United Arab Emirates University Scholarworks@UAEU

Theses

Electronic Theses and Dissertations

11-2015

Identification of Arabidopsis Candidate Genes In Response to Biotic and Abiotic Stresses Using Comparative Microarrays

Salma Omar Al Ameri

Follow this and additional works at: https://scholarworks.uaeu.ac.ae/all_theses Part of the <u>Biotechnology Commons</u>

Recommended Citation

Al Ameri, Salma Omar, "Identification of Arabidopsis Candidate Genes In Response to Biotic and Abiotic Stresses Using Comparative Microarrays" (2015). *Theses*. 206. https://scholarworks.uaeu.ac.ae/all_theses/206

This Thesis is brought to you for free and open access by the Electronic Theses and Dissertations at Scholarworks@UAEU. It has been accepted for inclusion in Theses by an authorized administrator of Scholarworks@UAEU. For more information, please contact fadl.musa@uaeu.ac.ae.

United Arab Emirates University

College of Science

Department of Biology

IDENTIFICATION OF ARABIDOPSIS CANDIDATE GENES IN RESPONSE TO BIOTIC AND ABIOTIC STRESSES USING COMPARATIVE MICROARRAYS

Salma Omar Al Ameri

This thesis is submitted in partial fulfillment of the requirements for the degree of Master of Science in Molecular Biology and Biotechnology

Under the Supervision of Dr. Synan AbuQamar

November 2015

Declaration of Original Work

I, Salma Omar Al Ameri, the undersigned, a graduate student at the United Arab Emirates University (UAEU), and the author of this thesis entitled "*Identification of Arabidopsis Candidate Genes in Response to Biotic and Abiotic Stresses Using Comparative Microarrays*", hereby, solemnly declare that this thesis is my own original research work that has been done and prepared by me under the supervision of Dr. Synan AbuQamar, in the College of Science at UAEU. This work has not previously been presented or published, or formed the basis for the award of any academic degree, diploma or a similar title at this or any other university. Any materials borrowed from other sources (whether published or unpublished) and relied upon or included in my thesis have been properly cited and acknowledged in accordance with appropriate academic conventions. I further declare that there is no potential conflict of interest with respect to the research, data collection, authorship, presentation and/or publication of this thesis.

Student's Signature_____

Date _____

Copyright © 2015 Salma Omar Abdullah Al Ameri All Rights Reserved

Advisory Committee

Advisor: Dr. Synan AbuQamar
 Title: Associate Professor
 Department of Biology
 College of Science

Approval of the Master Thesis

This Master Thesis is approved by the following Examining Committee Members:				
1)	1) Advisor (Committee Chair): Dr. Synan AbuQamar			
	Title: Associate Professor			
	Department of Biology			
	College of Science			
Signat	ure	Date		
2)	Member: Dr. Rabah Iratni			
	Title: Associate Professor			
	Department of Biology			
	College of Science			
Signat	ure	Date		
3)	3) Member (External Examiner): Dr. Marwan I. Jaddou			
	Title: Lead Researcher – Agriculture Re	search		
	Department of Plant Protection Laboratory Research & Development Division			
	Institution: Abu Dhabi Food Control Authority (ADFCA)			
Signat	ure	Date		

This Master Thesis is accepted by:

Acting Dean of the College of Science: Dr. Ahmed Murad

Signature _____ Date _____

Dean of the College of the Graduate Studies: Professor Nagi T. Wakim

Signature _____

Date _____

Copy _____ of _____

Abstract

Plants have evolved with intricate mechanisms to cope with multiple environmental stresses. To adapt with biotic and abiotic stresses, plant responses involve changes at the cellular and molecular levels. The current study was designed to investigate the effects of combinations of different environmental stresses on the transcriptome level of Arabidopsis thaliana genome using public microarray databases. We investigated the role of cyclopentenones in mediating plant responses to environmental stress through TGA (TGACG motif-binding factor) transcription factor, independently from jasmonic acid. Candidate genes were identified by comparing plants inoculated with Botrytis cinerea or treated with heat, salt or osmotic stress with noninoculated or non-treated tissues. About 2.5% heat-, 19% salinity- and 41% osmotic stress-induced genes were commonly upregulated by B. cinerea-treatment; and 7.6%, 19% and 48% of genes were commonly downregulated by B. cinerea-treatment, respectively. Our results indicate that plant responses to biotic and abiotic stresses are mediated by several common regulatory genes. Comparisons between transcriptome data from A. thaliana stressed-plants support our hypothesis that some molecular and biological processes involved in biotic and abiotic stress response are conserved. Thirteen of the common regulated genes to abiotic and biotic stresses were studied in detail to determine their role in plant resistance to B. cinerea. Moreover, a T-DNA insertion mutant of the Responsive to Dehydration gene (rd20), encoding for a member of the caleosin (lipid surface protein) family, showed an enhanced sensitivity to B. cinerea infection and drought. Overall, the overlapping of plant responses to abiotic and biotic stresses, coupled with the sensitivity of the rd20 mutant, may provide new interesting programs for increased plant resistance to multiple environmental stresses, and ultimately

increases its chances to survive. Future research directions towards a better dissection of the potential crosstalk between *B. cinerea*, abiotic stress, and oxylipin signaling are of our particular interest.

Keywords: *Arabidopsis, Botrytis cinerea*, expression profiling, defense response, osmotic stress, salinity.

Title and Abstract (in Arabic)

تحديد الجينات المستجيبة للضغوطات الحيوية والغير حيوية في نبات الأرابيدوبسيس باستخدام تقنية الـ ميكروأراي

الملخص

طورت النباتات العديد من الاستراتيجيات للتغلب على الضغوط البيئية بنوعيها الحيوية وغير الحيوية. تستجيب النباتات لهذه الضغوضات عادةً على المستوى الخلوي والجزيئي. هذه الدراسة صممت من أجل استقصاء مدى استجابة جينات نبات الأرابيدوبسيس ثاليانا (Arabidopsis thaliana) لتأثير الضغوطات الحيوية وغير الحيوية معاً وذلك باستخدام قاعدة بيانات الميكروأراي (Microarray databases). في هذه الدراسة تم البحث عن الدور الذي تلعبه مركبات البنتون الحلقية (cyclopentenones) في استجابة النبات للضغوط البيئية خلال عامل النسخ تي جي أي (TGA) بشكل مستقل عن حمض الجاسمونيك (Jasmonic acid). الجينات التي تمت در استها تم تحديدها عن طريق مقارنة النباتات التي لقحت بالعفن الرمادي (Botrytis cinerea) أو التي عولجت بالضغوط غير الحيوية التالية : الحرارة والملوحة والضغط الأسموزي مع غير الملقحة أو غير المعالجة. وجد أن حوالي 2.5 % من الجينات التي تم تحفيز ها عند تعرض النبات للحرارة قد تم تحفيز ها أيضا عند تلقيح النبات بالعفن الرمادي وكذلك الحال عند تعرض النبات للملوحة والضغط الأسموزي بنسبة 19% و14% على التوالي. أما الجينات المشتركة و التي تم تثبيطها فجاءت للحرارة والملوحة والضغط الأسموزي بالنسب التالية وعلى التوالي »%7.6 19% و 48%. تبين النتائج أيضاً أن إستجابة النبات للضغوط الحيوية وغير الحيوية تنظم عن طريق العديد من الجينات المنظمة المشتركة . المقارنة بين معلومات النسخ (transcriptome) الخاصة بنبات الأر ابيدوبسيس ثاليانا المعرض للضغوطات البيئية تثبت فرضيتنا التي تقول أن بعض العمليات البيولوجية و الجزيئيات المعنية في إستجابة النبات للضغوطات الحيوية وغير الحيوية هي محفوظة . نقت دراسة 13 جين من الجينات المحفزة المشتركة (common regulated genes) عند التعرض للضغوطات الحيوية والغير حيوية بالتفصيل لتوضيح دورها المقاوم للعفن الرمادي. علاوة على ذلك فقد تم إحداث طفرة إدراج الـ تي دي إن أي (T-DNA insertion mutant) في جين أر دي 20 (rd20) المستجيب للجفاف ' مسؤول عن تخليق بروتينات السطح الدهني ومن عائلة جينات الكاليوسن٬ حيث تبين أنه النباتات التي تحمل هذا الجين المعدل شديدة الحساسية للعفن الرمادي والجفاف وبشكل عام فإن التداخل بين إستجابات النبات للضغوط الحيوية وغير الحيوية إلى جانب حساسية النباتات المعدلة بطفرة في جين أر دي 20 ربما تزودنا ببرنامج مثير للإهتمام لزيادة مقاومة النبات لضغوط بيئية متعددة بالتالي زيادة فرصبة بقائه وأخيراً فإن اتجاهات در استنا المستقبلية ستتجه نحو تحليل أفضل للنتائج المتبادلة والمتداخلة والمحتملة بين إشارات العفن الرمادي والضغوطات الحيوية و مركبات الاوكسيلبين (oxylipin).

مفاهيم البحث الرئيسية: نبات الأرابيدوبسيس، العفن الرمادي، نمط التعبير، استجابة الدفاع، الضغط الأسموزي، الملوحة.

Acknowledgements

I would like to gratefully and sincerely thank Dr. Synan AbuQamar for his support, patience, and most importantly, understanding, during my graduate studies at UAEU and assistance throughout my preparation of this thesis. I am grateful for his guidance, academic feedback and moral support.

My thanks are extended to Mr. Arjun Sham, Research Assistant, for helping me in performing laboratory experiments and analyzing microarray data and to my colleague Ahmed Al-Azzawi for his collaboration.

Evermore thanks go to Dr. Rabah Iratni and for all the doctors who taught me during my Master study and for all my study mates.

Special thanks go to my parents, brothers, and sisters who helped me along the way. I am sure they suspected it was endless.

Dedication

To my beloved parents and family

Table of Contents

Title	.i
Declaration of Original Work	ii
Copyrighti	ii
Approval of the Master Thesis	v
Abstract	ii
Title and Abstract (in Arabic)i	х
Acknowledgements	x
Dedication	i
Table of Contents	ii
List of Tablesxi	v
List of Figuresx	v
List of Abbreviationsxv	/i
Chapter 1: Introduction	1
 Chapter 2: Materials and Methods	5 6 8 8
Chapter 3: Results 1 3.1 Identification of differentially expressed genes to abiotic stresses 1 3.2 Common differentially expressed genes by <i>B. cinerea</i> and major abiotic stresses 1 3.3 Phenotypic analysis of T-DNA insertion mutants of overlapping genes to <i>B. cinerea</i> infection 2 3.4 The <i>RD20</i> gene contributes to the plant resistance to biotic and abiotic stresses 2 3.5 Regulation of differentially expressed genes through electrophilic oxylipin 2	1 5 2 4
Chapter 4: Discussion	5
Chapter 5: Conclusion	1
Bibliography4	2

ist of Publications

List of Tables

Table 1: List of primers (Sequence 5' to 3') used in this study. 7
Table 2: Regulation of B. cinerea-regulated genes by different stimuli
Table 3: Changes in expression of up-/down-regulated genes encoding putativeproteins during B. cinerea infection and heat, salinity, and osmotic stress treatments inwild-type A. thaliana plants.20
Table 4: Phenotypic analysis of T-DNA insertion alleles of common-regulated genes in response to <i>B. cinerea</i>
Table 5: Regulation of genes by OPDA or PPA1 treatment, <i>B. cinerea</i> infection, heat, salinity and osmotic stress
Table 6: Regulation of genes by PPA1 and OPDA treatment and abiotic stress
Table 7: Upregulated genes by OBUGs and PBUGs, and abiotic stresses dependent on TGA2/5/6

List of Figures

Figure 1: Comparisons of gene expression in Arabidopsis plants under biotic and abiotic stress conditions
Figure 2: Functional classes of abiotic stress-regulated genes13
Figure 3: Scatter-plot comparisons of gene expression and number of <i>BUG</i> s and <i>BDG</i> s affected by abiotic stress
Figure 4: Comparison of values obtained for differential expression using qRT-PCR and microarrays
Figure 5: Genotyping of the <i>rd20</i> insertion mutants using PCR25
Figure 6: Responses of the Arabidopsis <i>rd20</i> mutant to <i>B. cinerea</i> infection and drought
Figure 7: Expression of <i>OBUGs/PBUGs</i> and abiotic stress-regulated genes in response to <i>B. cinerea</i>

List of Abbreviations

ABA	Abscisic Acid
Affymetrix gene chip	Affymetrix Gene Chip
AtActin2	Arabidopsis Actin2
AZI1	Azelain Acid-induced1
BDGs	B. cinerea Downregulated Genes
BIK1	Botrytis-induced Kinase 1
BOS1	Arabidopsis Botrytis Susceptible 1
BUGs	B. cinerea Upregulated Genes
CLO3	Caleosin3
EXLA2	Arabidopsis Expansin-like A2
GO	Gene Ontology
hpi/hpt	Hours Post Inoculation/Treatment
JA	Jamonate Acid
MGL	Methionine Gamma Lyase
MLO6	Mildew Resistance Locus O6
MS growth medium	Murashige and Skoog growth medium
MTFs	Membrane-associated Transcription Factors
NIT4	Nitrilase4
OPDA	12-oxo-phytodienoic Acid
PCD	Plant Cell Death
PPA1	Phytoprostane A ₁

qRT-PCR	quantitative real time-PCR
RD20	Responsive to Dehydration20
SA	Salicylic acid
SAIL	Syngenta Arabidopsis Insertion Collection
SALK	Salk Institute
SD	Standard Deviation

Chapter 1: Introduction

Plants are immobile organisms convicted to face numerous environmental stresses during their lifetime. Biotic and abiotic stresses often occur suddenly and/or simultaneously; and, immediate plant responses are therefore critical to ensure cell survival^[1]. A fundamental strategy for plants to adapt to environmental challenges imposed by biotic and abiotic threats is the modulation of gene expression. At the cellular level, plants tune gene expression along with their physiological needs to promote adaptation to short- as well as long-term environmental changes. Now, there is growing evidence that plants reprogram their responses under continuously changing environmental factors individually, or more frequently, in combination. Depending on the environmental conditions encountered, plants activate a specific program of gene expression ^[2]. The specificity of response is further controlled by a range of molecular mechanisms that "crosstalk" in a complex regulatory network, including transcription factors, kinase cascades, reactive oxygen species, heat shock factors and small RNAs that may interact with each other ^[3]. The interaction between biotic and abiotic stresses is orchestrated by hormone and non-hormone signaling pathways that may regulate one another positively or negatively. In response to biotic or abiotic stress, gene expression studies found that disease resistance-related genes in corn could be induced or repressed by abiotic stresses ^[4].

Several studies have identified the regulation of single genes in response to *B. cinerea* and abiotic stress. *Arabidopsis thaliana Botrytis Susceptible 1 (BOS1)*, *Botrytis-induced Kinase 1 (BIK1)*, *WRKY33* genes were previously identified ^[5-7]. In comparison with wild-type plants, the three mutants *bos1*, *bik1* and *wrky33* were extremely susceptible to *B. cinerea*. The MYB transcription factor, BOS1, plays a major role in plant defense response to *B. cinerea* that is regulated by jamonate acid (JA) ^[5]. The

susceptibility of *bos1* mutant to *B. cinerea* was also linked to altered plant sensitivity to oxidative stress. *BIK1* gene, in turn, encodes a membrane-associated kinase protein in which *bik1* mutant showed high salicylate (SA) levels before and accumulated after *B. cinerea* inoculation ^[6]. While WRKY33 transcription factor showed a crosstalk between JA- and SA-regulated disease response pathways, both BIK1 and WRKY33 play an antagonistic role in plant defense as positive and negative regulators to resistance to *B. cinerea* and *Pseudomonas syringae pv tomato*, respectively ^[5, 6]. Efforts towards the identification of *A. thaliana BOS1* interactors (*BOI*) and *BIK1* regulators have led to uncover the function of some interactors and regulators in plant responses to pathogen infection and abiotic stress ^[8, 9]. Recently, the *A. thaliana* mutation *expansin-like A2* (*EXLA2*) enhanced resistance to necrotrophic fungi, but caused hypersensitivity to salt and cold stresses ^[10]. Upon *B. cinerea* attack, an accumulation of cyclopentenones resulted in the repression of EXLA2; whereas *EXLA2* induction was dependent on abscisic acid (ABA) responses ^[10, 11].

The impact of an abiotic stress can also lead to increased resistance or susceptibility to a pathogen, or vice versa. The plant-parasitic nematode *Meloidogyne graminicola* reduced the damage of drought on rice (*Oryza sativa*) growth ^[3]. By contrast, drought-stressed sorghum (*Sorghum bicolor*) and common bean (*Phaseolus vulgaris*) showed increased susceptibility to the same fungus *Macrophomina phaseolina* ^[12, 13]. In *A. thaliana*, drought-stressed plants showed severe susceptibility to the bacterial pathogen *P. syringae* ^[14].

On the other hand, in tomato (*Solanum lycopersicum*) and barley (*Hordeum vulgare*), it was found that increasing the tolerance level to drought, salt and osmotic stress also enhanced the resistance to *Blumeria graminis* and *B. cinerea*^[15, 16]. These

findings suggest that biotic and abiotic stresses may interact with each other positively or negatively and some microorganisms can thus be employed to efficiently enhance crop stress tolerance ^[17].

In fact, the combination of biotic and abiotic stresses activates the expression of unique and/or common sets of genes that are orchestrated by hormonal, mainly ABA, or non-hormonal pathways. So far, limited attempts have been made to analyze gene expression changes in plants infected with pathogens and exposed to abiotic stresses. In *A. thaliana*, a transcriptome profiling by microarray was performed in response to dehydration and the plant parasitic-nematode *Heterodera schachtii* ^[18]. Analysis of transcript profiles in *A. thaliana* treated with flagellin, cold, heat, high light intensity and salt concentrations detects specific and shared responses between biotic and abiotic stresses and combinations of them ^[19].

A recent report on transcriptome analysis in *A. thaliana* identified potential regulatory genes after infection with *B. cinerea* and treatments with cold, drought and oxidative stresses individually and in combination ^[20]. Here, we compare and analyse microarray data emanating from gene expression profiling in Arabidopsis in response to *B. cinerea* (biotic stress) and heat, salt and osmotic stresses (abiotic stresses). We analyzed plant responses to these stresses taken individually, and identified transcriptional regulatory networks at a single time point of gene expression. Arabidopsis plants were deliberately subjected to four individual stress treatments (one biotic and three abiotic stresses).

In large, we combined the expression of *B. cinerea* upregulated genes (*BUGs*) with that of heat, salt or osmotic stresses; about 2.5%, 19% or 41% of the transcripts responded respectively, albeit the mode predicted from an individual stress treatment.

With a minor increase in the fraction of the transcripts after combining *B. cinerea* downregulated genes (*BDG*s) with those of abiotic stress treatments, a transcriptional balance between plant responses to environmental stresses is suggested.

Chapter2: Materials and Methods

2.1 Plant growth and stress assays

We analyzed data from a previous study on *A. thaliana* plants (ecotype Col-0) infected with *B. cinerea* ^[21]. In that study, the experimental conditions were conducted as follows: Five-week old *A. thaliana* plants were inoculated by placing four 5 μ l drops of a 5 x 10⁵ spore mL⁻¹ solution on each leaf. Control leaves were spotted with droplets of 24 g L⁻¹ potato dextrose broth medium. Responses to *B. cinerea* infection were assayed at 18 and 48 hpi of adult leaves. For the qRT-PCR and functional analyses, *B. cinerea* strain *BO5-10*, was grown on 2 x V8 agar (36% V8 juice, 0.2% CaCO₃, 2% Bacto-agar). Fungal cultures were initiated by transferring pieces of agar containing mycelium to fresh 2 x V8 agar and incubated at 20–25°C. Collection of conidia from 10-day-old cultures and inoculation were carried out as previously described ^[6].

Disease assays were performed on whole plants or detached leaves (five-week old plants) grown in soil were spray-inoculated or drop-inoculated (3 μ L) with *B. cinerea* spore suspension (3 x 10⁵ spores mL⁻¹) respectively, as described previously ^[10]. Control plants were sprayed with 1% Sabouraud maltose broth buffer using a Preval sprayer (Valve Corp., Yonkers, NY, USA). Plants were further kept under a sealed transparent cover to maintain high humidity in a growth chamber with 21°C day/18°C night temperature and a 12-h light/12-h dark photoperiod cycle. Responses to *B. cinerea* infection were assayed at 18 hpi of leaves, unless otherwise stated. The drought sensitivity assay was performed on 3-week-old well-watered plants that were planted in soil. Seedlings were kept in a growth chamber under the same conditions mentioned above without watering (drought stress) for 10 days. Survival rates were scored 3 days after rewatering. Control plants were well-watered and kept under the same conditions.

2.2 Identification of T-DNA insertion lines

T-DNA insertion lines were identified as described previously ^[22]. PCR primers were designed to the *A. thaliana* genomic sequence flanking the T-DNA insertion site. These primers were used to analyze 12 sibling plants from each T-DNA line to confirm the T-DNA insertion cosegregated with the mutant phenotype. The primers were also used for genotyping individual lines within a segregating population to identify individuals homozygous for the insertion allele. A combination of one genomic primer plus a T-DNA insert primer was used to detect the insertion allele. Two genomic primers were used together to detect the wild-type allele. rd20

(*SAIL_737_G01*; stock number N876376) was obtained from the Nottingham *A.thaliana* Stock Centre (NASC, Nottingham, UK).

The T-DNA insertion in the *rd20* mutant was confirmed by PCR using a T-DNAspecific primer (LB2,50-GCTTCCTATTATATCTTCCCAAATTACCAATACA-30) and an *RD20*-specific primer (RP, 50-AAGTACGGAACGATTTGGAGG-30). Homozygous *rd20* mutant plants were identified by PCR using a pair of primers corresponding to sequences flanking the T-DNA insertion (LP, 50-TTAACCGTTAGCGCGTATTTG-30; RP).

2.3 RNA extraction and expression analysis

RNA extraction and qRT-PCR expression analyses were performed as described previously ^[10]. The qRT-PCR was performed using gene-specific primers, with *A. thaliana Actin2 (AtActin2)* as an endogenous reference for normalization. Expression levels were calculated by the comparative cycle threshold method, and normalization to the control was performed as described [23]. Primer sequences are found in Table 1.

Description	Left primer sequence	Right primer sequence
AtActin2	GTCGTACAACCGGTATTGTGCTG	CCTCTCTCTGTAAGGATCTTCATGAG
At1g73480	CTTTTCCTCCTCCTTCCGTTTCG	GGAGACCAAACCTTCCTCTTG
CORI3	AGATAAACAATAACCCTCCGACAGT	CTTTCAGAAAACTCTGCCTCTTATC
RD20	ATCCTTGGGAGACTTATAAGGGATT	GTAACGTAGCTGAACGCTAAGTTTATG
At2g39420	TGTATGAAGTTGCATCTAGTTCGGA	AACAGTCTCGATATTCTCTGGTGTC
EXO	CTTCATTACCTCACTCACACACACTT	GCGAGTTTGTAGTATTTTTCTGTGG
DREB26	CTTTGATGGGATCTTTTGTGGACAA	GCTCCATTATCAAACAAGAACATCC
GA4	AAGATATCACCTGTACCGAAGCTG	GAAGTGAGTTGCTTTTGTTCGAAGA
DJC24	CAAGAGATCAAATCAGCTTACCGG	GTGGATCTTCATGAAATCGTCCG
At2g20670	CTCTAGACACCTAAGAGATGTCGC	TCTATAAATTCGTGTTCCCCTGCAG
DREB2A	AGAGTGGAGATAGAAACAGAACACA	TCCATCTCTTTAATCTCTCAGCCAC
PMZ	GCAAATATTGTGGAGTCAAGTTCTG	AACTCAAAGCTTCCATAAACCTCTC
RHL41	TTGAAGAAATCTAGCAGTGGGAAGA	ATAAACTGTTCTTCCAAGCTCCAAC
REF	TTGGTTATCTTCCGTTGGTTCCTGT	CTTTCTTTCCAGCCGTATCCCCTCC
BAP1	CCCAACGAATGATTTCATGGGAAGG	TGACGATCCCACACTTATCACCAAA
UGT73B5	TTAAAGAGAGGACAACAGGGAAAGG	AATGAGTCACAAATCCTCCAATTGC
HSP17.4	GGAAGTAAAGGCGAGTATGGAGAAT	TTAACCAGAGATATCAACGGACTTG
GPX6	GTTGACAAAGATGGAAATGTTGTCG	TAAGCAGTAACTCCCAACAACTTCT
At5g35735	ACCATCATCCTCTCTATTGTCAACA	CCAAGAAAGATGAGGATCCCAATGT
At1g60730	AATATGGAATCAGGTATGCAGAGGG	GGCAACATCTACTCGCATTAAACTA
GSTU25	GTAATCCGGTATGTGAATCACTCAT	GAGCTCTTTGGTAAGGATCAGAAG
GST22/GSTU4	AAGTTCAAGTGAGAGAAAGAGAGGTC	GCCATCTCAACTCTACGAGTAAAAG
MDR4	ACGCTCTTTCTTGTAGTCTTTTGTAGC	ATATTGAGAACTTGTCCTCCTGTGTAG
ELI3-2	GGAAGTATGATAGGAGGGATAAAAGAG	CATAATCGGCAGAGATAAGCTCAAT
PDR12	GTTTCTTGAGTTTCCAGAGGAGTTTC	CCAAGCGAGTCCTAGTATGAGAAGAAA
PAD3	AACTTGTGTGTCAAGAAACTCTCTG	CGATACGACACACTATATTTCCGACTA
CYP710A1	TTGAACCACCTCGTACTCTTCATTG	TATAGTAGGGCAGTACACGATCTCA
At5g03490	TGTTATTGTTGCCGGGAACTAAATC	AAGTCAAGTAGAGGAAGTAAGTGGC
ACA12	CTCTTTGGCTCTAACACCTACCATAAG	AGACCAACAAGATCAAGATGGTTAG
At1g72900	TCAGGGTAACTACTTTGAAAGCCA	AGCAGAACCTTTTGCTTCTTGAGA
SGP2	CGAATCAACAATCTAAGGAACAGAG	CCAGGAGTACAAGCAACGATTCTA
At5g22860	GAGAAGAATCGTCGTTAGACTCTGAT	AATACCTATGCTCTATGTAGACGAGGA
RD2	AGTACAGTTTCAGGGAAGTAGTGTTG	ACATCTCTTCCTCTTCTCCTCTCTC
At5g65300	ACAGAGGAGTTTGTCCTTGTTGTTT	GGATGAAGAAGAAGAAGATCTGTGA

Table 1. List of primers (Sequence 5' to 3') used in this study

2.4 Statistical analysis

For each sample, three technical replicates of the qRT-PCR assay were used with a minimum of three biological replicates. Results were expressed as means \pm standard deviation (SD) of the number of experiments. A Student's t-test for the values was performed at P < 0.05. Data of *B. cinerea* growth in inoculated plants represent the mean \pm SD from a minimum of 16 plants. Data of drought sensitivity assay performed on plants represent the mean \pm SD (n = 12). Analysis of variance and Duncan's multiple range test were performed to determine the statistical significance ^[24]. Mean values followed by an asterisk are significantly different from the corresponding control (P < 0.05). All experiments were carried out in triplicate with similar results.

2.5 Heat, salinity and osmotic stress treatments

We analyzed data from a previous study on the responses of *A. thaliana* to various stress conditions ^[21]. In that study, seeds (ecotype Col-0) were surface-sterilized by treating them sequentially in 70% ethanol for 2 min, then 30% Clorox solution containing 0.01% Tween for 10 min, and rinsed several times in sterile water. Seeds were plated on media containing the Murashige and Skoog (MS) growth medium, 2% sucrose, 0.7% (w/v) purified agar, unless otherwise stated. Plates were kept at 4°C for 48h to synchronize germination, transferred to growth chambers with fluorescent lights, and maintained under the environmental conditions as described in ^[25] with some modifications.

For the heat stress experiment, sixteen-day-old seedlings were treated with either liquid-MS media at 25°C (control) or exposed to 38°C for 24h.

For the salt and osmotic stress experiments, sixteen-day-old plants were treated

with either liquid-MS media (control) or stressed by 150 mM NaCl (salt stress) or 300 mM Mannitol (osmotic stress) for 24h. All treatments and preparations were done on the same batch of seedlings, as described in ^[21].

2.6 Data source and analysis

downloaded Raw microarray datasets were from **NASCArrays** [affy.arabidopsis.info/link_to_iplant.shtml]^[21] for each stress. Data of "shoots" class were analyzed using R Statistical Computing ^[26], which uses Affy and MAS5 packages for data normalization. Affy computes the probe set signal intensity; whereas MAS5 computes the detection calls of each probe ID displayed as Present (P), Absent (A) and Marginal (M). The reference numbers are: control (for all abiotic stresses), NASCArrays-137; osmotic stress, NASCArrays-139; salt stress, NASCArrays-140; heat stress; NASCArrays-146; and B. cinerea, NASCArrays-167 (including non-inoculated control). The number of tested samples (n) for each treatment is 8 (control; and heat stress), 6 (salt; and osmotic stresses), and 2 (B. cinerea and its control); with 22810 genes per array. Log₂-transformed expression level data were used to generate scatter plots to detect the effect of B. cinerea infection at 18 hpi or abiotic stress treatment at 24 hours posttreatment (hpt) on plant gene expression. Comparisons of three replicates for each set of experiment were performed. In all samples, probes with expression labelled as 'A' or 'M' across all samples were removed from the dataset. At the tested time point, the overall expression difference between control (non-treated/non-inoculated) gene and treated/inoculated samples was determined by pairwise comparison. The normalized-fold change value for each gene was calculated by dividing the expression level of a treated/inoculated sample by the expression level of a non-treated/non-inoculated sample.

A twofold or half-fold (unless otherwise stated) difference in expression level between treated/inoculated and non-treated/non-inoculated samples at P < 0.05 was set as the threshold for considering a gene to be up- or down-regulated, respectively. The cutoffs of the fold change were chosen to filter false positives and to compare our data analyses with those in the microarray literatures. All genes across the microarrays data were identified using the *A. thaliana* Information Resources (TAIR; <u>www.arabidopsis.org</u>). We used microarrays data of treated seedlings with *B. cinerea*, cold, drought and oxidative stress as described ^[20]; and 12-oxo-phytodienoic acid (OPDA) and phytoprostane A₁ (PPA₁) as previously described ^[11, 27].

Chapter 3: Results

3.1 Identification of differentially expressed genes to abiotic stresses

In this study, we aimed to identify components of the regulatory networks involved in A. thaliana responses to B. cinerea infection and abiotic stresses (heat, salinity and osmotic stress). A full microarray-based analysis of A. thaliana wholegenome Affymetrix gene chip (ATH1) representing approximately 25,000 genes was downloaded from NASC^[21] to identify regulated genes by *B. cinerea* infection and the abiotic stress. To determine up- and down-regulated genes in A. thaliana seedlings exposed to heat; salt; and osmotic stress treatments at 24 hpt, we first identified differentially regulated genes by comparing the expression profile of untreated-(control) or treated tissues in A. thaliana wild-type plants (Figure 1A-C). The transcript level for each gene before and after the treatment with heat, salinity or osmotic stress was assessed and compared. Genes with expression changes of more than twofold or less than half fold (P < 0.05) were defined as significantly stress up- or down-regulated genes, respectively. The complete list of induced and repressed genes to heat, salinity or osmotic stresses is available (http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0125666.s004 Table S2). We also investigated whether the accumulated transcripts were functionally involved in stress response and defense. Based on the Gene Ontology (GO) annotation, we classified the differentially expressed genes according to their biological and molecular activities, and cellular components.

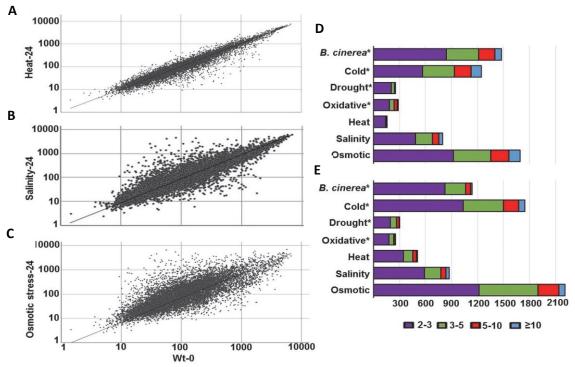


Figure 1: Comparisons of gene expression in *A.thaliana* plants under biotic and abiotic stress conditions.

Normalized expression values for each probe set in stressed plants with heat (A); salinity (B); or osmotic stress (C) at 24 hpt is plotted on the Y-axis. In (A-C), the value in wild-type plants sampled before the abiotic stress treatment (0 hpt; WT-0) is plotted on the X-axis. Number and the level of transcripts identified as upregulated (D), or downregulated (E) genes in *A. thaliana* stressed plants. In (D-E), the treatment of the tested abiotic stress is plotted on the Y-axis; the number of differentially expressed genes is plotted on the X-axis. Columns with different colors show the fold change of corresponding differentially expressed genes. *Results were obtained from [20]. hpt, hours post treatment.

Our analysis showed that the differentially expressed genes in *A. thaliana* seedlings under heat, salinity and osmotic stress conditions were majorly grouped as responsive to biotic and abiotic stimuli/stresses, electron transport, cell organization and development, and other biological processes (Figure 2). The stress up-regulated genes encode for receptors, transcription factors, transporters, and enzymes

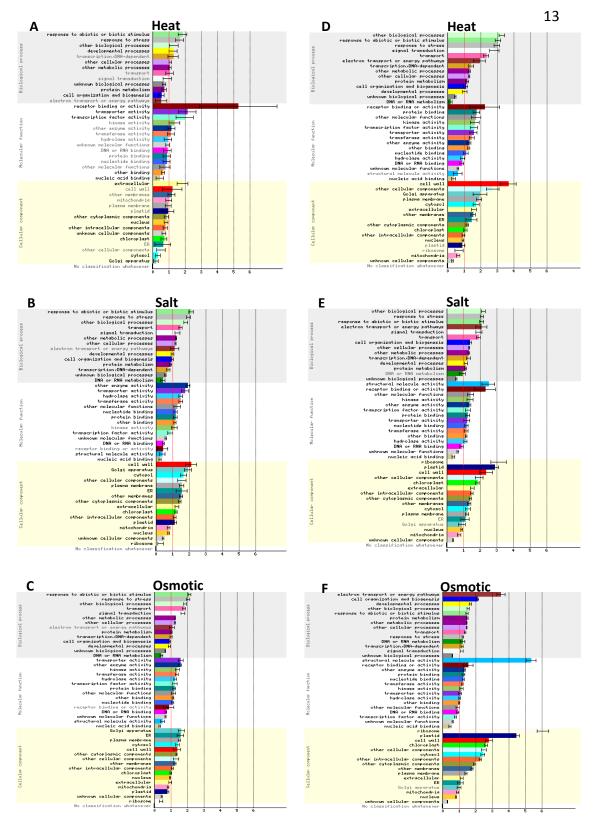


Figure 2: Functional classes of abiotic stress-regulated genes.

(A) heat-, (B) salinity- and (C) osmotic stress-upregulated genes; and (D) heat-, (E) salinity- and (F) osmotic stress-downregulated genes at 24 hpt compared with 0 hpt of wild-type leaf tissues. Error bars are SD. GO categories that are significantly over- or under-represented at P < 0.05, are in black text. Normalized frequency of genes to the number of genes on the microarray chip was determined as described ^[63].

(i.e. hydrolyases, kinases, transferases) corresponding to various cellular activities, mainly localized in the cell wall, Golgi apparatus, plastids and plasma membrane, suggesting an involvement of extracellular and intracellular components in plant response/defense to abiotic stress constrains. *BUGs* and *BDGs* have been previously identified based on their transcriptional levels in response to *B. cinerea* infection at 18 hpi and differentially expressed genes were also identified in response to cold, drought and oxidative stress ^[20]. Data were analyzed to have a complete set of up- and down-regulated genes of major abiotic stress compared with those of *BUGs* or *BDGs*. Our microarray analysis showed there were 1498 genes considered as *BUGs* and 1138 genes considered as *BDGs* (Figure 1D-E).

In addition, the gene expression levels under heat, salinity and osmotic stress treatments were altered for 660, 1649 and 3905 transcripts, respectively from which 153, 799 and 1695 genes were stress-induced genes. In most cases, there were more repressed than induced genes except for *B. cinerea* treatment. The average fold changes of differentially expressed genes ranged from 2–3 folds, though some genes showed 10-fold or more (http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info.doi/10.1371/journal.pone.0125666.s004 Table S2). It is worth mentioning that the number of genes involved in *B. cinerea*, cold, salinity and osmotic stress responses seems to be greater than those involved in drought, heat and oxidative stress responses (Figure 1D-E). This might be due to the fact that *A. thaliana* is naturally more adapted to drought, heat and oxidative stress than to other environmental stress conditions.

3.2 Common differentially expressed genes by B. cinerea and major abiotic stresses

To compare normalized transcriptional levels of genes identified as B. cinereaand abiotic stress-regulated genes, scatter plots were constructed on the correlating genes between *B. cinerea* ^[20] and heat, salinity or osmotic stress (Figure 3A-C). Similar patterns of gene expression levels were illustrated between *A. thaliana* plants infected with *B. cinerea* at 18 hpi, and cold, drought or oxidative stress at 24 hpt ^[20]. Venn diagrams displayed that 37 genes were commonly upregulated by *B. cinerea* inoculation and heat treatment; whereas 87 were downregulated by the same stresses, representing 2.5% and 7.6% of the genes that were upregulated and downregulated by *B. cinerea*, respectively (Table 2).

The diagram also demonstrated that 284 genes were induced by both *B. cinerea* and salinity and 215 were repressed by these stresses (Figure 2D-E), .each corresponding to 19% of either *BUGs* or *BDGs* (Table 2).

Treatment	Co-upregulated genes		Co-downregulated genes	
I reatment	N° of genes	Percentage ^a	N° of genes	Percentage
Cold ^b	373	24.9	377	33.1
Drought ^b	92	6.1	77	6.8
Oxidative stress ^b	176	11.7	63	5.5
Heat	37	2.5	87	7.6
Salinity	284	19.0	215	18.9
Osmotic stress	617	41.2	544	47.8
All stresses	3	0.2	12	1.1

Table 2: Regulation of B. cinerea-regulated genes by different stimuli

Shown are percentages of *BUG*s and *BDG*s (at least twofold) that were also at least twofold increased or decreased by the abiotic stress listed above.

^aPercentage = N° of up- or down-regulated genes of the abiotic stress/ N° of *BUGs* (1498 genes) or *BDGs* (1138 genes). *BUGs* and *BDGs* were obtained from ^[20].

^bResults were obtained from ^[20].

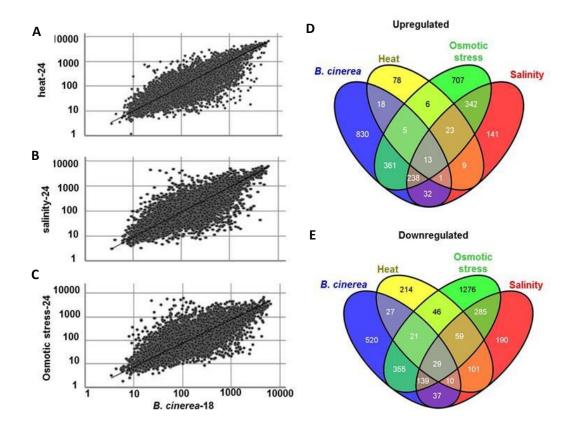


Figure 3: Scatter-plot comparisons of gene expression and number of *BUGs* and *BDGs* affected by abiotic stress.

Normalized expression value for each probe set in wild-type plants infected with *B. cinerea* at 18 hpi (*B. cinerea*-18) is plotted on the X-axis; the value in stressed plants with heat (A); salinity (B); or osmotic stress (C) at 24 hpt is plotted on the Y-axis. The Venn diagram shows the number of BUGs (D); and BDGs (E) at 18 hpi that are also affected by heat, salinity and osmotic stress at 24 hpt. hpi/hpt, hours post inoculation/treatment.

About 40–50% of the identified *B. cinerea*-regulated genes were also regulated by osmotic stress. The list of the overlapping up- and down-regulated genes with distinct responses to *B. cinerea* as biotic stress and abiotic stress treatment is shown in (http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0125666.s005 Table S3). To compare the co-regulation between *B. cinerea* and other classes of major abiotic stress from those subjected here, the analysis was extended to include *B. cinerea*-regulated genes with cold, drought and oxidative stresses that were previously identified (Table 2). Among the induced genes, 251 were shared in *B. cinerea*, salinity and osmotic stress treatments, while 18 and 14 were commonly

upregulated by *B. cinerea*/heat/osmotic stress and *B. cinerea*/heat/salinity treatments, respectively (Figure 3D). Likewise, a common downregulation of genes was observed between *B. cinerea* and abiotic stress treatments where fifty and 39 of the shared genes showed downregulation by *B. cinerea*/heat/osmotic stress and *B. cinerea*/heat/salinity treatments, respectively (Figure 3E), while 13 induced genes and 29 repressed were common between all tested biotic and abiotic stresses (Figure 3D-E). When we compared with cold, drought and oxidative stresses data, we found that 15 genes were commonly responsive; three genes showed common induction with *BUG*s and 12 genes showed common repressions with *BDG*s (Table 2).

Taken together, these findings suggest an overlap between *B. cinerea*, salinity and osmotic stress. We looked carefully at the common up- and down-regulated members expressed by *B. cinerea*, heat, salinity and osmotic stress; and we found that some genes were frequently expressed to combined types. For example, the common *B. cinerea*/heat/salinity/osmotic stress induced *At5g22860* and *At2g33380* (*RD20*), and the repressed *At5g25190* (Table 4) were previously identified as common respondents to *B. cinerea*, cold, drought and oxidative stress ^[20]. This suggests that although some genes were quite specific to *B. cinerea*, heat, salinity and osmotic stress; others showed general regulation to biotic and abiotic stresses. We also assessed a selected number of commonly differentiated expressed genes to *B. cinerea* infection using quantitative real time-PCR (qRT-PCR) to validate the microarray analysis. Relative gene expression changes measured by qRT-PCR in *B. cinerea*-infected leaves at 18 hpi were compared with *A. thaliana* microarrays' data. Similar transcript patterns for the tested genes, *ESE3*, *BAG6*, *LCAT3* and *At2g06890* were observed in the two approaches (qRT-PCR and microarrays) (Figure 4). We believe that the overlapping genes are not only functional in

signal transduction pathways, mediated by phytohormones, but also in biotic and abiotic stress pathways that share many overlapping steps in non-enzymatic free radical-catalyzed pathway.

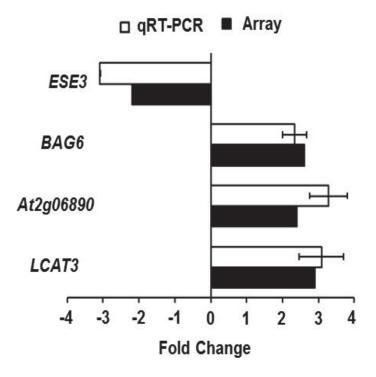


Figure 4: Comparison of values obtained for differential expression using qRT-PCR and microarrays.

Relative expression levels obtained through qRT-PCR were compared with microarray expression levels (NASCArrays) for selected common *B. cinerea* and abiotic stress-upregulated or-downregulated genes after infection with *B. cinerea* at 18 hpi. Expression of *B. cinerea*-induced or-repressed genes was quantitated relative to control conditions (no infection), and corrected for expression of the control β -actin gene. Microarray expression data were obtained from Tables 1 and 2. Error bars for qRT-PCR values are the standard deviations (n _ 3). hpi, hours post inoculation; At *Actin2*, Arabidopsis *Actin2* gene.

		Probe	В.	Abiotic stress		
Gene ID	Gene family	set	D. cinerea	Heat	Salinity	Osmotic stress
At5g22860	serine carboxypeptidase S28	249860	6.511	2.222	3.116	12.929
At5g06190	Unknown	250722	2.241	2.133	3.335	3.757
At4g13800	permease-related	254683	2.487	2.425	3.214	12.075
At4g12910	SCPL20	254791	3.236	2.07	2.909	2.735
At2g33380	RD20	255795	5.153	2.36	5.936	26.651
At3g14067	subtilase	256997	2.271	2.166	2.684	6.83
At3g03310	LCAT3	259057	2.88	2.38	5.18	17.57
At3g05030	NHX2	259081	2.627	3.144	3.396	4.889
At1g70900	Unknown	262313	2.1	2.01	2.83	4.92
At2g42540	COR15A	263497	7.4	2.88	88.16	102.16
At2g06890	transposable element gene	266214	2.43	2.4	2.18	2.44
At2g46240	BAG6	266590	2.631	2.023	56.992	3.703
At2g39250	SNZ	267010	2.413	2.432	4.054	11.476
At5g25190	ESE3	246932	-2.18	-3.85	-8.93	-5.73
At5g49450	BZIP1	248606	-2.94	-5.76	-2.47	-8.42
At5g48430	aspartyl protease/Pepsin A30	248703	-2.08	-2.28	-4.65	-3.8
At5g41080	GDPD2	249337	-2.19	-11.5	-3.33	-8.52
At5g39580	Peroxidase	249459	-6.16	-9.85	-7.38	-11.29
At5g19120	aspartyl protease/Pepsin A20	249923	-2.08	-5.61	-14.62	-27.66
At5g05440	PYL5/RCAR8	250777	-2.24	-8.22	-15.34	-11.26
At3g50560	SDR	252167	-5.21	-2.15	-6.98	-5.91
At3g50060	MYB77	252193	-3.01	-4.63	-5.27	-2.43
At3g46280	protein kinase-related	252511	-10.92	-15.38	-5.26	-25.77

Table 3: Changes in expression of up-/down-regulated genes encoding putative proteins during *B. cinerea* infection and heat, salinity, and osmotic stress treatments in wild-type *A. thaliana* plants

(Table continues on following page)

	Gene family	Probe	B. cinerea	Abiotic stress		
Gene ID		set		Heat	Salinity	Osmotic stress
At4g21870	HSP26.5-P	254384	-2.18	-3.06	-9.16	-7.77
At4g12470	protease inhibitor (AZI1)	254818	-4.07	-13.71	-14.99	-14.45
At4g01250	WRKY22	255568	-2.15	-5.63	-3.75	-4.13
At4g01720	WRKY47	255596	-2.58	-2.52	-3.12	-4.49
At3g14770	nodulin MtN3	256548	-3.54	-2.6	-2.56	-3.25
At3g15950	TSA1-LIKE (NAI2)	257798	-23.49	-2.54	-2.69	-3.33
At3g16460	jacalin lectin	259327	-16.43	-2.29	-4.22	-7.73
At1g28010	ABCB14/MDR12/PGP14	259579	-2.8	-2.89	-3.29	-3.49
At1g21910	DREB26	260856	-5.69	-14.79	-22.89	-3.68
At1g19610	PDF1.4/LCR78	261135	-4.85	-5.36	-5.36	-7.44
At1g21830	Unknown	262488	-2.72	-2.92	-3.11	-3.56
At1g14890	Invertase/pectinesterase inhibitor	262844	-2.82	-2.05	-2.37	-3.59
At1g23870	TPS9	263019	-3.45	-3.5	-2.54	-4.46
At1g54740	Unknown	264238	-2.6	-3.62	-3.1	-3.75
At1g76930	EXT4	264960	-2.3	-7.08	-3.18	-4.63
At1g24530	transducin /WD-40 repeat	265028	-4.69	-6.35	-5.48	-4.05
At2g20670	Unknown	265387	-4.33	-15.19	-3.6	-17.86
At2g26980	CIPK3	266313	-3.18	-2.1	-2.75	-3.84
At2g40000	HSPRO2	267357	-2.16	-4.5	-2.63	-8.24

Table 3: (continued from the previous page). Changes in expression of up-/down-regulated genes encoding putative proteins during *B. cinerea* infection and heat, salinity, and osmotic stress treatments in wild-type *A. thaliana* plants

^a Fold change in expression for each gene was calculated by dividing the expression level of a *B. cinerea*-infected or abiotic stress-treated sample by the expression level of a non-infected or non-treated sample, respectively. A twofold difference in expression level between *B. cinerea*-inoculated and noninoculated or abiotic stress-treated and non-treated samples was set as the threshold for considering a gene to be *B. cinerea*- or abiotic stress up-/downregulated gene (P < 0.05).

^b*B. cinerea* up-/down-regulated genes data were obtained from ^[20].

-, downregulation.

3.3 Phenotypic analysis of T-DNA insertion mutants of overlapping genes to *B*. *cinerea* infection

To determine the function of the overlapping genes in responses to biotic and abiotic stress treatments (Table 2), we isolated mutants in selected regulated genes encoding putative regulatory proteins. T-DNA insertion lines for these genes were identified from the Syngenta Arabidopsis Insertion Collection (SAIL), the Salk Institute (SALK) T-DNA collection and the Plant Breeding Research GABI-Kat ^[22]; obtained from the NASC. Lines with homozygous insertions corresponding to 13 genes were isolated. The T-DNA insertion mutant lines were then challenged with *B. cinerea* as described ^[10], and a summary of the disease assay results is presented in Table 4. Most of the T-DNA mutant alleles had no detectable effect on the resistance phenotype, including insertions in *NHX2*, *SNZ*, *BZIP1*, *GDPD2*, *SDR*, *MYB77*, *WRKY77*, *CIPK3*, *At5g19120*, *At5g48430*, and *At4g21870* (Table 4).

AGI number (probe set) ^a	Protein/gene	Insertion site	SAIL/SALK ID (stock number)	Phenotype ^b
At2g33380 (255795)	RD20	Exon	SAIL_737_G01 (N876376)	S
<i>At3g05030</i> (259081)	NHX2	Exon	SALK_039611 (N657915)	Wt
<i>At2g39250</i> (267010)	SNZ	5'-UTR	SALK_030031 (N668027)	Wt
<i>At5g49450</i> (248606)	BZIP1	Exon	SALK_069489 -660942	Wt
<i>At5g48430</i> (248703)	aspartyl protease/Pepsin A30	Promoter	SALK_128791 (N684580)	Wt
<i>At5g41080</i> (249337)	GDPD2	Promoter	SALK_047427 (N653183)	Wt
At5g19120 (249923)	aspartyl protease/Pepsin A20	Exon	GABI_023B01 (N402125)	Wt
<i>At3g50560</i> (252167)	SDR	Exon	SAIL_424_A04 (N819551)	Wt
<i>At3g50060</i> (252193)	MYB77	Exon	SALK_067655 (N662814)	Wt
<i>At4g21870</i> (254384)	HSP26.5-P	Exon	SAIL_1284_H05 (N879227)	Wt
<i>At4g01250</i> (255568)	WRKY22	Intron	SALK_047120 (N664590)	Wt
At1g21910 (260856)	DREB26	NA	NA	ND
At1g24530 (265028)	transducin transducin /WD-	5'-UTR	SALK_039180 (N674562)	
At2g20670 (265387)	40 repeat Unknown	NA	NA	ND
<i>At2g26980</i> (266313)	CIPK3	Intron	SALK_137779 (N402125)	Wt

Table 4: Phenotypic analysis of T-DNA insertion alleles of common-regulated genes in response to *B. cinerea*

^a Expression of common up-/down-regulated genes data were obtained from Table 3 of this study and ^[20].

^b Wt, disease response comparable to wild-type plants; S, susceptible. *SAIL_737_G01* plants show increased local susceptibility to *B. cinerea* (Figure 6).T-DNA insertion mutants were assayed for their disease responses at least three times.

3.4 The RD20 gene contributes to the plant resistance to biotic and abiotic stresses

The RD20 gene was induced by B. cinerea in inoculated wild-type plants (Table 3). In order to check the function of the *RD20* gene, we isolated homozygous lines for the T-DNA insertion allele of the *RD20* gene designated *rd20* (SAIL_737_G01) using PCR (Figure 5). Plants homozygous for the *rd20* allele display increased susceptibility to *B*. cinerea infection compared with heterozygous (RD20/rd20) or wild-type plants (Figure 6A). At early stages of disease, symptoms developed as local chlorosis and necrosis on inoculated leaves of the mutant rd20. Extending the period of inoculation to 4 days, disease symptoms developed beyond the inoculated tissues. We also determined the fungal growth in *planta*. At 5 and 10 days post-inoculation (dpi), rd20 mutant plants exhibited more fungal biomass than the other genotypes, as assessed by accumulation of B. cinerea ActinA relative to At Actin2 (Figure 6B). To characterize the performance of rd20 plants under drought stress, 3-week-old seedlings grown in soil were treated with no water to induce drought stress for additional 10 days. We noticed that the wilting levels of rd20 mutant plants were more obvious than those of the wild-type or RD20/rd20 plants (Figure 6C). Only 20% of rd20 plants survived, whereas the corresponding survival rates were 82–85% for wild-type and heterozygous plants after 3 days of rewatering preceded by 10 days of water-deficit stress treatment (Figure 6D). Seedlings of all genotypes showed no death when water was applied. Altogether, this suggests that RD20 plays an important role in plant defense to *B. cinerea* infection and drought stress.

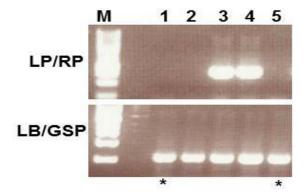


Figure 5: Genotyping of the *rd20* insertion mutants using PCR. M, marker; LP/RP, primer to the left/right of the T-DNA insertion; LB, T-DNA left border sequence was used for PCR amplification of plant flanking sequences; GSP, gene-specific primer. The asterisk represents homozygous lines used for further disease assays.

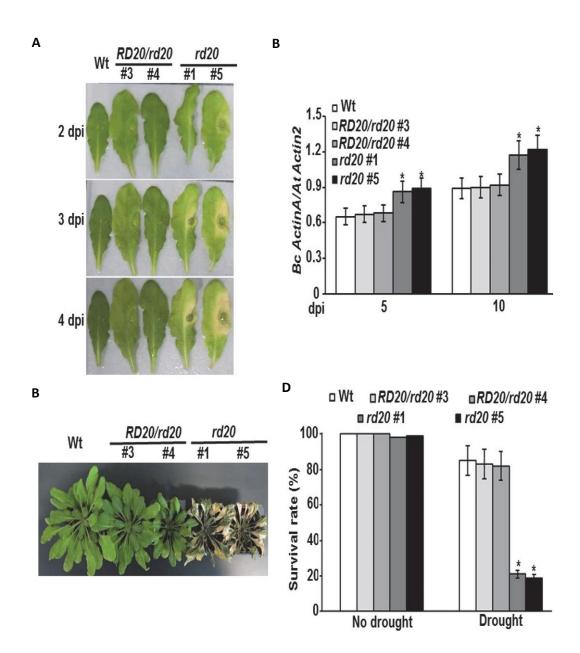


Figure 6: Responses of the *A.thaliana rd20* mutant to *B. cinerea* infection and drought. Disease symptoms in leaves after drop-inoculation with *B.cinerea* (A); and fungal growth in plants after spray-inoculation with *B. cinerea* (B). Drought sensitivity assay on plants 10 days after stopping irrigation (C); and quantitative analysis of survival on plants continued to be not watered for 10 days and then re-irrigated for 3 days (D). In (B), qPCR amplification of *Bc ActinA* relative to the *At Actin2* gene. In (B) and (D), mean values followed by an asterisk are significantly different from the corresponding control (*P* < 0.05). All assays were repeated at least three times with similar results. Wt, wild-type; *RD20/rd20*, heterozygous line; *rd20*, homozygous Bc *ActinA*, *B. cinerea ActinA* gene; *At Actin2*, *A. thaliana Actin2* gene; dpi, days post-inoculation.

All oxylipins, 12-oxo-phytodienoic acid (OPDA), phytoprostane A₁ (PPA₁) and jasmonate (JA) are regulators of stress responses ^[11, 27-28]. The cyclopentenones, OPDA and PPA₁, activate gene expression independently from the cyclopentanone, JA. We investigated whether the regulation of OPDA or PPA1 respondents ^[11, 27] was also regulated by B. cinerea, heat, salinity and osmotic stress. Previously, it was shown that the OPDA/B. cinerea upregulated genes (OBUGs), DREB2A, REF, UGT73B5, HSP17.4 and PDR12, and PPA₁/B. cinerea upregulated genes (PBUGs), GSTU25, GSTU4, PDR12 and ELI3-2, were also induced by cold, drought or oxidative stress ^[20]. Except of GSTU25, the rest of the commonly expressed genes were also upregulated by osmotic stress (Table 5). Conversely, HSP17.4 was induced by salinity as well, suggesting that plant responses to osmotic stress can share common respondents with OBUGs and PBUGs and other abiotic stresses. Some of the OBUGs (At5g25930, MLO6, At3g04640, At1g30700 and NIT4) and the PBUG (GSTU25) were not regulated by any of the tested abiotic stress treatments; while others such as CAD and DIN2 (OBUGs), and CYP89A9 and HSF4 (PBUGs) were induced by salinity and/or osmotic stress (Table 5). By contrast, no OBUG or PBUG was regulated by heat treatment. The results obtained from microarrays data for OBUGs or PBUGs were confirmed by qRT-PCR analysis in response to B. cinerea infection (Figure 7A). In general, our analysis revealed that some of the OPDA- or PPA1-regulated genes were specifically regulated by B. cinerea (Table 5; Figure 7A); or by a particular abiotic stress (Table 6), others were regulated by B. cinerea and abiotic stresses simultaneously (Table 5; Figure 7A). In addition, we found about 59% of the induced genes by OPDA and PPA1, and dependent on TGA2/5/6 transcription factors, were also induced by *B. cinerea* ^[20]. The genes upregulated by OPDA and PPA1 treatments and by B. cinerea were called OBUG/PBUGs. The

microarray study revealed that the genes NIT4, GSTL1 and At1g33590 (Leucine-rich repeat disease resistance protein), containing a TGA motif (TGACG) in their promoters (in the first 500 bp upstream of the start codon) were induced by B. cinerea (Table 7). The TGA motifs are potential binding sites for TGA transcription factors ^[11, 29]. The array results for these genes were confirmed by qRT-PCR upon infection with B. cinerea at 18 hpi (Figure 7B). Then, we identified TGA dependent-OBUG/PBUGs inducible by the three types of abiotic stresses tested in this study. Nine of the induced genes containing TGA motif in their promoters were osmotic stress-induced; six were salt-induced; and only one was heat-induced (Table 7). At 18 hpi with B.cinerea, the transcriptional analysis of the latter genes was also confirmed by qRT-PCR (Figure 7B). This suggests that the necrotrophic fungus B. cinerea and osmotic stress affect the regulation of OPDA and PPA₁ in *planta*. On the other hand, we found that plants stressed with salt and osmotic stresses, but not heat, change the profiles of OBUG/PBUGs independently from TGA transcription factor (Table 7). Our qRT-PCR analysis showed that B. cinerea also induced these genes (Figure 7B). In addition, other upregulated respondents by OPDA and PPA₁ treatments were upregulated by salt and osmotic stress, regardless of their regulation by B. cinerea infection (Table 6). We also found an important overlapping in the

regulation of *B. cinerea* and osmotic stress in plant defense system, and to lesser extent between *B. cinerea* and salt, affecting the cyclopentenone pathway TGA-dependent. Consequently, we conclude that there might be a unique gene regulation programing by OPDA and PPA₁ that can be induced either by *B. cinerea*, abiotic stress, or in combinations.

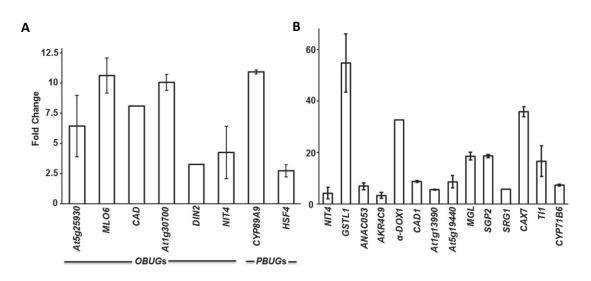


Figure 7: Expression of *OBUGs/PBUGs* and abiotic stress-regulated genes in response to *B. cinerea*.

Relative expression levels obtained through qRT-PCR for common *OBUGs* or *PBUG* and abiotic stress-upregulated genes (A); and *OBUGs/PBUGs* and abiotic stress-upregulated genes (B) after infection with *B. cinerea* at 18 hpi. Expression of *B. cinerea*-inducible genes was quantitated relative to control conditions (no infection), and corrected for expression of the control gene (β -actin). Error bars for qRT-PCR values are the standard deviations (n = 3). In (A) and (B), data were obtained from Tables 4 and 5, respectively. hpi, hours post inoculation; *At Actin2*, *A.thaliana Actin2* gene.

		Normalized fold induction		
Description	Gene locus	OPDA/PPA ₁ ^b	<i>B</i> .	Abiotic
OBUGs	locus	OPDA	<i>cinerea</i> ^c	stress
	1.5.05000			
Receptor-related protein kinase like	At5g25930	7.1	4.6	
DRE-binding protein (DREB2A)	At5g05410	4.4	3.4	Os
Mildew resistance locus O6 (MLO6)	At1g61560	3.9	4.2	
Gly-rich protein	At3g04640	3.4	8.1	
Rubber elongation factor (REF)	At1g67360	2	3.5	Os,S
UDP-glucose transferase (UGT73B5)	At2g15480	6.7	3.1	Os
Cinnamyl-alcohol dehydrogenase				
(CAD)	At1g09500	7.2	17.5	Os,S
Class I heat-shock protein(HSP17.4)	At3g46230	12.4	3.3	Os,S
FAD-linked oxidoreductase family	At1g30700	7.9	16.5	
ABC transporter (PDR12)	At1g15520	18.7	22.6	Os
β-glucosidase 30; Dark inducible 2				
(DIN2)	At3g60140	3.1	18.3	Os
Nitrilase 4 (NIT4)	At5g22300	3.9	4	
PBUGs		PPA1		
СҮР89А9	At3g03470	3.1	5.9	Os,S
GSTU25	At1g17180	17	10.8	
GST22/GSTU4	At2g29460	3.7	9.3	Os
PDR12	At1g15520	24.5	22.6	Os
HSF4	At4g36990	12.3	4.2	Os,S

Table 5: Regulation of genes by OPDA or PPA_1 treatment, *B. cinerea* infection, heat, salinity and osmotic stress

(Table continues on following page)

		Normalized fold induction				
Description	Gene locus	OPDA/PPA ₁ ^b	B. cinerea ^c	Abiotic stress ^d		
PBUGs		PPA ₁				
ELI3-2	At4g37990	15	75.2	Os		
Cyclin, putative	At1g44110	-4.4	-3.1	Os		
SYP111	At1g08560	-4	-3.6			
ACT11	At3g12110	-3.6	-4.2	Os		

Table 5: (continued from the previous page). Regulation of genes by OPDA or PPA1 treatment, *B. cinerea* infection, heat, salinity and osmotic stress

^a Normalized fold induction = normalized OPDA/PPA₁ treatment, *B. cinerea* inoculation or abiotic stress / normalized no OPDA/PPA₁ treatment, no *B. cinerea* inoculation or no abiotic stress. Data set on at least twofold induction after treatment/inoculation.

^b OPDA-upregulated genes data were obtained from ^[27] at 3 hpt. PPA₁-upregulated genes data were obtained from ^[11] at 4 hpt.

^c *B. cinerea*-upregulated genes data were obtained from ^[20] at 18 hpi.

^d Heat-, salt- or osmotic stress-upregulated genes data were obtained from this study at 24 hpt.

⁻, downregulation.

		Normalized fold induction*		
Description	Gene locus	PPA ₁ [§]	OPDA[§]	Abiotic stress [‡]
17.6-kD heat-shock protein (AA 1-156)	At1g53540	Ν	13.5	S
Class II heat-shock protein	At5g12020	Ν	12.5	S
Heat-shock protein 17.6A (AT-HSP17.6A)	At5g12030	Ν	13.2	Os,S
Heat-shock protein family	At5g37670	Ν	3.0	H,Os,S
Heat-shock protein family, putative	At2g20560	Ν	7.2	Os,S
Ser/Thr kinase-like protein	At4g23190	Ν	-3.3	Н
Copper/zinc superoxide dismutase (CSD2)	At2g28190	Ν	-2.5	Os,S
Copper Chaperine for SOD1 (CCS)	At1g12520	Ν	-2.5	Os,S
UDP-glucoronosyl/UDP-glucose transferase	At4g01070	4.2	Ν	Os
UDP-glucoronosyl/UDP-glucose transferase	At2g30140	3.7	Ν	Os
Heat shock protein 70 (HSP70)	At3g12580	5.4	Ν	Os,S
β-Ig-H3 domain–containing	At3g11700	-5.1	Ν	Os
protein/fasciclin domain–containing protein	C			
Tubulin β-8 chain (TUBB8)	At5g23860	-3.8	Ν	Os
Cyclin delta-3 (CYCD3)	At4g34160	-3.5	Ν	Os
Kinesin motor family protein (NACK1)	At1g18370	-3.2	Ν	Os
Cell division control protein, putative	At1g76540	-3.1	Ν	Os
Endo-xyloglucan transferase (TCH4)	At5g57560	-5.1	Ν	Н
Expansin B3 (EXPB3)	At4g28250	-4.9	Ν	Os
Hyp-rich glycoprotein family protein	At3g02120	-4.9	Ν	Os
glycoside hydrolase family	At3g06770	-4.1	Ν	Os
28/polygalacturonase (pectinase) family	_			
Auxin efflux carrier protein, putative	At1g23080	-6.8	Ν	Os
Auxin-responsive AUX/IAA family protein	At4g32280	-5.2	Ν	S
Auxin efflux carrier protein, putative (PIN1)	At1g73590	-4.3	Ν	Os
IAA4/AUX2-11	At5g43700	-3.8	Ν	Os
Cytochrome P450 family (CYP72A8) [†]	At3g14620	3.8	2.7	Os
AFG1-like ATPase family protein [†]	At4g30490	2.2	2.2	Os,S
Elicitor-activated gene 3 (ELI3-1) [†]	At4g37980	2.2	2.7	Os,S

Table 6: Regulation of genes by PPA₁ and OPDA treatment and abiotic stress

*Normalized fold induction = normalized phytoprostane-A₁ (PPA₁) or 12-oxophytodienoic acid (OPDA) treatment and abiotic stress/normalized no PPA₁ or OPDA treatment and no abiotic stress. Except for CYP72A8, AFG1-like ATPase and *ELI3-1*, data set on at least threefold induction/repression after treatment. *CYP72A8*, *AFG1-like ATPase* and *ELI3-1* fold induction by PPA₁ and OPDA (75 μ M) of at least twofold in Arabidopsis plants relative to control but no induction in *tga2/5/6* at 4 hpt ^[11]. No TGA motif (TGACG) was identified in the promoters of the gene

[§]OPDA or PPA₁-upregulated genes data were obtained from ^[27] at 3 hpt or ^[11] at 4 hpt, respectively.

[‡]Heat (H), salt (S) or osmotic stress (Os)-upregulated genes data were obtained from this study At 24 hpt.

N, not expressed; -, downregulation.

Array element	Gene locus	Description ^a	TGACG ^b	Abiotic stress ^c
249942	At5g22300	<i>OBUG/PBUG</i> Nitrilase 4 (NIT4)	+	
250983	At5g02780	Glutathione transferase lambda 1 (GSTL1)	+	
245768	At1g33590	Disease resistance LRR protein-related	+	
266995	At2g34500	CYP710A1	+	Os
258921	At3g10500	NAC domain containing protein 53 (ANAC053)	+	Os
267168	At2g37770	Aldo/keto reductase family protein (AKR4C9)	+	Os,S
250948	At5g03490	UDP-glucoronosyl/UDP-glucosyl transferas	e +	Os,S
258957	At3g01420	Alpha-dioxygenase 1 (a-DOX1)	+	Os
259911	At1g72680	Cinnamyl alcohol dehydrogenase 1 (CAD1)	+	Os,S
262607	At1g13990	Expressed protein	+	Os,S
249860	At5g22860	Ser carboxypeptidase S28 family protein	+	H,Os,S
263517	At2g21620	Responsive to dessication 2 (RD2)	+	Os,S
250054	At5g17860	Calcium exchanger 7 (CAX7)	-	Os
258277	At3g26830	Phytoalexin deficient 3 (PAD3)	-	Os
246042	At5g19440	Alcohol dehydrogenase	-	Os,S
261957	At1g64660	Catalytic/methionine gamma-lyase (MGL)	-	Os,S
257951	At3g21700	Small GTPase (SGP2)	-	Os
262482	At1g17020	Senescence-related gene 1 (SRG1); oxidoreductase	-	Os
260551	At2g43510	Trypsin inhibitor protein (TI1)	-	Os
266000	At2g24180	CYP71B6	-	Os

Table 7: Upregulated genes by OBUGs and PBUGs, and abiotic stresses dependent on TGA2/5/6

(Table continues on following page)

a Normalized fold induction of genes by PPA1 and OPDA (75 μ M) at 4 hpt and B. cinerea at 18 hpi at least twofold in Arabidopsis wild-type plants relative

to controls but no induction in *tga2/5/6*. *OBUG-* and *PBUG-*induced genes data were obtained from [20].

b Promoters of genes containing a TGA motif (TGACG) in the first 500 bp upstream of the start codon were obtained from ^[11].

c Normalized fold induction of genes by heat, salinity or osmotic stresses of at least twofold in Arabidopsis wild-type plants relative to controls (<u>http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0</u>125666.s004 Table S2).

Abiotic stress-induced genes data were obtained from this study at 24 hpt.

Chapter 4: Discussion

Plant responses to simultaneous biotic and abiotic stresses are mostly controlled by different hormonal and non-hormonal signaling pathways that may interact with each other, through the activation of transcription factors, effector proteins and secondary metabolites ^[3, 5, 18, 30–32]. Plants that were exposed to a given biotic stress are often more susceptible to abiotic stresses and *vice versa*^[33, 34]. To elucidate the relationship between the two types of stresses, many reports have focused on the regulatory crosstalk between biotic and abiotic stress responses. Expression profiling of plant response to one type of stress *B. cinerea* infection or abiotic stress treatment- has been well-documented ^[21, 25, 35, 35] ^{36]}. In addition, transcriptome analysis of Arabidopsis, rice, tobacco (*Nicotiana tabacum*) and cotton (Gossypium hirsutum L.) revealed crosstalk of responsive genes to various abiotic stresses ^[37–40]. Combinations of different biotic and abiotic stresses have allowed the identification of candidate genes involved in broad resistance [41]. A recent transcriptome analysis showed shared regulated genes when A. thaliana plants were infected with *B. cinerea* or treated with cold, drought or oxidative stress ^[20]. Here, we extended the comparative microarray analysis, obtained from A. thaliana public databases, to include B. cinerea, heat, salinity and osmotic stresses. We identified up- and down-regulated genes after treatments with an individual stress, or upon a combination of biotic and abiotic stresses. In response to B. cinerea, approximately 7% of genes were induced and 5% were repressed across the whole A. thaliana transcriptome ^[20]. The transcript levels of 153 and 799 genes increased more than twofold after heat and high salinity treatments, respectively, compared with the control genes; but 505 and 850 genes had impaired transcript levels of the transcripts for the same treatments (Figure 1). The largest number of genes up- or down-regulated by a specific stress corresponded to

osmotic stress with 1695 or 2210 genes, respectively. Previously, it was also found that the number of genes induced by salt stress in cotton was greater than in any other type of abiotic stress, particularly cold, pH or osmotic stress ^[40]. Based on the molecular and functional classifications and comparisons, some abiotic stress-regulated genes have been classified as genes, with known functions such as transcription regulators, scavengers or ion transporters ^[39, 40]; yet many remain unknown. We closely looked to the relationship between gene regulation in response to B. cinerea infection and in response to heat, salinity or osmotic stresses. We found that osmotic stress and B. cinerea shared the highest number of regulated genes; while heat and *B. cinerea* shared the least. Although a significant number of differentially expressed genes were regulated under specific stresses; others were also co-regulated by a combination of different stresses. We observed strong correlations of stress-associated genes and found that 13 stress-inducible genes and 29 stress repressible genes have responded to all four types of stresses (Figure 3). We expanded the analysis to include other transcriptome studies and we noticed that there were large fluctuations in the percentage of co-regulated genes (up- or downregulated) between biotic (B. cinerea), and abiotic stresses, as shown in Table 2 as 58% cold, 12.9% drought, 17.2% oxidative stress, 10.1% heat, 37.9% salinity, and 89% osmotic stress (Table 2). Microarray transcriptional profiling demonstrated that lecithin: cholesterol acyltransferase 3 (LCAT3) gene, encoding for phospholipase A1 (PLA1) enzyme ^[42], was upregulated after infection with *B. cinerea* or treatment with heat, 150 mM NaCl or 300 mM mannitol (Figure 4). In addition, the expression of A. thaliana LCAT3 in yeast resulted in a doubled content of the triacylglycerol ^[43]. The Defective in Anther Dehiscencel (DAD1) is another PLA1 involved in basal JA production and resistance *to B. cinerea*^[44]. The putative transposable element gene

At2g06890 was induced by the four types of stresses tested, suggesting a potential role of *LCAT3* and *At2g06890* in plant response to environmental stress. Our analysis also showed that the transcript levels of *ESE3*, an ERF/AP2 transcription factor, were impaired in plants sprayed with *B. cinerea* or treated with NaCl; which seems to be in disagreement with a previous study reporting an induction of this gene by salt stress ^[45]. This discordance could be attributed to the different plant growth conditions and NaCl concentrations.

It is noteworthy to mention that only three genes were commonly induced by the seven types of stresses (six types of abiotic stresses and one type of biotic stress; *B. cinerea*) and 12 genes were repressed (Table 2); suggesting extensive overlapped responses to these genes to different types of biotic and abiotic stresses. *A.thaliana Responsive to Dehydration20 (RD20; At2g33380)*, also known as *Caleosin3 (CLO3)*, was among the common induced genes in response to biotic and abiotic stresses (Table 4). The *RD20/CLO3* gene encodes a Ca+-binding protein, was induced by ABA, drought and high salinity ^[46–48]. The induction of *A. thaliana RD20* ^[20] and the sensitivity of its mutant to drought in Col-0 ecotype (Figure 6) confirmed previous data in Wassilewskija (Ws-4) ecotype after drought stress treatment ^[46]. These findings demonstrate that *RD20* is involved in the response of *A. thaliana* to abiotic stresses. It was reported that *RD20* was strongly induced by the reactive oxygen species (ROS)-inducing herbicide, paraquat ^[49]. In addition, the *A. thaliana rd20* mutants showed enhanced sensitivity to oxidative stress ^[50]

Because enhanced generation of ROS was found to accompany infections caused by necrotrophic pathogens ^[51], we hypothesize that *RD20* may confer resistance against *B. cinerea.* First, we found that the transcription of the stress-induced caleosin gene *RD20* was upregulated by *B. cinerea* (Table 3) and by other pathogens ^[20, 46, 52]. Second, functional analysis on *rd20* mutants demonstrated that *RD20* plays a significant role in plant defense against the necrotrophic fungi *B. cinerea* (Figure 6) and *Alternaria brassicicola* ^[53] but not the hemibiotroph *P. syringae* ^[46], suggesting an involvement of the caleosin *RD20* in *A. thaliana* responses to necrotrophic pathogens. Taken together, these findings reveal a novel role for *RD20/CLO3* in regulating plant stress response.

It has been reported that At5g25930 (LRR receptor-related kinase protein) and MLO6 (Mildew Resistance Locus O6), At1g30700 (FAD-linked oxidoreductase) and NIT4 (Nitrilase4) were induced after inoculation with *B. cinerea* or other pathogens ^[27]; supporting our results here about the involvement of these genes in the biotic stress signaling through OPDA.

Our analysis showed that *CAD*, involved in lignin biosynthesis, and *DIN2* (glycosyl hydrolase), involved in cellular sugar response, were induced by pathogen challenges, abiotic stresses and OPDA treatments ^[20, 54, 55], suggesting that modifications in cell wall properties and functions occur during plant responses to stress. On the other hand, the induction of *CYP89A9* and the heat shock factor, *HSF4*, by *B. cinerea*, high salt or osmotic stress (Table 5; Figure 7) is an evidence that these genes are involved in pathogen and abiotic stress signaling ^[56], mediated by the electrophilic oxylipin PPA₁ ^[11].

In the same report ^[56] as well as in others ^[6], the *B. cinerea*-inducible genes, *At5g25930*, *HSF4* and *BIK1*-whose mutant showed increased susceptibility to *B.cinerea*-, suggest potential roles in plant stress response/defense. Deeper investigation about the role of these genes in response to environmental stresses through cyclopentenones is required.

A recent transcriptomic and metabolomic analyses on copper-stressed brown algae (Ectocarpus siliculosus) showed accumulation of oxylipin compounds and shared responses with oxidative stress and NaCl treatments ^[57]. These findings are in agreement with our observations (Table 5) and a previous study on kelp^[58]. Moreover, *Methionine* gamma lyase (MGL) gene, involved in methionine homeostasis [59], was upregulated by oxylipin cyclopentenones, B. cinerea infection, salinity and osmotic stress (Table 7; Figure 7), suggesting that MGL may regulate methionine metabolism under combinatory conditions of different stresses. By contrast, azelain acid-induced1 (AZI1) gene, involved in priming defense in systemic plant immunity ^[60], was downregulated in leaves treated with B. cinerea or abiotic stresses (Table 3). In a recent transcriptome study on A. thaliana leaves exposed to both drought and beet cyst nematode (Heterodera schachtii) revealed that MGL was induced and AZI1 was repressed ^[18]. In the same report, transgenic lines overexpressing MGL and AZI1 confer resistance to nematodes and sensitivity to drought, respectively; suggesting that MGL and AZI1 may play a key role in plant response to biotic and abiotic stresses. On the other hand, three membraneassociated transcription factors (MTFs), bZIP28, bZIP60 and NAC089, play important roles in the regulation of plant cell death (PCD) under stressful conditions in A. thaliana [61, 62]

NAC089 has been reported as inducible by the endoplasmic reticulum (ER) stress and controlled by bZIP28 and bZIP60; suggesting that NAC089 regulates the downstream targets NAC094, MC5 and BCL-2-associated athano gene (BAG6), involved in PCD during plant ER stress response. Similarly, the identification of genes encoding NAC053, BAG6, WRKY22 and WRKY47 transcription factors suggests significant roles of these genes in the regulation of PCD-related genes through enzymatic or non-enzymatic pathways. The investigation of the function of the regulated genes and their downstream targets under multiple stresses is underway.

Chapter 5: Conclusion

Accumulating databases in A. thaliana genome research have enabled integrated genome wide studies to be performed to dissect plant responses to multiple diseases and variable biotic and abiotic stress conditions. Based on public databases relevant to our purposes, we tried to perform an analytic process to explore transcriptome data to predict consistent/inconsistent patterns and/or systematic interactions between various biotic and abiotic stresses. Our goal was to apply predictive data mining toward better comprehension of the complex biological systems that control plant/environment interactions and to provide valuable insights into gene function/dynamic relationships at the molecular levels. Many genes identified in this study could serve as general markers of common responses to biotic and abiotic stresses, and in some cases as responses mediated by oxylipin cyclopentenones. Along with the functional analysis, the identification of common regulators of plant responses to environmental constraints should enlighten the road of genetic engineering and serve breeding programs to develop broad-spectrum stress-tolerant crops. Future research to dissect specific functions of stress-involved components and to map all implicated elements in stress signal transduction pathways should be a priority focus. Follow-up studies benefiting from available resources and upcoming technical and methodological advancements in basic and applied researches should offer valuable tools in complement to the assessment of transcriptome analysis that would reflect, as faithfully as possible, the *in vivo* complexity of biological systems against multiple, simultaneous environmental conditions.

Bibliography

1. Shao HB, Guo QJ, Chu LY, Zhao XN, Su ZL, Hu YC, et al. Understanding molecular mechanism of higher plant plasticity under abiotic stress. *Colloids Surf B: Biointerfaces*. 2007; 54: 37–45.

2. Fujita M, Fujita Y, Noutoshi Y, Takahashi F, Narusaka Y, Yamaguchi-Shinozaki K, et al. Crosstalk betweenabiotic and biotic stress responses: A current view from the points of convergence in the stress signaling networks. *Curr Opin Plant Biol.* 2006; 9: 436–442.

3. Atkinson NJ, Urwin PE. The interaction of plant biotic and abiotic stresses: from genes to the field. *J Exp Bot.* 2012; 63(10): 3523–3543.

4. Chen Z-Y, Brown RL, Cleveland TE. Evidence for an association in corn between stress tolerance and resistance to *Aspergillus flavus* infection and aflatoxin contamination. *Afr J Biotechnol*. 2004; 3: 693–699.

5. Mengiste T, Chen X, Salmeron J, Dietrich R. The *BOTRYTIS SUSCEPTIBLE1* gene encodes an R2R3MYB transcription factor protein that is required for biotic and abiotic stress responses in Arabidopsis. *Plant Cell*. 2003; 15: 2551–2565.

6. Veronese, Nakagami H, Bluhm B, AbuQamar S, Chen X, Salmeron J, et al. The membrane-anchored BOTRYTIS INDUCED KINASE1 has distinct roles in Arabidopsis resistance to necrotrophic and biotrophic pathogens. *Plant Cell*. 2006; 18: 257–273.

7. Zheng Z, AbuQamar S, Chen Z, Mengiste T. Arabidopsis WRKY33 transcription factor is required for resistance to necrotrophic fungal pathogens. *Plant J*. 2006; 48: 592–605.

8. Luo H, Laluk K, Lai Z, Veronese P, Song F, Mengiste T. The Arabidopsis Botrytis Susceptible1 Interactor defines a subclass of RING E3 ligases that regulate pathogen and stress responses. *Plant Physiol*.2010; 154(4): 1766–1782.

9. Laluk K, Luo H, Chai M, Dhawan R, Lai Z, Mengiste T. Biochemical and genetic requirements for function of the immune response regulator BOTRYTIS-INDUCED KINASE1 in plant growth, ethylene signaling, and PAMP-triggered immunity in Arabidopsis. *Plant Cell*. 2011; 23(8): 2831–2849.

10. AbuQamar S, Ajeb S, Sham A, Enan MR, Iratni R. A mutation in the expansin-like A2 gene enhances resistance to necrotrophic fungi and hypersensitivity to abiotic stress in *Arabidopsis thaliana*. *Mol Plant Pathol*. 2013; 14: 813–827.

11. Mueller S, Hilbert B, Dueckershoff K, Roitsch T, Krischke M, Muelle MJ, et al. General detoxification and stress responses are mediated by oxidized lipids through TGA transcription factors in Arabidopsis. *Plant Cell.* 2008; 20: 768–785.

12. Diourte M, Starr JL, Jeger MJ, Stack JP, Rosenow DT. Charcoal rot (*Macrophomina phaseolina*) resistance and the effects of water-stress on disease development in sorghum. *Plant Pathol.* 1995; 44: 196–202.

13. Mayek-Perez N, Garcia-Espinosa R, Lopez-Castaneda C, Acosta-Gallegos JA, Simpson J. Water relations, histopathology and growth of common bean (*Phaseolus vulgaris L.*) during pathogenesis of *Macrophomina phaseolina* under drought stress. *Physiol Mol Plant Pathol.* 2002; 60: 185–195.

14. Mohr PG, Cahill DM. Abscisic acid influences the susceptibility of *Arabidopsis thaliana* to *Pseudomonas syringae* pv. tomato and *Peronospora parasitica*. *Funct Plant Biol*. 2003; 30: 461–469.

15. Achuo EA, Prinsen E, Hofte M. Influence of drought, salt stress and abscisic acid on the resistance of tomato to *Botrytis cinerea* and *Oidium neolycopersici*. *Plant Pathol*. 2006; 55: 178–186.

16. Wiese J, Kranz T, Schubert S. Induction of pathogen resistance in barley by abiotic stress. *Plant Biol*.2004; 6: 529–536.

17. Grover M, Ali SZ, Sandhya V, Rasul A, Venkateswarlu B. Role of microorganisms in adaptation of agriculture crops to abiotic stresses. *World J Microb Biot*. 2011; 27: 1231–1240.

18. Atkinson NJ, Lilley CJ, Urwin PE. Identification of genes involved in the response of Arabidopsis to simultaneous biotic and abiotic stresses. *Plant Physiol*. 2013; 162: 2028–2041.

19. Rasmussen S, Barah P, Suarez-Rodriguez MC, Bressendorff S, Friis P, Costantino P, et al. Transcriptome responses to combinations of stresses in Arabidopsis. *Plant Physiol*. 2013; 161: 1783–1794.

20. Sham A, Al-Azzawi A, Al-Ameri S, Al-Mahmoud B, Awwad F., Al-Rawashdeh A, et al. Transcriptome analysis reveals genes commonly induced by *Botrytis cinerea* infection, cold, drought and oxidative stresses in Arabidopsis. *PLoS ONE*. 2014; 9(11): e113718.

21. Craigon DJ, James N, Okyere J, Higgins J, Jotham J, May S. NASCArrays: a repository for microarray data generated by NASC's transcriptomics service. *Nucleic Acids Res.* 2004; 32: D575–D577.

22. Sessions A, Burke E, Presting G, Aux G, McElver J, Patton D, et al. A high-throughput Arabidopsis reverse genetics system. *Plant Cell*. 2002; 14: 2985–2994.

23. Bluhm BH, Woloshuk CP. Amylopectin induces fumonisin B1 production by *Fusarium verticillioides* during colonization of maize kernels. *Mol Plant-Microbe Interact.* 2005; 18: 1333–1339.

24. Institute SAS. The SAS system for windows. 1999; In: Release 8.0 SAS Institute Cary, NC.

25. Kilian J, Whitehead D, Horak J, Wanke D, Wein S, Batistic O, et al. The AtGenExpress global stress expression data set: protocols, evaluation and model data analysis of UV-B light, drought and cold stress responses. *Plant J*. 2007; 50: 347–363.

26. R Core Team. R: A language and environment for statistical computing. 2013; R Foundation for Statistical Computing, Vienna, Austria.

27. Taki N, Sasaki-Sekimoto Y, Obayashi T, Kikuta A, Kobayashi K, Ainai T, et al. 12oxo-phytodienoic acid triggers expression of a distinct set of genes and plays a role in wound-induced gene expression in Arabidopsis. *Plant Physiol*. 2005; 139: 1268–1283.

28. Stotz HU, Mueller S, Zoeller M, Mueller MJ, Berger S. TGA transcription factors and jasmonate-independent COI1 signalling regulate specific plant responses to reactive oxylipins. *J Exp Bot*. 2013; 64(4): 963–975.

29. Lam E, Benfey PN, Gilmartin PM, Fang RX, Chua NH. Site-specific mutations alter *in vitro* factor binding and change promoter expression pattern I transgenic plants. *Proc Natl Acad Sci USA*. 1989; 86: 7890–7894.

30. AbuQamar S, Chai M-F, Luo H, Song F, Mengiste T. Tomato protein kinase 1b mediates signaling of plant responses to necrotrophic fungi and insect herbivory. *Plant Cell*. 2008; 20: 1964–1983.

31. AbuQamar S, Luo H, Laluk K, Mickelbart M, Mengiste T. Crosstalk between biotic and abiotic stress responses is mediated by the tomato *AIM1* transcription factor. *Plant J*. 2009; 58: 347–360.

32. Bechtold U, Lawson T, Mejia-Carranza J, Meyer RC, Brown IR, Altmann T, et al. Constitutive salicylic acid defences do not compromise seed yield, drought tolerance and water productivity in the Arabidopsis accession C24. *Plant Cell Environ.* 2010; 33: 1959–1973.

33. Audebert A, Coyne DL, Dingkuhn M, Plowright RA. The influence of cyst nematodes (*Heterodera sacchari*) and drought on water relations and growth of upland rice in Cote d'Ivoire. *Plant and Soil*. 2000; 220: 235–242.

34. Mittler R, Blumwald E. Genetic engineering for modern agriculture: challenges and perspectives. *Annu Rev Plant Biol.* 2010; 61: 443–462.

35. AbuQamar S, Chen X, Dhawan R, Bluhm B, Salmeron J, Lam S. et al. Expression profiling and mutant analysis reveals complex regulatory networks involved in Arabidopsis response to *B. cinerea* infection. *Plant J*. 2006; 48: 28–44.

36. Windram O, Penfold CA, Denby K. Network modeling to understand plant immunity. *Annu Rev Phytopathol.* 2014; 52: 93–111.

37. Mitchell C, Joyce AR, Piper JT, McKallip RJ, Fariss MW. Role of oxidative stress and MAPK signaling in reference moist smokeless tobacco-induced HOK-16B cell death. *Toxicol Lett.* 2010; 195: 23–30.

38. Rabbani MA, Maruyama K, Abe H, Khan MA, Katsura K, Ito Y, et al. Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. *Plant Physiol.* 2003; 133: 1755–1767.

39. Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, et al. () Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. *Plant J*. 2002; 31: 279–292.

40. Zhu Y-N, Shi D-Q, Ruan M-B, Zhang L-L, Meng Z-H, Liu J, et al. Transcriptome analysis reveals crosstalk of responsive genes to multiple abiotic stresses in cotton (*Gossypium hirsutum L.*). *PLoS ONE*. 2013; 8(11): e80218.

41. Shaik R, Ramakrishna W. Machine learning approaches distinguish multiple stress conditions using stress-responsive genes and identify candidate genes for broad resistance in rice. *Plant Physiol*. 2014; 164: 481–495.

42. Bouvier-Navé P, Noiriel A, Benveniste P. Characterization of a novel phospholipase A1 cDNA from *A. thaliana*. 1st European Symposium on Plant Lipids, Aachen, Germany, September 10–13, 2003.

43. Noiriel A, Benveniste P, Banas A, Stymne S, Bouvier-Navé P. Expression in yeast of a novel phospholipase A1 cDNA from *Arabidopsis thaliana*. *FEBS J*. 2004; 271(18): 3752–3764.

44. Yang W, Devaiah SP, Pan X, Isaac G, Welti R, Wang X. AtPLAI is an acyl hydrolase involved in basal jasmonic acid production and Arabidopsis resistance to Botrytis cinerea. *J Biol Chem.* 2007; 282(25): 18116–18128.

45. Zhang L, Li Z, Quan R, Li G, Wang R, Huang R. An AP2 Domain-Containing Gene, *ESE1*, targeted by the ethylene signaling component EIN3 is important for the salt response in Arabidopsis. *Plant Physiol*. 2011; 157(2): 854–865.

46. Aubert Y, Vile D, Pervent M, Aldon D, Ranty B, Aldon D, et al. RD20, a stressinducible caleosin, participates in stomatal control, transpiration and drought tolerance in *Arabidopsis thaliana*. *Plant Cell Physiol*. 2010; 51: 1975–1987.

47. Sewelam N, Kazan K, Thomas-Hall SR, Kidd BN, Manners JM, Schenk PM. Ethylene Response Factor 6 is a regulator of reactive oxygen species signaling in Arabidopsis. *PLoS One*. 2013; 8(8): e70289.

48. Tiwari M, Sharma D, Singh M, Tripathi RD, Trivedi PK. Expression of OsMATE1 and OsMATE2 alters development, stress responses and pathogen susceptibility in Arabidopsis. *Sci Rep.* 2014; 4(3964): 1–12.

49. Ramel F, Birtic S, Ginies C, Soubigou-Taconnat L, Triantaphylidès C, Havaux M. Carotenoid oxidation products are stress signals that mediate gene responses to singlet oxygen in plants. *Proc Natl Acad Sci USA*. 2012; 109: 5535–5540.

50. Blée E, Boachon B, Burcklen M, Le Guédard M, Hanano A, Heintz D, et al. The reductase activity of the Arabidopsis caleosin RESPONSIVE TO DESSICATION20 mediates gibberellin-dependent flowering time, abscisic acid sensitivity, and tolerance to oxidative stress. *Plant Physiol*. 2014; 166: 109–124.

51. Pietrowska E, Różalska S, Kaźmierczak A, Nawrocka J, Małolepsza U. Reactive oxygen and nitrogen (ROS and RNS) species generation and cell death in tomato suspension cultures-Botrytis cinerea interaction. *Protoplasma*. 2015; 252: 307–319.

52. Trusov Y, Sewelam N, Rookes JE, Kunkel M, Nowak E, Schenk, et al. Heterotrimeric G proteins-mediated resistance to necrotrophic pathogens includes mechanisms independent of salicylic acid-, jasmonic acid/ethylene- and abscisic acid-mediated defense signaling. *Plant J.* 2009; 58(1): 69–81.

53. Hanano A, Bessoule J, Heintz T, Blée E. Involvement of the caleosin/peroxygenase RD20 in the control of cell death during Arabidopsis responses to pathogen. *Plant Sign Beh.* 2015 16 Mar.

54. Bray EA. Genes commonly regulated by water-deficit stress in *Arabidopsis thaliana*. *J Exp Bot*. 2004; 55(407): 2331–2341.

55. Truman W, de Zabala MT, Grant M. Type III effectors orchestrate a complex interplay between transcriptionalnetworks to modify basal defence responses during pathogenesis and resistance. *Plant J.2006*; 46(1): 14–33.

56. Sela D, Buxdorf K, Shi JX, Feldmesser E, Schreiber L, Aharoni A, et al. Overexpression of AtSHN1/WIN1 provokes unique defense responses. *PLoS ONE*. 2013; 8(7): e70146.

57. Ritter A, Dittami SM, Goulitquer S, Correa JA, Boyen C, et al. () Transcriptomic and metabolomic analysis of copper stress acclimation in *Ectocarpus siliculosus* highlights signaling and tolerance mechanisms in brown algae. *BMC Plant Biol*. 2014; 14: 116.

58. Ritter A, Goulitquer S, Salaün J-P, Tonon T, Correa JA, Pottin P, et al. Copper stress induces biosynthesis of octadecanoid and eicosanoid oxygenated derivatives in the brown algal kelp *Laminaria digitata*. *New Phytol*. 2008; 180: 809–821.

59. Rébeillé F, Jabrin S, Bligny R, Loizeau K, Gambonnet B, van Wilder V, et al. Methionine catabolism in Arabidopsis cells is initiated by a g-cleavage process and leads to S-methylcysteine and isoleucine syntheses. *Proc Natl Acad Sci USA*. 2006; 103: 15687–15692.

60. Jung HW, Tschaplinski TJ, Wang L, Glazebrook J, Greenberg JT. Priming in systemic plant immunity. *Science*. 2009; 324: 89–91.

61. Howell SH. Endoplasmic reticulum stress responses in plants. *Annu Rev Plant Biol*. 2013; 64: 477–499.

62. Yang Z- T, Wang M- J, Sun L, Lu S- J, Bi D- L, Sun L, et al. The membraneassociated transcription factor NAC089 controls ER-stress-induced programmed cell death in plants. *PLoS Genet*. 2014; 10(3): e1004243.

63. Provart NJ, Zhu T. A browser-based functional classification SuperViewer for Arabidopsis genomics. *Curr Comput Mol Biol*. 2003; 2003: 271–272.

List of Publications

A. Sham, K. Moustafa, S. Al-Ameri, A. Al-Azzawi, R. Iratni & S. AbuQamar^{*} (2015). Identification of candidate genes in Arabidopsis in response to biotic and abiotic stresses using comparative microarrays. PLoS ONE. 10(5). e125666. doi:10.137/journal.pon. 0125666.