proved that the Fish 1 ,  Fish 2 and 

Tm 1 6S primers did not work when used with 0. Inuesebecki. Therefore, further 

molecular markers using spec ific primers such as those from mitochondrial genome 

wi l l  be needed to detect spec ific regions (or genes) of Ornithodoros (Burger et 01. , 

20 1 4) .  
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4.4 c a n n i n g  E lect ron l\ 1 icro cop 

EM images re ea led that the tick is  a member of the O. mue ebecki. The dorsal 

side of 0. muesebecki, dorsal .  The shape is oval or pear-shaped. The texture of 

integument ha mammi l lae, and the surface is  without a scutum. The ventral side 

shows short mouthparts and absence of eyes. The legs end in a pair of c laws but 

\vithout a pulvil lus between the c laws. These findings are in agreement with Estrada

Pena, 20 1 5 . 
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C h a pter 5 :  Concl u s i o n  

In conc lusion, the results of this study re ealed the presence of Coxiella genus in 

ticks col lected from a ocotra cormorant breed ing colony and indicated that the 

prevalence of th is bacteria appears to have increased between 20 1 3  and 20 1 6 . In  

addit ion, th i s  study d id  not find the t ick-borne pathogens Rickettsia and Borrelia. I t  

a lso in o lved the first appl icat ion of the high-throughput sequenc ing method to 

inyest igate the diversity of bacterial communities assoc iated with soft seabird t icks in 

the UAE. The analysis revealed the existence of a diverse array of bacterial 

communities in the t ick samples, indicat ing a sizeable bacteria l  diversity in this area. 

The SEM images confIrmed that the t ick is a member of the 0. /J1uesebecki. 

Moreover, further studies are needed to ident ify the uncharacterized bacteria revealed 

as a result of the metagenornic analys is. 
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