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ABSTRACT 

Phenolic aerogels, prepared via polycondensation of phenolic monomers and 

formaldehyde, were converted to carbon aerogels at 800 °C/Ar followed by reactive 

etching under flowing CO2. Previously, it was found that a lower-temperature air-

oxidation of polybenzoxazine aerogels was necessary in order to obtain highly porous, 

isomorphic carbon aerogels with high carbonization yields. Using those findings as the 

point of departure, phenolic aerogels were oxidized at 240 °C/air prior to carbonization. 

During that air-oxidation step, phenolic aerogels based on phloroglucinol (1,3,5-

trihydroxybenzene) undergo fusion of their aromatic rings, yielding 6-membered 

heteroaromatic pyryliums with pendant phenoxide ions. The resulting carbon aerogels 

have higher surface areas than other carbon aerogels not subjected to aromatization. 

Subsequently, carbon aerogels were studied for their CO2 adsorption capacity at 273 K up 

to 1 bar, relevant to post-combustion separation of CO2 from N2. Carbon aerogels from 

phenolic resins were compared to carbon aerogels from Ishida’s polybenzoxazine, and 

from a random copolymer of polyamide, polyurea, and polyimide. The results show that 

phenolic resin-derived carbons (containing phenoxide) adsorb more CO2 than the latter, 

which contain N in addition to oxygen. Interestingly, resorcinol-formaldehyde-derived 

carbon aerogels uptook 14.8 ± 3.9 mmol g-1 CO2, which is much higher than the values 

reported in the literature for other microporous materials. Opening of closed micropores 

and enlargement of micropore size, resulted in a multilayer coverage of micropore walls 

with CO2. The high capacity for CO2 was attributed to an energy-neutral reaction between 

surface phenoxides and CO2.       
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1.  INTRODUCTION 

1.1. AEROGELS 

Aerogels are a unique class of highly porous solid materials with extremely low 

density. They can be up to 99% v/v air.1–6 Due to their large open pores and high internal 

surface areas, they have numerous useful properties such as: extremely low thermal 

conductivity, low sound velocity, and high optical transparency. In most cases, they are 

amorphous materials by X-ray diffraction (XRD) techniques. Consequently, aerogels 

have attracted attention for potential applications such as: catalysts, sorbents, thermal 

insulators, energetic materials,7,8 Cherenkov detectors, dielectric, electrodes for batteries 

and capacitors, etc.9–13 However, due to their limited processing methods, their 

commercialization has been slow.14,15  

Aerogels are prepared via sol-gel processing16 of molecular precursors in organic 

solvents. The initial gel consists of a solid network filled with solvent. That pore-filling 

solvent is replaced by air via a process that is referred to as supercritical fluid (SCF) CO2 

drying. As a result, the porous texture of wet gel is retained in the dried aerogels. Figure 

1.1 illustrates the general steps followed in the sol-gel processing of aerogels. 

Depending on the choice of precursors (inorganic or organic), all aerogels fall into 

two main classes: inorganic and organic. The first inorganic silica-based gel was prepared 

by Ebelmen in 1846, by exposure to the atmosphere of a silane obtained from SiCl4 and 

ethanol. In 1931, Kistler showed that the pore-filling liquid of a gel can be removed 

without destroying the gel network. Its long-time preparation was the reason that it took 

30 years to become industrially applicable. Silica gel has become a widely investigated 
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inorganic material and numerous literature has been devoted to its rich chemistry and 

applications in fundamental sciences and high technology. Details about synthetic 

conditions and properties of silica aerogel can be found in the literature.4,5,17–21  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1.1. The schematic preparation of aerogels by sol-gel processing and some 

controllable polymerization parameters.  
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1.2. ORGANIC AEROGELS 

Organic aerogels are highly crosslinked polymers, which are prepared by the sol-

gel polymerization between purely organic monomers. They were first introduced by 

Pekala et. al. in 1987.5,22 Those were resorcinol-formaldehyde (RF) and melamine-

formaldehyde (MF),23 which were synthesized from the polycondensation of resorcinol 

(1,3 dihydroxybenzene) or melamine (1,3,5-triazine-2,4,6-triamine) with formaldehyde 

under basic (often sodium hydroxide (NaOH), or sodium carbonate (Na2CO3)) conditions 

(Scheme 1.1). RF belongs to a large class of organic polymers, i.e., phenolic resins,1 

which are polycondensation products of phenolic compounds with aldehydes in the 

aerogel form. 

In 2007, Mulik et. al. reported a one-pot acid-catalyzed synthesis of RF in 

acetonitrile, which proceeds faster (2 h at room temperature or 10 min at 80 °C) in 

comparison to Pekala’s week-long base-catalyzed procedure. It was concluded that the 

acid-catalyzed gelation process yielded RF aerogels that were chemically (as evident by 

13C NMR) indistinguishable from those obtained via the usual base-catalyzed aqueous 

gelation process. Nevertheless, acid-catalyzed RF aerogels show a different morphology 

than their base-catalyzed analogues, which results from their different gelation 

mechanisms.24  

The mechanisms involved in the base- and acid-catalyzed synthesis of RF 

aerogels are illustrated in Schemes 1.2 and 1.3, respectively. Resorcinol (R) has three 

reactive sites at 2, 4, and 6 positions of benzene ring and is more reactive than phenol, 

therefore, it can react with formaldehyde (F) at room temperature.  

                                                           
1 For details about phenolic resins please refer to appendix A.  
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Scheme 1.1. Base-catalyzed synthesis of RF and MF aerogels. 

 

 

As it is shown in Scheme 1.2, in the base-catalyzed gelation, the R anion is 

formed by deprotonation of resorcinol (1). Electron donation from positions 4 or 6 of R to 

the partially positively charged carbonyl carbon of formaldehyde leads to 

hydroxymethylation. Hydroxymethylation activates the ring further towards reaction with 

F leading to hydroxymethylation at position 4 (2). Subsequently, hydroxymethylated R at 

position 2 is deprotonated by the base, leading to the formation of unstable o-

quinomethide intermediate (3), which reacts with the R anion and forms a compound 

with a methylene bridge (4). Because of the presence of active sites on R produced by 

deprotonation continuous condensation results in the formation of crosslinked RF 

polymer (5).  
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The acid-catalyzed reaction involves an electrophilic aromatic substitution in 

which, in contrast to the base-catalyzed one, F is first protonated by reacting with an acid 

(1). Afterwards, the protonated F is attacked by the π-system of R, leading to 

hydroxymethylation of R (2). Further, the acid helps in the protonation of the 

hydroxymethyl group followed by elimination of H2O, a good leaving group, and 

formation of o-quinomethide intermediate (3). o-quinomethide can react with R (like in 

step 4 of the base-catalyzed reaction) or the π-system of another R can attack the 

protonated hydroxymethyled R to form methylene linkages (4). Finally, in the presence 

of excess R and F, additional condensations result in the formation of highly crosslinked 

RF network (5).25 

Organic aerogels exhibit similar structures and properties to their inorganic 

counterparts. For example, RF aerogels are dark red, and their polymer network consists 

of interconnected particles ≤ 10 nm diameters similar to silica aerogels. Figure 1.2 

compares the scanning electron microscopy (SEM) images of RF and silica aerogels, 

both consisting of primary particles of 10–12 nm in diameters, which are the building 

blocks of pearl-necklace-like secondary particles with 40–70 nm diameters.22a Those 

nanostructures give them special properties that can be superior in some cases to 

inorganic aerogels. For example, under ambient conditions, monolithic RF aerogels show 

a lower thermal conductivity of 0.012 W m-1 K-1 than silica aerogels (0.016 W m-1 K-1). 

Another inimitable advantage of organic over inorganic aerogels is the capability of 

former to be used as carbon precursors. That will be discussed in detail in Section 

1.4.22c,26  
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Scheme 1.2. Mechanism of base-catalyzed gelation of RF aerogels. 

 

 

It is noted that combination of various polymerization conditions such as: 

monomers ratio, solvent, catalyst concentration, pH, and temperature greatly affect the 

physical and chemical characteristics of gels prior to drying (see Figure 1.1). These 

conditions can be fine-tuned so that the microstructure and properties of final aerogels are 

tailored accordingly. 
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Scheme 1.3. Mechanism of acid-catalyzed gelation of RF aerogels. 

 

 

For instance, for RF aerogels, changing the monomer concentration, clearly 

influences the density of the material by changing the degree of crosslinking. In the case 

of MF aerogels, the transparency of aerogels is essentially controlled by changing the pH 

of the initial sol.5,23 
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Figure 1.2. SEM images of silica (b = 0.200 g cm-3) and RF (b = 0.160 g cm-3) aerogels 

as shown. Note that at close bulk densities (b) both systems show similar particulate 

morphologies.  

 

 

1.2.1. Other Types of Organic Aerogels. For many years, the term “organic 

aerogels’’ was bound to RF aerogels. Further progress has been made to diversify organic 

aerogels based upon their chemical and porous structures. In addition to RF, many other 

phenolic resin types of organic aerogels such as: phenol-formaldehyde (PF),27 cresol-

formaldehyde (CF),28 resorcinol-furfural (RF),29 phenol-furfural (PF),30 polybenzoxazine 

(PBO),31 and more recently terephthalaldehyde-phloroglucinol (TPOL), and 

phloroglucinol-formaldehyde (FPOL) have been synthesized.32 Organic aerogels are not 

limited to phenolic resins though. Organic chemists have taken the advantage of the rich 

organic reactions to develop many novel organic aerogels that are products of different 

functional groups. Those include: polyacrylates such as polyacrylonitrile (PAN),33 and 

polyurethane acrylates (PUAC), polyurethane-norbornenes (PUNB),34 polyamide (PA),35 

polyimide (PI),36 polyurea (PUA),37 polyurethane (PU),38 and polydicyclopentadiene (p-

DCPD),39 each of which are being pursued for different applications such as suitable 

carbon precursors, thermal insulators, materials with excellent mechanical properties and 

stability, as core for armor plates, and shape memory aerogels. Table 1.1 summarizes all 

200 nm 200 nm 

silica RF 
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organic aerogels that are obtained from the polymerization of phenolic monomers with 

aldehydes or other reactive (non-phenolic) starting materials. 

1.2.2. Synthesis of Terephthalaldehyde-Phloroglucinol (TPOL) Aerogels. 

Just like the acid-catalyzed gelation mechanism of RF, the reaction of T with POL in 

acidic solution involves an electrophilic aromatic substitution (Scheme 1.4). In the  

 

Table 1.1. Classification of organic aerogels based on their precursors. 

Phenolic Aerogels Precursors  Organic 

Aerogels 

Resorcinol (R) + Formaldehyde (F) RF 

Phenol (P) + Formaldehyde (F) PF 

Cresol (C) + Formaldehyde (F) CF 

Resorcinol (R) + furfural (F) RF 

Phenol (P) + furfural (F) PF 

Bisphenol A + para-Formaldehyde (F) + Aniline PBO 

Phloroglucinol (POL) + Terephthalaldehyde (T) TPOL 

Phloroglucinol (POL) + Formaldehyde (F) FPOL 

 

Non-Phenolic 

Aerogels 

Melamine (M) + Formaldehyde (F) MF 

Acrylonitrile + Crosslinker1 + Initiator2 PAN 

Isocyanate + Acrylates + Initiator2 PUAC 

Isocyanate + Norbornene Monomer + Initiator2 PUNB 

Isocyanate + Carboxylic Acid PA 

Isocyanate or Amine + Anhydride PI 

Isocyanate + Amine or Water PUA 

Isocyanate + Alcohol PU 

Dicyclopentadiene p-DCPD 

1ethylene glycol dimethacrylate (EGDMA) or 1,6-hexanediol diacrylate (HDDA) 
2Azobisisobutyronitrile (AIBN). 
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presence of acid, the electrophile, T, is protonated and carries a positive charge (1). POL 

is a highly reactive multifunctional phenolic monomer in electrophilic aromatic 

substitution because of the electron donating resonance effect of the three -OH groups. 

The protonated T is attacked by the π-system of POL leading to the formation of 

hydroxymethylene bridges between T and POL. Subsequently, the protonation of 

hydroxyl group (2) creates a good leaving group (-OH2
+), which cleaves further to form 

highly reactive o-quinomethide intermediates (3). The π-system of another POL can 

attack the protonated hydroxymethylene or the o-quinomethide to form methylene 

linkages, thus leading to condensation of 1 mol of T with two moles of POL (4). The 

same processes take place at other side of T and as a result of simultaneous addition and 

condensation reactions the crosslinked polymeric network of TPOL aerogels is formed 

(5). 

The mechanism for the synthesis of FPOL aerogels follows the same steps as in 

the formation of TPOL aerogels, except T is replaced with F (formaldehyde, as the 

aldehyde) in the structure of FPOL system.  

1.3. POLYMERIC CARBON AEROGELS  

3D nanoporous carbons obtained by the pyrolysis (also referred to as 

carbonization) of organic aerogels (which are, in turn, prepared by sol-gel mixing of 

organic monomers as discussed in Section 1.2) are termed “carbon aerogels”.27,40 Figure 

1.3 depicts the typical step involved in the preparation of carbon aerogels from organic 

precursors, e.g., RF, or PF aerogels along with their potential applications.  
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Scheme 1.4. Proposed mechanism for the acid-catalyzed synthesis of TPOL aerogels. 
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1.3.1. Background. The first and widely known carbon aerogel (CA) was 

produced by the carbonization of RF aerogel at the beginning of 1990’s, 60 years after 

the discovery of the first aerogel based on silica gels. Indeed, tunable properties of RF 

aerogel, such as surface area, pore volume, and pore size distribution, allowed it to be a 

suitable precursor for preparing carbon aerogels.41–48 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.3. Preparation of carbon aerogels from organic aerogels and their main potential 

applications, which are derived from their outstanding properties as indicated. 
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The utility of CAs is derived from their exceptional properties in particular: high 

surface area and pore volume, low density, high electrical conductivity, and 

environmental compatibility (Figure 1.3).49–51 CAs can be fabricated as monoliths, 

powders, microspheres, or thin films. Monoliths have some advantages over other forms 

of CAs. They show continuous structures and leverage a set of properties, due to their 

suitable geometry, better than other forms, thus, have emerged as useful media for novel 

technological applications. For example, microscopically, monolithic structure is 

described as 3D continuous hierarchical porosity, which usually leads to several distinct 

merits such as: low pressure drop, fast heat and mass transfer, high contacting efficiency, 

and easy to deal with. In addition, macroscopically, a monolith usually shows wider 

flexibility of operation as compared to the powder form.52  

There are various types of porous carbons besides CAs. In general, they fall into 

the following classes: traditional activated carbons, renewable-resources-derived porous 

carbons, synthetic polymer-based porous carbons, porous carbon nanotubes (CNT), 

porous graphene composites, etc. CAs have the advantage that they can be prepared in 

bulk quantities via the facile sol-gel chemistry. However, their major issue is their long 

and sensitive drying process. That, in fact, can be sacrificed by considering their 

availability in unique shapes such as monolithic, films, etc., that cannot be obtained by 

other methods as mentioned before.53,54  

All porous carbon nanomaterials show similar chemical structure consisting of 

conjugated carbons in sp2 hybridization state, in which electrons are delocalized and 

serve as charge carriers, thus, responsible for electrical behavior of the materials.53  
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CAs have been viable candidates for energy storage materials, adsorbents, 

electrochemical double-layer capacitors/supercapacitors, materials for chromatographic 

packing, anodes in Li-ion batteries, electrodes in catalytic supports, for instance, in fuel 

cells, etc., some of which have already been commercialized (Figure 1.3).55–59  

In the course of pyrolysis, the slow heat treatment (with) is used to convert the 

polymer or organic precursor to high-yield CA, which is essentially mostly carbon. 

Heating cycles and temperatures depend on the nature of the precursor. But, for most 

materials the heating is at slow rate (1–5 °C min-1) and usually at temperatures of 800–

1000 °C, which may be extended to 1300 °C.60 It has to be noted that not every polymer 

can be converted to high-yield carbon. Typical carbonizable polymeric aerogels are 

phenolic resins, PAN and its copolymers as the main non-phenolic carbon precursors,33,61 

PA aerogels,35,37c, PI,36a,36c PUA,37b and PU.38b  

In general, to obtain high-yield carbon, the polymeric precursor must have: a) 

high molecular weight, b) high degree of aromaticity, and c) should not have more than 

one carbon atom between aromatic rings, otherwise, the polymer will turn into volatile 

molecules because of chain scission, and d) nitrogen should be in the ring structure and 

not in the chain. Other elements, if exist, do not affect the stability of the polymer but will 

result in lower carbonization yields.62  

1.3.2. The Importance of Ring Fusion Aromatization Step in the 

Carbonization of PAN Fibers and PBO Aerogels and Extension to Other Phenolic 

Resin Aerogels. The pyrolysis of polymers, e.g., phenol-formaldehyde, had been studied 

before the emerge of organic aerogels. The structural changes during pyrolysis at 

successive temperatures were reported by means of measurements of diamagnetic 
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susceptibility, electrical conductivity, XRD, and infrared (IR) spectroscopy. Moreover, 

formation of gaseous compounds in the midst of pyrolysis were supported using 

chromatographic and mass spectrometry techniques.63  

Among the most studied materials as carbon precursors, is PAN, the main source 

of carbon fibers for over a century. Extensive studies have been conducted to discuss the 

chemistry involved in the production of high performance carbon fibers from PAN 

polymers. In 1960’s, it was found that if PAN fibers are treated in air before the main 

carbonization step, the resulting carbon fibers become stronger and stiffer.64 After that, it 

became an accepted procedure worldwide to first cure PAN fibers in air at temperatures 

of 180–300 °C, followed by carbonization at temperatures above 800 °C in an inert 

environment (Ar or N2) with a slow heating rate. Although the structure of the PAN 

fibers is still complicated, it is almost widely accepted that PAN fibers become oxidized 

and cyclization and aromatization are the main chemical changes that take place during 

curing step. Therefore, the structure of the carbon precursor needs to be selected wisely in 

order to enable the material to survive the high temperature carbonization step.33,65  

However, the question remains as: what actually happens during that curing step 

that improves the yield and properties of carbons? As shown in Scheme 1.5, ordinarily, 

three steps are involved in the production of high-yield carbon from PAN-based fibers:   

1. Stabilization, which occurs at temperatures of 180–300 °C in air. This step is 

crucial because the structure of final carbon is set in this step. As a result of 

oxidative aromatization happening in this step, cyclic structures are formed 

within the polymeric PAN network; hence, PAN becomes sustainable at high 

temperature processing (see next steps). The reactions occurring in this step 
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are exothermic and provide sufficient heat for the formation conjugated ladder 

chains between nitrile groups. 

2. Subsequently, the aromatized (cyclized, or thermally stable) PAN fibers are 

subjected to a heat treatment at temperatures ≤ 1600 °C under inert 

atmosphere (Ar or N2). During this step, separate conjugated polymeric 

networks become interconnected and form stacked conducting networks 

(Scheme 1.5). 

3. Finally, the carbonized PAN fibers are graphitized at 2300 °C under inert gas 

to improve the stiffness of carbon fibers.61,66,67 

It is possible to carbonize all graphitizable polymers by oxidizing the starting 

materials in the early stages of carbonization. Wislow (1958), prepared polystyrene 

polymers consisting of m‐divinyl benzene, m‐ethylvinyl benzene, and m‐diethyl benzene. 

The copolymer was treated at 250 °C in air. The carbonization of that polymer at 450 °C 

resulted in black carbon with mass loss of only 45%. Hence, it was concluded that the 

oxidation stage could prevent chain degradation and fragmentation into small gaseous 

molecules.  

Apparently, carbon yield is not affected by whether the polymer is thermosetting 

or thermoplastic, linear or crosslinked. However, the polymer has to be capable of 

undergoing cyclization (or ring-fusion aromatization) prior to the carbonization step.68  

Another example in which the oxidative ring-fusion aromatization step is critical 

is in PBO aerogels. PBO aerogels are prepared from benzoxazine (BO) monomer, which 

is made by mixing bisphenol A (4,4'-(propane-2,2-diyl) diphenol), paraformaldehyde,  
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Scheme 1.5. Proposed structures and SEM images of PAN aerogels at different stages of 

aromatization, carbonization, and graphitization as shown. The physical appearances of 

as-prepared, CA, and graphitized PAN can also be seen in the photograph. 
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and aniline at 110 °C. The PBO is prepared traditionally via heat-induced (PBO-H) 

polymerization of BO in DMF. 

Recently, monolithic PBO aerogels were synthesized over a wide density range 

via a new HCl-catalyzed (PBO-A) room temperature reaction, which is more time-

efficient as compared to the heat-induced method. The advantage of acid-catalyzed vs the 

heat-induced process is that it imposes additional cross-linking in the para positions of  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 1.6. Synthesis of polybenzoxazine (PBO) aerogels via conventional heat-induced 

and acid-catalyzed (room temperature) methods. Additional crosslinking centers are 

formed by using the time-efficient acid-catalyzed method. 
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the aniline as shown with circles in Scheme 1.6. That results in smaller particles, 

increased surface areas and reduced thermal conductivity. 

CAs from PBO polymers were prepared by pyrolysis of the monolithic PBO 

aerogels at 800 °C under Ar for 5 h. It has been shown that high‐yield isomorphic 

carbons (61%) from PBO are obtained only when PBO aerogels are first oxidized at 200 

°C in air for 5 h. Otherwise, direct‐pyrolyzed PBO polymers will result in carbons that 

are not nanoporous monoliths, as shown in Figure 1.4. The curing step oxidizes, 

aromatizes, and rigidizes the polymeric backbone. Hence, the CAs that are obtained from  

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4. Photographs and the corresponding SEMs of PBO aerogels, before and after 

aromatization at 200 °C/air and after carbonization at 800 °C/Ar. Note that under direct 

pyrolysis, samples lose their morphology and porosity, while after aromatization 

isomorphic carbons with relatively high porosity and yields (61% from PBO) are 

obtained. 

61 %                   27 %   

PBO-A-RT         PBO-A-200     PBO-A-200-800     PBO-A-800 
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that route are extremely robust nanoporous materials with hierarchical porosities that 

range from micro‐ to meso‐ and to macropore sizes.31 

The findings were supported by SEM, N2 sorption, solid state 13C NMR and 15N 

NMR, small angle X‐ray scattering (SAXS), FTIR, and thermogravimetric analysis 

(TGA). According to solid state 15N NMR of PBO aerogels (Figure 1.5), the BO 

monomer contains only one type of N and shows a single sharp resonance at 62.8 ppm. 

On the other hand, the spectrum of as-prepared PBO-H showed two resonances close to 

one another, one at 64.2 ppm and another at 75.4 ppm. However, after curing the 

spectrum is quite different.  

Also, the spectrum of as-prepared PBO-H was radically different than that of as-

prepared PBO-A, showing, in addition to the peaks in the 60–70 ppm region, two more 

strong peaks, one at 293 ppm and another in the 128–135 ppm region. Also, the spectrum 

of partially cured A- samples (PBO-A-5-200) looks quite similar to that of as-made H- 

(PBO-H-5-130) samples. In conclusion, heat-induced polymerization is not a complete 

process. In fact, the 200 °C/air curing step is an equalizer, through which the polymers 

from both routes become essentially the same. Thus, curing at 200 °C in air causes ring-

fusion aromatization, which evens out the H- and A- processes. The structure of 

aromatized PBO after air-curing is shown in Scheme 1.7.69  

Now, the question is: can we induce ring-fusion aromatization similar to what was 

observed in PBO in other aerogels? In an attempt to generalize the concept of ring-fusion 

aromatization, the intriguing discoveries about the stabilization of PAN and PBO through 

the oxidative ring-fusion aromatization process (180–300 °C in air) were examined on 

four other polymeric aerogels. Those systems were phenolic resin types of organic 
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Figure 1.5. Solid state 15N NMR spectra of PBO aerogels (with 5% w/w monomer 

concentration) obtained from heat-induced and acid-catalyzed pathways before and after 

aromatization (200 °C/air) step. 

 

 

aerogels (RES), which were condensation products of three different phenols: 

phloroglucinol (POL), resorcinol (R), and phenol (P) with two aldehydes: 

terephthalaldehyde (T), and formaldehyde (F), as shown in Scheme 1.8. TPOL, FPOL, 

RF, and PF were prepared via HCl-catalyzed sol-gel polymerization in organic solvents. 

They exhibit high degree of cross-linking, high temperature stability, and high 

carbonization yields, thereby, they comply with the requirements for a suitable carbon 

precursor, as were discussed previously in Section 1.3.1. 
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Scheme 1.7. Aromatized structure of polymeric PBO aerogels after curing at 200 °C/air. 

 

 

Figure 1.6 shows the materials properties data of TPOL aerogels at various stages 

of pyrolysis. As can be seen, the samples are monolithic, highly porous, and particulate as 

examined by a combination of materials characterization techniques such as N2 sorption 

porosimetry and SEM.   

CAs from phenolic resin systems (C-RES-O) were prepared by pyrolysis of 

aerogel monoliths after inducing oxidative ring-fusion aromatization through heating at 

240 °C in air for 5 h. For comparison purposes, samples were also directly pyrolyzed 

without undergoing the ring-fusion aromatization step, denoted as C-RES-D. The 

structural changes during the oxidation step along with the materials properties of 

carbons obtained at successive temperatures were monitored in parallel to the samples 

obtained via the direct-pyrolyzed route. The observations revealed that, in contrast to 

PAN and PBO, through the oxidation step, the carbonization yield does not change 

dramatically, and carbons obtained from both pathways are highly porous and 

or 
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isomorphic. However, CAs from two of those polymers, i.e., TPOL and FPOL, had 

higher surface areas when compared to the direct-pyrolyzed samples. 

 

 

 

 

 

 

 

 

 

 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 1.8. Structures of as-prepared RES aerogels and their air-oxidized products. 

After carbonization at 800 °C/Ar they convert to a common structure.  
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Oxidation in air induced ring-fusion aromatization in those two systems as was 

confirmed with X-ray photoelectron spectroscopy (XPS), solid state 13C NMR, FTIR, 

differential scanning calorimetry (DSC), and CHN analysis. It was then proposed that 

ring-fusion aromatization in TPOL and FPOL was analogous to the formation of 

nitrogen-bearing heterocyclic systems in PAN and PBO polymers, instead oxygen is 

involved as pyrylium (O+) in fused 6-membered ring and phenoxide (C–O͞ ) as charge-

compensating ion (see Scheme 1.8). RF and PF, on the other hand, did not show any ring-

fusion aromatization under the same condition (240 °C/air 5h), and only oxidation took 

place in aliphatic regions (-CH2-) of the polymer backbone. Their surface areas after 

carbonization were not different from the CAs obtained by the direct pyrolysis of as-

prepared samples (C-RES-D). 

Further studies of the carbonization of those four systems at successive 

temperatures pinpointed another interesting observation about their CAs. Regardless of 

their pyrolysis routes, either direct-pyrolysis or through oxidative route, and independent 

of their origin, samples eventually converged to a common structure at ≥ 600 °C 

consisting of fused aromatic repeat layers with pyrylium (O+) and phenoxide (C–O͞  ) (see 

Scheme 1.8). 

In conclusion, whenever early oxidative ring-fusion aromatization takes place, it 

is beneficial to the properties of final CAs. In PAN and PBO, it stabilizes the polymeric 

backbone and gives high-yield carbons that are stiffer. In PBO, it rigidizes the polymer 

network and is necessary for obtaining high-yield isomorphic porous CAs. In the case of 

TPOL and FPOL, it also rigidizes the polymer network and creates microporosity that 

results in CAs with higher surface areas than their directly-pyrolyzed counterparts.  
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1.3.3. Activation of Carbons. Carbons often show mass specific surface areas in 

the range of 200–1000 m2 g-1, which can be further increased by an activation process. 

The activation can be carried out through either chemical or physical processes. In 

chemical activation, activated carbons are prepared by heating carbons or carbon 

precursors in concentrated acids (e.g., H3PO4) or bases (e.g., KOH), or in ZnCl2 under 

inert atmosphere.55,70 Physical activation, on the other hand, is a two-step process, which 

is performed using steam, CO2, or combination of these two right after the carbonization 

step.45 In both techniques, activated carbons show significant improvement on their 

surface areas due to the opening of closed pores and creating new microporosity.  

Among those activation processes, CO2 activation (or etching) has been found to 

be the most effective and simple method for producing high-surface area CA with 

uniform micropores. During CO2 etching, carbon reacts with CO2 according to the 

Boudouard equilibrium (Equation 1), which is basically a comproportionation 

reaction.53,71  

 

(1) 

 

Recently, etching was performed at 1000 °C under CO2 on CAs obtained from 

anhydride (PI-AMN) and isocyanates (PI-ISO) polyimides.  The BET surface areas of PI-

AMN and PI-ISO increased to 417 and 1010 m2 g-1, respectively. Also, etching improved 

the electrical conductivity of the latter by a factor of 70. The samples remained 

monolithic with mass losses of 20–40% relative to the samples before etching under 

CO2.
36c  
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Figure 1.6. Summary of materials characterization data for TPOL aerogels as indicated. 

Samples remain monolithic throughout the pyrolysis steps.  
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Etching with CO2 was also carried out on CAs from pyrolysis of polyamide-

polyimide-polyurea random copolymers. The micropore surface areas of CAs after 

reactive etching were 4 × higher than their CAs parents, which resulted in an improved 

CO2 adsorption capacity relevant to selective CO2 sequestration applications.72  

The same observations were made in the case of phenolic resin-based CAs. For 

example, in the case of TPOL samples, as shown in Figure 1.6, etching with CO2 at 1000 

°C increased the total surface area of CAs from 628 ± 48 to 2568 ± 75 m2 g-1. In addition, 

the micropore surface area increased from 349 ± 37 to 877 ± 48 m2 g-1, and micropore 

volumes doubled. Those samples are labeled as EC-TPOL-O-800. 

1.4. CARBON AEROGELS IN CO2 SEQUESTRATION AND GAS 

PURIFICATION 

Industrial fuel gas emissions such as carbon dioxide (CO2), methane (CH4), 

nitrogen oxides (NOx), carbon monoxide (CO), hydrocarbons, sulfur dioxide (SO2), etc., 

have jeopardized human health, agricultural crops, and ecosystems by introducing 

greenhouse effect, resulting in the so-called global climate change.73–75 As an example, 

burning of fossil fuels,76,77 which supplies more than 85% of energy for industry, has 

contributed to the increase in the concentration of the greenhouse gases.78 According to 

the EPA report on 2018, CO2 is the source of over 76% of total greenhouse emissions, 

whereas CH4 accounts to about 16%. Nitrous oxide (N2O) contributes to about 6%, while 

other sources are responsible for near 2% of the global emission (Figure 1.7).79 

Consequently, the atmospheric CO2 concentration has exceeded from the pre-industrial 

value of 280 ppm to nearly 405 ppm in 2018, and that of CH4 has also doubled.80  
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Figure 1.7. Contributions of the main greenhouse gas emissions in the atmosphere that 

have resulted in the global climate change.  

 

1.4.1. Background. Developing renewable and clean energy technologies using 

hydrogen and methane seems to reduce the dependence on employing traditional energy 

sources.80c Alternatively, carbon capture and storage, or carbon capture and sequestration, 

or carbon control and sequestration (referred to as CCS) has been considered as an 

optional approach to reduce CO2 concentration, which contributes significantly to global 

warming. CCS has attracted the most attention in which solid sorbents play an important 

role.76 The term CCS is used to describe the process that captures CO2 emission from 

large scale sources, such as power plants, storing and disposing it so that it will not return 

to the atmosphere.78,81,82 Three viable techniques currently being investigated in CCS in 

large-point sources e.g., power plants include: 1) pre-combustion capture, 2) post-

combustion capture, and 3) oxyfuel combustion.76,78,83 Pre- and post-combustion 

processes have different technical and operational conditions. In the case of pre-

combustion capture, CO2 is separated from either CH4 or H2 at elevated temperatures, 
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76% 

CH4 

16% 

N2O 

6% 

Other sources, 2% 



29 
 

e.g., 40 bars, and a temperature of around 40 °C, while for post-combustion process, CO2 

is captured from mostly N2 at around atmospheric pressure and temperatures of 40–80 °C 

using chemical solvents.75 In oxyfuel combustion, coal or gas in denitrified air is burned 

to yield only CO2 and water.78  

1.4.2. Solid CO2 Sorbents. To date, three main technologies used to separate CO2 

from its emission sources include: the use of scrubbing solution, solid sorbents, and 

membranes. Among those, solid sorbents have been widely investigated recently in post-

combustion method. The advantage of solid sorbents over other materials is that they are 

used in a larger temperature range and therefore yield less waste during cycling and also 

can be disposed without special environmental precautions.76 For low-temperature 

applications various solid sorbents with different chemical compositions have been 

proposed. Those sorbents are primarily classified into two main classes of materials: 

traditional porous sorbents (i.e., activated carbon and zeolites) and novel polymer-based 

materials, which have attracted tremendous interest in the literature over the last few 

decades. Carbon-based materials, because of their low cost, high surface area, high 

amenability to pore structure modification and surface functionalization, and facile 

regeneration are among the most promising gas sorbents. For example, activated carbons 

have been used as filter materials in separation of gases or liquids; hence the term 

“carbon filter process (CFP)” has been widely used.54 However, because of their weak 

interaction with CO2, their uptake drops dramatically at elevated temperatures associated 

with postcombustion methods.84 In contrast, polymer-based adsorbents, in addition to 

high surface area, possess synthetic diversity, light weight, and high thermal stability.85 

Most notable novel polymeric materials that have been proposed for atmospheric gas 
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sorption so far are: metal organic frameworks (MOFs),86 hyper crosslinked polymers 

(HCPs),87 conjugated microporous polymers (CMPs),88 polymers with intrinsic 

microporosity (PIMs),89 porous aromatic frameworks (PAFs),90 covalent organic 

polymers (COPs),91 covalent triazine-based frameworks (CTFs),92 microporous organic 

polymers (MOPs),93 porous polymer frameworks (PPFs),94 and benzimidazol-linked 

polymers (BILPs).95  
CAs have recently attracted attention in the literature for CCS in addition to their 

other energy-related applications.54,72 They leverage the set of properties offered by each 

polymer- and carbon-based materials including: high surface area, hierarchical porosity, 

high thermal stability, tunable surface area and pore size, synthetic diversity, and ability 

to synthesize carbon materials with defined morphology in contrast to traditional porous 

carbons such as carbon blacks.53 In addition, their wide flexibility of operation, e.g., 

preparation in various forms such as powders, films, composites, and monoliths has 

enabled them to emerge as a platform for a wide variety of novel technological 

applications. 

Establishing a definite explanation for the CO2 capture performance of solid 

sorbents based on their pore characteristics (size and shapes) and heteroatom 

functionality seems to be critical in designing a superior material for CCS applications. 

Different strategies have been proposed to increase the gas uptake in those sorbents 

including: 1) increasing surface area of the material, 2) increasing the average adsorbent-

adsorbate interaction energy, and 3) tuning pore size, structure and particle shape to 

provide a preferential adsorption of a gas over others (referred to as selectivity), 4) 

surface modification via N-doping, amine modification, oxidation, fluorination, etc., and 
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5) synthesis of porous hybrid materials. Although high uptake is desired for designing a 

superior gas adsorbent, high selective adsorption of a gas over others is also required for 

practical applications, which is still a challenging research topic.75,76  

The gas adsorption behavior of phenolic resin-derived monolithic carbon aerogels 

(C-RES) and their etched carbons (EC-RES) at temperatures and pressures close to the 

post-combustion process are fully investigated in Paper II of this dissertation. The results 

are compared in detail with carbons and reactivated carbons obtained from two nitrogen 

containing materials: PBO aerogels prepared via the acid-catalyzed route at room 

temperature,31 and a random copolymer of polyamide, polyurea, and polyimide (PA) 

from the reaction of triisocyanate (tris(4-isocyanatophenyl) methane) (TIPM) with 

pyromellitic acid (PMA).72 Choosing these materials allowed for a thorough investigation 

of their CO2 uptakes qualitatively based on different chemical compositions and surface 

functionality (oxygen, nitrogen, and their derivatives (-O+, -O-, -N+)) and quantitatively 

by comparing the adsorbent-adsorbate interactions from calculated heats of adsorption. 

Their advantage over other polymeric or carbon-based sorbents include the use of 

inexpensive monomers at room temperature without the need of a catalyst, in comparison 

to other polymers that require expensive catalyst. They are also stable at room 

temperature and are not as sensitive as MOFs to moisture.96 An outstanding CO2 uptake 

of 14.8 ± 3.9 mmol/g at 273 K and 1 bar is reported for low density reactivated 

resorcinol-formaldehyde carbon aerogel (EC-RF), which is higher than that of all porous 

CO2 sorbents reported so far under the same conditions. That is attributed to the energy-

neutral reaction of surface phenoxide (C–O͞ ) with CO2 beyond monolayer coverage of 

micropores. 
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ABSTRACT 

This paper is a thorough investigation of the chemical transformations during 

pyrolytic conversion of phenolic resins to carbons, and reports that all carbons obtained 

from main-stream phenolic resins including phloroglucinol-formaldehyde (FPOL), 

phloroglucinol-terephthalaldehyde (TPOL), resorcinol-formaldehyde (RF), and phenol-

formaldehyde (PF) contain fused pyrylium rings and charge-compensating phenoxides. 

Those four phenolic resins were prepared via a fast HCl-catalyzed process as low-density 

nanostructured solids classified as aerogels, which, owing to their open porosity, allowed 

air circulation through their bulk. In that regard, the first step of this study was the air-

oxidation of those phenolic resin aerogels at 240 oC. In FPOL and TPOL aerogels, that 

mailto:leventis@mst.edu
mailto:cslevent@mst.edu
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air-oxidation step kicked off a cascade of reactions leading to ring-fusion aromatization 

and formation of pyrylium O+-heteroaromatic rings in every repeat unit of the polymeric 

backbone. Despite the complexity of the process, those structural forms were well-

defined, and were retained through pyrolytic carbonization (800 oC). Under the same 

conditions (240 oC/air), RF and PF aerogels did not undergo aromatization; instead, they 

just went through an autoxidation-like process that converted the –CH2– bridges between 

phenolic moieties into carbonyls (C=O). Importantly, however, upon further stepwise 

pyrolysis under Ar, by 600 oC all four systems (TPOL, FPOL, RF and PF), irrespective 

of whether they had been previously oxidized or not, converged to a common chemical 

composition. Thereby, carbon produced by pyrolysis of phenolic resins at 800 oC always 

contains fused pyrylium rings. All chemical analysis relied on FTIR, solid-state 13C 

NMR, XPS and CHN analysis. The only and significant difference made by the low-

temperature (240 oC) air-oxidation step was identified with the surface areas of carbons 

from aromatizable systems (TPOL and FPOL), which were higher than those from 

direct pyrolysis of as-prepared aerogels. Upon further reactive etching with CO2, those 

surface areas went as high as 2778 ± 209 m2 g-1. Those findings are directly relevant to 

high surface area carbons for gas sorption (e.g., capture and sequestration of CO2) and 

ion exchange materials.   

Air-oxidation at 240 oC, followed by pyrolytic carbonization, revealed that 

carbons from phenolic resins contain fused pyrylium rings and phenoxides. 
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1. INTRODUCTION 

Phenolic resins are the condensation product of phenol or phenol derivatives with 

formaldehyde.1,2 If the reaction is run under sol-gel conditions, the reaction mixture turns 

into a gel, and if the pore-filling solvent is converted into a supercritical fluid that is 

vented off as a gas, phenolic resins take the form of highly porous, low-density, high 

surface area solids, classified as aerogels.3,4 Pyrolysis of phenolic resin aerogels under 

inert atmosphere, and most notably those of resorcinol-formaldehyde (RF),5–7 has been 

the primary source of carbon aerogels and xerogels.8–10   

It is known that the high open porosity of aerogels allows gasses to diffuse 

through their bulk with near open-air rates.11,12 That property is utilized in this report by 
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inserting an air-oxidation step at the early stages of pyrolysis (<250 oC) of phenolic resin 

aerogels, and it is reported that certain of those materials undergo complete backbone 

aromatization yielding fused O+-heteroaromatic pyrylium rings along their entire skeletal 

framework. Subsequently, by using those fully characterized fused aromatic ring systems 

as a new point of departure, it was found that all high-temperature (>600 oC) pyrolysis 

products of mainstream phenolic resins include fused aromatic pyrylium rings, even 

without prior lower-temperature air-oxidation. However, phenolic aerogels that undergo 

air-oxidation-induced ring-fusion aromatization at lower temperatures, show a significant 

enhancement in the surface area of their carbons.  

The impetus of this work stems from the pyrolytic carbonization of 

polyacrylonitrile (PAN), and of polybenzoxazines (PBOs). PAN is a linear polymer and 

the main source of graphite fiber for high performance fiber-matrix composites.13,14 

Direct pyrolysis of PAN under inert atmosphere leads to complete decomposition. 

Carbonization of PAN (yield: 70% w/w15,16) requires a prior air-oxidation step at 200-300 

oC that yields a new polymer consisting of a ladder-type structure with fused pyridine 

rings along its backbone.17 Similarly, polybenzoxazines (PBOs) are a special type of 

phenolic resins with Mannich type bridges (–CH2–N(R)–CH2–) between phenolic rings, 

instead of the typical –CH2– bridges in other phenolic resins.18–20 PBOs are heat-resistant 

and are pursued as low-cost alternatives to polyimides. PBOs are also carbonizable, but 

curiously the carbon yield of PBO aerogels (up to 61% w/w) was much higher than that 

from PBOs in bulk form (27% w/w).21 In analogy to PAN, the higher carbonization yield 

of PBO aerogels was traced to O2-induced aromatization and formation of fused N+-

heteroaromatic pyridinium rings along the polymeric backbone.22 It was concluded that 
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that process was facilitated by air circulating freely through the open porosity of PBO 

aerogels during a curing step up to 200 oC that, prior to that discovery, was thought only 

as necessary in order to complete polymerization of the benzoxazine monomer. The 

question then became whether oxidative ring-fusion aromatization could be forced upon 

more conventional phenolic resins, and if so, whether it would play a role in the 

carbonization process. That inquiry was pursued with aerogels derived from (Scheme 1) 

phenol (P), resorcinol (R) and phloroglucinol (POL) reacted  

 

 

 

 

 

Scheme 1. The monomers of this study. 

 

with formaldehyde (F), as well as with aerogels derived from POL reacted with 

terephthalaldehyde (T). Reflecting their chemical composition, those phenolic resin 

aerogels are abbreviated as PF, RF, FPOL and TPOL, respectively. Collectively, all 

those four types of resins in aerogel form are referred to as RES. Again, since the scope 

of this work was to explore chemical transformations in phenolic resins brought about by 

air-oxidation, working with RES was advantageous, because their open porosity allowed 

unobstructed air-circulation through their bulk. The chemical composition of the four 

model systems along pyrolysis was followed with XPS, solid-state 13C NMR, FTIR and 

elemental analysis. The evolution of the skeletal framework and the pore structure was 

followed with SEM, and N2-sorption porosimetry. It was found that at 240 oC in air all 
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four RES were oxidized, however only the two POL-systems, FPOL and TPOL, 

proceeded further to ring-fusion aromatization. Upon further pyrolysis under Ar, the 

chemical compositions of all four RES, either as-prepared, or after air-oxidation at 240 

oC, converged at around 600 oC to a common chemical composition bearing two types of 

O: pyrylium O+, and charge compensating phenoxide O–. It was found that carbon 

aerogels from the aromatized versions of FPOL and TPOL had higher BET surface 

areas than carbons from direct pyrolysis of FPOL and TPOL. That property was 

magnified by reactive etching with CO2 at 1000 oC. Possible applications of those 

carbons include gas sorption and ion-exchange based separations.  

2. RESULTS AND DISCUSSION 

2.1. MATERIAL SYNTHESIS 

Aerogel synthesis and subsequent processing is summarized in Scheme 2. 

Processing details are described in the Experimental section. The exact formulations are 

given in Table S.I.1 (ESI, Appendix I). The gelation of TPOL, FPOL, and RF was 

carried out at room temperature. PF gelled at 80 oC. In order to ensure crosslinking 

among polymeric chains, which is a necessary condition for phase separation of 

nanoparticles and formation of the aerogel network,23 the phenolic monomer-to-

formaldehyde ratio for PF, RF and FPOL was set at 1:2 mol/mol. On the other hand, 

since T bears two –CHO groups, it can play the role of the crosslinker itself, thus the 

POL:T mol ratio was set at 2:1. All gelation reactions were catalyzed with aq. HCl. Using 

Kanatzidis’ work on phloroglucinol-terephthalaldehyde porous polymers as a point of 

departure,24 gelation of TPOL was carried out in 1,4-dioxane using a 16% w/w sol. 
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FPOL and PF were also gelled from 1,4-dioxane sols. In order to use our previous 

developed time-efficient, HCl-catalyzed gelation of RF as a reference,25 gelation of that 

system was carried out in CH3CN using much less concentrated sols (3.3% w/w). The 

R:HCl mol/mol ratio was the same as before (8.4), and gelation at room temperature 

occurred in 2 h, consistent with our previous report.25 However, HCl-catalysis of the 

TPOL and FPOL sols was more efficient: gelation occurred in 1 min and 10 min, 

respectively, with a much lower catalyst concentration (POL:HCl ≈ 109 mol/mol). On the 

contrary, HCl-catalyzed gelation of PF was slow:26 using the same P:HCl mol/mol ratio 

as in RF (8.4), gelation took 24 h at 80 oC. All four wet-gels were aged, solvent-

exchanged with acetone and were dried with liquid CO2 taken out at the end as a 

supercritical fluid (SCF). Post synthesis, RES aerogels were separated into two groups: 

The first one was pyrolyzed at 240 oC under Ar and the resulting samples are referred to 

as TPOL-240(Ar), RF-240(Ar), etc. The second group was pyrolyzed at 240 oC under 

air, and the corresponding samples are referred to as TPOL-240(air), RF-240(air), etc. 

Collectively, the two groups are referred to as RES-240(Ar), and RES-240(air), 

respectively. Next, as-prepared RES and RES-240(air) were pyrolyzed under Ar at 300 

oC, 400 oC, 500 oC, 600 oC, 700 oC and 800 oC, using fresh samples at every successive 

pyrolysis temperature. That is, samples that were pyrolysed at a given temperature, were 

characterized as will be described below, and were stowed; they were not pyrolyzed 

under Ar again at any other temperature. The samples from those pyrolytic experiments  
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Scheme 2. Synthesis of acid-catalyzed phenolic aerogels (RES: TPOL, FPOL, RF, PF), 

air-oxidation, pyrolytic carbonization, and reactive etching. (D: Products from direct 

pyrolysis of as-prepared RES; O: Products from pyrolysis of oxidized samples: : 

Pyrolysis temperature; C: Carbon; EC: etched carbon) 

aldehyde (T or F) 
in solvent  

phenolic monomer  
in solvent 

1. mix and stir briefly 

2. add HCl 12.1 N (catalyst) 

3. stir briefly 

4. pour in molds 

wet-gels 

1. age in molds, 24 h/23 oC (12 h/70 oC for PF) 

2. remove, wash with acetone, 3 × 8 h 

3. dry from SCF CO
2
 

RES  
aerogels 

300 oC, Ar, or 
400 oC, Ar, or 
 . 
 . 
 . 
800 oC, Ar 

etching 

RES-240(air) 

240 oC, Ar 

RES-240(Ar) 

240 oC, air 

300 oC, Ar, or 
400 oC, Ar, or 
 . 
 . 
 . 
800 oC, Ar 

C-RES-O- C-RES-D- 

1000 oC, CO2 1000 oC, CO2 

EC-RES-O- EC-RES-D- 

carbonization 

oxidation 



40 
 

are abbreviated as C-RES-D- and C-RES-O-, where “C” stands as a reminder that  

those samples were obtained along carbonization; “D” stands for samples after Direct 

pyrolysis of as-prepared RES; “O” stands for samples obtained after prior Oxidation at 

240 oC/air; and, “” stands for the pyrolysis temperature. Finally, selected pyrolyzed 

samples, C-RES-D- and C-RES-O- were subjected to reactive etching with CO2 at 

1000 oC, and are abbreviated as EC-RES-D_(or_O)-, whereas “EC” stands for “etched 

carbon.”  

Certain key product yields along processing are cited in Table S.I.2 (ESI. 

Appendix I). First, the yields of the air-oxidation products were quite high (w/w): TPOL-

240(air), 90%; FPOL-240(air), 74%; RF-240(air), 82%; and, PF-240(air), 100%. Next, 

the yields of the D route at the terminal pyrolytic temperature (800 oC) of this study were 

on average a little higher than the yields of the O route (% w/w vs. % w/w): C-TPOL-D-

800/C-TPOL-O-800, 57/54; C-FPOL-D-800/C-FPOL-O-800, 54/50; C-RF-D-800/C-

RF-O-800, 54/49; and, C-PF-D-800/C-PF-O-800, 61/49. However, by considering the 

errors in those yields (ESI, Table S.I.2), the definitive edge of the D-route in terms of 

carbonization yields was rather only with the RF and PF systems. It is noted further that 

the pyrolytic yields of C-RES-O- declined only a little in the 300≤≤600 oC range, 

compared with C-RES-D-, whose yields declined steadily. This implies that the 

chemical changes brought about at 240 oC/air were stable for a few hundred oC 

afterwards. This point is important, because, as it will be shown in Section 2.3 below, 

above 600 oC, D and O processes converged chemically, thereby the chemical identity of 

the pyrolysis products at 240 oC/air dictates the common fate of all pyrolysis products 

afterwards.  
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2.2. PYROLYSIS PRODUCTS AT 240 OC/AIR VERSUS 240 OC/Ar 

Differential scanning calorimetry (DSC) of the four RES up to 300 oC under N2 

showed no major heat exchanges. In air, however, all four RES showed strong exotherms 

with maxima in the 230–270 oC range (Figure 1 and ESI, Appendix II Figure S.II.1). 

Based on those data, quantitative pyrolysis of all as-prepared RES was carried out at 240 

oC, as described above. Consistent with our previous findings with RF,27 all RES-

240(Ar) were chemically identical to as-prepared RES (see below). In contrast, RES-

240(air) were chemically different from RES, and in fact they could be put in two 

groups: (a) TPOL-240(air) and FPOL-240(air), and (b) RF-240(air) and PF-240(air). 

Group (a), TPOL-240(air) and FPOL-240(air), bore fused aromatic pyrylium ions on 

their polymeric backbones, Group (b) did not. Scheme 3 shows the structures of RES and 

RES-240(air) as inferred from the spectroscopic data below. 

The FTIR spectra of all RES-240(Ar) (Figure 2 and ESI, Appendix III Figure 

S.III.1) were identical to those of as-prepared RES. On the other hand, while RES-

240(air) retained at least some of the –OH groups of their parent RES (note the 

absorptions with maxima in the 3394–3436 cm-1 range), they also showed a new 

absorption in the 1723–1737 cm-1 range, which was assigned to C=O stretching, although 

those absorptions were not very strong by carbonyl standards. Pyrylium in-plane stretches 

were expected in the 1400–1650 cm-1 range,28,29 which overlaps with the stretches of 

other aromatic rings, thereby that region was not interpretably useful. On the contrary, the 

region below 1000 cm-1 was quite informative, especially in the case of TPOL-240(air). 

The OOP C-H bending at 833 cm-1 of the para-substituted ring of T,30 which was clearly 

present in both TPOL and TPOL-240(Ar), went missing from TPOL-240(air), in 
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agreement with its involvement in a ring-fusion process (Scheme 3). Similarly, the out-

of-plane C….C bending31,32 at 548 cm-1 was also missing from the oxidized product. In the 

latter region, the spectrum of FPOL-240(air) showed similar changes (see ESI, Figure 

S.III.1), consistent with ring fusion, while the spectra of RF-240(air) and PF-240(air) 

still showed the out-of-plane C….C bending modes from isolated aromatic rings (see 

Figure 2 and ESI, Figure S.III.1). 

XPS gave more direct evidence for the formation of pyrylium rings. O1s XPS 

spectra were obtained using compressed pellets made by mixing powders of the 

corresponding materials with Au dust (10% w/w), which dissipated electrostatic charges, 

and its 4f7/2 peak at 84.0 eV was used as an internal peak-position calibration standard. 

Three more compounds were also run in a similar fashion as external references: (a) 1-

naphthol that gave a O1s peak from the phenolic –OH group at 531.97 eV; (b) sodium 

phenoxide that gave a O1s peak from the –O– group at 531.41 eV; and, (c) 2,6-

diisopropyl-4-phenylpyrylium cation, which was available from other work in our 

laboratory,33 and showed a O+ peak at 534.26 eV. The O1s spectra of the three references 

are shown in ESI, Appendix IV Figure S.IV.1. The O1s XPS spectra of all as-prepared 

RES (Figure 3 and ESI, Appendic IV Figure S.IV.2) showed, as expected, the presence 

of only a single type of oxygen (with maxima in the 531.52-532.66 eV range), which was 

assigned to phenolic type –OH.34–37 The XPS spectra of TPOL-240(air) and FPOL-

240(air) showed three peaks: one at higher energies (533.62 eV and 535.24 eV, 

respectively), one more intense absorption in an intermediate energy range (532.64 eV 

and 533.45 eV, respectively), and one absorption at lower energies (531.39 eV and 

531.61 eV, respectively). The intensity ratio of those three absorptions were 1:(1.4):1 in         



43 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 3. Structures of as-prepared RES aerogels, and their air-oxidation products. 
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TPOL-240(air) and 1:(2.6):(1.3) in FPOL-240(air). Based on literature values, and on 

direct comparison with the O1s XPS spectra of our three reference compounds (ESI, 

Figure S.IV.1), the high-energy absorptions of TPOL-240(air) and FPOL-240(air) were 

assigned to pyrylium O+;38 the intermediate range absorptions were assigned to phenolic 

type -OH;34–37 and, the lower energy absorptions were assigned to –O–,39,40 perhaps 

overlapping with some C=O.34–37 Importantly, each of the O1s XPS spectra of RF-

240(air) and PF-240(air) consisted of only two absorptions, at 531.53/529.75 eV, and at 

531.98/530.27 eV, respectively. Each of those high/low energy pairs were assigned to 

phenolic -OH and to C=O, and the relative ratios were 1.8 in RF-240(air) and 2.2 in PF-

240(air), i.e., they followed the trend of increasing phenolic –OH groups by going from 

RF to PF.  Overall, the structures of Scheme 3 were all consistent with the O1s XPS data.  

All solid-state CPMAS 13C NMR spectra were run twice, once with a long cross-

polarization (CP) contact time (3000 s) and once with a shorter one (5 s). Τhe latter 

conditions forced carbons with no Hs to vanish. Figure 4A compares the spectra of 

TPOL, TPOL-240(Ar) and TPOL-240(air); Figure 4B compares the spectra of  RF, 

RF-240(Ar) and RF-240(air). (Corresponding spectra for the FPOL and PF systems are 

shown in ESI, Appendix V Figure S.V.1, and they behaved pairwise similarly to the 

TPOL and RF systems, respectively.) For peak assignment refer to Scheme 3.  

In agreement with DSC and FTIR, the 13C NMR spectra of all RES-240(Ar) were 

similar to those of as-prepared RES aerogels. Using the aliphatic CH2 of the RF and PF 

as internal reference, the ratios of aromatic C-H to CH2 in the as–prepared (and the 240 

oC/Ar-treated samples) were approximately 0.5:1 and 1:1, respectively, consistent with 

the 1:2 stoichiometry of R (or P) and F in their sols. FPOL and FPOL-240(Ar) had no 
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aromatic C-H, as expected from complete reaction of F with POL at their 2:1 

stoichiometric ratio in the sol. On the other hand, consistent with the T:POL 

stoichiometry in the sol, and the expected structure (Scheme 3) TPOL had only one type 

of aromatic C-H coming from POL (designated as “e”) and only one type coming from T 

(designated as “c”). The aliphatic CH-to-“e”-to-“c” ratio was in the expected 1:1:2 value. 

After pyrolysis at 240 oC/air, no RES-240(air) showed any surviving aliphatic 

carbons from the methylene or methyne bridges (–CH2–, or –CH–) of the parent RES. 

All H-bearing aromatic carbons survived the oxidation process in both RF-240(air) and 

PF-240(air), and the spectra of those two materials were similar to those of their parent 

RES, and most importantly to one another; in fact, in terms of chemical shifts the two 

spectra were almost identical (compare Figure 4B with ESI Figure S.V.1B). (It is noted in 

passing that the presence of two types of H-bearing aromatic carbons with about equal 

intensities in both RF-240(air) and PF-240(air), –refer to the low contact-time CP 

spectra– is attributed to the random 2,2- and 2,4- connectivity in adjacent repeat units 

expected of the phenolic moieties along the main chain.41) Now, it is noted that in PF-

240(air) some H-bearing aromatic carbons would have survived the oxidation process 

irrespective of ring-fusion aromatization, however, in RF-240(air) the only chance for 

aromatic H’s to survive is when no ring-fusion aromatization takes place. The latter 

realization together with the similarity of the 13C NMR, IR and XPS spectra of RF-

240(air) and PF-240(air) render their structures similar to one another, and consistent 

with those shown in Scheme 3. On the contrary, as a result of ring-fusion aromatization 

the aromatic regions of TPOL-240(air) and FPOL-240(air) were more complicated than 

those of the corresponding as-prepared samples (Scheme 3). Based on the spectra of 
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FPOL and FPOL-240(Ar), FPOL-240(air) was not expected and did not have any H-

bearing carbons. On the other hand, the new broad downfield resonances of TPOL-

240(air) at 189.5 and 174.2 ppm were assigned to the ortho (a´ and c´) and para (f´) 

carbons of the pyrylium ring, respectively. The meta carbons, d´ and b´, were expected 

significantly upfield, 42,43,44 and were assigned to the resonance at 97.9 ppm. Curiously, 

the only surviving Hs in TPOL-240(air) were those coming from T; that is, even the “e” 

carbon of as-prepared TPOL had lost its H, thereby fused-aromatic systems had to be 

head-to-tail connected to one another, as shown in Scheme 3. That type of connectivity 

was attributed to electrophilic aromatic substitution reactions of one polynuclear aromatic 

system to another - see next section and refer to Scheme 4C below. 

2.3. THE MECHANISM OF RING-FUSION AROMATIZATION 

The elementary processes during oxidation and ring-fusion aromatization are 

illustrated via the most complicated system of this study, TPOL, in Scheme 4. In TPOL, 

those processes take place in three stages. In Stage 1, bridging –CH– groups are 

converted to carbonyls following a route akin to autooxidation (Scheme 4A):45,46 H-atom 

abstraction by O2 is followed by addition of OOH groups at the benzylic positions; 

subsequently, homolytic cleavage of the O–OH bond and of the adjacent C-C bond yields 

H2O2, a carbonyl group at the previously bridging position, and a phenyl radical. In 

addition to creating carbonyls, that process breaks down the polymer chain at several 

places, and disrupts crosslinking. At that point, polymer chains are free to relax to new 

positions, in which phenyl radicals couple and establish a new crosslinked configuration 

that remains similar in terms of connectivity to, but is more compact than the original 
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TPOL. In Stage 2 (Scheme 4B), newly created carbonyl groups undergo 1,5-proton 

transfer tautomerization with the ortho OH groups of the POL moieties. In turn, 

tautomerized moieties undergo electrocyclic ring closure, to restore aromaticity. At that 

point, air (O2) oxidizes the newly created ether bridges (–O– + O2 ---> –O.+– + O2
.–), and 

the byproduct of that oxidation (superoxide: O2
.–) acts as a Brønsted base, abstracts 

phenolic protons, and yields hydroperoxyl radicals (HO2
.-). The latter abstract H. atoms 

from the positions adjacent to –O.+– and yield pyrylium rings.  

FPOL goes through Stages 1 and 2, yielding ring-fusion aromatization to 

pyrylium in analogy to TPOL (see ESI, Appendix VI).  

Based on the chemical characterization data of the previous section, RF and PF 

go through Stage 1, but oxidation stops there. It is noted, however, that in both of those 

systems the relative connectivity of at least one phenolic OH and the newly-formed 

bridging C=O is similar to that in TPOL and FPOL; thereby, in principle, both RF and 

PF could undergo 1,5-proton transfer tautomerization, and thus become ready for 

electrocyclic ring closure. Again, after ring closure, both of those systems should be able 

to continue along the reaction pathways of Stage 2 with O2
.– and HO2

.–. But, they do not. 

It is speculated that Stage-1 oxidized PF and RF were unable to yield pyrylium, because 

the rings were not activated enough to undergo electrocyclic ring closure. On the 

contrary, the three OH groups of FPOL accommodate the loss of aromaticity involved 

with electrocyclic ring closure to the point that it is not very disfavored. A similar 

rationale holds true for TPOL.  

Finally, TPOL, as opposed to FPOL, possesses hydrogen atoms in the “e” 

positions and continues with Stage 3, in which the tip of one fused aromatic system 
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undergoes an electrophilic aromatic substitution with another (Scheme 4C). Elemental 

analysis of TPOL-240(air) gave (% w/w): C: 64.71±0.16; H: 1.71±0.34; O: 33.26±0.07. 

(The %O was calculated via 100-(%C+%H).) The theoretical elemental composition 

calculated from the repeat unit shown in Scheme 3 (i.e., the end-product of Stage 3, 

Scheme 4C) was (% w/w): C: 64.2; H: 1.6; O: 34.2. The agreement between the 

experimental and theoretical elemental compositions is considered remarkable given the 

complexity of the processes and the fact that no “purification” of the pyrolysis products 

was possible in the conventional synthetic organic sense. It is noted further that if 

oxidation of TPOL had stopped at the end of Stage 2, the expected elemental 

composition would have been (% w/w): C: 63.8; H: 2.13; O: 34.0, i.e., markedly different 

from the experimental results.    

2.4.      CHEMICAL TRANSFORMATIONS ALONG FURTHER PYROLYSIS OF 

RES-240(AIR) VERSUS RES 

The materials from the 240 oC/air oxidation process were used for further 

investigation along pyrolysis of RES.  For that, as-prepared, as well as 240 oC/air-treated 

aerogels (RES and RES-240(air), respectively) were pyrolyzed at 100 oC intervals, 

starting from 300 oC and ending at 800 oC (Scheme 2).  At every pyrolysis temperature, 

we used fresh RES or RES-240(air) samples, as described in Section 2.1 above. The 

pyrolysis products are referred to as C-RES-D(or_O)-. The evolution of the chemical 

composition was monitored with elemental analysis, solid-state 13C NMR and FTIR. C-

RES-O-800 and C-RES-D-800 were also characterized with XPS. Figure 5 shows the 

elemental analysis data of all four systems along pyrolysis. Dashed lines follow the 

pyrolytic evolution of the 240 oC/air oxidized samples (RES-240(air)); solid lines follow 
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the direct pyrolysis of as-prepared RES. All samples were analyzed three times, and in 

most cases error bars (one standard deviation) were within the respective symbols. The 

percent amount of oxygen was calculated via %O = 100 – (%C + %H). Relative to RES 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 4. Oxidation mechanism of RES demonstrated with TPOL, A. Stage 1: Initial 

oxidation leading to carbonyl group formation and change in connectivity along the 

polymer chain (Repeat unit shown in bold; adjacent units included in order to show 

connectivity.), B. Stage 2: Further oxidation and ring fusion aromatization (The Dewar-

benzene-like canonical form in the first step was used for brevity.), C. Stage 3: Interchain 

coupling at the e’-positions of two adjacent repeat units. 
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Scheme 4. Oxidation mechanism of RES demonstrated with TPOL, A. Stage 1: Initial 

oxidation leading to carbonyl group formation and change in connectivity along the 

polymer chain (Repeat unit shown in bold; adjacent units included in order to show 

connectivity.), B. Stage 2: Further oxidation and ring fusion aromatization (The Dewar-

benzene-like canonical form in the first step was used for brevity.), C. Stage 3: Interchain 

coupling at the e’-positions of two adjacent repeat units. (Cont.) 
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each C-RES-D- / C-RES-O- pair converged – practically coincided. By 800 oC, all 

eight materials, independent of their RES-origin or the route (D or O), had produced 

carbons with the same, within error, CHO composition (C: 91.8 ± 1.8 % w/w; H: 0.64 ± 

0.40 % w/w; O: 7.2 ± 1.7 % w/w; errors are spreads of triplicate analysis). The common 

chemical features of the converging structures were investigated with solid-state 13C 

NMR and IR. The fate of oxygen was investigated with XRS.  

Figures 6A and 6B show the CPMAS 13C NMR spectra along the pyrolytic 

evolution of the TPOL/TPOL-240(air), and the RF/RF-240(air) pair, respectively. 

Corresponding spectra for the FPOL/FPOL-240(air) and the PF/PF-240(air) pairs are 

shown in ESI, Appendix V Figure S.V.2. It is noted that the changes in the 300–600 oC 

range in all four RES-240(air) were not as drastic as the changes observed after pyrolysis 

of the corresponding as-prepared RES. That suggests that the 240 oC/air process 

accelerated the chemical changes that otherwise took place more progressively in the 

conventional pyrolytic carbonization of RES under inert atmosphere. Consistent with the 

elemental analysis data, by =600 oC the 13C NMR spectra of every C-RES-D- / C-

RES-O- pair had converged to a common spectrum. More importantly though, by 

=600 oC, spectra became identical not only pairwise, but in fact all eight spectra, 

independent of their RES-origin or the route (D or O), were also identical to one another. 

Similar observations were made from the evolution of the FTIR spectra showing again 

that the spectra of all C-RES-D(or_O)- pairs became identical by 500 oC or 600 oC, 

depending on the RES (see ESI, Appendix III Figures S.III.2A-S.III.2D). At 800 oC, the 

common FTIR spectrum of all eight C-RES-D(or_O)-800 was quite simple, showing 

only two major absorptions at around 3396 cm-1 and 1619–1630 cm-1. 
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Finally, Figure 7 shows and compares the high-resolution O1s XPS spectra of C-

TPOL-D(and_O)-800 (top) and of C-RF-D(and_O)-800 (bottom). (The corresponding 

spectra of C-FPOL-D(and_O)-800 and of C-RF-D(and_O)-800 are shown in ESI, 

Appendix IV Figure S.IV.3.) The spectra of all eight C-RES-D-800 and C-RES-O-800 

materials showed just two absorptions: one at 533.01–533.17 eV, which is consistent 

with the presence of pyrylium-type O+, and a second one of similar intensity at 531.28–

531.69 eV, corresponding to charge compensating O–. (Please refer to the controls shown 

in ESI, Figure S.IV.1.) A common idealized structure for all pyrolysis products at 800 oC 

has been drawn by analogy to the structure of polyacrylonitrile-derived carbon at the 

same temperature range,47–49 and is shown in Scheme 5. The fused aromatic ring core of 

the graphitic sheets is made up of “aromatic repeat layers.” For example, the core of the 

structure of Scheme 5 consists of two such aromatic repeat layers color-coded in red and 

blue. Based on the average amount of O in all RES-derived carbons (7.2 ± 1.7 % w/w),  

  

 

 

 

 

 

 

 

 

 

Scheme 5. Idealized structure of carbons derived from pyrolysis of RES at 800 oC 

showing two repeat layers of the graphitic core, one in red, one in blue. 
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it is calculated that on average the graphitic core of all C-RES-D(or_O)-800 materials 

consisted of 6.5 aromatic repeat layers. 

In summary, air-oxidation of TPOL and FPOL gave two well-defined products 

(TPOL-240(air) and FPOL-240(air) – Scheme 3) with extensive ring-fusion 

aromatization along their backbone that survived for several hundred oC afterwards. 

Second, all pyrolyzed carbons converged to a common chemical composition irrespective 

of: (a) the starting phenolic system, (b) whether we inserted an early oxidation step in the 

carbonization process, or (c) whether the particular phenolic system undergoes ring-

fusion aromatization (TPOL and FPOL), or just a simple oxidation of the –CH2– bridges 

(case of RF and PF). By considering those points together, we have concluded that ring-

fusion aromatization, with formation of pyrylium and charge compensating phenoxides, 

is the common converging point along pyrolysis of all four main-stream phenolic resins 

of this study. Reasoning by analogy, we speculate that this is the common converging 

point along carbonization of all phenolic resins. The question then became whether low-

temperature oxidative aromatization was of any practical use, namely whether it makes 

any difference in the properties of the resulting carbons. That is discussed in the next 

section, in conjunction with the evolution of the material properties along carbonization, 

and high-temperature reactive etching with CO2.   

2.5. THE EVOLUTION OF MATERIAL PROPERTIES ALONG PYROLYTIC 

CARBONIZATION AND REACTIVE ETCHING 

Bulk properties of interest include linear shrinkage, bulk density and porosity. 

Representative data exemplified with TPOL and RF are shown in Figure 8. Tables with 

primary materials characterization data along pyrolysis and reactive etching are given in 
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ESI, Appendix VII. Cumulative plots of shrinkage, bulk density and porosity along 

pyrolysis of all four RES are given in ESI, Appendix VIII.  

Figures 8A and 8B show photographs of as-prepared TPOL and RF, after Ar or 

air treatment at 240 oC, after carbonization at 800 oC, and finally after reactive etching at 

1000 oC. At all stages of pyrolysis, samples shrunk relative to the as-prepared materials, 

but remained monolithic. The relative linear shrinkage was quantified by the bar graphs 

shown next to the photographs. Most of the shrinkage occurred during aerogel 

preparation: both TPOL and RF shrunk 32–34% relative to the molds. Treatment at 240 

oC/Ar caused only a small additional shrinkage: 6% for TPOL, 10% for RF. Air-

oxidation at 240 oC (yellow bars) caused an additional shrinkage relative to TPOL-

240(Ar) and RF-240(Ar) (7.5%, and 12.8%, respectively) – by that point, the cumulative 

shrinkage is clearly noticeable in the photographs. Beyond that point, i.e., from 300 oC to 

800 oC, samples either by direct (D) pyrolysis of TPOL and RF (red bars), or by 

pyrolysis of their 240 oC/air oxidized (O) derivatives (blue bars) kept on shrinking more 

with increasing pyrolysis temperature, preserving though, for the most part, the higher 

shrinkage caused by the 240 oC/air oxidation step (yellow bars). Reactive etching at 1000 

oC/CO2 was conducted for all samples pyrolyzed at ≥600 oC, and it caused only a small 

additional shrinkage relative to the respective parent carbons; said additional shrinkage is 

shown in Figure 8 with shaded segments on top of the regular pyrolysis bars. Thus, for 

example, considering samples from the terminal pyrolysis temperature of this study (i.e., 

at =800 oC) the total shrinkage (from the molds) of EC-TPOL-O-800 was 60.2 ± 1.0 % 

(vs. 52.8 ± 0.8 % for C-TPOL-O-800), while EC-TPOL-D-800 shrunk less: 54.4 ± 0.4 

% (vs. 53.4 ± 0.1 % for C-TPOL-D-800). Similarly, EC-RF-O-800 shrunk 68.6 ± 1.1% 
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(vs. 66.8 ± 0.7% C-RF-O-800), while EC-RF-D-800 shrunk again less: 59.1 ± 0.2% (vs. 

56.2 ± 0.5% for C-RF-D-800). The shrinkage of the two remaining systems, FPOL and 

PF, followed the same trends as a function of the pyrolysis temperature () as TPOL 

and RF (see ESI, Figure S.VIII.1). 

Reflecting the lower concentration of its sol, as-prepared RF was less dense 

(0.160 ± 0.006 g cm-3) than TPOL, FPOL and PF (0.45–0.60 g cm-3). That trend 

followed the samples throughout pyrolysis, except reactive etching. Now, within each 

RES, the bulk densities, b, of all pyrolysis products were higher than those of the as-

prepared samples. Upon closer inspection of ESI, Figure S.VIII.2, in general b did not 

follow the upward trend observed with shrinkage as a function of . Instead, the b of all 

C-RES-O- varied randomly within narrow zones throughout the pyrolysis range. At 

≤500 oC, the density of C-TPOL-O- was slightly higher than the density of the D 

samples, but that trend got reversed at ≥600 oC (Figure 8A). Along pyrolysis of FPOL, 

PF and RF the densities of the O samples were always higher than the densities of the D 

samples, and remained near the levels attained at 240 oC/air (ESI, Figure S.VIII.2). In 

FPOL and PF in particular, the densities of the D samples kept on increasing with , and 

by 800 oC the densities of the O and D samples had converged; on the other hand, no 

upward trend was noted in the densities of C-RF-D- with , thereby C-RF-O-800 

remained more dense than C-RF-D-800 (Figure 8B). Probably reflecting a more 

significant percent mass loss (see pyrolytic yields in ESI, Tables S.I.2-S.I.5) than the 

small additional shrinkage during reactive etching, the densities of all etched samples 

were always lower than their parent carbons (notice the shorter shaded segments in the 

respective bars of Figure 8). In particular, the densities of EC-RF-O-800 and EC-TPOL-
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O-800 were nearly 50% lower than those of C-RF-O-800 and C-TPOL-O-800. For EC-

FPOL-D(or_O)-800 and EC-PF-D(or_O)-800, the density difference from the 

corresponding C-samples was smaller, around 15–20%.  

Percent open porosities, , were calculated from the bulk (b) and skeletal 

densities (s) via   = (s – b)/s. Skeletal densities are tabulated in ESI, Appendix VII 

and are compared to one another in graph form in ESI, Appendix VIII Figure S.VIII.3. 

s-Values followed a common trend among all four RES: up to 500 oC, the s values of 

the O samples were higher than the s values of the D samples, then the two sets became 

equal and increased together from 1.2–1.3 g cm-3 to about 1.75–2.0 g cm-3 by 800 oC. 

Upon reactive etching, all s values increased again, moving in the 2.0–2.25 g cm-3 range. 

The last increase could be associated with closed micropores present in C-RES-D(or_O)-

 that became accessible after etching. Closed porosity notwithstanding, along 

carbonization, open porosities, both with respect to one another, and within each RES, 

followed the expected general trend established by b (see Figure 8 and ESI, Figure 

S.VIII.4). Reflecting mass loss in excess of differential shrinkage, by going from the C- 

to the EC-materials, porosities increased, most dramatically in the TPOL samples 

(Figure 8A). Thus, although the porosities of the 800 oC-pyrolyzed D and O varieties of 

TPOL, FPOL and PF were all around 60% v/v, after reactive etching the porosities of 

EC-FPOL-D(or_O)-800  and EC-PF-D(or_O)-800 moved up in the 70–80% v/v range, 

while EC-TPOL-D(or_O)-800 moved above the 80% v/v mark. (Owing, as discussed, to 

the lower starting density of RF, the porosities of C-RF-D(or_O)-800 were already in the 

83–87% v/v range, and the porosities of EC-RF-D(or_O)-800) moved up in the 92–93% 

v/v range.) 
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Despite all the preceding analysis, there was no aspect of the macroscopic 

material properties that could be clearly and uniquely identified with the early ring fusion 

aromatization process that takes place in the TPOL and FPOL systems.  The closest we 

came to such a difference with oxidized systems was the large drop in the bulk density 

and the simultaneous increase in porosity by going from C-TPOL-O-800 to EC-TPOL-

O-800. However, that behavior was not observed in the FPOL system that also 

undergoes early ring fusion aromatization, and most importantly, even within the TPOL 

system itself, a similar drop in density and increase in porosity was also observed within 

the C-TPOL-D-800 / EC-TPOL-D-800 pair. Thus, we turned into the nanostructure and 

the porous network of RES as the last stop for possible differences induced by early 

oxidative ring fusion aromatization.    

2.6. THE PYROLYTIC EVOLUTION OF THE NANOSTRUCTURE AND THE 

POROUS NETWORK  

They were followed with SEM and N2 sorption porosimetry. The microporosity of 

selected samples was also probed with CO2 adsorption. Qualitatively, all systems 

behaved similarly, and typical primary data are exemplified with the TPOL system in 

Figure 9. Data in similar format for the FPOL, RF and PF systems are shown in ESI, 

Appendix IX.  

All samples, at all stages of processing, consisted of smaller particles (arrows in 

Figure 9) aggregating to larger ones (dashed circles), which in turn agglomerated to 

larger entities, and so on. The smallest particles discernible in SEM were on the order 

calculated for primary particles using gas sorption and skeletal density data (see ESI, 

Tables S.VII.1–4). Generally, there was an increase in size of primary particles in RES-
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240(air) (most pronounced in TPOL-240(air), where the particle size increased >2, 

from 8.4 nm to 18.4 nm) followed by a gradual decrease till C-RES-D_(or_O)-800. The 

primary particle size at that temperature was 5–7 nm in all pyrolyzed systems, 

irrespective of the D or O route. After reactive etching at 1000 oC, the most noticeable 

effect was that EC-RES-D_(or_O)-800 had more empty space. 

At all stages of processing, all N2 sorption isotherms of RES, RES-240(air), C-

RES-D_(or_O)-800 and EC-RES-D_(or_O)-800 (Figure 9 and ESI, Figures S.IX.1–3) 

were Type IV with broad saturation plateaus indicating that we are dealing with 

mesoporous materials. (Plateaus, albeit narrower, were observed even with the lower-

density RF system – see ESI, Figure S.IX.2.) At low partial pressures (P/Po), all N2 

sorption isotherms showed a quick rise that became more pronounced in the carbonized 

samples (C-RES-D_(or_O)-800), and even more pronounced in the carbonized and 

etched samples (EC-RES-D_(or_O)-800). That rapid increase in the volume of N2 

adsorbed indicated microporosity that was confirmed and quantified with CO2 adsorption 

experiments (see Insets in the isotherm frames of Figure 9 and ESI, Figures S.IX.1–3): as 

the volume of N2 adsorbed at low P/Po increased, the total uptake of CO2 increased too.  

The pore-size distributions along processing, of pores with sizes <300 nm are 

exemplified with the TPOL and RF systems in Figure 10. Mesopore size distributions 

were obtained with the BJH method;50 micropore size distributions were obtained with 

the DFT method on the CO2 adsorption data.51,52 Data for the two other two systems, 

FPOL and PF, are shown in ESI, Appendix X Figure S.X.1. In general, the behavior of 

RF and PF was almost identical to one another, while the behavior of FPOL was 

intermediate between that of TPOL and of RF/PF. A first observation in Figure 9 is that 
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the pore size distribution of as-prepared TPOL was different from that of the other three 

RES, implying an already quite rigid structure. By going from TPOL to TPOL-240(air) 

the mesopore size distribution moved to smaller diameters, while the micropore size 

distribution became more resolved. Both of those changes were consistent with molecular 

relaxation, contraction and further rigidization in a new, more compact molecular 

arrangement as described by the mechanism of Scheme 4. After ring fusion aromatization 

neither the mesopore, nor the micropore size distribution was affected by carbonization: 

the distribution profiles in C-TPOL-D_(or_O)-800 were practically the same as in 

TPOL-240(air). After etching, the smallest micropores were lost, the larger micropores 

became a little more narrow, and the mesopores remained unaffected. Now, it is noted 

that the pore size distributions of the carbonized and etched EC-TPOL-D_(or_O)-800 

and EC-RF-D_(or_O)-800, and for this matter of all EC-RES-D_(or_O)-800, were 

practically identical irrespective of the system or the process (D or O), consistent with the 

common terminal pyrolytic fate of all RES. More importantly, however, the molecular 

flexibility of as-prepared RF and PF, that followed them in their oxidized structures, RF-

240(air), PF-240(air), accounted for conformational minima right from the beginning, 

yielding microporous structures similar to those obtained from TPOL only after the chain 

relaxation processes described in Scheme 4. Consistent with those conclusions, the 

FPOL system, being more flexible than TPOL, realized a conformation minimum right 

from the as-prepared stage, just like RF and PF, thus its micropore profile was resolved 

just like in the latter two. However, FPOL undergoes oxidative ring fusion aromatization 

just like TPOL (see ESI, Appendix VI). That process imposes contraction and 
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rigidization, which in turn is expressed by the mesopore profile of FPOL-240(air) (and 

above) moving to smaller pores.        

Similarities or differences in the pore size distributions notwithstanding, the 

absolute pore volumes that correspond to those distributions paint a complementary view 

of the effects brought about by ring fusion aromatization, and pave the way towards 

explaining differences in surface areas. The micropore volumes (tabulated in ESI, 

Appendix VII) were extracted from the CO2 adsorption isotherms by assuming slit-pore 

geometry and using the Horvath-Kawazoe method.53 Micropore volumes in all RES were 

very small to begin with (<0.08 cm3 g-1), and generally decreased even further in RES-

240(air). The largest such decreases were observed with the aromatizable systems: from 

0.07 cm3 g-1 to 0.04 cm3 g-1 in TPOL/TPOL-240(air), and from 0.08 cm3 g-1 to 0.06 cm3 

g-1 in TPOL/TPOL-240(air). The largest decrease in the TPOL/TPOL-240(air) pair 

agrees with the molecular contraction expected from Scheme 4. Upon carbonization at 

800 oC, the micropore volumes increased to 0.10–013 cm3 g-1 in all C-RES-D_(or_O)-

800. Upon further reactive etching, the micropore volumes exactly doubled in all EC-

RES-D_(or_O)-800 (all in the 0.22–0.27 cm3 g-1 range), except in EC-RF-D_(or_O)-

800, where the micropore volume increased 3.5 (to 0.44 cm3 g-1). Interestingly, in all 

RES, the sum of pore volumes in the range of 1.7–300 nm (by N2 sorption) and of 

micropores (by CO2 adsorption) was about equal to the total pore volume calculated from 

bulk and skeletal density data via VTotal = (1/b)-(1/s), meaning that all materials lacked 

any significant macroporosity.54 (All relevant values are cited in ESI, Tables S.VII.1–4.) 

What is important to look at though, is the Vmicropore:VTotal ratio, which can be calculated 

directly from the Vmicropore and VTotal data shown in ESI, Tables S.VII.1-4. After 
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carbonization, but before etching, the percent micropore volumes of both C-PF-

D_(or_O)-800, and especially of C-RF-D_(or_O)-800, were consistently behind the 

values of the corresponding C-TPOL-D_(or_O)-800 and C-FPOL-D_(or_O)-800. 

Curiously, after carbonization and etching the percent micropore volume of EC-PF-

D_(or_O)-800 (16.25% and 18.2%, for D and O respectively) seemed to have caught up 

with those of EC-TPOL-D_(or_O)-800 (11.6% and 13.8%), and those of EC-FPOL-

D_(or_O)-800 (19.7% and 24.1%, for D and O respectively). On the other hand, the 

percent micropore volumes of EC-RF-D_(or_O)-800 (6.8% and 8.0%, for D and O 

respectively) were consistently behind. Perhaps, that the out-of-line behavior of EC-PF-

D_(or_O)-800 was related to the resilience of C-PF-D_(or_O)-800 to etching (refer to 

the etching yields in ESI, Table S.I.2). 

It is speculated that the trend towards higher micropore volumes in the aromatized 

systems is directly related to the molecular rigidization that fixes the relative position of 

the polymeric chains. In systems that cannot be aromatized by an early oxidation step 

(RF and PF), later aromatization (recall all systems converged chemically above 600 oC) 

may compete with other processes, e.g., melting of polymeric segments, which may have 

reduced microporosity. Most probably related to the link between higher micropore 

volumes and early oxidative ring-fusion aromatization, BET surface areas of carbons 

derived from TPOL-240(air) and FPOL-240(air) were consistently about 20% higher 

than the surface areas of carbons derived by direct pyrolysis of as-prepared TPOL and 

FPOL (Figure 11). That edge identified in the surface areas of C-TPOL-O- and C-

FPOL-O- over C-TPOL-D- and C-FPOL-D- followed the samples through 

etching. As shown in Figure 11, considered as groups, the BET surface areas of EC-
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TPOL-O-(600≤≤800) and EC-FPOL-O-(600≤≤800) were higher than the BET 

surface areas of EC-TPOL-D-(600≤≤800) and EC-FPOL-D-(600≤≤800). The 

highest surface area was recorded for EC-TPOL-O-600 and was equal to at 2778 ± 209 

m2 g-1 (see ESI, Table S.VII.1). Micropore surface areas (using the Harkins and Jura 

method55,56) are included in Figure 11, and for carbonized samples they were about 50% 

of the BET surface areas. The micropore surface areas of the carbonized and etched 

samples were between 30% and 50% of their BET surface areas. On the other hand, both 

the BET and the micropore surface areas of carbons and etched carbons from RF-

240(air) and PF-240(air) were at all levels indistinguishable from those via direct 

pyrolysis of RF and PF (Figure 11). Although in absolute terms the BET surface areas of 

the carbonized RF and PF systems were in the same range as those from TPOL and 

FPOL, their micropore areas were generally lower.  

3. CONCLUSION 

Aerogels became an enabling tool for the study of the carbonization process of 

four main-stream phenolic resins. It was found that low-temperature (240 oC) oxidation 

of FPOL and TPOL aerogels with air circulating through their bulk caused ring-fusion 

aromatization and formation of pyrylium heteroaromatic rings along their skeletal 

backbone. Other phenolic resins like RF and PF got oxidized too, but their oxidized 

forms did not proceed with aromatization at 240 oC. Eventually, upon further pyrolysis, 

either as-prepared samples, or samples from a prior 240 oC/air oxidation step, converged 

to a common carbon structure that includes fused pyrylium rings, and charge-

compensating phenoxides.  It is surprising that although pyryliym has been identified in 
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biochar,38 it has been missed among the pyrolysis products of phenolic resins.41 The 

closest prior studies ever came to pyrylium had been to claim saturated five- and six-

membered rings with oxygen between aromatic rings.57–61 On the hindsight, it seems that 

key to our findings was the fact that we compared the oxidative behavior of several 

systems of increasing complexity, which turned out to be beneficial, because it allowed 

us to track the fate of aromatic carbons using solid-state 13C NMR. Whenever an early 

oxidative ring-fusion aromatization could take place (cases of TPOL and FPOL), its 

effect was to rigidize the polymeric structure and create microporosity that contributed 

towards carbons with higher surface areas than those obtained by direct pyrolysis of as-

prepared materials. Those findings are directly relevant to high surface area carbons for 

gas sorption (e.g., capture and sequestration of CO2
62) and for ion-exchange materials via 

the fixed O+ and O– sites on the carbon backbones, as has been proposed for biochar 

bearing pyrylium moieties.38   

4. EXPERIMENTAL 

4.1. MATERIALS 

All reagents and solvents were used as received without further purification. 

Terephthalaldehyde (T), phloroglucinol (POL), 12.1 N hydrochloric acid, and 1,4-

dioxane were purchased from Acros Organics U.S.A. Resorcinol (R), formaldehyde (F, 

37% w/w aqueous solution methanol stabilized), and acetonitrile (ACS reagent grade) 

were purchased from Aldrich Chemical Co. Phenol (P, crystals/certified ACS grade) was 

purchased from Fisher Scientific. Syphon grade CO2 and ultra-high purity argon were 
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obtained from BOC Gases, Murray Hill, N.J. supplied locally by Ozarc Gases. Liquid 

nitrogen was purchased from Airgas, Rolla, Mo. 

4.2. PREPARATION OF PHENOLIC RESIN AEROGELS (RES)  

All formulations and gelation points are listed in ESI, Appendix I Table S.1. In a 

typical procedure, the predetermined amount of the phenolic monomer was dissolved in 

2/3 of the predetermined amount of the appropriate solvent. Dissolution of POL in 1,4-

dioxane was assisted by heating and stirring for 5 min at 70 oC under N2. In the case of 

TPOL, T was also mixed with POL and the two reagents were dissolved in 1,4-dioxane 

together as just described. In the cases of the three formaldehyde-based aerogels (FPOL, 

RF, PF), the appropriate amount of the commercially available formaldehyde solution 

was added at room temperature to the solution of the phenolic compound. (In the case of 

FPOL, the POL solution was allowed to cool back to room temperature before adding 

the formaldehyde solution.) Subsequently, the predetermined amount of the catalyst (12.1 

N HCl) was dissolved in the remaining 1/3 of the predetermined amount of solvent, and 

the acid solution was added to the phenolic compound/aldehyde solution at room 

temperature to form the sol. All sols were stirred briefly and were poured in 

polypropylene molds (either polypropylene Scintillation Vials General Purpose, 6.5 mL, 

Sigma–Aldrich Catalogue No. Z376825, 1.27 cm inner diameter; or, Wheaton 

polypropylene Omni-Vials, part No. 225402, ~1 cm in diameter). The molds were sealed 

with their caps, wrapped with ParafilmTM, and were kept for 24 h for gelation and aging. 

TPOL, FPOL and RF gelled at room temperature and aging was carried out at the same 

temperature. Gelation of PF was carried out at 80 oC (24 h); PF wet-gels were aged at 70 
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oC (12 h). Wet-gels were washed with acetone (3 × 8 h, using 4× the volume of the gel 

each time), and were dried in an autoclave with CO2 taken out at the end as a supercritical 

fluid. 

4.3. AIR OXIDATION OF RES AND PREPARATION OF RES-240(AIR) 

RES aerogels were placed in a conventional convection oven at 240 °C for 5 h, 

and turned from brown or red to dark brown. 

4.4. CONVERSION OF AS-PREPARED RES AEROGELS, OR AIR-OXIDIZED 

RES-240(AIR) AEROGELS INTO CARBON AEROGELS C-RES-D- AND 

C-RES-O- 

Aerogel monoliths, including as-prepared and those treated at 240 °C in air, were 

pyrolyzed in a tube furnace under flowing high purity Ar (300 mL min-1) at 300 oC, 400 

oC, 500 oC, 600 °C, 700 °C, or 800 °C for 5 h. The temperature of the furnace was 

increased to the target temperature  at 2.5 °C min-1. New samples were used at each 

pyrolysis temperature. At the end of the heating period, cooling was controlled also at 2.5 

°C min-1 under continuous flow of Ar. As-prepared RES aerogels pyrolyzed at a target 

temperature  are designated as C-RES-D-. Air-oxidized aerogels, RES-240(air), 

pyrolyzed at a target temperature  are designated as C-RES-O-.   

4.5. REACTIVE ETCHING OF C-RES-D- AND C-RES-O- CARBON 

AEROGELS INTO EC-RES-D- AND EC-RES-O- 

Either C-RES-D- or C-RES-O- aerogels prepared at =600 °C, =700 °C, or 

=800 °C were pyrolyzed further at 1000 °C for 3 h under flowing CO2 (300 mL min-1).  

For this, at the end of the 5 h pyrolysis-under-Ar period, the temperature of the furnace 
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was increased to 1000 oC, the gas was switched to CO2 and pyrolysis continued for the 

prescribed time. At the end of this period, the flowing gas was switched back to Ar and 

the tube was cooled back to ambient temperature at 2.5 °C min-1.  

4.6. METHODS  

Drying of acetone-exchanged wet-gels with supercritical fluid (SCF) CO2 was 

carried out in an autoclave (SPIDRY Jumbo Supercritical Point Dryer, SPI Supplies, Inc. 

West Chester, PA). Samples submerged in acetone were loaded into the autoclave cooled 

at 14 oC. The pressure vessel was closed and liquid CO2 was allowed until it displaced all 

acetone, which was then drained out. Liquid CO2 was allowed in the vessel several more 

times until acetone was extracted out of the pores of the samples completely. The 

criterion for the latter was that CO2 released from the vessel formed dry ice powder. At 

that point, the temperature of the autoclave was raised to 40 oC and SCF CO2 was vented 

off as a gas. 

4.6.1. Physical Characterization. Bulk densities (ρb) were calculated from the 

weight and the physical dimensions of the samples. Skeletal densities (ρs) were measured 

using helium pycnometry on a Micromeritics AccuPyc II 1340 instrument. 

4.6.2. Chemical Characterization. CHN elemental analysis was conducted with 

a Perkin-Elmer Model 2400 CHN Elemental Analyzer, calibrated with acetanilide, urea, 

trans-stilbene, benzophenone, and glycine. 

Infrared (FTIR) spectra were taken in KBr pellets, on a Nicolet-FTIR Model 750 

spectrometer.  
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Solid-state CPMAS 13C-NMR spectra were obtained with samples ground into 

fine powders on a Bruker Avance III 400 MHz spectrometer with a carbon frequency of 

100 MHz, using a 7 mm Bruker MAS probe at a magic angle spinning rate of 5 kHz, with 

broadband proton suppression, and CP TOSS pulse sequence. The Total Suppression of 

Spinning Sidebands (TOSS) pulse sequence was applied by using a series of four 

properly timed 180º pulses on the carbon channel at different points of a cycle before the 

acquisition of the FID, after an initial excitation with a 90º pulse on the proton channel. 

The 90º exitation pulse on the proton and the 180º excitation pulse on carbon were set to 

4.2 µs and 10 µs, respectively. Under those conditions, spectra of all RES, RES-240(Ar) 

and RES-240(air) were taken twice, once with the cross-polarization contact time set at 

3000 s and once at 5 s. Solid-state 13C NMR spectra were referenced externally to 

glycine (carbonyl carbon at 176.03 ppm). Chemical shifts are reported versus TMS (0 

ppm).  

XPS data were obtained with a Kratos Axis 165 Photoelectron Spectroscopy 

System.  Samples for XPS were prepared by mixing powders of the aerogels (like those 

prepared for solid-state NMR) with Au powder (10% w/w) and pellets were compressed 

like those used for FTIR. (For highly conductive samples, the amount of Au powder 

could be reduced to 5% w/w.) Such pellets were placed flat on a conductive carbon tape 

that was then adhered to stainless steel sample holders.  Samples were introduced into the 

analysis chamber one at a time and the chamber was evacuated at 10-8 Torr or lower. No 

ion sputtering was carried out on any of the samples. An Al monochromatic source at 150 

watts was used for excitation. A charge neutralizer was used to reduce the effects of 

differential or sample charging. The analysis area was 700300 microns. Elemental 
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quantification calculations were based on broad survey results from single sweeps at 

higher sensitivity (Pass Energy=80), and were carried out with Kratos Axis Vision 

processing software and its appropriate relative sensitivity factors for the particular XPS 

system. High resolution elemental scans where carried out at a lower sensitivity (Pass 

Energy=20), using multiple sweeps to improve the signal-to-noise ratios. Deconvolution 

of C1s and O1s spectra of the samples were performed with Gaussian function using 

OriginPro 8.5.1 software. 

4.6.3. Thermal Analysis. Differential Scanning Calorimetry (DSC) was 

conducted both under N2 and in air with a TA Instruments Modulated Differential 

Scanning Calorimeter (MDCS) Model 2920 calibrated with a sapphire standard. Samples 

were used as powders (4–8 mg), and the MDSC instrument was run from -30 to 300 °C at 

10 °C min-1. 

4.6.4. Structural Characterization. Scanning electron microscopy (SEM) was 

conducted with Au-coated samples on a Hitachi Model S-4700 field-emission 

microscope. 

4.6.5. Pore Structure Analysis. The pore structure was probed with N2-sorption 

porosimetry at 77 K using either a Micromeritics ASAP 2020 or a TriStar II 3020 version 

3.02 surface area and porosimetry analyzer. Before porosimetry, samples were outgassed 

for 24 h under vacuum at 80 °C. Data were reduced to standard conditions of temperature 

and pressure (STP). Total surface areas, , were determined via the Brunauer-Emmett-

Teller (BET) method from the N2-sorption isotherms. Micropore surface areas were 

calculated via t-plot analysis of the isotherms using the Harkins and Jura Model.55,56 Pore 

size distributions were determined with the Barret-Joyne-Halenda (BJH) equation applied 
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to the desorption branch of the N2-sorption isotherms.50 Micropore analysis was 

conducted either with N2-sorption at 77 K using a low pressure transducer (0.1 Torr) on 

the Micromeritics ASAP 2020 surface area and porosity analyzer, or with CO2-sorption 

up to 760 torr (0.03 relative pressure) at 273 K (ice-water bath) using the Micromeritics 

Tristar II 3020 version 3.02 mentioned above. Micropore size distributions were 

calculated from the CO2 adsorption data using a DFT model,51,52 and micropore volumes 

were obtained using the Horvath-Kawazoe (HK) method,53 applied on the same data. 

Average pore diameters were calculated using the 4×VTotal /σ method, where VTotal is the 

total pore volume per gram of sample, and can be calculated either via VTotal = (1/
b
) -

(1/
s
) or from the single highest volume of N2 adsorbed along the adsorption isotherm (at 

P/P0 ~1). Average pore diameter values, calculated with VTotal by both methods, are cited 

herewith; the two values converge for mostly mesoporous materials.  

Electronic supplementary information (ESI) available: Appendix I: Formulation 

of RES, gelation times and pyrolytic yields. Appendix II: Differential scanning 

calorimetry of the four RES.  Appendix III: FTIR data. Appendix IV: High-resolution 

O1s XPS data. Appendix V: Solid-state CPMAS 13C NMR data. Appendix VI: Air-

oxidation mechanism of FPOL. Appendix VII: Tables with cumulative materials 

characterization data of all samples. Appendix VIII: Cumulative shrinkage, bulk and 

skeletal density, and porosity data in graph form. Appendix IX: SEM, N2 sorption and 

CO2 sorption analysis data. Appendix X: Additional meso and micropore size distribution 

data.  

CONFLICTS OF INTEREST: There are no conflicts to declare. 

 



70 
 
 

 

 

 

 

 

 

 

 

 

Figure 1. Representative differential scanning calorimetry (DSC) data for RES. Black 

line: under N2; Red line: in air. (For TPOL, RF and PF, see ESI, Figure S.II.1.) 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Representative FTIR data for RES as-prepared, and after treatment as indicated 

by the sample names. (For FPOL and PF see ESI, Figure S.III.1.) 
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Figure 3. O1s XPS data for TPOL and RF, and their air-oxidized versions as shown. 

(The spectra of FPOL are similar to TPOL, and of PF are similar to RF – see ESI, 

Figure S.IV.2.) 
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Figure 4. Solid-state CPMAS 13C NMR data for TPOL (A) and RF (B) and their 

pyrolyzed products at 240 oC under Ar or air, as shown. (Similar spectra for FPOL and 

PF are shown in ESI, Figure S.V.1.) 
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Figure 5. Elemental analysis data along pyrolysis under Ar towards porous carbons. Solid 

lines: Pyrolytic evolution of elemental composition of as-prepared RES. Dashed lines: 

Pyrolytic evolution of samples treated at 240 oC/air (RES-240(air)). (% Weight of O by 

difference.) 
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Figure 6. Solid-state 13C NMR data for TPOL (A) and RF (B) along pyrolysis as shown. 

D designates samples from pyrolysis of TPOL and RF as-prepared. O designates 

samples from pyrolysis of RES-240(air) (i.e., sample treated at 240 oC/air). (Similar 

spectra for FPOL and PF are given in ESI, Figure S.V.2.) 
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Figure 7. O1s XPS data from the 800 oC-carbonized C-TPOL-D-800 / C-TPOL-O-800 

and C-RF-D-800 / C-RF-O-800 pairs (top and bottom, respectively). (Similar data for 

the FPOL and PF systems are given in ESI, Figure S.IV.3.) 
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Figure 8. Photographs and general materials characterization data along pyrolysis and 

reactive etching of the TPOL (A) and the RF (B) systems. Linear shrinkage is relative to 

the molds. D refers to products from direct pyrolysis of as-prepared RES. O refers to 

products from pyrolysis of 240 oC/air-oxidized samples. : pyrolysis temperature. 

Shaded segments of the bars indicate the values after reactive etching at 1000 oC of 

samples having been carbonized at .  
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Figure 8. Photographs and general materials characterization data along pyrolysis and 

reactive etching of the TPOL (A) and RF (B) system. Linear shrinkage is relative to the 

molds. D refers to products from direct pyrolysis of as-prepared RES. O refers to 

products from pyrolysis of 240 oC/air-oxidized samples. : pyrolysis temperature. 

Shaded segments of the bars indicate the values after reactive etching at 1000 oC of 

samples having been carbonized at . (cont.) 
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Figure 9. Representative SEM, N2 sorption isotherms (77 K) and CO2 sorption isotherms 

(0 oC - insets) exemplified by the TPOL system as follows: Top: TPOL and TPOL-

240(air); Middle: Carbonized C-TPOL-D-800 (red) and C-TPOL-O-800 (blue); 

Bottom: Etched samples corresponding to the samples in middle raw, EC-TPOL-D-800 

(red) and EC-TPOL-O-800 (blue). SEM scale bar: 100 nm. (Corresponding data for the 

FPOL, RF and PF systems are shown in ESI, Appendix IX.) 
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Figure 10. Pore size distributions in the meso and micropore range of samples as shown. 

Left: from the TPOL system; Right: from the RF system. Mesopore size distributions 

(curves at > 10 Å) from the BJH equation applied to N2 sorption data. Micropore size 

distributions (curves at <10 Å, magnified 3 and offset for clarity) using a DFT model on 

CO2 sorption data and assuming slit pores. (Data for the FPOL and PF systems are given 

in ESI, Appendix X.) 
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Figure 11. BET surface area data (upper curves, full symbols), and micropore surface 

area data (lower curves, open symbols) of all samples. Black: as-prepared samples. Red: 

samples from direct pyrolysis of as-prepared samples at the temperature indicated; Blue: 

samples from pyrolysis of samples oxidized in air at 240 oC. Dash-lines connect samples 

etched with CO2 at 1000 oC with the corresponding carbonized samples. All data points 

are averages of three samples from different batches, run at different times. Errors bars 

mostly within the symbols.  
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SUPPORTING INFORMATION 

Appendix I. Formulations of RES Aerogels, Gelation Times and Pyrolytic Yields   

Table S.I.1. Formulations and gelation times of the phenolic resin aerogels of this study a 

sample aldehyde 

formaldehyde (F) terephthalaldehyde (T) 

mass 

(g) b 

volume 

(mL) 

mmol 

of  F 

C 

(M) c 

mass 

(g) 

volume 

(mL) 

mmol C 

(M) c 

TPOL --- --- --- --- 3.16 2.29 23.6 0.419 

FPOL 2.66 2.44 32.8 1.17 --- --- --- --- 

RF 0.520 0.477 6.41 0.497 --- --- --- --- 

PF 5.45 5.00 67.2 2.02 --- --- --- --- 

 

sample phenolic compound 

phenol (P) resorcinol (R) phloroglucinol (POL) 

mass 

(g) 

volume 

(mL) 

mmol C 

(M) 

c 

mass 

(g) 

volume 

(mL) 

mmol C 

(M) c 

mass 

(g) 

volume 

(mL) 

mmol C 

(M) c 

TPOL --- --- --- --- --- --- --- --- 5.93 3.99 47.0 0.834 

FPOL --- --- --- --- --- --- --- --- 2.07 0.672 16.4 0.583 

RF --- --- --- --- 0.337 0.263 3.06 0.237 --- --- --- --- 

PF 3.15 2.94 33.5 1.01 --- --- --- --- --- --- --- --- 

 

 

a Volumes of P, R, T and POL were calculated based on their densities: R: 1.28 g cm-3; T: 

1.381 g cm-3; POL: 1.488 g cm-3; P: 1.07 g cm-3. b Mass of the commercial solution of 

formaldehyde (37% w/w). Calculated from the volume and the density of that solution: 

1.09 g cm-3. c Molar concentration in the sol. d Calculated using density of 1,4-dioxane = 

1.033 g cm-3, and density of acetonitrile = 0.786 g cm-3. e Calculated from the volume of 

the 12.1 N HCl solution and its density = 1.189 g cm-3. f At 23 oC. g At 80 oC. 
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Table S.I.1. Formulations and gelation times of the phenolic resin aerogels of this study a  

(Cont.) 

 

 

 

 

 

 

 

 

a Volumes of P, R, T and POL were calculated based on their densities: R: 1.28 g cm-3; T: 

1.381 g cm-3; POL: 1.488 g cm-3; P: 1.07 g cm-3. b Mass of the commercial solution of 

formaldehyde (37% w/w). Calculated from the volume and the density of that solution: 

1.09 g cm-3. c Molar concentration in the sol. d Calculated using density of 1,4-dioxane = 

1.033 g cm-3, and density of acetonitrile = 0.786 g cm-3. e Calculated from the volume of 

the 12.1 N HCl solution and its density = 1.189 g cm-3. f At 23 oC. g At 80 oC. 

sample solvent 

acetonitrile 1,4-dioxane 

mass 

(g) d 

volume 

(mL) 

mass 

(g) d 

volume 

(mL) 

TPOL --- --- 48.4 50.0 

FPOL --- --- 24.20 25.0 

RF 15.44 12.14 --- --- 

PF --- --- 24.20 25.0 

sample conc. HCl (12.1 N) phenolic 

monomer/catalyst 

(mol/mol) 

total 

monomer 

in the sol 

(% w/w) 

gelation 

time 

volume (µL) mass (g) e mmol 

TPOL 35.7 0.0424 0.432 109 16 1 min f 

FPOL 12.6 0.0150 0.152 108 11 10 min f 

RF 30.0 0.0357 0.363 8.4 3.3 2 h f 

PF 343 0.408 4.15 8.1 16 24 h g 
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Table S.I.2. Gravimetric yields of pyrolysis products as shown a 

Yield (% w/w)  

of: 

From: 

TPOL TPOL-240(air) C-TPOL-D- C-TPOL-O- 

TPOL-240(air) 89.83 ± 2.92    
C-TPOL-D-300 74.45 ± 2.36    
C-TPOL-O-300  98.91 ± 5.15   
C-TPOL-D-400 58.57 ± 3.55    
C-TPOL-O-400  88.92 ± 5.38   
C-TPOL-D-500 55.60 ± 3.95    
C-TPOL-O-500  72.71 ± 4.32   
C-TPOL-D-600 b    

C-TPOL-O-600  63.01 ± 1.78   

C-TPOL-D-700 b    
C-TPOL-O-700  58.17 ± 3.76   
C-TPOL-D-800 57.44 ± 1.73    
C-TPOL-O-800  53.93 ± 2.11   
EC-TPOL-D-600   25.25 ± 4.41  

EC-TPOL-O-600    16.41 ± 4.09 

EC-TPOL-D-700   56.73 ± 5.44  

EC-TPOL-O-700    38.62 ± 6.20 

EC-TPOL-D-800   44.35 ± 3.50  

EC-TPOL-O-800    41.85 ± 4.02 
 

Yield (% w/w)  

of: 

From: 

FPOL FPOL-240(air) C-FPOL-D- C-FPOL-O- 

FPOL-240(air) 73.52 ± 5.65    

C-FPOL-D-300 89.60 ± 6.25    
C-FPOL-O-300  96.55 ± 1.46   
C-FPOL-D-400 78.09 ± 3.25    
C-FPOL-O-400  82.49 ± 3.97   
C-FPOL-D-500 66.05 ± 3.90    
C-FPOL-O-500  65.39 ± 3.97   
C-FPOL-D-600 54.20 ± 3.25    
C-FPOL-O-600  50.40 ± 2.88   
C-FPOL-D-700 49.28 ± 2.17    
C-FPOL-O-700  49.63 ± 3.14   
C-FPOL-D-800 53.89 ± 1.37    
C-FPOL-O-800  50.33 ± 2.21   
EC-FPOL-D-600   66.35 ± 4.76  

EC-FPOL-O-600    53.94 ± 5.59 

EC-FPOL-D-700   70.44 ± 3.92  

EC-FPOL-O-700    72.39 ± 8.54 

EC-FPOL-D-800   68.21 ± 5.31  

EC-FPOL-O-800    72.48 ± 6.90 
a Data are averages from three samples. b Not measured. 
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Table S.I.2. Gravimetric yields of pyrolysis products as shown a (Cont.) 

Yield (% w/w)  

of: 

From: 

RF RF-240(air) C-RF-D- C-RF-O- 

RF-240(air) 81.61 ± 0.25    
C-RF-D-300 67.58 ± 8.54    
C-RF-O-300  95.75 ± 8.77   
C-RF-D-400 63.53 ± 2.85    
C-RF-O-400  90.07 ± 4.54   
C-RF-D-500 52.82 ± 4.04    
C-RF-O-500  75.42 ± 5.42   
C-RF-D-600 b    

C-RF-O-600  52.64 ± 2.39   

C-RF-D-700 b    
C-RF-O-700  53.24 ± 3.99   
C-RF-D-800 54.02 ± 1.00    
C-RF-O-800  49.32 ± 3.50   
EC-RF-D-600   48.06 ± 5.84  

EC-RF-O-600    52.62 ± 3.46 

EC-RF-D-700   35.20 ± 7.29  

EC-RF-O-700    37.30 ± 7.44 

EC-RF-D-800   49.41 ± 3.92  

EC-RF-O-800    34.64 ± 3.40 
 

Yield (% w/w)  

of: 

From: 

PF PF-240(air) C-PF-D- C-PF-O- 

PF-240(air) 99.87 ± 1.57    

C-PF-D-300 86.83 ± 4.14    
C-PF-O-300  93.65 ± 5.36   
C-PF-D-400 83.77 ± 3.59    
C-PF-O-400  76.30 ± 2.80   
C-PF-D-500 71.70 ± 5.07    
C-PF-O-500  65.82 ± 2.72   
C-PF-D-600 59.31 ± 2.57    
C-PF-O-600  52.22 ± 3.24   
C-PF-D-700 b    
C-PF-O-700  48.75 ± 1.63   
C-PF-D-800 61.30 ± 0.58    
C-PF-O-800  48.61 ± 1.72   
EC-PF-D-600   56.66 ± 3.14  

EC-PF-O-600    61.41 ± 5.75 

EC-PF-D-700   68.05 ± 9.28  

EC-PF-O-700    78.52 ± 7.59 

EC-PF-D-800   84.23 ± 5.28  

EC-PF-O-800    80.84 ± 5.41 
a Data are averages from three samples. b Not measured. 
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Appendix II. Differential Scanning Calorimetry Data for the Four RES 

 

 

 

 

 

Figure S.II.1. All four RES aerogels show strong exotherms in air (red lines), and no 

major heat exchanges under N2. (black lines) 
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Appendix III. FTIR Data  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S.III.1. FTIR spectra of as-prepared FPOL and PF (black lines), after heating at 

240 oC/Ar, (red lines) and after heating at 240 oC/air (blue lines). (The corresponding 

spectra of TPOL and RF are shown in Figure 2 of the main article.) 
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A. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S.III.2.A. FTIR spectra of TPOL and of air-oxidized TPOL (TPOL-240(air)) 

along pyrolysis at the temperatures () indicated in the format: –O- and –D-. (“D”: 

Direct pyrolysis of TPOL; “O”: Pyrolysis of the oxidized sample.) The absorptions at 

3396 cm-1 and 1629 cm-1 survived pyrolysis at 800 oC/Ar.  
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B. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S.III.2.B. FTIR spectra of FPOL and of air-oxidized FPOL (FPOL-240(air)) 

along pyrolysis at the temperatures () indicated in the format: –O- and –D-. (“D”: 

Direct pyrolysis of FPOL; “O”: Pyrolysis of the oxidized sample.) Dashed vertical lines 

mark the common absorptions surviving pyrolysis at 800 oC/Ar. (Cont.) 
 

 

 

 

 

 

 

Wavenumber (cm-1) 

T
ra

n
s

m
it

ta
n

c
e

 (
a
.u

.)
 

Wavenumber (cm-1) 

1630 3394 3394 

-O-800 

-O-700 

-O-600 

-D-800 

-D-700 

-D-600 

-D-500 

-D-400 

FPOL FPOL 

FPOL-240(air) 

-O-300 

-O-400 

-O-500 

-D-300 

1630 



89 
 

C. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S.III.2.C. FTIR spectra of RF and of air-oxidized RF (RF-240(air)) along 

pyrolysis at the temperatures () indicated in the format: –O- and –D-. (“D”: Direct 

pyrolysis of RF; “O”: Pyrolysis of the oxidized sample.) Dashed vertical lines mark the 

common absorptions surviving pyrolysis at 800 oC/Ar. (Cont.) 
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D. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S.III.2.D. FTIR spectra of PF and of air-oxidized PF (PF-240(air)) along 

pyrolysis at the temperatures () indicated in the format: –O- and –D-. (“D”: Direct 

pyrolysis of PF; “O”: Pyrolysis of the oxidized sample.) Dashed vertical lines mark the 

common absorptions surviving pyrolysis at 800 oC/Ar. (Cont.) 
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Appendix IV. O1s XPS Spectra 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S.IV.1. XPS control experiments: High-resolution O1s XPS spectra of the three 

compounds as indicated.   
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Figure S.IV.2. O1s XPS data for FPOL and PF, and their air-oxidation products as 

shown. (Similar spectra for TPOL and RF are shown in Figure 3 of the main article.) 
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Figure S.IV.3. O1s XPS data from the 800 oC-carbonized C-FPOL-D-800 / C-FPOL-O-

800 and C-PF-D-800 / C-PF-O-800 pairs (top and bottom, respectively). (For the spectra 

of similar pairs from the TPOL and RF systems see Figure 7 of the main article. 
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Appendix V. Solid-state CPMAS 13C NMR Spectra  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S.V.1. Solid-state CPMAS 13C NMR data for FPOL (A) and PF (B) and their 

pyrolyzed products at 240 oC under Ar or air, as shown.  

CP contact time = 3000 s CP contact time = 5 s 
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Figure S.V.2. Solid-state 13C NMR data for FPOL (A) and PF (B) along pyrolysis as 

shown. (Similar spectra for TPOL and RF are shown in Figure 6 of the main article.) 
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Appendix VI. Air-oxidation Mechanism of FPOL 
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Appendix VII. Tables with Materials Characterization Data for All Samples 

Table S.VII.1. Material characterization data of TPOL and all of its derivatives along air-oxidation, carbonization and etching 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a Average of 5 samples. b Shrinkage = 100 × (mold diameter – sample diameter)/ (mold diameter). c Single sample, average of 50 measurements. d BJH-

desorption cumulative pore volume. e Via V>300 = VTotal – (V1.7-300 + Vmicropore).  f Vmicropore was calculated with CO2-sorption up to 760 Torr and relative pressure of 

0.03 at 273 K via the Horvath-Kawazoe method. g Not measured. h Average of 3 samples. First number indicates the BET surface area; the number in the square 

bracket indicates the micropore area obtained by t-plot analysis.  i For the first number, V was calculated via VTotal = (1/b) - (1/s); for the number in brackets, V 

was calculated by the single-point adsorption method. j Via D = 6 / (s  ). 

9
7
 

 

sample 

linear 

shrinkage 

(%) a, b 

bulk 

density, 

b (g cm-3) a 

skeletal 

density, 

s (g cm-3) c 

porosity, 

 

(% v/v) 

specific pore volume 

(cm3 g-1) 

BET  

surf. area,  

[micropore] 

 (m2 g-1) h 

av. pore  

diameter 

(nm) 

particle 

diameter, 

D, (nm) j V Total
 

(1/b)-(1/s) 
V1.7-300 (nm) d 

V>300 

(nm) e   
Vmicropore 

f via 4V/ i 

TPOL 32.2 ± 0.3 0.620 ± 0.009 1.434 ± 0.006 56.8 ± 0.8 0.92 0.91 0.00 0.07 ± 0.0004 501 [111] 7.32 [7.93] 8.35 ± 0.03 

TPOL-240(Ar) 38.6 ± 0.6 0.635 ± 0.039 1.417 ± 0.002 55.2 ± 2.8 0.87 0.68 0.19 g 230 [31] 15.1 [11.7] 18.4 ± 0.03 

TPOL-240(air) 46.1 ± 0.6 0.743 ± 0.014 1.538 ± 0.007 51.7 ± 1.0 0.70 0.46 0.20  0.04 ± 0.001 200 [22] 13.9 [9.00] 19.5 ± 0.09 
            

C-TPOL-D-300 40.0 ± 0.5 0.685 ± 0.007 1.394 ± 0.003 50.9 ± 0.6 0.74 0.74 0.002 
g 280 [36] 10.6 [10.4] 15.4 ± 0.03 

C-TPOL-O-300 44.7 ± 0.4 0.741 ± 0.013 1.479 ± 0.009 49.9 ± 1.1 0.67 0.66 0.01 g 326 [54] 8.26 [8.51] 12.4 ± 0.08 
            

C-TPOL-D-400 43.4 ± 0.8 0.705 ± 0.012 1.379 ± 0.002 48.9 ± 0.9 0.69 0.72 0.00 g 385 [79] 7.20 [8.19] 11.3 ± 0.02 

C-TPOL-O-400 46.8 ± 0.5 0.740 ± 0.002 1.452 ± 0.002 49.0 ± 0.2 0.66 0.71 0.00 g 495 [169] 5.35 [6.49] 8.35 ± 0.01 
            

C-TPOL-D-500 47.2 ± 0.6 0.773 ± 0.017 1.397 ± 0.002 44.7 ± 1.2 0.58 0.56 0.02 g 531 [265] 4.35 [5.05] 8.09 ± 0.01 

C-TPOL-O-500 49.2 ± 0.5 0.698 ± 0.001 1.430 ± 0.003 51.2 ± 0.2 0.73 0.71 0.02 g 624 [292] 4.70 [5.37] 6.72 ± 0.01  
            

C-TPOL-D-600 48.9 ± 0.4 0.728 ± 0.034 1.454 ± 0.006 49.9 ± 2.4 0.69 0.55 0.14 g 
592 ± 19  

[320 ± 39] 

4.63 ± 0.002 

[4.58 ± 0.002] 
6.97 ± 0.23 

            

C-TPOL-O-600 51.6 ± 1.0 0.722 ± 0.024 1.474 ± 0.008 51.0 ± 1.7 0.71 0.51 0.20 g 
666 ± 13  

[388 ± 13] 

4.25 ± 0.001 

[4.04 ± 0.001] 
6.11 ± 0.12 

            

C-TPOL-D-700 51.8 ± 0.5 0.822 ± 0.017 1.693 ± 0.012 51.4 ± 1.3 0.63 0.48 0.15 g 
451 ± 62 

 [225 ± 60] 

5.55 ± 0.05 

[4.98 ± 0.05] 
7.86 ± 1.08 

            

C-TPOL-O-700 53.9 ± 0.6 0.736 ± 0.018 1.708 ± 0.010 56.9 ± 1.3 0.77 0.46 0.31 g 
585 ± 20  

[332 ± 20] 

5.29 ± 0.003 

[3.99 ± 0.003] 
6.00 ± 0.21 

            

C-TPOL-D-800 53.4 ± 0.1 0.798 ± 0.008 1.794 ± 0.003 55.5 ± 0.5 0.70 0.52 0.06 0.12 ± 0.001 
527 ± 58 

 [292 ± 52] 

5.29 ± 0.03 

[5.20 ± 0.04] 
6.35 ± 0.70 

            

C-TPOL-O-800 52.8 ± 0.8 0.708 ± 0.039 1.776 ± 0.007 60.1 ± 2.2 0.85 0.62 0.10 0.13 ± 0.002 
628 ± 46  

[349 ± 37] 

5.41 ± 0.01 

[4.77 ± 0.01] 
5.38 ± 0.39 
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Table S.VII.1. Material characterization data of TPOL and all of its derivatives along air-oxidation, carbonization and etching (Cont.) 

 

sample 

linear 

shrinkage 

(%) a, b 

bulk 

density, 

b (g cm-3) a 

skeletal 

density, 

s (g cm-3) c 

porosity, 

 

(% v/v) 

specific pore volume 

(cm3 g-1) 

BET  

surf. area,  

 

[micropore] 

 (m2 g-1) i 

av. pore  

diameter 

(nm) 

V 

Total 

d 

V1.7-300 

(nm) e 

V>300 

(nm) f   
Vmicropore

 g via 4V/ j 

EC-TPOL-D-600 54.1 ± 0.1 0.333 ± 0.051 2.093 ± 0.005 84.1 ± 2.5 2.53 1.57 0.86 0.10 ± 0.0003 
2143 ± 165 

 [1246 ± 12] 

4.71 ± 0.01 

[3.88 ± 0.02] 
           

EC-TPOL-O-600 56.6 ± 1.2 0.227 ± 0.083 2.221 ± 0.011 89.8 ± 3.8 3.96 1.72 2.10 0.14 ± 0.001 
2778 ± 209 

 [894 ± 87] 

5.69 ± 0.03 

[3.63 ± 0.02] 
           

EC-TPOL-D-700 54.9 ± 1.1 0.459 ± 0.089 1.962 ± 0.004 76.6 ± 4.5 1.67 1.69 0.00 h 
2244 ± 228  

[1007 ± 98] 

2.97 ± 0.02 

[3.45 ± 0.11] 
           

EC-TPOL-O-700 54.9 ± 0.4 0.394 ± 0.062 1.994 ± 0.039 80.2 ± 4.0 2.04 0.76 1.28 h 
2275 ± 140  

[1113 ± 47] 

3.58 ± 0.01 

[2.89 ± 0.02] 
           

EC-TPOL-D-800 54.4 ± 0.4 0.381 ± 0.035 2.082 ± 0.009 81.7 ± 1.8 2.14 1.34 0.55 0.25 ± 0.002 
1752 ± 46  

[1069 ± 12] 

4.90 ± 0.002 

[3.73 ± 0.01] 
           

EC-TPOL-O-800 60.2 ± 1.0 0.422 ± 0.054 2.072 ± 0.008 79.6 ± 2.7 1.89 1.09 0.54 0.26 ± 0.003 
2568 ± 75 

 [877 ± 48] 

2.94 ± 0.001 

[3.08 ± 0.03] 
 

 

 

a Average of 5 samples. b Shrinkage = 100 × (mold diameter – sample diameter)/ (mold diameter). c Single sample, average of 50 

measurements. d Calculated via VTot = (1/b) - (1/s).
  e BJH-desorption cumulative pore volume. f Via V>300 = VTotal – (V1.7-300 + 

Vmicropore). 
g Vmicropore was calculated with CO2-sorption up to 760 Torr and relative pressure of 0.03 at 273 K via the Horvath-Kawazoe 

method.  h Not measured.  i Average of 3 samples. First number indicates the BET surface area; the number in the square bracket 

indicates the micropore area obtained by t-plot analysis. j For the first number, V was calculated via VTotal = (1/b) - (1/s); for the 

number in brackets, V was calculated by the single-point adsorption method.  
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Table S.VII.2. Material characterization data of FPOL and all of its derivatives along air-oxidation, carbonization and etching 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a Average of 5 samples. b Shrinkage = 100 × (mold diameter – sample diameter)/ (mold diameter). c Single sample, average of 50 measurements. d BJH-

desorption cumulative pore volume. e Via V>300 = VTotal – (V1.7-300 + Vmicropore).  f Vmicropore was calculated with CO2-sorption up to 760 Torr and relative pressure of 

0.03 at 273 K via the Horvath-Kawazoe method. g Not measured. h Average of 3 samples. First number indicates the BET surface area; the number in the square 

bracket indicates the micropore area obtained by t-plot analysis.  i For the first number, V was calculated via VTotal = (1/b) - (1/s); for the number in brackets, V 

was calculated by the single-point adsorption method. j Via D = 6 / (s  ). 
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sample 

linear 

shrinkage 

(%) a, b 

bulk 

density, 

b (g cm-3) a 

skeletal 

density, 

s (g cm-3) c 

porosity, 

 

(% v/v) 

specific pore volume 

(cm3 g-1) 

BET  

surf. area,  

[micropore] 

 (m2 g-1) h 

av. pore  

diameter 

(nm) 

particle 

diameter, 

D, (nm) j V Total
 

(1/b)-(1/s) 
V1.7-300 (nm) d 

V>300 

(nm) e   
Vmicropore 

f via 4V/ i 

FPOL 41.9 ± 0.3 0.474 ± 0.007 1.508 ± 0.002 68.6 ± 0.5 1.45 1.38 0.00 0.08 ± 0.001 679 [142] 8.52 [8.54] 5.86 ± 0.01 

FPOL-240(Ar) 47.5 ± 0.2 0.554 ± 0.015 1.505 ± 0.005 63.2 ± 1.1 1.14 1.05 0.09  g 396 [31] 11.5 [10.1] 10.1 ± 0.03 

FPOL-240(air) 60.6 ± 0.2 0.824 ± 0.011 1.609 ± 0.007 48.8 ± 0.8 0.59 0.63 0.00 0.06 ± 0.0002 338 [49] 7.02 [7.48] 11.0 ± 0.05 
            

C-FPOL-D-300 48.4 ± 0.5 0.577 ± 0.005 1.487 ± 0.003 61.2 ± 0.4 1.06 1.03 0.03  g 323 [23] 13.1 [12.7] 12.5 ± 0.03 

C-FPOL-O-300 60.4 ± 0.7 0.809 ± 0.015 1.610 ± 0.002 49.8 ± 0.9 0.61 0.61 0.00 g 337 [48] 7.30 [7.31] 11.1 ± 0.01 
            

C-FPOL-D-400 52.6 ± 0.2 0.639 ± 0.006 1.499 ± 0.003 57.4 ± 0.5 0.90 0.94 0.00 g 370 [54] 9.71 [10.4] 10.8 ± 0.02 

C-FPOL-O-400 62.8 ± 0.7 0.808 ± 0.020 1.581 ± 0.002 48.9 ± 1.3 0.61 0.56 0.05 g 493 [164] 4.91 [5.37] 7.70 ± 0.01 
            

C-FPOL-D-500 54.5 ± 0.4 0.620 ± 0.010 1.472 ± 0.004 57.9 ± 0.7 0.93 0.84 0.09 g 541 [225] 6.90 [7.01] 7.53 ± 0.02 

C-FPOL-O-500 64.4 ± 0.5 0.743 ± 0.009 1.543 ± 0.005 51.8 ± 0.7 0.70 0.60 0.10 g 674 [321] 4.14 [4.49] 5.77 ± 0.02 
            

C-FPOL-D-600 57.3 ± 0.1 0.638 ± 0.008 1.540 ± 0.015 58.6 ± 1.2 0.92 0.79 0.13 g 
617± 12 

[314 ± 12] 

5.96 ± 0.001 

[6.12 ± 0.002] 
6.31 ± 0.14 

            

C-FPOL-O-600 66.8 ± 0.6 0.727 ± 0.015 1.560 ± 0.011 53.4 ± 1.3 0.73 0.62 0.11 g 
761 ± 13 

[391 ± 9] 

3.86 ± 0.001 

[4.24 ± 0.001] 
5.05 ± 0.09 

            

C-FPOL-D-700 59.4 ± 0.5 0.678 ± 0.015 1.738 ± 0.051 61.0 ± 3.5 0.90 0.74 0.16 g 
553 ± 75 

[257 ± 73] 

6.51 ± 0.06 

[6.19 ± 0.06] 
6.24 ± 0.87 

            

C-FPOL-O-700 68.0 ± 0.4 0.753 ± 0.011 1.776 ± 0.028 57.6 ± 1.9 0.76 0.68 0.08 g 
736 ± 45 

[362 ± 36] 

4.16 ± 0.01 

[4.23 ± 0.01] 
4.59 ± 0.31 

            

C-FPOL-D-800 60.5 ± 0.2 0.717 ± 0.012 1.884 ± 0.050 61.9 ± 3.2 0.86 0.72 0.04 0.10 ± 0.001  
493 ± 70 

[213 ± 65] 

7.01 ± 0.07 

[6.46 ± 0.07] 
6.46 ± 0.93 

            

C-FPOL-O-800 69.0 ± 0.5 0.793 ± 0.010 1.958 ± 0.019 59.5 ± 1.2 0.75 0.57 0.05 0.13 ± 0.001   
594 ± 97 

[247± 91] 

5.05 ± 0.07 

[4.48 ± 0.07] 
5.16 ± 0.84 
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Table S.VII.2. Material characterization data of FPOL and all of its derivatives along air-oxidation, carbonization and etching (Cont.) 

 

sample 

linear 

shrinkage 

(%) a, b 

bulk 

density, 

b (g cm-3) a 

skeletal 

density, 

s (g cm-3) c 

porosity, 

 

(% v/v) 

specific pore volume 

(cm3 g-1) 

BET  

surf. area,  

 

[micropore] 

 (m2 g-1) i 

av. pore  

diameter 

(nm) 

V 

Total 

d 

V1.7-300 

(nm) e 

V>300 

(nm) f   
Vmicropore

 g via 4V/ j 

EC-FPOL-D-600 61.1 ± 0.1 0.540 ± 0.035 2.155 ± 0.021 74.9 ± 2.0 1.39 0.97 0.35 0.07 ± 0.0003 
1102 ± 34 

[742 ± 27] 

5.04 ± 0.002 

[4.52 ± 0.003] 
           

EC-FPOL-O-600 70.1 ± 0.2 0.518 ± 0.028 2.270 ± 0.036 77.2 ± 2.4 1.49 0.89 0.45 0.15 ± 0.002 
1612 ± 40 

[985 ± 26] 

3.73 ± 0.001 

[3.27 ± 0.002] 
           

EC-FPOL-D-700 58.4 ± 1.4 0.525 ± 0.091 1.947 ± 0.009 73.0 ± 4.7 1.39 0.89 0.40 0.10 ± 0.001 
1078 ± 121 

[697 ± 97] 

5.16 ± 0.03 

[4.46 ± 0.07] 
           

EC-FPOL-O-700 68.7 ± 0.2 0.525 ± 0.058 2.232 ± 0.019 76.5 ± 2.8 1.46 0.86 0.49 0.11 ± 0.001 
1466 ± 61 

[883 ± 24] 

3.97 ± 0.004 

[3.37 ± 0.01] 
           

EC-FPOL-D-800 62.1 ± 0.4 0.595 ± 0.053 2.179 ± 0.020 72.7 ± 2.7 1.22 0.95 0.03 0.24 ± 0.001 
943 ± 90  

[595 ± 83] 

5.18 ± 0.02 

[4.73 ± 0.03] 
           

EC-FPOL-O-800 70.0 ± 0.5 0.627 ± 0.078 2.114 ± 0.015 70.3 ± 3.8 1.12 0.71 0.14 0.27 ± 0.004 
1088 ± 52 

[657 ± 47] 

4.12 ± 0.005 

[3.56 ± 0.01] 
 

 

 

a Average of 5 samples. b Shrinkage = 100 × (mold diameter – sample diameter)/ (mold diameter). c Single sample, average of 50 

measurements. d Calculated via VTotal = (1/b) - (1/s).
  e BJH-desorption cumulative pore volume. f Via V>300 = VTotal – (V1.7-300 + 

Vmicropore). 
g Vmicropore was calculated with CO2-sorption up to 760 Torr and relative pressure of 0.03 at 273 K via the Horvath-Kawazoe 

method.  h Not measured.  i Average of 3 samples. First number indicates the BET surface area; the number in the square bracket 

indicates the micropore area obtained by t-plot analysis. j For the first number, V was calculated via VTotal = (1/b) - (1/s); for the 

number in brackets, V was calculated by the single-point adsorption method.  
 

 

1
0
0
 



101 
 

Table S.VII.3. Material characterization data of RF and all of its derivatives along air-oxidation, carbonization and etching 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a Average of 5 samples. b Shrinkage = 100 × (mold diameter – sample diameter)/ (mold diameter). c Single sample, average of 50 measurements. d BJH-

desorption cumulative pore volume. e Via V>300 = VTotal – (V1.7-300 + Vmicropore).  f Vmicropore was calculated with CO2-sorption up to 760 Torr and relative pressure of 

0.03 at 273 K via the Horvath-Kawazoe method. g Not measured. h Average of 3 samples. First number indicates the BET surface area; the number in the square 

bracket indicates the micropore area obtained by t-plot analysis.  i For the first number, V was calculated via VTotal = (1/b) - (1/s); for the number in brackets, V 

was calculated by the single-point adsorption method. j Via D = 6 / (s  ). 

 

sample 

linear 

shrinkage 

(%) a, b 

bulk 

density, 

b (g cm-3) a 

skeletal 

density, 

s (g cm-3) c 

porosity, 

 

(% v/v) 

specific pore volume 

(cm3 g-1) 

BET  

surf. area,  

[micropore] 

 (m2 g-1) h 

av. pore  

diameter 

(nm) 

particle 

diameter, 

D, (nm) j V Total
 

(1/b)-(1/s) 
V1.7-300 (nm) d 

V>300 

(nm) e   
Vmicropore 

f via 4V/ i 

RF 34.0 ± 0.9 0.160 ± 0.006 1.310 ± 0.007 87.8 ± 0.8 5.49 2.34 3.09 0.06 ± 0.001 625 [77] 35.1 [15.4] 7.33 ± 0.04 

RF-240(Ar) 44.2 ± 0.4 0.211 ± 0.009 1.411 ± 0.008 85.0 ± 1.0 4.03 2.14 1.89 g 387 [35] 41.7 [22.0] 11.0 ± 0.06 

RF-240(air) 57.0 ± 0.7 0.326 ± 0.011 1.572 ± 0.006 79.3 ± 0.9 2.43 1.58 0.80 0.05 ± 0.003 385 [48] 25.3 [13.0] 9.91 ± 0.04 
            

C-RF-D-300 43.5 ± 0.4 0.198 ± 0.001 1.365 ± 0.020 85.5 ± 1.9 4.32 4.22 0.10 g 523 [48] 33.0 [32.3] 8.40 ± 0.12 

C-RF-O-300 53.5 ± 0.7 0.280 ± 0.009 1.533 ± 0.021 81.7 ± 1.9 2.92 1.41 1.51 g 478 [80] 24.4 [12.2] 8.19 ± 0.11 
            

C-RF-D-400 47.3 ± 0.2 0.214 ± 0.003 1.448 ± 0.038 85.2 ± 3.5 3.98 3.89 0.09 g 571 [70] 27.9 [27.2] 7.26 ± 0.19 

C-RF-O-400 56.5 ± 1.2 0.309 ± 0.017 1.505 ± 0.033 79.5 ± 3.0 2.57 2.36 0.21 g 579 [86] 17.8 [16.4] 6.89 ± 0.15 
            

C-RF-D-500 50.5 ± 0.2 0.218 ± 0.004 1.404 ± 0.026 84.5 ± 2.4 3.87 3.86 0.01 g 720 [185] 21.5 [21.4] 5.94 ± 0.11 

C-RF-O-500 58.0 ± 0.6 0.286 ± 0.005 1.466 ± 0.012 80.5 ± 1.1 2.81 2.77 0.04 g 844 [232] 13.3 [13.5] 4.85 ± 0.04 
            

C-RF-D-600 52.9 ± 0.4 0.210 ± 0.003 1.536 ± 0.013 86.3 ± 1.1 4.11 2.25 1.86 g 
823 ± 14 

[284 ± 7] 

20.0 ± 0.003 

[19.2 ± 0.01] 
4.75 ± 0.09 

            

C-RF-O-600 58.4 ± 0.5 0.232 ± 0.008 1.506 ± 0.017 84.6 ± 1.6 3.65 3.04 0.61 g 
827 ± 9  

[296 ± 9] 

17.6 ± 0.001 

[15.0 ± 0.01] 
4.82 ± 0.08 

            

C-RF-D-700 55.6 ± 0.1 0.236 ± 0.003 1.556 ± 0.020 84.8 ± 1.7 3.59 3.34 0.25 g 
712 ± 30 

[230 ± 30] 

20.2 ± 0.02 

[19.0 ± 0.02] 
5.42 ± 0.24 

            

C-RF-O-700 62.3 ± 0.9 0.288 ± 0.010 1.612 ± 0.024 82.1 ± 2.0 2.85 2.62 0.23 g 
697 ± 20 

[213 ± 9] 

16.4 ± 0.01 

[15.5 ± 0.02] 
5.34 ± 0.17 

            

C-RF-D-800 56.2 ± 0.5 0.230 ± 0.005 1.805 ± 0.010 87.3 ± 0.8 3.79 3.73 0.00 0.12 ± 0.002 
753 ± 94 

[248 ± 38] 

20.2 ± 0.2 [18.7 

± 0.3] 
4.41 ± 0.55 

            

C-RF-O-800 66.8 ± 0.7 0.302 ± 0.014 1.816 ± 0.017 83.4 ± 1.4 2.76 2.59 0.05 0.12 ± 0.002 
760 ± 64 

[251 ± 52] 

14.5 ± 0.1 [14.1 

± 0.2] 
4.35 ± 0.37 

1
0
1
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Table S.VII.3. Material characterization data of RF and all of its derivatives along air-oxidation, carbonization and etching (Cont.) 

 

sample 

linear 

shrinkage 

(%) a, b 

bulk 

density, 

b (g cm-3) a 

skeletal 

density, 

s (g cm-3) c 

porosity, 

 

(% v/v) 

specific pore volume 

(cm3 g-1) 

BET  

surf. area,  

 

[micropore] 

 (m2 g-1) i 

av. pore  

diameter 

(nm) 

V 

Total 

d 

V1.7-300 

(nm) e 

V>300 

(nm) f   
Vmicropore

 g via 4V/ j 

EC-RF-D-600 59.0 ± 0.2 0.162 ± 0.019 2.321 ± 0.059 93.0 ± 3.6 5.74 5.47 0.27 h 
1970 ± 7 

[1111 ± 7] 

11.7 ± 0.0004 

[11.9 ± 0.0001] 
           

EC-RF-O-600 64.8 ± 0.7 0.202 ± 0.014 2.301 ± 0.078 91.2 ± 4.6 4.52 4.18 0.34 h 
1582 ± 80 

[911 ± 47] 

11.4 ± 0.01 

[11.1 ± 0.02] 
           

EC-RF-D-700 62.5 ± 1.8 0.137 ± 0.013 2.281 ± 0.090 94.0 ± 5.4 6.86 5.37 1.49 h 
2334 ± 164 

[733 ± 91] 

11.8 ± 0.03 

[9.28 ± 0.04] 
           

EC-RF-O-700 68.9 ± 1.1 0.198 ± 0.017 2.301 ± 0.088 91.4 ± 5.2 4.62 3.72 0.90 h 
2341 ± 48 

[959 ± 35] 

7.89 ± 0.002 

[7.19 ± 0.003] 
           

EC-RF-D-800 59.1 ± 0.2 0.145 ± 0.005 2.147 ± 0.043 93.2 ± 2.7 6.43 6.36 0.00 0.44 ± 0.001 
2355 ± 145 

[1112 ± 105] 

10.9 ± 0.04 

[11.5 ± 0.05] 
           

EC-RF-O-800 68.6 ± 1.1 0.166 ± 0.009 2.024 ± 0.030 91.8 ± 2.1 5.53 5.01 0.08 0.44 ± 0.002 
2484 ± 161 

[1030 ± 76] 

8.91 ± 0.02 

[8.69 ± 0.03] 

 

 

a Average of 5 samples. b Shrinkage = 100 × (mold diameter – sample diameter)/ (mold diameter). c Single sample, average of 50 

measurements. d Calculated via VTot = (1/b) - (1/s).
  e BJH-desorption cumulative pore volume. f Via V>300 = VTotal – (V1.7-300 + 

Vmicropore). 
g Vmicropore was calculated with CO2-sorption up to 760 Torr and relative pressure of 0.03 at 273 K via the Horvath-Kawazoe 

method.  h Not measured.  i Average of 3 samples. First number indicates the BET surface area; the number in the square bracket 

indicates the micropore area obtained by t-plot analysis j For the first number, V was calculated via VTotal = (1/b) - (1/s); for the 

number in brackets, V was calculated by the single-point adsorption method.  
 1

0
2
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Table S.VII.4. Material characterization data of PF and all of its derivatives along air-oxidation, carbonization and etching 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a Average of 5 samples. b Shrinkage = 100 × (mold diameter – sample diameter)/ (mold diameter). c Single sample, average of 50 measurements. d BJH-

desorption cumulative pore volume. e Via V>300  = VTotal  – (V1.7-300 + Vmicropore).  f Vmicropore was calculated with CO2-sorption up to 760 Torr and relative pressure of 

0.03 at 273 K via the Horvath-Kawazoe method. g Not measured. h Average of 3 samples. First number indicates the BET surface area; the number in the square 

bracket indicates the micropore area obtained by t-plot analysis.  i For the first number, V was calculated via VTotal = (1/b) - (1/s); for the number in brackets, V 

was calculated by the single-point adsorption method. j Via D = 6 / (s  ). 

1
0
3
 

 

sample 

linear 

shrinkage 

(%) a, b 

bulk 

density, 

b (g cm-3) a 

skeletal 

density, 

s (g cm-3) c 

porosity, 

 

(% v/v) 

specific pore volume 

(cm3 g-1) 

BET  

surf. area,  

[micropore] 

 (m2 g-1) h 

av. pore  

diameter 

(nm) 

particle 

diameter, 

D, (nm) j V Total
 

(1/b)-(1/s) 
V1.7-300 (nm) d 

V>300 

(nm) e   
Vmicropore 

f via 4V/ i 

PF 35.1 ± 0.4 0.454 ± 0.011 1.257 ± 0.001 63.9 ± 0.9 1.41 1.19 0.19 0.03 ± 0.0001 199 [6] 28.3 [23.9] 24.0 ± 0.02 

PF-240(Ar) 38.3 ± 0.6 0.479 ± 0.011 1.266 ± 0.002 62.2 ± 0.9 1.30 1.16 0.14 g 221 [25] 23.5 [21.1] 21.4 ± 0.03 

PF-240(air) 43.2 ± 0.4 0.652 ± 0.015 1.505 ± 0.002 56.7 ± 1.0 0.87 0.81 0.02 0.04 ± 0.002 142 [24] 24.5 [22.9] 28.1 ± 0.04 
            

C-PF-D-300 39.1 ± 0.9 0.485 ± 0.029 1.274 ± 0.001 61.9 ± 2.3 1.28 1.14 0.14 g 226 [32] 22.6 [20.4] 20.8 ± 0.03 

C-PF-O-300 44.2 ± 0.2 0.658 ± 0.015 1.486 ± 0.001 55.7 ± 1.0 0.85 0.84 0.01 g 153 [30] 22.1 [21.9] 26.4 ± 0.02 
            

C-PF-D-400 39.3 ± 0.7 0.473 ± 0.014 1.266 ± 0.001 62.6 ± 1.1 1.32 1.20 0.12 g 262 [37] 20.2 [18.9] 18.1 ± 0.01 

C-PF-O-400 47.6 ± 0.6 0.653 ± 0.045 1.438 ± 0.002 54.6 ± 3.1 0.84 0.81 0.03 g 333 [121] 10.0 [11.0] 12.5 ± 0.02 
            

C-PF-D-500 44.4 ± 0.8 0.501 ± 0.018 1.265 ± 0.002 60.4 ± 1.4 1.21 1.02 0.19 g 511 [261] 9.44 [9.35] 9.28 ± 0.01 

C-PF-O-500 48.6 ± 0.4 0.596 ± 0.014 1.408 ± 0.003 57.7 ± 1.0 0.97 0.90 0.07 g 580 [339] 6.67 [7.34] 7.35 ± 0.02 
            

C-PF-D-600 48.8 ± 1.0 0.541 ± 0.017 1.428 ± 0.008 62.1 ± 1.4 1.15 0.88 0.27 g 
620 ± 95 

[392 ± 85] 

7.41 ± 0.09 

[6.83 ± 0.10] 
6.78 ± 1.04 

            

C-PF-O-600 51.3 ± 1.2 0.577 ± 0.033 1.461 ± 0.007 60.5 ± 2.3 1.05 0.82 0.23 g 
609 ± 43 

[395± 49] 

6.89 ± 0.02 

[7.10 ± 0.02] 
6.74 ± 0.48 

            

C-PF-D-700 51.6 ± 0.6 0.594 ± 0.018 1.721 ± 0.030 65.5 ± 2.3 1.10 0.83 0.27 g 
529 ± 82 

[339 ± 78] 

8.34 ± 0.10 

[7.35 ± 0.09] 
6.59 ± 1.03 

            

C-PF-O-700 54.5 ± 0.7 0.627 ± 0.021 1.725 ± 0.027 63.7 ± 2.2 1.02 0.86 0.16 g 
657 ± 11 

[459 ± 10] 

6.18 ± 0.001 

[6.46 ± 0.001] 
5.29 ± 0.12 

            

C-PF-D-800 52.3 ± 0.4 0.618 ± 0.015 1.962 ± 0.013 68.5 ± 1.1 1.11 0.82 0.16 0.13 ± 0.001 
569 ± 41 

[387 ± 36] 

7.79 ± 0.02 

[6.89 ± 0.02] 
5.37 ± 0.11 

            

C-PF-O-800 54.7 ± 0.7 0.640 ± 0.021 1.909 ± 0.010 66.5 ± 1.3 1.04 0.82 0.09 0.13 ± 0.001 
519 ± 87 

[335 ± 83] 

8.01 ± 0.11 

[7.46 ± 0.11] 
6.06 ± 1.02 



104 
 

Table S.VII.4. Material characterization data of PF and all of its derivatives along air-oxidation, carbonization and etching (Cont.) 

 

sample 

linear 

shrinkage 

(%) a, b 

bulk 

density, 

b (g cm-3) a 

skeletal 

density, 

s (g cm-3) c 

porosity, 

 

(% v/v) 

specific pore volume 

(cm3 g-1) 

BET  

surf. area,  

 

[micropore] 

 (m2 g-1) i 

av. pore  

diameter 

(nm) 

V 

Total 

d 

V1.7-300 

(nm) e 

V>300 

(nm) f   
Vmicropore

 g via 4V/ j 

EC-PF-D-600 45.9 ± 1.0 0.516 ± 0.023 2.086 ± 0.011 75.3 ± 1.3 1.46 0.95 0.51 h 
1488 ± 95 

[1168 ± 74] 

3.92 ± 0.01 

[3.72 ± 0.01] 
           

EC-PF-O-600 48.2 ± 1.0 0.523 ± 0.021 1.894 ± 0.005 72.4 ± 1.2 1.38 0.80 0.58 h 
1488 ± 34 

[1188 ± 36] 

3.72 ± 0.001 

[3.63 ± 0.01] 
           

EC-PF-D-700 53.3 ± 1.1 0.471 ± 0.058 1.867 ± 0.008 74.8 ± 3.2 1.59 0.90 0.69 h 
1134 ± 111 

[917 ± 97] 

5.60 ± 0.03 

[4.47 ± 0.03] 
           

EC-PF-O-700 54.5 ± 1.6 0.517 ± 0.108 1.945 ± 0.010 73.4 ± 5.6 1.42 1.12 0.30 h 
1408 ± 127 

[1139 ± 92] 

4.03 ± 0.02 

[4.25 ± 0.04] 
           

EC-PF-D-800 53.0 ± 0.6 0.544 ± 0.036 2.070 ± 0.008 73.7 ± 1.8 1.36 1.38 0.00 0.22 ± 0.001 
1701 ± 9 

[1069 ± 4] 

3.19 ± 0.0001 

[4.45 ± 0.001] 
           

EC-PF-O-800 55.3 ± 0.3 0.544 ± 0.029 2.124 ± 0.007 74.4 ± 1.4 1.37 0.95 0.17 0.25 ± 0.001 
1483 ± 83 

[1045 ± 51] 

3.69 ± 0.01 

[3.66 ± 0.01] 
 

 

 

a Average of 5 samples. b Shrinkage = 100 × (mold diameter – sample diameter)/ (mold diameter). c Single sample, average of 50 

measurements. d Calculated via VTotal = (1/b) - (1/s).
  e BJH-desorption cumulative pore volume. f Via V>300 = VTotal – (V1.7-300 + 

Vmicropore). 
g Vmicropore was calculated with CO2-sorption up to 760 Torr and relative pressure of 0.03 at 273 K via the Horvath-Kawazoe 

method.  h Not measured.  i Average of 3 samples. First number indicates the BET surface area; the number in the square bracket 

indicates the micropore area obtained by t-plot analysis. j For the first number, V was calculated via VTotal = (1/b) - (1/s); for the 

number in brackets, V was calculated by the single-point adsorption method.  
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Appendix VIII. All linear Shrinkage, Bulk (b) and Skeletal (s) Density, and Porosity 

() Data in Graph Form 

  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S.VIII.1. Linear shrinkage relative to the molds of all samples along pyrolytic 

processing. D refers to the pyrolysis products of RES as-prepared. O refers to the 

pyrolysis products of RES-240(air). Shaded areas refer to samples etched with CO2 at 

1000 oC. 
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Figure S.VIII.2. Bulk density of all samples along pyrolytic processing. D refers to the 

pyrolysis products of RES as-prepared. O refers to the pyrolysis products of RES-

240(air). Shaded areas refer to samples etched with CO2 at 1000 oC. 
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Figure S.VIII.3. Skeletal density of all samples along pyrolytic processing. D refers to the 

pyrolysis products of RES as-prepared. O refers to the pyrolysis products of RES-

240(air). Shaded areas refer to samples etched with CO2 at 1000 oC. 
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Figure S.VIII.4. Percent porosity () of all samples along pyrolytic processing. D refers 

to the pyrolysis products of RES as-prepared. O refers to the pyrolysis products of RES-

240(air). Shaded areas refer to samples etched with CO2 at 1000 oC.  
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Appendix IX. SEM, N2 Sorption and CO2 Sorption Data  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S.IX.1. SEM, N2 sorption isotherms (77 K) and CO2 sorption isotherms (0 oC - 

insets) of: Top: FPOL and FPOL-240(air); Middle: Carbonized C-FPOL-D-800 (red) 

and C-FPOL-O-800 (blue); Bottom: Etched samples corresponding to the samples in 

middle raw, EC-FPOL-D-800 (red) and EC-FPOL-O-800 (blue). SEM scale bar: 100 

nm. 
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Figure S.IX.2. SEM, N2 sorption isotherms (77 K) and CO2 sorption isotherms (0 oC - 

insets) of: Top: RF and RF-240(air); Middle: Carbonized C-RF-D-800 (red) and C-RF-

O-800 (blue); Bottom: Etched samples corresponding to the samples in middle raw, EC-

RF-D-800 (red) and EC-RF-O-800 (blue). SEM scale bar: 100 nm. 
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Figure S.IX.3. SEM, N2 sorption isotherms (77 K) and CO2 sorption isotherms (0 oC - 

insets) of: Top: PF and PF-240(air); Middle: Carbonized C-PF-D-800 (red) and C-PF-

O-800 (blue); Bottom: Etched samples corresponding to the samples in middle raw, EC-

PF-D-800 (red) and EC-PF-O-800 (blue). SEM scale bar: 100 nm. 
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Appendix X. Meso and Micropore Size Distribution Data  

 

 

 

 

 

 

 

 

 

Figure S.X.1. Pore size distributions in the meso and micropore range of samples as 

shown (Left: from the FPOL system; Right: from the PF system). Mesopore size 

distributions (curves at > 10 Å) from the BJH equation applied to N2 sorption data. 

Micropore size distributions (curves at <10 Å) using a DFT model on CO2 sorption data 

and assuming slit pores. (The corresponding data for the TPOL and RF systems are 

shown in Figure 10 in the main article.) 
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4.  N. Hüsing and U. Schubert, Angew. Chem., Int. Ed., 1998, 37, 22–45.   

 

5.  R. W. Pekala, J. Mater. Sci., 1989, 24, 3221–3227.  

  

6.  X. Lu, M. C. Arduini-Schuster, J. Kuhn, O. Nilsson, J. Fricke and R. W. Pekala, 

Science, 1992, 255, 971–972.   

 

7.  R. W. Pekala and D. W. Schaefer, Macromolecules, 1993, 26, 5487–5493.  

 

8.  S. A. Al-Muhtaseb and J. A. Ritter, Adv. Mater., 2003, 15, 101–114.   
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MICROPOROUS CARBONS FROM PHENOLIC AEROGELS: THE ROLE OF 
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ABSTRACT 

Phenolic aerogels containing oxygen, and other polymeric aerogels containing 

both oxygen and nitrogen (polybenzoxazine and a polyamide-polyimide-polyurea co-

polymer) were converted to carbon aerogels (800 oC/Ar), and were etched with CO2 

(1000 oC). Etching opened closed pores and increased micropore volumes and size. 

Heteroatoms were retained in the terminal etched samples. All carbon aerogels were 

characterized chemically (CHN and XPS) and nanoscopically (gas-sorption) and were 

evaluated as CO2 sorbers in terms of their capacity and selectivity towards CH4, H2 and 

N2. CO2 adsorption capacity was linked to microporosity. In most cases, monolayer 

coverage of micropore walls was enough to explain CO2 uptake quantitatively. The 

interaction of CO2 with micropore walls was evaluated via isosteric heats of adsorption, 

and was stronger with carbons containing only oxygen heteroatoms. The adsorption 

capacity of those carbons (5–6 mmol g-1) was at par with the best carbon and polymeric 

mailto:leventis@mst.edu
mailto:cslevent@mst.edu
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CO2 adsorbers known in the literature, with one exception though: etched carbon aerogels 

from low-density resorcinol-formaldehyde aerogels showed a very high CO2 uptake (14.8 

± 3.9 mmol g-1 at 273 K and 1 bar), which was attributed to a pore-filling process that 

proceeds beyond monolayer coverage whereas surface phenoxides engaged in a 

thermally-neutral carbonate forming reaction (surface-O– --- + CO2 ---> surface-O-(CO)-

O– --- + CO2 ---> surface-O-(CO)-O-(CO)O–) that continued until micropores were filled. 

 

Keywords: phenolic aerogels, polybenzoxazine aerogels, CO2 uptake, selectivity, 

isosteric heats of adsorption 
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1. INTRODUCTION 

For economic reasons, separation of CO2 from both pre- and post-combustion 

gasses in power plants was already part of the process long before any anthropogenic 

contribution to global warming via massive release of green-house gasses like CO2 in the 

atmosphere was a concern. Global warming has just brought the issue of carbon capture 

and sequestration (CCS) at the forefront of public awareness. CCS has an economic cost 

itself in terms of energy consumption in order to recycle the capturing agent and store 

CO2. Thereby, research in the area stems from the need for CCS technologies that will 

bring the level of carbon-avoided closer to the carbon-captured.1–3 

 Currently, three main technologies are used to separate CO2 from its emission 

sources: scrubbing solutions (mostly amines), solid sorbents, and membranes.4 The 

advantage of solid sorbents is that they can tolerate wider temperature ranges, and they 

can be regenerated more easily, therefore their environmental footprint is lower. On the 

downside, their capture capacity is relatively low, and the goal has been to improve on 

that while maintaining selectivity.5 Solid sorbent materials can be classified into two main 

groups: traditional porous sorbents that include activated carbons and zeolites, and novel 

synthetic materials.  

Novel synthetic sorbent materials have been the focus of intense research interest 

in the last -20 years because they bring the power of designed synthesis to implementing 

strategies that increase gas uptake and selectivity. Such strategies target enhanced surface 

areas, higher interaction energies with adsorbates of interest, tuned pore and particle 

sizes, surface modification by doping (e.g., with N), oxidation, fluorination, etc., and also 

via synthesis of porous hybrid materials.5,6 Thus, not surprising, synthetic polymeric 
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porous sorbents cover an extremely broad range of materials that includes metal organic 

frameworks (MOFs),7–9 hyper crosslinked polymers (HCPs),10,11 conjugated microporous 

polymers (CMPs),12,13 polymers with intrinsic microporosity (PIMs),14,15 porous aromatic 

frameworks (PAFs),16,17 covalent organic polymers (COPs),18,19 covalent triazine-based 

frameworks (CTFs),20 miroporous organic polymers (MOPs),21,22 porous polymer 

frameworks (PPFs),23 benzimidazole-linked polymers (BILPs),24,25 etc.  

The common target among all synthetic sorbent materials is free-volume 

microporosity, which is introduced by means of molecular rigidity at the monomer level. 

Oftentimes though, that molecular rigidity comes at a high cost: such monomers may be 

the result of multistep synthesis themselves from not readily available (therefore 

expensive) starting materials. In other instances, where starting materials may be easily 

available and inexpensive, e.g., case of MOFs, environmental sensitivity, for example to 

water, is an issue.26,27 At last but not least, a perennial problem that faces materials in all 

those categories is that typically they are obtained as powders that must be re-packaged in 

useful forms that allow almost unobstructed passage of gasses, yet they provide long 

enough contact times for efficient adsorption. Ideally, such “useful forms” would be 

hybrids between monolithic chromatographic columns and catalytic converters.  For all 

those reasons, designer polymeric adsorbers are not commonplace amongst practical 

solutions of the CSS problem, while in the meantime commercial products still rely on 

low-cost, high surface area, chemically inert, carbon-based materials made from natural 

sources. 

One special type of high surface area carbons is referred to as carbon aerogels. 

They are produced from pyrolysis of an ever-increasing variety of carbonizable 
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polymeric aerogels, which in turn are synthesized via typical sol-gel chemistry. A very 

important attribute of the polymer-to-carbon aerogel route is that for rigidity and porosity 

the final carbon aerogels do not rely on the molecular rigidity of the monomer precursors 

of their parent polymeric aerogels, but rather on chemical transformations taking place 

during pyrolytic carbonization. Therefore, because the molecular rigidity requirement for 

making polymeric aerogels is not as strict as that for making the rigid framework of 

polymeric adsorbents, the selection of monomer precursors for polymeric aerogels is 

much less restrictive. Specifically, while molecular rigidity of organic/polymeric 

adsorbers typically requires expensive tetrafunctional monomers, crosslinking of 

polymeric chains, required for phase-separation during the sol-gel transition, can be 

achieved with just commodity-type trifunctional monomers. In addition, since there is a 

wide variety of polymeric aerogels that converge to carbon aerogels, selection of the 

specific chemistry may give carbon aerogels doped with heteroatoms in numerous 

functional group configurations, almost at will (e.g., pyridinic vs. pyridonic or nitroxide 

for nitrogen; pyrylium, carbonyl, or phenoxide for oxygen). A final, yet extremely 

important attribute of carbon aerogels is that they can be prepared easily as shaped 

monoliths with multiscale porosity with pore sizes ranging from macro to mirco pore-size 

regime, effectively being hybrids of monolithic chromatographic columns and catalytic 

converted as mentioned above, thus addressing also the requirement for packaging in 

useful forms.       

The most well-known carbon aerogels have been obtained from pyrolysis of 

resorcinol-formaldehyde (RF) aerogels.28,29 The backbone of RF aerogels is a phenolic 

resin; however, many other classes of polymeric aerogels yield carbon aerogels, 
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including polyureas,30 polyamides,31 polyimides,32 polyurethanes,33 and 

polybenzoxazines (PBOs).34 The latter are considered a sub-class of phenolic aerogels 

with Mannich bridging between phenolic moieties rather than the typical methylene 

bridging of RF aerogels. PBO aerogels are particularly interesting materials: their curing 

in air triggers a ring-fusion aromatization process that increases their carbonization yield 

dramatically (from less than 30% to over 60%), and also rigidizes the polymeric 

backbone so that the resulting carbon aerogels are inherently mostly microporous 

materials.[34] With those findings about PBO aerogels as a point of departure, more 

recently we investigated the effect of air-oxidation on other more main-stream phenolic 

aerogels including RF, as well as phenol-formaldehyde (PF), pholoroglucinol-

formaldehyde (FPOL), and pholoroglucinol-terephalaldehyde (TPOL) aerogels. 

Collectively, PF, RF, FPOL and TPOL aerogels are referred to as RES (Scheme 1). 

Only pholoroglucinol-based FPOL and TPOL aerogels would undergo oxidative ring 

fusion aromatization by heating at 240 oC in air, yet, unlike PBO aerogels, oxidative 

ring-fusion aromatization did not affect the carbonization yields and all four phenolic 

systems, irrespective of whether they were oxidized or not, converged to a common 

chemical composition at about 600 oC. Nevertheless, it was noted that carbon aerogels 

from the two systems that did undergo ring fusion aromatization (i.e., TPOL and FPOL) 

had consistently higher BET and micropore surface areas (up to 48%) than samples that 

were not subjected to oxidative aromatization.35 

Those findings set the stage for the present study that was designed to explore the 

effect on CO2 adsorption and selectivity of: (a) framework rigidization by oxidative ring 

fusion aromatization; (b) enhanced microporosity by reactive etching of carbon aerogels 
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with CO2; and, (c) heteroatoms and their chemical context (i.e., the identity of functional 

groups that survived carbonization). Materials used for those purposes include monolithic 

carbon aerogels (designated as C-polymer of origin) and activated carbon aerogels 

(designated as EC-polymer of origin) from organic aerogels based on phenolic resin-

type of polymers (RES), polybenzoxazine (PBO) from Ishida’s monomer,36–38 and a 

random copolymer of polyamide, polyurea, and polyimide (PA).31 Monomers and 

abbreviations are summarized in Scheme 1. The uptake of CO2 and CH4 by etched 

carbons at near ambient temperatures and pressures were close to the upper end of the 

range reported for other adsorbers derived from similar organic polymers. Exceptionally 

high CO2 uptake (14.8 ± 3.9 mmol g-1 at 273 K, 1 bar) was observed with etched RF-

derived carbon aerogels. That value was higher than all porous CO2 sorbents we are 

aware of in the literature under the same conditions. The highest selectivity towards 

CO2/H2 at 273 K was obtained with C-PBO aerogels (733 ± 58). The highest selectivity 

towards CO2/N2 was noted with EC-PBO aerogels (181 ± 51). 

2. RESULTS AND DISCUSSION 

2.1. CARBON AEROGEL SYNTHESIS AND CHARACTERIZATION 

Synthesis and chemical characterization of all three types of polymeric aerogels 

used in this study (RES, PBO and PA) have been described in detail in the recent 

literature. All phenolic wet-gels and aerogels (RES and PBO) were prepared via acid 

(HCl)-catalyzed room temperature polymerization of the monomers.34,35 PA aerogels 

were prepared via room-temperature reaction of (tris(4-isocyanatophenyl) methane) and 

pyromellitic acid (Scheme 1).31 
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Scheme 1. Monomer precursors of the polymeric aerogels of this study (RES, PBO and 

PA). 
 

 

RES aerogels were prepared with the same monomer concentrations as reported 

recently (TPOL: 16% w/w; FPOL: 11% w/w; RF: 3.3% w/w; and PF: 16% w/w). In 

certain control experiments, in order to match densities of the resulting carbons, RF 

aerogels were also prepared at 15% w/w of monomer concentration, and also TPOL 

aerogels were also prepared with 10% w/w of monomers. Those samples are referred to 

Part A. RES Aerogels from: 

Part B. PBO Aerogels from: 

Part C. PA Aerogels from: 



125 
 

 

 

as RFH and TPOLL, where H and L refer to the higher- and lower-densities of those 

samples, respectively. PBO and PA aerogels have been prepared previously at different 

monomer concentrations, but here we chose to use sols with 7.0 % w/w and 25% of 

monomers, respectively, because those aerogels yielded carbon aerogels with densities 

comparable to those from RF at 3.3 % w/w of monomers. 

As summarized in Scheme 2, all as-prepared RES aerogels were either subjected 

to direct pyrolytic carbonization at 800 oC (the resulting carbon aerogels referred to as C-

RES-D), or they were first subjected to an oxidative treatment at 240 oC/air followed by 

carbonization at 800 oC (samples referred to as C-RES-O). As noted in the Introduction, 

the only difference between C-RES-D and C-RES-O has been that the BET and 

micropore surface areas of the C-RES-O aerogels were consistently higher than those of 

C-RES-D.35 The case of PBO aerogels is very different: as-prepared PBO aerogels must 

be subjected to oxidative ring-fusion aromatization (at 200 oC/air) before pyrolytic 

carbonization, otherwise carbonization yields are lower by about 30% w/w than those 

obtained from the air-cured samples.34 That fact is reflected in Scheme 2 by showing that 

only aromatized PBO aerogels were considered for carbonization to C-PBO carbon 

aerogels. The carbonization process of PA aerogels is different from that of the phenolic 

aerogels and proceeds, at least at the early stages, via functional group interconversion 

that leads to CO2 loss; oxidative aromatization was not relevant to those materials, 

thereby as-prepared PA aerogels were carbonized directly to C-PA. After pyrolytic 

carbonization, all types of C- samples were subjected to pyrolytic etching at 1000 oC for 

3 h under a stream of flowing CO2 (see Experimental section) and the resulting materials 
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are referred to as EC-RES-D, EC-RES-O, EC-PBO and EC-PA. (EC- stands for 

“etched.”) 

Yields of carbonization after processing according to Scheme 2 are summarized 

in Table S.1 of Appendix I in Supporting Information. C-RES-D were received at higher 

yields (41–56%) relative to their pre-oxidized counterparts (C-RES-O; 28–47%). As a 

group, all C-RES-D(or O) were received at lower yields than C-PBO (63%) and C-PA 

(57 %). No similar rules could be applied to the yield of the etching process. The yield of 

EC-PBO from C-PBO was only 27%, the yield of EC-RF-D(or O) from C-RF-D(or O) 

was higher (49% and 35%, respectively), while the yields of EC-PA, EC-FPOL-D(or O) 

and EC-PF-D(or O) from the corresponding C-systems were even higher (68–84%). Part 

of the variability in those yields is due to the fixed processing conditions. At a more basic 

level, yields of carbonization and etching are complicated functions of factors related to 

the pyrolytic conditions and structural parameters including the density of the material, 

the number of carbon rings per carbon atom, heteroatoms and fused rings.39,40 In that 

context, and with all other factors being equal, we did notice a weak correlation between 

the skeletal densities of the C-materials (Table 1) and their yields of etching with CO2: 

lower skeletal densities of C-aerogels were usually accompanied by lower yields of 

etching (Table S.1). 

CHN analysis (Figure 1 and Table S.2 of Appendix II in Supporting Information) 

showed that pyrolysis products lost most of their hydrogen, consisted of ≥85% w/w of C, 

and retained a significant portion of their heteroatoms: O in the case of C(and EC)-RES-

O, and O as well as N in the case of C(and EC)-PBO and C(and EC)-PA. With the 

exception of C-PF, after CO2-etching the weight percent of carbon in EC-RES-O(and D) 
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Scheme 2. Synthesis of the carbon aerogels of this study and their activated forms. 

 

 

increased slightly, the amount of O decreased by an equivalent or slightly higher 

percentage, while H, already present in the C- samples, was mostly retained after etching, 

and its percent weight in the EC samples was generally at the same levels as in the        
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C-RES-O samples. (EC-FPOL-O contained almost no H and comprised an exception.). 

Turning to the EC-PBO and EC-PA systems, the former retained H and O but lost half 

of the N relative to C-PBO; the latter lost about half of both O and N present in C-PA, so 

that the O:N ratio remained about the same before and after etching.     

The chemical identity of the heteroatoms in the C- and EC- carbons was probed 

with XPS. Figure 2 shows representative data. Spectra were fitted with Gaussian 

functions. As exemplified by the RF system, oxygen in all C(and EC)-RES-O(or D) was 

in equal amounts in the form of heteroaromatic pyrylium (O+ at about 533 eV),41 and 

charge-compensating phenoxide groups (O- at about 532 eV),42,43 as published recently 

for the C- aerogels.35 Oxygen in C(and EC)-PBO was also in the form of pyrylium and 

C-O–, whereas the latter probably overlaps with some C=O also at around 532 eV,44,45 

hence the somewhat highest intensity peak. Oxygen in C(and EC)-PA was in the form of 

pyrylium, C=O, as well as C-O– and N+-O–.46 The N1s XPS spectra of C(and EC)-PBO 

were deconvoluted into two peaks at about 398 eV and 401 eV, assigned to pyridinic and 

pyridonic N’s, respectivey, in a 7:3 ratio in favor of the pyridonic functionality.  The N1s 

XPS spectra of C(and EC)-PA carbons were richer in functionality than those of the 

PBO-derived carbons; according to Figure 2, in addition to pyridonic and pyridinic N’s, 

those materials also included N in quaternary positions as well as in N+-O– groups,47–51 

which increased the amount of negative –O– in the O1s spectra relative to pyrylium 

oxygen (refer to the EC-PA, O1s frame in Figure 2).    

Figure 3 shows representative samples along processing. General material 

characterization data for all aerogels and the derived carbons are summarized in Table 1. 

As-prepared RES aerogels shrunk more (32–42%) relative to their molds than PBO and 
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PA (12–13%). That initial shrinkage followed the samples after carbonization, and all C-

RES samples shrunk 53–67%, while C-PBO and C-PA shrunk only 36–40%. As 

demonstrated by Figure 3, after etching the differential shrinkage was only nominal for 

almost all samples. The highest differential shrinkages were noted for EC-TPOL-O and 

EC-FPOL-O, yet they were still quite low at 7% and 9%, respectively.  

Owing to different sol-concentrations, in combination with different shrinkages, 

bulk densities of as-prepared aerogels varied over a wide range (Table 1). Without going 

into unnecessary detail, after pyrolytic carbonization (with or without prior oxidation), 

bulk densities (and porosities) of C-RES and EC-RES carbons (with the exception of C-

RF and EC-RF) converged into common ranges (Table 1). 

Because of lower shrinkage, bulk densities of PBO- and PA-derived carbons were 

almost as low as the corresponding carbons derived from RF. By increasing the monomer 

concentration from 3.3% to 15% w/w, the densities of C-RFH-O and EC-RFH-O 

samples came to the same range as of all other C-RES-O and EC-RES-O, respectively. 

Similarly, bulk densities of carbons from lower concentration TPOL sols, C-TPOLL-O 

and EC-TPOLL-O, were in the range of the carbons from RF at 3.3 % w/w, PBO at 7% 

w/w and PA at 25% w/w. 

Table 1 also shows that EC-samples had lower densities than the corresponding 

C-samples, consistent with mass loss and no (or very small) differential shrinkage during 

etching. Also, while C-RES-O were slightly denser than C-RES-D, that difference was 

practically eliminated after etching, and by comparison densities of EC-RES-D and EC-

RES-O were closer to one another. All skeletal densities (s) of C-samples (i.e., C-RES-

D, C-RES-O, C-PBO and C-PA) were <2.0 g cm-3 and relatively close to one another.
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Table 1. Material Properties of Nanoporous Carbons and Etched Carbon Aerogels Derived from RES, PBO and PA Aerogels   

sample linear 

shrinkage 

(%) a,b 

bulk 

density, 

b (g cm-3) a 

skeletal 

density, 

s (g cm-3) c 

porosity, 

 
(% v/v) d 

specific pore volume  

(cm3 g-1) 

surface area 

(m2 g-1) 

average pore diam. (nm) 

via 4V/ h 

VTotal
 e Vmax 

f BET,  micropore g V = VTotal V = Vmax 

TPOL 32.2 ± 0.3 0.620 ± 0.009 1.434 ± 0.006 56.8 ± 0.8 0.92 ± 0.01 0.99 501 111 7.32 7.93 

C-TPOL-D 53.4 ± 0.1 0.798 ± 0.008 1.794 ± 0.003 55.5 ± 0.5 0.70 ± 0.01 0.68 ± 0.04 527 ± 58 292 ± 52 5.29 ± 0.03 5.20 ± 0.04 

C-TPOL-O 52.8 ± 0.8 0.708 ± 0.039 1.776 ± 0.007 60.1 ± 2.2 0.85 ± 0.04 0.75 ± 0.02 628 ± 46 349 ± 37 5.41 ± 0.01 4.77 ± 0.01 

EC-TPOL-D 54.4 ± 0.4 0.381 ± 0.035 2.082 ± 0.009 81.7 ± 1.8 2.14 ± 0.04 1.63 ± 0.13 1752 ± 46 1069 ± 12 4.90 ± 0.00 3.73 ± 0.01 

EC-TPOL-O 60.2 ± 1.0 0.422 ± 0.054 2.072 ± 0.008 79.6 ± 2.7 1.89 ± 0.05 2.13 ± 0.06 2568 ± 75 877 ± 48 2.94 ± 0.00 3.08 ± 0.03 

C-TPOLL-O 52.2 ± 0.2 0.511 ± 0.003 1.919 ± 0.044 73.4 ± 2.8 1.44 ± 0.04 1.08 ± 0.05 376 ± 7 115 ± 8 15.3 ± 0.00 11.5 ± 0.01 

EC-TPOLL-O 59.1 ± 1.8 0.177 ± 0.029 2.171 ± 0.027 91.8 ± 2.2 5.19 ± 0.04 2.62 ± 0.22 2246 ± 179  1604 ± 337 9.24 ± 0.03 4.67 ± 0.03 

FPOL 41.9 ± 0.3 0.474 ± 0.007 1.508 ± 0.002 68.6 ± 0.5 1.45 ± 0.01 1.45 679 142 8.52 8.54 

C-FPOL-D 60.5 ± 0.2 0.717 ± 0.012 1.884 ± 0.050 61.9 ± 3.2 0.86 ± 0.05 0 .80 ± 0.04 493 ± 70 213 ± 65 7.01 ± 0.07 6.46 ± 0.07 

C-FPOL-O 69.0 ± 0.5 0.793 ± 0.010 1.958 ± 0.019 59.5 ± 1.2 0.75 ± 0.02 0.66 ± 0.05 594 ± 97 247± 91 5.05 ± 0.07 4.48 ± 0.07 

EC-FPOL-D 62.1 ± 0.4 0.595 ± 0.053 2.179 ± 0.020 72.7 ± 2.7 1.22 ± 0.06 1.11 ± 0.06 943 ± 90 595 ± 83 5.18 ± 0.02 4.73 ± 0.03 

EC-FPOL-O 70.0 ± 0.5 0.627 ± 0.078 2.114 ± 0.015 70.3 ± 3.8 1.12 ± 0.08 0.97 ± 0.04 1088 ± 52 657 ± 47 4.12 ± 0.01 3.56 ± 0.01 

RF 34.0 ± 0.9 0.160 ± 0.006 1.310 ± 0.007 87.8 ± 0.8 5.49 ± 0.01 2.41 625 77 35.1 15.4 

C-RF-D 56.2 ± 0.5 0.230 ± 0.005 1.805 ± 0.010 87.3 ± 0.8 3.79 ± 0.01 3.25 ± 0.08 753 ± 94 248 ± 38 20.2 ± 0.2 18.7 ± 0.3 

C-RF-O 66.8 ± 0.7 0.302 ± 0.014 1.816 ± 0.017 83.4 ± 1.4 2.76 ± 0.02 2.11 ± 0.41 760 ± 64 251 ± 52 14.5 ± 0.1 14.1 ± 0.2 

EC-RF-D 59.0 ± 0.8 0.096 ± 0.005 2.147 ± 0.043 95.5 ± 2.8 9.95 ± 0.04 6.77 ± 0.48 2355 ± 145 1112 ± 105 10.9 ± 0.04 11.5 ± 0.05 

EC-RF-O 66.4 ± 0.9 0.101 ± 0.008 2.024 ± 0.030 95.0 ± 2.1 9.41 ± 0.03 5.26 ± 0.37 2484 ± 161 1030 ± 76 8.91 ± 0.02 8.69 ± 0.03 

C-RFH-O 55.6 ± 0.3 0.821 ± 0.009 1.750 ± 0.014 53.1 ± 1.0 0.65 ± 0.02 0.72 ± 0.05 628 ± 46 371 ± 30 4.12 ± 0.01 4.62 ± 0.02 

EC-RFH-O 56.5 ± 0.5 0.461 ± 0.015 1.893 ± 0.017 75.6 ± 1.4 1.64 ± 0.02 1.88 ± 0.29 2237 ± 341 1280 ± 176 2.93 ± 0.03 3.35 ± 0.08 

PF 35.1 ± 0.4 0.454 ± 0.011 1.257 ± 0.001 63.9 ± 0.9 1.41 ± 0.01 1.19 199 6 28.3 23.9 

C-PF-D 52.3 ± 0.4 0.618 ± 0.015 1.962 ± 0.013 68.5 ± 1.1 1.11 ± 0.02 0.99 ± 0.01 569 ± 41 387 ± 36 7.79 ± 0.02 6.89 ± 0.02 

C-PF-O 54.7 ± 0.7 0.640 ± 0.021 1.909 ± 0.010 66.5 ± 1.3 1.04 ± 0.02 0.97 ± 0.03 519 ± 87 335 ± 83 8.01 ± 0.11 7.46 ± 0.11 

EC-PF-D 53.0 ± 0.6 0.544 ± 0.036 2.070 ± 0.008 73.7 ± 1.8 1.36 ± 0.04 1.89 ± 0.00 1701 ± 9 1069 ± 4 3.19 ± 0.00 4.45 ± 0.00 

EC-PF-O 55.3 ± 0.3 0.544 ± 0.029 2.124 ± 0.007 74.4 ± 1.4 1.37 ± 0.03 1.36 ± 0.06 1483 ± 83 1045 ± 51 3.69 ± 0.01 3.66 ± 0.01 

1
3
0
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 Table 1. Material Properties of Nanoporous Carbons and Etched Carbon Aerogels Derived from RES, PBO and PA Aerogels (Cont.)   

sample linear 

shrinkage 

(%) a,b 

bulk 

density, 

b (g cm-3) a 

skeletal 

density, 

s (g cm-3) c 

porosity, 

 
(% v/v) d 

specific pore volume  

(cm3 g-1) 

surface area 

(m2 g-1) 

average pore diam. (nm) 

via 4V/ h 

VTotal 
e Vmax 

f BET,  micropore g V = Vtotal V = Vmax 

PBO 11.6 ± 0.4 0.207 ± 0.001 1.207 ± 0.006 82.9 ± 0.7 4.00 ± 1.21 0.19 66 2 239 11.6 

C-PBO 36.1 ± 0.4 0.303 ± 0.004 1.658 ± 0.009 81.7 ± 0.7 2.70 ± 1.66 0.31 ± 0.02 492 ± 32 404 ± 34 21.9 ± 0.05 2.55 ± 2.70 

EC-PBO 37.8 ± 2.0 0.137 ± 0.023 1.834 ± 0.040 92.5 ± 3.2 6.75 ± 1.83 1.30 ± 0.21 2284 ± 301 1008 ± 112 11.8 ± 0.10 2.28 ± 0.05 

PA i 12.9 ± 0.5  0.330 ± 0.008 1.321 ± 0.002 75.0 ± 0.6  2.27 ± 0.01  0.12  46  6  198  10  

C-PA i 39.9 ± 0.3  0.451 ± 0.013 1.870 ± 0.025 75.9 ± 1.8  1.68 ± 0.03  0.23  302  230  22.0  3.0  

EC-PA i 45.1 ± 0.2  0.247 ± 0.001 2.264 ± 0.034 89.1 ± 2.0  3.60 ± 0.03  0.80  1394  1122  10  2.8  

 

a Average of 5 samples. b All values relative to the molds. c Single sample, average of 50 measurements. d Via  =   (s-b)/s. e VTotal = (1/b) - 

(1/s).
  f Vmax: single-point N2 adsorption at 77 K as P/P0 →1.0. g Via the t-plot method. h For VTotal and Vmax refer to footnotes e and f. i Data taken 

from reference 31. 
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After etching, all skeletal densities increased to >2.0 g cm-3 (except that of EC-PBO, 

whose s value increased significantly relative to that of C-PBO, yet remained <2.0 g cm-

3). The increase of s upon etching suggests that all C-samples included close porosity 

that became accessible by CO2-etching. Open porosity, , was calculated from bulk and 

skeletal density data via =100(s-b)/s. As expected,  followed an inverse 

relationship with bulk density and it was higher for EC-samples than for C-samples. 

Porosities of the lowest density carbon aerogels that include EC-RF-O(or D), EC-

TPOLL-O, EC-PBO and EC-PA were 95%, 92%, 93% and 89% respectively. 

Porosities of higher-density EC carbons were in the 70–80% range.   

Scanning electron micrographs have been provided previously for all materials of 

this study.31,34,35 Microscopically, all carbon aerogels consisted of loose assemblies of 

nanoparticles forming meso and macropores. Nanoparticles themselves were 

microporous. Microporosity, however, is not visible in SEM. A quantitative analysis of 

the pore structure is important for the evaluation of the materials of this study as CO2 

adsorbers. Thereby, meso and macroporosity were evaluated with medium pressure N2-

sorption porosimetry at 77 K. Microporosity was probed with low-pressure N2-sorption at 

77 K, and with CO2 adsorption at 273 K.      

At a high-level, the evaluation of open porosity (accessible from outside) was 

conducted by comparing the total pore volumes (VTotal = (1/b) - (1/s)) with Vmax (the 

total volume of N2 uptaken during N2 sorption porosimetry as P/P0→1). Typical N2 

sorption isotherms of C and EC carbon aerogels are demonstrated in Figure 4 using as 

examples the low-density RF (prepared with 3.3% w/w monomer concentration) and the 

PBO systems. All VTotal and Vmax data for all materials are included in Table 1. The 
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overall observation is that VTotal and Vmax values were close to one another for all C-RES-

D(or O) and EC-RES-D(or O) samples, irrespective of density, indicating that all those 

carbons lacked large macropores (with pore sizes >300 nm).52 On the contrary, it was 

found that in all C and EC samples of PBO and PA VTotal>>Vmax indicating mostly 

macroporous materials.  

BET surface areas, , were calculated from the medium pressure N2 sorption data 

and they increased dramatically after carbonization, and especially after etching, reaching 

values in the range of 2300–2800 m2 g-1 (cases of EC-PBO, EC-RF-D(and O) and EC-

TPOL-O - see Table 1 and Figure 5). As suggested by the early (i.e., at low pressure) 

rapid increase of N2 adsorption in the isotherms of Figure 4, carbon aerogels contained a 

significant amount of micropores. The surface area allocation to those micropores (for a 

quick overview refer to Figure 5) was evaluated using t-plot analysis according to the 

Harkins and Jura method.53,54 For the samples with the highest BET surface areas, the 

surface area allocation to micropores was in the range of 34% (case of EC-TPOL-O) to 

44–47% (cases of EC-PBO, EC-RF-D(and O)). Significantly for the discussion of 

Section 2.2, EC-PBO and EC-RF-D(and O) shared similar porosities, BET surface 

areas, and micropore areas.  

Average pore sizes were calculated throughout via the 4V/ method. For every 

range of pore sizes (macro, meso and micro), always two sets of pore volume data from 

two independent experiments were compared. Thus, macro and mesopores were 

evaluated by setting V=VTotal or V=Vmax. Consistent with the conclusion drawn from the 

pore volume data, pore sizes calculated from the two methods converged pairwise (i.e., 

for C- and EC- samples) for all RES–derived carbons, indicating (a) mesoporous 
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materials throughout (in fact, all pore sizes were <20 nm), and (b) that the etching 

process did not alter the relative 3D structure of the skeletal framework (a fact that was 

already inferred from shrinkage – Figure 3). In all PBO- and PA-derived carbon 

aerogels, pore sizes were calculated much larger for V=VTotal, than for V=Vmax, indicating 

a higher contribution from larger macropores not probed by N2 sorption (>300 nm).  

Shifting attention to micropores, microporosity was evaluated independently with 

CO2 adsorption at 273 K (Figure 6), and with low-pressure (LP) N2 sorption at 77 K 

(from the early parts of the isotherms of Figure 4). Specific pore volumes from both sets 

of data (CO2 and LP-N2) were calculated using the Dubinin-Radushkevich (DR) method, 

which has been developed based on volume-filling of microporous carbons, by 

recognizing the fact that micropores are on the same order of magnitude as the adsorbate 

itself.55–59 Typical plots according to the DR method are shown in Figure S.1 of 

Appendix III in the Supporting Information. Pore volumes and pore size distributions for 

pores <1 nm were evaluated from the CO2 adsoprtion data using the DFT method.60–62 

Subsequently, micropore volumes from the DR(N2) and the DR(CO2) analyses were used 

in order to calculate average micropore sizes via the 4V/(surface area) method, where the 

denominator was set equal to the micropore surface area that was calculated from the t-

plot method (see Table 1). All micropore volume and size data are provided in Table 2.   

Micropore size distributions for all carbon aerogels of this study are shown in 

Figure S.2 of Appendix IV in the Supporting Information. First it is noted that 

independently of the parent polymers, all micropore size distributions of the C- and the 

EC-carbon aerogels looked similar to one another. It is also noted that the etching process 

had a smoothening effect on the micropore cavities as crevices observed in the C-samples 
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had disappeared after etching, and the overall distributions had moved to slightly larger 

sizes. Nevertheless, those data might be a deceptive description of the actual 

microporosity as the DFT pore volumes (<1 nm) were consistently only up to 50% of the 

micropore volume calculated by the DR method (see Table 2). It was concluded that 

samples included larger micropores not accounted for by the DFT method. Next, turning 

to micropore volumes by the DR method (Table 2), it was noted that either with LP-N2 at 

77 K, or with CO2 at 273 K, pore volumes were generally numerically close (in strong 

support of the pore filling hypothesis), however with a couple of quite pronounced 

exceptions. First, the micropore volumes calculated via DR(CO2) for EC-RF-D and EC-

RF-O (1.3–1.4 cm3 g-1) were not only double of the already high values calculated via 

DR(N2), but they were also at least 3  higher than what was found for any other sample. 

Those measurements were repeated numerous times with several samples from different 

batches prepared at different points in time as long as six months apart. Importantly, 

neither the etched samples from higher-bulk-density RF-derived samples (EC-RFH-O), 

nor those from lower-bulk-density TPOL-derived samples (EC-TPOML-O) would 

match the high pore volumes noted in EC-RF-D and EC-RF-O. The pore volumes in 

those two cases (EC-RFH-O and EC-TPOLL-O) remained in the range of everything 

else, 0.33 cm3 g-1 and 0.36 cm3 g-1, respectively. Now, turning back to pore sizes, it is 

noted that average pore sizes from the DR(N2) and DR(CO2) data do fall outside the 

pore-distribution range reported by the DFT method, supporting that the majority of 

“micropores” were >1 nm in size. In fact, average pore sizes indicate that most of those 

pores do not fall into the category of micropores at all (<2 nm), but rather they should be 

classified as small mesopores. Nevertheless, they will still be referred to as  “micropores” 
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Table 2. Micropore Analysis and CO2 Uptake  

sample specific micropore volume  

(cm3 g-1)  

pore diameter (nm) via 

4V/(micropore area)d 

CO2 uptake (mmol g-1) 

at 273 K, 1 bar 

DR 

(N2)a 

DR  

(CO2)b 

DFT 

(CO2)c 

V from 

DR (N2) 

V from 

DR (CO2)  

measured from  

surface areas 

from 

DR (N2) g 

BETe micropore f 

TPOL — 0.13 ± 0.00 0.06 ± 0.00 — 4.62 ± 0.00 1.74 ± 0.01 4.9 1.1 — 

C-TPOL-D 0.22 0.22 ± 0.00 0.11 ± 0.00 3.05 ± 0.05 2.95 ± 0.05 2.87 ± 0.02 5.2 2.9 5.18 

C-TPOL-O 0.21 0.23 ± 0.00 0.12 ± 0.00 2.40 ± 0.01 2.69 ± 0.02 3.11 ± 0.04 6.1 3.4 4.87 

EC-TPOL-D 0.68 0.41 ± 0.01 0.12 ± 0.00 2.54 ± 0.00 1.55 ± 0.00 5.86 ± 0.05 17 10.4 15.76 

EC-TPOL-O 0.87 0.43 ± 0.01 0.12 ± 0.01 3.98 ± 0.01 1.96 ± 0.00 6.20 ± 0.07 25 8.6 20.28 

C-TPOLL-O — 0.15 ± 0.00 0.07 ± 0.00 — 5.23 ± 0.01 1.99 ± 0.01 3.7 1.1 — 

EC-TPOLL-O — 0.36 ± 0.01 0.10 ± 0.00 — 0.91 ± 0.02 4.37 ± 0.06 22 15.7 — 

FPOL — 0.13 ± 0.00 0.06 ± 0.00 — 3.69 ± 0.00 1.93 ± 0.01 6.6 1.4 — 

C-FPOL-D 0.30 0.18 ± 0.00 0.09 ± 0.00 5.68 ± 0.26 3.43 ± 0.16 2.49 ± 0.02 4.8 2.1 7.04 

C-FPOL-O 0.17 0.23 ± 0.00 0.11 ± 0.00 2.72 ± 0.18 3.72 ± 0.25 3.05 ± 0.03 5.8 2.4 3.90 

EC-FPOL-D 0.37 0.40 ± 0.01 0.12 ± 0.00 2.51 ± 0.02 2.70 ± 0.03 5.70 ± 0.02 9.2 5.8 8.69 

EC-FPOL-O 0.42 0.44 ± 0.01 0.12 ± 0.01 2.56 ± 0.01 2.69 ± 0.01  6.40 ± 0.09 11 6.4 9.76 

RF — 0.09 ± 0.00 0.03 ± 0.00 — 4.65 ± 0.00 1.33 ± 0.01 6.1 0.75 — 

C-RF-D 0.18 0.20 ± 0.00 0.10 ± 0.00 2.92 ± 0.03 3.28 ± 0.04 2.79 ± 0.05 7.4 2.4 4.22 

C-RF-O 0.25 0.20 ± 0.00 0.10 ± 0.00 4.06 ± 0.09 3.21 ± 0.07 2.78 ± 0.05 7.4 2.5 5.93 

EC-RF-D 0.63 1.33 ± 0.51 0.16 ± 0.03 2.25 ± 0.01 4.79 ± 0.37 14.8 ± 3.9 23 10.9 14.53 

EC-RF-O 0.80 1.38 ± 0.43 0.14 ± 0.03 3.11 ± 0.01 5.36 ± 0.27 13.7 ± 2.7 24  10.1 18.61 

C-RFH-O — 0.30 ± 0.02 0.10 ± 0.00 — 2.34 ± 0.01 2.79 ± 0.02 6.1 3.6 — 

EC-RFH-O — 0.33 ± 0.01 0.09 ± 0.00 — 1.02 ± 0.01 3.79 ± 0.05 22 12.5 — 

PF — 0.06 ± 0.00 0.02 ± 0.00 — h 0.79 ± 0.00 1.9 0.06 — 

C-PF-D 0.09 0.23 ± 0.00 0.11 ± 0.00 0.92 ± 0.00 2.35 ± 0.01 3.02 ± 0.01 5.6 3.8 2.06 

C-PF-O 0.06 0.23 ± 0.00 0.11 ± 0.00 0.74 ± 0.02 2.75 ± 0.08 3.07 ± 0.01 5.1 3.3 1.45 

EC-PF-D 0.31 0.38 ± 0.00 0.12 ± 0.00 1.18 ± 0.00 1.40 ± 0.00 5.35 ± 0.04 17 10.4 7.31 

EC-PF-O 0.43 0.42 ± 0.00 0.13 ± 0.00 1.64 ± 0.00 1.63 ± 0.00 6.03 ± 0.03 15 10.2 9.96 

PBO — 0.02 ± 0.00 0.01 ± 0.00 — h 0.25 ± 0.03 0.64 0.02 — 

C-PBO 0.20 0.21 ± 0.02 0.12 ± 0.01 2.02 ± 0.01 2.08 ± 0.02 2.95 ± 0.20 4.8 4.0 4.74 

EC-PBO 0.71 0.32 ± 0.01 0.08 ± 0.01 2.82 ± 0.02 1.26 ± 0.01 3.26 ± 0.13 22 9.9 16.51 

PA — 0.06 0.03 — h 0.80 i 0.45 0.06 — 

C-PA 0.55 0.21 0.13 9.51 3.65 3.07 i 3.0 2.3 12.71 

EC-PA 0.41 0.38 0.12 1.47 1.35 4.85 i 14 11.0 9.59 

 

a Via the Dubinin-Radushkevich (DR) method from N2 sorption data obtained at 77K using a low-pressure transducer 

(P/P˳ ≤ 0.01). Single experiments. b Via the DR method from CO2 adsorption data at 273 K up to relative pressure of 

0.015. Data are averages from at least 3 experiments, except for EC-RF-D and EC-RF-O, which are averages from 14 

and 7 isotherms, respectively. c Like in b using the DFT method. Pore volumes are for pores <1 nm in size. d Calculated 

as indicated using the micropore surfaces areas calculated via the t-plot method. e Calculated by dividing the BET 

surface area over the CO2 cross sectional area (0.17 nm2), over Avogadro’s number. f Calculated by dividing the the 

micropore surface area over the CO2 cross sectional area (0.17 nm2), over Avogadro’s number. g Calculated by 

assuming that micropore volumes (see footnotes a and b, respectively) are filled with liquid CO2 (the density of liquid 

CO2 at 273 K, was taken equal to the density of adsorbed CO2 (1.023 g cm-3 – see text). h Micropore surface areas were 

too small (≤ 6 m2 g-1), samples practically had no microporosity.  i Data from reference 31.  
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(in quotations) in reference to the methods they were probed with, namely LP-N2 and 

CO2 adsorption. Such “micropore” sizes calculated using pore volumes via the DR(N2) 

method were about equal, or for several samples even larger, than the micropore volumes 

calculated via the DR(CO2) method. The samples with the largest “micropore” volumes 

via CO2 adsorption, that is EC-RF-D and EC-RF-O, were among the samples with the 

largest “micropores” as well (4.8 and 5.4 nm, respectively). By the same token, carbon 

samples prepared from higher-density RF aerogels, that is C-RFH-O and EC-RFH-O, 

showed significantly smaller pore sizes (2.3 nm and 1.0 nm, respectively).  

In summary, as derived from properties probed by CO2 sorption, EC-RF-D and 

EC-RF-O showed an increased aptitude for CO2 uptake, which is discussed in the next 

section. 

 2.2. CO2 UPTAKE BY THE CARBON AND ETCHED CARBON AEROGELS 

The total CO2 uptake at 273 K was taken from the isotherms of Figure 6 at 1 bar 

(P/Po=0.03). (It is noted that all isotherms of Figure 6 are reversible with no hysteresis, 

but for simplicity only the adsorption branches are shown.) Results are presented in Table 

2, along with uptake values calculated by assuming either: (a) monolayer coverage of the 

entire BET surface area with CO2 (0.17 nm2 per molecule63); or, (b) monolayer coverage 

of only the micropore surface area; or, (c) micropore filling with CO2 in a state that 

resembles liquid CO2 (the density of adsorbed CO2 has been cited as 1.023 g cm-3,64,65). 

Experimental data and results from calculations are summarized in bar-graph form in 

Figure 7. (For calculating pore filling with CO2 from pore volumes, only pore volumes by 
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the DR(N2) method were considered; this is because the pore volume data from the 

DR(CO2) method were not independent from the CO2 uptake data.)  

As noted in Figure 7 (red bars), etched samples in general uptook significantly 

more CO2. C-PBO and EC-PBO comprised an exception with amounts of CO2 uptaken 

by the two samples being about equal (3.0 and 3.3 mmol g-1, respectively). Those 

amounts were generally low and comparable to the amounts uptaken by C-RES-D(and 

O) and C-PA (2.5–3.1 mmol g-1). Focusing on EC-carbons now, the amount of CO2 

uptaken by EC-PA (4.85 mmol g-1) was only slightly less than the amounts uptaken by 

most EC-RES-O(or D) (5.4–6.4 mmol g-1), except by EC-RF-O(or D), which uptook 

14–15 mmol g-1. That amount of CO2 uptaken was unusually high, but it was confirmed 

with numerous samples from different batches prepared and tested a few months apart 

from one another, and it represents the highest CO2 uptake we are aware of among 

various microporous polymers and carbon-based adsorbers, including carbon nanotubes 

(CNTs).66,67 (An extensive comparison of all EC-carbon aerogels of this study with other 

adsorbers from a literature survey is given in Figure S.3 of Appendix V in the Supporting 

Information.) Importantly, control samples from higher-density RF aerogels, i.e., EC-

RFH-O, took up a lower amount of CO2 (3.8 mmol g-1) than the rest of EC-RES-O 

aerogels, including the other EC- control sample, EC-TPOLL-O (4.4 mmol g-1), which 

was prepared from a lower-density TPOL aerogel precursor.  

The amounts of uptaken CO2 by all as-prepared C-type carbon aerogels (i.e., 

including all C-RES, as well as C-PBO and C-PA) correlated extremely well with 

monolayer coverage of the micropore surface areas (Figure 7 – compare corresponding 

red and shaded yellow bars). The amounts of CO2 uptaken by all EC- samples, including 
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the high-uptake EC-RF-D and EC-RF-O, were significantly lower than those calculated 

both by monolayer coverage of the BET surface areas (Figure 7 – compare corresponding 

red and full yellow bars), and by filling the micropore volumes (Figure 7 – compare red 

and blue bars). With regards to monolayer coverage of the micropore surfaces, the 

experimental CO2 uptake by N-containing EC-PBO and EC-PA fell also far behind. On 

the other hand, with the exception of EC-RF-D(and O), all other EC-RES aerogels 

showed an about equal (case of EC-FPOL), or again lower (cases of EC-TPOL and EC-

PF) CO2 uptake than what was calculated by monolayer coverage of the micropore 

surfaces. However, the case of EC-RF-D(and O) was particularly interesting: in those 

samples the amount of uptaken CO2 was well above the amount needed for monolayer 

coverage of the micropores, in fact falling between the amounts calculated for monolayer 

coverage and pore filling by CO2. Overall, either through the optic of surface coverage, 

or through pore filling, CO2 uptake was a property related to micropores, and in some 

cases (most notable in EC-RF-D(and O)) it might have involved both the micropore 

surface area and the micropore volume. The highest CO2 uptake was noted from carbon 

samples that contained only O as a heteroatom. It is also noteworthy that EC-PBO, with 

comparable density (Table 1), about equal BET and micropore surface areas (Figure 5), 

and about equal DR(N2) micropore volumes (Table 2) to the highest-uptake EC-RF-D 

and EC-RF-O, showed a much lower CO2 uptake capability. For further insight, we 

turned into an assessment of the interaction between adsorbate (CO2) and adsorbent 

(carbon) via measurements of the isosteric heats of adsorption of CO2 by all carbon 

aerogels of this study.16 
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2.3. CO2 UPTAKE CAPACITY AND THE MECHANISM OF ADSORPTION 

Isosteric heats of CO2 adsorption, Qst, as the negative of the differential change in 

the total enthalpy of a closed system, were calculated as a function of CO2 uptake by 

employing Virial fitting of the CO2 adsorption isotherms of each material at two different 

temperatures (273 K and 298 K – see Figure 6). The Virial fitting procedure is described 

in the Experimental section.68 Figure S.4 of Appendix VI in Supporting Information 

shows typical plots used for Virial fitting, and Table S.3 gives all Virial coefficients for 

all carbon aerogels of this study.) Figure 8 shows the Qst plots (i.e., calculated Qst values 

vs. CO2 uptake) of the C and EC carbon aerogels from the systems that showed extreme 

cases of CO2 uptake (RF, PBO and PA).  (Plots of Qst vs. CO2 uptake for the remaining 

carbons are shown in Figure S.5 of Appendix VII in Supporting Information.)  

The energy of interaction of CO2 with the surface of the adsorbate is referred to as 

Qo and is given by the intercept of the Qst plot at zero CO2 uptake. It is accepted that 

higher Qo values (>40 kJ mol-1) correspond to chemisorption, lower values to 

physisorption.69 Beyond interaction with the surface, Qst plots may remain flat, curve 

down or curve up. Convex-down behavior is typically attributed to the fact that more 

favorable sites are occupied first.70 Convex-up curves have been attributed to attractive 

interactions (e.g., van der Walls) between adsorbed molecules (CO2-CO2).
71 Irrespective 

of curving up or down, for most materials of this study, Qst plots were rather insensitive 

to the number of polynomial terms used for Virial expansion. That was not true, however, 

for high-CO2-uptake EC-RF-O(or D). For illustration, Figures 8 and S.5 show just two 

such curves marked with the number of polynomial terms (m and n) used for Virial fitting 

(see Experimental). At their end (i.e., at about 14 mmol of CO2 adsorbed per gram of 
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carbon) those curves may end up at unrealistically high or low (negative) values. That 

breakdown of Virial fitting at high CO2 uptake values is easy to visualize mathematically, 

if one considers the fact that Qst depends on the amount of CO2 uptaken raised to the 

power of the highest term in the polynomial expansion (see Experimental). What is 

important though is that despite divergence at high CO2 uptake, the family of curves for 

EC-RF-O (Figures 8) and for EC-RF-D (Figure S.5) started at the same Qo values 

respectively, and coincided up to about 4–5 mmol of CO2 adsorbed per gram of carbon, 

which corresponds to about a monolayer coverage.  

Qo data are cited in Table S.4 of Appendix VIII in Supporting Information, and 

are compared in Figure 9 in bar-graph form.  Qo values of carbons containing N (i.e., 

C(and EC)-PBO and C(and EC)-PA) were significantly lower relative to all EC-RES-

D(or O), and at about the same level as the Qo values of the C-RES-D(and O) carbons 

(20 kJ mol-1 or less). In that regard, the Qo values of EC-RES-O(or D) were in general 

<30 kJ mol-1, except for the Qo values of EC-RF-O(and D) that were found at 42 and 35 

kJ mol-1, respectively, and could be considered borderline cases for chemisorption.  

Now, between C-PA and EC-PA, where the ratio of O:N remained about the 

same (Figure 1), the energy of interaction of CO2 with the surface remained also about 

the same. Turning to EC-PBO, the weight percent of O remained the same relative to C-

PBO, but N was reduced in half (Figure 1), and its identity shifted in favor of less-

nucleophilic pyridonic at the expense of pyridinic N (80:20 vs 68:32 before etching, via 

XPS). By the same token, the interaction of CO2 with EC-PBO was weaker (Qo=12 kJ 

mol-1) than its interaction with C-PBO (Qo=19 kJ mol-1 – see Table S.4). It appears that 

the interaction of CO2 with the surfaces of the carbons of this study depends strongly on 
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the heteroatoms, yet not in a way that correlates with the higher quadrupole moment of 

nitrogen-rich sites that would increase the binding affinity with quadrupolar CO2.
19 In 

addition, adsorption of quadrupolar CO2 in micropores is typically attributed to 

quadrupole interactions with the pore walls, and is favored by smaller micropores 

(yielding higher Qo values72) where quadrupole fields come closer and interact stronger 

with the adsorbate.73,74 This does not seem to be the case here: generally, EC samples 

have higher Qo values than their C counterparts (except EC-PBO, Figure 9), but their 

smaller micropores are also wider (e.g., see Figure S.2). Considering all of the above 

together, an alternative mode of interaction of CO2 with the surfaces of the specific 

aerogels may involve formation of carbamate with surface pyridinic/pyridonic nitrogens 

(Eq 1), or carbonate with phenoxide groups (Eq 2). 

 

(1) 

(2) 

 

Equattions 1 and 2 are proposed based on extensive theoretical work on CO2 

capture via solution-phase formation of carbamate with, for example, methylamine, and 

follow the same enthalpic/entropic arguments.75–77 Specifically, given that CO2 entering 

micropores has already paid a severe entropic penalty,78 and thus considering bond 

energies alone, Eq 1 is slightly endothermic (by about 17 kcal mol-1), while Eq 2 is about 

energy-neutral. Those estimates support: (a) the higher Q0 values for RES-derived 

carbons relative to those from PBO and PA, and (b) the much higher uptake of CO2 by 

EC-RF-D and EC-RF-O relative to EC-PBO, which has practically identical material 
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properties with the former two, as discussed above. Our rough thermochemical 

calculation is in close agreement with the results of quantum mechanical calculations for 

the methylamine-CO2 adduct, and was based on the bond energy of C=O, which is 

173−181 kcal mol−1, the bond energy of C−O, which is about half of the energy of C=O: 

85−91 kcal mol−1, and the bond energy of C–N, which is somewhat lower: 69–75 kcal 

mol-1.79  

As mentioned above, among RES-derived carbon aerogels, the Q0 values of C-

RES-D(or O) were lower than those of the corresponding EC-RES-D(or O), while the 

energies of interaction of EC-RF-D(and O) were higher than the rest of EC-RES-D(and 

O). The question is whether those two observations are related to one another, and 

whether they are also related to the high CO2 uptake by EC-RF-D(and O). One probable 

cause for all three phenomena might be traced to the way micropores are filled, which in 

turn is related to the micropore size, and the fact that a monolayer coverage alone is 

sufficient to explain the uptake of CO2 by all RES-derived carbon aerogels, except by 

EC-RF-D(and O) (Figure 7). The latter aerogels have displayed the largest “micropores” 

and “micropore” volumes (Table 2). Smaller micropores, as those identified with the 

DFT method (Figure S.2), are close to molecular dimensions. Monolayer coverage of 

those pores implies congestion and steric hindrance, which works against the thermal 

neutrality of Eq 2. By the same token, widening of those small micropores by etching 

(Figure S.2) should relieve congestion, and Qo values should increase, as observed 

(Figure 9). It is speculated that after monolayer coverage of EC-RF-D(and O) 

micropores with CO2 (at approximately 6 mmol g-1), Eq 2 is followed by an isoenthalpic 
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cascade of reactions (see Eq 3). Just like Eq 2, Eq 3 is approximately energy-neutral as 

long as it refers to micropores, and  

 

(3) 

 

should continue until micropores are filled. Eq 3 implies that it is favorable for CO2 to be 

adsorbed on CO2, a fact supported by the upward trend of the Qst plots as a function of 

uptaken CO2, which is more pronounced in the etched samples. The fact that control 

samples EC-RFH-O and EC-TPOLL-O did not show a large uptake of CO2 is 

consistent with their smaller “micropores.” The size of small pores is related to the 

openness of the material that goes through the etching process, and to how thick its 

skeletal walls are, namely its bulk and skeletal densities and porosities.21 

2.4. SELECTIVITY TOWARDS ADSORPTION OF CO2 RELATIVE TO OTHER 

GASSES  

High CO2 uptake is necessary for efficient separation, but it is not sufficient.5 

High selectivity towards other gasses is also important for practical applications. 

Relevant to pre-combustion gas purification is selectivity toward CH4 and H2, and 

relevant to post-combustion CO2 sequestration is selectivity towards N2.
6 Figure 6 above 

included CH4 and H2 adsorption isotherms at 273 K of C(and EC)-RF-O, C(and EC)-

PBO and C(and EC)-PA. Selectivity of adsorbents is often evaluated by comparing the 

initial slopes of the corresponding isotherms of two competing gases, assuming that at 

low coverage the uptake conforms Henry’s law. However, in many cases isotherms 

deviate from linearity even at the lowest pressures. For example, isotherms of 
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microporous materials, or materials with heterogeneous microporous surfaces may show 

convex behavior starting from the beginning. In this work, isotherms at 273 K (Figure 6) 

were fitted with a Virial-type equation (different from the one used for the Qst),
80,81 which 

was used to evaluate the Henry’s constant, KH, for each gas as described under Methods 

in the Experimental section. Selectivities were calculated as the ratios of those values, 

and are presented together with the maximum gas uptake values in Table S.4 of 

Appendix VIII of the Supporting Information. The selectivities for selected carbon 

aerogels (C(and EC)-RF-O, C(and EC)-PBO and C(and EC)-PA) are shown and 

compared in bar-graph form in Figure 10. Data for all other systems are shown in the 

same format in Figure S.6 of Appendix IX in Supporting Information. 

The uptake of N2 and H2 were quite low by all carbon aerogels of this study 

(Table S.4 and Figure 6), however the uptake of CH4 could reach over 2.0 mmol g-1. The 

latter has been attributed to the high polarizability of CH4.
31,82,83 Qualitatively, low uptake 

of N2 and H2 creates shallow isotherms with low initial slopes (KH values), thereby large 

differences from the initial slopes of the CO2 adsorption isotherms, leading to high 

selectivities for CO2 towards those two gasses. By the same token, selectivities for CO2 

towards methane were the lowest (typically ≤5). Although there were no definite trends 

in the selectivities before and after etching, the least variability was noted in the PA-

derived carbons, and the most in the PBO-derived ones, probably reflecting the similarity 

or the difference, respectively, in the lining of micropores (refer to the O:N ratio in 

Figure 1).  

Overall, the highest selectivities were observed towards H2, next towards N2 and 

finally towards CH4.  For reasons just described, the materials with the highest CO2 
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uptake, EC-RF-D and EC-RF- O, showed also good selectivities towards H2 (about 

200:1), and also the best ones among all other materials of this study towards CH4 (about 

10:1). Concerning post-combustion CO2-N2 separation, the selectivity of those RF-

derived carbons ranged on average around 70:1 (albeit with a large standard deviation of 

about ±20), and in that regard, all other things being equal (273 K, 1 bar) they were at par 

with organic cages (selectivity towards N2 at 73:1),84 amide networks based on 

tetraphenyl adamantane (58:1–74:1),85 and AZO-COPs from tetrafunctional monomers 

(64:1–110:1).19 In general, EC-RES-D(and O) show a good balance between high CO2 

adsorption capacity and selectivity toward other gasses.      

3. CONCLUSIONS 

We investigated CO2 adsorption by various types of carbon aerogels. Emphasis 

was placed on microporosity in combination with the presence of heteroatoms (O and N). 

In that regard, we compared carbon aerogels coming from phenolic resins that contained 

only oxygen (TPOL, FPOL, RF and PF), and carbon aerogels coming from polymeric 

aerogels that contained both oxygen and nitrogen (PBO and PA). As demonstrated by 

carbon aerogels derived from resorcinol-formaldehyde (RF), and polybenzoxazine 

(PBO) aerogels with similar densities, porosities, micropore volumes, BET and 

micropore surface areas, the former materials that contained only oxygen were much 

better CO2 adsorbers at 273 K, 1 bar (by 3–4 times) than the latter that contained both O 

and N. In fact, etched RF–derived carbon aerogels seem to have set a new level in terms 

of CO2 uptake at 13–14 mmol g-1. In most cases, CO2 uptake could be associated with 

monolayer coverage of CO2 on the microporous surfaces. In the case of etched RF-
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derived carbons, however, data have shown that CO2 uptake proceeds beyond monolayer 

coverage of the micropore surfaces. It is speculated that pore filling may be attributed to 

an isoenergetic processes: (1) surface-O– + CO2 ---> surface-O-(CO)-O–, followed by (2) 

surface-O-(CO)-O– + CO2 ---> surface-O-(CO)-O-(CO)-O– that continues until 

micropores are filled with CO2. Beyond that point, further adsorption would entail a large 

entropic penalty. Although those surface processes amount to chemisorption, their 

energetic neutrality warrants reversibility that produces isotherms with no hysteresis, a 

feature desirable for regeneration purposes.17 Overall, etched RF-derived carbon aerogels 

show a good balance between CO2 adsorption capacity and selectivity towards other 

gases. A final point that may worth further investigation is the combination of decent 

adsorption capacities towards CH4 (Table S.4) with relatively good selectivities towards 

H2 (Figure 10), for CH4/H2 separation.   

4. EXPERIMENTAL  

4.1. MATERIALS 

4.1.1. Gasses. Syphon grade CO2 and N2 at 99.999% purity, and Ar at 99.99999 

% purity were purchased from Ozark Gas, Rolla, MO. H2, CO2 and CH4 (all three gasses 

at 99.999% purity) were purchased from Air Gas, Rolla, MO. 

4.1.2. Aerogel Synthesis. RES refers to the following phenolic resin aerogels:35 

phloroglucinol-terephthalaldehyde (TPOL), phloroglucinol-formaldehyde (FPOL), 

resorcinol-formaldehyde (RF), and phenol-formaldehyde (PF). All four wet-gel 

precursors were prepared in organic sols using HCl-catalysis.86 As-prepared RES 

aerogels were either carbonized directly (see below), or were first treated for 5 h at 240 



148 
 

                                                                                         

oC in air. Carbons that were obtained by further pyrolysis at 800 oC (see below) are 

designated as –D or –O, for Direct and Oxidized, respectively. PBO refers to 

polybenzoxazine aerogels prepared from wet-gels obtained via room-temperature, HCl-

catalyzed polymerization of Ishida’s monomer in DMSO at 7% w/w concentration in the 

sol.36–38 Before carbonization, PBO aerogels were cured for 5 h in air at 200 oC as 

described recently.34 PA aerogels were also prepared at 25% w/w monomer concentration 

as described recently.31  

4.1.3. Carbonization. All aerogels from above were carbonized in a tube furnace 

at 800 oC under flowing high purity Ar at 0.3 L min-1. The resulting carbon aerogels are 

referred to as C-RES, C-PBO and C-PA.  

4.1.4. Reactive Etching with CO2. Carbon aerogels were etched with flowing 

CO2 (0.3 L min-1) at 1000 oC for 3 h. This process is also referred to as activation. The 

resulting Etched-Carbon aerogels are referred to as EC-RES, EC-PBO and EC-PA. For 

producing EC-carbons, right after the 5 h carbonization stay at 800 oC under Ar, the tube 

furnace was heated to 1000 oC under continuous flow of Ar, the flowing gas was 

switched to CO2 for 3 h, and then back to Ar. All heating and cooling of the tube furnace 

was conducted at a rate of 2.5 oC min-1.  

4.2. METHODS  

4.2.1. Drying Procedure. Wet-gels were dried in an autoclave (SPIDRY Jumbo 

Supercritical Point Dryer, SPI Supplies, Inc. West Chester, PA). Samples were placed 

into a special boat and were covered with acetone. The boat was loaded to the autoclave 

that was kept at 14 oC. The pressure vessel was closed, and liquid CO2 was allowed in. 
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Acetone was drained out from the bottom of the autoclave while more liquid CO2 was 

allowed in. Samples were left to equilibrate under liquid CO2 for 30 min before liquid 

CO2 was drained out again while it was simultaneously replenished with more liquid 

CO2. That cycle was repeated until all acetone had been extracted out of the samples. 

Subsequently, the temperature of the autoclave was raised to 40 °C. After one hour at that 

temperature, supercritical fluid (SCF) CO2 was vented off as a gas over a period of 5 h. 

4.2.2. Oxidative Curing and Pyrolysis. Oxidative curing (ring-fusion 

aromatization) was conducted in a conventional convection oven. All pyrolyses were 

conducted under conditions described above in a MTI Corporation Model GSL1600X 

tube furnace equipped with an outer and an inner tube both of 99.8% pure alumina (outer 

tube: 1022 mm × 82 mm × 70 mm; inner tube: 610 mm × 61.45 mm × 53.55 mm; heating 

zone at set temperature: 457 mm). 

4.2.3. CHN Elemental Analysis. It was conducted with an Exeter Analytical 

Model CE440 elemental analyzer, calibrated with acetanilide, urea, and glycine. The 

combustion furnace was operated at 1,050 oC. All calibration standards and samples were 

run three times and results are given as averages. The oxygen content was calculated by 

subtracting %C+%H+%N from 100%. 

4.2.4. XPS Analysis. It was carried out with a Kratos Axis 165 Photoelectron 

Spectroscopy System. Samples were mixed and ground together with Au powder (5% 

w/w) as internal reference. The mixture was compressed to pellets. Each pellet was 

placed on a piece of conductive carbon tape that was adhered to a stainless-steel sample 

holder.  Samples were introduced into the analysis chamber one at a time and the 

chamber was evacuated at 10-8 Torr or lower. No ion sputtering was performed on any of 
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the samples. An Al monochromatic source at 150 watts was used for excitation. A charge 

neutralizer was used to reduce the effects of differential or sample charging. The analysis 

area was 700  300 microns. Elemental quantification calculations were based on broad 

survey results from single sweeps at higher sensitivity (Pass energy = 80) and were 

carried out with the Kratos Axis Vision processing software taking into consideration the 

appropriate relative sensitivity factors for the particular XPS system. High resolution 

elemental scans where carried out at a lower sensitivity (Pass energy = 20), using 

multiple sweeps to improve the signal-to-noise ratios. Deconvolution of N 1s and O 1s 

spectra was performed with Gaussian function fitting using the OriginPro 8.5.1 software 

package. 

4.2.5. Physical Characterization. Bulk densities (b) were calculated from the 

weight and the physical dimensions of the samples. Skeletal densities (b) were measured 

using helium pycnometry on a Micromeritics AccuPyc II 1340 instrument.  

4.2.6. Porosimetry and Gas Sorption Studies. Prior to analysis, all samples 

were degassed at 80 °C for 24 h in a vacuum oven. Subsequently, they were subjected to 

further degassing at 120 °C and a pressure below 20 mTorr for 12 h on a Micromeritics 

VacPrep061 sample degassing system. BET surface areas, , were determined via the 

Brunaue-Emmete-Teller (BET) method from medium-pressure N2-sorption isotherms at 

77 K using a TriStar II 3020 surface area and porosity analyzer. Micropore surface areas 

were calculated via t-plot analysis of the N2-sorption isotherms using the Harkins and 

Jura model.51,52 Average diameters of pores above 2 nm in size were calculated using the 

4V/  method, where the specific pore volume, V, was set equal either to VTotal  = (1/b) 

– (1/s), or to Vmax, which is the single highest volume of N2 adsorbed along the N2-
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sorption isotherm as P/P0 → 1. Micropore analysis was conducted with low-pressure N2 

sorption at 77 K using a Micromeritics ASAP 2020 instrument equipped with a low-

pressure transducer, or with CO2 adsorption up to 760 Torr (relative pressure P/P0 = 0.03) 

at 273 K using the Micromeritics TriStar II 3020 system mentioned above. Prior to low-

pressure N2-sorption analysis at 77 K, a third degassing step was carried out under 1 m 

Hg at 120 oC directly on the analysis port of the Micromeritics ASAP 2020 instrument 

(this step is critically important). Micropore volumes were determined either from the 

low-pressure N2-sorption data at 77 K, or from the CO2 adsorption data at 273 K by using 

the Dubinin-Radushkevich (DR) equation.55–59 Average micropore sizes were calculated 

using again the 4V/micropore area method, where the specific micropore volume, V, 

was set equal to the micropore volumes calculated via the DR model either from the low-

pressure N2 or the CO2 adsorption data, and the micropore area was set equal to the 

micropore surface area obtained from the t-plot method. Micropore size distributions for 

pores <1 nm were obtained from the CO2 adsorption data using the DFT method.60–62 

Relative adsorption studies for CO2, CH4, N2, and H2 at 273 K up to 1 bar were 

performed on a Micromeritics TriStar II 3020. The total CO2 uptake at 273 K was 

obtained from the same data used for micropore analysis. In order to calculate isosteric 

heats of CO2 adsorption (Qst) and isosteric heats at zero coverage (Q0), CO2 adsorption 

isotherms were also obtained at 298 K.    

4.2.7. Calculation of Isosteric Heats of CO2 Adsorption (Qst). They were 

calculated via the Virial method.68 For this, the CO2 adsorption isotherms at 273 K and 

298 K were fitted simultaneously with a Virial-type equation (Eq 4) using the OriginPro 

8.5.1 software package.  
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  ln P = ln N + 
1

𝑇
 ∑ 𝑎𝑖𝑁

𝑖 +  ∑ 𝑏𝑖𝑁
𝑖  𝑛

𝑖=0
𝑚
𝑖=0         (4) 

(P is pressure in Torr, N is the adsorbed amount in mmol g-1, T is the absolute 

temperature, ai and bi are the Virial coefficients, and m and n are the number of 

coefficients needed in order to fit the isotherms adequately.) Using the least squares 

method, the values of m and n were gradually increased until the sum of the squared 

deviations of the experimental points from the fitted isotherm was minimized. Typically, 

0 ≤ m ≤ 4 and 0 ≤ n ≤ 2, but generally most data were fitted well with m = 4 and n = 2. 

Exceptions were EC-RF-D and EC-RF-O, which showed a large sensitivity to the values 

of m and n, resulting in wide divergence of the respective Qst plots for values of N ≥6 (see 

Figures 8 and S.5). All Virial coefficients for all samples, along with key statistical 

parameters, are given in Appendix VI of the Supporting Information. The values of ao to 

am were introduced into Eq 5 and isosteric heats of adsorption (Qst) were calculated as a 

function of the surface coverage (N). 

    Qst = –R ∑ 𝑎𝑖𝑁
𝑖𝑚

𝑖=0                                (5) 

(R is the universal gas constant (8.314 J mol-1 K-1) and Qst is given in kJ mol-1.) The 

common term in Eq 5 for all N, Q0, corresponds to i = 0 and is given by Eq 6.  

      Q0 = –Ra0               (6) 

Q0 is the heat of adsorption as coverage goes to zero, and is a sensitive evaluator of the 

affinity of the adsorbate for the surface.87  
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4.2.8. Calculation of Adsorption Selectivities. Adsorption selectivities for one 

gas versus another were calculated as the ratios of the respective Henry’s constants, KH. 

The latter were calculated via another Virial model,80,81,88 whereas the single-component 

adsorption isotherms for each gas at 273 K were fitted according to Eq 7.  

ln N = ln P + K1 +K2N + K3N2 + … = ln P + ∑ 𝐾𝑖𝑁
𝑖−1𝑚

𝑖=1        (7) 

Fitting was carried out using the least squares method by varying the number of 

terms, until a suitable number of terms, m, described the isotherms adequately. The 

coefficients K1, K2, ... Km are characteristic constants for a given gas-solid system and 

temperature. The Henry’s constant for each gas, KH, is the limiting value of N/P as P→0, 

and is given by Eq 8.  

  KH = lim
𝑃 →0

(
𝑁

𝑃
)  ≅  𝑒𝐾1                                                             (8) 

 

In order to calculate standard deviations, all isotherms obtained experimentally 

for each component were fitted individually. The KH values from all isotherms were 

averaged, and the average values were used to calculate selectivities by taking the ratios. 

Standard deviations for the ratios were calculated using rules for propagation of error.   

  

SUPPORTING INFORMATION: Supporting Information is available from the Wiley 

Online Library or from the author. 
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Figure 1. CHN analysis results for samples as shown. C: Black; H: White; N: Blue; O: 

Red. (For standard deviations refer to Table S.2 in Supporting Information) 
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Figure 2. Representative XPS data of samples as shown. (Abbreviations: O+ stands for 

the pyrylium cation, and -O– for the phenoxide anion, as shown in the first frame.) 
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Figure 3. Photographs of PBO and RF aerogels along processing. 
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Figure 4. Representative low and medium pressure N2-sorption isotherms of samples as 

shown.   
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Figure 5. Surface areas by medium pressure N2-sorption of all carbon aerogels of this 

study as shown. Full bars: BET surface area. Colored portion of the bars: Micropore 

(internal) surface area via t-plot analysis.   
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Figure 6. Representative adsorption isotherms by selected C and EC samples of CO2 at 

two different temperatures (top); CH4 at 273 K (middle); and, H2 at 273 K (bottom). 
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Figure 7. Experimental and calculated CO2 uptake from carbon aerogels of this study. For 

clarity, aerogels systems are separated by thin black vertical lines. Red bars: 

Experimental values at P/Po = 0.03 (1 bar). Yellow bars: Calculated from the BET 

surface area (full bars) or the micropore surface areas (shaded part of yellow bars) and 

the area occupied by each CO2 molecule (0.17 nm2). Blue bars: Calculated from the DR 

pore volumes [DR(N2)] and the density of adsorbed CO2 (see text). (For RES-derived 

carbon aerogels only the C(and EC)-RES-O samples are shown. Error bars are not 

shown for clarity – for standard deviations refer to Table 2.  
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Figure 8. Representative isosteric heats of CO2 adsorption (Qst) on selected samples as a 

function of CO2 uptake. Qst plots have been calculated using Viral fitting with m=4 and 

n=2 (see Experimental). For a CO2 uptake above 6 mmol g-1, EC-RF-O shows a large 

sensitivity to the m, n value selection, and two such plots are shown with m, n values as 

indicated.  
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Figure 9. Comparison of the isosteric heats of adsorption at zero coverage (Q0) of all 

carbon aerogels of this study. (Values taken from Table S.4 of Appendix VIII in 

Supporting Information.)    
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Figure 10. Relative selectivities at 273 K for the gasses shown of representative C- (top) 

and EC- (bottom) carbon aerogels derived from RF (red), PBO (yellow) and PA (blue) 

aerogels. Selectivities were calculated as the ratios of the corresponding Henry’s 

constants obtained by Virial fitting of the isotherms at 273 K of Figure 6.   
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SUPPORTING INFORMATION 

Appendix I. Carbonization Yields 

Table S.1. Carbonization yields from the corresponding precursors as indicated. Averages 

are from 3 samples at each formulation 

 

TPOL system 

%Yield of: C-TPOL-D C-TPOL-O EC-TPOL-D EC-TPOL-O 

From: TPOL TPOL C-TPOL-D C-TPOL-O 

 41.24 ± 2.05 31.17 ± 1.33 44.35 ± 3.50 41.85 ± 4.02 

FPOL system 

%Yield of: C-FPOL-D C-FPOL-O EC-FPOL-D EC-FPOL-O 

From: FPOL FPOL C-FPOL-D C-FPOL-O 

 50.00 ± 2.48 27.91 ± 1.46 68.21 ± 5.31 72.48 ± 6.90 

RF system 

%Yield of: C-RF-D C-RF-O EC-RF-D EC-RF-O 

From: RF RF C-RF-D C-RF-O 

 43.41 ± 2.53 30.03 ± 1.99 49.41 ± 3.92 34.64 ± 3.40 

PF system 

%Yield of: C-PF-D C-PF-O EC-PF-D EC-PF-O 

From: PF PF C-PF-D C-PF-O 

 55.68 ± 2.64 47.05 ± 2.07 84.23 ± 5.28 80.84 ± 5.41 

PBO system 

%Yield of: C-PBO EC-PBO 

From: aromatized PBO C-PBO 

 62.68 ± 0.15 26.52 ± 1.62 

PA system 

%Yield of: C-PA EC-PA 

From: PA C-PA 

 57.32 ± 2.98 78.12 ± 1.84 
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Appendix II. CHN Analysis Data  

Table S.2. CHN elemental analysis data for carbon samples as shown. For carbonized 

RES only pre-oxidized samples were analyzed (C-RES-O and EC-RES-O). Averages 

are from 3 samples. (Oxygen was calculated from the difference from 100%) 

         

Sample % C % H % N % O 

C-TPOL-O 91.95 ± 0.32 1.85 ± 0.11 — 6.20 ± 0.06 

EC-TPOL-O 94.17 ± 0.29 1.50 ± 0.11 — 4.33 ± 0.05 

 

C-FPOL-O 94.46 ± 0.20 0.79 ± 0.02 — 4.75 ± 0.02 

EC-FPOL-O 96.24 ± 0.42 0.20 ± 0.05 — 3.56 ± 0.09 

 

C-RF-O 88.69 ± 0.21 1.00 ± 0.03 — 10.31 ± 0.02 

EC-RF-O 90.21 ± 0.56 1.53 ± 0.18 — 8.26 ± 0.17 

 

C-PF-O 93.58 ± 0.27 1.44 ± 0.09 — 4.98 ± 0.04 

EC-PF-O 89.46 ± 0.38 2.05 ± 0.09 — 8.49 ± 0.08 

 

C-PBO 86.00 ± 0.57 1.41 ± 0.04 5.24 ± 0.06 7.35 ± 0.17 

EC-PBO 88.58 ± 0.28 1.17 ± 0.01 2.57 ± 0.02 7.68 ± 0.04 

 

C-PA 85.00 ± 0.48 1.07 ± 0.08 5.36 ± 0.08 8.57 ± 0.12 

EC-PA 89.35 ± 0.23 3.04 ± 0.67 3.26 ± 0.14 4.35 ± 0.26 
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Appendix III. Representative Dubinin-Radushkevich Plots 

 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S.1. Dubinin-Rudushkevich (DR) plots for PBO-derived carbon aerogels tested 

under conditions as shown (LP: Low Pressure). Micropore volumes were calculated from 

the intercepts by interpolating the linear parts of the plots. 
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Figure S.1 Dubinin-Rudushkevich (DR) plots for selected RF-derived carbon aerogels 

tested under conditions as shown (LP: Low Pressure). Micropore volumes were 

calculated from the intercepts by interpolating the linear parts of the plots. (Cont.)

LP-N2, 77 K 
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Appendix IV. Micropore Size Distribution by the DFT Method 

 

Figure S.2. Size distribution of micropores obtained by applying the DFT method on CO2 adsorption data at 273 K up to 1 bar for 

samples as shown.  
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Figure S.2. Size distribution of micropores obtained by applying the DFT method on CO2 adsorption data at 273 K up to 1 bar for 

samples as shown. (Cont.)
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Figure S.2. Size distribution of micropores obtained by applying the DFT method on CO2 

adsorption data at 273 K up to 1 bar for samples as shown. (Cont.)
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Appendix V. Comparison of CO2 Uptake with Materials from the Literature 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S.3. Comparison of materials of this study with superior CO2 sorbents at 1 bar and 

273 K. a PPF: porous polymer framework; b benzimidazole-linked polymers; c Tröger’s 

base COP; d polymeric organic framework; e binaphthol-based HCP; f 

tetraphenylethylene-based HCP; g covalent organic framework; h covalent triazine 

framework; i melamine-formaldehyde resin; j carbon nanotube. (For the references cited 

see Appendix X of this Supporting Information.) 
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Ref Material ID 

CO2 uptake (mmol/g) 

EC-TPOL-O 
EC-FPOL-O 

EC-RF-D 
EC-PF-O 

EC-PBO 
EC-PA 

PAF-3 

COF-300g 
Biphenyl-based HCP 

Benzene-based HCP 

YPTPA-MOP 

Microporous heterocyclic 

HCP Cationic MOP 

CTF-TPIh 
CMP (with P=O and P=S) 

Porous polyimide (PIM) 

MF resini 
Surface-modified C 

CNTj 

Imine-linked PPFa 

TB-COP-1c 
BILP-3b 

Polycarbazole-based CMP 

BILP-4b 

Carbazolic HCP 

FCTCZ HCP 

PAF-1 

PAF-1-450 

POF1Bd 
BINOL HCPe 

HCP-4 

Cyclic network
TPE-based HCPf 

1,3,5 triphenyl-based 

HCP

Surface-modified C 

N-doped porous C 

N-doped porous C 

KOH-activated porous 

C N-doped porous C 

O-doped activated C 

Oxyfluorinated C nanofibers 

1 

2 

3 

4 

5 

6 

7 

8 

8 

9 

10 

11 

12 

13 

14 

15 

12 

14 

14 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 
31 



173 
 

                                                                                         

Appendix VI. Virial Fitting of CO2 Adsorption at 273 and 298 K 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S.4. Representative plots of CO2 adsorption data at two different temperatures 

(blue: 273 K; red: 298 K). The two isotherms were fitted simultaneously using a Virial 

equation (refer to Equation 4 of the main article) for calculating the isosteric heats of 

adsorption, Qst, as a function of CO2 uptake. 

 

 

 

 

 

 

 

via Equation 4. for m = 3, n = 2 
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Table S.3.  Virial fitting parameters for calculating Qst and Qo for CO2 from all C- and 

EC- aerogels. Data from isotherms at 273 K and 298 K (m, n: No. of terms used for Virial 

fitting) 

 
C-TPOL-D (m = 4, n = 2)  C-TPOL-O (m = 4, n = 2) 

Parameters Value Standard 

Error 

 Parameters Value Standard 

Error 

ao -2064.08604 39.7282 ao -2257.35184 26.12724 

a1 -331.11522 62.60313 a1 -107.00605 39.04264 

a2 265.68035 30.57424 a2 91.34715 17.6241 

a3 -86.45602 13.12639 a3 -24.83313 7.20762 

a4 16.29732 2.62201 a4 4.87794 1.36075 

b0 11.03024 0.13935 b0 11.61607 0.09166 

b1 1.58508 0.21594 b1 1.05038 0.13541 

b2 -0.41092 0.07751 b2 -0.20446 0.04619 

red χ2
 1.16255 × 10-4  red χ2

 5.11272 × 10-5  

R2 0.99993  R2 0.99997  

Qo 17  Qo 19  

EC-TPOL-D (m = 4, n = 2) EC-TPOL-O (m = 4, n = 2) 

Parameters Value Standard 

Error 

Parameters Value Standard 

Error 

ao -3404.92093 39.37812 ao -3701.5592 21.10578 

a1 -144.54366 62.548 a1 461.05424 31.62063 

a2 -5.30072 22.12082 a2 -162.63173 10.56282 

a3 -1.63439 5.56026 a3 12.01227 3.44985 

a4 0.59462 0.83732 a4 -1.00214 0.53632 

b0 16.10953 0.14215 b0 17.28094 0.07621 

b1 1.02204 0.22892 b1 -1.08732 0.11689 

b2 -0.04862 0.07892 b2 0.38325 0.0379 

red χ2
 2.46135 × 10-4  red χ2

 7.87553 × 10-5  

R2 0.99993  R2 0.99998  

Qo 28  Qo 31  

C-TPOLL-O (m = 4, n = 2)  EC-TPOLL-O (m = 4, n = 2) 

Parameters Value Standard 

Error 

Parameters Value Standard 

Error 

ao -2428.6154 21.10125 ao -2223.51437 13.25834 

a1 241.72629 49.72417 a1 381.93632 17.70456 

a2 4.69651 35.2298 a2 -162.07335 6.91919 

a3 -63.06804 22.56553 a3 38.70741 2.07447 

a4 23.39503 6.69737 a4 -4.5631 0.31829 

b0 12.67392 0.07395 b0 11.93477 0.04645 

b1 0.4529 0.17227 b1 -0.46604 0.06033 

b2 -0.01466 0.0925 b2 0.12754 0.01733 

red χ2
 3.42135 × 10-5  red χ2

 1.99099 × 10-5  

R2 0.99998  R2 0.99999  

Qo 20  Qo 18  
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Table S.3.  Virial fitting parameters for calculating Qst and Qo for CO2 from all C- and 

EC- aerogels. Data from isotherms at 273 K and 298 K (m, n: No. of terms used for Virial 

fitting) (Cont.) 

 
C-FPOL-D (m = 4, n = 2)  C-FPOL-O (m = 4, n = 2) 

Parameters Value Standard 

Error 

 Parameters Value Standard 

Error 

ao -2306.48621 37.47942 ao -2428.66391 20.01324 

a1 -317.25933 68.43603 a1 222.40187 30.75707 

a2 269.53669 37.4412 a2 27.01147 14.35734 

a3 -85.82294 19.23255 a3 -48.72958 5.95362 

a4 18.77444 4.46624 a4 9.11159 1.15151 

b0 11.95335 0.13151 b0 12.33055 0.07013 

b1 1.80726 0.23874 b1 -0.2133 0.10624 

b2 -0.51807 0.1005 b2 0.17313 0.03712 

red χ2
 1.01217 × 10-4  red χ2

 3.08284 × 10-5  

R2 0.99994  R2 0.99998  

Qo 19  Qo 20  

EC-FPOL-D (m = 4, n = 2) EC-FPOL-O (m = 4, n = 2) 

Parameters Value Standard 

Error 

Parameters Value Standard 

Error 

ao -3020.5397 45.07658 ao -3918.97666 22.96489 

a1 -87.47319 69.43017 a1 391.84769 39.16362 

a2 -58.11599 23.57254 a2 -177.69949 14.58469 

a3 2.32972 7.6812 a3 13.47392 4.20608 

a4 0.29154 1.2324 a4 -1.1437 0.68037 

b0 14.6989 0.16329 b0 18.16662 0.08287 

b1 0.8978 0.25815 b1 -0.83819 0.14376 

b2 0.08717 0.08778 b2 0.42317 0.05233 

red χ2
 3.1675 × 10-4  red χ2

 9.21369 × 10-5  

R2 0.99992  R2 0.99997  

Qo 25  Qo 33  

C-RF-D (m = 4, n = 2)  C-RF-O (m = 4, n = 2) 

Parameters Value Standard 

Error 

Parameters Value Standard 

Error 

ao -2520.1642 11.76811 ao -4011.75072 16.66278 

a1 605.27018 19.4735 a1 350.96326 34.42767 

a2 -211.07097 10.10349 a2 -343.04305 18.42252 

a3 30.99685 4.46114 a3 96.76335 5.96397 

a4 -3.50812 0.93012 a4 -16.2131 1.27016 

b0 12.478 0.04121 b0 17.79661 0.05816 

b1 -0.8891 0.06671 b1 0.3843 0.11948 

b2 0.38028 0.025 b2 0.42795 0.05686 

red χ2
 9.9128 × 10-6  red χ2

 1.7811 × 10-5  

R2 0.99999  R2 0.99999  

Qo 20  Qo 33  
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Table S.3.  Virial fitting parameters for calculating Qst and Qo for CO2 from all C- and 

EC- aerogels. Data from isotherms at 273 K and 298 K (m, n: No. of terms used for Virial 

fitting) (Cont.) 

 
EC-RF-D (m = 3, n = 3)  EC-RF-D (m = 3, n = 2) 

Parameters Value Standard 

Error 

 Parameters Value Standard 

Error 

ao -4058.99689 50.1404 ao -4079.9819 39.70248 

a1 -985.83153 145.04978 a1 -895.47159 62.34444 

a2 202.49146 112.6477 a2 126.1826 21.86049 

a3 -18.6782 24.8319 a3 -1.5363 0.78307 

b0 18.6351 0.17979 b0 18.71089 0.14176 

b1 3.60322 0.51971 b1 3.27781 0.21833 

b2 -0.70897 0.40502 b2 -0.4338 0.07246 

b3 0.06194 0.08968 red χ2 2.91285 × 10-4  

red χ2
 2.93982 × 10-4  R2

 0.99990  

R2 0.99990  Qo 34  

Qo 34     

EC-RF-O (m = 4, n = 2) EC-RF-O (m = 3, n = 2) 

Parameters Value Standard 

Error 

Parameters Value Standard 

Error 

ao -5096.49151 81.43509 ao -5064.55072 86.13634 

a1 -94.16816 175.20015 a1 -56.99653 186.46462 

a2 -44.5252 86.65742 a2 -143.8216 85.36578 

a3 -43.35699 13.55354 a3 -3.36668 2.10253 

a4 6.02888 2.0216 b0 22.63549 0.30638 

b0 22.77062 0.29069 b1 0.14352 0.65299 

b1 0.08174 0.61233 b2 0.59099 0.29004 

b2 0.52955 0.2726 red χ2 0.00148  

red χ2
 0.0013  R2

 0.99948  

R2 0.99955  Qo 42  

Qo 42     

C-RFH-O (m = 4, n = 2)  EC-RFH-O (m = 4, n = 2) 

Parameters Value Standard 

Error 

Parameters Value Standard 

Error 

ao -1854.59796 40.5997 ao -1256.94754 19.35818 

a1 -156.43634 68.82708 a1 -150.09441 31.30609 

a2 290.91671 36.267 a2 2.08496 14.57245 

a3 -150.63123 15.10141 a3 -1.86758 4.69732 

a4 28.64452 3.15343 a4 1.24357 0.84051 

b0 10.57708 0.14237 b0 8.95602 0.06802 

b1 0.65176 0.23452 b1 1.01587 0.10642 

b2 -0.10241 0.08876 b2 -0.09344 0.03666 

red χ2
 1.30168 × 10-4  red χ2

 4.4826 × 10-5  

R2 0.99991  R2 0.99997  

Qo 15  Qo 10  
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Table S.3.  Virial fitting parameters for calculating Qst and Qo for CO2 from all C- and 

EC- aerogels. Data from isotherms at 273 K and 298 K (m, n: No. of terms used for Virial 

fitting) (Cont.) 

 
C-PF-D (m = 4, n = 2)  C-PF-O (m = 4, n = 2) 

Parameters Value Standard 

Error 

Parameters Value Standard 

Error 

ao -2356.11047 40.48019 ao -2718.26564 42.60335 

a1 -244.53912 62.17842 a1 -219.51212 66.99755 

a2 280.4581 28.20351 a2 211.69471 29.13963 

a3 -117.33772 11.97601 a3 -70.86644 12.27527 

a4 20.22062 2.32869 a4 12.17909 2.38219 

b0 12.16435 0.14198 b0 13.41543 0.14937 

b1 0.96463 0.21681 b1 1.15155 0.23617 

b2 -0.18326 0.07654 b2 -0.27963 0.08614 

red χ2
 1.21901 × 10-4  red χ2

 1.35574 × 10-4  

R2 0.99992  R2 0.99991  

Qo 20  Qo 23  

EC-PF-D (m = 4, n = 2)  EC-PF-O (m = 4, n = 2) 

Parameters Value Standard 

Error 

 Parameters Value Standard 

Error 

ao -3071.95072 23.00244 ao -3107.9637 31.22559 

a1 216.51544 34.13711 a1 98.39918 46.62711 

a2 -91.95314 11.45907 a2 -123.55132 15.25754 

a3 0.57603 4.16953 a3 1.11031 4.78651 

a4 0.62421 0.67412 a4 0.50099 0.74195 

b0 14.95343 0.08335 b0 14.96823 0.11313 

b1 -0.2012 0.12738 b1 0.21284 0.1734 

b2 0.21704 0.04168 b2 0.33145 0.05704 

red χ2
 8.65249 × 10-5  red χ2

 1.50298 × 10-4  

R2 0.99998  R2 0.99996  

Qo 26  Qo 26  

C-PBO (m = 4, n = 2) EC-PBO (m = 4, n = 2) 

Parameters Value Standard 

Error 

Parameters Value Standard 

Error 

ao -2298.23977 14.04213 ao -1447.42553 14.73266 

a1 280.79951 18.87439 a1 -36.24602 29.09839 

a2 -138.50379 8.19624 a2 16.72061 15.71066 

a3 38.6447 3.05927 a3 -2.28683 5.22846 

a4 -4.11833 0.52508 a4 1.14148 1.05856 

b0 11.12633 0.04918 b0 10.10519 0.05167 

b1 0.32071 0.06439 b1 0.40385 0.09858 

b2 0.0518 0.01972 b2 -0.09957 0.04061 

red χ2
 1.23023 × 10-5  red χ2

 3.01251 × 10-5  

R2 0.99999  R2 0.99998  

Qo 19  Qo 12  
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Table S.3.  Virial fitting parameters for calculating Qst and Qo for CO2 from all C- and 

EC- aerogels. Data from isotherms at 273 K and 298 K (m, n: No. of terms used for Virial 

fitting) (Cont.) 

 
C-PA (m = 5, n = 2)  EC-PA (m = 5, n = 2) 

Parameters Value Standard 

Error 

Parameters Value Standard 

Error 

ao -2637.00179 31.0257 ao -2696.53467 23.01278 

a1 -103.7966 45.92841 a1 16.00876 40.98892 

a2 165.37504 42.00353 a2 -592.41309 19.4743 

a3 -126.89657 33.78791 a3 22.36671 8.69989 

a4 45.81131 12.85509 a4 -2.01467 2.63168 

a5 -5.77277 1.7789 a5 -0.01788 0.2859 

b0 12.50018 0.10861 b0 13.44915 0.08067 

b1 1.01271 0.14623 b1 0.81885 0.1432 

b2 -0.07586 0.04639 b2 1.82888 0.0575 

red χ2
 6.08467 × 10-5  red χ2

 4.21652 × 10-5  

R2 0.99986  R2 0.99989  

Qo 22  Qo 22  
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Appendix VII. Qst Plots for TPOL-, FPOL-, RF-, and PF-derived Carbon Aerogels 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S.5. Isosteric heats of CO2 adsorption (Qst) as a function of CO2 uptake for C-(and 

EC)RES-O aerogels as shown. (For the Qst plots of C-(and EC)RF-O aerogels refer to 

Figure 8 in the main article.) 
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Figure S.5. (Continued) Isosteric heats of CO2 adsorption (Qst) as a function of CO2 

uptake of all C-(and EC-)RES-D samples as shown. Qst plots have been calculated using 

Viral fitting with m=4 and n=2 (see Experimental). For CO2 uptake above 6 mmol g-1, 

EC-RF-D shows a large sensitivity to the m, n value selection; two such plots are shown 

using m and n values as indicated. 
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Appendix VIII. Qo Values for CO2 and Gas Selectivity Data  

Table S.4. Gas Adsorption and Selectivity Data for CO2, CH4, N2 and H2 at 1 bar 

sample 
CO2 uptake (mmol g-1) a 

Q0 
b 

CH4 uptake  
273 K 

N2 uptake 

273 K 
H2 uptake 

273 K 
Selectivity at 273 K c 

273 K 298 K CO2/H2 CO2/N2 CO2/CH4 CH4/H2 

TPOL 1.74 ± 0.01 d e 0.51 ± 0.00 0.08 ± 0.00 0.03 ± 0.00 538 ± 63 94 ± 8 15 ± 0.7 35 ± 4 

C-TPOL-D 2.87 ± 0.02 2.28 ± 0.07 17 1.42 ± 0.11 0.49 ± 0.01 0.06 ± 0.00 410 ± 59 27 ± 1 5 ± 0.4 85 ± 14 

C-TPOL-O 3.11 ± 0.04 2.47 ± 0.03 19 1.60 ± 0.02 0.52 ± 0.01 0.07 ± 0.00 334 ± 45 32 ± 3 5 ± 0.3 70 ± 9 
EC-TPOL-D 5.86 ± 0.05 2.67 ± 0.05 28 1.93 ± 0.17 0.58 ± 0.01 0.09 ± 0.01 241 ± 8 21 ± 0.8 4 ± 0.1 62 ± 2 

EC-TPOL-O 6.20 ± 0.07 2.85 ± 0.05 31 2.01 ± 0.16 0.61 ± 0.01 0.10 ± 0.01 166 ± 8 21 ± 0.8 4 ± 0.4 39 ± 4 

C-TPOLL-O 1.99 ± 0.01 1.57 ± 0.00 20 d d d e e e e 

EC-TPOLL-O 4.37 ± 0.06 3.10 ± 0.06 18 d d d e e e e 

FPOL 1.93 ± 0.01 d e 0.66 ± 0.00 0.16 ± 0.00 0.04 ± 0.01 546 ± 36 62 ± 8 10 ± 0.2 54 ± 4 

C-FPOL-D 2.49 ± 0.02 1.96 ± 0.02 19 1.19 ± 0.10 0.37 ± 0.01 0.06 ± 0.00 718 ± 96 35 ± 2 5 ± 0.5 132 ± 22 
C-FPOL-O 3.05 ± 0.03 2.35 ± 0.07 20 1.47 ± 0.14 0.45 ± 0.01 0.07 ± 0.01 438 ± 24 23 ± 1 6 ± 0.4 78 ± 6 

EC-FPOL-D 5.70 ± 0.02 2.70 ± 0.02 25 2.02 ± 0.01 0.59 ± 0.01 0.12 ± 0.02 196 ± 22 22 ± 2 3 ± 0.1 60 ± 6 

EC-FPOL-O 6.40 ± 0.09 2.52 ± 0.03 33 2.02 ± 0.12 0.54 ± 0.01 0.12 ± 0.04 230 ± 22 21 ± 0.8 5 ± 0.5 47 ± 6 

RF 1.33 ± 0.01 d e 0.31 ± 0.00 d 0.05 ± 0.01 538 ± 160 e 108 ± 8 5 ± 2 

C-RF-D 2.79 ± 0.05 2.13 ± 0.09 20 1.38 ± 0.04 0.14 ± 0.04 0.11 ± 0.01 230 ± 25 53 ± 5 7 ± 1 33 ± 4 

C-RF-O 2.78 ± 0.05 1.67 ± 0.05 33 1.36 ± 0.04 0.11 ± 0.04 0.11 ± 0.01 265 ± 32 48 ± 7 8 ± 0.8 35 ± 5 

EC-RF-D 14.8 ± 3.9 2.89 ± 0.24 35 1.93 ± 0.02 0.16 ± 0.03 0.20 ± 0.06 236 ± 43 82 ± 27 11 ± 2 22 ± 3 
EC-RF-O 13.7 ± 2.7 2.24 ± 0.30 42 1.92 ± 0.01 0.17 ± 0.03 0.20 ± 0.02 163 ± 63 57 ± 21 9 ± 2 18 ± 6 

C-RFH-O 2.79 ± 0.02 2.29 ± 0.01 15 d d d e e e e 

EC-RFH-O 3.79 ± 0.05 2.75 ± 0.03 10 d d d e e e e 

PF 0.79 ± 0.00 d e 0.18 ± 0.01 d 0.12 ± 0.04 15 ± 2 e 50 ± 4 0.3 ± 0.05
 

C-PF-D 3.02 ± 0.01 2.36 ± 0.01 20 1.49 ± 0.02 0.48 ± 0.00 0.06 ± 0.00 514 ± 69 29 ± 1 5 ± 0.2 103 ± 14 

C-PF-O 3.07 ± 0.01 2.29 ± 0.01 23 1.53 ± 0.02 0.48 ± 0.00 0.06 ± 0.00 447 ± 43 30 ± 0.4 5 ± 0.1 89 ± 9 
EC-PF-D 5.35 ± 0.04 2.75 ± 0.08 26 2.02 ± 0.12 0.65 ± 0.02 0.09 ± 0.01 184 ± 10 19 ± 1 3 ± 0.1 62 ± 3 

EC-PF-O 6.03 ± 0.03 2.68 ± 0.10 26 2.10 ± 0.11 0.62 ± 0.02 0.10 ± 0.01 205 ± 14 20 ± 0.6 3 ± 0.1 61 ± 4 

PBO 0.25 ± 0.03 d e f f f  g e g g 

C-PBO 2.95 ± 0.20 2.50 ± 0.15 19 1.44 ± 0.14 0.49 ± 0.00 0.08 ± 0.01 733 ± 58 59 ± 5 10 ± 2 71 ± 12 
EC-PBO 3.26 ± 0.13 2.32 ± 0.14 12 1.46 ± 0.05 0.27 ± 0.01 0.11 ± 0.03 72 ± 14 181 ± 51 9 ± 5 7 ± 4 

PA 0.80 h d e 0.19 h d d e e 10.5 h e 

C-PA 3.07 h 2.46 22 1.59 h 0.35 h 0.04 h 310 h 26.3 h 3.13 h 99.0 h 
EC-PA 4.85 h 2.05 22 2.16 h 0.44 h 0.03 h 584 h 17.9 h 2.84 h 205 h 

a All data are averages of at least 3 experiments, except EC-RF-D and EC-RF-O, which at 273 K are averages from 14 and 7 isotherms, respectively, and at 298 K data are 

averages from 11 and 9 isotherms, respectively. b Isosteric heats of adsorption at zero coverage, Q0 (kJ mol-1), using Virial fitting from CO2 adsorption data at 273 K and 298 K 

(see Experimental). c Adsorption selectivities were calculated using Henry’s law with data obtained from Virial-type fitting of adsorption isotherms at 273 K (see Experimental). 

Standard deviations in the KH values were obtained by applying Virial fitting to all available isotherms. Errors in selectivities were calculated by applying propagation of error 

rules to the KH ratios. d Not measured. e Not calculated. f Uptake of those gasses was negligible. g Not meaningful selectivities (see previous footnote). h Data from reference 32 

(Appendix X).  
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Appendix IX. Comparison of Gas Selectivities by the Various Carbon Aerogels of this  

Study 
 

 

 

  

 

 

 

 

  

 

 

 

 

 

 

 

  

   

 

 

 

 

 

 

 

 

Figure S.6. Relative selectivities at 273 K for the gasses shown for as-prepared (yellow), 

C- (black), and EC- (grey) carbon aerogels derived from TPOL-O (A) and FPOL-O (B) 

aerogels. 

A. 

B. 
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Figure S.6. (Continued) Relative selectivities at 273 K for the gasses shown for as-

prepared (yellow), C- (black), and EC- (grey) carbon aerogels derived from RF-O (C) 

and PF-O (D) aerogels. 
 

 

D. 

C. 
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Figure S.6. (Continued) Relative selectivities at 273 K for the gasses shown for C- 

(black) and EC- (grey) carbon aerogels derived from PBO (E) and (F) PA (F) aerogels. 

 

 

 

F. 

E. 
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SECTION 

2. CONCLUSIONS 

Four polymeric aerogels: TPOL, FPOL, RF, and PF were synthesized via an acid-

catalyzed gelation of phenolic compounds: phenol (P), resorcinol (R), phloroglucinol (P) 

with aldehydes: formaldehyde (F) and terephthalaldehyde (T) in organic solvents in order 

to study the carbonization process. 

In Paper I phenolic resin-based organic aerogels were converted to carbon 

through two routes. In one route, they were directly pyrolyzed at 800 °C/Ar, while in the 

other, they were subjected to an oxidative heating step at 240 °C/air prior to pyrolysis at 

800 °C/Ar. Subsequently, all carbons were activated (etched) by exposing them to CO2 

gas at 1000 °C, which resulted in significant increase in their surface areas. N2 sorption 

analysis showed that carbons obtained from the oxidative pathway in TPOL and FPOL 

systems exhibit higher total and micropore surface areas in comparison to the carbons 

that were directly pyrolyzed. However, unlike polybenzoxazine aerogels where the 

oxidation step (200 °C/air) is necessary for high-yield carbonization, the carbonization 

yields of carbons from the two routes were not too different from each other. 

Spectroscopic studies such as XPS, 13C NMR, FTIR, and CHN analysis revealed that at 

240 °C/air ring-fusion aromatization, similar to PAN fibers takes place. The oxidized 

polymeric backbone includes fused pyrylium rings (C=O+), and charge-compensating 

phenoxides (C–O͞  ). That ring fusion and aromatization thereafter rigidizes the polymeric 

backbone and creates microporosity and carbons with higher surface areas than those 

obtained by direct-pyrolysis of as-made materials. In the case of RF and PF aerogels, 
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curing at 240 °C/air oxidized only the bridging –CH2- groups, forming carbonyl groups 

(C=O). Ring fusion aromatization did not take place. Consequently, the surface areas of 

carbons from the two routes were close to one another. An interesting observation was 

made which showed that all carbons, regardless of their precursors and their 

carbonization routes, converged to a common structure consisting of stacked 6-membered 

aromatic rings with surface pyrylium (C=O+) and phenoxide (C–O͞ ) ions. The 

significance of these studies is that wherever ring-fusion aromatization takes place at the 

early stages of carbonization, it is beneficial to the properties of final carbons; it produces 

high-yield carbons (from PBO aerogels) or improves the surface areas (in TPOL- and 

FPOL-derived carbon aerogels). 

In Paper II the utility of carbons and etched carbons obtained from the four 

phenolic resin aerogels (TPOL, FPOL, RF, and PF) were investigated in CO2 

sequestration as applied to postcombustion techniques. The inspiration for that was their 

high micropore surface areas obtained after etching at 1000 °C/CO2. Etched carbons from 

TPOL, FPOL, and PF showed CO2 uptakes as high as 6 mmol g-1 at 273 K and 1 bar, 

close to the values reported for the best porous polymeric or carbon-based adsorbents 

under the same conditions. However, RF showed an exceptionally high CO2 uptake of 

14.8 ± 3.9 mmol g-1, which was attributed to the high micropore volume due to the 

opening of closed pores developed after the etching process. In addition, CO2 interacts 

with the phenoxide within the micropore walls through an energy-neutral reaction beyond 

a multilayer coverage. Since those materials contained only oxygen functional groups 

(C=O+, and C–O͞ ), the CO2 adsorption data were compared with carbons obtained from 

polybenzoxazine and a polyamide-polyimide-polyurea copolymer aerogel, which contain 
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nitrogen in addition to oxygen functional groups. In summary, the results confirmed the 

importance of large accessible micropore volumes to CO2 molecules at close to ambient 

temperatures and pressures and the benefit of oxygen over nitrogen functional groups in 

porous sorbents. In addition, they show relatively high CO2 selectivity toward CH4, N2, 

and H2, a requirement for designing superior CO2 adsorbents. Therefore, these materials 

could be viable candidates in separation techniques such as column chromatographic 

packing materials, and sorbents for separation of CO2 from CH4 and N2 relevant to post-

combustion, or CO2 from H2 in pre-combustion gas sequestration techniques. 
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APPENDIX A. 

PHENOLIC RESINS 
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The term “resin” refers to any synthetic polymer which is adhesive, film-forming 

or show other useful properties.  

Phenolic resins are a class of resins, which are formed by the polycondensation of 

phenol or phenol derivatives with aldehyde (often formaldehyde), and elimination of 

water.1,2  

In 1909, Baekeland introduced the first polymer by developing the first fully 

synthetic plastic, Bakelite. He carried out the polycondensation of phenol with 

formaldehyde to form a crosslinked thermosetting plastic. Bakelite belongs to a class of 

organic materials named “phenolic resins”. 

Historically, phenolic resins were used as thermosets and electrical insulating 

polymers. Subsequently, implementation of new organic reactions led to the development 

of other types of phenolic resins with various useful applications such as: adhesives, 

printing ink binders, waterborne paints, temperature-resistant binders, and laminated 

plastics. Commercialized resins include: unsaturated polyester resins, alkyd resins, 

emulsion polymers, amino resins for surface coatings, polyurethane resins, polyamide-

epichlorohydrin resins, formaldehyde resins, and urea formaldehyde.3  

Among aldehydes, formaldehyde is the most important starting material in 

phenolic resin applications. Acetaldehyde and butyraldehyde are rarely used; furfural is 

also sometimes used to prepare dark brown to black resins. 

The phenols that have been used in the commercial production of phenolic resins 

are either substituted or unsubstituted. Phenol and resorcinol are the widely used 

unsubstituted ones. Substituted phenols include: ortho-cresol, meta-cresol, para-cresol, 

para-phenylphenol, para-tert-butylphenol, para-tert-amylphenol, para-tert-octylphenol, 
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para-nonylphenol, and 4,4'-(propane-2, 2-diyl) diphenol (bisphenol A). The structures of 

those aldehydes and phenols are given in Scheme 1.4  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 1. Structures of aldehydes and phenols that are normally used in the commercial 

production of phenolic resins. 

 

 

In phenolic resins, depending on the presence of either methylene ether                       

(–CH2OCH2–) or methylene (–CH2–) bridges between aromatic rings they are classified 

as “resol” and “novolac”, respectively. In resols, the polymerization is based-catalyzed, 
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whereas in novolac the polymerization is carried out in acidic media. As an example, 

phenol reacts with formaldehyde in basic/acidic conditions to form resol/novolac types of 

phenol-formaldehyde (PF) resins. If the excess of F is used the resulting PF polymer is a 

resol, and if the excess of P is used, it will produce a novolac PF.5  

A detailed spectroscopic study of PF polymerization reveals that the structure of 

resol differs from novolac in that it consists of both methylene ether and methylene in 

contrast to the only methylene bridges in novolac. Scheme 2 shows those structures in the 

case of PF resins.4,6,7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Scheme 2. Chemical structures of novolac and resol PF resins. Resol resins contain 

dimethylene ether in addition to methylene bridges. 
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The C 1s x-ray photoelectron spectroscopy (XPS) data of all materials studied in 

this dissertation are shown in Figure 1. The peaks were internally calibrated with respect 

to the Au (4f7/2) peak at 84.0 eV, which was mixed in 5% with the sample powder before 

the experiment. The peak assignments were performed by using three compounds as 

external references: 1-naphthol, 2,6-diisopropyl-4-phenylpyrylium, and sodium 

phenoxide and also literature. The peaks observed at binding energies of 284.16, 285.02, 

285.46, 285.74, 286.36, and 287.12 were assigned to aromatic carbon (C=C), pyrylium 

carbon (C=O+), aliphatic carbon (C–C), carbon bonded to hydroxyl group (C–OH), 

phenoxide carbon (C–O͞  ), and carbonyl (C=O) respectively. Table 1 summarizes the 

average binding energies corresponding to those peaks from all samples.  

It is interesting to note that the XPS spectra of all C- and EC- samples are 

identical to one another, showing graphitic carbon peak at 284 eV, pyrylium carbon 

(C=O+) at 285 eV, phenoxide carbon (C–O͞  ) at 286 eV, and – satellite peak at ~ 290 

eV, the latter of which is due to the presence of highly conjugated systems after 

carbonization and etching.  

 

Table1. Average binding energies (eV) from C 1s XPS spectra corresponding to different 

types of carbon 

carbon species binding energy (eV) 

C=C 284.16 ± 0.60 

C=O+ 285.02 ± 0.47 

C–C 285.46 ± 0.85 

C–OH 285.74 ± 1.39 

C–O͞ 286.36 ± 0.96 

C=O 287.12 ± 0.03 
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 Figure 1. C 1s XPS spectra of the indicated samples. 
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Figure 1. C 1s XPS spectra of the indicated samples. (Cont.) 
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Figure 1. C 1s XPS spectra of the indicated samples. (Cont.) 
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Figure 1. C 1s XPS spectra of the indicated samples. (Cont.) 
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 Figure 1. C 1s XPS spectra of the indicated samples. (Cont.) 
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APPENDIX C. 

THE ANALYSIS OF VIRIAL FITTINGS APPLIED TO THE CO2 ADSORPTION 

ISOTHERMS 
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For the calculation of the isosteric heats of adsorption, the adsorption isotherms at 

273 K and 298 K were fit using the virial equation  

 

 ln P = ln N +  
1

𝑇
∑ 𝑎𝑖𝑁

𝑖 + 𝑚
𝑖=0 ∑ 𝑏𝑖𝑁

𝑖𝑛
𝑖=0                                     (1) 

  

with N being the CO2 uptake in mmol g-1, T the temperature (273 or 298 K in this case) 

and a and b the polynomial approximations (parameters). The virial equation is based on 

two assumptions, namely  

 

[
𝜕 ln 𝑃

𝜕 (
1

𝑇
)
]𝑁 = g (N)                                                       (2) 

 

and 

 

[
𝜕𝑔 (𝑁)

𝜕 (𝑇)
]𝑁 = 0                                                         (3) 

 

The adsorption isosteres are linear and g (N) is a polynomial function that is 

independent of temperature and depends only on the uptake.  

The values of m and n were varied until the best statistical coefficients, i.e., 

highest R2 and lowest reduced ꭓ2, were obtained. A systematic analysis of the different 

number of parameters was done, from m = 5, n = 5 to m = 1, n = 0 for C-RF-D, EC-RF-

D, C-RF-O, and EC-RF-O samples. The R2 and reduced ꭓ2 for all the different virial fits 

are listed in Tables 1–4. 
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Table 1. Coefficients of determination (R2), reduced ꭓ2, and Q0 for calculating the 

isosteric heats of adsorption using Equation (1) for C-RF-O 

m n R2 red. χ2 Qo (kJ mol-1) 

5 5 1.00000 2.00 × 10-7 32.60 

5 4 1.00000 5.04 × 10-7 32.67 

5 3 1.00000 7.34 × 10-7 32.59 

5 2 0.99996 1.64 × 10-5 33.29 

5 1 0.99993 3.10 × 10-5 32.57 

5 0 0.99861 5.83 × 10-4 36.09 

4 5 1.00000 4.77 × 10-7 32.67 

4 4 1.00000 1.84 × 10-6 32.55 

4 3 1.00000 1.91 × 10-6 32.60 

4 2 0.99996 1.79 × 10-5 33.32 

4 1 0.99992 3.52 × 10-5 32.52 

4 0 0.99855 6.10 × 10-4 36.11 

3 5 1.00000 8.30 × 10-7 32.57 

3 4 1.00000 1.86 × 10-6 32.59 

3 3 0.99997 1.21 × 10-5 32.34 

3 2 0.99984 6.86 × 10-5 33.59 

3 1 0.99970 9.78 × 10-5 32.56 

3 0 0.99850 6.30 × 10-4 36.05 

2 5 0.99997 1.24 × 10-5 33.16 

2 4 0.99997 1.35 × 10-5 33.19 

2 3 0.99985 6.20 × 10-5 33.53 

2 2 0.99939 2.56 × 10-4 32.60 

2 1 0.99939 2.57 × 10-4 33.00 

2 0 0.99845 6.51 × 10-4 35.98 

1 5 0.99990 4.15 × 10-5 32.14 

1 4 0.99989 4.61 × 10-5 32.11 

1 3 0.99973 1.13 × 10-4 32.19 

1 2 0.99940 2.52 × 10-4 32.73 

1 1 0.99554 0.00188 30.61 

1 0 0.99114 0.00373 36.61 
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Table 2. Coefficients of determination (R2), reduced ꭓ2, and Q0 for calculating the 

isosteric heats of adsorption using Equation (1) for EC-RF-O  

m n R2 red. χ2 Qo (kJ mol-1) 

5 5 0.99983 4.97 × 10-4 46.77 

5 4 0.99972 8.06 × 10-4 45.25 

5 3 0.99964 0.00104 43.65 

5 2 0.99962 0.00108 42.92 

5 1 0.99955 0.00128 41.45 

5 0 0.99914 0.00245 44.58 

4 5 0.99972 8.04 × 10-4 45.25 

4 4 0.99971 8.20 × 10-4 45.45 

4 3 0.99959 0.00118 43.60 

4 2 0.99955 0.00130 42.37 

4 1 0.99952 0.00136 41.50 

4 0 0.99914 0.00247 44.56 

3 5 0.99964 0.00102 43.71 

3 4 0.99959 0.00117 43.60 

3 3 0.99958 0.00120 43.83 

3 2 0.99948 0.00148 42.11 

3 1 0.99945 0.00156 41.12 

3 0 0.99884 0.00330 44.84 

2 5 0.99963 0.00105 43.09 

2 4 0.99955 0.00128 42.46 

2 3 0.99948 0.00147 42.11 

2 2 0.99947 0.00152 42.31 

2 1 0.99938 0.00176 40.72 

2 0 0.99862 0.00395 44.73 

1 5 0.99957 0.00123 41.66 

1 4 0.99954 0.00133 41.68 

1 3 0.99946 0.00154 41.22 

1 2 0.99939 0.00176 40.73 

1 1 0.99937 0.00180 40.87 

1 0 0.99858 0.00407 44.99 
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Table 3. Coefficients of determination (R2), reduced ꭓ2, and Q0 for calculating the 

isosteric heats of adsorption using Equation (1) for C-RF-D 

m n R2 red. χ2 Qo (kJ mol-1) 

5 5 1.00000 3.42 × 10-7 20.31 

5 4 1.00000 9.30 × 10-7 20.44 

5 3 1.00000 9.69 × 10-7 20.40 

5 2 0.99997 1.01 × 10-5 20.93 

5 1 0.99983 5.09 × 10-5 19.77 

5 0 0.99881 5.68 × 10-5 20.13 

4 5 1.00000 9.26 × 10-7 20.44 

4 4 1.00000 9.15 × 10-7 20.44 

4 3 1.00000 9.52 × 10-7 20.40 

4 2 0.99997 9.91 × 10-6 20.93 

4 1 0.99984 5.00 × 10-5 19.77 

4 0 0.99982 5.59 × 10-5 20.13 

3 5 1.00000 1.00 × 10-6 20.39 

3 4 1.00000 9.86 × 10-7 20.39 

3 3 0.99999 3.09 × 10-6 20.38 

3 2 0.99996 1.22 × 10-5  20.92 

3 1 0.99983 5.13 × 10-5 19.76 

3 0 0.99981 5.70 × 10-5 20.12 

2 5 0.99998 7.26 × 10-6 20.83 

2 4 0.99998 7.16 × 10-6 20.83 

2 3 0.99997 9.42 × 10-6 20.83 

2 2 0.99954 1.41 × 10-4 20.82 

2 1 0.99942 1.77 × 10-4 19.67 

2 0 0.99941 1.81 × 10-4 20.03 

1 5 0.99977 6.91 × 10-5 19.40 

1 4 0.99978 6.79 × 10-5 19.40 

1 3 0.99977 6.88 × 10-5 19.41 

1 2 0.99935 1.97 × 10-4 19.40 

1 1 0.99594 0.00123 19.31 

1 0 0.99598 0.00122 19.73 
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 Table 4. Coefficients of determination (R2), reduced ꭓ2, and Q0 for calculating the 

isosteric heats of adsorption using Equation (1) for EC-RF-D 

m n R2 red. χ2 Qo (kJ mol-1) 

5 5 0.99995 1.39 × 10-4 34.74 

5 4 0.99993 1.89 × 10-4 34.07 

5 3 0.99993 1.87 × 10-4 33.92 

5 2 0.99993 1.92 × 10-4 34.23 

5 1 0.99990 2.75 × 10-4 35.22 

5 0 0.99788 0.00609 42.22 

4 5 0.99994 1.87 × 10-4 34.08 

4 4 0.99992 2.24 × 10-4 34.21 

4 3 0.99991 2.48 × 10-4 33.65 

4 2 0.99991 2.65 × 10-4 34.14 

4 1 0.99987 3.73 × 10-4 35.28 

4 0 0.99792 0.00599 42.21 

3 5 0.99994 1.84 × 10-4 33.99 

3 4 0.99991 2.46 × 10-4 33.67 

3 3 0.99990 2.94 × 10-4 33.75 

3 2 0.99990 2.91 × 10-4 33.92 

3 1 0.99984 4.66 × 10-4 35.28 

3 0 0.99791 0.00601 42.22 

2 5 0.99994 1.63 × 10-4 34.45 

2 4 0.99990 2.92 × 10-4 34.90 

2 3 0.99985 4.41 × 10-4 35.65 

2 2 0.99951 0.00140 38.18 

2 1 0.99984 4.58 × 10-4 35.29 

2 0 0.99753 0.00711 42.51 

1 5 0.99991 2.65 × 10-4 35.26 

1 4 0.99987 3.65 × 10-4 35.28 

1 3 0.99984 4.59 × 10-4 35.24 

1 2 0.99984 4.52 × 10-4 35.26 

1 1 0.99983 5.00 × 10-4 35.27 

1 0 0.99739 0.00751 42.84 
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After fitting the Equation (1) to the absolute uptakes, the parameters a’s and b’s 

obtained were used to calculate the isosteric heats of adsorption using Equation (4) 

 

 Qst = – R ∑ 𝑎𝑖𝑁𝑖  𝑚
𝑖=0                                                    (4) 

 

as a function of the CO2 uptake (mmol g-1) where R is the universal gas constant of 8.314 

J mol-1 K-1. The first term in Equation 4 corresponding to i = 0 is given by Equation 5 

 

Q0 = – R a0                                                          (5) 

 

Q0 is the heat of adsorption at zero coverage.  

Figures 1–4 show the plots of Qst vs CO2 uptakes for C-RF-O, EC-RF-O, C-RF-

D, and EC-RF-D samples respectively. As can be seen, the Qst plots of C-RF-O and C-

RF-D samples are rather insensitive to m and n. On the other hand, the Qst plots of the 

high-CO2 uptake samples (EC-RF-O and EC-RF-D) show an extreme sensitivity, 

diverging after about 6 mmol g-1, reaching very high values (positive or negative). 

Nevertheless, all those curves start from the same Q0 value (except for the non-realistic 

case of n = 0) and coincide to about 4–5 mmol g-1. This means that the isosteres are less 

linear at the higher uptakes, which means that some of the assumptions in the virial 

equation might not be appropriate at high adsorption ranges.      
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Figure 1. The isosteric heats of adsorption calculated using Equation (4) for different 

values of m and n as indicated for C-RF-O. 

 

m = 5, n = 5  m = 5, n = 4  m = 5, n = 3  

m = 5, n = 2  m = 5, n = 1  m = 5, n = 0  
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m = 4, n = 2  m = 4, n = 1  m = 4, n = 0  

m = 3, n = 5  m = 3, n = 4  m = 3, n = 3  

m = 3, n = 2  m = 3, n = 1  m = 3, n = 0  
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Figure 1. The isosteric heats of adsorption calculated using Equation (4) for different 

values of m and n as indicated for C-RF-O. (Cont.) 
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Figure 2. The isosteric heats of adsorption calculated using Equation (4) for different 

values of m and n as indicated for EC-RF-O. 
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Figure 2. The isosteric heats of adsorption calculated using Equation (4) for different 

values of m and n as indicated for EC-RF-O. (Cont.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

m = 2, n = 5  m = 2, n = 4  m = 2, n = 3  

m = 2, n = 2  

m = 2, n = 1  m = 2, n = 0  

m = 1, n = 5  m = 1, n = 4  m = 1, n = 3  

m = 1, n = 2  m = 1, n = 1  m = 1, n = 0  



223 
 

                                                                                         

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. The isosteric heats of adsorption calculated using Equation (4) for different 

values of m and n as indicated for C-RF-D. 
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Figure 3. The isosteric heats of adsorption calculated using Equation (4) for different 

values of m and n as indicated for C-RF-D. (Cont.) 
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Figure 4. The isosteric heats of adsorption calculated using Equation (4) for different 

values of m and n as indicated for EC-RF-D. 
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Figure 4. The isosteric heats of adsorption calculated using Equation (4) for different 

values of m and n as indicated for EC-RF-D. (Cont.) 
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