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ABSTRACT 

Aerogels are three dimensional highly porous solid objects that provide density 

reduction compared to dense objects. Those materials can have applications in different 

classes of energy storage and the two types that are focused in this dissertation are 

mechanical energy and thermal energy storage. Shape memory materials can store and 

recover elastic deformation energy when triggered by an external stimulus such as 

temperature. To incorporate those properties, shape memory polymeric aerogels (SMPA) 

were synthesized from a rigid isocyanurate containing triisocyanate (N3300 A) and four 

short oligomeric derivatives of ethylene glycol: H(OCH2CH2)nOH (1 ≤ n ≤ 4). The shape 

memory effect (SME) of those aerogels were evaluated via four figures of merit namely 

strain fixity, strain recovery, strain recovery rate and fill factor. The morphologies of 

skeletal frameworks of those aerogels varied from micrometer sized particles with thick 

necks to bicontinuous structures, that are typical of spinodal decomposition. A Marcus-

type thermodynamic-kinetic relationship was identified between that shape recovery rate, 

Rt(N), and the elastic modulus, E. Other part of the dissertation deals with the synthesis of 

nanoporous metallic iron (Fe(0)) aerogels via carbothermal reduction of interpenetrating 

networks of polybenzoxazine and iron oxide nanoparticles. Excess carbon was removed 

oxidatively at 600 oC under flowing air and the oxides of Fe(0) thus produced in the 

oxidative step were reduced back to Fe(0) with H2 at different temperatures ranging from 

300 - 1300 oC. Those final monoliths were loaded with perchlorates and ignited with a 

flame in open air. Based on the temperature of the reduction step, monoliths either fizzled 

out (≤400 oC), exploded violently (500-900 oC), or behaved as thermites (≥950 oC). 
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1. INTRODUCTION 

 ENERGY STORAGE MATERIALS  

One way to quantify the development stage of the human civilization is by the 

consumption of energy.  Energy consumption increases of course with the population 

growth, and with the current demands imposed by technology and population, human 

civilization will face an energy crisis. Based on the current energy demands, it is predicted 

that the energy supply might double by 2050 and triple by 2100.1,2 The energy cycle 

includes energy generation, conversion, storage, transportation, consumption and all 

human civilization must be vigilant about conservation, because all steps of the energy 

cycle impose strains on the environment, which, compounded by the population growth, 

bring into question the very survival of the human species. At all stages of the energy cycle, 

materials are called to play a pivotal role. This dissertation focuses on two special types of 

porous lightweight materials classified as aerogels which store energy.  

Energy storage materials convert one type of energy into another and release it off 

with the application of an external stimulus. Those materials store energy in thermal,3 

elastic,4 mechanical,5 chemical,6 solar,7 or electromagnetic form.8,9 The storage of 

electrical energy in a rechargeable battery is based on reversible chemical reactions in an 

electrochemical cell. Mechanical energy storage occurs mainly in the form of potential 

energy. Hydrogen storage is a form of chemical energy: electrical energy storage in the 

form of electrolysis which uses electricity to reduce water into hydrogen and oxygen. Thus, 

solar energy, an important source of renewable energy can be converted to electricity and 

stored as chemical energy. Another way to store electrical energy is via superconductive 

magnetic energy storage, which can be achieved by charging a superconducting coil at 
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cryogenic temperatures; the magnetic field over the coil is created by the flow of current 

in the coil that can be sustained indefinitely. The heat source for thermal batteries belongs 

to thermal energy storage in the form of chemical energy. Shape memory materials store 

mechanical energy using nano-structuring, molecular design, surface modification and 

tuning the pore structures.  

This dissertation deals with the latter two categories of energy storage materials. 

Shape memory polymeric aerogels (SMPAs) with varying glass transition temperatures 

were prepared to remember and recover back to initial shapes from high elastic strains 

when triggered by heat. Those SMPAs may find applications in deployable panels e.g., for 

space applications, and in biomedical engineering like bionic hands and casts for broken 

body parts. Nanoporous iron aerogels prepared via carbothermal reduction of 

interpenetrating networks of polybenzoxazine and iron oxide nanoparticles were loaded 

with lithium perchlorate and may serve as heat sources that activate thermal batteries.  

 

  AEROGELS – BRIEF HISTORY 

Aerogels are lightweight, highly porous solids. The IUPAC definition for aerogels 

is “gels comprised of a microporous solid in which the dispersed phase is a gas.”10 That 

definition is not satisfactory, in fact is wrong, because for example microporous materials 

like zeolites are not aerogels. Given that weakness, and also controversy arising by several 

authors attempting to define aerogels by the way they are prepared, very recently Vareda 

et al. suggested to redefine aerogels as “highly porous nanostructured solid materials 

derived from gels, in which the pores filling phase is a gas and whose properties/structures 

are not significantly affected by the removal of swelling agents regardless of the drying 
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approach used.”11 That definition follows closely the definition by the inventor of aerogels, 

S. S. Kistler who defined aerogels as “gels in which liquid has been replaced by air, with 

very moderate shrinkage of the solid network.”12 Those definitions do account for the 

“aero” part of the aerogels but do not address the “gel” part. In that regard, a more complete 

definition of the term “aerogel” that also differentiates them from closed-cell foam one 

from xerogels has been proposed by Leventis: “an open non-fluid colloidal network or 

polymer network that is expanded throughout its whole volume by a gas, and is formed by 

the removal of all swelling agents from a gel without substantial volume reduction or 

network compaction.”13 All in all, aerogels are derived from wet-gels where the pore-filling 

solvent is converted to a supercritical fluid and is vented off as a gas. The process preserves 

the porous skeletal framework of the wet-gel into the final solid object with a minimum 

volume compromise (shrinkage).  

In addition to low densities and high porosities, aerogels combine high surface 

areas, low thermal conductivities, good elastic properties, acoustic attenuation, and 

possibilities for easy surface modification.14 Thereby, they have been used as absorbents,15 

sensors,16,17 catalyst supports,18-21 thermal insulators,22 templates for solar cells,23 

aerospace applications,24 clothing and thermal insulation blankets,25 energy storage 

materials,26,27 dielectrics,28,29 and capacitors.30  

 

  AEROGELS THRO UGH THE PARADIGM OF SILICA 

Silica aerogels were invented by S. S. Kistler and are highly porous, high surface 

area, extremely lightweight, good thermal insulators consisting of hierarchical assemblies 

of particles (see scanning electron micrograph in Figure 1.1).31 Generally, silica aerogels 
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are transparent exhibiting a light blue tint because of the Rayleigh scattering of the short 

wavelengths of light from the primary particles. Silica aerogels are very fragile materials 

which limits their applications. The mechanical properties of the silica aerogel can be 

enhanced by manipulating their nanostructure, which requires a detailed understanding of 

their skeletal and porous structure, which in turn requires a detailed understanding of their 

formation via the so-called sol-gel chemistry.  

 

 

 

 

Figure 1.1. Macroscopic and microscopic view through scanning electron microscope of 

a silica aerogel.32  

 

 

 

In a typical sol-gel chemistry, the gel precursors are mixed in a solvent to form a 

colloidal solution of primary particles (referred to as a sol). In the case of silica, the silica 

precursors can be tetramethylorthosilicate (TMOS) which is dissolved in a solvent e.g., 

methanol and is mixed with water (for hydrolysis), and a catalyst (base or acid, for 

hydrolysis and condensation). At first, hydrolysis of TMOS gives silanols which condense 

to form Si-O-Si bridges. The resulting polymer phase separates into tiny primary silica 

particles, that aggregate into mass-fractal secondary particles, that again agglomerate into 
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higher mass-fractal aggregates until the percolation threshold is reached, and a continuous 

network of particles is formed that is referred to as a wet-gel (Figure 1.2). Wet-gels are 

aged in order to gain mechanical stability. During aging, silica dissolves from the surface 

of the primary particles and reprecipitates at the interparticle necks rendering necks wider, 

which enhances the mechanical strength of the network.  

 

 

 

 

 

Figure 1.2. Sol-gel process for the synthesis of silica aerogel and xerogel. 

 

 

 

Finally, wet-gels are dried in an autoclave exchanging the pore filling solvent with 

liquid CO2 that is finally converted to a supercritical fluid (SCF) and is vented off like a 

gas. When pore filled solvent is dried at atmospheric pressure and temperature, structural 

collapse leads to extensive shrinkage and the final product is referred to as xerogel. 

Aerogels were prepared showing flexibility for insulation applications in subsea systems, 
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insole for shoes, industrial buildings and refrigerators.33 Fiber reinforced aerogel composite 

blankets are commercially available from Aspen aerogels which can be bent and rolled 

over.34 Process for the manufacturing of these blankets is shown in Figure 1.3.35  

 

 

 

 

Figure 1.3. Manufacturing process of fiber reinforced aerogel composite blankets. 

 

 

 

  ADDRESSING THE FRAGILITY ISSUE OF SILICA AEROGELS: FROM 

POLYMER CROSSLINKED TO ALL-POLYMER AND ISOCYANATE-

DERIVED POLYMERIC AEROGELS 

The fragility issue of silica aerogels has limited their use in certain types of thermal 

insulation,36 catalyst supports,37 and space exploration for example in capturing cosmic 

dust in outer space (refer to NASA’s Stardust program).38,39 In order to address the fragility 

issue, Leventis et al. developed the so-called polymer crosslinked aerogels (X-aerogels).40 

In those, the free hydroxyl groups on the surface of the silica network reacted with 

commercial triisocyanate forming urethane linkages and  eventually a conformal coating 

on the skeletal framework keeping mostly intact the open porosity of the native silica 

Silica  Catalyst 
sol   Dopants 
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framework. That X-linking process increased the flexural strength of typical silica aerogels 

by almost 300 times with just an increase in density by a factor of 3. Since that exceptional 

increase in mechanical strength was brought about by adding polymer, the Leventis group 

shifted attention to purely organic aerogels and one major category of those was based on 

isocyanate chemistry. Such aerogels included conventional polymers that are associated 

with the isocyanate chemistry, that is polyureas and polyurethanes, but also polyimides and 

polyamides. 

 

  THE ISOCYANATE CHEMISTRY  

The isocyanate group, -N=C=O, is highly reactive. Because of the partial positive 

charge induced on the carbon atom by the electron withdrawing abilities of both the 

nitrogen and oxygen atoms, it acts as an electrophile (Scheme 1.1).  

 

 

 

 

Scheme 1.1. The isocyanate group. 

 

 

 

The attack of a nucleophile on the -N=C=O group is shown in Scheme 1.2. The 

reactivity of alkyl and aryl isocyanates with different kinds of nucleophiles like H2O, 

alcohols (R-OH), amines (R-NH2), carboxylic acids (R-COOH) etc. have been studied 

extensively as summarized in Scheme 1.3. 

Initially, those reactions are described as pseudo second-order reactions, but later 

it was reported to follow third-order kinetics.41,42 
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Scheme 1.2. Nucleophilic attack on the isocyanate group. 

 

 

 

 

 

Scheme 1.3. The chemistry of isocyanates with different nucleophiles. 

 

 

 

Solvents best suited for those reactions include toluene-DMSO or toluene-DMF 

mixtures which can form strong hydrogen bonds.43,44 Part of this dissertation is based on 
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the reaction of isocyanate with alcohols to polyurethanes and therefore, those reactions are 

discussed in more detail below. 

Polyurethanes belong to a special class of versatile polymeric materials that have 

been incorporated into different products such as elastomers, insulators, foams, paints, 

liquid coatings, etc. Polyurethanes are based on the urethane repeat unit, which is formed 

by the addition reaction of the isocyanate group with an alcohol in the presence of a 

catalyst. Dibutyltin dilaurate (DBTDL) is a typical acid catalyst favored by many 

researchers. 

 Polyurethanes (PU).  Polyurethanes were discovered in 1947 by Bayer 

and his coworkers through the reaction of diisocyanates and polyester diols.45 The 

properties of polyurethanes can be varied by using the different types of polymer building 

blocks, i.e., the alcohol and the isocyanate in combination with different catalysts, as well 

as chain extenders, stabilizers, and surfactants. In general, high molecular weight polyols 

yield soft elastic polyurethanes, whereas low molecular weight polyols form rigid and hard 

polyurethanes. Those structure-property relationships give polyurethanes great potential 

for use in different applications.46 Thus, various improvements in processing, selection of 

additives and formulation enabled use of polyurethanes in construction, transportation, 

textiles, fibers, adhesives, foams, bedding and electronic appliances.47,48,49 Because of easy 

tuning of their mechanical strength and elastic modulus, polyurethanes have been used as 

a replacement for other plastics, rubber, and metals.50-52  

Polyurethanes can be broadly classified into following four types based on the 

applications of the final materials: flexible foams, rigid foams, elastomers and 

coatings/adhesives.53  
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 Flexible foams.  Most of the flexible polyurethane foams finds 

applications in furniture cushions, bedding, automotive seating, and carpet underlaying.54-

57 Two major processes are involved in the synthesis of flexible PU foams: blowing and 

gelling. In the first process (blowing), urea is produced in parallel with polyurethane via 

reaction of the isocyanate with water, releasing carbon dioxide that acts as a blowing agent. 

The second process involves polymerization that forms urethane linkages from isocyanate 

and polyols.58 The most commonly used isocyanates for foams are 2,4 and 2,6-toluene 

diisocyanate, while the alcohols are polyether polyols with the general formula H-

(CHOH)m-CH2O-(C2H5O)n-H, that is, typical polyols are polyethers from active hydrogen 

compounds like glycerol, sorbitol, sucrose etc. Few PU foams have been synthesized from 

lignin; the flexibility of those materials could be improved incorporating either by a flexible 

segment in the backbone of the PU using a chain extender that would lower the glass 

transition, or by lowering the crosslinking density, which could be achieved by reducing 

the NCO/OH ratio. Textile based fibers of carbon, basalt and aramids were added to 

increase the tensile properties of those PU foams.59  

 Rigid foams.  The major application of rigid PU foams is in energy saving 

thermal insulation in refrigerators, building walls, refrigerated trucks and commercial 

appliances that work with heating and cooling.60 Rigid foams can also provide structural 

strength to the appliances and vehicles.61 Generally, rigid foams are strongly cross-linked, 

closed-pore materials prepared from polyether or polyester polyols and methylene diphenyl 

diisocyanates. In order to decrease the overall thermal conductivities of the foams, pentane 

isomers are frequently used as solvents, because the thermal conductivity of pentane that 

remains trapped in the closed pores is well below that of air.62  
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For additional requirements in the field of fire protection, rigid PU embedded with 

polyisocyanurate (PIR) foams are used to insulate buildings.63 PIRs belong to a special 

class of isocyanate derived polymers. They are synthesized from the trimerization of 

aliphatic or aromatic isocyanates upon heating whose forward reaction is more favored 

than the backward reaction. The high thermal stability of PIRs permits their application in 

elastomers, coatings and adhesives.63 Those polymers by themselves are friable and hence 

are generally modified with urethanes by mixing an excess of diisocyanate with a diol using 

a catalyst and the resulting polymers cannot be crumbled easily but are mostly elastomeric. 

The dissociation temperature can be increased to 250 oC from 150 oC by the incorporation 

of isocyanurates in the polymer. 

 Elastomers.  Elastomers represent a wide range of materials for a variety 

of applications. They fall into two categories: cast elastomers, and thermoplastic 

polyurethane elastomers (TPUs). The elastomers market includes footwear, fibers, TPU, 

spray elastomers, synthetic leather, gaskets, seals, O-rings, and biomedical devices.64-66 

Other special applications include the noise and vibration-damping properties of the 

elastomers. Diisocyanates like 1,5-naphthalene diisocyanate (NDI), 1,4-para-phenylene 

diisocyanate (PPDI) and novel fatty acid-based diisocyanates are generally used for the 

synthesis of elastomers. Polyols are based on polytetrahydrofuran diols, polyester polyols 

or polyether polyols, while chain extenders range from short chain glycols to aromatic 

diamines. Applications of PU elastomers are enhanced by using additives like flame 

retardants, accelerators, antidegradants, colorants, fillers and softeners.67  

 Coatings/adhesives.68,69  Extensive research in this area has led to the 

development of chemical resistant hyperbranched PU coatings for wood, metal, and high 
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gloss finishes for aeroplanes.70 For flame-retardant applications in nano composites and 

nano coatings, hyperbranched PUs were incorporated with Bisphenol-A.71  Other major 

applications of PUs in coatings include marine antifouling materials, castor oil-based PUs 

as advanced surface coating materials, automotive coatings, corrosion resistant coatings, 

and coatings for everyday usage materials like wood, plastic, and textile.72 Solvent based 

PUs were replaced with waterborne PU dispersions that offer sustainable coating of 

textiles.  PU adhesives are preferred over other types of adhesives because of the fast 

development of strength on curing and capability to bond with substrates. Adhesive PUs 

are cured above the crystalline melting temperature of the material. Those adhesives are 

used in footwear and flexible packaging industries.73 Those PUs are generally prepared 

from aromatic isocyanates and low molecular weight diols. 

In general, flexible long tethers of alcohol and long aliphatic chains on isocyanates 

yield soft elastic polymers whereas small aliphatic chains of alcohol or isocyanate form 

rigid and hard polymers.74  

 Shape Memory Polymers (SMP). SMPs belong to a special group referred 

to as   functional polymers. Application of those materials in a specific area is decided by 

their properties in relation to the desired function. Those materials store deformation 

energy and recover elastic strains triggered by temperature, light, electric or magnetic 

fields. That shape memory effect (SME) was first observed in certain metal alloys that are 

referred to as shape memory alloys (SMA). SMPs are differentiated from SMAs by their 

high tolerance for strains, low density, and low stresses. A prerequisite for showing the 

SME is superelasticity, which can be observed in both polymers and alloys. Superelasticity 

is the property of a material to recover back to its original shape after an extreme 
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deformation. The differentiation between a shape memory material and a superelastic 

material is that it regains its permanent shape not by simple removal of stress, but when an 

external stimulus like temperature change is applied after the sample has been fixed in a 

temporary shape. For the SME to occur, the sample should be elastic above and hard below 

a certain temperature. That temperature might be the point of a phase transition (e.g., 

melting point), or simply a glass transition (Tg) in superelastic polymers.  

The SME of SMAs is based on the fact that those materials can exist in two stable 

phases: austenitic phase (at higher temperature) and a martensitic phase (at lower 

temperature or under stress). Therefore, at higher temperature upon stress, these materials 

are converted to a martensitic phase that is fixed (i.e., stabilized) by cooling the deformed 

object. By heating up, the material returns to austenitic phase, and the object recovers to 

its original shape. The most widely known shape memory alloy is Nitinol (a nickel-titanium 

alloy) and it was discovered in 1963. Desirable properties of Nitinol include bio-

compatibility, and a transition temperature near to body temperature.75 Shape memory 

polymers were introduced in the 1990s. 

 Overall literature review of SMAs and SMPs.  Notable reviews include:  

A book by K. Otsuka and C. M. Wayman covered from fundamentals to applications of 

SMAs, offered also an introduction to the SME in ceramics and polymers, and described 

the mechanistic assessment of the SME in alloys.76 Beloshenko et al. reviewed the SME in 

glassy polymers, crystallisable polymers, polymer blends, polymer gels and polymer 

matrix composites.77 Those authors focused on temperature dependence of recoverable 

strain, relaxation stress, thermal shrinkage, and shrinkage stress. Later, A. Lendlein and S. 

Kelch focused on the theromechanical characterization of SMPs, the molecular 
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mechanisms of the SME, and then different kinds of shape memory polymer systems.78 

Lately, Liu et al. classified all SMPs into four categories based on their shape fixing and 

shape recovery abilities via a quantifiable property referred to as the Fill Factor.79 They 

emphasized biomedical applications of SMPs. A recent review on shape memory polymers 

by Hager et al. provided a broad view on the overall developments on SMPs until 2015.80 

They discussed the underlying reasoning behind the different kinds of SME observed in 

polymers and classified reversible shape memory effects based on melting transitions, glass 

transitions, reversible bond formation (e.g., covalent bonds vs supramolecular 

interactions), light irradiation and liquid crystal effects. Even more recently, a review of 

SMP based on supramolecular interactions like hydrogen bonding, host-guest interactions, 

hydrophobic interactions, metal-ligand coordination, and ionic interactions have been 

reported.81 Those materials have widened the range of applications from industrial to bio-

medical to aerospace.82,83  

 Key developmental milestones in SMPs.  SMPs can be synthesized 

using chemistries leading to SME that can be triggered at different temperatures. Xiao et 

al. synthesized SMPs based on polyimides resulting in Tgs in the range of 299 - 322 oC, 

which were among the highest Tg reported for SMMs.84 They discussed the importance of 

covalent crosslinking and the crosslink density observed in thermosets compared to 

thermoplastics in terms of the potential impact on physical properties like the storage 

modulus. Those polyimides were good for high temperature applications, and their 

properties could be modified via the chemical structure of the monomers and the molecular 

weight, and crosslink density of the polymer. Dual and triple shape memory polymers were 

synthesized based on multiple phase transitions achievable via bilayer system.85-87 Xie et 
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al. demonstrated for instance, using bilayer polymers, the triple shape memory effect with 

three temporary shapes at different temperatures (Figure 1.4), T. Xie has also synthesized 

shape memory polymers using perfluorosulphonic acid ionomer which can display multi-

shape memory effects without any variation in the material composition.  

 

 

 

 

Figure 1.4. Photographs of a bilayer polymer demonstrating a triple shape memory effect. 

 

 

 

 

These SMPs have a single broad Tg which can help in tuning the recovery behavior 

by changing the strain control and temperature while the sample is being fixed.88 

Rivero et al. has prepared furan-based shape memory assisted self-healing 

polymers where, Diels-Alder chemistry was used to form covalent bonds, introduced as 

crosslinkers into polycaprolactone (PCL) containing polyurethane material. Those 
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covalent bonds were thermoreversible, meaning that, once the bonds were broken by the 

introduction of a crack forming free furan/maleimide functional groups, shape memory 

effect (i.e., temperature driven) assisted the crack closure at temperatures above the melting 

point of PCL.89 Interestingly, the structural integrity of that crosslinked polymers was not 

affected by the breaking and self-healing process as there was no complete melting of the 

polymer. 

Another interesting approach to multi temporary SMPs has been demonstrated with 

crosslinked poly (butyl methacrylate-co-methyl methacrylate) triggered with high intensity 

focused ultrasound (HIFU) directed at selected regions of the material.90 HIFU heats the 

sample instantaneously locally and initiates the shape recovery process as shown in Figure 

1.5. In an interesting twist, these materials have been demonstrated to release a drug that 

is loaded on the sample simultaneously with the changes in the macroscopic shape of the 

polymer. It was suggested that the controlled release of the drug was due to the swelling of 

the polymer network as it was heated during shape recovery that allowed the drug to diffuse 

into the surrounding medium through osmosis. 

 Transition from flexible aerogels to superelastic and shape memory 

aerogels.  Silica aerogels made from methyl trimethoxysilane demonstrate flexibility by 

reducing the overall bonding because of the methyl group present in the monomer.91 

Flexible polyimide aerogels were produced by Meador et al. from aromatic anhydride and 

aromatic triamines.92 Those materials have potential applications as high temperature 

insulation for launch vehicles and aerospace industry. More recently, flexible aerogels from 

hyperbranched polyurethanes were synthesized by Leventis group and along the way 
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studying the importance of molecular source for flexibility by comparing aerogels from 

urethane acrylate as opposed to urethane norbornene.93 

 

 

 

 

Figure 1.5. Shape memory cycles induced by ultrasound in a random copolymer of 

poly(butyl methacrylate-co-methyl methacrylate).90 

 

 

 

Lately, shape memory aerogels were successfully synthesized from thiol-ene 

networks of 1,6-hexanedithiol, pentaerythritol tetrakis (3-mercaptopropionate), and 

triallyl-1,3,5-triazine-2,4,6,-trione. They possessed Tg values in the range of 42-64 oC 

which assists in the shape recovery process. Samples were characterized using compression 

testing for five cycles.94 The first and second part of the dissertation introduces to new type 

of shape memory aerogels that are discussed below. 

 Shape Memory Poly (urethane-isocyanurate) Aerogels. Shape memory 

poly(urethane-isocyanurate) aerogels were prepared from commercially available aliphatic 

triisocyanate (N3300A) and ethylene glycol-based diols ranging from ethylene glycol (EG) 

to tetraethylene glycol (TTEG) in a solvent mixture of acetonitrile and acetone.  

 Characterization of shape memory aerogels. Selected aerogels were  

chemically characterized via 13C-NMR and FTIR. Solid state 13C NMR of triethylene 

glycol (TEG) based sample is shown below stacked with its corresponding liquid 13C NMR 
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of monomers (Figure 1.6.A). The peak at around 155 ppm corresponds to the urethane 

carbon. A stacked FTIR figure of four samples prepared from different alcohols is also 

shown in the Figure 1.6.B. The isocyanurate carbonyl stretch shows up near 1680 cm-1, 

while the urethane carbonyl stretch is observed at 1729 cm-1, and the C−N stretch near 

1240 cm-1. The free N−H stretching is observed as a shoulder or a broad peak at around 

3600 cm-1 and the hydrogen-bonded N−H stretching near 3350 cm-1. 

  

 

 

 

Figure 1.6. Chemical characterization of selected SMA aerogels. (a). Solid CPTOSS 13C 

NMR spectrum stacked with liquid 13C NMR of monomers TEG and N3300A. (b). FTIR 

Spectra. 

 

 

 

It was observed that upon increasing the chain length of the alcohol and 

incorporating flexible –(CH2)– tethers from N3300 renders the polymer more soluble 

resulting in larger particle sizes. This change in the chain length of alcohol also yielded 

aerogels which have varying Tg. Aerogels synthesized from EG showed higher Tg 

compared to that of the aerogels from TTEG. This decrease in the Tg could be reasoned 
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based on the fact that longer alcohols increase the segmental motions inside the polymer, 

thereby reducing Tg.  

Tg values were obtained from single frequency strain oscillation experiments while 

ramping the temperature from -150 oC to 150 oC using a Dynamic Mechanical Analyzer 

 

 

 

 

Figure 1.7. Storage modulus (G’), Loss modulus (G”), and tan  for a representative 

TEG-based polyurethane aerogel under single frequency (1 Hz) strain (0.3%) oscillation 

as the temperature was ramped from -150 oC to 150 oC. 

 

 

 

(DMA). As shown in Figure 1.7, initially at low temperatures, samples were rigid and as 

the temperature was increased, the storage modulus (G’) decreased by 1000 times while 

the loss modulus (G”) increased up to a particular temperature and then decreases along 

with G’ leading to a peak for tan (=G”/G’). The maximum in tan is defined as Tg. 

Samples before Tg were stiff and hard while above this temperature, they became rubbery. 
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The SME for the aerogels that were studied here was generally observed within 10 – 15 oC 

below and above Tg. 

 Quantification and possible explanation for SME.  As shown in Figure 

1.8, in a typical shape memory experiment, a sample was first heated to Tg + 10 oC and 

then deformed (stretched in our case) near its maximum strain. Next, the force required to 

stretch the sample was kept constant, while the temperature was decreased to a low 

temperature of Tg - 40 oC. At this point, the sample became stiff and the shape was fixed. 

Then the force was released instantaneously and subsequently the temperature was ramped 

back up to Tg + 10 oC at a constant heating rate resulting in gradual shape recovery. This 

shape memory cycle was repeated for 5 times in order to investigate how robust its shape 

memory behavior was. Three different strain values are recorded along the shape memory 

experiment viz. the maximum strain (εm), fixation strain (εu), and residual strain (εp) as 

shown in the Figure1.9.A. In order to quantify the shape memory effect, four figures of 

merit were calculated from these values: strain fixity (Rf, Eq 2) strain recovery (Rr, Eq 3), 

recovery rate (mr, Eq 4), and fill factor (FF). The Fill Factor is a combined index of all the 

three figures of merit and was calculated from the ratio of the shaded area under the S-

shaped curve to the total box area, as shown in Figure 1.9.B. All samples showed excellent 

strain fixities, strain recoveries and fill factors when compared to other SMPs.95 

𝑅𝑓(𝑁)  =  
𝜀𝑢(𝑁)

𝜀𝑚(𝑁)
 ×  100                                          (2) 

𝑅𝑟(𝑁)  =  
𝜀𝑚(𝑁)− 𝜀𝑝(𝑁)

𝜀𝑚(𝑁)
 ×  100                              (3) 

𝑅𝑡(𝑁) = max [−
𝑑𝑆𝑡𝑟𝑎𝑖𝑛

𝑑𝑡
]                                   (4) 
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The unrecoverable strain after the first cycle was attributed to the settling in the 

sample at the molecular level and was studied and explained using ATR-FTIR in the N-H 

stretching region (3000 – 3800 cm-1). It was found that native aerogel sample had three 

types of N-H stretchings viz. two kinds of H-bonded N-H stretches (H-bonded to glycol 

units and H-bonded to carbonyl groups) and one free N-H stretching. When the sample was 

heated, the free N-H stretching region was partially converted to the H-bonded N-H 

stretches and eventually, it was completely converted to H-bonded N-H upon stretches. 

Due to the increased H-bonding, the stiffness increased after the first cycle. The 

alcohols chosen for this study showed high tendency for H-bonding with the neighboring 

polyurethane groups which increased as the diol chain length increased from EG to TTEG. 

That tendency for H-bonding extends to H-bonds with solvent, and was the reason for the 

different morphologies observed in the final aerogels, depending on the diol. EG based 

aerogels showed micron sized particles with narrow necks between them. Particles in 

TTEG based aerogels were merging forming thicker necks. That has been attributed to the 

longer aliphatic chains of TTEG which have higher solubility than the smaller aliphatic 

chains of EG, leading to secondary polymer accumulation in the TTEG based aerogels on 

the interparticle necks rendering them wider. 

Figure 1.10 shows the scanning electron microscope (SEM) images of A. TEG and 

B. TTEG based aerogels. 

 Applications of shape memory aerogels.  The superelastic behavior and 

shape memory effect described in this thesis are illustrated in Figure 1.11. Those properties 

have been put to practice with deployable panels and with bionic hand mimicking the 

muscle coordination of a human hand grabbing a pen. 
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Figure 1.8. 3D representation of five shape memory cycles for a diethylene glycol (DEG) 

based sample. Temperature dependent steps are colored with blue and red.  

 

 

 

 
      Figure 1.9. Projections of the entire 3D representation of Figure 1.8 to different 

planes in order to calculate the figures of merit of the shape memory effect. (a). 

Projection to the Strain-Temperature plane unfolding Temperature into Time 

(Temperature vs. Time is also included as a dotted line). (b). Projection of the 3D curve 

to the Strain vs. Temperature plane.  

 

 

 

 Tuning the Tg of Shape Memory Aerogels.  For a better understanding 

relative importance of the various system parameters upon the shape memory effect, we 

used mixed alcohols and varied the mole ratio of the three alcohols, DEG, TEG, TTEG,  
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Figure 1.10. SEM images of (a). TEG based SMA and (b). TTEG based SMA. 

 

 

 

the total monomer concentration and the solvent fraction. Initial data showed that high 

acetone content in the solvent (up to 0.5% v/v) resulted in an unacceptable high proportion 

of samples that collapsed. 

Then, the solvent fraction of acetonitrile/(acetonitrile+acetone) was fixed to an 

intermediate value 0.875 and we varied three other system parameters namely the monomer 

concentration, the mole fraction of DEG, and the mole fraction of TTEG. The Tg values 

varied in the range of 25 – 49 oC. The micromorphology depended on all three independent 

variables and ranged from micron-sized particles with thick necks, to bicontinuous 

structures, typical of spinodal decomposition. The major finding was that the recovery rate 

of these shape memory aerogels had an inverse relationship with the elastic modulus of the 

corresponding samples. 

 

 ORGANIC POLYMERIC AEROGELS VIA PHENOLIC CHEMISTRY 

The first organic aerogels through phenolic chemistry were based on resorcinol-

formaldehyde (RF) resins invented by Pekala.96 Phenolic chemistry involves the 
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condensation reaction of phenolic derivatives with formaldehyde. Those aerogels have 

been the primary precursors for the synthesis of carbon aerogels and xerogels.97 Many other 

phenolic resin based aerogels were introduced thereafter like that of melamine-

formaldehyde, cresol-formaldehyde, and phenol-furfural.98 Due to their electrical 

conductivities, high surface areas (>400 m2 g-1), and high porosities (>80%), carbon 

aerogels have been used as electrodes for capacitors (aerocapacitors) that can release stored 

energy rapidly resulting in high energy and power densities.99  

 

 

 

 

Figure 1.11. Shape memory aerogel demonstrating superelasticity at room temperature 

shape memory effect. (a). Sample was bent at RT allowed to recover. (b). Sample was 

first bent, then cooled to liquid N2 temperature, and finally allowed to thaw at room 

temperature.  
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Pekala’s procedure to RF aerogels involved base catalysis via the addition of 

sodium carbonate to an aqueous solution of R & F, and the pH was maintained in the range 

of 6.5-7.4. Gelation of these sols took 16-30 h followed by 7 days aging. To overcome the 

long processing times, efforts focused on gelation of RF under acidic conditions.100 Later, 

a time efficient synthesis of RF aerogels developed via a HCl-catalyzed room temperature 

gelation process in acetonitrile.101 Eventually, that HCl-catalyzed procedure was applied 

also on a special class of phenolic resins referred to as polybenzoxazines. 

 Polybenzoxazines.  The first reported synthesis of the benzoxazine 

heterocyclic ring was in 1944 by Holly and Cope and involved a Mannich condensation of 

an amine (of ortho-hydroxybenzyl amine) and an aldehyde.102 Later Burke et al. in 1949 

reported a single step, one-pot synthesis of many substituted benzoxazines from phenol, 

amine and formaldehyde. [REF. Burke, W. J.; Glennie, E. L. M.; Weatherbee, C. 

“Condensation of Halophenols with Formaldehyde and Primary Amines,” J. Org. Chem. 

1964, 29, 909-912] Further, benzoxazines were synthesized from bisphenol-A and 

diamines. Those monomers can be polymerized to polybenzoxazines with high thermal and 

resistance, good mechanical properties.103 Benzoxazine from bisphnol-A has the advantage 

over other monomers in that it involves a solventless procedure at high temperature of 85-

140 oC.104  

The mechanism of benzoxazine formed via Mannich reaction of phenolic 

derivatives, amines and formaldehyde is shown in Scheme 1.3. In the last part of the 

dissertation, benzoxazine monomer was synthesized according to Ishida’s solventless 

procedure using bisphenol-A, aniline and formaldehyde. That benzoxazine monomer could 

be either polymerized using conventional heating at 130 oC,105 which is a long procedure 
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or from a newly developed room-temperature acid-catalyzed process, which takes just a 

few hours.106 Wet gels were washed and were dried with SCF-CO2 to PBO aerogels. Those 

aerogels combine high mechanical strength, high temperature stability, high char yield 

(thereby, they are attractive for conversion to nano-porous carbon), low water absorption 

and flexibility in design. 

 

 

 

Scheme 1.4. General reaction mechanism for the synthesis of Benzoxazine monomer. 

 

 

 

Generally ring opening reaction of benzoxazine monomers leads to the formation 

of polybenzoxazine. Addition of metal ions to the above reactions can act as catalysts in 

the ring opening reaction of benzoxazine ring.  The catalytic effect of metal ions on the 

polymerization and degradation has been studied by various researchers. Incorporation of 

TiCl4 into benzoxazine monomer effectively increased the thermal stability of PBO.107 

Agag et al. studied in detail the thermal stability and viscoelastic properties of PBO/Titania 

hybrids.108 Later Sudo et al. studied the catalytic effect of fourth period transition metal 

complexes for the ring opening polymerization of benzoxazine. Among all transition 
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metals, iron, cobalt and manganese displayed high catalytic activity.109 Other rare earth 

metal ions were also used and Ran et al. found that LaCl3 increased the char yield and 

degradation temperature.110  

The morphology of polybenzoxazine resins is generally dependent on two factors 

namely, the rate of the curing reaction and the phase separation processes. Those two 

processes compete in the formation of thermoset blends that produce different kinds of 

morphologies like bicontinuous morphologies, sea-island morphologies and 

interpenetrating networks.111 Huang et al. studied the morphology changes of 

polybenzoxazine/polyethylene oxide (PBO/PEO) blends which showed phase separated 

structures.112  

A gradual change in morphology from sea-island (PEO-PBO) to island-sea (PEO-

PBO) phase was observed upon increasing the PEO content from 10 % to 40 % (Figure 

1.12). Several other polymer blends have also been studied in terms of the possible 

variation in morphology. Some of those blends include blends of polybenzoxazine with 

polyimides,113 polycaprolactone,114 polysulfone,115 epoxy,116 bismaleimide,117 and cyanate 

ester.118 

 Polybenzoxazine Aerogels.  Leventis et al. observed that curing in air at 

around 200 oC is a necessary step for the high-yield conversion of polybenzoxazines to 

isomorphic carbons.119 The air-cured samples were successfully characterized through 

solid state 13C NMR, 15N NMR and FTIR spectroscopy. It was discovered that air oxidation 

causes ring-fusion aromatization along the PBO back bone. It has been previously reported 

that PBO aerogels can be used to convert them to mesoporous carbons, with higher yields 
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than the bulk polymer (e.g., 51% w/w vs 27 % w/w).120 The newly discovered ring-fusion 

aromatization process has explained that observation. Four other systems were also studied 

in detail and the mechanism involving the air-oxidation of phenolic resin aerogels like 

phloroglucinol-formaldehyde (FPOL), terephthalaldehyde-phloroglucinol (TPOL), 

resorcinol-formaldehyde (RF), and phenol-formaldehyde (PF) was explicated. Even 

though the yields of final carbons via direct carbonization were similar to the yields of 

carbons from air-oxidation followed by carbonization, still there was a definite increase in 

the surface areas of the carbons derived from systems that could undergo ring-fusion 

aromatization by low-temperature oxidation.121 Those carbons came from TPOL and 

FPOL.  

 

 

 

 

Figure 1.12. SEM images of different proportion of PBO/PEO blends. (a) 90/10, (b) 

80/20, (c) 70/30, (d) 60/40.117 
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 Nanoporous Metals. Thin films of nanoporous metals have been prepared 

from dealloying,122 laser etching123 and metal deposition onto templates.124 Synthesis of 

bulk nanoporous metals: templating,125 sol-gel chemistry,126 and combustion synthesis.127 

Metal deposition on templates such as colloidal silica particles or polystyrene spheres is a 

conventional approach but, deposition becomes difficult when the pores get reduced to sub-

micron size. On that note, Jiang et al. could do electroless deposition of metals like Ni, Cu, 

Au, Pt and Ag by penetrating through small pores of the template.128 Other ordered 

templates like monodisperse polystyrenes have also been used for metal deposition 

enabling pore sizes in the range of 250-500 nm.129  

 Metal Aerogels.  Noble metal (gold, palladium and platinum) aerogels were 

successfully synthesized by Burpo et al. via a direct solution-based method.130 

Dimethylamine borane (DMAB) and sodium borohydride were used to reduce the noble 

metal salt solutions. Reduction occurs fast (within seconds or minutes) and if it is carried 

out above a critical concentration results in gels, which could then be freeze-dried to 

aerogels. High surface area, capacitance and conductivity of those aerogels allows their 

application in catalytic, energy storage and sensor applications. Previously, noble metal 

aerogels (both monometallic and multimetallic) were also prepared via sol-gel process 

either through gelation of noble metal nanoparticles, which in turn were already prepared 

by reduction of noble metal precursor solutions, or by a single step spontaneous gelation 

process.131  

On the other hand, S. L. Brock’s group has extensively studied the synthesis of 

metal chalcogenide aerogels through sol-gel pathways. The general method involves 

synthesis of metal chalcogenide nanoparticles, followed by complexation with a thiolate 
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ligand, and then controlled oxidation of thiolate groups resulting in the formation of wet-

gels, which could be supercritically dried to aerogels. Different metal chalcogenide 

aerogels like CdS, CdSe, PbS, ZnS, and CdTe were synthesized using this process.132 

Along the way, for the first time, phosphide aerogels based on InP nanoparticles were 

reported in 2013 followed by the synthesis of Ni2P nanoparticle-based aerogels in 2014.133 

These phosphide aerogels show many applications in catalytic reactions namely 

hydrodesulfurization (HDS), hydrodenitrogenation (HDN), hydrodeoxygenation (HDO), 

and hydrogen evolution reaction (HER).134  

 Metal Aerogels via Carbothermal Reduction.  Several other metal 

aerogels seem to serve as viable alternatives to precious metal aerogels with applications 

in energy conversions, biomedicine and catalysis.135 Kumar et al. synthesized Ni-Fe alloy 

aerogels by using polydopamine as a carbon source for reducing nickel-iron oxide 

aerogels.136 Those materials showed electrocatalytic activity towards the oxygen evolution 

reaction. After that, Chandrasekaran et al. reported similarly the synthesis of Ni-Fe alloy 

particles supported on reduced graphene oxide aerogels via the carbothermal reduction of 

Nickel iron oxide-graphene oxide aerogels at 800 oC in inert atmosphere.137  

The performance of energy storage materials depends on the design, structure and 

properties, which has led to the development of latest energy storage and conversion 

devices in the form of stretchable lithium ion batteries,138 and stretchable inorganic solar 

cells.139 Those stretchable forms consist of single crystal elements that can be shaped to 

periodic, wavelike geometries. They can be supported by elastomeric substrates, that 

allows them to be stretched and compressed to high strain values without damaging the 

metal structure. 
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Practically efficient synthesis of metal aerogels through nanosmelting of polymer-

metal oxide aerogels was reported by Leventis et al.140 Here, epoxide-initiated gelation of 

iron chloride is mixed with resorcinol-formaldehyde and the acidity of the gelling iron 

oxide network catalyzes the co-gelation of RF network. Pyrolyzing these interpenetrating 

networks of RF-iron oxide under inert atmosphere at different temperatures ranging from 

200 to 1000 oC results in the formation of porous pig iron.  

Along this way, interpenetrating network of polybenzoxazine-iron oxide (PBO-

FeOx) similar to RF-FeOx aerogel were synthesized and pyrolyzed at 800 oC to form iron 

aerogels. The main drawback about RF-FeOx route was that the resulting iron aerogels 

were not monolithic. Those porous iron aerogels prepared from PBO-FeOx were infiltrated 

with oxidizing agents like LiClO4 for demonstrating the capability of those materials to 

function as energetic materials. But, those iron aerogels retained a small amount of carbon, 

which is not favorable for these applications. Hence, the final aerogels were further 

oxidized at 600 oC in air followed by reduction in H2 at 800 oC to produce highly 

crystalline, pure iron aerogels. It was observed that these final aerogels could perform as 

explosives when loaded with oxidizers and ignited in air. Increasing the temperature of the 

final reduction step to 1200 oC resulted in aerogels that could act as thermites. So, the final 

part of dissertation explains the effect of final reduction temperature on the explosive 

versus thermite behavior of iron aerogels when infiltrated with LiClO4 and ignited in air. 

Changes in the morphology, particle sizes through N2 sorption, mechanical properties and 

electrical conductivity of the iron aerogels were also studied as a function of the final 

reduction temperature. The properties mentioned above were related to the ignition 

behavior of oxidizer-loaded iron aerogels. Iron aerogels synthesized here showing thermite 
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behavior can be used as heat sources for thermal batteries. Traditionally, for activating 

thermal batteries, the heat source was pyrotechnic pellets. Those pellets were a compressed 

mixture of Fe and KClO4 and changing the mole ratio of Fe and KClO4 gave rise to 

different heat release rates.141 The technology described in this dissertation deals with the 

mechanical strength, cheap raw materials, and better production efficiency of PBO-FeOx 

derived Fe(0) thermites and explosives. 
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ABSTRACT 

Shape memory polymers (SMPs) remember and return to an original shape when 

triggered by a suitable stimulus, typically a change in temperature. They are pursued as 

cost-effective, low-density, higher-strain-tolerant alternatives to shape memory alloys. 

Arguably, porous SMPs may offer the near-ultimate refinement in terms of density 

reduction. To that end, shape memory polymeric aerogels (SMPAs) may offer a viable 

approach. The necessary condition for SMPs is rubber-like superelasticity, which is 

introduced via crosslinking. Crosslinking is also a necessary condition for inducing phase 

separation during solution-phase polymerization of suitable monomers into 3D 

nanoparticle networks. Such networks form the skeletal frameworks of polymeric aerogels.  

mailto:leventis@mst.edu
mailto:cslevent@mst.edu
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Those principles were explored here with rigid trifunctional isocyanurate crosslinking 

nodes between flexible urethane tethers from four short oligomeric derivatives of ethylene 

glycol: H(OCH2CH2)nOH (1≤n≤4). Formation of self-supporting 3D particle networks 

depended on the solubility of the developing polymer, which translated into specific 

combinations of the diol, monomer concentration, and composition of the solvent 

(CH3CN/acetone mixtures). Those parameters were varied systematically using statistical 

design-of-experiments methods. The skeletal frameworks of the resulting 

poly(isocyanurate-urethane) (PIR-PUR) aerogels consisted of micron-size particles. Bulk 

densities were in the 0.2-0.4 g cm-3 range, and typical porosities between 70% and 80% 

v/v. Glass transition temperatures (Tg) varied from about 30 oC (n=4) to 70 oC (n=1). At 

and above Tg, all SMPAs showed rubber-like elasticity. They also became stiffer after the 

first stretching cycle, which was traced to maximization of H-bonding interactions 

(NH....O=C and NH….O(CH2)2). Below the Tg zone, the elastic modulus of all formulations 

decreased by about 1000 fold. That property gave rise to a robust shape memory effect 

(SME), the quality of which was evaluated via several figures of merit that were calculated 

from tensile stretching data over five temperature cycles between Tg+10 oC and Tg–40 oC. 

All thermomechanical testing was carried out with dynamic mechanical analysis (DMA). 

The strain fixity was always >98%, pointing to very low creep.  After the first cycle, strain 

recovery (a measure of fatigue) improved from 80-90% to about 100%, and the fill factor, 

a cumulative index of performance, reached 0.7, which is in the range of fast elastomers. 

The robust shape memory effect was demonstrated with deployable panels and bionic 

hands capable of mimicking coordinated muscle function. 
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1. INTRODUCTION 

Shape memory materials (SMM) remember and return to an original shape. The 

transition is triggered by light,1,2 electric3,4 or magnetic fields,5 most frequently though by 
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a change in temperature.6 The two main classes of SMMs are shape memory alloys (SMAs) 

and shape memory polymers (SMPs). Application areas range from aerospace (deployable 

structures),7 to biomedicine (implantable devices,8,9 surgical sutures,10 drug delivery 

vehicles),11 to transportation,12 construction,13 electronic,14 textile15 and various consumer 

product industries (e.g., as lightweight actuators).16,17  

 The first SMM was a Au-Cd alloy (1930s).18   Nitinol (a Ni-Ti alloy), arguably 

the most well-studied material in that class, was introduced in the 1960s.19,20 Nitinol is a 

superelastic material, meaning that it recovers its shape after extreme deformations – e.g., 

after bending by 180o.21 Superelasticity is a necessary condition for the shape memory 

effect, but not sufficient: just so it happens, the martensitic phase of Nitinol, which is 

brought about by lattice deformation under shear stress, is also stable at lower temperatures. 

Thus, deformation at a higher temperature followed by cooling “freezes” Nitinol to a 

temporary shape that is retained even after stress is removed. By raising the temperature, 

the martensitic phase returns to the normal stress-free austenitic phase of the material and 

the object recovers its original shape. SMAs develop high recovery stresses, in the range 

of 50-500 MPa, on the downside though they are heavy, costly, and their recoverable 

transformation strains are low (usually <10% – above that level, deformation causes 

unrecoverable lattice slippage).22  

 SMPs are high strain-tolerant, lightweight alternatives to SMAs.  The first SMP 

was disclosed in a 1941 patent and was based on a methacrylic acid ester for dental 

applications.23 The familiar crosslinked polyethylene-based heat-shrinking tubing was 

introduced in the 1960s,24,25,26 however, systematic research on SMPs started picking 

momentum only in the 1990s.27,28,29 Superelasticity is again a necessary condition for the 
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shape-memory effect, but here it is more commonly referred to as “rubber-like elasticity.”30 

“Rubber-like elasticity” implies that superelastic polymers are elastomers, thus their 

response to tensile stress is associated with rigid covalent crosslinking nodes between 

extendable (i.e., linear) polymeric strands. But, for such elastic behavior, polymeric strands 

must be free to move in the first place, therefore the polymer must be amorphous and above 

its glass transition temperature. Thereby, in the simplest form, if an elastomer with a glass 

transition temperature (Tg) within a range of interest –typically at room temperature or 

slightly above– is first deformed and then cooled below Tg, segmental motion of the 

polymeric chains stops, and covalent crosslinking nodes cannot pull the polymer back to 

its original shape. Raising the temperature back above Tg allows the covalent crosslinking 

nodes to do their job. 

 Those principles have been implemented with a wide range of polymers, and 

combinations thereof in blends and in layers, utilizing for the shape memory effect glass 

transitions, but also crystallization phenomena.31,32,33 SMPs include polyacrylate co-

polymers,34 segmented polyurethanes,35,36 and polyurethane ionomers,37 poly(ether ether 

ketone) ionomers,38 epoxy based polymers,39 thio-ene based polymers,40  crosslinked 

polycyclooctene,41  polynorbornene,42  crosslinked ethylene-vinyl acetate copolymers,43  

and various styrene-based polymers.44  

 Perhaps the ultimate refinement in terms of weight reduction in SMM may 

involve porous polymers. A special class of materials in that category are classified as 

aerogels and are prepared by drying wet-gels under conditions that preserve the volume of 

the gel into the final dry object. That process typically involves converting the pore filling 

liquid into a supercritical fluid (SCF) that is vented of as a gas. In turn, wet-gels are 
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prepared via a sol-gel process that involves solution polymerization of suitable 

multifunctional monomers in a suitable solvent.45,46 For this, covalent crosslinking, in 

principle similar to what makes polymers elastomeric, renders the growing polymer 

insoluble in the polymerization medium, and induces phase-separation of colloidal 

polymeric nanoparticles that bear active functional groups on their surface. Moving around 

randomly, eventually, those polymeric nanoparticles find one another, and get linked via 

reaction of their surface functional groups into a 3D network that comprises the skeletal 

framework of the aerogel. By this discussion so far, it may be perceived that shape memory 

aerogels are mere SMPs in aerogel form. In reality, however, there are conflicting 

requirements between those two classes of materials. For shape memory elastomers the 

polymeric strands between crosslinking nodes are typically long by aerogel standards, and 

if that chemistry is transplanted directly into aerogel synthesis, one will face the fact that 

longer tethers increase the solubility of the developing polymer. In turn, that causes 

accumulation of a secondary polymeric layer on the surface of the primary network via 

reaction of soluble oligomers in the pores with the active functional groups on the 

nanoparticles.47,48,49 Upon de-swelling during drying, that continuous secondary layer of 

polymer pulls the particle network together causing collapse into a more or less dense 

plastic. Clearly, there is a need for a fine balance between the factors that render a polymer 

superelastic, and at the same time sufficiently insoluble and able to form a sturdy aerogel 

skeletal framework. The unsatisfied quest for that balance is what has rendered shape 

memory aerogels elusive. A closer look at superelasticity and aerogels is therefore in order. 

 Superelastic aerogels have been described mostly with silica or silica-organic 

hybrids.50,51,52,53 The phenomenon has been associated invariably with a spring-back effect 
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after compression – not tension. We are aware of only one recent example of thiol-ene 

based aerogels that went through temperature cycles, and showed size fixing upon cooling, 

and recovery upon heating.54 Again, those materials were tested only under compression. 

However, folding/unfolding and other complicated deformations typically associated with 

the shape memory effect require rubber-like superelasticity under tension. In that context, 

there are numerous literature reports about flexible polymeric aerogels, most notably 

polyimides,55 and certain isocyanate-derived aerogels based on polyureas56 and 

polyurethanes49,57 that could be bent by 180o, but rubber-like elasticity is still lacking: only 

a small fraction, if any, of that deformation could be recovered after stress was removed. 

Nevertheless, there is a particular class of isocyanate-derived polymers, polyisocyanurates 

(PIRs), which warrants special attention. PIRs come from trimerization of isocyanates and, 

because of their high thermal stability and low flammability, are pursued as insulation 

foams, coatings and adhesives.58,59,60,61  On the down side though, PIRs are friable – they 

can be easily crumbled. To overcome that issue, commercial PIRs are urethane-modified 

polymers made by mixing an excess of a diisocyanate with a diol and a suitable catalyst. 

Reaction of the diisocyanate both with itself and the diol yields isocyanurate rings linked 

by urethane tethers. In those poly(isocyanurate-urethane) polymers (PIR-PUR), 

isocyanurate rings play the role of covalent nodes. PIR-PURs are no longer friable, and in 

many cases elastomeric.62,63  

Along the molecular design principles of PIR-PUR, Scheme 1 shows the monomers 

and the reaction pathway employed in this study towards shape memory aerogels. For 

closer control of the properties of the polymer we opted against simultaneous formation of 

the isocyanurate rings and the polyurethane tethers. Instead, the isocyanurate crosslinking 
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nodes were introduced separately as part of the monomer, by using a commercial 

triisocyanate derivative of aliphatic hexamethylene diisocyanate (N3300A – see Scheme 

1), which combines the rigidity of the isocyanurate ring with the flexibility of the –(CH2)6– 

tethers. The diols were variable-length derivatives of ethylene glycol (EG), and were 

chosen over, for example, hydrocarbon alternatives, because of the possibility for H-

bonding with the urethane groups of neighboring polymeric branches. Chances for H-

bonding, which could be enhanced with longer diols, would reduce molecular slippage and 

macroscopic creep, thus favoring elastic over plastic behavior. On the other hand, though, 

longer diols would enhance segmental motion of inter-nodal tethers, which could be 

desirable in terms of lowering glass transition temperatures into a useful range, but they 

could also increase plasticity.  Furthermore, it was also understood that increasing the 

length of the diol would necessarily increase the solubility of the developing polymer, 

which would increase the particle size, consequently would decrease surface areas, and 

would compromise thermal conductivity. However, such a departure from typical aerogel 

properties was deemed acceptable given our objective towards low-density shape-memory 

materials rather than more conventional aerogel applications (e.g., in thermal insulation).  

In practice, particle sizes, and secondary polymer accumulation on the primary network 

were controlled not only via the chemical identity of the diol, but also via the sol 

concentration, and via the gelation solvent, which was varied from pure acetonitrile to a 

1:1 v/v mixture of acetonitrile/acetone.  

 Materials are described in terms of their chemical composition, micromorphology 

and thermomechanical properties. The shape memory effect was quantified with several 

figures of merit that include the shape fixity ratio, the strain recovery ratio, the strain 
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recovery rate and the fill factor. Varying the alcohol affected the glass transition 

temperature, which, in the case of TEG translated into shape-recovery activated at room 

temperature. That accounts for the most dramatic demonstration of the shape memory 

effect in terms of potential applications in deployable panels and biomimetic devices. 

 

2. RESULTS AND DISCUSSION 

 SYNTHESIS AND CHEMICAL IDENTIFICATION OF 

POLYISOCYANURATE AEROGELS  

The reaction of Scheme 1B was implemented according to the protocol of Scheme 

2A. The urethane formation was catalyzed by dibutyltin dilaurate (DBTDL) in a 1:120 

mol/mol ratio relative to N3300A, and gelation took place at room temperature. Monomers 

were used at their stoichiometric amounts (triisocyanate:diol = 2:3 mol/mol). Wet-gels 

were aged up to 16 h to ensure complete reaction and were dried to aerogels by extracting 

the pore-filling solvent with liquid CO2, which, at the end, was converted to a supercritical 

fluid (SCF) and was vented off as a gas. Sols were prepared in acetonitrile:acetone mixtures 

from 50:50 v/v to pure CH3CN. The total monomer concentration was varied between 15% 

and 25% w/w. The ranges of the solvent ratio and the monomer concentration were based 

on screening experiments with TEG-based PIR-PUR aerogels, in which we looked for low-

density materials demonstrating room-temperature rubber-like superelasticity similar to 

that of alloys,21 as shown in Figure 1. Such TEG-based samples either above the selected 

concentration range, or prepared in sols consisting of more than 50% v/v acetone seemed 

to collapse into dense “plastics.” Below the selected concentration range, if sols could still 

form gels, the resulting aerogels did not seem to have the strength to “lift” themselves up 
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as in Figure 1. Samples prepared in pure acetonitrile did not seem to show optimal 

performance in terms of their recovery time (Figure 1). Since those two exploratory 

variables, monomer concentration and solvent composition, seemed to have a similar effect 

in terms of their ability to form low-density rubber-like superelastic materials, it was 

deemed reasonable that their effects were coupled. Thereby, for the purposes of the 

protocol of Scheme 2A, sample preparation with each diol was guided by response surface 

methodology implemented with a central composite rotatable design model (CCRD – see 

Appendix I in the Supporting Information),64,65,66 in which point selection in the domain of 

the exploratory variables was carried out using the JMP11 software package,67 from the 

perspective of a subsequent quadratic dependence of the derived properties (e.g., density, 

porosity, modulus etc.) on the exploratory variables.68 

Individual samples are referred to as ALC-xx, according to their diol (ALC) and 

their position (-xx) on the rotatable domain. The design space is summarized in Scheme 

2B. The exact formulations are tabulated in Tables S.1 and S.2 of Appendix I in the 

Supporting Information, along with the phenomenological gelation times. Here, in brief, 

ALC-1 / ALC-10 correspond to the middle VCH3CN/Vsol_Total ratio (0.75), and th low/high 

monomer concentrations, respectively. The central point of the design was repeated twice 

(ALC-5 and ALC-6). Even numbered ALC-2, ALC-4 and ALC-8 correspond to higher 

VCH3CN sols. Odd numbered ALC-3, ALC-7 and ALC-9 correspond to acetone-rich sols. 

The chemical composition of ALC-xx was confirmed with solid-state CPMAS 13C 

and 15N NMR (Figure 2). Insight to non-covalent interactions (H-bonding) was obtained 

with ATR FTIR and is discussed in Section 2.3.2 below in conjunction with the 

thermomechanical properties of ALC-xx. The N13CO and 15NCO resonances of the 
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isocyanate (expected at 122 ppm and 28.5 ppm, respectively) were absent from all the 13C 

and 15N NMR spectra, pointing to complete reaction.  

The 13C NMR resonances at 149.8 ppm and 157.2 ppm were assigned to the 

isocyanurate and the urethane carbonyl (–NH(C=O)O–), respectively. The resonances at 

61.8 and 70.6 ppm were assigned to the aliphatic carbons of ALC, and the relative intensity 

of the two resonances changed from EG-xx to TTEG-xx, as expected from the number of 

internal vs. terminal –OCH2CH2– groups sandwiched between two urethane groups. The 

remaining two peaks in the aliphatic region, at 43.0 and 27.7 ppm, were assigned to the –

CH2– groups of N3300A (Scheme 1A). Interestingly, the urethane carbonyl resonance at 

157.2 ppm (–NH(C=O)O–) was sharper in EG-xx and DEG-xx, and became progressively 

broader in TEG-xx and TTEG-xx.  In the solid-state 15N NMR spectra, the resonance at 

138.0 ppm was assigned to the isocyanurate ring, and the one at 80.5 ppm to the urethane 

nitrogen. No resonance was detected in the 50-60 ppm region that could be assigned to –

NH2 from hydrolysis of unreacted –NCO.56  Just like in the solid-state 13C NMR spectra, 

again, we noted a progressive peak broadening of the –NH(C=O)O– resonance, which 

became most prevalent in TTEG-xx.  Peak broadening in both the 13C and 15N NMR 

spectra of the –NH(C=O)O– group signifies that as the length of ALC increased, urethane 

groups found themselves in more diverse environments and/or H-bonded.    

  

 GENERAL MATERIAL PROPERTIES, MICROMORPHOLOGY, AND THE 

GROWTH MECHANISM OF ALC-XX FROM AN EXPLORATORY 

VARIABLE PERSPECTIVE  

Relevant material properties of ALC-xx are summarized in Table S.3 of Appendix 

II in the Supporting Information.  Here, in graph form, Figure 3 compares shrinkage, bulk 
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densities and porosities of all ALC-xx as a function of their position in the domain of the 

exploratory variables (i.e., the sol composition). For quick reference, that domain is 

reproduced as a separate frame in Figure 3. Most ALC-xx aerogels shrunk roughly 20% to 

25% in linear dimensions relative to the molds. Samples that stand out are all TTEG-xx 

aerogels, except TTEG-2 and TTEG-4 (pointed at by gray arrows), and TEG-7, TEG-9 

and TEG-10 (pointed at by blue arrows). TTEG-2 and TTEG-4 shrunk less (29% and 

31%, respectively) than the other TTEG-xx (40%-50%); TEG-7, TEG-9 and TEG-10 

shrunk more than the other TEG-xx samples, in fact in the TTEG-xx range (40%-50%). 

Importantly, all shrinkage in all samples was observed exclusively during drying: even the 

collapsed samples of Figure 3 (i.e., those that shrunk excessively), showed no shrinkage 

during solvent exchange, suggesting that: (a) all four polymers were swollen in their wet-

gel state; and, (b) no major reorganization of the nanostructure took place during solvent 

exchanges.69 High shrinkages were accompanied by high bulk densities (b) –in some cases 

>1.0 g cm-3– and low porosities (): in most collapsed samples <10% v/v.70  At any rate, 

the vast majority of EG-xx, DEG-xx and TEG-xx were low-density materials (b<0.5 g 

cm-3) with high porosities (mostly 70%-80% v/v). Within their respective ranges, b and  

followed the general upwards and downwards trends expected by increasing the sol-

concentration. Two notable exceptions were EG-1 and DEG-1 (pointed with color-coded 

arrows): although their densities/porosities were not excessive (high/low, respectively), yet 

those two samples did stand out with densities disproportionally higher, and porosities 

disproportionally lower than those of the rest of the EG-xx and DEG-xx. Those two 

samples were at the lower end of the isocyanate concentration range, and upon closer 

examination they appeared chalky, could not be machined for mechanical testing, and by 
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looking back at the gelation process it was noticed that the reaction products looked more 

like loose precipitates (flocks) rather than colloidal gels.  

Overall, considering all information above together, longer TTEG generally caused 

excessive shrinkage, which, in two cases, TTEG-2 and TTEG-4, could be controlled via 

the two exploratory variables, namely by keeping the TTEG concentration low, in 

combination with CH3CN-rich sols. Similarly, the three TEG-xx samples that shrunk 

excessively (TEG-7, TEG-9 and TEG-10) were among those from high TEG 

concentration sols, in combination with acetone-rich solvent. Clearly, as it has been alluded 

to already from the preliminary runs (Section 2.1), the effects of the monomer 

concentration and the solvent composition were coupled.  

Excluding only EG-1 and DEG-1 (i.e., the two samples that seemingly came from 

flocks), quadratic fitting of b to monomer concentration (X1) and solvent ratio (X2) 

according to Eq 1 gave good correlations for all four ALC-xx, as shown in  

 b = A(X1)
2 + B(X2)

2 + C(X1)(X2) + D(X1) + E(X2) + F        (1) 

Figure 4 (0.917≤R2≤0.945). Coefficients A-F are cited in Table S.4 of the Supporting 

Information. It is noteworthy that despite the sudden onset of excessive shrinkage in many 

samples, density still varied smoothly with X1 and X2 in all four ALC-xx systems. That 

finding, together with the fact that shrinkage was observed always at the drying stage, 

signify that all ALC-xx sols followed similar gelation processes, and the resulting aerogels 

shared some key microscopic/network characteristics, irrespective of their macroscopic 

appearance (collapsed or otherwise).  

The micromorphology of ALC-xx was investigated with SEM (Figure 5). All non-

collapsed samples consisted of networks of large micron-size spherical particles (see xx=2 
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column of Figure 5). The contact area around the interparticle neck-zones of EG-xx was 

narrow. The particle size first increased in DEG-xx relative to EG-xx, and then decreased 

(in TEG-xx and TTEG-xx), while the interparticle neck-zones became wider, in essence 

fusing particles together. The two TTEG-xx samples that did not collapse (TTEG-2 and 

TTEG-4), and the three TEG-xx samples that did collapse (TEG-7, TEG-9 and TEG-10) 

became the experimental and conceptual link between the nanostructures of collapsed and 

non-collapsed samples. Non-collapsed TTEG-2 consisted of smaller particles than the 

other ALC-2 samples, with enhanced merging at the necks. Non-collapsed TTEG-4 

seemed to consist of even smaller particles shrouded by a layer of polymer thicker than the 

particles themselves.  Importantly, the latter was also the common appearance of all TEG-

xx samples that did collapse (see for example TEG-7 in Figure 5, as well as TEG-9 and 

TEG-10 in Figure S.3 of the Supporting Information). To recast and summarize, remnants 

of particles were still discernible in all collapsed samples, but they were smaller and coated 

with a thick layer of polymer.  

Albeit at different length scales (about 100 smaller than what we are dealing with 

here), particle fusion at higher sol concentrations, just like what we have been able to 

visualize in Figure 5, has been inferred previously with numerous other polymeric aerogels 

by comparing particle sizes calculated based on small angle x-ray scattering and gas 

sorption data.47,48,49 A universally consistent hypothesis that explains both the previous 

systems, and the morphological evolution noted in Figure 5  involves formation of a 

primary network of connected spherical particles, followed by accumulation of a secondary 

polymer layer, preferably at the points of negative curvature – the interparticle necks.  That 

secondary accumulation of polymer takes place via reaction of soluble oligomers, or yet 
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unreacted monomer remaining in the pores of the primary network with functional groups 

on the surface of the particles of the primary network. Clearly, that monomer/oligomer-to-

network growth mechanism depends on how fast the primary network is formed, hence on 

the monomer concentration, and the solubility of the developing polymer. The solubility 

of the developing polymer depends on the solvent system, and the freedom for segmental 

motion of the polymer chains. In ALC-xx the relevant polymeric segments are the –(CH2)6-

NH(CO)-(OCH2CH2)n-O(CO)NH-(CH2)6– tethers (1≤n≤4) connecting the isocyanurate 

nodes, and consist of two fixed-length aliphatic moieties (–(CH2)6–), and one variable-

length ether moiety sandwiched in between. The longer the tether, the more soluble the 

developing polymer, hence the primary network consisted of smaller particles and 

secondary polymer accumulation was enhanced. Similarly, secondary polymer 

accumulation was enhanced with sols richer in stronger H-bonding acetone, which favors 

solubilization of the developing polymer.56,71  Now, it was also observed that the more 

secondary polymer accumulation the higher the chances for excessive shrinkage. Given 

that all samples, no exceptions, shrank only during drying, it is reasonable that de-swelling 

of particles was uniform, and preserved the morphology and porous structure of the particle 

network. On the other hand, de-swelling of the polymeric layer from secondary 

accumulation pulled the particle network together causing collapse. Thereby, success in 

the synthesis of porous PIR-PUR networks is predicated upon the strength of the primary 

particle network to support itself and resist stresses developing by de-swelling of the 

secondary polymer layer. Overall, a viable aerogel network requires synthetic parameters 

that reach a balance between particle size and thickness of the polymeric layer from 

secondary accumulation.   
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 THERMOMECHANICAL CHARACTERIZATION   

That was carried out with emphasis on data related to shape memory effects. 

 Glass Transitions. They were determined with temperature scans using 

dynamic mechanical analysis (DMA) in a tensile test configuration as described in 

Experimental. Only lower-density, non-collapsed samples were considered. That excludes 

EG-1, DEG-1, TEG-7, TEG-9, TEG-10, and all TTEG-xx samples except TTEG-2 and 

TTEG-4. Typical DMA data are exemplified with TEG-8 in Figure 6A. At lower 

temperatures all materials were stiff with elastic moduli, G´, about 10 times higher than the 

loss moduli, G´´. As temperature increased, both G´and G´´started decreasing, crossed one 

another twice, and eventually got again stabilized at higher temperatures. The final values 

of both G´and G´´ were about 1000 times lower than their respective low-temperature 

values, but again G´ was approximately 10 times higher than G´´. Results from repetitive 

scans of the same samples were practically identical. The glass transition temperatures 

reported, Tg, are the maxima of tan  (=G´´/G´). Tg values varied randomly by a few degrees 

within each ALC-xx. As shown in Figure 6B, the average Tg values of the four ALC-xx 

followed the order: (Tg)EG-xx > (Tg)DEG-xx > (Tg)TEG-xx > (Tg)TTEG-xx, and were spaced 

approximately 10-20 oC apart from one another (for the primary data refer to Table S.5 in 

the Supporting Information). The glass transition zones were generally narrow. For 

instance, all full widths at half maxima (FWHM – Table S.5) of all tan  plots for all ALC-

xx were in the range of 12.0-17.7 oC. As the onset of segmental motion in polymers is 

typically considered the maximum in the G´´curve (indicated with an arrow in Figure 6A). 

Those maxima were generally 10-13 oC lower than the tan  maxima (see Table S.5 and 

Figure S.8 in the Supporting Information), and may be considered either as the upper 
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temperature limits for fixing the shape of the polymer, or loosely as the onset of shape 

recovery.  

 The Elastic Properties of ALC-XX Under Tension: Strain Recovery, 

Creep and Stress Relaxation as a Function of Tg.  As a preamble to the shape memory 

effect, this Section investigates the elastic properties of ALC-xx relative to Tg, confirms 

that ALC-xx can store and keep energy (essential for shape recovery), and explores 

whether they can do that repetitively. This Section offers also an insight to the molecular 

rearrangements associated with settling after the first stretching cycle, and in some cases 

some minor creep afterwards. Those results become important in rationalizing differences 

in shape recovery rates amongst the various ALC-xx. For those purposes, two randomly 

selected samples, DEG-4 and TEG-8, were tested under tension at three different 

temperatures, Tg+40 oC, Tg and Tg–40 oC. That range ensures conditions from well above 

to well below the glass transition zone (see previous Section). Fresh, as-prepared samples 

were loaded and unloaded five times with constant force ramp rates to pre-determined 

strain values; at the end of the fifth loading cycle, samples were step-reloaded to the last 

strain value, which was maintained while the stress was monitored as a function of time.72 

The ultimate strains at each temperature were set just below the respective failure 

(snapping) points, and were chosen (based on preliminary runs) in a way that would 

accommodate all five cycles (i.e., accounting for creep). The behavior of both DEG-4 and 

TEG-8 was very similar in all aspects. The results with TEG-8 are shown in Figure 7 (for 

the results with DEG-4 see Figure S.9 of Appendix VII in the Supporting Information). 

Referring to TEG-8 and Figure 7, at both Tg and Tg+40 oC (40 oC and 80 oC, respectively), 

samples were essentially linearly elastic. Overall, at Tg, samples were about twice as stiff 
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as at Tg+40 oC. At both temperatures, samples became stiffer at the second loading cycle 

and beyond (the stress-strain slope increased). Beyond the second cycle, stress-strain 

curves were superimposable at Tg+40 oC. At Tg, we noticed a small drift towards larger 

strains with repetitive cycling (yellow arrow pointing to the right) indicating a small 

amount of creep. Below the glass transition range (Tg–40 oC = 0 oC), samples were much 

stiffer (notice the narrow strain range), and repetitive stretching led to accumulation of 

unrecoverable strains. At Tg+40 oC samples could store and keep >98% of the energy spent 

for stretching (last frame of Figure 7). That energy was available for recovery of the 

original dimensions after stress was released. Energy was progressively lost from the 

stretched state as the temperature was decreased: already at Tg, TEG-8 lost about 9% of 

the energy stored. Below the glass transition range (again at Tg–40 oC), the energy lost was 

about 65% and kept on increasing even after 20 min of constant strain. Energy loss 

notwithstanding, stress relaxation was fast at or above Tg, and much slower below the glass 

transition zone (note the different time scales in the last frame of Figure 7).       

 There are two possible contributors to settling after the first stretching cycle at Tg 

and Tg+40 oC, or the subsequent creep at Tg: heating, stretching or both. An insight was 

obtained with ATR FTIR of several random ALC-xx samples. Spectra of a representative 

sample (TEG-2) are shown in Figure 8 (for the others refer to Appendix V in the 

Supporting Information). Data relevant to this discussion are summarized in Table 1. All 

spectra were dominated by the isocyanurate carbonyl stretch near 1680 cm-1. The 

2300−2000 cm-1 region was clean of any unreacted N=C=O stretch in agreement with the 

solid-state NMR data (Figure 2). The free urethane carbonyl stretch was observed at 1729 

cm-1 as a shoulder to the intense isocyanurate absorption. Possible carbonyl absorptions of 
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H-bonded urethane would appear at lower energies, but they were masked by the intense 

isocyanurate absorption. The N−H bending coupled to C−N stretching gave an absorption 

at 1529 cm-1.73 The absorptions at 1240 cm-1, 1129 cm-1 and 1049 cm-1 were attributed to 

the ethylene glycol and urethane asymmetric and symmetric C−O−C stretches.74,75 Using 

flat baselines from 3050 to 3800 cm-1, the N−H stretch region of all the ALC-xx tested was 

deconvoluted into three absorptions (Figure 8B): one in the 3423-3545 cm-1 range (free 

NH);76,77  a second one, typically the most intense absorption, in the 3331-3341 cm-1 range 

(NH-bonded to carbonyl: NH....O=C);77,78 and, a third weaker absorption in the 3204-3234 

cm-1 range assigned to NH….O(CH2)2 (NH stretch, H-bonded to glycol groups).77,79,80 

Following the same trend with the progressive broadening of the –NH(C=O)O– resonance 

in the 13C NMR spectra and the –NH(C=O)O– resonance in the 15N NMR spectra, it is 

noted that by going from DEG-2 to TEG-2 to TTEG-2, the absorption intensity ratio of 

[free NH] : [NH....O=C] : [NH….O(CH2)2] moved from 4.6/4.4/1.0 to 2.2/7.3/0.5 to 

2.2/6.7/1.1 respectively, showing, albeit only qualitatively,81 an increase of H-bonded NH 

at the expense of free NH as the length of the ALC increased.  

 Now, as demonstrated in Figure 8C, a heating cycle above Tg followed by cooling 

back to room temperature increased the fraction of H-bonded NH. As summarized in Table 

1, the new intensity ratio [free NH] : [NH....O=C] : [NH….O(CH2)2] moved in favor of 

NH....O=C, at the expense of free NH, becoming 1.6/7.1/1.3, 0.8/8.4/0.8, and, 0.0/8.2/1.8, 

in DEG-2, TEG-2 and TTEG-2, respectively. Next, we investigated the effect of heating 

above Tg, stretching at that temperature and cooling back to room temperature (Figure 6D). 

That cycle had a similar effect to just heating-and-cooling; the difference was that a higher 

portion of free NH would survive the cycle as the ALC became longer (i.e., from DEG to 
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TTEG). The ratio of [free NH] : [NH....O=C] : [NH….O(CH2)2] for the three DEG-2, TEG-

2 and TTEG-2 moved to 0.8/7.4/1.8, 1.3/7.7/1.0, and 1.1/7.6/1.3, respectively (Table 1). 

Similar trends were observed for DEG-4 and TEG-8 (data also included in Table 1). In 

summary, ATR FTIR data have shown that as-prepared ALC-xx were in a metastable state. 

Both heating and stretching were responsible for settling at energy minima that maximized 

H-bonding interactions. That provides a satisfactory reason for the stiffness increase noted 

during the first cycle of tensile testing, and the small amount of creep afterwards.   

 The Shape-Memory Effect (SME).  The SME of ALC-xx was  

demonstrated as shown in Figure 9 with a panel similar to the one used in Figure 1 (TEG-

8). The strain imposed during bending in Figure 1 was about 25% (calculated from the 

radius of curvature, R, and the thickness of the specimen, d, via d/2R). In order to force 

strains closer to the ultimate strain of that kind of samples (about 60% - see Figure 7), the 

sample was folded to the tighter radius of curvature as shown in Figure 9. Thus, first, the 

panel was heated in an oven at Tg+40 oC; then it was folded quickly into the spiral form of 

Figure 9, and that shape was fixed by dipping the folded object in liquid N2. As the spiral 

form warmed up to ambient temperature, it unfolded to its original shape.  

The SME was quantified formally for all non-collapsed DEG-xx, TEG-xx samples 

as well as TTEG-2 and TTEG-4 via three individual figures of merit (the strain fixity, the 

strain recovery, and the strain recovery rate), and a cumulative one (the fill factor). Those 

figures of merit were calculated from tensile testing data derived from five temperature-

stretch-relaxation cycles as demonstrated in Figure 10 (for clarity, the 3D graph is shown 

from two perspectives).82 
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All first cycles started with fresh, as-prepared samples. In Stage 1 samples were 

first equilibrated for 5 min at their deformation temperatures (Td = Tg +10 oC), and then 

were stretched at 1N min-1 near to their stretch limit (typically around 60% strain). In Stage 

2 (blue line), stress was kept constant at the maximum value attained in Stage 1, and 

samples were cooled at 5 oC min-1 to their fixation temperature (Tf, well below Tg), where 

they were allowed to equilibrate for 5 min. In Stage 3, the tensile force was decreased to 

0.01 N (i.e. stress was practically removed), samples were allowed to relax (fix) 

isothermally at Tf for 15 min, and the strain was recorded for the duration. Finally, in Stage 

4, strain was recorded while samples were heated at 1 oC min-1 (red lines) to their recovery 

temperatures (Tr = Td = Tg +10 oC). Cycle 2 and subsequent cycles started after an 

isothermal hold at Td for 15 min. As expected from the stress-strain curves of Figure 7, all 

four stages of the thermal cycle curves coincided almost precisely in cycle 2 and above, 

pointing to a robust SME.  

In order to calculate the SME figures of merit, the thermal cycles of Figure 10 were 

transformed and projected to selected faces of the 3D representations, as follows. First, 

since the temperature was cycled at fixed rates, each point along the 3D curve is uniquely 

defined by time. Figures 11A and 11B are such unfolded-in-time projections of the 3D 

curves to the strain-temperature (bottom) plane of Figure 10A, or equivalently, to the rear 

plane of Figure 10B. Figure 11A shows the strain along a random temperature cycle (after 

the first), while Figure 11B shows the strain during the first two cycles. Figure 11C is the 

direct projection (no time unfolding) from the perspective of Figure 10B of one full random 

cycle to the strain-temperature (rear) plane. All figures of merit, of all samples over all 
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cycles are summarized in Table S.6 of Appendix VIII in the Supporting Information. In 

graph form, results from the first and fifth cycles are shown in Figure 12.   

The strain fixity ratio, Rf(N), quantifies creep during Stage 2 (i.e., during cooling 

under constant stress), and was calculated for each cycle, N, from the data like those of 

Figure 11A via Eq 2. (The definition of the two strain values, u and m, are given directly  

                                   𝑅𝑓(𝑁) =
𝜀𝑢(𝑁)

𝜀𝑚(𝑁)
× 100                                      (2) 

in Figure 11A). In agreement with Figure 7, whereas above Tg there is virtually no creep, 

by and large strain fixity in all cycles, including the first one, was always >98% (Table 

S.6.1).  

The strain recovery ratio, Rr(N), quantifies fatigue from repetitive cycling and, just 

like Rf(N), it was also calculated from the data of Figure 11A using Eq 3. Reflecting 

                           𝑅𝑟(𝑁)  =  
𝜀𝑚(𝑁)− 𝜀𝑝(𝑁)

𝜀𝑚(𝑁)
 × 100                                  (3) 

the increase in stiffness observed after the first cycle, all strain recovery values started 

lower in the first cycle (80-90%), increasing and stabilizing thereafter to values >98%. (The 

increase of Rr(N) beyond the first cycle is already evident from the data shown in Figure 

12, but for the near-stabilization just after N≥2, refer to Table S.6.2.) 

The strain recovery rate, Rt(N), is an index introduced in this study in order to 

quantify and compare the relative speed of strain recovery at the heating Stage 4 among 

different samples and cycles. Rt(N) is defined via Eq 4 as the maximum slope of the strain  

𝑅𝑡(𝑁) = max [−
𝑑𝑆𝑡𝑟𝑎𝑖𝑛

𝑑𝑡
]                               (4) 
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vs. time curve during heating in Stage 4 (refer to the red line in Figure 11B). Since the 

strain recovery of Stage 4 did not take place at the natural warm-up rate of the material, 

but instead it was driven by the imposed heating rate, it was deemed necessary to repeat 

the experiment at different heating rates (using fresh samples each time), and observe the 

effect on the rate of recovery (Figure 13). Thus, it is noted that during all cycles, Rt(N) 

followed a near-linear relationship with the heating rate up to 5 oC min-1; therefore, 

different Rt(N) values reflected steeper recovery curves, or equivalently more narrow 

temperature windows of recovery. The obvious place to look for supporting evidence for 

that conclusion was the width of the tan plots, but we were unable to find any meaningful 

correlation between Rt(N) (from Table S.6.3) and the FWHM of tan  (from Table S.5). 

Thereby, we concluded that the stretched, frozen starting point of the shape recovery (Stage 

4) represented a different state of ALC-xx from the as-prepared samples. According to 

Table 1, that state was most probably characterized by an enhanced amount of H-bonding 

relative to the innate (as prepared) state of ALC-xx. In that regard, it is worth nothing that 

the highest recovery rate was observed with DEG-4, which, based on the IR data of Table 

1, did not show any free NH after one heating-stretching cycle. 

Finally, the fill factor, FF(N), has been proposed as a combined index of 

performance,83 and was calculated from the ratio of the shaded S-shaped area to the total 

area of the “box” shown in Figure 11C. Obviously, calculation of that ratio is sensitive to 

the upper and lower temperature limits. As a conservative upper limit we took the 

maximum temperature for all experiments, Tg+10 oC (against the recommended Tg+20 oC).  

The selection of the lower limit, namely the onset of recovery (Stage 4), was based on Rt(N) 

as follows: first, we noted the temperature of the maximum slope (Eq. 4) of the 
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corresponding Figure 11B of every ALC-xx in every cycle; then we located the 

temperature at the foot of Stage 4 where the recovery rate was at just the 3% of the 

maximum rate.  That temperature was set as the onset of recovery in every Figure 11C. By 

its construction, FF(N) combines contributions from all three Rf(N), Rr(N), Rt(N), and was 

also monitored and recorded for all samples during all five cycles. Fill factors (Figure 12, 

Table S.6.4) started lower in the first cycle, but generally no lower than 0.5 (except for 

TTEG-4, where FF(1)=0.4). After samples were broken-in in their first cycles, all fill 

factors were over 0.60, most over 0.65, and in some cases reached 0.70. Those fill factors 

are in the range for high-speed elastomers and are considered high.83,84  

Overall, the strategy of using poly(isocyanutate-urethane) aerogels as lightweight 

alternative to shape memory polymers has been fruitful, leading to materials showing a 

robust shape memory effect.  According to Figure 9, ALC-xx can very well serve as 

deployable panels in applications where weight is at a premium, e.g., as mirrors or antennas 

in space. Figure 14 shows that ALC-xx can also be molded into complex shapes and 

programmed to perform more advanced functions mimicking, for example, the 

complicated muscle coordination of a human hand holding a pen. The slow recovery 

reported in Figure 14 should not be considered as a deterrent. In practice, fast recovery will 

be driven by heating with a thin wire resistor embedded with an object.     

 

3. CONCLUSION 

As a polymeric class, polyisocyanurates have received a low level of attention as 

base-materials for polymeric aerogels. As shown here though, the isocyanurate ring can be 

an effective crosslinking node for imparting both rubber-like elasticity and insolubility of 
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a developing polyurethane network. Both are necessary conditions for the shape-memory 

effect, and the synthesis of polymeric aerogels, respectively. Given the specific 

triisocyanurate node used in this work (a hexamethylene diisocyanate derivative), longer 

diols (selected from the ethylene glycol family), and solvents with enhanced H-bonding 

ability (like acetone) lead to extensive shrinkage and dense polymers, thereby they were 

not suitable for shape memory aerogel synthesis. Once the correct conditions were 

identified with the help of design-of-experiments statistical methods, poly(isocyanurate-

urethane) aerogels showed a robust shape memory effect with high fixity and recovery 

ratios and fill factors. Since aerogels are low-density materials, large-scale applications of 

shape memory polymers, as in deployable panels and biomimetic devices, are becoming 

material-efficient, and within reach. Owing to the necessary compromise between 

conflicting requirements for rubber-like superelasticity and particle network formation, the 

aerogel framework of ACL-xx consisted of large particles (by aerogel standards).  As 

represented in the Introduction, aerogels with nanostructures consisting of large particles 

may not be suitable for typical aerogel applications like in thermal insulation. Nevertheless, 

preliminary results show that the room temperature thermal conductivity of several ALC-

xx selected randomly was in the 0.052±0.005 W m-1 K-1 range, namely similar to several 

commercial thermal insulators like glass or rock wool. Interestingly, filling the pores of 

ALC-xx with silica aerogel (0.015 W m-1 K-1) caused a drop of the thermal conductivity 

to around 0.027 W m-1 K-1, namely within a range accessible mainly by aerogels. The 

properties of those composites are under further investigation.     
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4. EXPERIMENTAL 

 MATERIALS  

All reagents and solvents were used as received unless noted otherwise. The 

isocyanurate node (N3300A) was obtained courtesy of Covestro LLC (Pittsburg, PA) under 

the trade name Desmodur N3300A. Diols (ALC): ethylene glycol (EG), diethylene glycol 

(DEG), triethylene glycol (TEG), tetraethylene glycol (TTEG); the catalyst: dibutyltin 

dilaurate (DBTDL); and, solvents: anhydrous acetonitrile and anhydrous acetone were 

purchased from Sigma-Aldrich. Siphon-grade CO2 was purchased from Ozark Gas Co.  

 

 SYNTHESIS OF SHAPE MEMORY POLY(ISOCYANURATE-URETHANE) 

AEROGELS 

In a typical process, N3300A as received (Desmodur N3300A, 0.504 g, 1.00 mmol) 

and the respective diol (EG, DEG, TEG and TTEG, 1.50 mmol) were dissolved in an 

anhydrous acetonitrile/acetone mixture according to a central composite rotatory design 

(CCRD) model (Appendix I in Supporting Information). The solution was stirred in a three-

neck round-bottom flask at 23 °C under N2 for 10 min, and DBTDL (5 µL) was added. The 

resulting sol was stirred for another 5 min and was poured into molds. Smaller rectangular 

specimens for dynamic mechanical analysis were cut from cylindrical samples prepared 

using plastic syringes as molds (All Plastic Norm-Ject Syringes, 20 mL, Fisher Scientific 

Catalogue No. 14-817-32, 2.53 cm inner diameter). Larger rectangular samples (e.g., 

Figures 1 and 9) were prepared using plastic containers (Style Selections 16”12.75” 

Plastic Multi-Use Insert Drawer Organizer, Model No. 39001, Lowe’s Item No. 105922). 

Molds for bionic hands (Figure 14) were prepared via a 3-stage process: first the negative 
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of a volunteer’s hand was reproduced into Alja-Safe (Crystalline Silica-Free Alginate for 

Molding Body Parts);85 plaster (DAP 4-lb Carton Plaster of Paris Model 10318, Lowe's 

Item No. 41323) was cast into the alginate mold in order to produce the exact (positive) 

replica of the hand; finally, the plaster mold was used to make the final mold using 

AeroMarine Products AM 128 Silicone Mold Making Rubber RTV.86 Molds were sealed 

with ParafilmTM and were kept at room temperature for gelation. The gelation time varied 

from 7 min to about 3h 40 min depending on the chemical identity of the alcohol, the 

monomer concentration and the fraction of CH3CN in the solvent system. Gels were aged 

for 24 h in their molds at room temperature. Subsequently, gels were removed from the 

molds, washed with acetone (4×8h, using 4× the volume of the gel each time), and were 

dried with CO2 taken out as a supercritical fluid (SCF). Samples are referred to as ALC-xx 

where ALC stands for the abbreviation of the diol (Scheme 1), and xx denotes the position 

in the domain of the independent variables domain (Scheme 2B).   

 

 METHODS  

 Drying.  Drying of wet-gels was carried out in an autoclave (SPIDRY Jumbo 

Supercritical Point Dryer, SPI Supplies, Inc. West Chester, PA, or a Spe-edSFE system, 

Applied Separations, Allentown, PA). Samples were loaded into the autoclave at room 

temperature, and were covered with acetone. The pressure vessel was closed and liquid 

CO2 was allowed in at room temperature. Acetone was drained out from the pressure 

vessel, while more liquid CO2 was allowed in. Samples were kept under liquid CO2 for one 

hour. Then liquid CO2 was drained out while more liquid CO2 was allowed in. The cycle 

was repeated several times until all acetone had been extracted out of the pores of the 
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samples. Subsequently, the temperature of the autoclave was raised to 40 oC and that 

condition was maintained for two hours. Finally, supercritical fluid (SCF) CO2 was vented 

off as a gas. 

 Chemical Characterization. Solid-state CPMAS 13C-NMR spectra were 

obtained with samples cut into small pieces on a Bruker Avance III 400 MHz spectrometer 

with a carbon frequency of 100 MHz, using a 7 mm Bruker MAS probe at a magic angle 

spinning rate of 5 kHz, with broadband proton suppression, and the CP TOSS pulse 

sequence. The Total Suppression of Spinning Sidebands (TOSS) pulse sequence was 

applied by using a series of four properly timed 180º pulses on the carbon channel at 

different points of a cycle before the acquisition of the FID, after an initial excitation with 

a 90º pulse on the proton channel. The 90º excitation pulse on the proton and the 180º 

excitation pulse on carbon were set to 4.2 µs and 10 µs, respectively. A contact time of 2 

ms was used for cross polarization. Solid-state 13C NMR spectra were referenced externally 

to glycine (carbonyl carbon at 176.03 ppm). Chemical shifts are reported versus TMS (0 

ppm). Solid-state CPMAS 15N-NMR spectra were also obtained on the same Bruker 

Avance III 400 MHz Spectrometer with a nitrogen frequency of 40.557 MHz , using a 7 

mm Bruker MAS probe with broadband proton suppression and magic angle spinning rate 

of 5 kHz. For cross polarization, a 90º proton excitation pulse was set to 4.2 µs with 2 ms 

contact time.  Chemical shifts are reported versus liquid ammonia (0 ppm) and were 

externally referenced to glycine (amine nitrogen at 33.40 ppm). In all solid-state NMR 

experiments the relaxation delay was set at 5 s. 

Attenuated total reflectance (ATR) FTIR spectroscopy was carried out with a 

Nicolet-FTIR spectrometer Model 750, equipped with a ATR accessory Model 0012-
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3XXT. Samples were cut to the size of the ATR crystal (ZnSe, rectangular, 20 mm × 50 

mm) and ATR-FTIR spectra were obtained by pressing them against the crystal with the 

ATR unit’s pressure device (gripper). Maximum throughput of the infrared beam to the 

detector was achieved via optical alignment that was performed with no sample on the 

crystal. Data were collected at an incident beam angle of 45o, over 32 scans with a 

resolution of 2 cm-1.  In the ATR mode, the penetration depth (pd), and thereby the effective 

path length (=number of reflections × dp) of the infrared beam is directly proportional to 

the wavelength. Thereby, an ATR correction was applied to the raw data by multiplying 

the spectra with a wavelength-dependent factor (roughly /5) that adjusts the relative peak 

intensities. In order to evaluate H-bonding, the ν(N-H) bands were deconvoluted into three 

Gaussian-shaped peaks. Peak curve-fitting was performed using the Origin 8.5 software 

package. 

 Physical Characterization.  Bulk densities (ρb) were calculated from the 

weight and the physical dimensions of the samples. Skeletal densities (ρs) were determined 

with helium pycnometry using a Micromeritics AccuPyc II 1340 instrument. 

 Structural Characterization.  That was carried out using Scanning electron 

microscopy (SEM) with Au-coated samples on a Hitachi Model S-4700 field-emission 

microscope.  

 Thermomechanical Characterization.  That was carried out in the tension 

mode with a TA Instruments Q800 Dynamic Mechanical Analyzer (DMA) equipped with 

a tension clamp (TA Instruments part No. 984016.901). All specimens for testing had a 

rectangular geometry (length: 20 mm; width: 15 mm; thickness: 3-4 mm) in the spirit of 

ASTM D790-1087 and ASTM D4065;88 they were cut off with a knife under N2 in a glove 
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box, from larger cylindrical samples dipped in liquid N2.  In order to ensure uniform 

thickness, the surface of all rectangular pieces was smoothened, while still frozen, with a 

3 M sand paper (320 grit, part No. 98401). In general, all samples were placed in the load 

cell at room temperature. The exact length of all samples was measured by the instrument 

under a small tensile force (0.01 N) that prevents bending. The temperature was stepped to 

the initial testing temperature, and samples were equilibrated at that temperature for 5 min.  

Glass transition temperatures (Tg) were extracted from the viscoelastic properties 

of the samples, which were measured by applying a continuous sinusoidal oscillation (1 

Hz) with a strain amplitude equal to 0.3%, while the temperature was ramped from -150 

oC to 150 oC at 3 oC min-1.  

Strain recovery (creep) and stress relaxation experiments were carried out at three 

different temperatures (Tg + 40 oC, Tg, and Tg - 40 oC) with two samples selected among 

those with the highest fill factors (DEG-4 and TEG-8). For this, each sample was first 

stepped, and then equilibrated at the particular temperature for 5 minutes. Subsequently, 

samples were stretched with a small tensile force (0.01 N), and the length of the sample 

was measured by the instrument and stored. Each strain recovery cycle begun with a 

deformation stage wherein the sample was stretched at a constant force rate of 1N min-1 up 

to a final strain, and then the force was released again at 1N min-1. At Tg and Tg+40 oC, the 

final strain was about 50% (i.e., near the sample break point); at Tg–40 oC, the final strain 

was determined by the compliance of the instrument (18 N) and was about 2-4% for DEG-

4 and 0.1% for TEG-8. That stress-release cycle was repeated at each temperature five 

times. After the end of the fifth cycle, the sample was step-stretched to the final strain 
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reached at the fifth cycle, and that strain was maintained for 20 min while the residual force 

with which the sample pulls the clamps together was recorded as a function of time.  

Shape memory-related properties (strain fixity, strain recovery, strain recovery 

rates and fill factors) were studied in the controlled force mode as follows: samples were 

first stepped, and then equilibrated at their deformation temperature (Td = Tg + 10 oC) for 5 

min. Subsequently, samples were stretched with a small tensile force (0.01 N), and the 

length of the sample was measured by the instrument and was stored. Next, specimens were 

stretched at a constant force rate of 1N min-1 up to a little below their break point (typically 

around 60% strain), and then they were cooled, while under the final stress, at 5 oC min-1 

to their fixation temperature (Tf<<Tg). At that point (Tf), samples were equilibrated for 5 

min, and the tensile force was reduced to 0.01 N. Samples were allowed to relax (fix) for 

15 min (always at Tf), while strain was recorded. Finally, samples were heated at 1 oC min-

1 to their recovery temperature (Tr=Td) while strain was still recorded. (As a control, a 

sample was also heated at 3 oC min-1 as well as at 5 oC min-1.) Samples were held at Td of 

15 min and the cycle was repeated. Five such cycles were run successively for each sample, 

and data were analyzed for the fixation and recovery properties.  
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Figure 1.  Demonstration of room-temperature superelasticity with a TEG-8 sample 

(2´´8´´, b= 0.41±0.02g cm-3, =67±1 % v/v). Photographs are selected frames from 

Movie S.1 shown in the Supporting Information. 

 

 

 

 

 

 

 

 

 

  

t = 0.0              t = 0.5 s           t = 1.0 s           t = 3.0 s 
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Figure 2.  Solid-state CPMAS 13C and 15N NMR of samples as indicated. 
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Figure 3. Shrinkage, bulk density and porosity data for all ALC-xx samples in the domain of the two exploratory variables 

(total monomer concentration and solvent ratio). Data were taken from Table S.3 of the Supporting Information. Color-coded 

arrows point at samples that break the respective “trends’” sort-of-speak and are discussed in the text.  
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Figure 4.  Bulk density data for all ALC-xx fitted to the two exploratory variables 

(monomer concentration and solvent ratio) according to the quadratic model of Eq 1. 

(Color-coded arrows point at two samples, EG-1 and DEG-2 that could not be fitted by 

the model. For the coefficients of Eq 1 in all four ALC-xx refer to Table S.4 in the 

Supporting Information.  
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Figure 5. SEM of specific ALC-xx samples selected from the domain of the exploratory variable (see lower right frame) for 

the discussion of the growth mechanism of the solid framework (SEMs of all EG-xx, DEG-xx and TEG-xx samples are 

shown in Appendix IV of the Supporting Information). 
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Figure 6. (a). Storage (G´) and loss (G´´) moduli and tan  (=G´´/G´) curves of a 

representative sample (TEG-8) as a function of temperature. Arrow points to the 

maximum in the G´´ curve (see text). (b). Glass transition temperatures (Tg as maxima in 

tan ) for all non-collapsed ALC-xx (Data from Table S.5 in the Supporting 

Information).  
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Figure 7. Five consecutive cycle tensile testing of three TEG-8 samples (one for each 

frame) at Tg+40 oC (80 oC), Tg (40 oC) and Tg-40 oC (0 oC). Samples were stretched with 

a constant force rate of 1 N min-1. Maximum strains at Tg and Tg+40 oC were set near the 

failure point of the sample. The maximum strain at Tg-40 oC was set by the compliance of 

the instrument (18 N). Yellow arrow indicates creep. Last frame: Stress relaxation run 

after at the end of the fifth cycle of each frame.  
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Figure 8. Room-temperature ATR-FTIR spectra of ALC-xx taken under different 

conditions. (a). The entire spectrum of a representative as-prepared TEG-2 sample. (b). 

The 3000-3800 cm-1 range of frame A, deconvoluted for H-bonding. (c). The same 

sample as in A and B, heated at Tg+10 oC for 15 min, then cooled back to room 

temperature. (d). The same sample as in A-C, heated again at Tg+10 oC for 15 min, 

stretched to about 60% strain, then the stretching force was released, and the sample was 

let cool back to room temperature (Similar spectra for DEG-2, DEG-4, TEG-2, TEG-8 

and TTEG-2 are shown in Appendix V of the Supporting Information. H-bonding data 

for all samples are summarized in Table 1).  
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Figure 9.  A deployable, shape-memory aerogel panel similar to that in Figure 1 (TEG-

8). The permanent shape was flat. The sample (2´´8´´) was heated up above Tg, folded 

as shown in the first frame, and dipped in liquid N2. The unfolding to the original shape 

as the sample returned to room temperature is shown in Movie S.2 of the Supporting 

Information.  Selected frames from that movie are shown here. 

 

 

 

 

Figure 10. A 3D representation from two different perspectives of a representative 

temperature cycle experiment aiming at quantifying the figures of merit for the shape 

memory effect. Data shown are for TEG-8. All experiments were performed starting with 

as-prepared samples, cycled 5 times between a deformation (and recovery) temperature 

Td (Tr), and a fixing temperature (Tf). The different stages of the experiment (marked with 

numbers) are explained in the text.   

 

 

t = 0.0 t = 6.0’ t = 10’ t = 16’ 
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Figure 11.  Projections of the entire 3D representation of Figure 10 to different planes, in 

order to calculate the figures of merit of the shape memory effect. (a). Projection to the 

Strain-Temperature plane followed by unfolding Temperature into Time. (Temperature 

vs. time is also included as a dotted line. Strains m, u and p are used in Eq.s 2 and 3 and 

are defined within this frame.) (b). Plotting same as frame A. This frame also includes 

(red line) a plot of the first derivative of Strain over Time. (c). Straight projection of the 

curve to the Strain vs. Temperature plane. Numbers 1-4 refer to the four stages of the 

experiment as shown in Figure 10. 
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Figure 12. Figures of merit extracted from the data of Figure 11 as described in the text. Color-coding: Yellow: DEG-xx; Blue: 

TEG-xx; Gray: TTEG-xx (just two samples). Dark or shaded colors: first-cycle data; Lighter colors: fifth-cycle data (All 

original data for all samples and all cycles are summarized in Table S.6 of Appendix VIII in the Supporting Information).  
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Figure 13. Strain recovery rates, Rt(N), demonstrated with three fresh TEG-8 samples 

cycled five times (1≤N≤5) using different heating rates during Stage 4 (i.e., during 

heating from Tf to Td - refer to Figure 10, and Figure 11C). 
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Figure 14.  A bionic hand based on a shape-memory polyurethane aerogel (TEG-8). In its permanent shape (last frame to the 

right) the “hand” had been programmed to hold a pen. Frames are taken from Movie S.3 of the Supporting Information. All 

other conditions identical to those of Figure 9. 
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Scheme 1. (a) Reagents (triisocyanate, ethylene glycol-based diols). (b) Reaction 

pathway to isocyanurate crosslinking nodes linked with urethane tethers (PIR-PUR). 

 

 

 

 
 

Scheme 2. (a) Synthetic protocol of PIR-PUR aerogels (ALC-xx). (b) ALC-xx 

formulation according to a central composite rotatable design model (CCRD); 

Independent (exploratory) variables: volume fraction of CH3CN in the sol 

(0.5≤VCH3CN/VTotal≤1.0), and total monomer concentration in the sol (15% w/w ≤ Total 

monomer ≤ 25% w/w). 
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Table 1.  Integrated ratios of Free and H-bonded NH stretching of samples as shown.a 

 

Sample Conditions [free NH]  [NH....O=C]  [NH….O(CH2)2] 

  3423-3545 cm-1 3331-3341 cm-1 3204-3234 cm-1 

DEG-2 as prepared 4.6 4.4 1.0 

 heated-cooled b 1.6 7.1 1.3 

 heated-stretched-cooled c 0.8 7.4 1.8 

 

DEG-4 as prepared 5.5 1.9 1.7 

 heated-cooled b 1.2 7.6 1.3 

 heated-stretched-cooled c 0.0 8.6 1.4 

 

TEG-2 as prepared 2.2 7.3 0.5 

 heated-cooled b 0.8 8.4 0.8 

 heated-stretched-cooled c 1.3 7.7 1.0 

 

TEG-8 as prepared 2.4 6.6 1.0 

 heated-cooled b 1.0 7.3 1.7 

 heated-stretched-cooled c 1.7 6.8 1.5 

 

TTEG-2 as prepared 2.2 6.7 1.1 

 heated-cooled b 0.0 8.2 1.8 

 heated-stretched-cooled c 1.1 7.6 1.3   

a All spectra were taken at room temperature. Data from spectra shown in Figure 8 

and Figures S.4-S.7 in the Supporting Information. b Heated at Tg+40 oC, cooled to room 

temperature. c Heated at Tg+40 oC, stretched at that temperature, left to relax and cooled 

back to room temperature. 
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Appendix I:  Design, formulation and gelation times of ALC-xx. 

ALC-xx preparation via a Central Composite Rotatable Design (CCRD) model 

The independent (exploratory) variables (otherwise also referred to as factors, f) were the 

total weight percent monomers (N3300A + alcohol) in the sol (X1), and the fraction of 

acetonitrile in the solvent system (X2). (In other words, in the design of ALC-xx, f=2.) 

Each factor was varied at three levels between two extremes that were identified with 

preliminary scouting experiments based on TEG-derived aerogels. Thus, the total 

monomer concentration was bracketed between 15% and 25% w/w, and the fraction of 

acetonitrile was varied from 0.500 to 1.000.  

 A central composite rotatable design model contains factorial points (dark circles) 

along with center points and is reinforced with a group of star points (Scheme S.1). Always 

a central composite design includes twice as many star points as factors (four in our case), 

and those star points are set at the extreme values (low and high) for each factor in the 

design. Center points are created by setting all factors at their midpoints. In normalized 

form, center points fall at the zero level. Thereby, since all points are disposed 

symmetrically with respect to the experimental center, the design is referred to as “central.” 

Since the variance of any predicted response depends on the distance from the center of 

design space, this rotatable design provides equal precision in all directions.  

In total, this design consists of 2f factorial points (shown as dark circles in Scheme 

S.1), 2f axial (star) points and N0 central points as replicates. Then, the total number of 

design points, N of a CCRD is determined by: N = 2f + 2f + N0.  

Now, each factorial point is offset by ±1 unit from the coordinates of the central 

point of the design, and the star points are placed at a distance of |α| > 1 from the center of 
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Scheme S.1. Central Composite Rotatable Design Model showing factorial points (dark 

circles: 2,3,8,9), center points (one, plus one duplicate: 5,6) and star points (1,4,7,10). 

The latter stand at the experimental extremes. Numbers in bold face red: orthogonalized 

design points. 

 

 

 

the design and in such a way that all the factorial and star points lie on a circle with radius 

α. To maintain rotatability, the value of α depends on the number of experimental runs in 

the factorial portion of the central composite design:  

α = [number of factorial runs]1/4 

Here, the factorial is a full factorial with f factors, thus:  

α=[2f]1/4 

Table S.1 gives the values of the normalized variables X1 and X2, as well as their 

translation to the ALC-xx system. (For the values of xx refer to Scheme S.1.) It is noted 

that although the required calculations are straightforward and can be carried out by hand 

easily, nevertheless the placement of the points was done using the JMP11 software 

package (SAS Institute Inc. 2013. Using JMP 11. Cary, NC: SAS Institute Inc.). 
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Table S.1. Experimental factors and levels in the central composite design for ALC-xx. 

 
factors unit factor levels (values) 

   axial points center point 

star points (α = 

1.414)1 

  -1 1 0 -α α 

 [monomer] 

(X1) 

% w/w 16.46 23.54 20.00 15 25 

VCH3CN/VTotal 

(X2) 

mL/mL 0.574 0.927 0.750 0.500 1.000 

1 At the experimental extremes 
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Table S.2. Formulations of EG-xx based on Scheme S.1 and Table S.1, and corresponding gelation times. a  

 
DO

E 

No.  

(-xx) 

total 

monomer (% 

w/w) 

VCH3CN

VTotal

 

Alcohol b Desmodur N3300A c CH3CN Acetone Gelat

ion 

time 

(min) 

mass 
(g) 

volume 
(mL) 

mm
ol 

C 
(M) 

mass 
(g) 

volume 
(mL) 

mmo
l 

C 
(M) 

mass 
(g) 

volume 
(mL) 

mass 
(g) 

volum

e 

(mL) 

EG-xx 

1 15 0.750 0.093 0.0837 1.50 0.3117 0.504 0.4308 1.00 0.2078 2.538 3.2289 0.846 
1.069

5 
46 

2 

16.46 

0.927 0.093 0.0837 1.50 0.3435 0.504 0.4308 1.00 0.2290 2.808 3.5731 0.221 
0.279

6 
35 

3 0.574 0.093 0.0837 1.50 0.3442 0.504 0.4308 1.00 0.2294 1.736 2.2086 1.294 
1.635

5 
34 

4 

20 

1.000 0.093 0.0837 1.50 0.4222 0.504 0.4308 1.00 0.2814 2.388 3.0387 0.000 
0.000

0 
15 

5 0.750 0.093 0.0837 1.50 0.4227 0.504 0.4308 1.00 0.2818 1.791 2.2790 0.597 
0.754

9 
10 

6 0.750 0.093 0.0837 1.50 0.4227 0.504 0.4308 1.00 0.2818 1.791 2.2790 0.597 
0.754

9 
7 

7 0.500 0.093 0.0837 1.50 0.4233 0.504 0.4308 1.00 0.2822 1.194 1.5194 1.194 
1.509

7 
26 

8 

23.54 

0.927 0.093 0.0837 1.50 0.5031 0.504 0.4308 1.00 0.3354 1.798 2.2879 0.142 
0.179

0 
8 

9 0.574 0.093 0.0837 1.50 0.5041 0.504 0.4308 1.00 0.3360 1.112 1.4142 0.828 
1.047

2 
15 

10 25 0.500 0.093 0.0837 1.50 0.5377 0.504 0.4308 1.00 0.3584 1.343 1.7093 0.448 
0.566

2 
16 

a Catalyst 5 L in all formulations. b Volumes of the alcohols were calculated based on their densities: EG: 1.113 g cm-3; DEG: 

1.118 g cm-3; TEG: 1.100 g cm-3; TTEG: 1.125 g cm-3. c The volume of N3300A was calculated based on its density (1.170 g 

cm-3) provided by the supplier.  
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Table S.2. Formulations of DEG-xx based on Scheme S.1 and Table S.1, and corresponding gelation times a (Continued). 

 

DOE 

No.  

(-xx) 

total 

monomer 

(% w/w) 

VCH3CN

VTotal

 

Alcohol b Desmodur N3300A c CH3CN Acetone 
Gelatio

n time 

(min) 
mass 

(g) 

volume 

(mL) 
mmol 

C 

(M) 

mass 

(g) 

volum

e (mL) 
mmol 

C 

(M) 

mass 

(g) 

volume 

(mL) 

mass 

(g) 

volume 

(mL) 

DEG-xx 

1 15 0.750 0.159 0.1424 1.50 0.2805 0.504 0.4308 1.00 0.1870 2.819 3.5862 0.940 1.1878 143 

2 
16.46 

0.927 0.159 0.1424 1.50 0.3091 0.504 0.4308 1.00 0.2061 3.119 3.9685 0.246 0.3105 124 

3 0.574 0.159 0.1424 1.50 0.3097 0.504 0.4308 1.00 0.2065 1.928 2.4530 1.437 1.8164 103 

4 

20 

1.000 0.159 0.1424 1.50 0.3799 0.504 0.4308 1.00 0.2533 2.653 3.3750 0.000 0.0000 39 

5 0.750 0.159 0.1424 1.50 0.3804 0.504 0.4308 1.00 0.2536 1.990 2.5312 0.663 0.8384 53 

6 0.750 0.159 0.1424 1.50 0.3804 0.504 0.4308 1.00 0.2536 1.990 2.5312 0.663 0.8384 53 

7 0.500 0.159 0.1424 1.50 0.3810 0.504 0.4308 1.00 0.2540 1.326 1.6875 1.326 1.6768 77 

8 
23.54 

0.927 0.159 0.1424 1.50 0.4528 0.504 0.4308 1.00 0.3018 1.997 2.5410 0.157 0.1988 25 

9 0.574 0.159 0.1424 1.50 0.4536 0.504 0.4308 1.00 0.3024 1.235 1.5707 0.920 1.1631 51 

10 25 0.500 0.159 0.1424 1.50 0.4838 0.504 0.4308 1.00 0.3225 1.492 1.8984 0.497 0.6288 35 

a Catalyst 5 L in all formulations. b Volumes of the alcohols were calculated based on their densities: EG: 1.113 g cm-3; DEG: 

1.118 g cm-3; TEG: 1.100 g cm-3; TTEG: 1.125 g cm-3. c The volume of N3300A was calculated based on its density (1.170 g 

cm-3) provided by the supplier.  
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Table S.2. Formulations of TEG-xx based on Scheme S.1 and Table S.1, and corresponding gelation times a (Continued). 

 

DOE 

No.  

(-xx) 

total 

monomer 

(% w/w) 

VCH3CN

VTotal

 

Alcohol b Desmodur N3300A c CH3CN Acetone Gelat

ion 

time 

(min) 

mass 

(g) 

volume 

(mL) 

mmo

l 

C 

(M) 

mass 

(g) 

volume 

(mL) 

mm

ol 

C 

(M) 

mass 

(g) 

volume 

(mL) 

mass 

(g) 

volume 

(mL) 

TEG-xx 

1 15 0.750 0.225 0.2045 1.50 0.2548 0.504 0.4308 1.00 0.1699 3.100 3.9435 1.033 1.3062 78 

2 
16.46 

0.927 0.225 0.2045 1.50 0.2811 0.504 0.4308 1.00 0.1874 3.430 4.3639 0.270 0.3415 71 

3 0.574 0.225 0.2045 1.50 0.2811 0.504 0.4308 1.00 0.1874 2.120 2.6974 1.580 1.9974 76 

4 

20 

1.000 0.225 0.2045 1.50 0.3452 0.504 0.4308 1.00 0.2301 2.917 3.7112 0.000 0.0000 40 

5 0.750 0.225 0.2045 1.50 0.3460 0.504 0.4308 1.00 0.2307 2.188 2.7834 0.729 0.9219 54 

6 0.750 0.225 0.2045 1.50 0.3460 0.504 0.4308 1.00 0.2307 2.188 2.7834 0.729 0.9219 49 

7 0.500 0.225 0.2045 1.50 0.3460 0.504 0.4308 1.00 0.2307 1.459 1.8556 1.459 1.8439 50 

8 
23.54 

0.927 0.225 0.2045 1.50 0.4115 0.504 0.4308 1.00 0.2743 2.196 2.7942 0.173 0.2187 37 

9 0.574 0.225 0.2045 1.50 0.4115 0.504 0.4308 1.00 0.2743 1.358 1.7272 1.012 1.2790 48 

10 25 0.500 0.225 0.2045 1.50 0.4379 0.504 0.4308 1.00 0.2919 1.641 2.0876 0.547 0.6915 25 

a Catalyst 5 L in all formulations. b Volumes of the alcohols were calculated based on their densities: EG: 1.113 g cm-3; DEG: 

1.118 g cm-3; TEG: 1.100 g cm-3; TTEG: 1.125 g cm-3. c The volume of N3300A was calculated based on its density (1.170 g 

cm-3) provided by the supplier.  
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Table S.2.  Formulations of TTEG-xx based on Scheme S.1 and Table S.1, and corresponding gelation times a (Continued). 

 

DOE 

No.  

(-xx) 

total 

monomer 

(% w/w) 

VCH3CN

VTotal

 

Alcohol b Desmodur N3300A c CH3CN Acetone 
Gelatio

n time 

(min) 
mass 

(g) 

volume 

(mL) 

mm

ol 

C 

(M) 

mass 

(g) 

volume 

(mL) 

mmo

l 

C 

(M) 

mass 

(g) 

volume 

(mL) 

mass 

(g) 

volume 

(mL) 

TTEG-xx 

1 15 0.750 0.291 0.2589 1.5 0.2441 0.504 0.4308 1.00 0.1627 3.168 4.3008 1.127 1.4245 125 

2 
16.46 

0.927 0.291 0.2589 1.5 0.2577 0.504 0.4308 1.00 0.1718 3.741 4.7594 0.294 0.3724 134 

3 0.574 0.291 0.2589 1.5 0.2577 0.504 0.4308 1.00 0.1718 2.312 2.9419 1.732 2.1784 217 

4 

20 

1.000 0.291 0.2589 1.5 0.3167 0.504 0.4308 1.00 0.2111 3.181 4.0475 0.000 0.0000 114 

5 0.750 0.291 0.2589 1.5 0.3171 0.504 0.4308 1.00 0.2114 2.386 3.0356 0.795 1.0055 114 

6 0.750 0.291 0.2589 1.5 0.3171 0.504 0.4308 1.00 0.2114 2.386 3.0356 0.795 1.0055 125 

7 0.500 0.291 0.2589 1.5 0.3175 0.504 0.4308 1.00 0.2117 1.591 2.0238 1.591 2.0110 142 

8 
23.54 

0.927 0.291 0.2589 1.5 0.3773 0.504 0.4308 1.00 0.2516 2.395 3.0474 0.189 0.2385 60 

9 0.574 0.291 0.2589 1.5 0.3780 0.504 0.4308 1.00 0.3056 0.934 1.8837 1.103 1.3949 50 

10 25 0.500 0.291 0.2589 1.5 0.4032 0.504 0.4308 1.00 0.2688 1.790 2.2767 0.596 0.7541 55 

a Catalyst 5 L in all formulations. b Volumes of the alcohols were calculated based on their densities: EG: 1.113 g cm-3; DEG: 

1.118 g cm-3; TEG: 1.100 g cm-3; TTEG: 1.125 g cm-3. c The volume of N3300A was calculated based on its density (1.170 g 

cm-3) provided by the supplier.  
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Appendix II:  General material properties of ALC-xx. 

 

Table S.3. General material characterization data for all ALC-xx aerogels. 

 

DOE No. 

(-xx) 

total  

monomer 

(% w/w) 

VCH3CN

(VCH3CN + VAcetone)
 

linear 

shrinkage a,b 

(%) 

bulk density a  

(ρb, g cm-3) 

skeletal 

density c 

(ρs, g cm-3) 

Porosity  

(Π  % void 

space) 

EG-xx 

1 15.00 0.750 25.89 ± 8.65 0.474 ± 0.038 1.248 ± 0.028 62.02 ± 4.03 

2 16.46 0.927 19.52 ± 2.09 0.196 ± 0.004 1.267 ± 0.021 84.53 ± 2.19 

3 16.46 0.574 20.01 ± 2.04 0.222 ± 0.010 1.255 ± 0.008 82.31 ± 1.15 

4 20.00 1.000 16.88 ± 2.16 0.278 ± 0.018 1.020 ± 0.017 72.75 ± 2.71 

5 20.00 0.750 20.91 ± 0.21 0.267 ± 0.009 1.252 ± 0.004 78.67 ± 0.83 

6 20.00 0.750 21.62 ± 3.27 0.282 ± 0.016 1.255 ± 0.027 77.53 ± 3.01 

7 20.00 0.500 20.25 ± 0.10 0.270 ± 0.002 1.223 ± 0.002 77.92 ± 0.26 

8 23.54 0.927 18.18 ± 1.20 0.320 ± 0.009 1.166 ± 0.017 72.56 ± 1.96 

9 23.54 0.574 22.63 ± 1.08 0.375 ± 0.005 1.199 ± 0.002 68.72 ± 0.46 

10 25.00 0.750 17.62 ± 1.38 0.444 ± 0.059 1.178 ± 0.003 62.31 ± 5.02 

DEG-xx 

1 15.00 0.750 19.50 ± 1.70 0.463 ± 0.188 1.249 ± 0.006 62.93 ± 15.06 

2 16.46 0.927 20.94 ± 1.95 0.224 ± 0.011 1.236 ± 0.004 81.88 ± 0.98 

3 16.46 0.574 23.01 ± 2.03 0.230 ± 0.008 1.279 ± 0.012 82.02 ± 1.37 

4 20.00 1.000 19.01 ± 2.09 0.258 ± 0.006 1.233 ± 0.003 79.08 ± 0.58 

5 20.00 0.750 25.67 ± 2.46 0.321 ± 0.028 1.224 ± 0.008 73.77 ± 2.43 

6 20.00 0.750 21.70 ± 1.96 0.279 ± 0.007 1.295 ± 0.010 78.46 ± 1.12 

7 20.00 0.500 22.12 ± 4.30 0.287 ± 0.007 1.237 ± 0.021 76.80 ± 2.21 

8 23.54 0.927 20.34 ± 2.31 0.322 ± 0.013 1.228 ± 0.004 73.78 ± 1.13 

9 23.54 0.574 24.32 ± 0.90 0.414 ± 0.005 1.224 ± 0.016 66.18 ± 1.62 

10 25.00 0.750 21.26 ± 1.93 0.366 ± 0.008 1.250 ± 0.002 70.72 ± 0.67 
a Average of 5 samples. b Shrinkage = 100  (mold diameter – sample diameter)/(mold diameter). c Single sample, average of 50 

measurements.  
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Table S.3. General material characterization data for all ALC-xx aerogels (Continued). 

 

DOE No. 

(-xx) 

total  

monomer 

(% w/w) 

VCH3CN

(VCH3CN + VAcetone)
 

linear 

shrinkagea,b 

(%) 

bulk density a 

(ρb, g cm-3) 

skeletal 

density c  

(ρs, g cm-3) 

Porosity  

(Π  % void 

space) 

TEG-xx 

1 15.00 0.750 24.51 ± 0.90 0.247 ± 0.007 1.225 ± 0.009 79.84 ± 1.10 

2 16.46 0.927 22.42 ± 2.64 0.271 ± 0.021 1.228 ± 0.011 77.93 ± 2.05 

3 16.46 0.574 28.91 ± 4.39 0.336 ± 0.040 1.267 ± 0.018 73.48 ± 3.62 

4 20.00 1.000 23.16 ± 1.95 0.302 ± 0.007 1.222 ± 0.004 75.29 ± 0.70 

5 20.00 0.750 28.41 ± 2.16 0.391 ± 0.014 1.208 ± 0.003 67.63 ± 1.20 

6 20.00 0.750 24.56 ± 1.92 0.356 ± 0.014 1.216 ± 0.002 70.72 ± 1.17 

7 20.00 0.500 48.67 ± 0.72 1.076 ± 0.020 1.151 ± 0.003 6.52 ± 1.76 

8 23.54 0.927 23.15 ± 1.13 0.408 ± 0.021 1.227 ± 0.003 66.75 ± 1.74 

9 23.54 0.574 38.32 ± 1.55 1.014 ± 0.052 1.195 ± 0.012 15.15 ± 4.47 

10 25.00 0.750 43.69 ± 1.47 1.070 ± 0.038 1.159 ± 0.002 7.68 ± 3.28 

TTEG-xx 

`1 15.00 0.750 52.21 ± 1.80 1.001 ± 0.024 1.106 ± 0.003 9.49 ± 2.19 

2 16.46 0.927 28.84 ± 1.58 0.279 ± 0.001 1.247 ± 0.003 77.63 ± 0.31 

3 16.46 0.574 53.09 ± 0.44 1.103 ± 0.003 1.203 ± 0.002 8.31 ± 0.30 

4 20.00 1.000 31.24 ± 1.52 0.430 ± 0.031  1.179 ± 0.003 63.53 ± 2.65 

5 20.00 0.750 49.71 ± 0.95 1.113 ± 0.017 1.209 ± 0.001 7.94 ± 1.41 

6 20.00 0.750 48.87 ± 2.28 1.043 ± 0.031 1.172 ± 0.001 11.01 ± 2.65 

7 20.00 0.500 51.11 ± 0.75 1.119 ± 0.023 1.199 ± 0.002 6.67 ± 1.93 

8 23.54 0.927 47.27 ± 1.46 1.096 ± 0.066 1.196 ± 0.001 8.36 ± 5.52 

9 23.54 0.574 43.40 ± 1.95 1.108 ± 0.005 1.202 ± 0.002 7.82 ± 0.45 

10 25.00 0.750 45.43 ± 0.21 1.126 ± 0.052 1.233 ± 0.002 8.68 ± 4.22 
a Average of 5 samples. b Shrinkage = 100  (mold diameter – sample diameter)/(mold diameter). c Single sample, average of 50 

measurements. 
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Appendix III: Fitting bulk densities of ALC-xx to system variables. 

Table S.4. Coefficients of quadratic fitting of the bulk densities (ρb) of all ALC-xx to total monomer concentration (X1) and 

solvent composition (X2) according to: a ρb = A(X1)
2 + B(X2)

2 + C(X1)(X2) + D(X1) +E(X2) + F. 

 

ALC-xx A B C D E F R2 

EG-xx (without EG-1) -0.1792 0.0016 -0.0116 0.4523 -0.0331 0.2378 0.945 

DEG-xx (without DEG-1) -0.2919 -0.0002 -0.0344 1.0273 0.0527 -0.7561 0.925 

TEG-xx 3.7349 0.0081 -0.2167 -2.5213 -0.0910 1.9986 0.917 

TTEG-xx -5.0311 -0.0010 0.3253 -0.2374 -0.1678 2.9717 0.935 

a Fitting was carried out with orthogonalized variables. Orthogonalization minimizes correlation between terms. The 

orthogonal transforms of the two variables are given by: 1. X1 = 
(𝑡𝑜𝑡𝑎𝑙 𝑚𝑜𝑛𝑜𝑚𝑒𝑟−20)

5
, 2. X2 = 

(𝑠𝑜𝑙𝑣𝑒𝑛𝑡 𝑓𝑟𝑎𝑐𝑡𝑖𝑜𝑛 −0.750)

0.250
. 

The experimental and the computed response values of b were analyzed statistically via analysis of variance (ANOVA) at a 

confidence level of P = 0.05 or 95%. The quality of the fitting of b by the quadratic model equation was expressed by the 

coefficient of determination (R2), and its statistical significance was checked by Fishers test value (F-value).  
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Appendix IV: SEM of all ALC-xx. 

 

Figure S.1. SEM of all EG-xx. 
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Figure S.2. SEM of all DEG-xx. 
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Figure S.3. SEM of all TEG-xx. 



100 

 

 

Appendix V:  ATR FTIR of DEG-2, DEG-4, TEG-2, TEG-8 and TTEG-2. 
 

 

 

 

Figure S.4. Room-temperature ATR-FTIR spectra of DEG-2 taken under different 

conditions. (a). The entire spectrum. (b). The 3000-3800 cm-1 range of frame A, 

deconvoluted for H-bonding. (c). The same sample as in A and B, heated at Tg+10 oC 

for 15 min, then cooled back to room temperature. (d). The same sample as in A-C, 

heated again at Tg+10 oC for 15 min, stretched to about 60% strain, then the stretching 

force was released, and the sample was cooled back to room temperature. 
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Figure S.5. Room-temperature ATR-FTIR spectra of DEG-4 taken under different 

conditions. (a). The entire spectrum. (b). The 3000-3800 cm-1 range of frame A, 

deconvoluted for H-bonding. (c). The same sample as in A and B, heated at Tg+10 oC 

for 15 min, then cooled back to room temperature. (d). The same sample as in A-C, 

heated again at Tg+10 oC for 15 min, stretched to about 60% strain, then the stretching 

force was released, and the sample was cooled back to room temperature. 
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Figure S.6. Room-temperature ATR-FTIR spectra of TEG-8 taken under different 

conditions. (a). The entire spectrum. (b). The 3000-3800 cm-1 range of frame A, 

deconvoluted for H-bonding. (c). The same sample as in A and B, heated at Tg+10 oC 

for 15 min, then cooled back to room temperature. (d). The same sample as in A-C, 

heated again at Tg+10 oC for 15 min, stretched to about 60% strain, then the stretching 

force was released and the sample was cooled back to room temperature. 
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Figure S.7. Room-temperature ATR-FTIR spectra of TTEG-2 taken under different 

conditions. (a). The entire spectrum. (b). The 3000-3800 cm-1 range of frame A, 

deconvoluted for H-bonding. (c). The same sample as in A and B, heated at Tg+10 oC 

for 15 min, then cooled back to room temperature. (d). The same sample as in A-C, 

heated again at Tg+10 oC for 15 min, stretched to about 60% strain, then the stretching 

force was released, and the sample was cooled back to room temperature. 
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Appendix VI: Glass transition data. 

 
Table S.5. Glass transition data for all non-collapsed ALC-xx samples. All values are 

temperatures in oC. Tg values are the maxima in the tan  plots. 

 

 

 

 

 

-xx 

EG-xx DEG-xx TEG-xx TTEG-xx 

Tg  

tan δ 

FWH

M 

max 

G” 
Tg  

tan δ 

FWH

M 

ma

x 

G´  

Tg  

tan δ 

FWH

M 

max 

G” 
Tg  

tan δ 

FWH

M 

ma

x 

G”  

1 - - - - - - 46.3 14.9 33.3 - - - 

2 70.8 13.4 63.6 61.3 12.4 51.9 36.3 14.9 27.4 31.0 15.1 
17.

3 

3 70.7 13.0 63.3 58.0 14.2 46.2 41.5 14.9 30.9 - - - 

4 73.4 12.4 64.8 59.3 13.3 47.6 41.9 17.6 23.3 31.3 14.9 
19.

9 

5 70.7 12.8 62.3 58.3 12.0 48.1 45.5 14.9 32.8 - - - 

6 64.4 14.1 56.0 58.6 13.3 46.4 43.3 17.7 27.5 - - - 

7 74.9 16.1 63.9 56.7 12.6 51.1 - - - - - - 

8 67.7 16.2 53.4 56.0 16.8 47.2 39.9 15.0 28.0 - - - 

9 73.4 14.6 46.3 53.6 15.9 41.3 - - - - - - 

10 72.2 15.4 53.3 56.1 12.8 47.1 - - - - - - 

Figure S.8. Data from Table S.5. Closed circles: Glass transition temperatures (Tg) 

of all non-collapsed ALC-xx samples as a function of xx. Open Circles: maxima in 

the G´´plots (considered as the point where the polymer starts to soften).  

Red: EG-xx; Black: DEG-xx; Blue: TEG-xx; and, Gray: TTEG-xx. 
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Appendix VII: Tensile testing and stress relaxation of DEG-4. 

 

 
 

Figure S.9. Five-cycle tensile testing of three DEG-4 samples (one for each frame) at 

Tg+40 oC (100 oC), Tg (60 oC) and Tg-40 oC (20 oC). Samples were stretched with a 

constant force rate of 1 N min-1. Maximum strains at Tg and Tg+40 oC were set near the 

failure point of the sample. The maximum strain at Tg-40 oC was set by the compliance of 

the instrument (18 N). Last frame: Stress relaxation run after at the end of the fifth cycle 

of each frame.   
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Appendix VIII: Figures of merit for the SME of all ALC-xx (Only non-collapsed 

samples were tested). 

 
Table S.6.1. Strain fixity (Rf) of all ALC-xx as shown (Temperature was cycled for five 

times in combination with tensile testing). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DOE 

No. 

(-xx) 

total 

monomer 

(% w/w) 

VCH3CN

VTotal

 

Strain fixity, Rf (%) 

Temperature cycle No. 

1 2 3 4 5 

DEG-xx 

2 16.46 0.927 98.9 98.8 98.5 98.8 98.8 

3 16.46 0.574 99.1 99.0 99.0 98.9 99.0 

4 20.00 1.000 99.1 99.1 99.4 99.4 98.9 

5 20.00 0.750 98.8 98.8 98.8 98.8 98.9 

6 20.00 0.750 97.8 98.7 98.7 98.6 98.7 

7 20.00 0.500 99.0 99.1 99.0 99.1 98.9 

8 23.54 0.927 98.5 98.6 98.6 98.6 98.6 

9 23.54 0.574 97.4 97.5 97.5 97.5 97.5 

10 25.00 0.750 98.9 98.7 98.7 98.6 98.6 

TEG-xx 

1 15.00 0.750 99.2 99.1 99.1 99.1 99.2 

2 16.46 0.927 99.2 99.1 99.1 99.1 99.2 

3 16.46 0.574 99.3 99.1 99.2 99.5 99.3 

4 20.00 1.000 99.0 98.9 98.9 98.9 98.9 

5 20.00 0.750 99.0 98.8 98.8 98.8 98.8 

6 20.00 0.750 99.0 98.8 98.8 98.8 98.8 

8 23.54 0.927 99.3 99.1 99.1 99.1 99.1 

TTEG-xx 

2 16.46 0.927 99.2 99.1 99.1 99.1 99.1 

4 20.00 1.000 98.9 98.8 98.8 98.8 98.9 
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Table S.6.2. Strain recovery (Rr) of all ALC-xx as shown (Temperature was cycled for 

five times in combination with tensile testing). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DOE 

No. 

(-xx) 

total 

monomer 

(% w/w) 

VCH3CN

VTotal

 

Strain recovery, Rr (%) 

Temperature cycle No. 

1 2 3 4 5 

DEG-xx 

2 16.46 0.927 82.9 96.9 98.9 99.3 99.8 

3 16.46 0.574 93.0 99.0 99.5 99.8 99.9 

4 20.00 1.000 90.8 98.5 99.3 99.6 99.7 

5 20.00 0.750 84.2 97.2 98.5 98.9 99.3 

6 20.00 0.750 87.0 97.5 99.1 99.6 99.6 

7 20.00 0.500 85.8 96.7 98.6 99.1 99.5 

8 23.54 0.927 93.6 99.0 99.3 99.7 99.9 

9 23.54 0.574 89.2 98.6 99.1 100.0 99.8 

10 25.00 0.750 80.5 95.3 97.4 97.7 99.6 

TEG-xx 

1 15.00 0.750 91.6 98.7 99.3 99.6 99.8 

2 16.46 0.927 91.0 98.5 99.4 99.6 99.8 

3 16.46 0.574 87.5 99.0 99.4 99.6 99.8 

4 20.00 1.000 90.4 98.2 99.4 99.7 99.8 

5 20.00 0.750 87.9 98.2 99.0 99.0 99.9 

6 20.00 0.750 89.1 98.9 99.7 99.6 99.8 

8 23.54 0.927 87.7 98.5 99.4 99.6 99.8 

TTEG-xx 

2 16.46 0.927 91.0 99.3 99.7 99.8 99.8 

4 20.00 1.000 86.9 98.2 99.0 99.1 99.5 
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Table S.6.3. Strain recovery rate (Rt) of all ALC-xx as shown (Temperature was cycled 

for five times in combination with tensile testing). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

DOE 

No. 

(-xx) 

total 

monomer 

(% w/w) 

VCH3CN

VTotal

 

Strain recovery rate, Rt (min-1) 

Temperature cycle No. 

1 2 3 4 5 

DEG-xx 

2 16.46 0.927 5.69 5.86 5.70 5.78 6.68 

3 16.46 0.574 6.62 6.44 6.49 6.49 6.40 

4 20.00 1.000 10.37 10.58 10.69 10.88 10.58 

5 20.00 0.750 6.44 6.76 6.59 6.83 6.89 

6 20.00 0.750 6.45 6.51 7.04 6.70 6.87 

7 20.00 0.500 5.75 5.74 5.79 5.97 5.79 

8 23.54 0.927 5.92 5.53 5.82 5.21 5.70 

9 23.54 0.574 3.72 3.64 3.57 3.67 3.70 

10 25.00 0.750 5.63 5.82 5.85 5.89 5.67 

TEG-xx 

1 15.00 0.750 7.65 7.99 7.61 8.10 8.02 

2 16.46 0.927 7.40 7.43 7.45 7.60 7.26 

3 16.46 0.574 7.82 7.73 7.60 7.55 7.48 

4 20.00 1.000 9.18 8.96 9.35 8.78 8.52 

5 20.00 0.750 6.73 6.82 6.79 6.73 6.76 

6 20.00 0.750 7.90 8.15 7.63 8.10 8.25 

8 23.54 0.927 7.53 7.06 7.56 7.92 7.45 

TTEG-xx 

2 16.46 0.927 6.16 6.35 6.05 6.01 6.05 

4 20.00 1.000 7.80 7.48 6.97 6.62 6.80 
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Table S.6.4. Fill Factor (FF) of all ALC-xx as shown (Temperature was cycled for five 

times in combination with tensile testing). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

DOE 

No. 

(-xx) 

total 

monomer 

(% w/w) 

VCH3CN

VTotal

 

Fill Factor (FF) 

Temperature cycle No. 

1 2 3 4 5 

DEG-xx 

2 16.46 0.927 0.492 0.628 0.636 0.641 0.660 

3 16.46 0.574 0.598 0.629 0.672 0.656 0.636 

4 20.00 1.000 0.650 0.691 0.715 0.698 0.678 

5 20.00 0.750 0.575 0.680 0.652 0.668 0.699 

6 20.00 0.750 0.558 0.662 0.670 0.656 0.661 

7 20.00 0.500 0.554 0.616 0.621 0.657 0.649 

8 23.54 0.927 0.551 0.601 0.641 0.643 0.662 

9 23.54 0.574 0.594 0.684 0.649 0.696 0.697 

10 25.00 0.750 0.521 0.630 0.608 0.607 0.646 

TEG-xx 

1 15.00 0.750 0.589 0.617 0.623 0.663 0.656 

2 16.46 0.927 0.584 0.616 0.610 0.639 0.640 

3 16.46 0.574 0.561 0.625 0.618 0.649 0.627 

4 20.00 1.000 0.601 0.655 0.650 0.665 0.642 

5 20.00 0.750 0.584 0.640 0.654 0.647 0.665 

6 20.00 0.750 0.605 0.666 0.664 0.654 0.672 

8 23.54 0.927 0.554 0.627 0.653 0.684 0.648 

TTEG-xx 

2 16.46 0.927 0.579 0.655 0.647 0.637 0.633 

4 20.00 1.000 0.408 0.500 0.460 0.460 0.459 
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ABSTRACT 

Thermodynamic-kinetic relationships are not uncommon, but rigorous correlations 

are rare. Based on the parabolic free energy profiles of elastic deformation, a generalized 

Marcus-type thermodynamic-kinetic relationship was identified between the shape 

recovery rate, Rt(N), and the elastic modulus, E, in superelastic poly(isocyanurate-

urethane) shape memory aerogels. The latter were prepared with mixtures of diethylene, 

triethylene and tetraethylene glycol, and an aliphatic triisocyanate. Synthetic parameters 

were varied systematically using a statistical design-of-experiments approach. 

Microstructures obtained in each formulation could be put into two groups, one consisting 

of micron-size particles connected with large necks, and a second one classified as 

mailto:leventis@mst.edu
mailto:cslevent@mst.edu
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bicontinuous. The two types of microstructure could be explained consistently by spinodal 

decomposition involving early versus late phase separation relative to the gel point. 

Irrespective of microstructure, all samples showed a shape memory effect with shape fixity 

and shape recovery ratios close to 100%. Larger variations (0.35-0.71) in the overall figure 

of merit, the fill factor, were traced to a variability in the shape recovery rates, Rt(N), which 

in turn were related to the microstructure. Materials with bicontinuous microstructures 

were stiffer and showed slower recovery rates. Thereby, using the elastic modulus, E, as a 

proxy for microstructure, the correlation of Rt(N) with E was traced to a relationship 

between the activation barrier for shape recovery, A#, and the specific energy of 

deformation, (reorganization energy, ), which in turn is proportional to the elastic 

modulus. Data were fitted well (R2=0.92) by the derived equations. The inverse correlation 

between Rt(N) and the elastic modulus, E, provides a means for qualitative predictability 

of the shape recovery rates, the fill factors, and the overall quality of the shape memory 

effect. 
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1. INTRODUCTION 

Shape memory materials (SMM) remember their permanent shape and return to it 

from a temporary deformation after they are triggered with a specific stimulus,1 usually a 

temperature change.2 The first SMMs were certain Au-Cd alloys (1930s).3 Shape memory 

polymers (SMP)4,5,6 followed soon thereafter (1940s).7 Commercial SMP products were 

already available (e.g., heat shrinking tubing) before systematic studies were initiated in 
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the 1990s in order to find practical solutions to some of the issues associated with shape 

memory alloys,8,9,10 such as high density, low tolerance for high strains, and high cost.11 

SMP have potential as deployable and adaptive structures or in various medical 

applications. SMP aerogels, in particular, may have potential as lightweight deployable or 

adaptive antenna substrates, especially due to their very low dielectric constants, 

approaching 1 as the density decreases.12 Polymer aerogel antennas have been 

demonstrated to have higher gain and wider bandwidth with up to 80% weight savings over 

conventional antenna substrates.13 

The ultimate refinement in terms of weight savings in SMP can be realized with 

porous polymers, a special class of which is polymeric aerogels. Aerogels in general are 

highly porous, low-density solids obtained by drying wet-gels under conditions that 

preserve their volume into the final dry artifact.14 Typically, those conditions involve 

exchange of the pore-filling solvent with a supercritical fluid (e.g., SCF CO2) that is vented 

off like a gas. The first shape-memory aerogels (2016) were based on thiol-ene polymers.15 

However, not all SMP can be made into shape memory polymeric aerogels.16 A necessary 

condition for SMPs is that they have to be elastomers.1 However, the requirements that 

render polymers elastomeric typically increase the solubility of the polymer and render 

phase separation of what will become the skeletal framework of a wet-gel, and eventually 

of an aerogel, difficult. Recently, the interplay of those factors was balanced with certain 

aliphatic poly(isocyanurate-urethane) (PIR-PUR) skeletal frameworks obtained from a 

hexamethylene diisocyanate trimer (N3300A), and four short diols derived from ethylene 

glycol (ethylene glycol itself, as well as di-, tri- and tetra-ethylene glycol). The 

triisocyanate core introduced rigid isocyanurate crosslinking nodes (netpoints) that would 



114 

 

 

pull the network back together after deformation. Increasing the internodal flexibility with 

longer diols yielded PIR-PUR aerogels with near-ambient glass transition temperatures 

(Tg), but also increased the percentage of samples that would undergo unacceptable high 

shrinkage, resulting to low-porosity materials resembling dense plastics. Deformation of 

those PIR-PUR aerogels above their Tg’s, followed by fixing the temporary shape at 

temperatures well below Tg, and re-heating back above Tg resulted in a robust shape-

memory effect that was used to demonstrate possible applications in diverse areas ranging 

from space exploration (e.g., deployable panels) to biomedicine (e.g., biomimetic body 

parts – a human hand-like object performing a function).16     

This report stems from our efforts to probe further the properties of that class of 

shape-memory PIR-PUR aerogels by employing mixtures of the same glycol-derived short 

diols used previously (Scheme 1A). The ratio of diols and the sol concentration were varied 

systematically with a statistical experimental design methodology.  The new materials 

showed again a robust shape memory effect with high figures of merit as their single-diol 

counterparts.16 However, they also possessed some additional characteristics that shifted 

our attention and became the focal point of this study. Specifically, at first, interplay of 

gelation kinetics (controlled primarily by the total monomer concentration) and the 

solubility of the developing polymer (that depended on the specific mixture of diols) 

“froze” and locked-in-space bicontinuous microstructures at their early stages of phase 

separation. During thermomechanical characterization of the shape memory effect of those 

bicontinuous microstructures, we noticed a profound inverse relationship between the 

elastic modulus and the shape recovery rate (a thermodynamic and a kinetic quantity, 

respectively): bicontinuous microstructures were associated with order-of-magnitude 
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higher Young’s moduli and 3-5 times slower shape recovery rates than samples in which 

spinodal microstructures had time to undergo coarsening and spheroidization. Eventually, 

it was discovered that this inverse relationship extends over and encompasses not only the 

PIR-PUR samples of this study, but also the single-diol PIR-PUR aerogels of our previous 

study.16 We are not aware of any prior reports of such phenomena in shape-memory 

polymers, and the reason they were overlooked in our previous single-diol study was that 

high-modulus samples had undergone significant shrinkage, and became almost fully 

dense. Since the focus of that study was on aerogels, the thermomechanical properties of 

denser samples were not investigated in detail. In contrast, here, bicontinuous structures 

are higher in modulus without having become fully dense, rendering the said inverse 

relationship between shape recovery rate and elastic modulus quite pronounced. 

Empirical thermodynamic-kinetic relationships are not uncommon. Consider for 

example the Hammond postulate,17 the Hammett linear free energy relationships,18 the 

concept of kinetic acidity,19 as well as relationships between kinetic and equilibrium 

swelling of gels.20 Albeit unrelated, closer to this work is the fact that the stress relaxation 

of short-fiber reinforced polymers slows down as the content of fibers, and therefore the 

elastic modulus, increases.21 On the other hand, rigorous thermodynamic-kinetic 

correlations are rare. A notable exception is the Marcus theory as it applies to electron,22 

H+, H-,23 and CH3 transfer.24 In a generalized analogy to the Marcus equation, the cause of 

the thermodynamic-kinetic relationship reported here lies with the properties of crossing 

parabolic free energy profiles. 
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2. RESULTS AND DISCUSSION 

2.1. SYNTHESIS OF MIXED-ALCOHOL PIR-PUR AEROGELS (MIX-XX) 

Aliphatic N3300A triisocyanate was put to react with the stoichiometric amount of 

a mixture of DEG, TEG, and TTEG (triisocyanate:total diol = 2:3 mol/mol). 

Polymerization took place at room temperature in a acetonitrile/acetone mixture, and was 

catalyzed with dibutyltin dilaurate in a 1:120 mol/mol ratio with respect to N3300A 

(Scheme 1B). Polyurethane wet-gels were aged for 24 h (unoptimized), solvent-exchanged 

with acetone, and were dried in an autoclave with liquid CO2 that was converted to a 

supercritical fluid (SCF), and was vented off like a gas according to standard procedures 

(see Experimental). 

Based on previous results,16 the study was carried out as a central composite face-

centered experimental design,25 with three exploratory variables: (a) the total monomer 

concentration, (b) the mole fraction of DEG (the most rigid diol), and (c) the mole fraction 

of TTEG (the most flexible diol), letting TEG act as a filler. The VCH3CN/VTotal ratio was 

fixed at 0.875 throughout, because screening runs indicated that using pure acetonitrile 

produced materials with slower elastic recovery, while including a small amount of acetone 

(<25 %) solved this problem. On the other hand, higher amounts of acetone caused the 

materials to collapse to dense plastics on drying. Each of the three exploratory variables 

was set at a low, an intermediate, and a high value. For the purposes of the ensuing 

discussion the low total monomer concentration level is referred to as Level 1, the 

intermediate level as Level 2 and the high level as Level 3. The design space is shown in 

Figure 1. Individual samples are referred to as MIX-xx. “MIX” emphasizes that samples 

were based on mixtures of diols, and “-xx” is the run number, indicating the position of 
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each material in the design space (Figure 1). The total model consisted of 15 points; the 

central point (MIX-10) was repeated three times (samples: MIX-11 to MIX-13). The exact 

formulations of all samples are tabulated in Table S.1 of Appendix I in Supporting 

Information along with the respective phenomenological gelation times (i.e., the time it 

took each sol to stop flowing). 

 

2.2. CHEMICAL CHARACTERIZATION OF MIXED-ALCOHOL PIR-PUR 

AEROGELS 

Thermogravimetric analysis (TGA, Figure S.1 in Appendix II of the Supporting 

Information) showed no mass loss up to about 200 oC by any other MIX-xx except MIX-

17, indicating absence of residual processing solvents in the samples. MIX-17 lost 

progressively up to 2% w/w by 150 oC. The chemical composition of all MIX-xx was 

probed with solid-state CPMASS 13C and 15N NMR, CHN elemental analysis and ATR-

FTIR. 

Representative 13C and 15N NMR spectra are shown in Figure 2 using three samples 

across a diagonal of the design space (Figure 1): MIX-1 –> MIX-12 –> MIX-16. Those 

samples were selected in order to probe: (a) the invariance of the chemical composition 

with monomer concentration (Level 1 to Level 3); (b) the invariance of the chemical 

composition with microstructure (note in particular MIX-16 and the discussion in Section 

2.3); (c) the complete incorporation of the monomers in the polymeric network (the 

diagonal was selected so that irrespective of the diols, samples contain the same ratio of 

near-urethane group versus internal CH2 groups); and, (d) possible end-groups (via 15N), 

which, in conjunction with CHN analysis, is useful information related to the growth 

mechanism, and thereby the MIX-xx micromorphology (Section 2.3). 
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In 13C NMR, the urethane carbonyl resonance was found at 156.7 ppm. The peak 

at 149.2 ppm corresponded to the isocyanurate carbonyls of N3300A.26 The resonance at 

63.9 ppm was assigned to the methylene carbons near the urethane linkages, i.e., –

NH(CO)-OCH2–. The internal methylene groups of DEG, TEG and TTEG gave a more 

intense resonance at 70.0 ppm. Peaks in the 26-43 ppm range came from the –(CH2)6– 

groups of the triisocyanate. As mentioned above, the three samples were chosen so that the 

number of carbons, and therefore the relative intensity of near-urethane group carbons (–

NH(CO)-OCH2–) vs. the total internal –OCH2CH2O– resonances was the same; 

consequently, the three spectra look very similar, supporting that the three diols were 

incorporated in the prescribed amounts.  Finally, the integrated relative intensities of the 

total –CH2– groups of the triisocyanate (26-43 ppm) vs. the total –CH2– groups of the 

glycols (60-80 ppm) were in close agreement with the expected formulations of the 

corresponding MIX-xx. 

Turning to 15N NMR, all spectra showed only two resonances: at 136.7 ppm and 

78.8 ppm, corresponding to the isocyanurate, and the urethane –NH(CO)-O– nitrogens, 

respectively. No resonances of any dangling terminal -NH2 groups were detectable 

(expected in the range of 40-50 ppm.27). In all, both 13C and 15N NMR behaved as if we 

were dealing with infinite polymer networks. 

Both experimental and theoretical CHN elemental analysis data are cited in Table 

S.2 of Appendix I in Supporting Information. Theoretical (expected) amounts of CHN were 

calculated assuming: (a) infinite networks; (b) full incorporation of the triisocyanate and 

diols into the aerogel skeletal framework; and, (c) random binding of the triisocyanate with 

the three diols. Half of each interconnecting diol was assigned to one isocyanurate core and 
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the other half to the second isocyanurate core at its other end. The agreement between the 

theoretical and experimental values was remarkable, in particular considering the fact that 

we were dealing with as-prepared materials, whose further ‘purification’ (in the classical 

preparative chemistry context) was impossible. The CHN analysis results, together with 

the solid-state NMR data, support the infinite network hypothesis, which in turn suggests 

that all urethanes of this study were relatively soluble: oligomers stayed in solution for a 

relatively long period before phase separation, which allowed them either to grow in size 

to the point that end groups were undetectable, or, more probably, to react with end-groups 

of other nearby oligomers. 

ATR-FTIR spectra were obtained for three representative samples, MIX-4 from 

concentration Level 1, MIX-9 from Level 2, and MIX-16 from Level 3. All three samples 

behaved similarly. Representative data are shown with MIX-9 in Figure 3. Data for the 

other two samples are shown in Figures S.2 and S.3 of Appendix III in Supporting 

Information. Figure 3A shows the full spectrum of MIX-9; Figure 3B is a magnified 

version of the NH-stretch region of Figure 3A; Figure 3C shows the NH region after 

heating at Tg + 40 oC and cooling back to room temperature; and, Figure 3D shows again 

the NH stretch region after heating at Tg + 40 oC, stretching near the ultimate break-point, 

letting strain relax, and cooling back to room temperature. In all spectra, the most intense 

absorption was the isocyanurate carbonyl stretch at 1676 cm-1. The free urethane carbonyl 

stretch appeared as a 1729 cm-1 shoulder of the isocyanurate C=O stretch. H-bonded 

urethane carbonyl stretches were expected at lower energies, that is underneath the 

isocyanurate stretch, and thereby could not be observed. Turning to the urethane C-NH 

functionality, the N-H bending coupled to the C-N stretch gave a medium-size absorption 



120 

 

 

at 1525 cm-1. A broad absorption extending from about 3000 cm-1 to almost 3500 cm-1 was 

assigned to the N-H stretch. In all spectra, that broad absorption was deconvoluted and was 

fitted with five Gaussian curves. In contrast to the corresponding single-diol 

polyurethanes,16 no free N-H (expected in the range of 3423-3545 cm-1) was detected in 

any spectrum.28,29 In all spectra, three of the five Gaussians were in the 3059-3251 cm-1 

range, thereby they were assigned to stretching of N-H that was H-bonded to glycol units 

(NH···O(CH2)2).
30,31,32 The two remaining Gaussians were in the 3333-3397 cm-1 range, 

and they were assigned to stretching of N–H, H-bonded to carbonyls (NH···O=C).29,30 The 

total integrated area of NH···O(CH2)2 ranged from 1.50 to 1.68 that of NH···O=C. By 

heating at Tg + 40 oC, the total area of NH···O(CH2)2 increased slightly at the expense of 

NH···O=C. Taking MIX-9 as an example, the relative ratio of the five fitting Gaussian 

curves in as-prepared samples was (5:18:38):(33:6), and after heating changed to 

(5:18:44):(29:5). Those changes were not considered significant. (Parentheses group the 

three peaks corresponding to NH···O(CH2)2, and the two peaks corresponding to 

NH···O=C.) Adding a stretching step (Figure 3D), left the peak balance practically 

unaffected: (5:16:41):(32:6). (The results for MIX-4 and MIX-16 from Figures S.2 and 

S.3 were (starting from as-prepared samples): (5:15:42):(32:5) / (5:20:42):(27:5) / 

(5:15:45):(30:5), and (5:13:42):(35:5) / (5:16:42):(31:6) / (5:16:42):(31:6), respectively.) 

Overall, all ATR-FTIR data suggest that in contract to the corresponding single-diol PIR-

PUR aerogels,16 as-prepared MIX-xx were already strongly H-bonded. No free NH was 

detected. Heating and stretching did not cause any additional settling attributable to more 

favorable H-bonding interactions. 
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2.3. MICROMORPHOLOGY AND THE GROWTH PROCESS  

Microscopically (SEM, Figure 4), all samples except MIX-17 consist of a solid 

framework interpenetrating with void space. MIX-17 looked like a dense plastic. 

Microstructures could be put in two groups: The first group consisted of random 

distributions of fused micron-sized particles, and included all samples at concentration 

Levels 1 and 2 (15% and 20% w/w, respectively), and sample MIX-15 from Level 3 

(monomer concentration at 25% w/w). Generally, the size of the connecting interparticle 

necks was on the same order as the particles themselves. Only in MIX-15 at Level 3, necks 

were clearly smaller than the particles. The particle size decreased as the monomer 

concentration increased from 15% to 25% following effectively a direct relationship with 

gelation times (Table S.1); therefore particle growth was related to gelation kinetics. The 

second group of samples (surrounded by a red dashed line in Figure 4) included the 

remaining three non-collapsed samples at Level 3, MIX-14, MIX-16 and MIX-18, 

showing a very different microstructure consisting of bicontinuous networks of about 

same-size interconnected strings and interconnected voids. The width of those strings and 

voids was one order-of-magnitude smaller than the diameter of their closest relative: MIX-

15 at Level 3. Strings, for example, were only 0.4-0.6 m wide and completely featureless 

at all magnifications. That morphology is expected from spinodal decomposition that 

involves a late phase separation taking place close to the gelation point, which in turn 

“freezes” those networks in space.33,34,35 That interpretation is consistent with: (a) the fact 

that those bicontinuous microstructures were observed from sols richer in longer TEG and 

TTEG, whose developing polymers were expected to be more soluble; and, (b) the fact that 

they were observed only in samples from higher concentration sols (Level 3) that gelled 
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faster. In that context, noting that all samples at concentration Level 3 gelled within a 

narrow time-interval (60 ± 10 min - see Table S.1), sample MIX-15, which was based on 

a high-DEG formulation, would be expected to phase-separate earlier; thereby, by the 

more-or-less common gel-point of all samples at Level 3, its bicontinuous network would 

have time to coarsen into spheroidal domains – hence its particulate morphology. At the 

other extreme, MIX-17 did not use any DEG, and it is suggested that gelation may have 

never taken place at all (i.e., what was perceived as a gel may have been a very viscous 

polymeric solution). In that regard, the polymeric domains of the bicontinuous network 

had time to coalesce during aging and contract into a dense plastic upon drying.  

Extrapolating conceptually from those growth processes at Level 3, the morphology of all 

samples at Levels 1 and 2 may have been the result of an evolution along a similar path 

whereas slower reactions, due to lower monomer concentrations, delayed gelation, giving 

time for further spheroidization and formation of larger particles. That interpretation is also 

consistent with the larger particles observed in DEG-richer MIX-2 and MIX-3 (within 

Level 1): earlier phase separation expected in those sols allowed more time for coarsening 

and formation of larger spheroidal domains. Although nucleation-and-growth could not be 

ruled out from the outset, eventually that gelation mechanism was deemed unlikely given 

the fact that such a process would be expected to be initiated by aggregation of small 

oligomers; in that case we should have been able to detect some end-group effects in the 

CHN elemental analysis data,36 or “see” dangling terminal –NH2 groups in the solid-state 

15N NMR spectra,27 neither of which was the case with any sample, as discussed in Section 

2.2 above. At any rate, irrespective of the growth mechanism, the fact is that we distinguish 

two well-defined micromorphologies, and as it will become apparent below, morphology 
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correlates with several material properties of interest ranging from shrinkage, to stiffness, 

to the shape recovery rate. 

 

2.4. BULK MATERIAL PROPERTIES 

All relevant data are included in Table S.3 of Appendix IV in Supporting 

Information. Skeletal densities, s, (via He pycnometry) were all in a narrow range (1.19-

1.22 g cm-3). Bulk densities, b, were calculated from the sample weight and physical 

dimensions and increased from 0.25 g cm-3 (monomer concentration at Level 1) to 0.53 g 

cm-3 (Level 3).  Percent porosities were calculated via =100(s -b)/s and they varied 

in the 56-79% v/v range. Densified MIX-17 felt far outside those ranges (b = 1.17 g cm-3 

and =3% v/v).  

Bulk densities, not including MIX-17, were plotted versus the exploratory variables 

(Figure 5) and were fitted with a quadratic model (Eq 1) where non-significant terms (i.e., 

those with null-hypothesis probability values P>0.1) were eliminated stepwise until all 

remaining terms had P<0.1 (In Eq 1, X1, X2, X3 stand for the exploratory variables (Figure 

1); for the coefficients A-J of all fitted properties refer to Table S.4 of Appendix V in 

Supporting Information.) Figure 5 shows that for higher mol fractions of TTEG, the bulk-

density surfaces at monomer concentrations 20% and 25% deviated upwards relative to the 

15% samples; albeit unbiased by high-density MIX-17, that deviation was steeper at the 

25% concentration level. Bulk densities are not only a function of the sol concentration, 

but also of shrinkage. 

Property = A(X1)
2 + B(X2)

2 + C(X3)
2 + D(X1)(X2) + E(X1)(X3) +  F(X2)(X3) + G(X1) + 

   H(X2) + I(X3) + J                                                    (1) 
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Shrinkage took place during drying and varied from 24% to 31% in linear 

dimensions, except for MIX-17 that shrunk 45.3% (Table S.3). Quadratic fitting of 

shrinkage as a function of the exploratory variables (Figure 6, not including MIX-17) 

emphasizes that at Levels 1 and 2, shrinkage did not vary much with composition, however, 

at Level 3 shrinkage increased sharply as the mol fractions of longer diols, TTEG and TEG, 

increased. Higher shrinkage is what drove densities disproportionally higher at the high-

TTEG end of concentration Level 3 (25%) in Figure 5. Interestingly, while the shrinkage 

of spheroidal MIX-15 at concentration Level 3 did not fall far off the shrinkage of the rest 

of the samples (i.e., at Levels 1 and 2), the subsequent sharp increase of that surface tracked 

the transition from the spheroidal to the bicontinuous micromorphology of Figure 4, which, 

as discussed in Section 2.3 above, comprises a balance of early versus late spinodal 

decomposition and gelation. 

 

 

2.5. THERMAL CHARACTERIZATION 

2.5.1. Glass Transitions.  Glass transition temperatures, Tg, were measured with a 

Dynamic Mechanical Analyzer (DMA) in the tension mode as described in Experimental 

Section. Samples were subjected to a small-amplitude strain oscillation at 1 Hz and the 

temperature was ramped from well below (-50 oC) to well above (150 oC) the expected 

glass transition range. The typical literature-suggested ramp rate that was tried here first 

too was 3 oC min-1.37 Initially samples were stiff, but as temperature neared the glass 

transition range, both the storage (E’) and loss moduli (E”) started to decrease, crossing 

each other along the way twice, and eventually leveling off at values about 1000 lower 

that those they started from. Typical data are shown in Figure 7A. Glass transition 
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temperatures (Tg) are reported as the maxima of tan  (=E”/E’) – refer to Table S.5 of 

Appendix VI in the Supporting Information. The local maxima in the E” curves (pointed 

at with an arrow in Figure 7A) are included in Table S.5 and can be considered as the onset 

of the glass transition range. Those maxima were 12-20 oC lower than the maxima in tan 

. 

It has been cautioned, that Tg values of porous polymers obtained with DMA may 

be overestimated,38 because a combination of low thermal conductivities, and relatively 

fast heating rates, may not allow samples to reach thermal equilibrium with the driving 

stimulus (temperature). Thermal conductivity values, kthermal, of all MIX-xx were measured 

at 37.5 oC in the spirit of ASTM C518-17 using the hot plate method (see Experimental),39 

and were found in the range of 45-100 mW m-1 K-1 (refer to Table S.6 of Appendix VII in 

Supporting Information). In turn, those kthermal values were used in order to calculate the 

time needed for typical samples employed in the DMA experiments (5-6 mm thick) to 

reach thermal equilibrium. For this, it is noted that kthermal can be expressed (Eq 2) as the 

product of bulk density, b, the heat capacity under constant pressure, cP, and the thermal 

                                               k = b  cP  Dthermal                                         (2) 

diffusivity, Dthermal, of the samples.32 The cP values of MIX-xx were calculated as weighted 

averages of the cP values of the pure-diol PIR-PURs we published recently.16 All relevant 

values  (kthermal, b, cP, Dthermal) are included in Table S.6.  Dthermal varied in the range of 

0.05-0.15 mm2 s-1. Mathematically, the heat transfer problem across our samples is 

analogous to conducting thin-layer-cell voltammetry, and it has an exact solution.33 

Nevertheless, a good estimate of the time, , required for a heat wave to reach the center of 

the DMA specimens (2.5-3.0 mm below its surface) can be obtained by introducing the 
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relevant values in the statistical Einstein-Smoluchowski root mean square displacement 

equation (Eq 3), and by setting <x2> = [(sample thickness)/2]2. Time  was calculated on 

the order of 52 ± 12 s. Since in the DMA experiment, heat is supplied continuously, the 

                                           <x2> = 2  Dthermal      (3) 

time required to reach thermal equilibrium should be somewhat shorter than that estimate, 

thereby the calculated -range is considered as an upper limit for thermal equilibration. 

Consistently with those calculations, using temperature ramps of 5, 3, 1 and 0.5 oC min-1, 

we see (Figure 7B) that the Tg values at first decreased sharply (at heating rates between 5 

and 3 oC min-1), and then practically leveled off for heating at about 1 oC min-1. The latter 

was the heating rate used in all subsequent thermomechanical experiments. 

With that heating rate (black bars in Figure 7B), Tg varied narrowly over the MIX-

xx domain (30-42 oC). Those Tg values were fitted with a quadratic model (Figure S.4 in 

Appendix VI of the Supporting Information) and the surfaces were compared with the 

expected surface calculated by considering Tg of MIX-xx as weighted averages of the Tg 

values of the single-diol PIR-PURs.16 The experimental surfaces of MIX-xx were 

significantly lower than the expected one, which, in combination with their curvature, 

points to interactions between mixed diols that evidently modified the molecular 

arrangement found in the pure systems. That conclusion agrees with the ATR-IR data, 

which showed no free NH in MIX-xx, in contrast to their pure-diol analogues. 

2.5.2. Thermomechanical Behavior and the Shape Memory Effect (SME). 

Thermomechanical properties were characterized under tension using a DMA in the same 

configuration as for measuring Tgs. Fresh as-prepared samples were cut into the same 

geometric sizes used for the determination of Tg (see Experimental), they were placed in 
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the tension fixture of the DMA, and were subjected to five temperature and 

stress/relaxation cycles as shown in 3D format from two different perspectives in Figure 

8.1 In Step 1, samples were heated up to their deformation temperature (Td = Tg + 10 oC) 

and were equilibrated for 5 min. Then, they were stretched at 1N min-1 to strain values near 

the maximum strain of each sample (pre-determined with other samples). Maximum stains 

were typically around 60%, but for bicontinuous samples at concentration Level 3 (MIX-

14, MIX-16, MIX-18), they were found as low as 20%. In Step 2, stress was maintained 

at the maximum value applied in Step 1, and the temperature was decreased at 5 oC min-1 

to the fixation temperature (Tf = Tg - 40 oC). Once at Tf , samples were equilibrated for 5 

min. Strain was monitored continuously throughout Step 2. In Step 3, while the temperature 

was maintained at Tf , the applied stress was removed suddenly (decreased to 0.01 N), and 

samples were allowed to fix their shape for 15 min under continuous strain monitoring. 

Typically, only a very small change in the sample dimensions (contraction) occurred during 

that time. In the final Step 4, the temperature was increased at 1 oC min-1 to the recovery 

temperature (Tr), which was set equal to the initial deformation temperature (i.e., Tr = Td = 

Tg + 10 oC). Again, strain was recorded continuously. Samples were held at Tr for 15 min 

and the sequence of Steps 1-4 was repeated. According to Figure 8, all samples showed 

relaxation phenomena during the first thermomechanical cycle. Similar relaxation in the 

pure-diol PIR-PUR analogues was accompanied by a disappearance of free NH and an 

increase in H-bonding NH. Here, MIX-xx did not show any free NH, including the as-

prepared samples, therefore relaxation was attributed to other (non H-bonding) non-

covalent interactions. After the first cycle, the thermomechanical profile kept on tracing 
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itself, suggesting a robust SME that was quantified and related to the nanostructure as 

described below. 

The elastic moduli, E, of all MIX-xx at Tg + 10 oC were calculated from the stress-

strain curves of Step 1 of each cycle. Primary data are given in Table S.7 of Appendix VIII 

in Supporting Information. Figure 9A shows the results from cycles 1 and 5 in bar-graph 

format. In general, samples became less stiff after the first thermal cycle, except 

bicontinuous MIX-14, MIX-16 and MIX-18 at Level 3, which become somewhat stiffer. 

E increased with density from Level 1 to Level 3, as expected,42 however, that increase 

was not smooth. The E values started off quite low at Levels 1 and 2 (below 0.1 MPa), and 

jumped up by almost a 10-fold at Level 3. That jump though was observed only in 

bicontinuous MIX-14, MIX-16 and MIX-18. The E value of shperoidal MIX-15 at Level 

3 followed the smooth trend set by Levels 1 and 2. It is self-evident that in porous materials 

stiffness is related to the amount of the material at the interconnects of the building blocks; 

if those building blocks are particles, stiffness depends on the size and shape of the particle 

interfaces.43 All other things being equal, the material in bicontinuous microstructures is 

more evenly distributed along the network and thereby are stiffer.35,44 Now, Figure 9B 

shows the response surfaces of E at cycle 5 with respect to the exploratory variables. At 

Levels 1 and 2, the secondary dependence of E on the relative diol ratio, was 

counterbalanced by the increase in density, and thereby generalizations in that respect were 

difficult. However, the overall similarity of the surfaces in Figures 9B with those of 

shrinkage in Figure 6 is raher striking, and links two basic material properties so far, 

shrinkage with modulus, to micromorphology.  
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The shape memory effect suggested by thermomechanical cycling (Figure 8) is 

demonstrated in Figure 10 with MIX-14 cast into a spiral permament shape using a mold 

as shown. The spiral artifact was stretched flat at Tg+40 oC, and while stretched it was 

dipped in liquid nitrogen. Then it was clamped upside-down, and it was let to thaw back to 

room temperature. The snapshots of Figure 10 were taken from a movie that is included as 

Supporting Information. Clearly, the elastic energy stored in the sample during stretching 

was enough to lift the sample weight and bring it back to its original shape. The shape 

memory ability of all MIX-xx was evaluated via an overall figure of merit that is referred 

to as Fill Factor, FF(N), whereas N is the thermomechanical cycle number (1≤N≤5).45 

FF(N) was calculated graphically from the ratio of the shaded area underneath the S-shaped 

curve of Figure 11A to the total area of the box around the S-curve, as shown.  The S-curve 

is the projection of a 3D thermomechanical cycle (Figure 8) on the strain-temperature 

plane, and includes all information about a sample’s ability to fix and recover its shape, as 

well as how fast it does so, i.e., how steep is the S-shaped curve. By definition, FF(N) 

depends on the selection of the high and low temperature limits. As the lower limit (i.e., 

the onset of recovery) we considered the temperature at which the slope of the recovery 

curve was at 3% of its maximum slope at the inflection point. As the upper temperature 

limit we chose a more conservative Tr = Tg + 10 oC rather than the reported Tg + 20 oC.45 

All FF(N) data are given in Table S.8 of Appendix VIII in Supporting Information. Figure 

11B shows and compares in bar-graph format all FF(1) and FF(5) values. Throughout, 

FF(2)FF(5), consistent the settling noted after the first thermomechanical cycle in Figure 

8.  Post-settling, FF(N>1) reached values as high as 0.7, which are considered high.45,46 

Upon closer inspection of Figure 11B, we see a general downward trend in the FF(5) values 
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from Level 1 to Level 2. That trend, however, was interrupted, and in some cases it was 

reversed, at Level 3. For additional insight, FF(N) was deconvoluted to its three 

contributing figures of merit: the strain fixity ratio (Rf(N)), the strain recovery ratio (Rr(N)) 

and the strain recovery rate (Rt(N)). Rf(N) and Rr(N) were calculated from strain vs. time 

plots (e.g., Figure 12A), which were constructed by first projecting the 3D curves of Figure 

8 on the strain-temperature plain (just like for constructing Figure 11A), followed by 

unfolding that projection in time. The last operation was based on the fact that temperature 

was varied at a controlled rate, thereby it was uniquely defined at every point in time. Rt(N) 

was calculated from the derivative of the strain vs. time curves as shown in Figure 12B. 

All data for Rf(N), Rr(N) and Rt(N) are given in Tables S.9 – S.11 of Appendix VIII in 

Supporting Information. 

The strain fixity ratio, Rf(N), describes how well a sample can retain its temporary 

(stretched) shape at a temperature sufficiently lower than Tg under stress-free-conditions. 

Rf(N) was calculated for each cycle, N, via Eq 4, from the ratio of the equilibrium strain at 

the low- temperature, stress-free condition, u(N), to the maximum strain, m(N), at which 

                               𝑅𝑓(𝑁)  =  
𝜀𝑢(𝑁)

𝜀𝑚(𝑁)
 ×  100                                      (4) 

the sample was stretched at the deformation temperature, Td, in the beginning (Step 1) of 

the cycle – see Figure 12A. By definition, Rf(N) expresses the total creep during Steps 2 

and 3 of every cycle, that is (a) under stress during cooling, (b) under stress during the first 

5-min stay at Tf, and (c) under a stress-free condition during the subsequent 15-min stay at 

Tf. Rf(N) values were always, including cycle 1, greater than 97% (Figure 13A). Even 

collapsed MIX-17 showed Rf(N)>94%. It is concluded that strain fixity did not have a 

significant contribution in the differentiation among the FF(N) values.  
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The strain recovery ratio, Rr(N), reports the ability of a sample heated back up to Tr 

(=Td) to recover its starting shape in a particular stress-cool-heat cycle, N. Referring again 

to Figure 12A, Rr(N) values were calculated via Eq 5 as the ratio of the recovered strain to 

the maximum strain the sample was stretched at the beginning of the cycle. The recovered 

                           𝑅𝑟(𝑁)  =  
𝜀𝑚(𝑁)− 𝜀𝑝(𝑁)

𝜀𝑚(𝑁)
 ×  100                                 (5) 

strain in a cycle N was the difference between the residual strain after the full cycle, p(N), 

and the maximum strain, m(N), the sample was stretched at in Step 1 of that cycle. 

Comparing Rr(N) values among cycles gives a measure of fatigue. As shown in Figure 13B, 

all Rr(N) values started off lower in the first cycle (79-91%), increasing afterwards to 

≥99.5% for all samples except MIX-18 that settled at 98.1%. The increase of Rr(N) after 

the first cycle was consistent with settling noted above. Overall, all MIX-xx demonstrated 

excellent shape recovery, but again, just like with Rf(N), the Rr(N) ratio did not make a 

meaningful contribution to the differentiation noted among the FF(N) values in Figure 11B.  

Finally, Rt(N) is a measure of the speed with which strain recovers back during the 

final heating stage of a thermomechanical cycle (Step 4). Rt(N) was introduced16 as a means 

to quantify the fact that the area underneath the S-shaped curve of Figure 11A, and thereby 

FF(N), depend on the curve steepness. Referring to Figure 12B, Rt(N) values for each cycle 

were caluclated via Eq 6 from the slopes at the inflection points of the recovery curves. 

Because strain recovery was driven by the heating rate, sufficient low heating rates 

                             𝑅𝑡(𝑁) = max [−
𝑑𝑆𝑡𝑟𝑎𝑖𝑛

𝑑𝑡
]                                       (6) 

would ensure quasi thermal equilibrium conditions, and thereby slopes would represent an 

innate property of the material rather than the imposed driving force (temperature ramp). 
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The heating rate in use in all experiments was 1 oC min-1, stemming from the measurements 

of the glass transition temperatures, as discussed in Section 2.5.1. Rt(N) data are presented 

in bar-graph format in Figure 14 for the first and fifth cycles of all MIX-xx. Rt(N) values 

varied  from 2 min-1 to 10 min-1. With obvious “outliers” MIX-2 and MIX-5, on average 

Rt(N) showed a slight increase with density from Levels 1 to 2, and that trend was followed 

by spheroidal MIX-15 at Level 3.47 That trend is reminiscent of a rate law like Rt(N) = krate 

b. But obviously, even to put it generously, that law is very weak, as it is violated in a 

major fashion by bicontinuous materials MIX-14, MIX-16 and MIX-18, which showed 

just the opposite relationship: their Rt(N) values were 3-5 times lower than the values of all 

other samples in this study. In the context of this discussion then, an all-sample inclusive 

rate law would have a rate constant, krate, dependent on micromorphology. The latter, 

however, is difficult to express in numbers in order to enter it in any form of quantification. 

In this context, two properties that can be expressed quantitatively, shrinkage and elastic 

modulus, have shown clear correlations with micromorphology, and thereby can be used 

as proxies for the latter. We see no obvious quantitative relationship between Rt(N) and 

shrinkage. On the other hand, the relationship between Rt(N) and E can be expressed 

quantitatively.  

The elastic modulus, E, a measure of stiffness, is a thermodynamic quantity that is 

proportional to the work needed to carry out a certain amount of deformation (see below). 

The recovery rate is a kinetic quantity, and at first glance there is no obvious reason why it 

has to be related to the elastic modulus. However, even just a cursory comparison of 

Figures 14 and 9A reveals a quite pronounced inverse relationship between Rt(N) and E, 

especially at Level 3, suggesting that stiffer samples (that require more energy for 
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deformation) should be also associated with higher activation barriers for shape recovery. 

An apparently similar kinetic-thermodynamic phenomenon has been debated frequently in 

the literature, and concerns short fiber reinforced polymers, which, evidently, undergo 

slower isothermal stress relaxation as the amount of fibers increases (and thereby the 

composite becomes stiffer).21,48,49,50 That phenomenon has been attributed either to 

covalent bond formation between fibers and the polymer, or to interfacial phenomena 

whereas fibers slow the movement of polymeric chains in their vicinity, or to the effect of 

the viscoelastic properties of the polymer on the shear stress transfer to fibers.21 None of 

those processes apply in our case.  

Elastic deformation has a parabolic mass-specific free energy profile, A (Eq 7). 

                                                                                          (7) 

The “width” “width” of the parabola is related inversely to the elastic modulus, E 

(Scheme 2). Stiffer materials (E2>E1) have narrower specific energy profiles, (e.g., dashed 

red line in Scheme 2). According to our thermomechanial protocol (Figure 8), stretching a 

sample (at Td) to m increases the specific free energy of the material by = (E/2b)m
2 

(that is  = A at m – Scheme 2). No covalent or non-covalent bonds are broken during that 

deformation. Elastic deformation involves only entropic work.1,51 Thereby, the 

reorganization energy is purely entropic, and equal to –TdS. From the two expressions 

for it is derived that S = –Em
2/2Tdb. Freezing the stretched sample to Tf  (= Tg – 40 

oC), creates a much stiffer material (by approximately 1000 times – see Figure 7A), with a 

much narrower energy profile than that of the original state at Td (refer to the blue parabola 

in Scheme 2). The bottom of that profile is by (Tf – Td)S lower than the reorganization 

A =
E

2rb
e 2
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energy  expended to stretch the sample to m. Thereby, A = l – (Tf – Td)S. According 

to Scheme 2, just by considering the shape of the parabolic profiles, the activation barrier 

for shape recovery, A#, is higher for a stiffer material (that is, for E2>E1, crossing point 2 

is higher than point 1), thus justifying slower recovery rates for stiffer materials. 

Quantitatively, the energy barrier for strain recovery, A# (Scheme 2), is calculated 

based on the equations of crossing parabolas. In the most general case A# is given by Eq 

8, which was derived (see Appendix IX in Supporting Information) by normalizing the 

                                                              (8) 

 

density-specific elastic moduli (E/b) to their highest value, namely the modulus of the 

fixed sample (blue parabola in Scheme 2). E stands for the normalized density-specific 

modulus; in turn, = Em
2/2, and S is given by S = – Em

2/2Td. If the moduli of the red 

and blue energy profiles were equal, then the activation barrier would be given by the 

typical Marcus equation (Eq 9), and would be given, as discussed above, by = 

(E/2b)m
2.    

                                                                                         (9)

 

After the appropriate substitutions, and considering the fact that E 0.001, the 

general case of Eq 8 takes the form of Eq 10.  

                                                                              (10) 
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Assuming an exponential relationship between the activation barriers for shape 

recovery and the corresponding rate constants (krate), Eq 10 yields Eq 11 (see Appendix 

IX), where C is the pre-exponential factor. The temperature T in the denominator is the 

                                                          (11) 

temperature at the inflection points in Figure 12B (i.e., where the derivative is calculated 

at); those T are very close to the glass transition temperatures – see Table S.12 of Appendix 

VIII in Supporting Information. (Similar expressions –see Eq.s S.4 and S.6 in Appendix 

IX– were derived from the Marcus expression of Eq 9 above.) Substituting krate = Rt(N)/b, 

Eq 11 yields Eq 12. Figure 15 confirms the linear relationship between Log Rt(5)/b and  

                                                     (12) 

E/b (data from Tables S.12 of Appendix VIII in the Supporting Information). It is noted 

that in addition to the data from MIX-xx, Figure 15 also includes the relevant data for all 

samples with porosities >10% from our previous work on shape memory PIR-PUR 

aerogels based on pure DEG, TEG and TTEG diols.16 As mentioned in the Introduction, 

since the focus of that study was on aerogels, the thermomechanical properties of denser 

samples were not investigated in detail. Clearly, in terms of the shape memory effect, slow 

recovery rates are associated with stiffer materials. In turn, a broader generalization can be 

made by cross-referencing Figure 4 with the SEMs of the samples from pure-diols:16 

significantly stiffer samples are related to bicontinuous micromorphologies, including 

those in samples that appear partially collapsed, yet with porosities ≥10 %.  
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3. CONCLUSION  

In summary, PIR-PUR aerogels were prepared with mixed ethylene glycol-derived 

diols and an aliphatic triisocyanate. Synthetic parameters were varied systematically using 

a statistical design-of-experiments approach. The chemical composition of each sample 

reflected its formulation, as designed. Microstructures could be put in two groups, one 

consisting of micron-size particles connected with large necks, and a second one classified 

as bicontinuous. The two groups could be explained consistently by a gelation mechanism 

involving spinodal decomposition and early versus late phase separation relative to the gel 

point. Irrespective of microstructure, all samples showed a robust shape memory effect 

with shape fixity and shape recovery ratios close to 100%. The overall figure of merit, the 

fill factor, was found in the range of 0.35-0.71; that variability was related, at least partly, 

to the shape recovery rates, Rt(N), which in turn were related to the micromorphology. 

Materials with bicontinuous micromorphologies were stiffer and showed slower recovery 

rates.  The inverse correlation between Rt(N) and the elastic modulus, E, provides a means 

for a qualitative predictability of the shape recovery rates, thereby the fill factor, and in 

turn the overall quality of the shape memory effect. That predictability can be summarized 

as follows: bicontinuous microstructures are stiffer and recover their shape more slowly.   

Quantitatively, the correlation of Rt(N) and E (Eq. 12) was traced to a linear correlation of 

the activation barrier for shape recovery and the elastic modulus (Eq 10). The elastic 

modulus is proportional to the specific work done for a certain amount of deformation (that 

is the integral underneath the stress-strain curve). Thereby, Eq. 10 represents a rigorous 

thermodynamic-kinetic correlation, analogous to the Marcus expression for electron 

transfer reactions.  
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4. EXPERIMENTAL 

4.1. MATERIALS 

All reagents and solvents were used as received unless noted otherwise. The 

triisocyanate (N3300A) was obtained courtesy of Covestro LLC (Pittsburg, PA) under the 

trade name Desmodur N3300A. Diols (ALC): diethylene glycol (DEG), triethylene glycol 

(TEG), tetraethylene glycol (TTEG); the catalyst: dibutyltin dilaurate (DBTDL); and, 

solvents: anhydrous acetonitrile and anhydrous acetone were purchased from Sigma-

Aldrich. Siphon-grade CO2 was purchased from Ozark Gas Co. 

 

4.2. SYNTHESIS OF SHAPE MEMORY POLY(URETHANE-ISOCYANURATE) 

AEROGELS 

In a typical process, exemplified with MIX-10, N3300A as-received (Desmodur 

N3300A, 0.338 g, 0.67 mmol) and the suitable amounts of diols (DEG, 0.027 g, 0.25 mmol; 

TEG, 0.075 g, 0.50 mmol; TTEG, 0.049 g, 0.25 mmol) were dissolved in an anhydrous 

acetonitrile/acetone (87.5/12.5) mixture. All formulations (Table S.1 in Supporting 

Information) were selected according to a central composite face-centered design (CCFD) 

model (see Figure 1),52,53  using the JMP11 software package.54,55 The solution was stirred 

in a three-neck round-bottom flask at 23 °C under N2 for 10 min, and DBTDL (3.35 µL) 

was added. The resulting sol was stirred for another 5 min and was poured into suitable 

molds. Smaller rectangular specimens for dynamic mechanical analysis were cut from 

cylindrical samples prepared using plastic syringes as molds (All Plastic Norm-Ject 

Syringes, 20 mL, Fisher Scientific Catalogue No. 14-817-32, 2.53 cm inner diameter). 

Larger rectangular samples suitable for ATR-IR and thermal conductivity measurements 
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were prepared using plastic containers (Style Selections 16”12.75” Plastic Multi-Use 

Insert Drawer Organizer, Model No. 39001, Lowe’s Item No. 105922). An aluminum mold 

for casting gels in the form of a spiral (Figure 10) was fabricated from an aluminum block 

using a waterjet. After casting the sol, molds were sealed with ParafilmTM and were kept 

at room temperature for gelation. The gelation time varied from 50 min to about 2 h 50 min 

depending on the ratio of alcohols and the monomer concentration (Table S.1). Gels were 

aged for 24 h in their molds at room temperature. Subsequently, gels were removed from 

the molds, washed with acetone (4×, 8h each time, using 4× the volume of the gel each 

time), and were dried with CO2 taken out as a supercritical fluid (SCF). Samples are 

referred to as MIX-xx where xx denotes the position in the domain of the independent 

variables (Figure 1). 

 

4.3. METHODS  

4.3.1. Drying.  Drying of wet-gels was carried out in an autoclave (Spe-edSFE  

system, Applied system, Applied Separations, Allentown, PA). Wet-gels were loaded into 

the autoclave at room temperature and were covered with acetone. The pressure vessel was 

closed, and liquid CO2 was allowed in at room temperature. Acetone was drained out from 

the pressure vessel, while more liquid CO2 was allowed in. When no more acetone was 

coming out of the autoclave, samples were kept under liquid CO2 for half an hour. Then 

liquid CO2 was drained out while more liquid CO2 was allowed in. The cycle was repeated 

several times until all acetone had been extracted out of the pores of the gels. Subsequently, 

the temperature of the autoclave was raised to 40 oC, and that condition was maintained for 

two hours. Finally, supercritical fluid (SCF) CO2 was vented off as a gas. 
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4.3.2. Chemical Characterization.  Solid-state CPMAS 13C-NMR spectra were 

obtained with samples cut into small pieces on a Bruker Avance III 400 MHz spectrometer 

with a carbon frequency of 100 MHz, using a 7 mm Bruker MAS probe at a magic angle 

spinning rate of 5 kHz, with broadband proton suppression, and the CP TOSS pulse 

sequence. The Total Suppression of Spinning Sidebands (TOSS) pulse sequence was 

applied by using a series of four properly timed 180º pulses on the carbon channel at 

different points of a cycle before the acquisition of the FID, after an initial excitation with 

a 90º pulse on the proton channel. The 90º excitation pulse on the proton and the 180º 

excitation pulse on carbon were set to 4.2 µs and 10 µs, respectively. A contact time of 2 

ms was used for cross polarization. Solid-state 13C NMR spectra were referenced externally 

to glycine (carbonyl carbon at 176.03 ppm). Chemical shifts are reported versus TMS (0 

ppm). Solid-state CPMAS 15N-NMR spectra were also obtained on the same Bruker 

Avance III 400 MHz Spectrometer with a nitrogen frequency of 40.557 MHz, using a 7 

mm Bruker MAS probe with broadband proton suppression and magic angle spinning at 5 

kHz. For cross polarization, a 90º proton excitation pulse was set to 4.2 µs with 2 ms contact 

time.  Chemical shifts were externally referenced to glycine (amine nitrogen at 33.40 ppm), 

and are reported versus liquid ammonia (0 ppm). In all solid-state NMR experiments, the 

relaxation delay was set at 5 s. 

Attenuated total reflectance (ATR) FTIR spectroscopy was carried out with a 

Nicolet-FTIR spectrometer Model 750, equipped with an ATR accessory Model 0012-

3XXT. Samples were cut to the size of the ATR crystal (ZnSe, rectangular, 20 mm × 50 

mm) and ATR-FTIR spectra were obtained by pressing them against the crystal with the 

ATR unit’s pressure device (gripper). Maximum throughput of the infrared beam to the 



140 

 

 

detector was achieved via optical alignment that was performed with no sample on the 

crystal. Data were collected at an incident beam angle of 45o, over 32 scans with a 

resolution of 2 cm-1.  In the ATR mode, the penetration depth (pd), and thereby the effective 

path length (=number of reflections × dp) of the infrared beam is directly proportional to 

the wavelength. Thereby, an ATR correction was applied to the raw data by multiplying 

the spectra with a wavelength-dependent factor (roughly /5) that adjusted the relative peak 

intensities. In order to evaluate H-bonding, the ν(N-H) bands were deconvoluted into five 

Gaussian-shaped peaks. Peak curve-fitting was performed using the Origin 8.5 software 

package. 

CHN elemental analysis was conducted with an Exeter Analytical Model CE440 

Elemental Analyzer, calibrated with acetanilide, urea, and glycine. All calibration 

standards and MIX-xx samples were run three times and results (Table S.2) are given as 

averages.  

4.3.3 Physical Characterization. Bulk densities (ρb) were calculated from the 

weight and the physical dimensions of the samples. Skeletal densities (ρs) were determined 

with helium pycnometry using a Micromeritics AccuPyc II 1340 instrument. 

4.3.4. Structural Characterization.  That was carried out using Scanning electron 

microscopy (SEM) with Au/Pd (60/40) coated samples on a Hitachi Model S-4700 field-

emission microscope.  

4.3.5. Thermal Characterization. Thermogravimetric analysis (TGA) was 

conducted under O2 with a TA Instruments Model TGA Q50 thermogravimetric analyzer, 

using a heating rate of 10 °C min−1. 
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Modulated Differential Scanning Calorimetry (MDSC) was conducted under N2 

with a TA Instruments Differential Scanning Calorimeter Model Q2000. Heat capacities, 

cp, at 23 oC of samples (2–5 mg), were measured using the MDSC method and calibrated 

against a sapphire standard and run from 0 oC to 30 oC at 0.5 oC min-1 in the modulated 

T4P mode, using 100 s as the modulation period and 0.13 oC as the modulation amplitude. 

Raw cp data were multiplied with a correction factor (0.795 ± 0.052) based on measuring 

the heat capacities of a rutile and of a corundum sample just before running the shape 

memory aerogel samples and taking the ratios with the corresponding literature values for 

heat capacities. 

The thermal conductivity of aerogel samples was measured according to ASTM 

Standard No. C177 (Standard Test Method for Steady-State Heat Flux Measurements and 

Thermal Transmission Properties by Means of the Guarded Hot Plate Apparatus) using a 

thermal conductivity analyzer consisting of a 4´´×4´´ aluminum block heated from the 

inside with three cartridge heaters (No. 3618K26, McMaster-Carr), and the temperature on 

the upper surface was maintained at 37.5 oC using a temperature controller (Part No. 

CN7833, Omega Engineering, INC.). The temperature-controlled surface of the aluminum 

block was covered with aerogel sample. Subsequently, a 4´´×4´´×0.5´´ reference sample 

(NIST standard SRM 1453, Expanded Polystyrene Board – closed cell),47 with two 

thermocouples attached near the centers of the two opposite faces, was placed over the 

aerogel sample. An aluminum bucket with crushed ice was supported by two screw-jacks 

(Product No. 11210-08, Ace Glass INC.) on two opposite sides, and was placed on top of 

the reference sample in such a way that the entire top (4´´×4´´) surface of the reference 

sample was in contact with the base surface of the ice bucket. To ensure good contact 
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between the ice-cold bucket and the NIST standard, the height of the screw-jacks was 

adjusted based on the thickness of the aerogel sample (thickness minus 5%). A fourth 

thermocouple was also placed deep in the crushed ice to monitor its temperature. A 4-

channel handheld data logger thermometer (Part No. HH378, Omega Engineering, INC.) 

was used to record the temperature at the four different places in the setup, as just 

described: at the bottom of the sample, at the top of the sample, at the top of the reference 

sample, and in the ice water. Once the setup was thermally equilibrated (about an hour), 

the readings of the four thermocouples were recorded six times in 15 minute intervals. The 

thermal conductivity was calculated based on the fact that the same amount of heat flows 

through both the sample and the reference sample. The apparatus was calibrated with (a) a 

second 4´´×4´´×0.5´´ piece of the NIST standard run as an unknown; and, (b) several 

4´´×4´´×0.4´´ pieces of commercially available Aspen Aerogel blankets. Because the 

aerogel samples were not applied as single monoliths, but rather as two pieces tightly fit 

side-by-side, the apparatus was also calibrated with two NIST standard samples 

(10.2×10.2×1.3 cm and 10.2×7.6×1.3 cm) fitted likewise, side-by-side. That arrangement 

made no statistically significant difference.  All calibration and crosscheck data are 

provided along with the thermal conductivity data of all MIX-xx in Table S.6 of Appendix 

VII in Supporting Information.  

4.3.6. Thermomechanical Characterization.  That was carried out in the tension 

mode with a TA Instruments Q800 Dynamic Mechanical Analyzer (DMA) equipped with 

a tension clamp (TA Instruments Part No. 984016.901). All specimens for testing had a 

rectangular geometry (length: 20 mm; width: 15 mm; thickness: 5-6 mm) in the spirit of 

ASTM D790-10,57 and ASTM D4065;58 they were cut off with a knife under N2 in a glove 
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box, from larger cylindrical samples dipped in liquid N2.  In order to ensure uniform 

thickness, the surface of all rectangular pieces was smoothened, while still frozen, with a 

3 M sand paper (320 grit, part No. 98401). In general, all samples were clamped to the 

tension fixture at room temperature. The exact length of all samples was measured by the 

instrument under a small tensile force (0.01 N) that prevents bending. The temperature was 

stepped to the initial testing temperature, and samples were equilibrated at that temperature 

for 5 min.  

Glass transition temperatures (Tg) were extracted from the viscoelastic properties 

of the samples, which were determined by applying a continuous sinusoidal oscillation (1 

Hz) with a strain amplitude equal to 0.3%, while the temperature was ramped from -50 oC 

to 150 oC at 3 oC min-1. As a control, two other fresh samples of each formulation were 

also tested under the same parameters, while the temperature was ramped from -50 oC to 

150 oC at 1.0 and 0.5 oC min-1. MIX-3, MIX-4, MIX-14, and MIX-18 were also tested at 

a temperature ramp of 5 oC min-1. 

Shape memory-related properties (strain fixity, strain recovery, strain recovery 

rates and fill factors) and elastic moduli were studied in the controlled force mode as 

follows: samples were first stepped, and then equilibrated at their deformation temperature 

(Td = Tg + 10 oC) for 5 min. Subsequently, samples were stretched with a small tensile force 

(0.01 N), and the length of the sample was measured by the instrument and was stored. 

Next, specimens were stretched at a constant force rate of 1N min-1 up to a little below their 

break point (typically around 60% strain), and then they were cooled, while under the final 

stress, at 5 oC min-1 to their fixation temperature (Tf<<Tg). At that point (Tf), samples were 

equilibrated for 5 min, and the tensile force was reduced to 0.01 N. Samples were allowed 
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to relax (fix) for 15 min (always at Tf), while strain was recorded. Finally, samples were 

heated at 1 oC min-1 to their recovery temperature (Tr=Td) while strain was still recorded. 

Samples were held at Td for 15 min and the cycle was repeated. Five such cycles were run 

successively for each sample, and data were analyzed for their fixation and recovery 

properties as described in Section 2.5.2. 

 

 

 

 

Figure 1. MIX-xx formulations according to a central composite face-centered design 

model, with independent variables the mol fractions of DEG and TTEG, and the total 

monomer concentration. The model includes 18 samples, at three monomer concentration 

levels. MIX-11 to MIX-13 were repeats of the central point MIX-10. 
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Figure 2. Representative solid-state CPMAS 13C and 15N NMR of MIX-xx aerogels as 

indicated. 
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Figure 3. Representative room-temperature ATR-FTIR spectra of MIX-xx under 

different conditions, exemplified with MIX-9. (a) The entire spectrum. (b) The 3000-

3470 cm-1 range of frame A, deconvoluted for H-bonding. (c) The same sample as in A 

and B, after heating at Tg+40 oC for 15 min, and cooling back to room temperature. (d) 

The same sample as in A-C, heated again at Tg+40 oC for 15 min, stretched to about 60% 

strain, followed by stress release, and cooling back to room temperature. 

 

 

 

 

 



147 

 

 

 

Figure 4. Scanning electron micrographs (SEM) of all MIX-xx (refer to Figure 1). 
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Figure 5. Fitting bulk density data (not including MIX-17) to the three exploratory 

variables according to Eq 1. Color-coding corresponds to the three monomer 

concentration levels (Figure 1). Primary data and the coefficients of the fitting equations 

are given in the Supporting Information.  

 

 

 

  

Figure 6. Fitting shrinkage data (not including MIX-17) to the three exploratory 

variables according to Eq 1. Color-coding corresponds to the three monomer 

concentration levels (Figure 1). Primary data and the coefficients of the fitting equations 

are given in the Supporting Information.  
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Figure 7. (a) Storage (G´) and loss (G´´) moduli and tan  (=G´´/G´) curves of a 

representative sample (MIX-9) as a function of a temperature sweep at 3 oC min-1. Arrow 

points to the maximum of the G´´ curve (see text). (b) Glass transition temperatures (Tg as 

maxima in tan ) for all non-collapsed MIX-xx at four different temperature sweep rates 

as indicated (Data from Table S.5 of Appendix VI in Supporting Information. For fitting, 

see Figure S.4 in the same Appendix).  
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Figure 8. Representative thermomechanical characterization data of MIX-xx in 3D 

format from two different perspectives using MIX-9 as an example. The graph includes 

all 5 successive temperature cycles from a deformation (Td) to a fixing temperature (Tf) 

and back to a recovery temperature (Tr = Td), as indicated. Numbers within the frame 

indicate the four successive steps of the experiment (see text).  
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Figure 9. (a) Elastic moduli, E, obtained from the initial slopes of the stress-strain curves 

of Step 1 in cycles 1 and 5 (clear and shaded areas, respectively) of data like those shown 

in Figure 8. (b) Elastic moduli from cycle 5 fitted to the three exploratory variables 

according to Eq 1. Color-coding corresponds to the three monomer concentration levels 

(Figure 1). For the coefficients of the fitting equations, see Table S.4 in Appendix V of 

the Supporting Information.  
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Figure 10. A MIX-14 aerogel (Tg  32 oC) cast in a spiral permanent shape using the mold shown in the left-most frame. The 

sample was heated at Tg+40 oC, and was stretched flat. While stretched, the sample was dipped in liquid N2 fixing that shape. 

Then the sample was suspended vertically. As the sample thawed back to room temperature, it lifted its weight and recovered 

its form. The successive frames have been taken from the movie given in Supporting Information.  
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Figure 11. (a) A representative direct projection to the strain/temperature plane of a 

random cycle of the entire 3D representations like that of Figure 8. Numbers 1-4 refer to 

the four stages of the experiment as indicated in Figure 8. Fill factors (FF(N)) for all 

samples in all cycles, N, were calculated from the ratios of the shaded areas over the 

entire areas of the surrounding squares and are provided in Table S.8 of the Supporting 

Information.  (b) FF(N) values for cycles N=1 (clear colored bars) and N=5 (shaded 

colored bars). Color-coding corresponds to the three monomer concentration levels 

(Figure 1).    
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Figure 12. Representative data for the calculation of Rf(N), Rr(N) and Rt(N): Projections of 

a 3D plot like that in Figure 8 on the strain-temperature plain, followed by unfolding 

temperature into time. (a) A single temperature cycle magnified appropriately; 

temperature is included as a dotted line. Strains m, u and p, marked within the frame, 

were used for the calculation of Rf(N) and Rr(N), according to Eq.s 4 and 5. (b) Several 

cycles like that of frame A, including the first derivative of strain vs. time for the 

calculation of Rt(N), according to Eq 6.        
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Figure 13. (a) Strain fixity ratios, Rf(N); and, (b) Strain recovery ratios, Rr(N), for all 

MIX-xx aerogels for cycles N=1 (clear colored bars) and N=5 (shaded colored bars). 

Color-coding corresponds to the three monomer concentration levels (Figure 1).    
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Figure 14. Strain recovery rates, Rt(N) for all MIX-xx aerogels for cycles N=1 (clear 

colored bars) and N=5 (shaded colored bars). Color-coding corresponds to the three 

monomer concentration levels (Figure 1).  

 

 

 

 

Figure 15. Correlation of Log [Rt(5)/b] and E/b according to Eq 12. Graph includes data 

from single-diol PIR-PURs as indicated within the frame.14 Data were analyzed as 

follows: first all data were fitted linearly; residuals were calculated; a single data point 

(shown with an arrow) whose residual was more than 2sigma from the average was 

rejected; remaining data were fitted again and key statistical information (slope, intercept, 

correlation) are shown within the graph. 
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Scheme 1. (a) Reagents (triisocyanate, ethylene glycol-based diols). (b) Reaction of 

isocyanurate crosslinking nodes with mixtures of the three diols to PIR-PUR aerogels 

(MIX-xx). 

 

 

 

 

Scheme 2. Helmholtz Free Energy (A) Surfaces Upon Elastic Deformation () at the 

Deformation Temperature (Td>Tg, red parabolas) and at the Fixing Temperature (Tf<Tg, 

blue parabola); E1, E2: two possible elastic moduli at Td. 
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Appendix I.   Formulations, gelation times and CHN elemental analysis data.c 

 

Table S.1.A. Formulations of the MIX-xx samples according to a Central Composite Face Centered design (Table S.1.B), and 

their gelation times. a 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

aCatalyst 3.35 L in all formulations. b Volumes of the alcohols were calculated based on their densities: DEG: 1.118 g cm-3; 

TEG: 1.100 g cm-3; TTEG: 1.125 g cm-3. c The volume of N3300A was calculated based on its density (1.170 g cm-3) provided 

by the supplier. 

 

xx 

Alcohol b Desmodur N3300A c CH3CN Acetone 
Gelatio

n time 

DEG TEG TTEG 
mass 

(g) 

volu

me 

(mL) 

mmol 
mass 

(g) 

volume 

(mL) 

mass 

(g) 

volume 

(mL) 

 

mass 

(g) 

volum

e 

(mL) 

mm

ol 

mass 

(g) 

volume 

(mL) 
mmol 

mass 

(g) 

volume 

(mL) 
mmol        

1 0.000 0.000 0.000 0.150 0.137 1.000 0.000 0.000 0.000 0.338 0.289 0.670 2.419 3.078 0.346 0.440 2 h 48’ 

2 0.053 0.047 0.000 0.075 0.068 1.000 0.000 0.000 0.000 0.338 0.289 0.670 2.310 2.939 0.330 0.420 1 h 32’ 

3 0.053 0.047 0.000 0.000 0.000 0.750 0.097 0.086 0.250 0.338 0.289 0.670 2.419 3.078 0.346 0.440 2 h 3’ 

4 0.000 0.000 0.000 0.075 0.068 0.500 0.097 0.086 0.500 0.338 0.289 0.670 2.528 3.216 0.361 0.459 3 h 11’ 

5 0.027 0.024 0.000 0.075 0.068 0.500 0.049 0.043 0.500 0.338 0.289 0.670 2.419 3.078 0.346 0.440 1 h 50’ 

6 0.027 0.024 0.250 0.113 0.102 0.750 0.000 0.000 0.000 0.338 0.289 0.670 1.669 2.123 0.238 0.303 1 h 15’ 

7 0.053 0.047 0.250 0.038 0.034 0.500 0.049 0.043 0.250 0.338 0.289 0.670 1.669 2.123 0.238 0.303 1 h 32’ 

8 0.027 0.024 0.250 0.038 0.034 0.500 0.097 0.086 0.250 0.338 0.289 0.670 1.746 2.221 0.249 0.317 1 h 27’ 

9 0.000 0.000 0.250 0.113 0.102 0.500 0.049 0.043 0.250 0.338 0.289 0.670 1.746 2.221 0.249 0.317 1 h 41’ 

10 0.027 0.024 0.250 0.075 0.068 0.500 0.049 0.043 0.250 0.338 0.289 0.670 1.707 2.172 0.244 0.310 1 h 35’ 

11 0.027 0.024 0.250 0.075 0.068 0.500 0.049 0.043 0.250 0.338 0.289 0.670 1.707 2.172 0.244 0.310 1 h 52’ 

12 0.027 0.024 0.250 0.075 0.068 0.500 0.049 0.043 0.250 0.338 0.289 0.670 1.707 2.172 0.244 0.310 1 h 37’ 

13 0.027 0.024 0.250 0.075 0.068 0.250 0.049 0.043 0.500 0.338 0.289 0.670 1.707 2.172 0.244 0.310 1 h 38’ 

14 0.000 0.000 0.500 0.150 0.137 0.500 0.000 0.000 0.000 0.338 0.289 0.670 1.281 1.629 0.183 0.233 1 h 2’ 

15 0.053 0.047 0.500 0.075 0.068 0.500 0.000 0.000 0.000 0.338 0.289 0.670 1.223 1.556 0.175 0.222 53’ 

16 0.053 0.047 0.500 0.000 0.000 0.250 0.097 0.086 0.250 0.338 0.289 0.670 1.281 1.629 0.183 0.233 49’ 

17 0.000 0.000 0.500 0.075 0.068 0.000 0.097 0.086 0.500 0.338 0.289 0.670 1.338 1.703 0.191 0.243 1 h 6’ 

18 0.027 0.024 0.500 0.075 0.068 0.000 0.049 0.043 0.500 0.338 0.289 0.670 1.281 1.629 0.183 0.233 1 h 11’ 



165 

 

 

Table S.1.B. Experimental factors (exploratory variables), and levels according to a 

Central Composite Face Centered Design (CCFD) for MIX-xx. 

 

factors unit 

factor levels (values) 

axial points 
center 

point 
star points (α = 1)1 

-1 1 0 -α α 

mole fraction 

of TTEG (X1) 
mol/mol 0.0 0.5 0.25 0.0 0.5 

mole fraction 

of DEG (X2) 
mol/mol 0.0 0.5 0.25 0.0 0.5 

[monomer] 

(X3) 
% w/w 15 25 20 15 25 

1 Equidistant points, with distance |α|=1, from the center of the design space. The placement 

of the points design points in the orthogonal space together with their actual values (in 

parentheses), are shown in Scheme S.1 below. For the normalizing transforms of X1-X3 

see Appendix V. 

 

 

 

 

Scheme S.1. Central Composite Face Centered Design Model showing factorial points 

(dark circles: 1,2,3,4,14,15,16,17), center points (one, plus three duplicates: 10,11,12,13) 

and star points (5,6,7,8,9,18). Star points are those at the centers of each face of the 

factorial space, and are denoted with numbers in bold face red. 
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Table S.2. CHN Elemental analysis data of all MIX-xx. a  

 

Sample I.D. 
%C %H %N 

Experimental Theoretical Experimental Theoretical Experimental Theoretical 

Calibration standards 

Acetanilide 71.08 ± 0.01 71.09 6.70 ± 0.02 6.71 10.33 ± 0.04 10.36 

Glycine 32.06 ± 0.13 32.00 6.81 ± 0.03 6.71 18.51 ± 0.04 18.66 

Urea 19.90 ± 0.03 20.00 6.73 ± 0.11 6.71 46.19 ± 0.12 46.65 

Aerogels 

MIX-1 54.63 ± 0.12 54.31 8.05 ± 0.03 7.87 11.77 ± 0.07 11.51 

MIX-2 54.85 ± 0.12 54.30 8.14 ± 0.03 7.81 12.15 ± 0.05 12.06 

MIX-3 54.48 ± 0.10 54.31 8.27 ± 0.09 7.87 11.72 ± 0.12 11.51 

MIX-4 54.40 ± 0.08 54.32 8.06 ± 0.03 7.93 11.25 ± 0.06 11.02 

MIX-5 54.92 ± 0.03 54.31 8.42 ± 0.04 7.87 11.75 ± 0.02 11.51 

MIX-6 54.37 ± 0.06 54.30 7.99 ± 0.02 7.84 11.81 ± 0.04 11.78 

MIX-7 54.41 ± 0.09 54.30 8.18 ± 0.04 7.84 11.82 ± 0.03 11.78 

MIX-8 54.52 ± 0.10 54.31 8.00 ± 0.02 7.90 11.31 ± 0.07 11.26 

MIX-9 54.32 ± 0.13 54.31 8.01 ± 0.12 7.90 11.39 ± 0.06 11.26 

MIX-10 54.89 ± 0.12 54.31 8.47 ± 0.03 7.87 11.69 ± 0.05 11.51 

MIX-11 54.91 ± 0.10 54.31 8.48 ± 0.03 7.87 11.64 ± 0.06 11.51 

MIX-12 54.74 ± 0.06 54.31 8.19 ± 0.01 7.87 11.63 ± 0.03 11.51 

MIX-13 54.61 ± 0.08 54.31 8.04 ± 0.01 7.87 11.63 ± 0.04 11.51 

MIX-14 54.41 ± 0.14 54.31 8.05 ± 0.05 7.87 11.54 ± 0.05 11.51 

MIX-15 54.82 ± 0.08 54.30 8.18 ± 0.03 7.81 12.09 ± 0.04 12.06 

MIX-16 54.32 ± 0.08 54.31 8.07 ± 0.16 7.87 11.69 ± 0.03 11.51 

MIX-17 54.75 ± 0.03 54.32 8.11 ± 0.01 7.93 11.16 ± 0.01 11.02 

MIX-18 54.31 ± 0.01 54.31 8.22 ± 0.01 7.87 11.42 ± 0.04 11.51 

a All experimental values are averages of three runs. Errors are standard deviations.  
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Appendix II.  Thermogravimetric analysis data (TGA) of all MIX-xx. 

 

 

Figure S.1. Thermogravimetric analysis (TGA) data of all MIX-xx under N2 at 10 oC 

min-1. 
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Appendix IΙI.  Additional ATR-IR data. 

 

Figure S.2. Room-temperature ATR-FTIR spectra of MIX-4. (a). The entire spectrum. 

(b). The 3000-3470 cm-1 range of frame A, deconvoluted for H-bonding. (c). Same 

sample as in A and B, heated at Tg+40 oC for 15 min, then cooled back to room 

temperature. (d). Same sample as in A-C, heated again at Tg+40 oC for 15 min, stretched 

to about 60% strain, then stress was released, and the sample was cooled back to room 

temperature.  

 

Analysis of deconvoluted spectra in frames B-D: 
B  C  D 

Wavenumber 

(cm-1) 

Integration 

(%) 

Wavenumber 

(cm-1) 

Integration 

(%) 

Wavenumber 

(cm-1) 

Integration 

(%) 

3061 5 3060 5 3060 5 

3125 15 3130 20 3122 15 

3236 42 3242 42 3233 45 

3333 32 3335 27 3335 30 

3396 5 3396 5 3399 5 
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Figure S.3. Room-temperature ATR-FTIR spectra of MIX-16. (a). The entire spectrum. 

(b). The 3000-3470 cm-1 range of frame A, deconvoluted for H-bonding. (c). Same 

sample as in A and B, heated at Tg+40 oC for 15 min, then cooled back to room 

temperature. (d). Same sample as in A-C, heated again at Tg+40 oC for 15 min, stretched 

to about 60% strain, then stress was released, and the sample was cooled back to room 

temperature.  

 

Analysis of deconvoluted spectra in frames B-D: 
B  C  D 

Wavenumber 

(cm-1) 

Integration 

(%) 

Wavenumber 

(cm-1) 

Integration 

(%) 

Wavenumber 

(cm-1) 

Integration 

(%) 

3062 5 3062 5 3061 5 

3126 13 3128 16 3129 16 

3240 42 3241 42 3243 42 

3335 35 3336 31 3336 31 

3397 5 3397 6 3397 6 
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Appendix IV.  Materials characterization data. 

Table S.3. Materials characterization data of all MIX-xx Aerogels. 

 

Sample 

I.D. 
DEG, 

mol/mol 
TEG, 

mol/mol 
TTEG, 

mol/mol 

total 

monomer 

(% w/w) 

linear 

shrinkage a,b 

(%) 

bulk  

density a  

(ρb, g cm-3) 

skeletal 

density c  

(ρs, g cm-3) 

Porosity  

(Π, % void 

space) 

MIX-1 0.00 1.00 0.00 15 28.11 ± 0.46 0.276 ± 0.014 1.198 ± 0.004 76.96 ± 1.24 

MIX-2 0.50 0.50 0.00 15 30.53 ± 0.76 0.285 ± 0.031 1.218 ± 0.002 76.60 ± 2.55 

MIX-3 0.50 0.00 0.50 15 27.28 ± 0.76 0.249 ± 0.006 1.206 ± 0.004 79.35 ± 0.65 

MIX-4 0.00 0.50 0.50 15 28.44 ± 0.35 0.265 ± 0.006 1.187 ± 0.003 77.67 ± 0.60 

MIX-5 0.25 0.50 0.25 15 28.61 ± 0.84 0.269 ± 0.001 1.210 ± 0.005 77.77 ± 0.53 

MIX-6 0.25 0.75 0.00 20 24.42 ± 0.22 0.327 ± 0.002 1.213 ± 0.003 73.04 ± 0.35 

MIX-7 0.50 0.25 0.25 20 24.86 ± 0.41 0.324 ± 0.019 1.204 ± 0.002 73.09 ± 1.59 

MIX-8 0.25 0.25 0.50 20 27.44 ± 0.97 0.364 ± 0.014 1.197 ± 0.003 69.59 ± 1.21 

MIX-9 0.00 0.75 0.25 20 27.94 ± 1.18 0.371 ± 0.016 1.207 ± 0.004 69.26 ± 1.39 

MIX-10 0.25 0.50 0.25 20 25.08 ± 0.71 0.326 ± 0.003 1.217 ± 0.004 73.21 ± 0.48 

MIX-11 0.25 0.50 0.25 20 27.44 ± 0.54 0.354 ± 0.010 1.196 ± 0.002 70.40 ± 0.86 

MIX-12 0.25 0.50 0.25 20 27.47 ± 0.46 0.359 ± 0.012 1.191 ± 0.002 69.86 ± 1.03 

MIX-13 0.25 0.50 0.25 20 26.97 ± 0.72 0.354 ± 0.006 1.224 ± 0.005 71.08 ± 0.70 

MIX-14 0.00 1.00 0.00 25 29.03 ± 0.65 0.529 ± 0.009 1.206 ± 0.002 56.14 ± 0.77 

MIX-15 0.50 0.50 0.00 25 23.33 ± 0.08 0.423 ± 0.010 1.204 ± 0.001 64.87 ± 0.84 

MIX-16 0.50 0.00 0.50 25 27.42 ± 0.87 0.500 ± 0.018 1.192 ± 0.002 58.05 ± 1.52 

MIX-17 0.00 0.50 0.50 25 45.31 ± 0.35 1.172 ± 0.018 1.205 ± 0.002 2.74 ± 1.50 

MIX-18 0.25 0.50 0.25 25 27.89 ± 0.46 0.506 ± 0.006 1.195 ± 0.001 57.66 ± 0.51 
a Average of 5 samples. b Shrinkage = 100  (mold diameter – sample diameter)/(mold diameter). c Single sample, average of 50 

measurements. 
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Appendix V.  Coefficients for all property fitting equations. 

 Table S.4. Coefficients of the fitting equations of various properties of all MIX-xx aerogels (excluding MIX-17) to 

TTEG mole fraction (X1), DEG mole fraction (X2) and total monomer concentration (X3) according to: Property = A(X1)
2 + 

B(X2)
2 + C(X3)

2 + D(X1)(X2) + E(X1)(X3) + F(X2)(X3) + G(X1) + H(X2) + I(X3) + J. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a Fitting was carried out with orthogonalized variables. The normalizing transforms of the three variables are given by: 1. X1 = 
(𝑻𝑻𝑬𝑮 𝒎𝒐𝒍𝒆 𝒇𝒓𝒂𝒄𝒕𝒊𝒐𝒏 − 𝟎.𝟐𝟓)

𝟎.𝟐𝟓
  (0 ≤ TTEG mol fraction ≤ 0). 2. X2 = 

(𝑫𝑬𝑮 𝒎𝒐𝒍𝒆 𝒇𝒓𝒂𝒄𝒕𝒊𝒐𝒏 − 𝟎.𝟐𝟓)

𝟎.𝟐𝟓
  (0 ≤ DEG mol fraction ≤ 

0.5). 3. X3 = 
(𝒕𝒐𝒕𝒂𝒍 𝒎𝒐𝒏𝒐𝒎𝒆𝒓 − 𝟐𝟎)

𝟓
  (15% w/w ≤ [total monomer] ≤ 25% w/w). The experimental and the computed response 

values of all properties were analyzed statistically via analysis of variance (ANOVA). Coefficients A-J with a probability value 

for the null hypothesis of P ≤ 0.1 were considered statistically significant and were retained.

Property A B C D E F G H I J R2 

Bulk density 

(b) 
- - 0.0430 - 0.0246 -0.0251 0.0139 -0.0262 0.1216 0.3474 0.9920 

Shrinkage - - 2.1913 -0.7856 1.7234 -1.9179 1.0979 -1.5929 0.0507 26.4539 0.8851 

Recovery rate 

(Rt(N)) 
- - -1.3350 -1.1147 - - -1.0702 1.0294 -2.1793 7.0096 0.8393 

Elastic 

Modulus 
- - 0.2862 - 0.1302 -0.1457 0.1075 -0.1189 0.3252 0.0588 0.9047 

Glass 

transition  

(Tg) - 3 oC/min 

- 3.8319 - - - - -4.3983 1.2085 -4.3023 33.0137 0.7241 

Glass 

transition  

(Tg) - 1 oC/min 

1.9908 - -1.3292 - - - -2.4046 2.8275 -1.9604 34.8261 0.8806 
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Appendix VI.  Glass transition temperature (Tg) data. 

Table S.5. Glass transition temperatures (Tg) of all MIX-xx aerogels as a function of the 

heating rate. All values are temperatures in oC. Tg values are the maxima in the tan  

plots. 

 

 

 

 

 

Figure S.4. Quadratic fitting of Tg data at 1 oC min-1 (Table S.5) to the three exploratory 

variables. Color-coding: monomer concentration levels. For the fitting parameters refer to 

Table S.4. Gray plane: calculated Tg’s as weighted averages of the Tg’s of aerogels from 

the pure diols. 

Sample 

I.D. 

Heating rate 

0.5 oC/min 1.0 oC/min 3.0 oC/min 5.0 oC/min 

Tg 
max 

G” 
Tg 

max 

G” 
Tg 

max 

G” 
Tg 

max 

G” 

MIX-1 35.03 23.24 36.88 25.56 48.81 33.83   

MIX-2 32.89 41.38 41.81 32.35 45.72 29.83   

MIX-3 35.72 25.85 38.39 28.84 40.88 22.97 56.44 37.61 

MIX-4 29.04 18.80 31.10 21.44 35.25 21.59 44.99 29.42 

MIX-5 34.83 23.87 37.07 27.28 34.58 20.20   

MIX-6 37.18 25.27 38.72 29.56 34.77 20.84   

MIX-7 27.27 37.37 36.98 27.85 32.84 21.15   

MIX-8 30.43 19.72 35.42 21.52 29.92 14.11   

MIX-9 30.25 19.03 32.87 23.72 34.71 20.70   

MIX-10 33.39 22.68 34.67 23.35 37.61 22.67   

MIX-11 34.64 23.27 36.30 25.66 31.25 17.56   

MIX-12 33.97 23.74 35.24 25.94 32.28 18.82   

MIX-13 34.04 23.61 32.39 22.71 31.73 17.69   

MIX-14 31.03 18.11 33.34 23.54 32.48 14.52 51.22 37.41 

MIX-15 38.86 30.28 40.04 31.62 43.01 26.68   

MIX-16 32.16 19.52 33.54 24.27 27.82 7.78   

MIX-17     25.27 -15.12   

MIX-18 32.61 19.31 30.43 18.70 31.97 18.60 53.51 39.37 
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Appendix VII.  Thermal conductivity data. 

Table S.6. Thermal conductivity, thermal diffusivity and estimated thermal equilibration 

times of all MIX-xx. 

 

Sample 

I.D. 

sample 

thicknes

s (d, 

mm) 

bulk  

density a  

(ρb, g cm-3) 

total thermal 

conductivity, k b 

(mW m-1 K-1) 

heat 

capacity, cp
 c 

(J g-1 K-1) 

thermal 

diffusivity, 

Dthermal d 

(mm2/sec) 

time (, sec) e 

MIX-1 6.12 0.288 ± 0.003 45.2 ± 1.9 1.711 ± 0.074 0.092 ± 0.006 51  

MIX-2 6.04 0.237 ± 0.024 50.5 ± 2.3 1.622 ± 0.047 0.131 ± 0.015 35 

MIX-3 6.24 0.258 ± 0.008 63.3 ± 2.8 1.686 ± 0.057 0.146 ± 0.009 33 

MIX-4 6.11 0.292 ± 0.007 39.1 ± 1.7 1.775 ± 0.061 0.075 ± 0.005 62 

MIX-5 5.54 0.263 ± 0.008 46.1 ± 1.9 1.699 ± 0.047 0.103 ± 0.006 37 

MIX-6 6.15 0.357 ± 0.009 51.5 ± 2.4  1.667 ± 0.057 0.087 ± 0.005 55 

MIX-7 5.96 0.323 ± 0.009 46.7 ± 1.9 1.654 ± 0.042 0.087 ± 0.005 51 

MIX-8 6.31 0.417 ± 0.012 58.0 ± 2.6 1.731 ± 0.054 0.080 ± 0.005 62 

MIX-9 5.32 0.389 ± 0.009 45.0 ± 2.2 1.743 ± 0.061 0.066 ± 0.004 53 

MIX-

10 

5.65 0.353 ± 0.001 51.3 ± 2.1 1.699 ± 0.047 0.086 ± 0.004 47 

MIX-

14 

6.05 0.631 ± 0.030 99.6 ± 7.1 1.711 ± 0.074 0.092 ± 0.009 50 

MIX-

15 

6.42 0.448 ± 0.001 59.5 ± 2.7 1.622 ± 0.047 0.082 ± 0.004 63 

MIX-

16 

5.63 0.519 ± 0.020 44.8 ± 2.3 1.686 ± 0.057 0.051 ± 0.004 77 

MIX-

18 

5.76 0.606 ± 0.005 72.6 ± 4.2 1.699 ± 0.047 0.071 ± 0.005 59 

a Two samples were prepared and average of those two samples was calculated. b Two 

such samples were placed side by side and thermal conductivity was measured. c 

Weighted mole fraction average using heat capacities of individual diol aerogels 

(SMPAs). cp of DEG - SMPA = 1.533 ± 0.059 J g-1 K-1, TEG - SMPA = 1.711 ± 0.074 J 

g-1 K-1, TTEG - SMPA = 1.839 ± 0.097 J g-1 K-1. d Thermal diffusivity, Dthermal = 

k/(bcp). 
e Calculated from (d/2)2 = 2  Dthermal  . 

 

 

 

Standards 

Expected  

thermal conductivity,  

k (mW m-1 K-1)  

Measured  

thermal 

conductivity,  

k (mW m-1 K-1) 

NIST standard SRM 1453 34.3 34.9 ± 1.3 

NIST standard SRM 1453  

(as two pieces side-by-side) 
34.3 34.7 ± 1.1 

Aspen Spaceloft Subsea – 10mm a 14.5 14.2 ± 0.5 

Aspen – Cryogel – 10mm a 17.0 16.2 ± 0.6 

Aspen – Cryogel Z – 5mm a 17.0 18.3 ± 0.8 

Aspen – Pyrogel XT–E – 10mm a 21.0 19.4 ± 0.6 
a http://www.aerogel.com/products-and-solutions/all-insulation-products/. 

http://www.aerogel.com/products-and-solutions/all-insulation-products/
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Appendix VIII.  Thermomechanical data [E, FF(N), Rf(N), Rr(N) and Rt(N)]. 

 

Table S.7. Elastic moduli, E, of MIX-xx calculated from the slopes of the stress-strain 

curves of Step 1 of every thermomechanical cycle (N=1 to N=5) (Temperature was 

cycled from Td to Tr through Tf for five times in combination with tensile testing). 

 

 

 

 

 

 

 

  

 

 

 

Sample 

I.D. 

DEG, 

mol/mol 

TEG, 

mol/mol 

TTEG, 

mol/mol 

total 

monomer 

(% w/w) 

Elastic Modulus, E (MPa) 

Temperature cycle No., N 

1 2 3 4 5 

MIX-1 0.00 1.00 0.00 15 0.027 0.017 0.017 0.017 0.017 

MIX-2 0.50 0.50 0.00 15 0.030 0.018 0.017 0.018 0.018 

MIX-3 0.50 0.00 0.50 15 0.023 0.019 0.018 0.018 0.018 

MIX-4 0.00 0.50 0.50 15 0.034 0.027 0.026 0.026 0.026 

MIX-5 0.25 0.50 0.25 15 0.032 0.022 0.021 0.02 0.020 

MIX-6 0.25 0.75 0.00 20 0.056 0.048 0.048 0.048 0.048 

MIX-7 0.50 0.25 0.25 20 0.068 0.055 0.055 0.055 0.057 

MIX-8 0.25 0.25 0.50 20 0.099 0.064 0.063 0.064 0.063 

MIX-9 0.00 0.75 0.25 20 0.096 0.069 0.067 0.067 0.066 

MIX-10 0.25 0.50 0.25 20 0.089 0.062 0.062 0.061 0.061 

MIX-11 0.25 0.50 0.25 20 0.086 0.063 0.062 0.061 0.061 

MIX-12 0.25 0.50 0.25 20 0.069 0.050 0.050 0.050 0.049 

MIX-13 0.25 0.50 0.25 20 0.096 0.069 0.069 0.068 0.066 

MIX-14 0.00 1.00 0.00 25 0.790 0.796 0.794 0.789 0.818 

MIX-15 0.50 0.50 0.00 25 0.099 0.067 0.063 0.061 0.061 

MIX-16 0.50 0.00 0.50 25 0.692 0.758 0.769 0.783 0.757 

MIX-17 0.00 0.50 0.50 25 1.745 1.761 1.790 1.774 1.731 

MIX-18 0.25 0.50 0.25 25 0.472 0.548 0.547 0.545 0.543 
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Table S.8. Fill factors (FF(N)) of all MIX-xx aerogels as shown (Temperature was cycled 

from Td to Tr through Tf for five times in combination with tensile testing). 

 

 

 
  

 

 

 

 

 

 

 

 

 

Sample 

I.D. 

DEG, 

mol/mol 

TEG, 

mol/mol 

TTEG, 

mol/mol 

total 

monomer 

(% w/w) 

Fill Factor (FF(N)) 

Temperature cycle No., N 

1 2 3 4 5 

MIX-1 0.00 1.00 0.00 15 0.59 0.67 0.66 0.68 0.71 

MIX-2 0.50 0.50 0.00 15 0.53 0.65 0.62 0.68 0.67 

MIX-3 0.50 0.00 0.50 15 0.55 0.62 0.63 0.61 0.67 

MIX-4 0.00 0.50 0.50 15 0.56 0.65 0.64 0.65 0.66 

MIX-5 0.25 0.50 0.25 15 0.51 0.56 0.56 0.56 0.58 

MIX-6 0.25 0.75 0.00 20 0.53 0.56 0.57 0.57 0.58 

MIX-7 0.50 0.25 0.25 20 0.46 0.54 0.50 0.50 0.49 

MIX-8 0.25 0.25 0.50 20 0.40 0.46 0.47 0.47 0.49 

MIX-9 0.00 0.75 0.25 20 0.52 0.59 0.59 0.60 0.62 

MIX-10 0.25 0.50 0.25 20 0.51 0.55 0.56 0.58 0.56 

MIX-11 0.25 0.50 0.25 20 0.49 0.52 0.51 0.56 0.52 

MIX-12 0.25 0.50 0.25 20 0.48 0.53 0.53 0.53 0.50 

MIX-13 0.25 0.50 0.25 20 0.46 0.52 0.54 0.51 0.51 

MIX-14 0.00 1.00 0.00 25 0.41 0.50 0.49 0.48 0.49 

MIX-15 0.50 0.50 0.00 25 0.54 0.58 0.65 0.61 0.61 

MIX-16 0.50 0.00 0.50 25 0.40 0.39 0.38 0.35 0.35 

MIX-17 0.00 0.50 0.50 25 0.46 0.50 0.52 0.52 0.58 

MIX-18 0.25 0.50 0.25 25 0.46 0.53 0.52 0.54 0.50 
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Table S.9. Shape fixity ratios (Rf(N)) of all MIX-xx aerogels as shown (Temperature was 

cycled from Td to Tr through Tf for five times in combination with tensile testing). 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Sample 

I.D. 

DEG, 

mol/mol 

TEG, 

mol/mol 

TTEG, 

mol/mol 

total 

monomer 

(% w/w) 

Strain fixity, Rf(N) (%) 

Temperature cycle No., N 

1 2 3 4 5 

MIX-1 0.00 1.00 0.00 15 97.9 97.9 95.4 96.2 96.5 

MIX-2 0.50 0.50 0.00 15 99.2 99.2 99.2 99.2 99.2 

MIX-3 0.50 0.00 0.50 15 99.2 99.2 99.1 99.1 99.1 

MIX-4 0.00 0.50 0.50 15 99.3 99.2 99.2 99.2 99.2 

MIX-5 0.25 0.50 0.25 15 99.3 99.3 99.2 99.2 99.2 

MIX-6 0.25 0.75 0.00 20 99.2 99.1 99.1 99.1 99.1 

MIX-7 0.50 0.25 0.25 20 99.1 99.0 99.0 99.0 99.0 

MIX-8 0.25 0.25 0.50 20 99.3 99.2 99.2 99.2 99.2 

MIX-9 0.00 0.75 0.25 20 99.3 99.2 99.2 99.2 99.2 

MIX-10 0.25 0.50 0.25 20 99.2 99.1 99.1 99.1 99.1 

MIX-11 0.25 0.50 0.25 20 99.2 99.1 99.1 99.1 99.1 

MIX-12 0.25 0.50 0.25 20 99.2 99.1 99.1 99.1 99.1 

MIX-13 0.25 0.50 0.25 20 99.2 99.1 99.1 99.1 99.1 

MIX-14 0.00 1.00 0.00 25 97.6 97.5 97.6 97.7 97.7 

MIX-15 0.50 0.50 0.00 25 99.2 99.1 99.1 99.1 99.1 

MIX-16 0.50 0.00 0.50 25 98.3 97.8 97.7 97.8 97.8 

MIX-17 0.00 0.50 0.50 25 94.2 93.7 94.8 94.0 94.2 

MIX-18 0.25 0.50 0.25 25 97.7 97.2 97.2 97.2 97.2 
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Table S.10. Shape recovery ratios (Rr(N)) of all MIX-xx aerogels as shown 

(Temperature was cycled from Td to Tr through Tf for five times in combination with 

tensile testing). 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Sample 

I.D. 

DEG, 

mol/mol 

TEG, 

mol/mol 

TTEG, 

mol/mol 

total 

monomer 

(% w/w) 

Strain recovery, Rr(N) (%) 

Temperature cycle No., N 

1 2 3 4 5 

MIX-1 0.00 1.00 0.00 15 84.1 97.7 99.0 99.4 99.5 

MIX-2 0.50 0.50 0.00 15 86.9 96.8 98.6 99.7 99.5 

MIX-3 0.50 0.00 0.50 15 88.7 98.2 99.4 99.6 99.7 

MIX-4 0.00 0.50 0.50 15 82.7 97.8 99.6 99.5 99.6 

MIX-5 0.25 0.50 0.25 15 86.0 96.2 98.5 98.9 99.4 

MIX-6 0.25 0.75 0.00 20 89.5 98.7 99.4 99.6 99.7 

MIX-7 0.50 0.25 0.25 20 89.7 98.9 99.4 99.6 99.7 

MIX-8 0.25 0.25 0.50 20 84.0 97.5 98.9 99.4 99.6 

MIX-9 0.00 0.75 0.25 20 90.6 97.8 98.5 98.5 99.5 

MIX-10 0.25 0.50 0.25 20 86.4 97.3 99.1 99.5 99.6 

MIX-11 0.25 0.50 0.25 20 87.0 98.1 99.1 99.5 99.7 

MIX-12 0.25 0.50 0.25 20 84.6 98.1 99.6 99.5 99.6 

MIX-13 0.25 0.50 0.25 20 86.9 97.6 99.1 99.3 99.8 

MIX-14 0.00 1.00 0.00 25 82.7 97.8 99.6 99.5 99.6 

MIX-15 0.50 0.50 0.00 25 84.7 97.1 98.7 99.4 99.5 

MIX-16 0.50 0.00 0.50 25 79.3 98.1 99.3 99.5 100.0 

MIX-17 0.00 0.50 0.50 25 90.6 97.8 98.5 98.5 99.5 

MIX-18 0.25 0.50 0.25 25 82.7 97.9 97.3 97.8 98.1 
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Table S.11. Shape recovery rates (Rt(N)) of all MIX-xx aerogels as shown (Temperature 

was cycled from Td to Tr through Tf for five times in combination with tensile testing). 

 

 
 

 

 

 

 

 

 

 

 

 

Sample 

I.D. 

DEG, 

mol/mol 

TEG, 

mol/mol 

TTEG, 

mol/mol 

total 

monomer 

(% w/w) 

Strain recovery rate, Rt(N) (min-1) 

Temperature cycle No., N 

1 2 3 4 5 

MIX-1 0.00 1.00 0.00 15 6.4 6.3 6.4 6.4 6.2 

MIX-2 0.50 0.50 0.00 15 8.2 10.8 9.7 9.4 10.5 

MIX-3 0.50 0.00 0.50 15 6.5 7.1 6.9 6.2 6.6 

MIX-4 0.00 0.50 0.50 15 5.8 6.0 6.1 6.0 6.0 

MIX-5 0.25 0.50 0.25 15 8.8 10.4 9.3 9.6 10.0 

MIX-6 0.25 0.75 0.00 20 7.9 7.9 8.3 8.8 7.8 

MIX-7 0.50 0.25 0.25 20 8.4 8.0 8.1 7.1 7.2 

MIX-8 0.25 0.25 0.50 20 5.6 5.9 6.1 6.1 6.2 

MIX-9 0.00 0.75 0.25 20 7.1 7.0 7.2 7.2 7.3 

MIX-10 0.25 0.50 0.25 20 6.7 5.7 5.8 5.8 5.9 

MIX-11 0.25 0.50 0.25 20 7.2 7.3 7.1 7.6 7.3 

MIX-12 0.25 0.50 0.25 20 8.1 7.0 7.1 7.1 6.9 

MIX-13 0.25 0.50 0.25 20 7.2 7.3 7.4 7.4 7.4 

MIX-14 0.00 1.00 0.00 25 2.5 2.4 2.5 2.4 2.5 

MIX-15 0.50 0.50 0.00 25 7.4 7.6 7.6 7.6 7.8 

MIX-16 0.50 0.00 0.50 25 2.5 2.6 2.6 2.6 2.7 

MIX-17 0.00 0.50 0.50 25 0.9 0.9 1.0 1.0 1.0 

MIX-18 0.25 0.50 0.25 25 2.0 2.4 2.3 2.3 2.0 
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Table S.12. Collection of relevant data for MIX-xx and pure diol PIR-PUR aerogels for 

plotting Log Rt(N) versus the specific elastic modulus (E/b) at the 5th cycle.  

 

Sample 

I.D. 

Strain recovery 

rate, Rt(5) (min-

1) 

Elastic Modulus, 

E (MPa) 
Bulk density 

(ρb, g cm-3) 
Temperature at 

Rt (oC) 

MIX-1 6.17 0.017 0.276 30.15 

MIX-2 10.48 0.018 0.285 32.02 

MIX-3 6.56 0.018 0.249 32.76 

MIX-4 6.03 0.026 0.265 27.92 

MIX-5 10.03 0.020 0.269 26.27 

MIX-6 7.80 0.048 0.327 30.97 

MIX-7 7.24 0.057 0.324 29.44 

MIX-8 6.22 0.063 0.364 30.03 

MIX-9 7.30 0.066 0.371 29.65 

MIX-10 5.90 0.061 0.326 30.11 

MIX-11 7.33 0.061 0.354 35.38 

MIX-12 6.89 0.049 0.359 30.13 

MIX-13 7.40 0.066 0.354 17.75 

MIX-14 2.48 0.818 0.529 30.22 

MIX-15 7.81 0.061 0.423 30.15 

MIX-16 2.71 0.757 0.500 32.02 

MIX-17 1.02 1.731 1.172 32.76 

MIX-18 1.97 0.543 0.506 27.92 
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Table S.12. Collection of relevant data for MIX-xx and pure diol PIR-PUR aerogels for 

plotting Log Rt(N) versus the specific elastic modulus (E/b) at the 5th cycle (Continued). 

 

Sample 

I.D. 

Strain recovery 

rate, Rt(5) (min-

1) 

Elastic 

Modulus, E 

(MPa) 

Bulk density 

(ρb, g cm-3) 

Temperature at 

Rt (oC) 

DEG-2 6.68 0.012 0.224 41.89 

DEG-3 6.40 0.022 0.230 40.31 

DEG-4 10.58 0.026 0.258 41.04 

DEG-5 6.89 0.030 0.321 39.86 

DEG-6 6.87 0.052 0.279 41.64 

DEG-7 5.79 0.029 0.287 40.73 

DEG-8 5.70 0.059 0.322 40.69 

DEG-9 3.70 0.025 0.414 40.23 

DEG-10 5.67 0.043 0.366 39.30 

 

TEG-1 8.02 0.024 0.247 30.07 

TEG-2 7.26 0.029 0.271 31.37 

TEG-3 7.48 0.044 0.336 30.02 

TEG-4 8.52 0.045 0.302 31.68 

TEG-5 6.76 0.154 0.391 30.41 

TEG-6 8.25 0.086 0.356 30.67 

TEG-7 1.63 1.812 1.076 25.77 

TEG-8 7.45 0.065 0.408 28.64 

TEG-9 2.28 1.662 1.014 25.86 

TEG-10 1.89 1.961 1.070 24.45 

 

TTEG-1 2.71 1.368 1.001 20.47 

TTEG-2 6.05 0.063 0.279 19.90 

TTEG-4 6.80 0.272 0.430 31.52 

TTEG-6 1.87 2.475 1.043 27.65 

TTEG-8 1.70 2.371 1.096 24.98 
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Appendix IX.  Derivation of the activation barrier for the shape recovery and the 

relationship between shape recovery rate and the Young’s modulus. 

 

 

Scheme S.2. The geometry of crossing parabolas (red and blue) with unequal widths. 

(Note: Higher ‘moduli’ (e.g., E2>E1) give narrower parabolas).  

 

 

 

Based on Scheme S.2 above, the equations of the two parabolas are: 

 

Whereas ‘a’ and ‘b’ are the displacements of the two parabolas in the ‘x’ and ‘y’ 

directions, respectively. Without compromizing generality, the coefficients of the 

parabolas (describing their widths) are normalized to the narrower parabola of the two. As 
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shown in Scheme S.2, the y-parabola (solid red) is considered wider than the y´ (blue). In 

our case, the normalizing factor E is proportional to the Young’s modulus and is on the 

order of 0.001.  

At the two crossing points of the two parabolas (shown with bold dots) y=y´, 

therefore:  

(1-E )x2 - 2ax+a2 +b = 0 Þ x2 -
2a

1-E
x+
a2 +b

1-E
= 0  

At those crossing points, the values of x are given by the roots of the quadratic 

equation above: 

 

The first crossing point is given by: 

 

And the y-value at that crossing point is therefore: 
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To start putting physical meaning into those parabolas, the activation barrier for 

shape recovery (A#, refer to Scheme S.2) is given by:  

DA# = y@FIRST _crossing -b =
E a2

(1-E )2
1- E 1+

b(E -1)

E a2

é

ë
ê

ù

û
ú

é

ë
ê
ê

ù

û
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2

-b 

which, after some rearrangement, becomes: 

DA# =
E a2

(1-E )2
E - 1-

b(1-E )

E a2

é

ë
ê

ù

û
ú

2

 

Since the reorganization energy upon stretching at a (= m) is  = (E a2)/2, and the 

thermodynamic driving force for recovery A = b, the last equation becomes: 

DA# =
2l

(1-E )2
E - 1-

DA(1-E )

2l

é

ë
ê

ù

û
ú

2

 

 

 

 

(1) 
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MARCUS ANALOGUE: 

If the two parabolas have the same modulus, E, thereby the same width, then they 

are described by: 

y =
E

2
x2

(y '- b) =
E

2
(x - a)2 Þ y ' =

E

2
x2 -Eax+

E

2
a2 + b

 

By setting y=y´ and after the suitable manipulations, the activation barrier is given 

by a (much simplified) Marcus-type expression: 

DA# =
(DA- l)

4l

2

 

where  l =
Eem

2

2
 

************************************************************************ 

Now, referring to Scheme S.2 the (reorganization) energy expended to stretch the 

sample to m (= a) is given (in units of specific modulus as a multiple of the lowest specific 

modulus) by:   

l =
E em

2

2
 

But that stretching energy is purely entropic, thereby: 

l = -TdDS  

Therefore, the entropy change upon stretching (a decrease, that is S<0) is given by: 

DS = -
E em

2

2Td  

(2) 
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The settling energy on cooling from Td to Tf is equal to (Tf – Td)S. Thereby, from Scheme 

S.2: 

DA = l - (Tf -Td )DS =
E em

2

2
- (Tf -Td )

-E em
2

2Td
=

 

=
E em

2

2Td
Td +Tf -Tdéë ùû=

E em
2

2

Tf

Td
 

The above expressions are completely general. They apply irrespective to whether 

the initial and final states have the same or different moduli.  

From the last expression and the expression for  we calculate: 

DA

l
=
Tf

Td
 

Substituting to Eq 1, we get: 

DA# =
E em
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That expression is again completely general. However, here, based on the fact that E  

0.001, 1 - E  1, and (1/E ) –1  1/E and the last expression can be simplified into:   

DA# =E
2em

2 1-
1

E
1-
Tf

2Td
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It turns out that for the specific values of E, Tf (about -10 oC) and Td (about 40 oC), 

the square root above has a numerical value of about 24 (>>1), thereby the last expression 

is simplified into: 

DA# =E em
2 1-

Tf

2Td

æ

è
ç

ö

ø
÷  

************************************************************************ 

MARCUS ANALOGUE: 

Here again, the two parabolas have the same modulus. By substituting: 

l =
E em

2

2
 

and  

DA- l =
E em

2

2
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Td
-1

æ

è
ç
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into Eq 2, we obtain:  

DA# =
E em

2

8

Tf

Td
-1

æ

è
ç

ö

ø
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whereas now E is the exact specific modulus, E/b; E: moduli (MPa) of the unstretched 

samples.  
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In both equations 3 and 4, the activation barrier, A#, is related linearly to the 

modulus of the initial (unstretched) state. 

Since rate constants, k, are related to activation barriers exponentially: 

krate =Ce
-

DA#

RT
 where C is the pre-exponential factor. 

Inserting A# from equation 3, we obtain: 

Logkrate = LogC -
E em

2

2.303RT
1-

Tf

2Td

æ

è
ç

ö

ø
÷ 

Inserting A# from equation 4 we obtain: 

Logkrate = LogC -
1

2.303

E

rb

em
2

8RT

Tf

Td
-1

æ

è
ç

ö

ø
÷

2

 

In either case (equations 5 or 6) Log krate depends linearly on the specific modulus 

(generalized or otherwise) of the initial (unstretched) state, which is what was found 

experimentally (Figure 15 of the main article). 
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ABSTRACT 

Monolithic nanoporous iron was prepared via carbothermal reduction of 

interpenetrating networks of polybenzoxazine and iron oxide nanoparticles. Excess carbon 

was burned off at 600 oC in air, and oxides produced from partial oxidation of the Fe(0) 

network were reduced back to Fe(0) with H2 at different temperatures (temp) ranging from 

300 oC to 1300 oC. Samples were carbon-free, for temp>400 oC also oxide-free, and are 

referred to according to the final H2-reduction temperature as Fe-temp. Fe-temp monoliths 

were infiltrated with perchlorates, dried exhaustively and were ignited with a flame in open 

air. Most experimentation was conducted with LiClO4. Depending on temp, monoliths 

fizzled out (≤400 oC), exploded violently (500 oC to 900 oC) or behaved as thermites (≥950 

oC). Samples sealed in evacuated tubes did not explode, while if sealed under N2 the 

explosive effect was intensified. Thus, explosive behavior was attributed to rapid heating 

and expansion of gas filling nanoporous space. However, although that condition was 

mailto:Leventis@mst.edu
mailto:cslevent@mst.edu
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necessary for explosive behavior, it was not sufficient. Based on SEM, particle sizes via 

N2 sorption, electrical conductivity measurements and mechanical strength data under 

quasi-static compression, it was concluded that the boundaries between the three types of 

behavior after ignition were associated with: (a) mild sintering (fizzling/explosive 

boundary at around 500 oC); and, (b) melting-like fusion of skeletal nanoparticles 

(explosive/thermite boundary at around 950 oC). Overall, mechanically weaker networks 

fizzled out; too strong behaved as thermites; networks of intermediate strength exploded. 

For thermite behavior in particular, other factors may be also at play, such as a combination 

of reduced porosity, a sub-stoichiometric amount of LiClO4 and a slower heat release rate. 

The latter was supported by TGA data in O2 and was attributed to a slower rate of oxidation 

of progressively thicker nanostructures as the H2-reduction temperature increased. 
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1. INTRODUCTION 

Thermites produce intense heat via solid-state reactions.1 Here we explore the 

factors controlling an unusual type of explosive behavior whereas a solid-state reaction 

does not produce gasses, instead provides the heat for rapid expansion of gas filling open 

nanoporous space. This line of research was motivated by the quest for an alternative 

nanostructured heat source to activate thermal batteries.2 In the so-called pressed pellet 

technology, the heat source is commonly a mixture of micron-sized metallic iron and 

KClO4.
3,4 That technology works sufficiently well as a heat source, but lack of mechanical 

integrity renders pressed heat pellets difficult to handle in a battery assembly, the ability to 
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reduce their thickness is limited, and therefore efficient materials utilization is practically 

impossible. Alternatively, thin-film thermites, such as “NanoFoil,” are based on alternating 

layers of Al/Ni, each a few dozen of nanometers thick.5 Ignition is started in a way that the 

combustion front moves parallel to the Al/Ni layers. Although NanoFoil moves the 

technology in the right direction in terms of fast rise, high volumetric power density, more 

flexible form-factor, greater mechanical strength, and better production efficiency, yet 

there are drawbacks. For instance, bimetallic nano-layered materials are still not flexible 

enough for thin-film thermal battery applications and their manufacturing process (physical 

vapor sputtering) is too expensive. 

Clearly, there are visible benefits from combining the monolithicity and intrinsic 

nano-sizing of NanoFoil with the high energy content of the Fe/perchlorate chemistry of 

pressed pellets. Hence, materials to look for should be based on monolithic bicontinuous 

iron with interconnected nanopores defined by a sturdy metallic network.  The expertise 

we brought in for this is related to the carbothermal synthesis of metallic nanoporous 

aerogels (e.g., Fe, Co, Ni, Sn and Cu) from co-gelation of interpenetrating networks of 

metal oxide and carbonizable resorcinol-formaldehyde (RF) nanoparticles.6-8 The main, 

and perhaps only drawback of the iron oxide-RF route for the task at hand was that the 

resulting Fe(0) aerogels were not monolithic. In fact, Fe(0) aerogels were the only ones in 

the carbothermal series that were obtained as chunks rather than monoliths.6,8 At this point, 

noting that among metallic aerogels, Fe(0) was the hardest to produce in terms of required 

reduction temperature (≥800 oC),8 and reasoning that physical rearrangement (e.g., 

shrinkage) in the carbonizable RF matrix might have been the cause of disintegration of 

the Fe(0) monoliths, we decided to use the apparent mechanical strength of nanoporous 
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carbon from a diverse array of polymeric aerogel precursors as a qualitative indicator for 

the mechanical integrity of the resulting iron aerogels. In other words, we sought after a 

dual role for the carbon aerogel matrix: that of a consumable carbon source for the 

carbothermal reduction of the oxide, and that of a template. In recent years, the list of 

carbonizable polymeric aerogels is getting longer (including polyureas,9 polyimides,10 

polyacrylonitrile11), however, polybenzoxazine (PBO) aerogels stand out not only for their 

mechanical integrity, but also for their chemical similarity with RF aerogels: they are both 

phenolic resins,12-16 hence co-gelation with an iron oxide (FeOx) network should follow 

similar chemistry with RF. Indeed, interpenetrating PBO-FeOx networks were obtained 

recently by catalyzing polymerization of a benzoxazine (BO) monomer by the Bronsted 

acidity of a [Fe(H2O)6]Cl3 sol in DMF (pKa,1=1.19, pKa,2=2.49).17 Gelation of the 

[Fe(H2O)6]Cl3 sol was carried out by irreversible deprotonation with an epoxide 

(epichlorohydrin – Scheme 1A).18-21 Ring-fusion aromatization of the PBO network (at 200 

oC/air – Scheme 1B) ensured a high carbonization yield.16 Pyrolysis of aromatized PBO-

FeOx networks at 800 oC/Ar triggered carbothermal reduction of the FeOx network to 

monolithic metallic Fe(0). 

Since it is virtually impossible to balance precisely the amounts of carbon and 

FeOx, the resulting Fe(0) monoliths ended up with a small amount of residual carbon (≤5% 

w/w). For several applications (e.g., in catalysis) that C-impurity would not matter, 

however, for thermites, in which Fe(0) is ignited in a confined environment, the presence 

of unreacted carbon would generate hot CO2 and would be detrimental. Residual carbon 

was removed oxidatively with a brief treatment at 600 oC (20 min) under flowing air. That 
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step caused partial oxidation of Fe(0) to Fe2O3, which was reduced back to Fe(0) under 

flowing H2 at the same temperature (600 oC). 

The resulting nanoporous Fe(0) was carbon-free and monolithic, as designed. 

Importantly though, it was also noted that the temperature of the final H2-reduction step 

had a great effect on the behavior upon ignition. Namely, it was noted that LiClO4-loaded 

nanoporous Fe(0) monoliths produced at 600 oC/H2 exploded violently (even though they 

contained no carbon), while on the other hand if the final H2-reduction step had been carried 

out at 1300 oC/H2, LiClO4-loaded monoliths showed the desirable thermite behavior. All 

other things being equal, since the unexpected explosive behavior was observed from the 

higher-porosity (92% v/v) 600 oC/H2-treated samples, but not from the lower-porosity 

(50% v/v) 1300 oC/H2-treated ones, it was attributed to rapid heating and expansion of the 

pore-filling gas (air).17 According to this line of reasoning, C-free samples reduced with 

H2 at even lower temperatures (i.e., at <600 oC) would have higher porosities and should 

demonstrate even more powerful explosions. As demonstrated herewith though, that turned 

out to be not true. Thus, we took over and describe a systematic investigation whose goal 

was to correlate the explosive versus thermite behavior of perchlorate-loaded monolithic 

nanoporous Fe(0) with the material properties obtained at various final H2-reduction 

temperatures. Based on control experiments that include ignition in sealed tubes under 

vacuum (in which no explosive behavior was observed) and in sealed tubes under N2 

(giving extremely powerful explosions), it was confirmed that explosive behavior of 

perchlorate-loaded Fe(0) aerogels is indeed due to rapid heating and expansion of the pore 

filling gas. However, although gas (air) filled nanopores is a necessary condition for 

explosive behavior, it is not sufficient. Based on analysis of the pore structure, the iron 
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network morphology and the interparticle connectivity, it was concluded that explosive 

versus thermite behavior is actually controlled by the extent of fusion of skeletal Fe(0) 

nanoparticles that is brought about by annealing phenomena during H2-reduction at 

different temperatures. At first approximation, mechanically weaker networks will fizzle 

out; too strong will behave as thermites; networks of intermediate strength will explode. 

CAUTION: Ignition experiments described herewith are dangerous. Work should be 

conducted in a fume hood with a protective shield and the sash down. Despite that double 

protective layer, face protection is highly recommended and ear protection is also advisable 

for experiments conducted in test tubes sealed under N2. Emphatically, flame-sealing of 

test tubes with perchlorate-loaded Fe(0) aerogels inside, either under vacuum or under N2, 

should be done by a skilled professional with appropriate face and body protection. We did 

not have any incidents of tubes exploding at that stage, however, should such an incident 

were to occur, it could be devastating. 

 

2. RESULTS AND DISCUSSION 

2.1. SYNTHESIS OF NANOPOROUS Fe(0) WITH VARIABLE POROSITY  

Scheme 2 summarizes the synthetic protocol for Fe(0) aerogels from the PBO-FeOx 

network to the final product. For details refer to the Experimental Section. After 

carbothermal reduction, residual carbon was removed with a brief treatment at 600 oC 

under flowing air (20 min). Oxides produced from partial oxidation of Fe(0) were reduced 

back to Fe(0) under flowing H2 at various temperatures. Samples are referred to as Fe-

temp, whereas ‘temp’ stands for the temperature of the final H2-reduction step. 

Photographs in Scheme 2 emphasize the volumetric changes along processing. The 
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dimensions of the terminal samples decreased as the final H2-reduction step was carried 

out from 300 oC to 1300 oC (Figure 1).  

Preliminary screening of Fe-temp was conducted in terms of linear shrinkage, bulk 

density (b), skeletal density (s) and porosity (). Results are summarized in Table 1. 

Linear shrinkage increased monotonically with processing temperature from 53% in Fe-

300 to 77% in Fe-1300. The bulk density, however, first decreased between Fe-300 and 

Fe-400 from 0.74 g cm-3 to 0.44 g cm-3, and then increased monotonically up to 3.78 g cm-

3 in Fe-1300. As shown in Figure 2A, by ignoring Fe-300 and Fe-350 (points in red), Log 

b scales linearly with Log (100-% shrinkage) with a slope of -3.07±0.28, meaning that b 

scales linearly with the volume, which in turn points at a constant chemical composition 

from Fe-400 to Fe-1300. 

The skeletal density, s, of the solid framework of Fe-300 and Fe-350 was lower 

(4.57 g cm-3 and 5.05 g cm-3, respectively) than that of samples Fe-400 and above, in which 

values were all ≥7.3 g cm-3 (refer to Table 1). 

The fact that skeletal densities of Fe-400 until Fe-1300 were somewhat lower than 

the density of -Fe (Fe=7.874 g cm-3) could signify either incomplete reduction (i.e., 

presence of residual Fe2O3 at a level of ≤9% - by weighted average calculations), or 

presence of a very small amount of closed porosity along the skeletal framework 

(calculated at about 3% v/v via 100(s/Fe)). Based on XRD and thermogravimetric 

analysis data (see Section 2.2), presence of residual oxides at the level calculated here was 

excluded, leaving open the possibility for some low-level of closed porosity. On the other 

hand, the percent open porosity (), calculated via =100(s-b)/s, was generally quite 

high. At first, it increased slightly between Fe-300 and Fe-400 and then decreased 
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monotonically from 94% v/v (Fe-400) to 50% v/v (Fe-1300 - Figure 2B). From Fe-400 to 

Fe-1300,  varied linearly versus b (Figure 2C), as expected from the rearranged 

relationship /100=1-(1/s)b, again signifying constant chemical composition, as 

already suggested by Figure 2A. From the slope of Figure 2C (-0.1306±0.0016 cm3 g-1) the 

overall average skeletal density was calculated at s=7.63±0.12 g cm-3. 

 

2.2. CHEMICAL AND THERMOGRAVIMETRIC CHARACTERIZATION OF 

NANOPOROUS Fe(0) AEROGELS - IMPLICATIONS FOR VARIABLE 

NETWORK REACTIVITY   

The chemical makeup of the crystalline phases of the product from the final H2-

reduction step was investigated with X-ray diffraction. Only -Fe could be identified above 

Fe-400 (Figure 3). On the contrary, Fe-300 contained only a very small amount of -Fe, 

consisting mainly of Fe2O3 and Fe3O4 (63:37 mol/mol).22  

All XRD spectra were totally clean of any residual crystalline carbon that might 

have been expected from the fact that Fe(0) is a known catalyst for low-temperature 

graphitization of C.23-25 The absence of residual amorphous carbon was evaluated using 

thermogravimetric analysis (TGA) in O2. Under those conditions, samples consisting only 

of Fe(0) should show a mass increase of 142.98% due to oxidation to Fe2O3. (Calculated 

via: Fe % w/w = % mass increase  [2MWFe/MWFe2O3], MW: molecular weight.) At a 

heating rate of 10 oC min-1 (Figure 4A), that mass gain was reached (142.7-144.6%) by 

samples processed between 500 oC and 900 oC (solid lines in Figure 4A). Consequently, 

since all samples went through an identical 600 oC/air treatment, it was concluded that no 

sample contained any residual carbon. Therefore, discrepancies of certain samples from 

the theoretical level of mass gain should be attributed to other factors. Thus, TGA of Fe-
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300 and Fe-350 (dotted lines) showed significant amounts of oxide, consistent with XRD. 

Fe-400 showed a mass increase of 141.2% w/w, which was consistent with incomplete 

reduction and the presence of 1.2% w/w Fe2O3 (below the detection limit at the attenuation 

level of the XRD spectrum of Figure 3). Interestingly, TGA at 10 oC min-1 of Fe-950 and 

above (dashed lines) behaved as if those samples consisted of a progressively decreasing 

amount of Fe(0). Reducing the TGA heating rate to 5 oC min-1 (Figure 4B) restored a 

common level for the maximum mass increase at 142.1-142.3% w/w, which corresponds 

to 99.5-99.6% w/w of Fe(0). Those observations, considered together with the fact that as 

the final H2-reduction temperature was increased the onset of oxidation in TGA moved 

progressively to higher temperatures (from less than 200 oC for Fe-400 to over 600 oC for 

Fe-1200 and Fe-1300, see Figure 4A) point to a kinetic effect in the oxidation of Fe-temp 

by air. That kinetic effect has to be attributed to the network morphology rather than the 

chemical composition of the samples, which was practically constant for all Fe-400 and 

above. We see no reasons why that kinetic effect cannot be generalized to other oxidizing 

agents (e.g., perchlorates - Section 2.5). 

 

2.3. NANOSCOPIC CHARACTERIZATION OF Fe(0) AEROGELS - THE 

NETWORK MORPHOLOGY AND THE POROUS STRUCTURE 

SEM (Figure 5) shows that all samples consisted of particles. A rather profound 

increase in feature size is noted at around 950 oC. That is, starting from Fe-950, samples 

show clear evidence of massive melting-like fusion of particles along virtual strands of a 

classic pearl-necklace-like depiction of aerogels.26 (Samples processed at 1400 oC were 

completely featureless and were not included in any further evaluation.) The sudden 

feature-size increase at around 950 oC coincides with the increased difficulty to oxidize 
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Fe(0) in TGA at 10 oC min-1 (Figure 4A), thereby the two events are related. Conversely, 

guided by the TGA-in-O2 data, a second, albeit less profound, change seems to happen at 

around 400 oC. That is, although Fe-400 was nearly oxide free, it looks more like Fe-300 

and Fe-350, which contained substantial amounts of oxides, and less like its chemically 

equivalent samples from Fe-500 and above. From Fe-500 to Fe-900, particle size seems to 

remain constant. The difference of Fe-300 to Fe-400 from Fe-500 to Fe-900 seems to be 

some particle coalescence through surface-like fusion (sintering).  

A quantitative evaluation of those nanostructures in terms of pore and particle size 

was obtained with N2 sorption porosimetry in combination with skeletal density data. 

Results are included in Table 1. N2-Sorption porosimetry shows virtually no pores in the 

1.7-300 nm range for any sample from Fe-400 to Fe-1300, and therefore all open porosity, 

, was due to larger macropores. Samples Fe-300 and Fe-350 did have a low percentage 

of pores in the 1.7-300 nm range (refer to the V>300_nm/VTotal column in Table 1). Surface 

areas, , calculated using the BET equation, were in general low to begin with (≤76 m2 g-

1) and showed an overall downward trend as the processing temperature increased. That 

downward trend was not linear. We note two sudden drops in the surface area: one 14-fold 

decrease between Fe-350 and Fe-500, and a second 23-fold drop between Fe-900 and Fe-

1000. Between Fe-500 and Fe-900, surface areas remained about constant at around 5 m2 

g-1. The two drops coincided with the temperature ranges of changing behavior in TGA 

and particle morphology in SEM as discussed above. BET surface areas were utilized to 

calculate average pore diameters via 4VTotal/, as well as particle diameters via 6/(s). 

(The total specific pore volume was calculated via VTotal=(1/b)-(1/s) – all values are 

included in Table 1.) Thus, each fast drop in  was reflected on a rapid increase in pore 
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and particle size. Figure 6 shows the particle size as a function of processing temperature. 

The step-increase in particle size in the 900-1000 oC range coincides with the melting-like 

fusion of particles observed in SEM, and the step-increase in the 300-500 oC range is 

consistent with surface-fusion of smaller particles as again noted qualitatively in SEM.  

Sintering and melting-like fusion render interparticle necks wider. Quantitative evidence 

for the latter was obtained from the elastic properties and the electrical conductivity of the 

network as a function of the processing temperature. Owing to instrumental constrains, 

reported elastic properties capture changes along melting-like fusion, while electrical 

conductivity captures changes along sintering at lower temperatures. From that perspective 

the two sets of data are complementary.  

 

2.4. SINTERING AS A FUNCTION OF PROCESSING TEMPERATURE VIA 

MECHANICAL STRENGTH AND BULK ELECTRICAL CONDUCTIVITY 

DATA 

The mechanical properties of Fe-temp were probed with quasi-static compression 

using either an Instron machine, or for weaker samples (those processed at lower final H2-

reduction temperatures) a Dynamic Mechanical Analyzer. As noted by the overall stress-

strain curves (Figure 7A), samples could accommodate large deformations, showing short 

linear elastic ranges (Figure 7B) followed by yield behavior and inelastic hardening 

reminiscent of ductile aerogels (polymeric27,28 and polymer-crosslinked29,30), whereas 

skeletal material is squeezed within the open porosity. The elastic modulus, E, was 

calculated from the slope of the early linear part of the stress-strain curves (Figure 7B). 

From Fe-400 to Fe-900, E was low (in the 4.5-14 kPa range), but increased rapidly between 

Fe-900 and Fe-950 (Figure 7C). That rapid increase in stiffness coincided with the onset 
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of melting-like fusion observed in SEM, as well as the particle size increase calculated 

from the N2 sorption data. From Fe-950 and above, Log E varied about linearly with Log 

b (Figure 7D), and the slope (3.6±0.7) was in the range reported for mechanically strong 

polymer-crosslinked silica aerogels,30 and other stiff all-polymer aerogels (e.g., certain 

polyurethanes).27 The maximum E value (370 MPa) was attained by Fe-1300. Returning 

to Figure 7A, we note that as Fe-temp become stiffer their ability to carry loads increases, 

and the yield point (point of departure from the linear elastic behavior) moves to higher 

stresses. 

The electrical conductivity,  was measured using a four-point probe (see 

Experimental).  increased continuously with the processing temperature (Figure 8A) from 

2.14 S m-1 in Fe-300 to 1.59105 S m-1 in Fe-1000. The latter value was just about two 

orders of magnitude within the conductivity of bulk iron (107 S m-1 – shown by a doted 

horizontal line in Figure 8A). (Fe-1100 and above were beyond the range of our four-point 

probe.) The increase of  with the final H2-reduction temperature did not take place in a 

simple fashion. We note two areas of rapid increase: one at around 400 oC, i.e., as the 

material turned from a mixture of Fe(0) and oxides to pure Fe(0), and a second one at 

around 700-800 oC. As a result,  did not follow a simple relationship with bulk density 

(Figure 8B), or the particle size (Figure 8C). Specifically, in the 500-800 oC range,  

increased by approximately 3-orders of magnitude for a nominal increase in density just 

by a factor of 1.15, and for a small increase in particle size (from 151 nm to 194 nm). 

Beyond that and between Fe-700 and Fe-1000,  followed an exponential relationship with 

b of the type  =1.26104(b)
1.55±0.12 (R2=0.977). The exponent of b was equal to that 
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found for carbon aerogels derived from resorcinol-formaldehyde aerogels (1.5),31 pointing 

again, like E above, to an aerogel-like skeletal interconnectivity. Overall, the step-wise 

conductivity increase is consistent with particle sintering, which starts at around 500 oC 

and is followed by melting-like fusion in agreement with SEM and N2 sorption data. 

 

2.5.  LOADING WITH PERCHLORATES AND IGNITION  

Samples were loaded with perchlorates (LiClO4, NaClO4 or KClO4) by filling the 

pores with saturated acetone solutions of the salts followed by extensive drying (see 

Experimental). Owing to its higher solubility in acetone (0.427 mol mol-1)32 and its low 

melting point (236 oC), use of LiClO4 would ensure stoichiometric loading of the pores 

with the salt and wetting of the iron framework well before the ignition point. At the other 

extreme, KClO4 (m.p.=610 oC) is practically insoluble in all common solvents, hence the 

actual loading of the Fe(0) monoliths with that salt was very low. NaClO4 (solubility in 

acetone: 0.197 mol mol-1;32 m.p.=468 oC) presents an intermediate situation. Reportedly, 

the solid-state reaction of Fe(0) and KClO4 yields FeO.33 The stoichiometric 

Fe(0):perchlorate mol/mol ratio for that reaction is equal to 4 (eq 1). In addition, ignition 

of certain samples yielded Fe3O4 as well as Fe2O3. Should those oxides have come from 

direct reaction of iron with the perchlorate (eqs 2 and 3), the required amount of the latter 

should be higher than what is needed for FeO, and the Fe(0):perchlorate mol/mol ratio 

                                         4 Fe + LiClO4                                4 FeO + LiCl                              (1)   

                                   12 Fe + 4 LiClO4                       4 Fe3O4 + 4 LiCl                          (2) 

                                    8 Fe + 3 LiClO4                       4 Fe2O3 + 3 LiCl                           (3) 
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decreases to 3 and 2.7, respectively. The amount of the perchlorate in each sample was 

quantified gravimetrically (see Table S.1 in the Supporting Information). With the 

exception of lower-porosity samples (Fe-900 and above), the amount of LiClO4 was 

generally sufficient for all three possibilities: the Fe(0):perchlorate mol/mol ratio varied 

between 1.8 and 3.0, while for Fe-900 and above it generally fluctuated in the 4-6 range. 

In the cases of NaClO4 and KClO4, the amount of the salt was always lower than the 

stoichiometric amount. With KClO4 in particular, the amount of the salt was extremely low 

(e.g., Fe-600:KClO4=162 mol/mol and Fe-1000:KClO4=314 mol/mol).  

Samples (about 0.2 g) of perchlorate-loaded Fe-temp monoliths were placed in 

open vials and were ignited with a Bunsen burner placed underneath. Most experimentation 

was conducted with LiClO4. In that regard, selected LiClO4 samples were also ignited in: 

(a) evacuated flame-sealed glass test tubes; (b) glass test tubes flame-sealed under 1 atm of 

N2; and, (c) a bomb-calorimeter (BC) with an electric resistor. Whenever possible (see 

below), the residue after ignition was collected and was analyzed with XRD. Product 

distributions, results from quantitative phase analysis and thermochemical calculations are 

cited in Table S.1. Movies of most samples ignited in the open air, in evaluated tubes and 

in tubes sealed under N2 are also provided in Supporting Information. Video frames at the 

precise moment of ignition from most experiments are shown in Figures 9 and 10.         

2.5.1. Ignition of LiClO4-Loaded Samples. In open air Fe-400 (and below) 

fizzled out; the fireball was confined within the vial (Figure 9 and Movies S.AIR.1 to 

S.AIR.8). Fe-500 demonstrated a relatively weak explosive behavior, while ignition of Fe-

600 and Fe-700 produced violent explosions with extremely bright flashes (Figure 9) and 

a very loud noise. Fe-800 also exploded, but the intensity of the phenomenon was 
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noticeably diminished. The behavior of Fe-900 to Fe-1200 could not be characterized as 

explosive: the “fireball” was getting progressively smaller, yet remained larger than the 

actual samples. Fe-1300 simply glowed red. Although explosions of Fe-600 to Fe-800 

shuttered and destroyed the vials, fragments could still be recovered and residues were 

analyzed with XRD as mentioned above. Fe-900 to Fe-1300 monoliths remained 

monolithic. 

Ignition under vacuum, even of samples that in open-air exploded (i.e., Fe-500 to 

Fe-800), produced bright optical effects, but no explosions (Figure 9 and Movies S.VAC.1 

to S.VAC.5). The sealed glass ampules remained intact and had to be broken in order to 

recover samples for XRD analysis. On the other hand, ignition in glass ampules sealed 

under N2, even of samples that contained significant amounts of oxides (e.g., Fe-350), 

produced extremely violent explosions (Movie S.N2.1). Ampules were pulverized 

completely, and no fragments could be recovered for product identification.   

As shown in Table S.1, whenever ignition was conducted under inert conditions 

(i.e., under vacuum or in the BC, cases of Fe-700 and Fe-800) the extent of the reaction 

and the product distribution were similar. The main iron product was FeO (eq 1).33 On the 

other hand, in the open air the residue after ignition included significant amounts of Fe3O4 

together, in some instances, with Fe2O3. Considering together the product distributions 

from those three modes of ignition points to participation of air in the combustion process 

via, for example, eqs 4 and 5.7 Thus, the mol fraction of Fe(0) that reacted in samples 

ignited in air cannot be used as an estimate of the efficiency of the reaction with LiClO4. 

                                                3 FeO + ½ O2                               Fe3O4                                      (4) 

                                               2 Fe3O4 + ½ O2                              Fe3O4                                     (5) 
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The amount of heat released from the reaction was calculated based on the product 

distribution. There was an excellent agreement between the calculated and experimental 

values obtained with the BC. For example, ignition of Fe-700 in the BC gave a clean 

reaction to FeO, whereas the experimental heat release was 58.3 kcal mol-1 of Fe(0) reacted, 

versus a theoretically expected value of 66.64 kcal mol-1.34 Similarly, ignition of Fe-600 in 

the BC gave a small amount of Fe2O3 along FeO (FeO:Fe2O3 = 13.8 mol/mol); the 

theoretical heat release was 71.1 kcal per mol of Fe(0) reacted, and the experimental value 

was 60.1 kcal mol-1. By the same token, the calculated heat release values from ignition in 

the open air were higher than the values measured in the BC, due to the parallel production 

of Fe3O4 and Fe2O3, whose heats of formation per iron atom (89 kcal mol-1 and 98.5 kcal 

mol-1, respectively) are higher than the heat of formation of FeO (65 kcal mol-1). Hence, 

the heat released in the BC was taken as the lower limit for the possible heat release from 

ignition of our nanoporous iron samples with LiClO4.  

The absence of any explosive behavior from Fe-500 to Fe-800 ignited under 

vacuum confirms that Fe-temp do not produce gases (e.g., from traces or unreacted C) and 

supports our previous conjecture,17 whereas explosive behavior was attributed to rapid 

heating and expansion of air confined in nanoporous space. The need for O2 for the 

explosive behavior, or to put it differently, whether the heat produced by the reaction of 

Fe(0) with LiClO4 alone was sufficient to cause explosive behavior, was inferred by 

igniting samples in tubes sealed under N2. As stated above, that produced extremely 

powerful explosions (Movie S.N2.1). Hence, the heat release from the reaction of Fe(0) 

with LiClO4 was indeed sufficient to heat and expand the pore filling gas resulting to an 

explosive effect.  
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2.5.2. Ignition with NaClO4 and KClO4.  Selected Fe-temp samples (Fe-400, 

Fe-600 and Fe-1000) containing those salts were ignited in air. Figure 10 captures the 

moment of ignition from Movies S.Na.1-3 and Movies S.K.1-3. None of the samples 

exploded. NaClO4-loaded Fe-400 and Fe-600 produced sprays of sparks; Fe-1000 

produced a similar behavior to its LiClO4-loaded counterpart.  With KClO4 the overall 

trend was the same, but effects were weaker. The behavior of Fe-1000 was close to a 

thermite. Except Fe-400 with NaClO4, the residue contained large quantities of unreacted 

iron whose percentage increases as the mol ratio of the perchlorate decreases. Except Fe-

400 with KClO4, whereas the product was only FeO, in all other cases the residue consisted 

only of Fe2O3 and Fe3O4.  The iron:perchlorate mol ratio was always sub-stoichiometric 

even for the formation of FeO (that requires the least amount of perchlorate). As discussed 

above, in some cases the Fe:perchlorate ratio was extremely high (Table S.1). Thereby, 

conversions and product distributions as those observed herewith can only be justified by 

air participation in the combustion process (eqs 4 and 5). No further attempt was made 

along this study for higher loading with those salts, and discussion of the explosive versus 

thermite behavior focuses on the LiClO4-loaded samples.   

 

2.6. THE FACTORS CONTROLLING EXPLOSIVE VERSUS THERMITE 

BEHAVIOR  

In most experiments ignition was carried out with a flame whereas temperature 

reaches levels above the melting points of all three perchlorates, thereby in all three cases 

the reaction was assumed to be solid-liquid rather than solid-solid. The necessary condition 

for explosive behavior is undoubtedly that nanopores must be filled with a gas that is heated 

by the reaction of the iron matrix with the filler: evacuated samples did not explode and 
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further confinement in tubes sealed under N2 intensified the explosion. Although the most 

intense effects were obtained with LiClO4, a parallel trend was noted with NaClO4 and 

KClO4, but the effects were greatly diminished. The latter is attributed to the sub-

stoichiometric amount of perchlorate. Focusing on LiClO4, pores filled with a gas was a 

necessary, but not a sufficient condition for explosive behavior. That is, even though Fe-

400 and Fe-500 had similar or higher porosities than Fe-600 to Fe-800, either they did not 

explore as violently (Fe-500), or fizzled out (Fe-400). Other factors had to be at work. 

Thus, turning to the skeletal framework, we noted that successive switching from fizzling 

to explosive to thermite behavior took place along abrupt particle size increases associated 

with surface sintering (in the 400 oC to 500 oC range) and melting-like fusion (above 950 

oC). Those phenomena were supported by a parallel abrupt increase in electrical 

conductivity, but most importantly in mechanical strength. The latter was investigated 

under compression and it was found that Fe-temp demonstrated yield behavior similar to 

that of ductile (polymeric) aerogels. The stress at the yield point increased with the final 

H2-reduction temperature. Although compression (Figure 7) is the opposite of outward 

expansion, yield points along the stress-strain curves of Figure 7A express a fundamental 

material property and can also serve as a guide for the behavior under internal pressure. 

Thus, it is noted that the pressure expected to develop inside monoliths by 

isochoric/adiabatic heating of the pore-filling gas by the iron/perchlorate reaction was on 

the order of 35 atm (around 3.5 MPa).35 Semi-quantitatively, the yield point of samples 

that did not explode was generally above that pressure level. At this point, considering all 

data together suggests that once pores are filled with gas, fizzling versus explosive versus 

thermite behavior is primarily controlled by the strength of the Fe(0) framework, which in 
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turn is controlled by sintering that takes place in two stages: one at the onset of explosive 

behavior and one at the onset of thermite behavior. For explosive behavior the framework 

has to be strong enough to contain hot gasses long enough for high pressure to build up 

before it fails catastrophically. If the framework is not strong enough (at the onset of 

sintering, samples Fe-400 and below) failure starts early and samples fizzle out. At the 

other end, if the network is strengthened by melting-like fusion of skeletal nanoparticles, 

we observe only a fireball of hot gas escaping from the monolith - no explosions. Clean 

thermite behavior –no fireball– was observed only with Fe-1300. It is plausible that a 

combination of reduced porosity (50% v/v in Fe-1300 versus 69% v/v in Fe-1200, Table 

1), a substantially sub-stoichiometric amount of LiClO4 ([Fe:LiClO4]Fe-1300=12.8 mol/mol, 

Table S.1) and a slower heat release rate (via a slower rate of oxidation – in line with 

conclusions from the TGA-in-O2 data of Figure 4A) are all additional contributing factors 

towards the clean thermite behavior of Fe-1300.  

 

3. CONCLUSIONS AND OUTLOOK 

Monolithic nanoporous iron aerogels were prepared via carbothermal reduction of 

interpenetrating networks of polybenzoxazine-iron oxide nanoparticles (PBO-FeOx). The 

PBO network plays the role of a hard-sacrificial template. Excess unreacted carbon was 

burned off at 600 oC in air. That process partially oxidizes the Fe(0) network. Reduction of 

oxides back to Fe(0) was carried out with H2 at different temperatures varying from 300 oC 

to 1300 oC. The temperature of the final H2-reduction step had an annealing effect on the 

iron framework, thereby upon ignition of samples loaded with stoichiometric amounts of 

LiClO4 fizzled out, exploded or presented thermite behavior depending mainly on the 
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mechanical strength of said network. Although explosion by fast heating and expansion of 

gas confined in nanoporous space is novel and quite impressive, we do not loose sight of 

the fact that our original objective was thermites, not explosives. Near thermite behavior 

was demonstrated by Fe-900 to Fe-1200 and clean thermite behavior was demonstrated 

only by Fe-1300. What we learned from those samples is that for thermite behavior, higher 

surface areas and higher porosities are not real advantages. More sturdy, slower-reacting 

networks associated with lower porosities and thicker skeletal walls from melting-like 

fusion of skeletal nanoparticles are definitely more desirable. However, that renders filling 

pores with the necessary amount of perchlorate more difficult. That issue could be 

addressed by filling monoliths via massive in-place deposition of the salt. The latter almost 

dictates revisiting KClO4 by taking advantage of its low solubility. In one such approach, 

KClO4 could be precipitated in situ within the pores from KCl and LiClO4. In another 

approach, “annealing” of the network could be enforced, sort-of-speak, before 

carbothermal reduction by pyrolyzing compacts of interpenetrating PBO-FeOx aerogels. 

That method will eliminate most of the porosity of the parent aerogel, thus loading with 

perchlorate will take place within the empty space that will be created from the 

carbothermal reduction between carbon and the iron oxide network. This work serves as 

the point of departure for all those possibilities, several of which are under current 

investigation. 
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4. EXPERIMENTAL   

4.1. MATERIALS 

All reagents and solvents were used as received unless otherwise noted. Iron 

chloride hexahydrate (FeCl3.6H2O), paraformaldehyde (96%), aniline, and 4,4'-

isopropylidenediphenol (bisphenol A) were obtained from Acros Organics. 

Dimethylformamide (DMF) and epichlorohydrin were obtained from Sigma-Aldrich. 

Anhydrous lithium perchlorate was obtained from GFS Chemicals, anhydrous potassium 

perchlorate was obtained from Fluka Chemika and sodium perchlorate was obtained from 

Fisher Scientific. Ultra-high purity argon (99.99999%), hydrogen (99.9999%) and 

compressed air were purchased from either Airgas Co. or Ozark Gas (both of Rolla, MO). 

Benzoxazine monomer (BO monomer) was synthesized via a modification of literature 

procedures.12-16 

 

4.2. PREPARATION OF POLYBENZOXAZINE-IRON OXIDE 

INTERPENETRATING NETWORKS (PBO-FeOX AEROGELS) 

Solution A was prepared by dissolving 1 g (2.16 mmol) of purified BO monomer 

in 4.23 mL (4 g) DMF. Solution B was prepared by first dissolving (with ultra-sonication) 

2.30 g (8.52 mmol) of iron chloride hexahydrate in 3 mL (2.8 g) DMF, and then adding 

2.06 mL (25.56 mmol) of epichlorohydrin. Upon addition of epichlorohydrin, Solution B 

was immediately added to Solution A waiting in a round bottom flask, the resulting sol was 

stirred magnetically for 5 min at room temperature and then was poured in 10 mL portions 

into polypropylene jars (Fisherbrand, part no. 02-912-025, 1.5 inch in diameter), which 

were screw-capped and placed in an oven at 80 oC. Gelation took place in 15-20 min. Wet-
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gels were aged in their molds at 80 oC for 2 days. Subsequently, wet-gels were removed 

from the molds and washed with DMF (212 h), followed with DMF:acetone (50:50 v/v, 

212 h) and finally with pure acetone (412 h). Acetone-filled wet-gels were dried in an 

autoclave with liquid CO2 that was removed at the end as a supercritical fluid (SCF). The 

resulting aerogels are referred to as PBO-FeOx and were step-cured in air at 160 oC for 1 

h, then at 180 oC for 1 h, and finally at 200 oC for 24 h. The resulting materials are referred 

to as PBO-FeOx-200.   

 

4.3. CONVERSION OF PBO-FeOX-200 AEROGELS INTO Fe(0) AEROGELS 

(Fe-TEMP) 

PBO-FeOx-200 aerogels were transferred to a MTI GSL1600X-80 tube furnace 

(alumina 99.8%, 72 mm and 80 mm inner and outer diameters, respectively, with a 457 

mm heating zone), which was flushed with ultra-high purity Ar for 1h (300 mL min-1). 

Subsequently, the temperature of the furnace was raised to 800 oC at 5 oC min-1 and was 

maintained there for 5 h under a 150 mL min-1
 flow of ultra-high purity Ar. At the end of 

the period, the temperature was first lowered to 600 oC at 5 oC min-1, then the flowing gas 

was switched to air (at 150 mL min-1) and the new conditions were maintained for 20 min 

at 600 oC. Subsequently, the temperature was changed at 5 oC min-1 under constant flow of 

Ar (150 mL min-1) to various terminal values ranging from 300 oC to 1300 oC. Then the 

flowing gas was switched to H2 and the flow (150 mL min-1) was maintained for 5 h at 

constant temperature. At the end, the tube furnace was cooled down to room temperature 

at 5 oC min-1 under continuous flow of H2. Those samples are referred to as Fe-temp (temp: 

300-1300).  
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4.4.  METHODS 

Drying with SCF CO2 was conducted in an autoclave (Spe-ed SFE system, Applied 

Separations, Allentown, PA). Bulk densities (b) were calculated from the weight and the 

physical dimensions of the samples. Skeletal densities (s) were determined with helium 

pycnometry using a Micromeritics AccuPyc II 1340 instrument. Porosities () as percent 

of empty space were determined from the b and s values via =100[(s-b)/s]. 

4.4.1. Thermogravimetric Analysis (TGA).  That was conducted in an O2  

atmosphere with a TA Instruments Model TGA Q50 Thermogravimetric Analyzer, using 

a heating rate of either 10 oC min-1 or 5 oC min-1.  

4.4.2. Chemical Characterization. That was conducted with powder X-ray  

diffraction (XRD) using a PANalytical X’Pert Pro multipurpose diffractometer with Cu 

Kα radiation (λ = 1.54 Å) and a proportional counter detector equipped with a flat graphite 

monochromator. Phase composition was estimated via Rietveld refinement of the X-ray 

diffraction patterns utilizing RIQAS software (Materials Data, Inc., version 4.0.0.26).36 

Structural information for each phase was obtained from the ICSD database version 2.01. 

A Gaussian correction for instrumental broadening was applied utilizing NIST SRM 660a 

LaB6 to determine the instrumental broadening. 

4.4.3. Visualization of the Skeletal Framework. That was carried out with  

scanning electron microscopy (SEM) using Au-coated samples on a Hitachi Model S-4700 

field-emission microscope.  

4.4.4. N2-Sorption Porosimetry.  That was conducted with a Micromeritics  

ASAP 2020 surface area and porosity analyzer. Surface areas, , were obtained using the 

Brunauer-Emmett-Teller (BET) equation. Samples for porosimetry and skeletal density 
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determination were outgassed under vacuum for 24 h at 80 oC. Average pore diameters 

were determined with the 4×VTotal/ method, where the total pore volume per gram was 

calculated via VTotal = (1/ρb)–(1/ρs).      

4.4.5. Mechanical Characterization. Mechanical testing under quasi-static 

compression of Fe-950, Fe-1000, Fe-1100, Fe-1200 and Fe-1300 was conducted with an 

Instron 3369 universal testing machine at a strain rate of 2.5 mm/mim, using a 50 kN load 

cell following a testing procedure in the spirit of ASTM D1621-04a (Standard Test Method 

for Compressive Properties of Rigid Cellular Plastics). In order to achieve a surface 

roughness within few µm and ensure that specimens would have no surface scratches and 

cracks that could act as stress concentrators that might cause premature failure 

compromising the reliability and reproducibility of the data, both surfaces of the samples 

were polished with a 3M surface smoothing sand paper (320 grit, part No. 98401). Typical 

specimen dimensions ranged from 1.00 cm to 1.38 cm in diameter and from 0.30 cm to 

0.45 cm in height. The recorded force as a function of displacement (machine-compliance 

corrected) was converted to stress as a function of strain. The mechanical properties of four 

samples (Fe-400, Fe-600, Fe-800 and Fe-900) were determined with a TA Instruments 

Model Q800 Dynamic Mechanical Analyzer in a controlled force/strain mode using a 

submersion compression clamp (TA Instruments Part Number 985067.901), which is 

useful for testing low to medium modulus samples. The experiment was conducted with a 

force ramp of 1 N min-1 (preload force = 0.01 N) up to a maximum of 18 N and typical 

specimen dimensions of these aerogels for testing were about 10 mm in diameter, 3.5 mm 

thick. 
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4.4.6. Electrical Conductivity ().  That was measured using a four-point-probe 

conductivity instrument consisting of an Alessi CPS-06 Contact Probe Station with a four 

point probe head, a Keithley Model 220 programmable current source, and a Model 181 

nanovoltmeter. The reliability of the measurements was confirmed with commercially 

available silicon wafers and indium-tin oxide films of known sheet resistance. The 

conductivity was calculated via Conductivity = 1/Resistivity, where Resistivity = 2π × s × 

T1(t/s) × Co(d/s) × (V/I), where s is the distance between electrodes in the probe (0.1588 

cm), and T1(t/s) and Co(d/s) are geometric correction factors due to the finite thickness (t) 

and diameter (d) of the samples.37,38 For example, for t = 0.428 cm and d = 1. 386 cm, (t/s) 

= 2.70 and (d/s) = 8.73, and T1(t/s) = 0.9596, and Co(d/s) = 0.9059. The surface of the 

aerogel samples was smoothened for electrical conductivity measurements using the 3M 

surface smoothing sand paper (320 grit, part No. 98401) and debris was blown off with dry 

N2. 

4.4.7. Loading with Perchlorates and Ignition.  Saturated solutions of  

 anhydrous LiClO4, KClO4 and NaClO4 were prepared in dry acetone. Fe-temp monoliths 

were placed in those acetone solutions for 24 h and were infiltrated with capillary action. 

Subsequently, wet monoliths were rinsed briefly with acetone and left in a fume hood to 

dry for 12 h. At the end of that period, samples were placed in a vacuum oven at 80 oC until 

they were used for ignition experiments, at least two days later or longer. The amount of 

perchlorate was determined gravimetrically in the dry samples. For ignition in the open air, 

approximately 0.2 g of perchlorate-loaded samples were placed in 5 mL vials and were 

heated with a Bunsen burner underneath. This procedure was followed with all LiClO4-

loaded Fe-temp aerogels, and with Fe-400, Fe-600 and Fe-1000 aerogels loaded with 
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either NaClO4 or KClO4. For ignition under vacuum or under N2, approximately 0.2 g of 

selected LiClO4-loaded samples (Fe-600, Fe-700, Fe-800 and Fe-950) were placed in test 

tubes (PyrexTM, 1 cm diameter), necks were created to those tubes close to their open ends 

using a hot natural gas-O2 flame, and the tubes with elongated necks and samples trapped 

inside were fixed on a vacuum line.  When the pressure reached 50 mTorr, tubes were 

sealed under vacuum at their necks with the gas-O2 flame. Alternatively, the vacuum line 

was back-filled with N2 and re-evacuated three times, before it was backfilled with N2 and 

tubes were sealed with the gas-O2 flame under N2. All precautions under the Safety 

Warning above, apply.  

4.4.8. Calorimetry.  The enthalpy of the reaction of LiClO4-loaded Fe-600,  

Fe-700 and Fe-800 was measured using a 400 mL bomb calorimeter (BC, Parr Instrument 

Company, Model 1672 Thermometer). The heat capacity of the calorimeter was measured 

using benzoic acid as standard. Each sample (approximately 1.5 g) was ignited with a 

nichrome fuse wire connected to the terminal socket on the apparatus head, which in turn 

was connected to the power supply (ignition unit). The heat released by the fuse was also 

taken into consideration in the calculations. After each experiment, the residue was 

collected and analyzed with XRD for the fraction of iron reacted and the distribution of the 

iron products.      
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Figure 1. Nanoporous Fe(0) aerogels processed at different final H2-reduction 

temperatures (see Scheme 1). Dashed colored lines group samples that when loaded with 

LiClO4 and ignited (Figure 9) fizzled out, exploded or demonstrated thermite behavior. 

For relative sizes along synthesis, cross-reference with photographs in Scheme 1. 
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Figure 2.  Correlation of basic material properties of Fe-temp (bulk density, b, shrinkage 

and porosity, ) as a fuction of the processing temperature (temp) at the final H2-

reduction step. 
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Figure 3. XRD of samples as shown. For samples Fe-400 and above, only one crystalline 

phase could be identified, that of -Fe. Quantitative phase analysis of the Fe-300 sample 

gave Fe2O3:Fe3O4 (63:37 mol/mol). 

 
 
 
 

 
Figure 4. Thermogravimetric analysis (TGA) in an O2 atmosphere of Fe-temp as 

indicated. (a). Heating rate: 10 oC min-1; (b). Heating rate: 5 oC min-1. 
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Figure 5. SEM at two different magnifications of samples as indicated. With reference to 

Figure 1, colored dashed lines group samples that when loaded with LiClO4 and ignited 

(Figure 9) fizzled out (blue), exploded (orange) or demonstrated thermite behavior 

(black).  
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Figure 6.  Particle diameters (d) calculated from BET surface areas () and skeletal 

density (s) data via d=6/(s) as a function of processing temperature at the final H2-

reduction step. 
 
 
 

 
Figure 7. (a). Stress-strain curves under quasi-static compression of samples as indicated. 

(b). Magnification of the lower-strain part of the curves in (a). (c). Young’s modulus, E, 

as a function of processing temperature. (For the fitted dashed straight line refer to the 

text.) (d). Young’s modulus as a function of bulk density.  
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Figure 8. Electrical conductivity (in Siemens (S) per meter) as a function of various 

parameters as indicated. The horizontal dotted line on top marks the electrical 

conductivity of pure dense iron. 
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Figure 9.  Moment of ignition with a flame of LiClO4-loaded Fe-temp samples. Pictures 

are frames from the videos given in Supporting Information. (Photographs of evacuated 

ampules with Fe-600 inside before and after ignition are also included for reference).  
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Figure 10. Moment of ignition with a flame in open air of NaClO4 and KClO4-loaded Fe-

temp samples (refer to Movies S.Na-1-3 and S.K.1-3 in Supporting Information). 

 

 

 

 

Scheme 1. Co-gelation of iron oxide (FeOx) and polybenzoxazine (PBO) interpenetrating 

networks. 
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Scheme 2. Preparation Fe(0) aerogels with variable morphology and pore structure. 
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Table 1. Materials characterization data for samples as shown. 

 
sample 

 

linear 

shrinkage (%) 

a,b 

bulk 

density, 

 

(g cm-3) a 

skeletal 

density, 

s 

(g cm-3) c 

porosity, 

 

(% v/v) 

Specific pore volume, 

(cm3 g-1) d 

BET 

surface 

area, 

 

(m2 g-1)  

Av. pore 

diameter 

(nm) e 

particle 

diameter 

(nm) f VTotal V1.7-300_nm V>300_nm 

VTotal 

Fe-300 53.23±0.93 0.741±0.025 4.573 ± 0.262 84 1.131 0.225 0.80 75.9 60 17 

Fe-350 55.63±1.42 0.553±0.064 5.050 ± 0.228 89 1.610 0.148 0.91 56.2 115 21 

Fe-400 57.19±0.72 0.438±0.006 7.274 ± 0.202 94 2.146 0.030 0.986 14.5 590 57 

Fe-500 58.82±3.80 0.571±0.166 7.334  ± 0.256 92 1.615 0.003 0.998 5.41 1190 151 

Fe-600 60.11±1.51 0.636±0.083 7.462 ± 0.237 92 1.438 0.007 0.995 4.90 1170 164 

Fe-700 61.92±0.81 0.658±0.078 7.361 ± 0.166 91 1.384 0.006 0.996 5.11 1080 160 

Fe-800 64.84±1.17 0.712±0.035 7.364 ± 0.159 90 1.269 0.006 0.995 4.21 1200 194 

Fe-900 68.21±1.16 0.781±0.052 7.302 ± 0.085 89 1.144 0.014 0.988 5.15 900 160 

Fe-950 69.03±1.55 0.881±0.075 7.305 ± 0.119 88 0.998 0.002 0.998 0.534 7480 1540 

Fe-1000 71.03±1.54 1.702±0.296 7.292 ± 0.050 77 0.450 0.001 0.998 0.224 8040 3670 

Fe-1100 73.64±1.72 2.137±0.154 7.248 ± 0.052 71 0.330 0.000 1.00 0.176 7500 4700 

Fe-1200 76.20±0.89 2.429±0.102 7.703 ± 0.204 69 0.282 0.000 1.00 0.170 6630 4580 

Fe-1300 77.25±1.64 3.782±0.184 7.635 ± 0.124 50 0.133 0.000 1.00 0.025 21350 31430 

a Average of 5 samples. b Shrinkage = 100  (mold diameter – sample diameter)/(mold diameter). c Single sample, average of 50 

measurements. d VTotal was calculated via VTotal = (1/b) – (1/s). V1.7-300_nm from the total N2-desorption volume. V>300_nm = VTotal 

– V1.7-300_nm. e By the 4VTotal/ method. f  Diameter = 6/s. 
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SUPPORTING INFORMATION 

Table S.1. Cumulative XRD analysis and thermochemical data of perchlorate-

loaded samples before and after ignition under various conditions.   

Ignition Movies 

Fe-temp loaded with LiClO4 

Ignition in open air                    

Movie S.AIR.1…Fe-350-LiClO4   

Movie S.AIR.2…Fe-400-LiClO4   

Movie S.AIR.3…Fe-600-LiClO4   

Movie S.AIR.4…Fe-800-LiClO4    

Movie S.AIR.5…Fe-950-LiClO4      
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Movie S.AIR.6…Fe-1100-LiClO4 

Movie S.AIR.7…Fe-1200-LiClO4 

Movie S.AIR.8…Fe-1300-LiClO4   

Ignition in sealed tubes under vacuum 

Movie S.VAC.1…Fe-400-LiClO4 

Movie S.VAC.2…Fe-600-LiClO4 

Movie S.VAC.3…Fe-700-LiClO4          

Movie S.VAC.4…Fe-800-LiClO4          

Movie S.VAC.5…Fe-950-LiClO4       

Ignition in sealed tubes under nitrogen 

Movie S.N2.1…Fe-350-LiClO4                               

Movie S.N2.2…Fe-700-LiClO4 

Movie S.N2.3…Fe-800-LiClO4 

Fe-temp loaded with NaClO4  

Movie S.Na.1…Fe-400-NaClO4   

Movie S.Na.2…Fe-600-NaClO4  

Movie S.Na.3…Fe-1000-NaClO4              

Fe-temp loaded with KClO4       

Movie S.K.1…Fe-400-KClO4 

Movie S.K.2…Fe-600-KClO4 

Movie S.K.3…Fe-1000-KClO4 
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Table S.1. Cumulative XRD analysis and TGA data of perchlorate-loaded samples before and after ignition under various 

conditions.   

 

Sample a 

𝐅𝐞(𝟎)

𝐩𝐞𝐫𝐜𝐡𝐥𝐨𝐫𝐚𝐭𝐞
 

(mol/mol) b 

𝐅𝐞𝐫𝐞𝐚𝐜𝐭𝐞𝐝

𝐅𝐞𝐢𝐧𝐢𝐭𝐢𝐚𝐥
 

(mol/mol) c 

Fe 

(mol%) d 

FeO 

(mol%) d 

Fe3O4 (mol%) 
d 

Fe2O3 

(mol%) d 

H 

(kcal/mol) e 

theoretical 

[experimental] 

Loaded with LiClO4 

Fe-300 f 
- - - - - - - 

Fe-350 
2.675 1.000 0 0 100 0 -91.298 

Fe-400 2.929 1.000 0 100 0 0 -66.639 

Fe-500 
2.959 1.000 0 0 42 58 -95.953 

Fe-600 2.634 0.922 11 68 21 0 -78.527 

Fe-600-BC 2.634 0.898 11 83 0 6 -71.066 [-60.1] 

Fe-700 
2.640 g g g g g -66.639 

Fe-700-BC 
2.640 0.887 11 89 0 0 -66.639 [-58.3] 

Fe-700-vac 
2.640 0.899 10 90 0 0 -66.639 

Fe-800 1.777 0.537 67 0 11 22 -96.675 

Fe-800-BC 1.777 0.898 11 83 0 6 -71.066 [-57.5] 

Fe-800-vac 1.777 0.734 27 73 0 0 -66.639 

Fe-900 
5.369 1.000 0 0 100 0 -91.298 

Fe-950 
5.552 1.000 0 0 100 0 -91.298 

Fe-950-vac 
5.552 0.203 82 15 0 3 -75.537 

Fe-1000 4.252 0.332 67 33 0 0 -66.639 

Fe-1100 
6.436 0.360 64 36 0 0 -66.639 

Fe-1200 6.634 0.705 36 52 12 0 -76.594 

Fe-1300 
12.836 0.946 15 0 85 0 -91.298 
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Table S.1. Cumulative XRD analysis and TGA data of perchlorate-loaded samples before and after ignition under various 

conditions (Continued).   

 

Sample a 

𝐅𝐞(𝟎)

𝐩𝐞𝐫𝐜𝐡𝐥𝐨𝐫𝐚𝐭𝐞
 

(mol/mol) b 

𝐅𝐞𝐫𝐞𝐚𝐜𝐭𝐞𝐝

𝐅𝐞𝐢𝐧𝐢𝐭𝐢𝐚𝐥
 

(mol/mol) c 

Fe 

(mol%) d 

FeO 

(mol%) d 

Fe3O4 (mol%) 
d 

Fe2O3 

(mol%) d 

H 

(kcal/mol) e 

theoretical 

[experimental] 

 

Loaded with NaClO4 

Fe-400 7.137 0.986 3 0 24 73 -97.794 

Fe-600 7.472 0.828 32 0 21 47 -97.177 

Fe-1000 21.448 0.263 89 0 11 0 -91.322 

        

Loaded with KClO4 

Fe-400 12.920 0.671 40 50 10 0 -74.403 

Fe-600 162.871 0.202 90 0 3 7 -95.126 

Fe-1000 314.407 0.220 91 0 9 0 -89.394 

 
a  Samples were ignited in air unless otherwise noted (BC: in a bomb calorimeter; vac: in evacuated sealed ampules).  
b  Determined gravimetrically. 
c  Calculated from the iron products in the residue after ignition via:  

 [100-%Fein-residue] / 100  [%Fein-residue + %FeO + 2%Fe2O3 + 3%Fe3O4]. All % in mol/mol from d. 
d Via XRD and quantitative phase analysis. 
e Based on the amount of iron reacted. Theoretical values were calculated from standard heats of formation assuming no air (O2) 

participation and stoichiometrically sufficient amount of perchlorate: (ΔHf)LiCl = -97.679 kcal/mol, (ΔHf)LiClO4 = -91.057 

kcal/mol, (ΔHf)KCl = -104.324 kcal/mol, (ΔHf)KClO4 = -103.439 kcal/mol, (ΔHf)NaCl = -98.277 kcal/mol, (ΔHf)NaClO4 = -91.609 

kcal/mol, (ΔHf)Fe = 0 kcal/mol, (ΔHf)FeO = -65.008 kcal/mol, (ΔHf)Fe2O3 = -196.984 kcal/mol, (ΔHf)Fe3O4 = -267.298 kcal/mol.  
 Experimental values were measured with a bomb calorimeter. 
f Sample consisted mostly of oxides. 
g No residue could be recovered. 
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SECTION 

2. CONCLUSIONS 

Aerogels with varying morphology and interparticle connectivity were synthesized 

and studied for their applications as energy storage materials. Polyurethane chemistry was 

employed for the first time to make shape memory aerogels using cheap monomers. The 

effect of particle interconnectivity or the framework in iron aerogels was related with the 

explosive or thermite behavior when those aerogels were loaded with oxidizing agents and 

ignited in air. 

In paper I, shape memory superelastic poly(isocyanurate-urethane) (PIR-PUR) 

aerogels were successfully synthesized and showed applications as in deployable panels 

and biomimetic devices. As shown here, the isocyanurate ring of the isocyanate monomer 

effectively acts as a cross-linking node for imparting both rubber-like elasticity and 

insolubility of a developing polyurethane network. Both these conditions are necessary for 

the shape memory effect and the synthesis of polymeric aerogels, respectively that were 

achieved with the help of design of experiments. Those resulting aerogels showed a robust 

shape memory effect with high strain fixity, strain recovery ratios and fill factors.  

In paper II, PIR-PUR aerogels were prepared with mixed diols and an aliphatic 

triisocyanate whose synthetic parameters were varied systematically using a statistical 

design-of-experiments model. The chemical composition of each sample reflected its 

formulation, as designed. Microstructures could be put in two groups, one consisting of 

micron-size particles connected with large necks, and a second one classified as 

bicontinuous. The two groups could be explained consistently by a gelation mechanism 
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involving spinodal decomposition and early versus late phase separation relative to the gel 

point. The overall figure of merit, the fill factor, was found in the range of 0.35-0.71; that 

variability was traced to a variability in the shape recovery rates, Rt(N), which in turn were 

related to the micromorphology. The inverse correlation between Rt(N) and the elastic 

modulus, E, provides a means for a qualitative predictability of the shape recovery rates, 

thereby the fill factor, and in turn the overall quality of the shape memory effect. 

Quantitatively, the correlation of Rt(N) and E (Eq. 10) was traced to a linear correlation of 

the activation barrier for shape recovery and the elastic modulus which represents a 

rigorous thermodynamic-kinetic correlation, analogous to the Marcus expression for 

electron transfer reactions. 

In paper III, monolithic nanoporous iron aerogels were prepared via carbothermal 

reduction of interpenetrating networks of polybenzoxazine-iron oxide nanoparticles (PBO-

FeOx). The PBO network played the role of a hard-sacrificial template in the carbothermal 

process and excess unreacted carbon was burned off at 600 °C in air. That step partially 

oxidized the Fe(0) network which was reduced back to Fe(0) with H2 at different 

temperatures varying from 300 to 1300 °C. The final H2-reduction temperature had an 

annealing effect on the iron framework, thereby upon ignition of samples loaded with 

stoichiometric amounts of LiClO4 that fizzled out, exploded or presented thermite behavior 

depending mainly on the mechanical strength of said network. The explosion behavior was 

explained due to the fast heating and expansion of gas confined in nanoporous space. 
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