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Abstract 
 

Camel milk (CM) has been reported to have anti-diabetic properties in many in vitro 

and in vivo studies but the molecular basis of such beneficial properties are still elusive. 

Recently, camel milk whey proteins (CWPs) have been shown to positively affect the 

activity of the human insulin receptor (hIR) in cell lines. In this study, we profiled 

crude CWPs and their hydrolysates as well as camel milk lactoferrin (CMLF) for their 

pharmacological and functional effects on hIR activity and its downstream signaling 

in both human embryonic kidney (HEK293) and hepatocarcinoma (HepG2) cell lines. 

For this, bioluminescence resonance energy transfer (BRET) technology was used to 

assess hIR activity in live cells and the phosphorylation status of the downstream 

protein kinase B (Akt) and the extracellular signal-regulated kinases (ERK1/2) was 

also analyzed in parallel. Moreover, glucose uptake was examined in order to link our 

data to more integrated cell response and to the hypoglycemic effects of camel milk. 

Our data clearly demonstrate the biological activity of CWPs, their hydrolysates, and 

CMLF, by promoting Akt and ERK1/2 phosphorylation in both HEK293 and HepG2 

cells. In addition, our BRET assay confirmed the positive pharmacological action of 

CWPs and their hydrolysates on hIR activity in a dose-dependent manner. More 

interestingly, the combination of CWPs and their hydrolysates with insulin revealed 

an allosteric modulation of hIR that was drastically abolished by the competitive hIR-

selective peptide antagonist S961. This clearly demonstrates the implication of hIR 

activation in the effects of CWPs and their hydrolysates. Finally, such effects on BRET 

data and kinase phosphorylation were clearly correlated with an increase in glucose 

uptake in HepG2 cells. Our data reveal the pharmacological effects of camel milk 

proteins on hIR activity and function. This provides for the first time the molecular 

basis of the anti-diabetic properties of camel milk that was unknown until now. 

 

Keywords: Camel milk, Diabetes, Insulin receptor, Insulin, Glucose, BRET. 
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Title and Abstract (in Arabic) 
 

 دراسة تأثیر بروتینات حلیب الإبل على وظیفة مستقبلات ھرمون الإنسولین

 صالملخ

ا كمضاد للسكري، لكن ھذ (hIR)أن حلیب الإبل لھ تأثیر على ھرمون الإنسولینأظھرت عدة دراسات 

(المسارات الموجودة داخل  على مستوى البیولوجیا الجزیئیة غیر واضح حتى الآن لحلیب الإبالتأثیر ل

 ً  وأجزاءه (CWPs)وجدت دراسة أن بروتینات حلیب الإبل مثل بروتین مصل اللبن ،الخلیة). حدیثا

(CWPs hydrolysates) نلا كتوفریإلى بروتین  بالإضافة(CMLF) ،  لھا تأثیر إیجابي على زیادة

تمت تنقیة البروتینات التي ذكُرت سابقاً  ،دراستنا ھذه لالإنسان. خلافي خلایا  الأنسولیننشاط مستقبلات 

بالإضافة إلى دراسة  ،من حلیب الإبل ومعاینة كیفیة تأثیرھا على وظیفة ونشاط مستقبلات الإنسولین

و  HepG2تأثیرھا على المستوى الجزیئي للخلایا باستخدام نوعین من الخلایا (خلایا سرطان الكبد 

لتقییم وظیفة مستقبلات  BRETاستخَدمت تقنیة  ،. لإتمام ھذه التجارب)HEK293( خلایا الكلى الجنینیة

عن طریق  ERK1/2و  Aktكل من بروتین  تقییم تفعیل نشاط إضافة إلى،في الخلایا الحیّة الأنسولین

ما یسمى بالفَسفتَة (أي ارتباطھم بفوسفات). أیضاً قیاس مستوى أخذ واستیعاب الخلایا للسكر للحصول 

على صورة أوضح لربطھا مع تأثیر حلیب الإبل على خفض السكري. دراستنا أثبتت أن بروتینات مصل 

عن طریق ما یسمى  ERK1/2و  Aktتقوم على تفعیل نشاط كل من  ،اللبن ولاكتوفرین بحلیب الإبل

تم تأكید التأثیر الإیجابي لبروتینات مصل  BRETباستخدام تقنیة  ،بالفسفتة. بالإضافة إلى ھذه النتائج

اعتماداً على تراكیز معینة. علاوةً على  الأنسولیناللبن ولاكتوفرین على وظیفة ونشاط مستقبلات 

أظھرت زیادة أكبر  ،بروتینات مصل اللبن وأجزاءھا بذات الوقت مع ھرمون الإنسولینعند إضافة ،ذلك

 (antagonists)من صحة ھذه النتائج باستخدام مضادات  دلنشاط مستقبلات ھرمون الإنسولین. وتم التأك

 تتنانفس مع الإنسولین للإرتباط بدلاّ منھا بمستقبلات (S961)للإنسولین. حیث أن ھذه المضادات 

توافقت بشكل رائع مع  ،و عملیات الفسفتة BRETالنتائج التي حصلنا علیھا باستخدام  ،الإنسولین.أخیراً 

نتائج مستوى أخذ واستیعاب خلایا سرطان الكبد للسكر. وأثبتت كیفیة تأثیر حلیب الإبل على وظیفة 

الإبل على خفض السكر  والذي بدروه یمثلّ أول دراسة تقوم بإظھار تأثیر حلیب ،مستقبلات الإنسولین

   على المستوى الجزیئي للمسارات الداخلیة للخلایا.

 .جلوكوز ،الأنسولین ،الأنسولین، مستقبلات ھرمون داء السكري الإبل، بحلی :الرئیسیةمفاھیم البحث 
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Chapter 1: Introduction 
 

1.1 Diabetes and the insulin receptor 

1.1.1 Definition and characteristics 

Diabetes mellitus (DM) is now recognized as the world’s fastest growing 

chronic condition, and the most common one. With urbanization, easy access to fast 

food, inactive lifestyles and increasing incidence of obesity, its global prevalence has 

increased to 8.8% with 425 million adults (20-79 years) living with diabetes in 2017 

(Figure 1) [1]. The International Diabetes Federation predicts that, following the 

current trend in increase, these numbers are expected to rise to 629 million in 2045. In 

the United Arab Emirates, the prevalence was recorded to be 17.3% in 2017, i.e., 

almost twice the current global average, and is expected to hike up to 23.4% in 2045 

(Figure 2) [1, 2].  

 

Figure 1: Estimated age-adjusted prevalence of diabetes in adults in the world in 
2017 (20-79 years) [1]. 
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Figure 2: Prevalence of diabetes and impaired glucose tolerance (IGT) in the UAE in 
2017 compared to the expected increase in 2045 [2]. 

 

Diabetes is mainly characterized by high blood glucose levels defined as >126 

mg/dl while fasting and >200 mg/dl 2 hours after ingestion of glucose (by the 

American Diabetes Association) [3]. Currently, diabetes has been classified into two 

major types (Figure 3). Type 1 DM (T1DM) is defined as an autoimmune disorder 

where the body attacks its own insulin producing pancreatic β-cells. Type 2 DM 

(T2DM) develops in the later stages of life and is characterized by insulin resistance 

and deficiency in insulin secretion due to progressive loss of β-cell function [3]. It is 

still unclear which event precedes the other, but a popular opinion is that insulin 

resistance develops early in the course of type 2 DM. Pancreatic β-cells then begin and 

continue to overproduce insulin to compensate for this resistance. As the disease 

progresses over the years, there is a gradual impairment of these β-cells and 

consequently, in insulin production, hence, reducing the body’s ability to compensate 

and resulting in hyperglycemia and diabetes [4, 5]. It is difficult to pinpoint an exact 

primary cause of DM, but adiposity, inflammation and genetic predisposition are a few 

key factors that contribute to the development of insulin resistance. The third common 
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type, gestational diabetes, usually develops in the initial stages of pregnancy and 

normally rectifies itself by delivery [3].  

 

 

Figure 3: Differences in pancreatic insulin secretion and insulin receptor activity in 
healthy individuals versus T1DM and T2DM patients [6]. 

 

Hyperglycemia does not have any immediate harmful effects, but over the 

years, persistent high blood sugar levels can have deteriorating effects on blood vessels 

and organs like kidneys, eyes and heart. The pathophysiology of diabetes is complex 

and involves many biological processes. For majority of diabetics, in addition to 

insulin therapy, more than one drug is often used to combat different aspects of the 

disease and maintain glucose homeostasis. Apart from maintaining a healthy lifestyle 

and diet, effective clinical management of diabetes involves the careful selection of 

drugs that complement each other and minimize the risk of negative side effects such 

as hypoglycemia. Consistent control of blood glucose levels in patients with insulin 

dependent diabetes effectively delays and slows down the development of 
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complications like diabetic retinopathy and nephropathy [7]. As research uncovers 

more and more about the pathogenic complexity of diabetes, there is an ensuing 

increase in the search for better and easier treatment options. 

1.1.2 Insulin receptor and its signaling pathways 

Insulin is a 51 amino acid long anabolic hormone secreted by β-cells in the 

Islets of Langerhans of our pancreas in response to rises in blood sugar levels. 

Discovered almost a hundred years ago, it is most famously known for being the key 

player in glucose and lipid homeostasis in the body [8]. In broad terms, insulin 

promotes the uptake and storage of fuel as glycogen and fats, and prevents breakdown 

of stored fuel [9]. Insulin is initially synthesized in the pancreas as a 110 amino acid 

polypeptide called pre-proinsulin. Almost immediately it is transferred to the 

endoplasmic reticulum where it undergoes cleavage and loses its signal peptide to form 

proinsulin [10]. Finally, a middle fragment of proinsulin is removed by proteolytic 

cleavage leaving us with the two chains of mature insulin (A and B) held together by 

disulphide bridges [11]. Insulin achieves its effects through its human receptor (hIR) 

present in the plasma membranes of its target cells – the most prominent ones being 

hepatocytes, adipocytes, skeletal muscle cells, pancreatic β-cells and neurons [12].  

The hIR belongs to the tyrosine kinase family of receptors (RTK). Together 

along with insulin-like growth factor receptors (IGFR) and the orphan receptor, they 

form the IR subfamily. All receptors in the IR family are synthesized as one protomer 

protein which then is proteolytically cleaved to form α and β polypeptide chains. For 

the hIR, these chains are finally assembled into disulfide linked homodimers where 

each monomer is the αβ heterodimer. This αβ monomer is coded for by a gene with 22 

exons. After translation, the pre-mRNA undergoes alternative splicing of exon 11 to 
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create two variants of the hIR without and with the exon; IR-A and IR-B respectively. 

The α subunit of hIR is entirely extracellular and contains the ligand binding domains 

of the receptor. Meanwhile, the β subunit spans the plasma membrane once and then 

constitutes the cytoplasmic subunit, possessing its characteristic tyrosine kinase 

domain [13]. 

 

 

Figure 4: Schematic representation of the Akt/PI3K and MAPK/ERK pathways 
initiated by the insulin induced activation of the hIR. Adapted from [4]. 
 

When insulin binds to α subunit, it causes a conformational change in the 

receptor bringing the two β subunits together in the plasma membrane. This 

consequently allows autophosphorylation of hIR at specific tyrosine residues and 

activation of its kinase activity. We know now that the downstream signaling pathways 

initiated by insulin binding to the hIR cannot be explained as a single line of events 
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one preceding the other, but as a complex and integrated network involving branching 

out at several steps and crosstalk between pathways arising from hIR as well as other 

receptors. The major two pathways by which the hIR controls its metabolic and 

mitogenic effects are Akt/protein kinase B (PKB) pathway and ERK/mitogen-

activated protein kinase (MAPK) pathway respectively (Figure 4). These pathways 

begin with the recruitment and subsequent activation of the scaffolding proteins, 

insulin receptor substrate protein (IRS) and Shc to the hIR via their phosphotyrosine 

binding (PTB) domains. In the PKB/Akt pathway, phosphoinositide 3-kinase (PI3K) 

bind to IRS, via its SH2 domain [14, 15]. Here, the IRSs do not contain any intrinsic 

kinase activity, but act as scaffolds to bring PI3K close and allow their phosphorylation 

by hIR. PI3K then activates protein dependent kinase 1 (PDK1) which in turn activates 

PKB/Akt. Activation of PKB is responsible for the mediation of major metabolic 

effects of insulin such as increase in glucose uptake by translocation of glucose 

transporter 4 (GLUT4) from cytoplasmic vesicles to the plasma membrane, and also 

activation of glycogenesis [9, 16]. Glucose transport proteins like GLUT4 help in 

uptake of extracellular glucose from the blood to inside the cell via an ATP 

independent mechanism [15].  

Another signal transduction protein, Grb2 interacts with IRS to initiate the 

ERK/MAPK pathway. Grb2 then phosphorylates Ras which in turn initiates the 

Ras/Raf/MEK cascade leading to the activation of MAP kinases such as p38, c-Jun N-

terminal kinase (JNK) and ERK1/2 [14]. The MAPK/ERK pathway is the mitogenic 

arm of IR signaling and is responsible for gene expression related to cell growth, 

proliferation and differentiation.  Similar to IRS, Shc is another scaffolding protein 

that binds to hIR and is seen to initiate the ERK/MAPK pathway in an IRS independent 

mechanism [14]. 
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1.1.3 IR, insulin resistance and diabetes 

Insulin resistance is the body’s inability to effectively use physiologically 

normal concentrations of insulin to maintain glucose homeostasis. Although insulin is 

a pleiotropic hormone, ‘insulin resistance’ usually refers to its actions on blood glucose 

levels. Everybody with insulin resistance is not diabetic and some can maintain 

glucose homeostasis by compensatory increase in insulin secretion, while most 

patients with both types of diabetes exhibit some level of insulin resistance [17, 18]. 

Moreover in T2DM,together along with obesity, is one of the major risk factors and is 

seen in pre-diabetic patients more than 10 years before the onset of the disease [18, 

19]. 

 The contributing factors for diabetes involve complex interplay between 

environmental and genetic parts. Obesity, inactive lifestyles, stress and excessive 

nutrition are some of the most common environmental triggers. The genetic 

contribution to the development of diabetes is made clear by its heritability. First 

degree relatives of diabetic patients have a much higher risk of developing the diseases 

as compared to the general population [20]. On a genetic basis, diabetes can be 

monogenic, i.e. arise as a result of just one defective gene, or polygenic, where effects 

of several altered genes (mainly involved in insulin signaling and β-cell growth and 

proliferation) add up to create the diabetic phenotype [21].   

Genome wide association studies have identified more than 50 genetic loci 

associated with T1DM , the most studied of these being mutations in HLA genes [22]. 

When it comes to T2DM, these studies have exposed at least 75 different genetic loci. 

However, the reasons for the effects of these mutations are still unknown [23]. There 

are rare monogenic forms of T2DM such as maturity onset diabetes of the young 
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(MODY), but majority of them are polygenic involving mutations at multiple genetic 

loci [23].  

Being the key pathway when it comes to maintenance of glucose homeostasis 

by the hIR, defects related to proteins involved in the metabolic PI3K/Akt signaling 

cascade obviously play an important role in the pathogenesis of insulin resistance. The 

first critical node in this pathway is the hIR itself [15]. More than 60 different 

mutations affecting the hIR have been identified, most of them resulting in diseases 

involving insulin resistance like the Rabson-Mendelhall syndrome, leprechaunism and 

type-A insulin resistance. Some of these variants have been associated with higher risk 

of developing T2DM [24]. Multiple in vitro studies on skeletal muscle cells isolated 

from diabetic patients reveal faults with IR including markedly reduced 

autophosphorylation in response to insulin, lower expression levels and defective 

kinase activity [25–28]. The IRS scaffolding proteins fall next in line in the pathway. 

Decreased tyrosine phosphorylation of IRS1 and IRS2 has been observed in diabetic 

and severely obese patients [25, 28]. It is interesting to note that in mice knockout 

studies with disruption of IRS2, the mice exhibited diabetic phenotype with insulin 

resistance and impaired beta cell secretion of insulin. However, with the disruption of 

IRS1, mice only developed insulin resistance suggesting compensatory increase in 

insulin levels by the pancreatic beta cells [5]. Reduction in tyrosine phosphorylation 

of PI3K is another factor that contributes to insulin resistance in diabetic and 

prediabetic individuals [25, 28, 29]. The next important protein in this signaling 

pathway is Akt. It is now known that mutations in the kinase domain of Akt2 are 

associated with severe insulin resistance and diabetes [15]. Consequent effects of 

defective IRS, PI3K and Akt activation is also seen significant attenuation of GLUT4 

translocation and glucose uptake and utilization by insulin sensitive peripheral 



9 
 

 
 
 

tissues[18, 25, 30]. Another cause of ineffective control of glucose levels in the body 

are missense mutations in the insulin hormone gene. It results in the productions of 

structurally abnormal insulin leading to problems in its biological activity and receptor 

binding abilities [31]. 

1.1.4 Therapies targeting the hIR 

Effective maintenance of glucose homeostasis over the years is the most 

effective way to decrease the adverse effects of hyperglycemia on organs such as eyes, 

heart and kidneys. Currently the best method of treatment for this is by administering 

exogenous or insulin analogs to help cope with insufficiency of biologically active 

insulin or impaired activity of the hIR. However, these treatments are not without 

negative side effects. Excessive activation of the insulin induced mitogenic 

MAPK/ERK pathway can cause weight gain and increased risk of cancer development. 

Occasional hyperinsulinemia can lead to hypoglycemic episodes [4, 32]. Additionally, 

these high levels of insulin can lead to an unwanted increase in the activation of other 

cellular processes like increased androgen production by the ovaries [17]. Recent 

research has been focusing on alternative treatments that target the hIR and activate 

only its glucose lowering metabolic pathways without the mentioned side effects [32]. 

A few examples have been discussed below. 

Qiang et al. (2014) reported the discovery of 4548-G05, a metabolite of the 

fungi Chaetomium gracile, and a non-peptidyl insulin mimetic which specifically 

activates the insulin receptor by binding to its extracellular region in the absence of 

insulin [33]. 4548-G05 activates both Akt and ERK signaling pathways downstream 

of the hIR while also increasing glucose uptake. In mouse models of T1DM and 

T2DM, it reduces blood glucose back to normal healthy levels [33]. Another potential 
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candidate is the synthetic insulin mimetic peptide S597 which showed high hIR 

binding affinity and activation of its kinase activity. It partially phosphorylated the hIR 

and exhibited biased agonism by activating the metabolic pathway almost to the level 

of insulin with negligible stimulation of the mitogenic pathway. Even high 

concentrations of S597 only partially stimulated the MAPK/ERK pathway. 

Accordingly, this peptide did not show much effect on cell proliferation [34].   

 Bhaskar et al. (2012) identified a promising candidate, XMetA – a fully human 

monoclonal antibody which is a positive allosteric modulator highly specific to the 

hIR [35]. XMetA binds to hIR with an affinity higher than insulin but causes only 

partially activation of the metabolic Akt pathway (about 40% of what is activated by 

insulin) and does not potentiate the mitogenic MAPK/ERK pathway [35]. It’s 

interesting to note that XMetA does not compete with insulin since it binds to 

completely different site giving it the advantage of being used in conjunction with 

insulin and other current diabetic drugs. Moreover, it takes away the risks associated 

with complete inhibition of natural hormonal mechanisms [36]. In vitro experiments 

in 3T3 cells confirmed consequent glucose uptake after activation of Akt, while in vivo 

experiments in STZ induced diabetic rats , cynomolgus monkeys and rhesus monkeys 

showed that XMetA normalized both  fasting and non-fasting blood glucose levels, 

along with other metabolic indices of diabetes [35, 37–39]. Even in insulin resistant 

diet induced obese mice, XMetA improved fasting glucose as well as insulin tolerance 

[38]. This character offers XMetA the potential of therapeutic use in patients where 

activation of IR by insulin is defective [37]. More excitingly, these positive effects 

come without side effects such as hypoglycemia and weight gain [38]. Another studied 

monoclonal antibody is IRAB-A, identified by Hinke et al.by phage screening assays 

with the IR extracellular domain. Similar to XMetA, in vitro assays using IRAB-A 
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identified it as an allosteric agonist with specificity to the insulin receptor. It was also 

observed to stabilize ligand binding and also increased sensitivity of the hIR to insulin 

coupled with higher glucose uptake. The same group also identified an hIR antagonist, 

IRAB-B. IRAB-B treated mice showed rapid development of hyperglycemia, sever 

insulin resistance, decreased phosphorylation of Akt, IRS1, glucose uptake as well as 

body weight [40]. As compared to the current methods, IRAB-B shows the potential 

to be a more cost effective and faster way to induce insulin resistance in mammalian 

models to study the pathophysiology of impaired insulin receptors [40]. 

Along with XMetA, Bhaskar et al.(2014,2014) also identified two other 

antibodies that interact with the hIR – XmetD and XMetS [41, 42]. XMetD is a highly 

specific allosteric insulin receptor antagonist. In vitro experiments showed that XMetD 

markedly decreased insulin affinity, IR autophosphorylation as well as downstream 

events including Akt phosphorylation and glucose transport. What’s more is that it did 

not show any effects in the absence of insulin [42]. Most importantly, in mice induced 

with hyperinsulinemic hypoglycemia XMetD treatment returned blood glucose to 

normal levels [42]. XMetS, on the other hand, enhanced the sensitivity of hIR to 

insulin by stabilizing the insulin – receptor conformation by decreasing their 

dissociation rate. Similar to XMetA, XMetS showed biased activity, enhancing the 

activation of only the metabolic or Akt pathway without much effect on the ERK 

pathway [41]. 

The modifications that these treatments cause to hIR signaling patterns are 

hypothesized to be the result of structural modulations to the IR brought about by 

binding to non-orthosteric sites [43]. While the research involving these treatments are 

still in the preliminary stages and not without the possibility of unidentified long term 
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effects, studying the structural mechanisms could bring us closer to understanding the 

working of the IR and also to the development of new therapeutics for diabetes [32]. 

1.2 Camel Milk 

For centuries, in communities that inhabit the drier areas of Asia and Africa, 

CM has been more than just the traditional source of nutrition. Throughout history, the 

therapeutic nature of CM has been reported against multiple diseases like tuberculosis, 

asthma, jaundice and leishmania [44, 45]. Rightfully called ‘the white gold of the 

desert’, CM has come into the research spotlight in the recent years, with scientists in 

different parts of the world uncovering its various medicinal properties including 

antimicrobial, anti-carcinogenic, anti-hypertensive, anti-oxidant and anti-diabetic 

properties [46].  

1.2.1 Chemical composition of CM 

In general, CM is composed of about roughly 80-90% water, 2-4% fat, 3-4% 

protein, 4-5% lactose, along with vitamins and minerals [47]. However, the specific 

percentages of each of the constituents vary based on influence by factors such as 

lactation stage, age of the camel, geographic and seasonal conditions [48]. Compared 

to bovine milk, CM has lower cholesterol and fat content. Moreover, this fat is mainly 

polyunsaturated fatty acids. Its fat globules are also the smallest in size when compared 

to cow, buffalo and goat milk. The smaller size implies a larger surface to volume ratio 

contributing to its easier digestibility [49, 50]. Milk proteins are broadly classified into 

caseins and whey proteins. In CM, caseins constitute about 75% of all protein while 

whey proteins make up the other 25%. The major protein fractions in camel whey are 

immunoglobulins, camel serum albumin, α-lactalbumin, lactophorin A, and 

lactoferrin. In contrast to bovine milk where β-lactoglobulin is the most abundant whey 
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protein, α-lactalbumin is the most abundant camel whey protein. β-lactoglobulin is one 

of primary culprits when it comes to milk allergies and lactose intolerance. Moreover, 

camel whey actually lacks β-lactoglobulins, making it safe even for such patients [51, 

52]. Camel whey also contains high concentrations of antimicrobial proteins and 

immunoprotective bioactive compounds like lactoferrins, immunoglobulins IgG and 

IgM and lysozyme [53]. To add to this exceptional list of benefits, CM is also rich in 

vitamin C, A, D and riboflavin. Additionally, its mineral profile is similar to that of 

human milk with high concentrations of iron, copper, zinc and potassium [48]. 

1.2.2 Antidiabetic properties of CM 

Many previous studies using animal models and humans have shown beneficial 

effects of CM in diabetes by reducing blood sugar, improving pancreatic β-cell 

function, decreasing insulin resistance and improving lipid profiles [54–60]. It has 

been suggested as an adjunct to insulin therapy because it can effectively reduce the 

amount of insulin required by diabetics. One study contended a significant reduction 

(46.15%) in insulin doses required by Type 1 diabetic patients who consumed raw CM 

for 2 years (Figure 5) [61]. In another study conducted in the camel breeding and 

rearing Raika tribe of India, the incidence risk of diabetes was very low in communities 

that regularly consumed camel versus those that did not [62]. It is also known to 

alleviate other pathophysiological effects associated with diabetes such as obesity, 

inflammation, wound healing, diabetic nephropathy and oxidative damage [63–66].  
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Figure 5: Graphical representation of the reduction in mean doses of insulin required 
in T1DM patients consuming CM over the course of 2 years [61]. 

 

While we cannot pinpoint an exact reason for these antidiabetic effects, recent 

studies have identified a few contributing factors. CM contains approximately 3 times 

more insulin like peptide (52 micro unit/L) as compared to bovine milk. Interestingly, 

camel and bovine milk insulin is only one amino acid different from each other, but 

no hypoglycemic activity has been reported yet for bovine milk. Hence, it is more 

plausible that it is not the insulin itself but its cooperation with the other characteristics 

of CM that helps with glucose homeostasis [67]. An important factor here is that CM 

does not coagulate in our stomach’s acidic environment, probably making it easier for 

this insulin-like peptide to be readily absorbed and passed into the blood stream [61]. 

Moreover, certain CM proteins have amino acid sequences that are rich in half cystine 

residues, much like the insulin family of proteins. Another explanation could be the 

unique property of these peptides in CM to be encapsulated by lipid nanoparticles, 

effectively protecting them from proteolysis in the stomach. The fact that CM is rich 
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in zinc could be another contributing factor, since zinc enhances and stabilizes insulin-

IR interaction [68, 69]. 

The antidiabetic nature of CM is the most famous amongst all its medicinal 

values and has been continuously verified by in-vivo studies on both animal models 

and diabetic patients [54, 58, 61, 68]. However, when it comes to the cellular and 

molecular mechanisms behind this effect, we’ve only scratched the surface. Our 

research explores the effects of CWPs and its fractions on one of the primary targets 

in diabetes: the hIR. We have also looked into the subsequent activation of its signaling 

pathways and glucose uptake into cells. 

1.2.3 Molecular and cellular mechanisms of the antidiabetic effects of CM 

While many in vivo studies have proven the hypoglycemic effects of CM, we 

are still in the early stages of defining the responsible molecular mechanisms. These 

anti-diabetic effects cannot be attributed to one CM component. It is rather the result 

of harmonious action of multiple components on different targets in the body. The 

studies discussed below have proven that these targets can not only be those directly 

associated with diabetes such as the IR, pancreatic β-cells and glucose transporters, 

but also factors that contribute to the pathogenesis of diabetes, such as obesity, 

inflammation and oxidative stress (Figure 6) [55, 66, 70–76].  

One study discovered potent dipeptidyl peptidase-4 (DPP4) inhibitory peptides 

in tryptic hydrolysates of CM [70]. DPP4 is a protease that inactivates incretins, i.e., 

glucagon like peptide-1(GLP-1) and gastric inhibitory polypeptide (GIP). Incretins are 

gut hormones released when food containing sugars and lipids travels into the small 

intestine. They signal the pancreas to produce insulin in accordance to the glucose 
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ingested and inhibit the release of glucagon. This is known as the incretin effect. 

Inhibiting DPP4 slows down incretin degradation allowing their effects to last longer, 

consequently increasing insulin secretion [70].  

Additionally, treatment with CM reduced diabetic oxidative stress by 

significantly decreasing free radicals and production of pro-inflammatory cytokines 

like interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) [71]. Diabetes 

(both T1DM and T2DM) is well known to be a chronic inflammatory disease where 

high levels of inflammatory cytokines and continued oxidative stress contribute 

largely to the pathogenesis and also development of complications in diabetes [72, 73]. 

Conversely, CM increased their anti-inflammatory counterparts IL-2 and IL-4 in 

diabetic mice. This could be due to the direct action of CM proteins, like lactoferrin 

and β-casein, which exhibit anti-inflammatory and anti-oxidant properties. However, 

it is also possible that the lowered glycemic levels indirectly diminishes the existing 

inflammation [60, 75]. Additionally, peptic hydrolysis of colostral CM produces 

bioactive peptides with increased antioxidative properties as compared to the milk 

before hydrolysis [74]. ATF-3 expression and phosphorylated protein kinase B (Akt) 

are two other targets studied. High ATF-3 levels are indicative of increased pro-

apoptotic genes, while decreased Akt phosphorylation influences the development of 

diabetes. Treatment with CWPs brings both these factors back to normal levels in 

diabetic mice [71]. It is possible that DPP4 inhibition along with anti-inflammatory, 

anti-apoptotic and anti-oxidant properties is the basis for increased pancreatic insulin 

secretion observed in diabetic patients and animals [55, 75, 76]. After all, inflammation 

and apoptosis of insulin-secreting pancreatic β-cells certainly is a prime event in both 

types of diabetes. 
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A recent in vitro study by A.O. Abdulrahman et al. suggests that CM directly 

interacts with hIR [77]. It weakly activated hIR but significantly increased its 

sensitivity to insulin, suggesting an allosteric mode of action. The study also narrowed 

down the putative agent to a peptide/protein component in the milk whey fraction [77]. 

In the light of this study, our main objective for this thesis was to test the effect of 

CWPs and its fractions on hIR function, and subsequent glucose uptake, in vitro. Direct 

interaction of CM with the hIR opens up the possibilities of positive allosteric 

modulation of other associated receptors such as those specific for  GLP1 , GIP and 

the IGFR, or even negative allosteric modulation of the glucagon receptor [78]. 

 

Figure 6: Probable molecular targets of camel milk components in the cell that could 
help explain its antidiabetic properties [78]. 

 

Among the constituents of CM, lactoferrin (LF) stands out as a potential player 

when it comes to its antidiabetic effects. Associations between LF and glucose 

homeostasis were initially made by Moreno Navarette et al. when they discovered that 

levels of plasma LF are significantly reduced in T2 diabetics with increased insulin 

resistance [79]. They highlighted that LF effects the insulin signaling pathway by 
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potentiating IR-mediated Akt phosphorylation and increasing GLUT4 and IR 

expression on adipocytes [79, 80]. Moreover, literature shows that increased plasma 

LF is associated with decreased expression of inflammatory markers and overall 

adiposity [81, 82]. Both of which are significant risk factors in the pathogenesis of 

diabetes. Plasma LF levels are also inversely related to abdominal as well as overall 

adiposity while consistent oral consumption decreased abdominal visceral fat in men 

[81, 83, 84]. Lastly, it even inhibits the production of several proinflammatory 

cytokines including TNF-α, IL6 and IL 1β [85]. 

Another possible candidate is adiponectin, a metabolic adipokine secreted by 

the white adipose tissue and present in high concentrations in CM. Higher circulating 

adiponectin levels have been correlated with increased insulin sensitivity while 

reduced levels of plasma adiponectin have been commonly observed along with 

insulin resistance, T2DM, obesity and cardiovascular diseases [86, 87]. 

Lastly, as mentioned in some studies above, CM peptides add one more 

category to its potential antidiabetic components. Gastrointestinal digestion of food 

proteins releases and activates encrypted peptides within it. These peptides have, more 

often than not, higher biological activity when compared to the parent protein. In 

general, milk is one of the major sources of food derived bioactive peptides. The 

peptides present in CM hydrolysates, generated by lysis by digestive enzymes, show 

significant DPP4 inhibition, wound healing and anti-obesity properties in the context 

of diabetes [57, 70, 88]. 
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Chapter 2: Hypothesis, Objectives and Approach 
 

We hypothesize that the hypoglycemic properties of CM observed in vivo may 

involve the action of CWPs, its hydrolysates and LF on the intracellular signaling 

pathways mediated by insulin. 

In order to better understand how CWP affects the hIR at the molecular level, 

our objectives were to study these effects on different aspects of IR function in vitro 

as given below: 

1. Pharmocological effect of CWPs, its hydrolysates and LF on the 

intracellular signaling pathways mediated by hIR by studying the 

phosphorylation status of intracellular kinases ERK1/2 and Akt as well as 

IR itself. 

2. Physical association of IR with the substrate protein IRS1 on treatment with 

CWPs, its hydrolysates and LF. 

3. Effect of CWPs, its hydrolysates and LF on the function of glucose uptake 

into the cells via translocation of glucose transporters (e.g. GLUT4) from 

their cytoplasmic vesicles to the plasma membrane. 

Table 1: Objectives and their respective approaches used in this thesis 
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Chapter 3: Materials and Methods 

3.1 Chemicals, reagents and plasmids 

Human insulin and bovine LF was purchased from Sigma Aldrich. The hIR 

antagonist peptide, S961, was a gift from Dr. Lauge Schäffer (Novo Nordisk, 

Copenhagen, Denmark). Camel LF was generously provided by Dr. Elrashdy M. 

Redwan (King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia).The plasmids 

coding for Renilla luciferase-fused hIR (hIR-Rluc) and YFP-tagged IRS1 (IRS1-YFP) 

used for transient transfections in HEK293 cells were kindly provided by Dr. Rasmus 

Jorgensen (Hagedorn Research Institute, Novo Nordisk, Gentofte, Denmark), Dr. 

Tarik Issad (Cochin Institute, Paris, France), respectively. Correct expression of the 

yellow fluorescent proteins (YFP) tagged proteins was verified visually by using 

fluorescence microscopy and by reading light emission at 540 nm using the Tristar 2 

plate reader. The same instrument was used to verify expression of hIR-Rluc by 

measuring light emissions at 480 nm upon the addition of Rluc substrate. 

3.2 Bacterial transformation and plasmid extraction 

The hIR-Rluc and IRS1-YFP plasmids were first dissolved in 50 µL nuclease 

free water. Transformation was carried out using NEB® 5-alpha competent E. coli cells 

(New England BioLabs Inc.) The bacteria and plasmids were mixed together as per 

manufacturer’s instructions. Briefly, after gentle mixing, the plasmid-bacteria mixture 

was incubated on ice for 10 minutes followed by a heat shock for 42 seconds at 45°C 

on the heating block, and then returned to ice for 5 more minutes. Next, 500 µL of 

SOC Outgrowth Medium (New England BioLabs Inc.) was added to each tube and 

incubated for 1 hour at 37°C in the shaking incubator. This was followed by 

centrifugation at 5000 rpm for 5 minutes, after which the supernatant was discarded, 
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and the pellet resuspended in 50-100 µL of SOC medium. This mixture was spread 

evenly onto agar plates containing the antibiotic ampicillin (Sigma) for colony 

selection and incubated at 37°C for 24-36 hours. 

One colony from the transformed plates for each plasmid was picked and 

dropped into 200 mL of LB media supplemented with ampicillin. The resuspended 

colony was grown in liquid culture overnight at 37°C overnight in the shaking 

incubator. The transformed bacteria were pelleted from the suspension culture the next 

day by centrifugation at 6000 rpm for 15 minutes. The pellets were stored at -20°C 

before being used for plasmid extraction. 

Plasmids were extracted from the bacterial pellets using the Qiagen® Plasmid 

Maxi kit following manufacturer’s protocols. Extracted DNA was finally resuspended 

in nuclease-free water and plasmid concentrations were measured using the NanoDrop 

2000 (Thermo Scientific). Plasmid integrity was checked using agarose gel 

electrophoresis. 

3.3 CM collection, fractionation and hydrolysis 

Milk of Camelus dromedarius was kindly provided by Ms. Aysha, (PhD 

student in the College of Science) fresh every week from her local farm (Al Ain, UAE). 

To obtain the whey proteins for cell treatment, whole milk was first skimmed by 

centrifugation at 5000 rpm for 30 minutes at 4°C to remove fat. Caseins were then 

separated out by acid precipitation by bringing the pH down to 4.6 using 1M HCl 

followed by incubation at 37°C for 30 minutes. The sample was then centrifuged again 

for 5000 rpm at 30 minutes at 4°C to precipitate caseins. Clear whey proteins were 

collected (supernatant) and pH adjusted to 7.4 (physiological pH) prior to cell 
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treatment. All CWP hydrolysates were kindly provided by Dr. Sajid Al Maqsood from 

the College of Food and Agriculture, UAEU. 

3.4 Cell culture and transfection 

Both HEK293 and HepG2 cells were cultured in Dulbecco’s modified Eagle’s 

medium (DMEM) (Gibco) supplied with 10% fetal bovine serum and 100 IU/ml 

penicillin, and 100 µg/ml streptomycin (Sigma-Aldrich) at 37°C in 5% CO2. 

Transient transfections were carried out when HEK293 cells were 

approximately 70% confluent in T75 flasks using Lipofectamine 2000 (Invitrogen) as 

per manufacturer’s instructions. Briefly for each flask, plasmids and lipofectamine 

were separately mixed with 1mL Opti-MEM (Gibco) each and incubated for 5 minutes 

at room temperature. The two mixes were then combined and incubated for another 20 

minutes before it was added to the cells in T75 flasks along with DMEM. For BRET 

experiments, each flask was transfected with 7.5 µg hIR-Rluc2.5 µg IRS1-YFP, while 

for sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and 

western blotting, each flask was transfected with 5 µg of hIR-Rluc.  

Twenty four hours after transfection, cells were harvested using Trypsin-

EDTA (Gibco) and counted with the improved Neubauer chamber. Cells were then 

seeded into 96-well plates at a density of 105 cells per well for BRET, or into 6-well 

plates at a density of 106 cells per well for western blotting experiments. All 

experiments were carried out a total of 48 hours after transfection. 

HepG2 cells endogenously expressing hIR were seeded into 6-well plates at a 

density of 106 cells/well 48 hours prior to the experiment. 
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3.5 Cell treatment and lysis 

HEK293 cells and HepG2 cells transiently and endogenously expressing hIR, 

respectively, were starved in serum-free DMEM overnight in their 6-well plates. Two 

protocols were followed for the treatment: 1) Cells were treated or not with insulin, 

camel and bovine whey proteins, hydrolysates of CWPs and LF (bovine and camel), 

for 5 minutes to observe ERK1/2 and hIR phosphorylation and 10 minutes for Akt 

phosphorylation, at 37°C. The timings for cell treatment were chosen based on the 

kinetics for these two pathways when activated by insulin [77]. 10 minutes was the 

optimum time for Akt accumulation in the cells after treatment with insulin, while the 

peak for ERK1/2 accumulation was at 5 minutes [77]. The same method was also used 

to study the effects of co-treatment of the mentioned treatments with insulin.  2) Cells 

were pre-treated with whole CWPs or its hydrolysates for 60 minutes before the 

addition or not (control) of insulin. In experiments involving the hIR-selective 

antagonist (S961), 1 µM of the antagonist was added along with the initial treatments.  

After treatment, the cells were washed in ice cold PBS followed by 

homogenization, for 90 min at 4°C, with 200 µL/well of ice-cold RIPA lysis buffer 

(Merck Millipore) supplemented with phenylmethylsulfonyl fluoride (PMSF) (Roche) 

and protease inhibitors (Sigma-Aldrich). Cell lysates that were then scraped and 

collected were centrifuged for 15 min at 15000 g (4°C) to remove cell debris. The 

supernatants were stored at -20°C until further use. 

3.6 Protein quantification by BCA assay 

Protein concentrations of the lysates were determined by the BCA assay using 

the BCA Protein Assay Kit (Pierce, Thermo Scientific). 
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3.7 SDS-PAGE and Western blotting 

20 µg of protein from each cell lysates sample was mixed with Laemmli buffer 

(Bio-rad) and heated for 5 minutes at 95°C. The samples were then separated by SDS-

PAGE (225 V for 75 minutes) and transferred to polyvinylidene fluoride (PVDF) (Bio-

Rad) membranes by conventional wet-transfer technique (100V for 90 minutes). 

Transfer was confirmed by staining with Ponceau (Sigma-Aldrich). The membranes 

were then blocked in 5% skimmed milk prepared in PBS (Gibco) containing 0.1% 

Tween 20 (Bio-Rad) (PBST) for 1 hour before moving on to immunoblotting. The 

membranes were incubated overnight in primary antibodies against Akt, pAkt, 

ERK1/2, pERK1/2, IR-β, and pIR-β (Table 2). Anti- rabbit IgG or anti- mouse IgG 

conjugated to horseradish peroxidase (HRP) were used as secondary antibodies as per 

the source of the primary antibodies. Membranes were treated with secondary 

antibodies for 45 minutes before treatment with the chemiluminescent substrate for 

detection (Pierce ECL and SuperSignal West Femto, Thermo Scientific). HRP activity 

was detected by chemiluminescence using the LI-COR C-digit Blot Scanner (LI-COR 

Biosciences.). The whole protocol in also described in Figure 7. All antibodies were 

purchased from Cell Signaling Technology, except the anti-pIR (Tyr1334) (Thermo 

Fischer). 
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Table 2: List of antibodies used and their working dilutions 

Antibody Catalog no. Dilution used 

Akt 9272 1:1000 

pAkt (Ser473) 9271 1:800 

ERK1/2 4695 1:1000 

pERK1/2 
(Thr202/Tyr204) 9106 1:2000 

IR-β 3020 1:1000 

pIR-β (Tyr1345) 3026 1:1000 

pIR (Tyr 1334) 44-809G 1:1000 

Anti-mouse IgG –HRP 7076 1:3000 

Anti-rabbit IgG –HRP 7074 1:3000 
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Figure 7: Schematic representation of cell treatment and western blotting. 
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Figure 8: Schematic representation of cell treatment for BRET assays. 
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3.8 BRET assays 

The BRET assay is a technique that can be used to protein-protein interactions 

in live cells and in real-time (Figure 8). It operates on the principle of resonance energy 

transfer from a bioluminescent donor to fluorescent acceptor based on their proximity. 

When the emission spectrum of the donor overlaps with the excitation spectrum of the 

acceptor, transfer of energy occurs from the former to the latter. Thus, when the two 

proteins are in close proximity (<10 nm), we are able to observe an increase in the 

BRET signal (Figure 9). Transfected HEK293 cells co-expressing hIR-Rluc (BRET-

donor) and IRS1-YFP (BRET–acceptor) proteins were starved overnight in serum-free 

DMEM. Cells were treated with 50 µL/well of respective treatments or PBS (control) 

and incubated at 37°C for 60 minutes. When required, S961 was added along with the 

treatments at this stage. This was followed by removal of treatment and addition of 40 

µL of 2.5 µM coelenterazine h (Promega) prepared in PBS.  BRET measurements of 

emitted light were immediately carried out using the Tristar 2 multilabel plate reader 

(Berthold, Germany) at 480 n and 540 nm. 
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Figure 9 : Principle of the BRET assay (adapted from [89]). 

 

3.9 Glucose uptake assay 

Glucose uptake into non-transfected HepG2 cells was measured using the 

Glucose Uptake-Glo Assay (Promega). Briefly, HepG2 cells that were seeded into 96 

well plates at a density of 105 cells/well were washed with PBS and starved in glucose 

and serum free medium on the day before the experiment. The experiment was started 

by removing the media and adding respective treatments to the wells followed by 

incubation for 60 minutes at 37°C. The stimulants were then removed and 25 µL of 

freshly prepared 1mM 2-deoxyglucose was added to each well. After 10-15 minutes 

at room temperature the reaction was stopped, and cells lysed using provided buffers. 

50 µL/well of freshly prepared 2-deoxyglucose-6-phosphate detection reagent 
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containing Ultra-Glo™ Recombinant Luciferase was added before incubating the plate 

for 15-60 minutes at room temperature. The luciferase activity was measured at 15-

minute intervals using the Glo-Max® Discover Microplate reader. 

3.10 Data and statistical analysis 

All BRET, western blotting and glucose uptake experiments were carried out 

in triplicates. Bands visualized after western blotting were quantified by taking the 

ratio of phosphorylated protein over the respective total protein to compare the rates 

of phosphorylation among samples. Quantification of bands and graph generation were 

carried out using Image Studio software, Version 5.2.BRET ratios were calculated as 

light emissions at 540 nm over 480 nm. From this, the ligand induced BRET was 

obtained by subtracting the control (only PBS treated cells) values. Next, all the values 

were normalized by taking the insulin induced positive control as 100%. Graphs were 

plotted using GraphPad Prism software. Statistical analyses were performed with two-

way ANOVA and Tukey's multiple comparisons test to determine statistically 

significance between the different conditions. ****p-value < 0.0001, ***p-value < 

0.001, ** p-value < 0.01, * p-value < 0.05, and ns p-value > 0.05. 
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Chapter 4: Results 

4.1 Successful CM whey proteins (CWPs) fractionation and hydrolysis 

After removing the fat and casein fractions from fresh CM, we ran them on an 

SDS-PAGE gel to confirm the presence of required fractions as well the integrity of 

whey proteins. Coomassie staining of the gel revealed clear single bands at around 80 

kDa in the lanes for camel and bovine LF signifying the presence of unadultered and 

intact LF. Camel and cow whey proteins showed in intact bands as well (Figure10). 

 

Figure 10: Coomassie blue staining of the gel confirming the presence of CWPs and 
LFs in the samples. 
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4.2 CWPs activate Akt and ERK1/2 pathways in HEK293 and HepG2 cells 

As stated above, CM has been reported to have significant anti-diabetic effects 

in many in vivo studies. Therefore, we attempted to link such interesting properties of 

CM with more integrated cell responses and molecular pathways using two different 

cells models, HepG2 cells endogenously expressing hIR and HEK293 cells transiently 

expressing or not hIR. For this, we investigated the functional activity of CWPs on the 

two major intracellular signaling pathways, Akt and ERK1/2 phosphorylation, known 

to be the key hIR-mediated downstream signaling involved in glucose uptake and 

homeostasis. As shown in Figure 11A, insulin (1 µM) used as a positive control 

significantly increased Akt and ERK1/2 phosphorylation in both HEK293 and HepG2 

cells indicating the activation of hIR and validating the experiment. Interestingly, 

CWPs (1 mg/ml) also strongly induced Akt and ERK1/2 phosphorylation in HEK293 

and HepG2 cells similarly to insulin action (Figure 11A). The overexpression of hIR 

in HEK293 seems to increase both insulin- and CWPs-mediated response compared 

to mock HEK293 cells (Figure 11A). These data demonstrate the functional activity 

of camel milk proteins on Akt and ERK1/2 signaling pathways that might explain the 

hypoglycemic effect of camel milk. 

Next, we examined the biological activity of CWPs upon in vitro proteolysis 

into heterogeneous peptide fractions. The rationale behind this was to mimic the 

obvious gastric proteolysis of CM proteins after its consumption. For this, we 

subjected CWPs to enzymatic digestions using the key gastric and pancreatic 

proteolytic enzymes, trypsin, chymotrypsin and pepsin and we then tested the effect 

of their respective hydrolysates at 1 mg/ml on Akt phosphorylation in HEK293 cells. 

As shown in Figure 11D, while trypsin hydrolysate fully lost its activity the 
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chymotrypsin and the pepsin ones were still functional like insulin and CWPs. This 

indicates that CWPs hydrolysis by chymotrypsin and the pepsin did not impair the 

biological activity of the proteins suggesting the existence of biologically active 

peptides contained in such fractions. 

 

Figure 11: CWPs activate Akt and ERK1/2 pathways in HEK293 and HepG2 cells. 
HEK293 cells transiently over-expressing hIR or not, and HepG2 cells endogenously 
expressing hIR showing phosphorylation of Akt and ERk1/2 on treatment with insulin 
or CWPs. A) pAkt, Akt, pERK and ERK bands visualized after western blotting. B) 
and C) The fold increase in phosphorylation of Akt and ERK1/2 (respectively) over 
the control. 
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4.3 Effects of LF on Akt and ERK1/2 pathways in HEK293 and HepG2 cells 

Following this, we investigated the effects of two potential candidates in 

CWPs: LF and adiponectin, on the Akt and ERK pathways. Both camel and bovine LF 

potentiated an increase in the phosphorylation of ERK1/2 that seemed to increase with 

over expression of hIR in HEK293 cells. However, the increase was more pronounced 

by bovine LF (Figure 12). Moreover, bovine LF also induced the phosphorylation of 

Akt, which was not evident when both HEK293 and HepG2 cells were treated CMLF 

(Figure 12). In HepG2 cells, however, CMLF potentiated ERK phosphorylation more 

than bovine LF.  The results with bovine LF are consistent with previously published 

research that showed that LF increases insulin induced Akt phosphorylation [79, 80]. 

Adiponectin did not show any activation of both pathways and was not continued with 

for further investigations (data not shown). 

 

Figure 12: Effects of LF on Akt and ERK1/2 pathways in HEK293 and HepG2 cells. 
Western blotting data of cells lysates from HEK293 cells transiently over expressing 
hIR or not, and HepG2 cells endogenously expressing hIR showed significant 
phosphorylation of Akt and ERK1/2 when treated with CWPs, bovine milk whey 
proteins (BWPs) and bovine LF. Camel LF on the other hand, showed significant 
activation of ERK1/2 pathway and only very slight phosphorylation of Akt. 
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4.4 Positive effects of CWP hydrolysates on Akt and ERK1/2 pathways in 

HEK293 and HepG2 cells 

Next, we profiled the most potent peptides obtained from pepsin hydrolysis of 

the raw CWPs for their biological activity on Akt and ERK1/2 pathways. These 

peptides are designated as P3:1, P5:1, P5:2, and P6:2 and used at 1 mg/ml along with 

the original CWPs (1 mg/ml). This dose was selected based on dose response studies 

of CWP and its hydrolysates on cells, showing maximum phosphorylation at 1mg/ml 

(data not shown). Among these peptides, P3:1, P5:1, and P5:2 showed to different 

extents, a stronger response on both Akt and ERK1/2, while P6:2 only induced a weak 

response with a relative stronger action of the peptide fractions on ERK1/2 compared 

to Akt pathway (Figure 13). Akt and ERK phosphorylation was observed in mock 

HEK293 cells as well as HepG2 cells with a few differences in the effect of the 

different peptide fractions in the two cell types. HEK cells overexpressing hIR 

however, stimulated only ERK phosphorylation and did not show any significant 

phosphorylation of Akt on treatment with the peptides (Figure 13). Together, these 

observations demonstrate the biological activity of peptide fractions obtained from 

pepsin hydrolysis of the whole CWPs and further confirm the existence of bioactive 

peptides in CWPs. 
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Figure 13: Positive effects of CWP hydrolysates on Akt and ERK1/2 pathways in 
HEK293 and HepG2 cells. These western blots show the successful phosphorylation 
of Akt and ERK1/2 by 3 out of the 4 peptic hydrolysates of CWP tested on mock 
HEK293 cells and HepG2 cells endogenously expressing hIR. HEK293 cells over 
expressing hIR showed only ERK phosphorylation. 
 

4.5 Positive effects of CWPs and their hydrolysates on hIR activity studied by 

BRET in HEK293 cells 

Next, we wanted to link our data on Akt and ERK1/2 with the putative effects 

of the raw CWPs and their peptide fractions on the activation of the hIR transiently 

expressed in HEK293 cells. For this, we used BRET technology as previously 

described. The assay measures in live cells the physical recruitment of IRS1-YFP 

protein to hIR-Rluc upon its activation by insulin and camel milk fractions as described 

in the methods sections (Figure 9). As a validation of the BRET assay, insulin 

promoted a nice dose-dependent increase in the BRET signal between hIR-Rluc and 

IRS1-YFP with the expected potency (EC50 value of 386.52± 32.34 nM, n=5) (Figure 

14A). Next, we examined the effect of a single stimulation on BRET signals in cells 

upon their incubation 60 minutes at 37ºC with either insulin (1 µM), CWPs (1 mg/ml), 

or the different peptide fractions (1 mg/ml). As shown in Figure 14B, CWPs and their 

peptide fractions clearly increased the BRET signal between hIR-Rluc and IRS1-YFP 

and this to different extent (50 - 75%, p<0.001, n=5-8) compared to insulin used as a 
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positive control. These observations suggest a positive pharmacological effect of 

camel milk fractions on hIR activity. To further confirm these observations, we 

performed dose-response analysis showing a significant dose-dependent BRET 

increase with CWPs (Figure 14C) as well as the different peptide fractions (Figure 

14D). Together these results reveal positive effects of CWPs and their peptide fractions 

on hIR activity suggesting either a direct or an indirect on hIR in HEK293 cells that 

may explain our data on Akt and ERK1/2 pathways shown in Figure 11 and 13. 

 

Figure 14: Positive effects of single treatments of CWPs and their hydrolysates on hIR 
activity studied by BRET in HEK293 cells. BRET experiments carried out in 
transfected HEK293 cells showing positive stimulation of the IR and subsequent 
recruitment of IRS1. A) Dose response of insulin, B) BRET response after 1 hour 
treatment of single dose of insulin (1uM), CWPs or its fractions (1mg/ml), C) Dose 
response of CWPs, D) Dose response of peptic hydrolysates of CWPs. 
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Figure 15: Positive effects of co-treatment of insulin with CWPs or their hydrolysates 
on hIR activity studied by BRET in HEK293 cells. BRET experiments carried out in 
transfected HEK293 cells showing significant increase in insulin-induced stimulation 
of the IR and subsequent recruitment of IRS1. A) Co-treatment of cells with CWPs or 
its hydrolysates with single dose of insulin (1µM), B) Dose response of insulin on cells 
pre-treated with CWPs or its fractions, C) Dose response of CWPs, D) Dose response 
of peptic hydrolysates of CWPs. 
 

We also tested the effect of the combined stimulation of the cells co-expressing 

hIR-Rluc and IRS1-YFP with insulin (1 µM) in the presence of 1 mg/ml of either 

CWPs or their peptide fractions in the aim to reveal any allosteric effects on hIR. This 

was based on the previous study reporting a positive allosteric action of camel milk on 

hIR activity [77]. As shown in Figure 15A, the co-treatments with CWPs and their 

peptide fractions significantly potentiated, to different extent (60 - 100%, p<0.001, 

n=5-8), the insulin-mediated BRET signals. Such a positive effect was also confirmed 

on insulin dose-response showing a significant increase in both the efficacy (Emax, 



39 
 

 
 
 

p<0.001, n=5-8) and the potency (given in Log EC50, p<0.001, n=5) of insulin (Figure 

15B) (Table 3) revealing a positive allosteric action of CWPs and their peptide 

fractions on hIR. Additionally, we used the angiotensin receptor (AT1R) conjugated 

to Rluc as BRET donor and its downstream signaling protein, Gαq conjugated to 

Venus (a variant of YFP) as a negative control for this experiment. As shown in Figure 

15C and 15D, single treatment of CWPs and its hydrolysates as well as their co-

treatment with Angiotensin II (Ang II) did not significantly increase the BRET signal 

compared to the control. This confirms that CWPs will not randomly potentiate any 

receptor in the cell. 

To demonstrate this positive allosteric action on hIR, we also examined the 

effect of the co-treatment on ERK1/2 response in cells pre-treated or not with either 

CWPs (1 mg/ml) or the different peptide fractions (1 mg/ml) for 60 minutes at 37ºC 

before their stimulation with insulin (1 µM) for 5 minutes at 37ºC. As shown in Figure 

16, the co-treatment with CWPs and the different peptide fractions strongly potentiated 

the insulin-mediated ERK1/2 phosphorylation and this was consistent with our BRET 

data shown in Figure 15. Together these results also reveal a positive allosteric action 

of CWPs and their peptide fractions on hIR activity in addition to their insulin-

independent effects. 
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Figure 16: Positive effects of co-treatment of insulin with CWPs or their hydrolysates 
on ERK1/2 phosphorylation in HEK293 cells. In HEK293 cells transiently over 
expressing hIR A) pre-treatment of cells with CWPs and their hydrolysates for 60 
minutes followed by 5 minutes with insulin and B) Co-treatment of cells with insulin 
and CWPs and their hydrolysates for 5 minutes, showed increase in ERK1/2 
phosphorylation to almost the levels of insulin. 
 

4.6 The positive allosteric effect of CWPs and their peptide fractions on hIR 

depends on its activation by insulin 

In order to characterize the positive allosteric action of CWPs and their peptide 

fractions on hIR activity, we examined the effect of the hIR-selective peptide 

antagonist, S961, as previously reported [90]. For this, BRET measurements were 

performed in HEK293 cells transiently co-expressing hIR-Rluc and IRS1-YFP and 

treated or not with either insulin (1 µM), CWPs (1 mg/ml), or the different peptide 

fractions (1 mg/ml), in the absence (control) or presence of 1 µM of S961. As shown 
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in Figure 17A, the different treatments significantly elicited BRET increase between 

hIR-Rluc and IRS1-YFP (p<0.001, n=3) further confirming the positive action of 

CWPs and their peptide fractions on hIR activity. In addition, S961 treatment 

drastically inhibited insulin-mediated BRET by∼80 % compared to the control 

(p<0.0001, n=3) indicating that the increase in the BRET signal indeed reflects hIR 

activation by insulin. However, S961 had no significant effects on the BRET signals 

promoted by CWPs and the different peptide fractions (Figure 17A). Next, to confirm 

our positive BRET data indicating the potentiation of IR, we analysed the 

phosphorylation status of the IR. As we expected, IR was phosphorylated by the whey 

proteins as well all the hydrolysates (Figure 18A) further supporting the suggestion 

that CWPs interact directly with the hIR in some way.  

In the co-treatment protocol where cells were treated with insulin in the 

presence of either CWPs or the different peptide fractions, a very strong potentiation 

in the BRET signals was observed compared to the control (p<0.0001, n=3) further 

confirming the positive allosteric action on hIR (Figure 17B). More interestingly, the 

treatment with S961 drastically abolished the potentiation of the BRET signals 

(p<0.0001, n=3) (Figure 17B) and the remaining partial response reflects the direct 

effects of CWPs and different peptide fractions on hIR similarly to what we obtained 

in Figure 17A. Adding to this result, we also observed that co-treatment of CWPs with 

insulin increased phosphorylation of hIR (Figure 18B). More importantly, this 

phosphorylation was completely blocked in the presence of S961, further proving that 

the increase in sensitivity to insulin observed in BRET is through the insulin receptor. 

 Moreover, we initially used two different pIR antibodies recognizing two 

different phosphorylated tyrosines in the hIR. Interestingly, although insulin 
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phosphorylated both these tyrosine residues, CWPs phosphorylated only one (i.e., Tyr 

1345) indicating differential phosphorylation of the receptor by CWPs (Figure 18C). 

This could be an explanation for the increase in IR potentiation when cells were pre-

treated with CWPs before challenging them with insulin. For all further experiments 

with the hydrolysates, anti-pIR (Tyr 1345) was used. 

  

Figure 17: The positive allosteric effect of CWPs and their peptide fractions on hIR 
depends on its activation by insulin. These graphs show the differences in BRET 
potentiation with A) single treatment of CWPs and its hydrolysates with and without 
the hIR antagonist S961 B) co-treatment of CWPs and its hydrolysates with insulin in 
the presence and absence of S961. 
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Figure 18: The phosphorylation of IR showing that the positive allosteric effect of 
CWPs and their peptide fractions depends on its activaion by insulin. In HEK293 cells 
overexpressing hIR: A) Single treatment by insulin, CWPs or its hydrolysates results 
in phosphorylation of IR. B) Pretreatment with CWPs or its hydrolysates followed by 
treatment with insulin (1 uM) leads to increase in phosphorylation of IR and this is 
blocked by S961. C)  Differential phosphorylation of the insulin receptor by CWPs. 
 

4.7 Positive effects of CWPs and their hydrolysates on glucose uptake in HepG2 

cells 

In order to translate our BRET and kinase (Akt and ERK1/2) phosphorylation 

data into more integrated cell response and to make a link with the hypoglycemic 

properties of camel milk demonstrated in many in vivo studies, we also examined the 

effects of CWPs and different peptide fractions on glucose uptake in native/non-

transfected HepG2 cells. As shown in Figure 19, unexpected in contrast to insulin all 

the other treatments significantly (p<0.0001, n=5) and to different extent promoted 

glucose uptake in HepG2 cells. HepG2 cells being liver cells predominantly express 
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glucose transporter 2 (GLUT2), while insulin induces glucose uptake through GLUT4 

[91, 92]. Glucose uptake through GLUT2 is insulin independent. Together, this could 

explain the low levels of glucose uptake into insulin treated HepG2 cells. 

 

Figure 19: Positive effects of CWPs and their hydrolysates on glucose uptake in 
HepG2 cells. CWPs and its hydrolysates stimulated glucose uptake into HepG2 cells 
endogenously expressing the hIR. 
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Table 3: Emax and Log EC50 values determined from the different single and 

combined treatments with insulin, CWPs, and the different peptide fractions (as shown 

in Figure 14C and Figure 15B). 

 

Treatment Emax (%) 

in single 

treatment 

Emax (%) 

in combined 

treatment 

Log EC50of insulin 

in combined 

treatment 

Insulin 

(Control) 

100 100 -6.28 ± 0.07 (n=5) 

CWPs 80 ± 8 (n=8) 184± 18 (n=8) -7.13 ± 0.14 (n=5) 

P3:1 67 ± 13 (n=5) 183± 19 (n=5) -7.29 ± 0.34 (n=5) 

P5:1 51 ± 8 (n=8) 162 ± 17 (n=8) -7.63 ± 0.35 (n=5) 

P5:2 76 ± 16 (n=5) 188± 23 (n=5) -7.50 ± 0.34 (n=5) 

P6:2 70 ± 9 (n=8) 157± 19 (n=8) -7.46 ± 0.39 (n=5) 
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Chapter 5: Discussion and Conclusion 

The antidiabetic nature of CM has been proved time and again by multiple in 

vivo studies in both animal models of the disease and diabetic humans. As mentioned 

earlier, a recent study revealed that raw CM significantly increased the recruitment of 

substrate proteins involved in insulin- induced downstream signaling pathways, to the 

hIR [77]. This potentiation was narrowed down to be the action of a component in the 

whey fraction of CM. Due to its obviously major role in glucose homeostasis, we 

hypothesized that this effect was linked to the activation of hIR by CWPs. To answer 

our question, we looked into effect of CWPs on induction of different mechanisms that 

are normally carried out by insulin for glucose homeostasis via the hIR: 

phosphorylation Akt and ERK1/2, physical association of IRS1 to hIR and increase in 

glucose uptake. The in vitro effects of CWPs, its hydrolysates, LF and adiponectin 

were studied on these three parameters. CWPs and its hydrolysates clearly potentiated 

Akt and ERK phosphorylation to levels that were comparable to insulin.  These two 

proteins play key roles in two major pathways activated by the insulin receptor, Akt in 

the metabolic pathway and ERK1/2 in the mitogenic pathway. This was true even for 

the peptic and chymomtryptic hydrolysates of CWP as well as the different peptide 

groups obtained after peptic hydrolysis and bovine LF. CMLF however, was only seen 

to activate the ERK1/2 signaling pathway, and to a lower extent than bovine LF. It is 

possible that the higher activity of bovine LF when compared to CMLF is due to the 

fact that bovine LF used here was commercially purchased, while CMLF was isolated 

in the university labs. However, we can also speculate that CMLF when given to cells 

as pure treatment does not elicit the same response as when it enters the body as part 

of whole CM. As mentioned before, a number of factors like the pH and stability of 
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CM along with the encapsulation of milk proteins by lipid nanoparticles, all contribute 

to the better bioavailability of CM proteins once ingested [61, 67].  

It’s important to note here that since the phosphorylation of Akt and ERK are 

not events that are exclusive to hIR activation and is possible through other receptors, 

we cannot use these results to confirm activation of hIR or the binding of CWPs and 

its hydrolysates to the hIR.  

Stepping one step closer to hIR activation, CWPs, its hydrolysates and LF also 

showed increased BRET signals (upto 75% that of insulin) signifying the physical 

association of hIR with IRS1. IRS1 is an important scaffolding protein involved in 

both the metabolic Akt and mitogenic ERK pathways induced by insulin through the 

hIR. It is the first intracellular protein that interacts with the hIR upon activation[14, 

15]. The consequent increase in glucose uptake into HepG2 cells confirms the 

intracellular translation of these signals into responses. 

Excitingly, when we co-treated hIR expressing cells with insulin along with 

CWPs or their hydrolysates, we witnessed a 60-100% jump in insulin induced -BRET 

signals. This is consistent with the observation from the previously mentioned study 

by A.O. Abdulrahman and colleagues which suggested a positive allosteric action of 

CM on hIR [77].  Comparing dose response studies of insulin with and without CWPs 

or its hydrolysates, we can clearly see that these proteins and peptides increase both 

the potency and efficacy of insulin. Fractions of CWP increased insulin induced 

recruitment of IRS1 to hIR even at saturating doses of insulin.  Additionally, these 

signals were higher than those achieved at saturating single doses of CWPs or their 

hydrolysates. Moreover, this view was strengthened further when blocking the hIR 

with the antagonist S961 significantly reduced insulin–induced BRET but had almost 
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no effect on that induced by any of the CWP fractions. Blocking of IR in cells treated 

with both insulin and CWPs remarkably diminished the insulin effect in the treatment 

and brought them back to the single treatment levels. All of these points suggest an 

allosteric mode of action of action of CWPs and their peptide fractions on hIR. The 

binding of insulin to the extracellular domain of the receptor, changes and stabilizes 

the conformation of the receptor in such a way that enables its intracellular kinase 

domains to undergo successful autophosphorylation and initiate signaling. We know 

now that the different ligands can exist for a single receptor and they can stabilize and 

potentiate the receptor to different extents and/or to be selective to certain downstream 

pathways [93]. In this scenario, it is possible that the allosteric binding of CWPs to the 

hIR stabilizes the insulin-hIR complex in a conformation that enables better interaction 

with downstream proteins, higher affinity to insulin and/or a lower dissociation rate of 

the ligand-receptor complex (Figure 20). A similar model of activation of the hIR is 

seen in XMetS, an allosteric antibody to the hIR [41]. These results also support the 

finding by Agrawal et al. (2011) where the amount of insulin required by diabetics 

considerably reduced over the course of 2 years if they were consuming camel milk 

[61]. Increased potency with co-treatment of insulin with CWPs or its fractions implies 

that, in the presence of CWP, a smaller quantity of insulin is required to achieve the 

same effect. 

It is important to note here that this allosteric effect of CWPs and its 

hydrolysates is in addition to the insulin-independent effects observed initially. While 

this study indeed postulates some degree of direct activation of the insulin receptor by 

CWPs, we cannot rule out the possibility that CWPs also have some indirect effects 

on the hIR and its related pathways. It is possible that it is potentiating downstream 

signaling targets in insulin induced hIR signaling pathways via activation of other 
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receptors. Another possibility is that CWPs affect completely different pathways that 

contribute to glycemic control via the activation of other receptors. Receptors like 

IGFR and cell surface receptors for glucagon, incretins and cytokines are some 

potential receptor candidates for this cause [78] (Figure 20).  

Another point to note is that in the previously mentioned study by A.O. 

Abdulrahman et al. (2016), CM proteins only increased the recruitment of Grb2 to hIR 

and not IRS1 [77]. On the contrary, our study shows significant potentiation through 

hIR-IRS1 interaction. These differences can perhaps be reconciled by the fact that 

differences in storage of the milk, lactation stage, breed and living environment of the 

camels can affect the concentration of proteins in the milk [46]. Throughout the course 

of this thesis work, CWPs were fractionated from fresh CM every week. Though the 

source of CM was always the same farm, minimal differences were observed in Akt 

and ERK phosphorylation levels and also in the IR activation levels seen in BRET 

experiments with different preparations of CWPs. These differences can be attributed 

to the reported changes in CM protein levels that come along with changes in seasons 

and changes in lactation periods [46]. The final values and results are averages of three 

or more distinct experiments.  

Increasing the sensitivity of hIR via allosteric binding is an exciting possibility 

that comes with the potential to provide a new door for drug development strategies 

for diabetes. Studying the structural and physical properties of these interactions will 

help us understand the molecular interactions associated with hIR signaling better. 

Since they potentially bind to a site completely different spatially and structurally to 

that of insulin, allosteric modulator’ actions can be more specific to the receptor than 

that of the orthosteric ligand. This is because sequence similarity in these sites is more 
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unlikely across receptors from the same family (for example: IR and IGFR) [36]. 

Therapies that increase the sensitivity of the hIR can reduce the requirement for 

exogenous insulin and hence, also be less likely to induce hyperinsulinemia. When 

therapies like this are started at early stages of diabetes, they may even postpone or 

nullify the need for exogenous insulin by preserving β cell function in the pancreas 

[41]. 
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Figure 20 : Putative model of the action of CWPs on the IR. 
A) Allosteric mode of action by direct interaction with the IR, B) Indirect effects on 
IR activated pathways via another receptor (adapted from [77]). 
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Chapter 6: Future Directions 

This research definitely takes us one step closer to understanding the molecular 

mechanisms that are responsible for the hypoglycemic effects of CM observed in vivo. 

Although, it will be beneficial to investigate the action of CWPs and its hydrolysates 

on other receptors involved in glucose homeostasis, such as the IGFR, glucagon and 

incretin receptors. Another interesting target would be the IR-IGFR hybrid receptors, 

since they respond to insulin and IGF in ways that are different to their homodimeric 

counterparts. Additionally, our study prioritized only a subset of the hydrolysates 

produced by CWPs on gastric digestion. Further investigations are required to assess 

the effects of hydrolysates generated by different enzymes/ combinations of enzymes 

in different conditions (e.g. time, pH) to bring us closer to actual stomach conditions. 

 It is also essential to confirm the in vitro effects of CWP hydrolysates in in 

vivo systems such as diabetic mice models. In vitro studies rule out the physiological 

effects of persistent high blood glucose levels in the environment. The cancerous 

characteristics of established cell lines like HepG2 cells can lead to altered results [94]. 

These effects may very well contribute to differences in the hypoglycemic activity of 

camel milk in vivo.  

Finally, sequencing and studying the peptides obtained after peptic hydrolysis 

of CWP is another possibility that could help us move further. Protein modeling and 

binding studies of these hydrolysates can provide us with better insights into the 

working and activation of the IR. Above all, it can give us a new perspective on 

modulation of IR signaling. 
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