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ABSTRACT 

 

The purpose of this thesis was to study the rate and extent of aggregation of 

human and bovine insulin in bulk and in the presence of either polystyrene microspheres 

with different surface chemistries or liposomes of different composition. Insulin 

aggregation was followed by turbidimetry, Fourier transform infrared spectroscopy 

(FTIR), and dynamic light scattering. The Congo red assay was used to corroborate the 

presence of amyloid deposits and transmission electron microscopy (TEM) was used to 

analyze the morphology of the amyloid deposits.  

Our results show that not all the surfaces shortened the lag time. On the other 

hand, most surfaces had an impact (either significant or minute) on the growth rate of 

both insulins. Faster nucleation was observed at all times for both insulins when 

incubated at 60 ˚C vs. 37 ˚C, 230 rpm. Furthermore, considerable secondary structure 

changes (from random coils and α-helices to β sheets and turns) in both insulins during 

fibrillation were observed.  

Both, human and bovine insulin exhibited analogous fibril morphologies (i.e. 

similar length, width, and structure) when treated under the same conditions in the 

presence and in the absence of surfaces with the exception of incubation at 37 ˚C, 230 

rpm stirring for 55 hours. In addition, when human and bovine insulin were subjected to 

mechanical stresses the fibrils appear “fragmented” and hence their size is smaller when 

compared to insulin that has not been agitated. Bovine insulin fibrils are longer and 

thinner under these incubation conditions (37 ˚C, 230 rpm) than human insulin fibrils. 

Incubation temperatures were different between agitated insulin (37 ˚C) and non-agitated 

insulin (60 ˚C). It is also noticeable that at 60 ˚C larger fibrils formed at longer incubation 

times, for both insulins. The width of the fibrils ranged between 10 to 20 nm, there is not 

a noticeable dependence/correlation between fibril length and width for human or bovine 

insulin. On the other hand, based on the obtained images, the statistical analysis, and in 

agreement with literature the incubation methods utilized determined the fibril 

morphologies.  
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1. INTRODUCTION 

 

 

 

Amyloid fibrils are ordered aggregates of peptides or proteins that are associated 

with many diseases such as Alzheimer’s, Parkinson’s, and Huntington’s diseases, type 2 

diabetes mellitus, etc. (Nilsson, 2004). Amyloid diseases are apparently unconnected; 

however, intermolecular secondary structure (mainly β-sheet) is present in all amyloid 

aggregates. A number of factors that contribute to the formation of amyloid fibrils 

include, but are not limited to, temperature, protein concentration, pH, ionic strength, and 

amino acid sequence. There are three criteria that define a protein aggregate as an 

amyloid fibril: fibrillar morphology, green birefringence upon staining with Congo Red, 

and β-sheet secondary structure (Nilsson, 2004).  

We have chosen insulin to study amyloid fibril formation in bulk and in the 

presence of interfaces because (i) insulin is a well-studied protein that is known to 

develop structurally similar cross-β-sheet plaques to those found in other amyloid-

forming proteins (ii) insulin is readily available in large amounts at a reasonable price and 

(iii) its amino acid sequence is highly conserved from species to species, which facilitates 

the study of minute changes in amino-acid sequence on fibrillation. Insulin is a glucose 

regulatory hormone composed of two polypeptide chains: the A-chain, which consists of 

21 amino acids, and the B-chain, which consists of 30 amino acids. Insulin has a helical 

native structure, with its two polypeptide chains linked together by two interchain and 

one intra-chain disulfide bonds (Brange et al., 1997). In solution, this protein is found as 

an equilibrium mixture of monomers, dimers, tetramers, and hexamers (which vary 

according to pH and concentration, among other factors) (Klunk et al., 1989). 

Insulin is mainly stored as a zinc-coordinated hexamer while zinc-free insulin is a 

dimer at low protein concentration over the pH 2-8 range, changing to a tetramer at 

protein concentrations above 1.5 mg/ml (Brange et al., 1987). Nielsen et al. (2001b) 

studied the effect of pH on the association of human and bovine insulin. At pH 7.4 insulin 

is hexameric and it dissociates upon decreasing the pH. At pH 3 insulin exists as a 

tetramer, at pH 2.0 is monomeric in acetic acid and at pH 1.6 insulin is dimeric. Despite 

the fact that insulin aggregation has been extensively studied, the differences in the 
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aggregation behavior between proteins from different species have not been deeply 

investigated. The aggregation behavior of human and bovine insulin in vitro in bulk and 

at solid/liquid interfaces is explored in this thesis.  

The amino acid sequences of human and bovine insulin are different in positions 

8 and 10 of the A-chain and in position 30 of the B- chain. Threonine (Thr), a polar 

amino acid in position 8 of the A chain in human insulin is substituted in bovine insulin 

by alanine (Ala), a nonpolar amino acid. Isoleucine (Ile), a nonpolar amino acid in 

position 10 of the A chain of human insulin, is substituted in bovine insulin by valine 

(Val), a nonpolar amino acid as well. Finally, threonine (Thr), in position 30 of human 

insulin, is substituted in bovine by alanine (Ala). 

Formation of insulin fibrils is a physical process in which non-native molecules 

interact with each other to form linear, biologically inactive aggregates (Brange et al., 

1997). In vitro insulin fibril formation has been shown to result in the formation of 

insoluble aggregates which are rich in β-sheet structures (Nielsen et al., 2001a). 

Numerous studies, reviewed below, have shown that once insulin has been exposed to 

elevated temperatures, mechanical stresses, organic solvents, and low pH is prone to 

fibrillation. 

It has been shown by Waugh (1940, 1941) that the formation of insulin fibrils 

occurs before precipitation and that the heat treatment does not completely modify the 

globular nature of the insulin molecule. Waugh later demonstrated that heat precipitation 

consists of three steps: 1) nucleation (formation of active centers), 2) growth (elongation 

of these centers to fibrils), and 3) precipitation/equilibrium (floccule formation) (Waugh, 

1946a; Waugh 1946b; Waugh et al., 1953). These steps involve interactions between 

nonpolar side chains (hydrophobic interactions) (Nielsen et al., 2001a; Bryant et al., 

1993; Waugh, 1946a). Although nucleation appears to need temperatures above ambient, 

the growth into fibrils can happen at ambient or lower temperatures and, depending on 

the conditions, the growth leads to long fibrils or to shorter fibrils with a propensity to 

assemble radially to spherulites with precipitation as the result (Waugh et al., 1953; 

Waugh, 1957). 

The concentration dependence of bovine insulin aggregation was studied by 

Sluzky et al. (1991). They concluded that the aggregation process is kinetically 
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controlled, with rates of aggregation proportional to protein concentration. Their study 

also demonstrated the importance of mechanical stresses by showing that an increase in 

the agitation rate decreased the initial lag phase and that the rate of aggregation became 

steeper. 

Nielsen et al. (2001a) investigated the effect of insulin concentration, pH, ionic 

strength, agitation, anions (i.e. 1-anilinonaphthalene-8-sulfonic acid (ANS)), the use of 

denaturants (such as urea), stabilizers (like sucrose) and seeding of fibrils on the kinetics 

of fibril formation. In agreement with Sluzky et al. (1991), they found that higher insulin 

concentrations lead to shorter lag times and faster growth. Their studies also 

demonstrated that shorter lag times and faster growth of fibrils are attained at acidic pH 

compared to neutral pH, while an increase in ionic strength yielded shorter lag times and 

slower growth. According to their results, there was no clear connection between the rate 

of fibril elongation and ionic strength. Furthermore, they concluded that strong agitation 

(960 rpm) was the dominant effect on the kinetics of insulin aggregation. The presence of 

the anion (ANS) and the stabilizer (sucrose) increased the lag time while the presence of 

the denaturant (urea) decreased it. Finally, they showed that the addition of seeds 

eliminated the lag time. 

Waugh (1946a) observed the formation of small spherulites produced in 2% 

insulin/1% sodium chloride solution in hydrochloric acid at pH 1.8 incubated at 100 ˚C 

for 3 minutes. According to him, the structure of the spherite (as it was called then) is one 

of statistical orientation of the constituent fibrils. He also suggested that a new fibril 

entering the association has to diffuse into the region of the growing spherite and become 

correctly oriented. We obtained spherical aggregates by the method (see description in 

Appendix A) of Burke and Rougvie (1972). Figure 1.1 shows amyloid spherulites by 

themselves and amyloid spherulites coexisting with amyloid fibrils obtained by this 

method which is similar to that of Waugh. All the micrographs were obtained from the 

same sample and were prepared in 0.025 M HCl and 0.1 M NaCl (pH 1.6). 
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Figure 1.1. Negative staining scanning electron images of bovine insulin fibrils and 

spherulites obtained by the method of Burke and Rougvie (1972). (a) and (b) may 

suggest that fibril formation and random coil aggregation occur at the same time 

under certain conditions. (c) and (d) illustrate the presence of spherulites. The scale 

bar represents 500 nm. 

 

 

 

The presence of solid/liquid or liquid/air interfaces affects the formation of fibrils. 

The following studies have shown that the physicochemical nature of the surface plays a 

critical role in amyloid fibril formation and impacts the kinetics, the size and the shape of 

amyloid aggregates and fibrils. Sluzky et al. (1991) observed an increase in bovine 

insulin aggregation rate in the presence of hydrophobic Teflon surfaces. Brange et al. 

(a) 

(d) 

(b) 

(c) 
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(1997) suggested that insulin denatures and aggregates at the liquid/air interface 

generated during vigorous agitation (Aggregation of proteins at the liquid/air interface is 

a well-known phenomenon). The effect of roughness and surface wettability on human 

insulin fibrillation was studied by Nayak et al. (2008) by atomic force microscopy and 

UV-vis absorption spectroscopy. They noticed a decrease of the lag phase in the presence 

of different polymeric surfaces such as regenerated cellulose, polyethylene, and poly 

ethersulfone). They concluded that the nucleation rate increased with increasing surface 

roughness and decreasing surface wettability. The effect of lipid/water interfaces on 

protein fibrillation has also been investigated (Sharp et al., 2002; McLaurin et al., 2002). 

Sharp and coworkers utilized lipid-coated polystyrene surfaces (such as 1,2-dioleoyl-3-

trimethylammonium propane (DOTAP, cationic headgroup) and 1,2-dioleoyl-sn-

glycerol-3-[phosphor-rac-(1-glycerol)] (DOPG, anionic headgroup)) to study surface 

denaturation and amyloid fibril formation of bovine insulin. Their results show that both 

negatively (containing DOPG) and positively (containing DOTAP) charged liposomes 

accelerate the rate of unfolding and of beta sheet formation. DOPG containing liposomes 

were less effective than DOTAP containing ones. McLaurin et al., (2002) explored the 

role of cholesterol in bulk in Aβ40/42 fibrillogenesis. They observed fibril formation in 

the case of Aβ40 but not with Aβ42, which forms amorphous aggregates.  

The molecular mechanism of amyloid fibril formation is not fully understood. 

Several mechanisms that may lead to the formation of aggregates are under discussion. 

The more widespread one is nucleated polymerization. In this mechanism an uncommon 

event leads to the formation of a nucleus (frequently considered to be a small oligomer, 

but it could be an unusual monomer conformation). Once this nucleus forms, it leads to 

the development of the formation of a fibril. Protofilaments (thought to consist of two β-

sheets running in parallel) can wrap up around each other to form protofibrils or mature 

fibrils, which are generally considered to be composed of two to six protofilaments.  

It is now believe that protein folding does not involve a sequence of steps from an 

specific partially folded state to another one but rather it would involve a stochastic 

search of the several conformations accessible to a polypeptide chain (Dobson et al., 

1998; Wolynes et al., 1995). People have suggested that aggregation of insulin occurs by 

exposing the hydrophobic residues that are usually buried within the protein’s structure, 
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this destabilizes the protein and aggregation begins. Mass spectrometry of amyloid 

insulin fibrils has confirmed that the disulfide bonds of the native protein are retained in 

the amyloid structure (Nettleton et al., 1998). 

 It has been suggested by Ahmad et al. (2003) that the first step in insulin 

fibrillation is the formation of a non-native, partially unfolded, monomeric intermediate. 

Nielsen et al. (2001b) proposed a model for insulin fibril formation in which the 

formation of amyloid fibrils starts with hexamer/trimer/dimer units followed by the 

dissociation of these units into the monomer which has to unfold to some extent to form 

the intermediate necessary to produce the nucleus from which amyloid fibrils can grow. 

Vestergaard et al. (2007) suggested that the main elongation mechanism of insulin fibrils 

consists of the addition of oligomers to the growing fibril. They demonstrated that the 

growth rate is proportional to the number of oligomers and that the amount of monomers 

in solution is close to zero during the later phases of fibril formation.  

A left-handed helical twist has been described for all of the amyloid fibrils for 

which the hand has been confirmed such as human calcitonin (hCT) peptide hormone, 

and human amylin (Bauer, et al., 1995, Goldsbury et al., 1997). Based on this evidence 

and on the fact that the twist between β-sheets and β-strands is also left-handed, a model 

for the protofilaments’ twist was suggested by Jimenez et al. (2002) in which the 

protofilaments must be left-handed and must follow the overall twist of the fibril. In 

contrast to previous models based on a β-coil structure (Blake & Serpell, 1996). Jimenez 

and coworkers also indicated that the β-sheets in amyloid protofilaments have to 

accompany the overall fibril twist. 
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2. MATERIALS AND METHODS 

 

 

 

2.1 MATERIALS 

 

 

Human and bovine insulin were used without further purification. Table 2.1 is a 

list of the different insulins used.  

 

 

 

Table 2.1. Insulin sources. 

Insulin 

(source) 
Vendor Catalog No. Lot No. Zinc content (%) 

(1) 

Human 

SACF Biosciences 91077C 10L918 Unknown 

(2) SIGMA I2643 096K03811V 0.4 

(3) SIGMA I2643 SLBC1253V 0.4 

(4) 

Bovine 

Sigma-Aldrich 15500 019K17765V 0.5 

(5) SIGMA I1882 099K8702 0.5 

(6) CELL Applications, INC 128 104 Unknown 

 

 

 

The latexes used were: (1) monodisperse polystyrene (PS) (average particle 

diameter: 107 nm, concentration: 2.64 w/v %) latex, (2) polystyrene hydroxylate (PS-

OH) (average particle diameter: 193 nm, concentration: 2.63 w/v %), (3) polystyrene 

carboxylate (PS-COOH) (average particle diameter: 107 nm, concentration: 2.57 w/v %), 

and (4) polystyrene amino (PS-NH2) (average particle diameter: 108 nm, concentration: 

2.63 w/v %). All the latexes were purchased from Polysciences, Inc. Warrington, PA.  

Five different types of liposomes were prepared. Lipids were dissolved at a 

concentration of 30 mg/ml in tert-butyl alcohol. The lipids, cholesterol (≈99%), L-α- 

phosphatidylcholine from egg yolk (≈99%), L-α- phosphatidylethanolamine from egg 

yolk (≈98%), L-α-phosphatidyl-DL-glycerol, and L-α- phosphatidyl-L-serine from 

glycine max (soybean) were purchased from Sigma (St. Louis, MO) and used without 

further purification. Nanopure water was used in all experiments. The compositions of 

the liposomes are shown in Table 2.2.   
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Table 2.2. Composition of liposomes. 

Liposome Composition Abbreviation 

1 80%/20%      PC/PS C: Cholesterol 

2 20%/80%      PC/C PC: Phosphatidylcholine 

3 80%/20%      PC/C PE: Phosphatidylethanolamine 

4 2:2:1:1          C/PC/PG/PE PG: Phosphatidylglycerol 

5 10:5:7.5:16   PC/PE/PS/C PS: Phosphatidylserine 

6 50%/50%      PC/C 
 

 

 

 

Congo red dye (C6277, Lot# MKBB0292) was purchased from Sigma-Aldrich, 

Saint Louis, MO.  

 

 

 

2.2 METHODS 

 

 

 

2.2.1. Preparation of Insulin Fibrils. All solutions were freshly prepared before 

each experiment. The solution consisted of 25 mM HCl, 100 mM NaCl adjusted to pH 

1.6 (insulin is dimeric under these conditions). This solution was filtered through a 

Whatman 0.45 μm polysulfone membrane filter and then filtered again through a 

Whatman 0.2 μm polyethersulfone membrane filter. Stock protein solutions were 

prepared in this buffer at a concentration of 2 mg/ml. For bulk insulin samples, the 

required amount of sample was withdrawn from the stock solution and no further sample 

preparation was performed.  

For insulin samples in the presence of surfaces, enough solution was withdrawn 

from the stock solution to prepare two samples (i.e. duplicates) but only one sample was 

prepared and then this sample was split in two to obtain “identical duplicates”. All 

samples consisted of 1 to 2 ml (depending on the cuvette size) of 2 mg/ml insulin at a 

surface concentration of 12 cm
2
/mg of insulin, with the exception of the control samples 

which contained only human or bovine insulin (also with duplicates). The samples were 

then transferred to disposable poly(methyl)methacrylate square cells. Two different 

incubation conditions were used for turbidimetry, FTIR, and dynamic light scattering 
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(DLS): 1) 37 ˚C at 230 rpm up to 55 hours, and 2) 60 ˚C for 4 to 6 hours. For TEM, the 

previous incubation conditions were used plus incubation at 60 ˚C for 40 hours. The 

samples were removed from the incubator at appropriate time intervals for analysis and 

were immediately placed back in the incubator.  

2.2.2. Preparation of Liposomes. Liposomes were prepared by the freeze drying 

method (Li and Deng, 2004). 20 mg of lipid was dissolved in 1 ml of tert-Butyl Alcohol 

(TBA). Then, 150 mg of sucrose was dissolved in 1 ml of water. These two solutions 

were mixed at a volume ratio between 1:1 and 1:2. After mixing the solution remained 

optically clear. The mixture was further sonicated for less than a minute in order to assure 

proper mixing. The solution was then filtered through a Whatman 0.22 μm 

polyethersulfone membrane filter. The sample was then freeze-dried. After drying, the 

sample was stored in the freezer. The dried solid was dissolved in the appropriate amount 

of buffer before using. 

2.2.3. Turbidity. The formation of fibrils was followed by monitoring the 

turbidity of the sample at 600 nm (OD600). The absorbance at 600 nm was measured 

using a Hitachi U-2900 Double-Beam UV/Vis spectrophotometer (Hitachi High 

Technologies America, Inc). Measurements were taken at multiple times. 

2.2.4. Fourier Transform Infrared (FTIR) Spectroscopy. Analysis of the 

samples was performed in a Thermo Scientific Nicolet 6700 FTIR. At proper time 

intervals, the sample was gently shaken to distribute fibrils uniformly in the microtube 

before withdrawing aliquots of 8-10 μl. The sample was placed on a CaF2 window and 

left to dry under the hood (drying took no more than 2 minutes). The sample chamber of 

the FTIR was purged with dry, CO2 free, air for a few minutes before and after loading 

the sample. A scan of the CaF2 window (without sample) was used as the background 

(Fandrich and Dobson, 2002; Kong and Yu, 2007; Nilsson, 2004). A total of 32 scans per 

sample were taken at a resolution of 4 cm
-1

. A few runs were done with native insulin in a 

KBr pellet and the results were identical to those obtained by placing a solution of the 

hormone on the CaF2 window and measuring after evaporation of the water. 

2.2.5. Dynamic Light Scattering (DLS). The experiments were performed on a 

fiber-optic quasi-elastic light scattering (FOQELS) instrument from Brookhaven 
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Instruments Corp (Brookhaven). Measurements were done at 830 nm, at a 135.70° 

scattering angle, at 37 ˚C or 60 ˚C. Samples were measured for 30 seconds. 

2.2.6. Congo Red Histological Dye Binding to Insulin Fibrils. The method of 

Klunk et al. (1989) was used. A stock solution of Congo red was prepared by dissolving 7 

mg of the dye in 1ml of a buffer solution consisting of 0.15 M sodium chloride and 5 mM 

potassium phosphate, adjusted to pH 7.4. This solution was filtered twice through a 

Whatman 0.2-μm polyethersulfone membrane filter. 1 ml of the described buffer was 

added to a disposable poly(methyl)methacrylate square cell and the Hitachi U-2900 

Double-Beam UV/Vis spectrophotometer (Hitachi High Technologies America, Inc) was 

zeroed with this solution between 400 and 700 nm at room temperature. Next, 5 μl of the 

Congo red dye stock solution was added to the cell, a spectrum was recorded between 

400 and 700 nm. Lastly, 10 µl of the protein sample was added to the same cell and 

another spectrum was recorded between 400 and 700 nm. After each addition, the cuvette 

was tilted a few times to mix its contents. Congo red tests were performed on all samples 

at the end of each experiment. A maximal spectral difference at 540 nm indicated the 

presence of amyloid fibrils.  

2.2.7. Imaging by Transmission Electron Microscopy (TEM) and Scanning 

Electron Microscopy (SEM). The morphology of insulin fibrils under different 

conditions was examined with a FEI Tecnai F20 transmission electron microscope with 

an accelerating voltage of 120 kV or with a Helios NanoLab 600 Dual Beam 

(FIB/STEM) FEI Microscope operated under STEM mode at 30kV. A drop of water-

diluted suspension of insulin fibrils (100 ml of the 2 mg/ml solution were diluted with 

300 ml of water) was placed on a 200-mesh formvar copper grid (EMS, USA) and 

allowed to dry for 3 minutes. The excess solution was gently wicked off. Subsequently, 

the grid was negatively stained with a 5% (w/v) aqueous solution of uranyl acetate and 

left to dry for 3 minutes. Once again, the excess solution was gently wicked off. 
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3. RESULTS AND DISCUSSION 

 

 

 

The rate and extent of aggregation of human and bovine insulin in bulk and in the 

presence of either polystyrene microspheres with different surface chemistries or 

liposomes of different compositions were studied. Insulin aggregation was followed by 

turbidimetry, Fourier transform infrared spectroscopy (FTIR), and dynamic light 

scattering (DLS). The Congo red assay was used to corroborate the presence of amyloid 

deposits and electron microscopy was used to analyze the morphology of the amyloid 

deposits.  

Due to a scarcity of both insulins during this study different vendors and batches 

of human and bovine insulin were utilized in this work. This should be kept in mind 

when looking at the results since different batches may yield different results. The insulin 

source (a number) is given for each and every result from which the details of the insulin 

used (vendor information, catalog number, etc) can be found on Table 2.1.  

 

3.1. MONITORING THE PROGRESS OF AGGREGATION BY TURBIDITY 

Figures 3.1 to 3.8 show the kinetics of fibril formation followed by absorbance at 

600 nm. Each data set is the average of two runs. The aggregation kinetics shows a 

pronounced lag phase that is followed by a sigmoidal increase (aggregate growth) and 

ends on a plateau which corresponds to the formation of mature fibrils. These features are 

usually assigned to a nucleation-dependent aggregation mechanism that consists of a 

nucleation, growth and precipitation/equilibrium phases (Jarrett and Lansbury, 1993). 

The results are presented first for human and bovine insulin in bulk followed by 

insulin in the presence of liposomes and polystyrene beads (incubation conditions: (1) 60 

˚C (Figures 3.1 – 3.6) and (2) 37 ˚C and 230 rpm (Figures 3.1, 3.7 and 3.8). The graphs 

are shown in accordance with the way the experiments were run, i.e. for the first 

experiments (and graphs) a set of bulk insulin solutions was prepared per surface. For the 

later experiments (and graphs) a single bulk insulin solution was prepared for the entire 

run.  
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The lag times and the apparent rate constants of both insulins in bulk and in the 

presence of surfaces can be found in Tables 3.1 and 3.2, and 3.3 respectively.  

When incubated at 60 ˚C, the lag times of human and bovine insulin in bulk are 

3.2 and 1.7 hr (sources 1 and 3) and 1.0 and 2.1 hr (sources 4 and 6),  respectively. The 

lag times of human and bovine insulin, when incubated at 37 
o
C and 230 rpm,  are 4.0 

and 11.0 hr, respectively (sources 2 and 6) (Figure 3.1, Table 3.1). However, under both 

incubation conditions, the growth rate is faster for bovine insulin than for human insulin. 

Furthermore, the higher the temperature the shorter the lag time and the faster the growth 

rate occurs.  
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Figure 3.1. Fibril formation of human and bovine insulin in bulk incubated at 60 ˚C 

followed by absorbance at 600 nm. (a): insulin species were human insulin from 

source 1 (●), human insulin from source 3 (○), bovine insulin from source 4 (▲) and 

bovine insulin from source 6 (Δ) Incubation at 37 ˚C and 230 rpm (b): insulin 

species were human insulin from source 2 (●) and bovine insulin from source 6 (▲). 

The absorbance was normalized on a scale from zero to one. 

(a) 

(b) 
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Table 3.1. Lag time of human and bovine insulin in bulk. 

60 ˚C 

Human insulin 

Source 

Lag time 

(hr) 

Bovine insulin 

Source 

1 2.39 0.58 4 

3 4.73 2.44 6 

37 ˚C and 230 rpm 

2 7.05 13.31 6 
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Figure 3.2. Fibril formation of human insulin in bulk and in the presence of 

liposomes incubated at 60˚ C followed by absorbance at 600 nm. Human insulin 

(source 1): in bulk (●) and in the presence of liposome s (○).  (a) liposome 1 (80/20 

PC/PS), (b) liposome 2 (20/80 PC/C), (c) liposome 3 (80/20 PC/C), (d) liposome 4 

(2:2:1:1 C/PC/PG/PE) and € liposome 5 (10/5/7.5/16 PC/PE/PS/C).  

(a) 

(d) 

(b) 

(c) 

(e) 
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Figure 3.2 shows that the only liposomes that have an impact on the lag time of 

human insulin are liposomes 4 (2:2:1:1 C/PC/PG/PE) and 5 (10/5/7.5/16 PC/PE/PS/C). 

From panel d, the lag time of human insulin in bulk (source 1) is 0.67 hr while in the 

presence of liposome 4 is 0.60 hr. The lag time of human insulin in bulk is 0.75 hr and in 

the presence of liposome 5 is 0.67 hr (panel e). Nonetheless, all the liposomes accelerate 

the aggregation of human insulin with liposome 3 (80/20 PC/C) having the greatest 

impact.  

The data shown in Figure 3.3 shows that liposomes affect the overall kinetics of 

bovine insulin (source 4) more than that of human insulin (source 1, Figure 3.2). It is also 

noticeable that liposome 3 (80/20 PC/C) shortens the lag time and accelerates the growth 

rate of bovine insulin more than any other liposome (1.10 hr vs. 0.67 hr in bulk, panel c). 

Liposomes 1 (80/20 PC/PS) and 5 (10/5/7.5/16 PC/PE/PS/C) have a minor effect on the 

lag time and the growth rate of bovine insulin while liposomes 2 (20/80 PC/C) and 4 

(2:2:1:1 C/PC/PG/PE) reduced the lag time significantly. The lag time for bovine insulin 

in bulk is 0.95 hr (panel b) and 0.85 hr (panel d) whereas in the presence of liposomes 2 

and 4 the lag time is 0.67 hr, panels b and d respectively. 

 Both, human (panel a) and bovine (panel b) insulin from sources 3 and 6 (Figure 

3.4) have slower kinetics than the insulins from sources 1 and 4, respectively. Liposome 

2 had the biggest impact on the lag time (2.05 hr) and growth rate of human insulin; 

conversely, this liposome had the least impact on the lag time (1.85 hr) and growth rate of 

bovine insulin. Liposomes 3 (80/20 PC/C) and 6 (50/50 PC/C) affected the lag time of 

human insulin to the same extent (2.50 hr) but liposome 6 causes a faster growth rate. For 

bovine insulin, liposomes 3 and 6 had the same lag time (1.75 hr); in addition, their 

growth rates were almost identical.   

Figure 3.5 shows the aggregation kinetics of human and bovine insulin (sources 1 

and 4) in the presence of polystyrene (PS) beads. The lag time of human insulin in the 

presence of all polystyrene beads is the same (1.75 hr) as in bulk (panel a); however, the 

growth rates are different: PS-COOH causes the fastest growth rate followed by PS-NH2 

and PS-OH.  
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Figure 3.3. Fibril formation of bovine insulin in bulk and in the presence of 

liposomes  incubated at 60˚ C followed by absorbance at 600 nm. All insulin species 

were from source 4. Bovine insulin: in bulk (●) and in the presence of liposome 

surface (○). Results shown are for: liposome 1 (80/20 PC/PS) (a), liposome 2 (20/80 

PC/C) (b), liposome 3 (80/20 PC/C) (c), liposome 4 (2:2:1:1 C/PC/PG/PE) (d) and 

liposome 5 (10/5/7.5/16 PC/PE/PS/C) (e). The absorbance was normalized on a scale 

from zero to one. 

 

 

 

An interesting phenomenon occurs in the growth rates of human insulin in bulk 

and in the presence of PS: the growth rate is faster for human insulin in bulk until it 

reaches 50% of the absorbance then the growth rate of human insulin in the presence of 

PS becomes faster than that of human insulin in bulk. All the polystyrenes, but PS-NH2, 

extend the lag time of bovine insulin (bulk value: 0.70 hr, panel b): PS (0.90 hr), PS-

(a) (b) 

(d) (c) 

(e) 
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COOH (0.85 hr) and PS-OH (0.75 hr). The lag time is the same for bovine insulin in bulk 

and bovine insulin in the presence of PS-NH2 (0.70 hr). The growth rates of bovine 

insulin followed the same trends as the lag times: i.e., from slowest to fastest: PS, PS-

COOH and PS-OH. Bovine insulin in bulk and in the presence of PSNH2 have the same 

growth rate until they reach about 40% of the absorbance but they behave quite 

differently after that point.  
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Figure 3.4. Fibril formation of human and bovine insulin in bulk and in the 

presence of liposomes incubated at 60 ˚C followed by absorbance at 600 nm. All 

human insulin species were from source 3 and all bovine insulin was from source 6. 

Results shown are for human insulin, panel (a) and bovine insulin, panel (b): in bulk 

(●), in the presence of: liposome 2 (20/80 PC/C) (○), liposome 3 (80/20 PC/C) (▲) 

and liposome 6 (50/50PC/C) (Δ). The absorbance was normalized on a scale from 

zero to one. 

(a) 
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Figure 3.5. Fibril formation of human and bovine insulin in bulk and in the 

presence of polystyrene beads incubated at 60 ˚C followed by absorbance at 600 nm. 

All human insulin species were from source 1 and all bovine insulin was from source 

4. Results shown are for human insulin, panel (a) and bovine insulin, panel (b): in 

bulk (●), in the presence of: PS (○), PS-OH (▲), PS-COOH (Δ) and PS-NH2 (□). 

The absorbance was normalized on a scale from zero to one. 

 

 The growth rate of bovine insulin in bulk seems to overshoot until it reaches the 

elongation phase while the growth rate of bovine insulin in the presence of PS-NH2 

continues to increase linearly until it reaches the elongation phase. 

As previously discussed, human and bovine insulin from sources 3 and 6 have 

slower aggregation kinetics than the insulins from sources 1 and 4, respectively. Figure 

3.6 shows that the lag time of human insulin (panel a) in bulk (3.20 hr) was not affected 

by PS-NH2 (3.20 hr) while PS-COOH shortened the lag time (2.95 hr). The growth rates 

in both polystyrenes were faster than human insulin in bulk with PS-COOH being 

slightly faster than PS-NH2. The lag time of bovine insulin in bulk (panel b) is 2.05 hr 

(a) 

(b) 
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while that of bovine insulin in the presence of PS-COOH (slowest growth rate) and PS-

NH2 (fastest growth rate) is 2.10 hr. 
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Figure 3.6. Fibril formation of human and bovine insulin in bulk and in the 

presence of polystyrene beads incubated at 60 ˚C followed by absorbance at 600 nm. 

All human insulin species were from source 3 and all bovine insulin was from source 

6. Results shown are for human insulin, panel (a) and bovine insulin, panel (b): in 

bulk (●), in the presence of: PS-COOH (○) and PS-NH2 (Δ). The absorbance was 

normalized on a scale from zero to one. 

 

 

 

Figure 3.7 shows the aggregation kinetics of human (panel a) and bovine (panel b) 

insulin (sources 2 and 6) incubated at 37 ˚C and 230 rpm in the presence of liposomes. 

The lag time of human insulin in bulk is 4.00 hr while that of bovine insulin in bulk is 

11.0 hr. All the liposomes but 6 (50/50 PC/C) had an impact on the lag time of human 

insulin. Liposome 5 (10:5:7.5:16 PC/PE/PS/C) completely eliminated the lag phase, the 

(a) 

(b) 
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presence of liposomes 2 (20/80 PC/C) and 3 (80/20 PC/C) produced lag times of 2.00 hr 

and 3.50 hr, respectively. The growth rates follow the same trends as the lag times with 

liposome 5 causing the fastest rates followed by liposomes 2, 6, 4 and lastly human 

insulin in bulk.  
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Figure 3.7. Fibril formation of human and bovine insulin in bulk and in the 

presence of liposomes incubated at 37 ˚C and 230 rpm followed by absorbance at 

600 nm. All human insulin species were from source 2 and all bovine insulin was 

from source 6. Results shown are for human insulin, panel (a) and bovine insulin, 

panel (b): in bulk (●), in the presence of: liposome 2 (20/80 PC/C) (○), liposome 3 

(80/20 PC/C) (▲), liposome 5 (10:5:7.5:16 PC/PE/PS/C) (Δ) and liposome 6 

(50/50PC/C) (□). The absorbance was normalized on a scale from zero to one. 
 

All the liposomes but 2 (20/80 PC/C) affected the lag time of bovine insulin. 

Insulin has the shortest lag time (3.00 hr) in the presence of liposome 3 it has the same 

lag time in the presence of liposomes 5 and 6 (3.50 hr). The growth rates show the same 

correlation with the various liposomes as the lag times. The growth rates of bovine 

(b) 

(a) 
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insulin in bulk and in the presence of liposome seem to be faster than those of human 

insulin.  

Figure 3.8 shows the aggregation kinetics of human (panel a) and bovine (panel b) 

insulin (sources 2 and 6) incubated at 37 ˚C and 230 rpm in the presence of polystyrene  
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Figure 3.8. Fibril formation of human and bovine insulin in bulk and in the 

presence of polystyrene beads incubated at 37 ˚C and 230 rpm followed by 

absorbance at 600 nm. All human insulin species were from source 2 and all bovine 

insulin was from source 6. Results shown are for human insulin, panel (a) and 

bovine insulin, panel (b): in bulk (●), in the presence of: PS-COOH (○) and of PS-

NH2 (Δ). The absorbance was normalized on a scale from zero to one. 

 

 

beads. The lag time of human insulin in bulk is 4.00 hr while that of bovine insulin in 

bulk is 11.0 hr. PS-COOH eliminated the lag phase for both insulins. The lag time of 

human and bovine insulin in the presence of PS-NH2 is 2.75 hr and 4.00 hr, respectively. 
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The growth rates of bovine insulin in bulk and in the presence of liposome are faster than 

those of human insulin. Table 3.2 contains a summary of the obtained lag times. 

 

 

Table 3.2. Lag time of human and bovine insulin in the presence of surfaces. 

60 ˚C 

 Human Bovine 

Surface used 
 Lag Time (hr)  Lag Time (hr) 

Source Bulk Surface Source Bulk Surface 

Liposome 1 1 1.52 1.23 4 1.22 2.49 

Liposome 2 1 1.52 1.27 4 1.10 0.85 

Liposome 3 1 1.72 1.31 4 1.28 0.87 

Liposome 4 1 1.34 1.09 4 1.27 0.88 

Liposome 5 1 1.28 1.11 4 1.30 1.21 

PS 1 2.39 2.54 4 0.58 1.26 

PS-OH 1 2.39 2.12 4 0.58 1.11 

PS-NH2 1 2.39 2.16 4 0.58 0.96 

PS-COOH 1 2.39 2.03 4 0.58 1.17 

Liposome 2 3 4.74 3.54 6 2.44 2.27 

Liposome 3 3 4.74 4.03 6 2.44 1.93 

Liposome 6 3 4.74 3.73 6 2.44 1.96 

PS-NH2 3 4.74 4.80 6 2.44 2.51 

PS-COOH 3 4.74 4.75 6 2.44 ---- 

37 ˚C and 230 rpm 

Liposome 2 2 7.05 5.09 6 13.31 12.95 

Liposome 3 2 7.05 9.50 6 13.31 5.21 

Liposome 5 2 7.05 0.00 6 13.31 5.25 

Liposome 6 2 7.05 3.92 6 13.31 3.06 

PS-NH2 2 7.05 5.24 6 13.31 5.18 

PS-COOH 2 7.05 0.00 6 13.31 0.00 

 
 

 

The previous results, Figures 3.1 (panel a) to 3.6, indicate that when human and 

bovine insulin, in bulk and in the presence of surfaces, are incubated at 60 ˚C, they 

follow, to some extent, the same aggregation mechanism: a lag phase (first stage of the 

fibrillation process in which the nuclei is formed, preceding the detection of fibrils), a 

growth (elongation) phase and an equilibrium (or precipitation) phase. 
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Table 3.3.  Apparent aggregation rate constant of human and bovine insulin. 

60 ˚C 

 Human Bovine 

Surface used 
 kapp  (1/hr)  kapp   (1/hr) 

Source Bulk Surface Source Bulk Surface 

Liposome 1 1 5.43 5.51 4 9.87 12.00 

Liposome 2 1 5.43 5.32 4 10.15 8.64 

Liposome 3 1 4.26 4.99 4 9.67 7.17 

Liposome 4 1 5.19 4.64 4 12.84 8.83 

Liposome 5 1 6.63 7.28 4 9.50 11.87 

PS 1 4.54 8.06 4 3.11 7.61 

PS-OH 1 4.54 6.15 4 3.11 11.08 

PS-NH2 1 4.54 7.97 4 3.11 15.11 

PS-COOH 1 4.54 8.14 4 3.11 11.51 

Liposome 2 3 4.13 2.80 6 6.56 7.92 

Liposome 3 3 4.13 3.16 6 6.56 6.49 

Liposome 6 3 4.13 3.17 6 6.56 8.01 

PS-NH2 3 4.13 8.26 6 6.56 11.48 

PS-COOH 3 4.13 9.61 6 6.56 --- 

37 ˚C and 230 rpm 

Liposome 2 2 0.19 0.31 6 0.86 1.00 

Liposome 3 2 0.19 0.27 6 0.86 0.49 

Liposome 5 2 0.19 0.20 6 0.86 0.38 

Liposome 6 2 0.19 0.20 6 0.86 0.27 

PS-NH2 2 0.19 0.24 6 0.86 0.38 

PS-COOH 2 0.19 0.15 6 0.86 0.19 

 

 

 

The lag times of both insulins incubated at 60 ˚C vary from insulin to insulin, 

even within the same batch: in some instances the lag time of human insulin from source 

1 is faster than that of bovine insulin from source 4 but in some cases the opposite is true. 

The presence of “seeds” is likely to have caused this problem. Nonetheless, regardless of 

the insulin source and the lag times, the aggregation rates for bovine insulin are, for the 

most part, faster than those of human insulin. One can say that while the formation of the 

“active nucleus” (i.e. the lag time) varied from insulin to insulin, the elongation (growth 

phase) of such nucleus is faster for bovine insulin than for human insulin. 
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Figures 3.1 (panel b), 3.7 and 3.8 show that the aggregation of human and bovine 

insulin possibly follows the same mechanism irrespective of the incubation conditions 

(with a few exceptions). The lag phases are indeed longer for both insulins when the 

incubation temperature is lower. Shorter lag times for human insulin as compared to 

bovine insulin are evident but once again, the aggregation rates of bovine insulin are 

faster than those of human insulin indicating that while the formation of the “active 

nucleus” (i.e. the lag time) is faster for human insulin, the elongation (growth phase) of 

such nucleus is faster for bovine insulin.  

A few exceptions regarding the sigmoidal shape (and hence the reaction 

mechanism) are evident for human and bovine insulin when incubated at 37 ˚C and 230 

rpm. Such exceptions occur to human insulin in the presence of liposome 5 (10:5:7.5:16 

PC/PE/PS/C) (Figure 3.7) and to both insulins in the presence of PS-COOH (Figure 3.8). 

Under these conditions (37 ˚C and 230 rpm) and in the presence of such surfaces, the lag 

time is completely eliminated changing the shape of the curve. Such processes are 

commonly encountered when “seeding” takes place. Seeding (heterogeneous or 

homogeneous) often occurs at concentrations above the critical concentration and the 

nucleation (i.e. lag time) phase is bypassed by the introduction of an external nucleus or 

seed (a seed provides a template on which further insulin molecules can assemble to 

create a nucleus) (Jarrett and Lansbury, 1993). As a result of seeding, the lag time is 

eliminated and a first-order growth process takes place (Naiki and Nakakuki, 1996). In 

our case, more likely the surfaces used (liposome 5 and PS-COOH) acted as seeds, 

serving as a template for the insulin molecules to further assemble into insulin fibers. 

Another explanation of this phenomenon is the combination of the surface that acted as a 

seed along with the mechanical stresses (230 rpm) that the insulin was subjected to while 

being incubated (37 ˚C). It is worth noting that agitation increases the contact of insulin 

with air.  

The lag times of bovine insulin are plotted vs. the lag time of human insulin in 

Figure 3.9.  It is obvious that the lag times of bovine insulin are shorter than the lag times 

of human insulin when the hormones are incubated at 60  
o
C (Panel (a)).  The data at 37 

o
C are inconclusive.  The apparent rate constants of bovine insulin fibrillation are plotted 

vs. the apparent rate constants of human insulin in Figure 3.10.    Both panels show that 
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the rate constants for the fibrillation of bovine insulin are larger than the ones of human 

insulin irrespective of the incubation conditions.   

The “Oosawa Model” is the simplest feasible kinetic model describing a 

nucleation–elongation polymerization (Oosawa and Asakura, 1975). This model applies 

when the nucleus (least stable species) is in thermodynamic (unfavorable) equilibrium 

with the monomeric protein. For this type of aggregation processes, the fibril mass should 

at all times be proportional to t
2
 (i.e. a parabolic time pathway) at the beginning of the 

reaction, with essentially no lag phase. Moreover, a critical protein concentration must 

exist for the nucleation to take place. In the case of insulin fibrillation, this type of model 

is excluded due to the time dependence (clearly incompatible with a t
2
 behavior) at the 

beginning of the kinetics, i.e. the lag phase. Nonetheless, this mechanism has been widely 

used to describe amyloid fibrillation processes (Jarrett and Lansbury, 1992; Naiki and 

Nakakuki, 1996; Nielsen et. al, 2001a).  

The downhill polymerization or irreversible polymerization mechanism (a 

generalization of Oosawa’s classical-nucleation polymerization model) has also been 

used to describe insulin aggregation (Librizzi and Rischel, 2005; Grudzielanek et al. 

2005). This mechanism is different from the nucleation-dependent process in that the 

nucleation is not considered the rate-limiting step. Instead, they argue that earlier 

structural phases cause the lag phase (the generation of sufficient amounts of native 

monomeric protein or the initial unfolding event of the native species). Flyvbjerg et al. 

(1996) used this mechanism effectively to model the kinetics of tubulin polymerization. It 

has been suggest by Wang et al. (2010) that regardless of the chosen mechanism, several 

aggregation pathways may lead to the formation of a nucleus. 
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Figure 3.9. Lag time of bovine vs. human insulin.  (a) Incubation at 60 
o
C and (b) 

Incubation at 37 
o
C and 230 rpm.  

0.00

2.00

4.00

6.00

0.00 1.00 2.00 3.00 4.00 5.00 6.00

 l
a
g
 t

im
e 

fo
r 

B
o
v
in

e 
In

su
li

n
  
(h

r.
) 

Lag time for Human Insulin (hr.) 

(a) 

Bulk

Surfaces

0.00

5.00

10.00

15.00

20.00

25.00

0.00 5.00 10.00 15.00 20.00 25.00

L
a
g
 t

im
e 

fo
r 

B
o
v
in

e 
In

su
li

n
  
(h

r.
) 

Lag time for Human Insulin (hr.) 

(b) 

Bulk

Surfaces



26 

 

 

Figure 3.10. Apparent rate constant of bovine vs. human insulin.  (a) Incubation at 

60 
o
C and (b) Incubation at 37 

o
C and 230 rpm.  
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Sluzky et al. (1992) showed that bovine insulin aggregates faster (2 days) in the 

presence of solid Teflon as opposed to bovine insulin in the presence of much more 

hydrophilic glass beads (no aggregation was observed for more than a week). Their 

incubation conditions were 37 ˚C and 160 rpm at insulin concentration of 0.6 mg/ml. 

They also suggested that insulin stability could be increased by minimizing unfavorable 

contacts between the hormone and hydrophobic surfaces.   

Nielsen et al. (2001b) conducted insulin aggregation studies with human insulin, 

bovine insulin and insulin mutants at various conditions, including incubation at 60 ˚C, 

pH 1.6 at insulin concentrations of 2 mg/ml. They concluded that the initial oligomeric 

state of the insulin has a major impact on the kinetics of nucleation, as reflected in the 

different lag times. All of their kinetic results (obtained from ThT fluorescence 

measurements) displayed a sigmoidal curve. They also concluded that bovine insulin is 

the fastest fibrillating native species under all their incubation conditions, including that 

at pH 7.4 and 37 ˚C in which bovine insulin is in its stable hexameric conformation. They 

claimed that substitution of Thr to Ala in position A8 in bovine insulin plays an important 

role for the greater propensity of bovine insulin to form fibrils. Ala
A8

 is located on the 

surface of the monomer of bovine insulin, and it has been suggested that the presence of 

this hydrophobic residue instead of Thr in human insulin might lead to the greater 

fibrillation tendency of bovine insulin. Lastly, their results suggest that insulin fibril 

formation, at least the initial nucleation, is primarily driven by hydrophobic interactions. 

A model for insulin fibrillation was proposed by them in which the formation of a 

partially folded intermediate is the precursor for associated species on the pathway to 

fibril formation.  

Nayak et al. (2008) studied the effect of different surfaces such as hydrophilic 

regenerated cellulose and hydrophobic poly(tetrafluoroethyle) (PTFE) on the aggregation 

of human insulin (at a concentration of 2mg/ml) incubated at 65 ˚C. They concluded that 

no matter what surface is used, they always tend to induce faster nucleation (i.e. shorter 

lag times), unless they are purposely designed with inhibitory chemistries. In addition, 

they claimed that the growth rates of formation of fibrils are not significantly affected by 

the presence of the surfaces. Their conclusions and our findings are somewhat different. 

In our case, not all the surfaces accelerated the lag time (this is more evident for both 
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insulins incubated at 60 ˚C). On the other hand, most surfaces had an impact (either 

significant or minute) on the growth rate of both insulins.  

 

3.2. FOURIER TRANSFORM  INFRARED SPECTROSCOPY  

FTIR was used to study the secondary structure changes of both insulins in bulk 

and in the presence of surfaces during fibrillation. An attempt was made to run 

turbidimetry and FTIR studies simultaneously but the sampling time of FTIR is much 

longer than that of turbidimetry when several samples are processed at once. The changes 

in secondary structure with respect to time are presented in the following tables (Tables 

3.4 through 3.15). The time is corresponds to the time elapsed when the sample was 

removed and not the time of the measurement. Fibrillation likely continued at room 

temperature and in the absence of stirring.  Figure 3.11 is a representation of the time 

evolution of the FTIR spectra (amide I region) of human insulin during fibril formation at 

60 ˚C. 
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Figure 3.11. Time evolution of the FTIR spectra (amide I region) of human insulin 

(source 2) during fibril formation at 60 ˚C. Samples were collected before heating (0 

min) and at numerous times during heating.   
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Before heating (time 0) human insulin, the amide I band is located at 1656.3 cm
-1

. 

The shape and the location of the band are consistent with the presence of mostly helical 

and/or disordered structures. Heating the solution at 60 ˚C and for 95 min causes a shift 

in the amide I region toward lower frequencies and the appearance of a minute shoulder 

are evident (Figure 3.11). The shift of the band implies the presence of a higher amount 

of disordered structure and the shoulder of a small amount of β-sheet structure. After 155 

minutes, new bands have emerged between 1,627 and 1665 cm
-1 

which indicate the 

presence of intermolecular β–sheet and β–turn structures. 

 Tables 3.4 to 3.15 show the secondary structure percentages obtained from the 

FT-IR spectra of human and bovine insulin in bulk and in the presence of surfaces under 

both incubation conditions (60 ˚C and 37 ˚C, 230 rpm). The reported values are averages 

of two experiments. Unfortunately, the time frames of the experiments for both insulin 

types are not the same. Nonetheless, a few time frames are similar and interesting 

information may be inferred from the data.  

 The secondary structures of both insulins incubated at 60 ˚C (sources 2 and 6) in 

bulk before heating (time 0) are very similar (Table 3.4). After approximately one hour, a 

considerable increase in α-helix content occurs in both insulins (88.7% and 84.3%). 

However, at longer times (125 and 120 min), a sharp decrease of α-helices and random 

coils takes place and a sharp increase of β-sheets occurs. It is also noticeable that after 

120 minutes bovine insulin is richer than human insulin in β-sheet content (72.1 vs. 

60.0%). 

Before incubation at 37 ˚C and 230 rpm (Table 3.5), human insulin (source 1) in 

bulk contains more random coils (43.4%) than bovine insulin (33.7%) (source 6); on the 

other hand, human insulin contains no β-sheets. After 17 hours, human insulin still has no 

β-sheets but bovine insulin has reached its maximum (70.1%); on the other hand, human 

insulin still contains a high amount of random coils (42.2%) while bovine insulin has 

none. After 45 hours, the amount of α-helix decreased in human (48.5%) and bovine 

(50.4%) insulin. The amount of β-turn and β-sheet is 14.8% and 44.3% and 21.9% and 

60.5% for human and bovine insulin, respectively. 
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Table 3.4. Secondary structure percentage of human and bovine insulin in bulk 

incubated at 60 ˚C. 

  
Random coil Side chain α- Helix β- Turn β- Sheet Time (min) 

In
su

li
n

 t
y

p
e 

a
n

d
 s

o
u

rc
e 

H
u

m
an

, 
2
 

32.7 5.3 49.4 10.0 2.7 0 

0.0 3.7 88.7 6.8 0.9 35 

0.0 2.6 86.3 7.4 3.7 65 

6.9 4.5 54.2 0.4 34.1 95 

10.9 1.4 13.3 14.3 60.0 125 

11.1 2.1 14.0 12.5 60.3 155 

B
o

v
in

e,
 6

 

33.0 3.7 49.9 7.5 6.0 0 

0.0 6.6 84.3 6.3 2.9 60 

2.3 4.6 0.3 20.8 72.1 120 

0.6 4.9 1.2 21.2 72.1 180 

0.6 3.4 1.4 21.2 73.4 240 

 

 

Table 3.5. Secondary structure percentage of human and bovine insulin in bulk 

incubated at 37 ˚C and 230 rpm. 

  
Random coil Side chain α- Helix β- Turn β- Sheet Time (hr) 

In
su

li
n

 t
y
p

e 
a
n

d
 s

o
u

rc
e 

H
u
m

an
, 
1
 43.4 0.0 48.5 8.1 0.0 0 

42.2 2.9 47.3 7.6 0.0 17 

0.0 0.0 91.9 6.0 2.1 25 

0.0 0.0 88.1 5.3 6.6 36 

7.4 23.3 10.3 14.8 44.3 45 

B
o

v
in

e,
 6

 

33.7 2.3 50.4 9.6 4.0 0 

0.3 3.7 12.7 16.1 67.1 10 

0.0 2.5 12.4 15.0 70.1 17 

0.0 2.6 5.6 22.0 69.8 24 

0.0 2.7 6.1 21.7 69.4 36 

0.0 2.8 5.8 21.9 69.5 45 

 

 

 

The secondary structure of both insulins incubated at 60 ˚C (sources 2 and 6) in 

the presence of liposome 2 (20/80 PC/C) before heating (time 0) is very similar (Table 

3.6). As time increases (65 and 60 min) a considerable increase in α-helices (85.1%) and 

the loss of random coils occur in human insulin but not in bovine insulin whose 

secondary structure remains nearly the same with a small decrease in α-helix content and 
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small increase in random coil content. However, at longer times (125 and 120 min) a 

sharp decrease of α-helices and a sharp increase of β-sheets take place in both insulins. It 

is also noticeable that after 120 minutes bovine insulin has more β-sheet content than 

human insulin (75.0 vs. 60.3%). 

 

 

Table 3.6. Secondary structure percentage of human and bovine insulin in the 

presence of liposome 2 (20/80 PC/C) incubated at 60 ˚C. 

  
Random coil Side chain α- Helix β- Turn β- Sheet Time (min) 

In
su

li
n

 t
y
p

e 
a
n

d
 s

o
u

rc
e 

H
u
m

an
, 
2
 

35.1 2.9 50.7 7.5 3.7 0 

0.0 2.3 55.3 35.8 6.6 35 

0.0 4.3 85.1 5.2 5.4 65 

23.3 5.5 19.9 29.8 21.5 95 

10.9 1.6 13.0 14.2 60.3 125 

7.6 1.3 14.3 10.4 66.5 155 

B
o
v
in

e,
 6

 

33.1 5.1 47.1 9.0 5.6 0 

41.7 3.7 42.9 6.2 5.6 60 

0.0 2.3 0.8 21.9 75.0 120 

2.3 6.2 0.4 20.1 71.0 180 

0.0 5.5 0.7 21.2 72.6 240 

 

 

 

Table 3.7. Secondary structure percentage of human and bovine insulin in the 

presence of liposome 3 (80/20 PC/C) incubated at 60 ˚C. 

 

  
Random coil Side chain α- Helix β- Turn β- Sheet Time (min) 

In
su

li
n

 t
y

p
e 

a
n

d
 s

o
u

rc
e 

H
u

m
an

 2
 

32.7 4.4 39.0 17.8 6.0 0 

0.0 5.1 86.0 5.4 3.5 35 

0.0 5.3 85.3 5.2 4.2 65 

6.7 4.2 42.5 7.9 38.7 95 

12.4 0.8 13.5 13.3 60.1 125 

11.8 0.8 15.3 11.7 60.4 155 

B
o

v
in

e 
6
 

35.5 7.4 43.6 7.0 6.5 0 

36.2 5.1 44.8 6.6 7.3 60 

3.0 3.9 0.4 19.6 73.1 120 

2.4 5.4 0.6 20.4 71.2 180 

1.4 3.2 2.4 19.9 73.2 240 
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 The secondary structures of both insulins incubated at 60 ˚C (sources 2 and 6) in 

the presence of liposome 3 (80/20 PC/C) before heating (time 0) are very similar (Table 

3.7) with the exception of β-turn content: 17.8 % (human insulin) and 7.0 % (bovine 

insulin). As time increases (65 and 60 min), a considerable increase in α-helices (85.3%) 

and the loss of random coils occur in human insulin but the secondary structure of bovine 

insulin remains relatively the same. Nonetheless, at longer times (125 and 120 min), a 

sharp decrease of α-helices and a sharp increase of β-sheets occurs in both insulins. It is 

also noticeable that after 120 minutes bovine insulin has more β-sheets than human 

insulin (73.1 vs. 60.1%). 

 

Table 3.8. Secondary structure percentage of human and bovine insulin in the 

presence of liposome 6 (50/50 PC/C) incubated at 60 ˚C. 

  
Random coil Side chain α- Helix β- Turn β- Sheet Time (min) 

In
su

li
n

 t
y
p

e 
a
n

d
  
so

u
rc

e 

H
u
m

an
, 

2
 

19.4 5.3 24.0 36.3 15.1 0 

0.0 6.8 67.8 10.3 15.1 35 

0.0 4.0 38.9 36.6 20.4 65 

6.5 5.9 51.4 3.3 33.0 95 

12.0 1.6 10.9 15.7 59.7 125 

11.4 1.2 14.3 13.8 59.4 155 

B
o
v
in

e,
 6

 

34.2 6.1 49.9 6.1 3.7 0 

4.3 5.7 0.7 21.1 68.2 60 

1.8 5.7 2.1 21.6 68.8 120 

5.1 6.3 0.9 23.0 64.8 180 

0.0 4.3 3.1 23.4 69.2 240 

 

 

 

 The secondary structure of both insulins incubated at 60 ˚C (sources 2 and 6) in 

the presence of liposome 6 (50/50 PC/C) before heating (time 0) is very different. Human 

insulin contains a lot less random coils (19.4%) and α-helices (24.0%) than bovine insulin 

(34.2% and 49.9%, respectively). On the other hand, the β-turn and β-sheet contents are 

much higher in human insulin (36.3% and 15.1%, respectively) than in bovine insulin 

(6.1% and 3.7%, respectively) (Table 3.8). As time elapses (65 and 60 min), an increase 

in α-helices (38.9%) and β-sheets (20.4%) and the loss of random coils occur in human 

insulin; in bovine insulin, the amount of random coils (4.3%) and α-helices (49.9%) 
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decreases  but β-turns and β-sheets increase (21.1% and 68.2%, respectively). At longer 

times (125 and 120 min), a decrease in α-helices and an increase in β-sheets are observed 

for both insulins. It is evident that after 120 minutes bovine insulin has higher β-sheet 

content than human insulin (68.8 vs. 59.7%). 

 The secondary structure of both insulins incubated at 60 ˚C (sources 2 and 6) in 

the presence of PS-NH2 before heating (time 0) is different (Table 3.9); β-turn and β-

sheet contents are higher in human insulin (22.9% and 11.5%, respectively) than in 

bovine insulin (7.1% and 7.9%, respectively) but the amounts of random coils and α-

helices are lower in human insulin (23.6% and 39.1%, respectively) than bovine insulin 

(36.3% and 48.3%, respectively). At longer times (65 and 60 min), a considerable 

increase in α-helices (69.8%), the loss of random coils and a decrease in β-sheets (3.3%) 

occur in human insulin; the amount of random coils is also reduced in bovine insulin 

(3.0%) but a reduction of α-helices (0.8%) and an increase in β-turns (23.1%) and β-

sheets (71.2%) take place. At longer times (125 and 120 min), a sharp decrease of α-

helices (12.4%) and a sharp increase of β-sheets (57.7%) occur in human insulin; 

conversely, the secondary structure of bovine insulin remains constant. It is clear that 

after 120 minutes bovine insulin has a larger β-sheet content than human insulin (70.3% 

vs. 57.7%). 

 

 

 

Table 3.9. Secondary structure percentage of human and bovine insulin in the 

presence of PS-NH2 incubated at 60 ˚C. 

  
Random coil Side chain α- Helix β- Turn β- Sheet Time (min) 

In
su

li
n

 t
y

p
e 

a
n

d
 s

o
u

rc
e 

H
u

m
an

, 
2
 

23.6 2.9 39.1 22.9 11.5 0 

0.0 1.3 84.0 7.5 7.2 35 

0.0 0.3 69.8 26.6 3.3 65 

0.0 1.2 87.3 8.5 3.0 95 

8.3 8.8 12.4 12.7 57.7 125 

7.1 5.4 10.0 14.8 62.8 155 

B
o
v
in

e,
 6

 

36.3 0.4 48.3 7.1 7.9 0 

3.0 1.8 0.8 23.1 71.2 60 

3.0 4.8 0.3 21.6 70.3 120 

4.1 4.2 0.7 22.4 68.6 180 

0.3 3.0 1.4 22.9 72.4 240 
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The secondary structure of both insulins incubated at 60 ˚C (sources 2 and 6) in the 

presence of PS-COOH before heating (time 0) is different to some extent. Human insulin 

contains a lot less α-helices (21.0%) than bovine insulin (54.5); on the other hand, human 

insulin contains more β-turns (37.6%) and β-sheets (14.2%) than bovine insulin (6.3% 

and 6.7%, respectively); the amounts of random coils and side chains are similar in both 

insulins (Table 3.10). As time increases (65 and 60 min), a sharp increase in α-helices 

(87.6%) and the loss of random coils occur in human insulin whereas there is a decrease 

in random coils (9.5%) and α-helices (36.6%) but an increase in β-sheets (45.8%) in 

bovine insulin. At longer times (125 and 120 min), an abrupt decrease in α-helices and an 

increase in β-sheets take place in both insulins. After 120 minutes bovine insulin has 

more β-sheets than human insulin (69.3% vs. 60.1%). 

 

 

Table 3.10. Secondary structure percentage of human and bovine insulin in the 

presence of PS-COOH incubated at 60 ˚C. 

  
Random coil Side chain α- Helix β- Turn β- Sheet Time (min) 

In
su

li
n

 t
y
p

e 
a
n

d
 s

o
u

rc
e 

H
u
m

an
, 
2
 

21.3 5.9 21.0 37.6 14.2 0 

0.0 1.3 85.4 6.9 6.3 35 

0.0 3.2 87.6 6.6 2.5 65 

0.0 2.8 84.1 6.1 7.0 95 

3.2 15.0 0.0 21.7 60.1 125 

6.7 3.0 7.7 18.4 64.3 155 

B
o

v
in

e,
 6

 

29.8 2.6 54.5 6.3 6.7 0 

9.5 4.0 36.6 4.1 45.8 60 

1.2 5.7 2.9 20.9 69.3 120 

0.7 6.3 0.9 22.4 69.6 180 

0.0 5.2 1.0 20.9 72.9 240 

 

 

 

 The secondary structure of both insulins incubated at 37 ˚C and 230 rpm (sources 

1 and 6) in the presence of liposome 2 (20/80 PC/C) before heating (time 0) is relatively 

similar (Table 3.11. At longer times (17 hr), a decrease of random coils and α-helices 

occurs in both insulins. The amount of β-turns slightly decreases in human insulin (9.9%) 

but slightly increases in bovine insulin (18.5%). The amount of β-sheets increases in 
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human insulin (36.5%) and in bovine insulin (73.8%). At longer times (45 hr), a sharp 

decrease of α-helices (8.2%) and a sharp increase of β-sheets (69.7%) occur in human 

insulin while the secondary structure of bovine insulin remains the same. At this point 

both insulins have a similar amount of β-sheets but human insulin has more α-helices but 

less β-turns than bovine insulin. 

 

 

Table 3.11. Secondary structure percentage of human and bovine insulin in the 

presence of liposome 2 (20/80 PC/C) incubated at 37 ˚C and 230 rpm. 

  
Random coil Side chain α- Helix β- Turn β- Sheet Time (hr) 

In
su

li
n

 t
y
p

e 
a
n

d
 s

o
u

rc
e 

H
u
m

an
, 

1
 30.5 2.2 55.2 12.2 0.0 0 

12.7 0.2 40.7 9.9 36.5 17 

6.0 1.2 8.7 19.4 64.8 25 

4.0 0.0 8.6 17.6 69.8 36 

3.8 1.6 8.2 16.7 69.7 45 

B
o
v
in

e,
 6

 

32.8 7.0 49.3 7.9 3.1 0 

2.8 5.5 5.2 20.1 66.3 10 

2.0 2.8 2.8 18.5 73.8 17 

2.7 3.7 4.8 20.7 68.2 24 

2.4 5.3 3.8 20.3 68.2 36 

3.1 2.8 2.3 22.3 69.5 45 

 

 

Table 3.12. Secondary structure percentage of human and bovine insulin in the 

presence of liposome 3 (80/20 PC/C) incubated at 37 ˚C and 230 rpm. 

  
Random coil Side chain α- Helix β- Turn β- Sheet Time (hr) 

In
su

li
n

 t
y

p
e 

a
n

d
 s

o
u

rc
e 

H
u

m
an

, 
1
 

28.4 1.4 57.7 12.4 0.0 0 

15.1 2.0 15.4 25.2 42.3 17 

4.7 0.0 8.7 18.0 68.6 25 

4.0 0.0 5.7 19.7 70.6 36 

4.3 0.0 8.7 17.1 69.8 45 

B
o

v
in

e,
 6

 

33.7 6.7 48.3 6.9 4.3 0 

19.5 5.2 20.1 15.6 39.5 10 

1.8 7.4 28.7 14.3 47.8 17 

7.1 4.8 9.3 22.5 56.2 24 

3.6 4.1 4.6 19.4 68.3 36 

0.0 3.0 3.7 22.0 71.2 45 
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 Table 3.12 summarizes the secondary structure results obtained for both insulins 

incubated at 37 ˚C and 230 rpm (sources 1 and 6) in the presence of liposome 3 (80/20 

PC/C). Before heating (time 0), the secondary structure of both preparations is similar. At 

longer times (17 hr), a decrease in the amounts of random coils and α-helices occur in 

human, 15.1% (random coil) and 15.4% (helix), and bovine, 1.8% (random coil) and 

28.7% (helix), insulins. The amount of β-turns and β-sheets increases in human, 25.2% 

(turns) and 42.3% (sheets), and bovine, 14.3% (turns) and 47.8% (sheets), insulins. At 

even longer times (45 hr), a further decrease in α-helices takes place: 8.7% (human 

insulin) and 3.7% (bovine insulin) and a sharp increase of β-sheets occurs: 69.8% (human 

insulin) and 71.2% (bovine insulin). Both insulins have similar β-sheet contents at the 

end of the incubation time but human insulin has more α-helices but less β-turns than 

bovine insulin. 

 

 

 

Table 3.13. Secondary structure percentage of human and bovine insulin in the 

presence of liposome 5 (10:5:7.5:16 PC/PE/PS/C) incubated at 37 ˚C and 230 rpm. 

  
Random coil Side chain α- Helix β- Turn β- Sheet Time (hr) 

In
su

li
n

 t
y
p

e 
a
n

d
 s

o
u

rc
e 

H
u
m

an
, 
1
 0.0 10.4 33.9 2.3 53.4 0 

13.8 1.2 45.3 6.9 32.8 17 

13.5 2.0 14.5 23.5 46.5 25 

4.7 0.0 9.4 16.8 69.1 36 

8.2 2.1 9.0 17.2 63.5 45 

B
o

v
in

e,
 6

 

34.2 3.3 49.9 10.2 2.5 0 

0.0 4.3 6.5 20.1 69.2 10 

0.9 4.4 7.7 17.4 69.5 17 

0.0 2.8 4.8 22.5 69.8 24 

3.0 2.5 6.0 18.7 69.8 36 

0.1 4.0 3.9 22.8 69.2 45 

 

 

 

 The secondary structures of both insulins incubated at 37 ˚C and 230 rpm (sources 

1 and 6) in the presence of liposome 5 (10:5:7.5:16 PC/PE/PS/C) before heating (time 0) 

are very different (Table 3.13). The side chain and β-sheet contents are higher in human 

(10.4% and 53.4%, respectively) than in bovine insulin (3.3% and 2.5%, respectively) but 
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the amounts of random coils, α-helices and β-turns are lower in human (0%, 33.9% and 

2.3%, respectively) than in bovine insulin (34.2%, 49.9% and 10.2%, respectively). At 

longer times (17 hr), reductions in the percentage of side chains (1.2%) and β-sheets 

(32.8%) and increases in random coils (13.8%), α-helices (45.3%) and β-turns (6.9%) 

take place in human insulin. For bovine insulin, reductions in the percentage of random 

coils (0.9%) and α-helices (7.7%) and an increase in β-turns (17.4%) and β-sheets 

(69.5%) occur. At even longer times (45 hr), a sharp decrease of α-helices (9.0%) and a 

sharp increase of β-sheets (63.5%) occur in human insulin whereas the secondary 

structure contents of bovine insulin remain almost unchanged; α-helix: 3.9%, β-turn: 

22.8% and β-sheet: 69.2%. 

 

 

 

Table 3.14. Secondary structure percentage of human and bovine insulin in the 

presence of PS-NH2 incubated at 37 ˚C and 230 rpm. 

  
Random coil Side chain α- Helix β- Turn β- Sheet Time (hr) 

In
su

li
n

 t
y
p

e 
a
n

d
 s

o
u

rc
e 

H
u
m

an
, 
1
 32.4 1.4 54.3 11.9 0.0 0 

11.3 0.6 29.5 17.6 41.0 17 

1.3 0.0 8.7 17.3 72.7 25 

1.1 0.0 6.4 18.6 73.9 36 

0.6 0.0 8.2 15.7 75.5 45 

B
o
v
in

e,
 6

 

27.0 2.2 54.4 13.7 2.7 0 

11.5 4.1 4.7 19.6 60.0 10 

4.1 2.7 3.8 20.4 69.0 17 

2.4 4.4 3.2 21.6 68.3 24 

4.4 5.4 4.3 19.8 66.2 36 

0.0 1.8 5.8 22.5 69.9 45 

 

 

 

Table 3.14 shows the secondary structure content of both insulins incubated at 37 

˚C and 230 rpm (sources 1 and 6) in the presence of PS-NH2. Before heating (time 0), the 

distribution of secondary for both insulins is nearly the same. At longer times (17 hr), a 

decrease in the amount of random coils and α-helices and an increase of β-turns and β-

sheets are observed for both insulins. At even longer times (45 hr), a further decrease in 

α-helix takes place for both insulins and a sharp increase in the amount of β-sheets occurs 
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in human insulin (75.5%). At the end of the incubation period the distribution of 

sencondary structures for both insulins is somehow similar (See table 3.14).  

 

 

 

Table 3.15. Secondary structure percentage of human and bovine insulin in the 

presence of PS-COOH incubated at 37 ˚C and 230 rpm. 

  
Random coil Side chain α- Helix β- Turn β- Sheet Time (hr) 

In
su

li
n

 t
y
p

e 
a
n

d
 s

o
u

rc
e 

H
u

m
an

, 
1
 37.1 2.4 53.6 6.9 0.0 0 

12.0 3.0 13.9 22.8 48.3 17 

2.1 0.0 11.7 14.6 71.7 25 

1.7 0.0 11.1 15.7 71.6 36 

2.1 0.0 9.9 14.7 73.3 45 

B
o
v
in

e,
 6

 

25.9 3.3 53.0 14.5 3.3 0 

10.0 4.2 12.3 16.7 56.7 10 

2.3 2.7 19.6 10.0 65.4 17 

4.2 1.1 9.1 17.4 68.2 24 

6.2 3.3 7.8 17.9 64.9 36 

2.4 2.3 15.6 12.5 67.1 45 

 

 

 

The distribution of secondary structures of both insulins incubated at 37 ˚C and 

230 rpm (sources 1 and 6) in the presence of PS-COOH before heating (time 0) is 

somewhat similar (Table 3.15). At longer times (17 hr), a decrease in random coil and α-

helix content takes place for human (12.0% and 13.9% for coil and helix respectively) 

and bovine (10.0% and 12.3% for coil and helix respectively) insulins. An increase in the 

amount of β-turns is observed in human insulin (22.8%) but a decrease is observed in 

bovine insulin (10.0%). The β-sheet content increases in both human (48.3%) and bovine 

(65.4% ) insulins. At longer times (45 hr), a further decrease in random coil (2.1%), α-

helix (9.9%) and β-turn (14.7%) but a sharp increase in β-sheet (73.3%) contents is 

observed in human insulin whereas the secondary structure of bovine insulin remains 

almost unchanged. 

Four transitions are evident for human insulin incubated at 60 
o
C (source 2) in 

bulk and in the presence of liposomes 2 (20/80 PC/C) and 3 (80/20 PC/C). The first 

transition (0-35 min) may correspond to the dissolution of the protein in which an 
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increase in α-helix and the total depletion of random coil structures take place. The 

second transition (35-65 min) may be attributed to the changes inside the dimeric insulin 

in the nucleation phase, along with a constant content of secondary structure (human 

insulin in bulk and in the presence of liposome 3) or a continuous increase of α-helix 

conformation ( human insulin in the presence of liposome 2). The third transition (65-95 

min) may correspond to the conversion of α-helices into random coils and β-sheets. After 

125 minutes, the conformation of the insulin solution is predominantly β-sheet. 

Only three transitions are observed for human insulin incubated at 60 ˚C (source 

2) in the presence of PS-COOH beads. The first transition (0-35 min) is similar to that of 

human insulin in bulk and in the presence of liposomes 2 and 3 in which a tremendous 

increase in α-helix content and the complete depletion of random coils occur. Between 35 

to 95 minutes (second transition) the secondary structure remains unchanged. However, 

after 95 minutes (third transition), an abrupt decrease in α-helix and a large increase in β-

turns and β-sheets take place, after this point the secondary structure remains somewhat 

constant with a small reduction of β-turns and sheets. 

Four transitions are observed when human insulin is incubated 60 ˚C (source 2) in 

the presence of liposome 6 (50/50 PC/C) or PS-NH2 beads. Once more, the first transition 

(0-35 min) is similar to that of human insulin in bulk and in the presence of all the 

surfaces in which an increase in α-helix and the complete depletion of random coils take 

place. The second transition (35-65 min) consists of the replacement of α-helices by 

(mainly) β-turns and β-sheets. The third transition (65-95 min) consists of an increase in 

α-helices and a decrease in (mainly) β-turns and β-sheets. The fourth transition (95-125 

min) consists of a replacement of α-helices by mostly β-sheets.  

The sampling frames used with bovine insulin (source 6) are different from those 

used with human insulin (source 2), at the same incubation conditions (60 
o
C). In the case 

of bovine insulin in bulk and in the presence of surfaces some secondary structure 

changes could have been missed  between 60-120 minutes. For bovine insulin in bulk, the 

first transition (0-60 min) is similar to that observed with human insulin in bulk and in the 

presence of surfaces; i.e. an increase in α-helices and the complete depletion of random 

coils. In the second transition (60-120 min), the complete conversion of α-helices into β-
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turns and (mostly) β-sheets takes place. After 120 minutes the secondary structure of 

bovine insulin in bulk remains unchanged with a high content of β-sheets.  

Only one transition is evident for bovine insulin incubated at 60˚C (source 6) in 

the presence of liposomes 2 (20/80 PC/C) or 3 (80/20 PC/C). For the most part, the 

secondary structure did not change much between 0-60 minutes; there was a slight 

increase in random coils and a small decrease in α-helices in the presence of liposome 2. 

Therefore, the first transition took place between 60-120 minutes in which a complete 

depletion (in the presence of liposome 2) or a significant reduction (in the presence of 

liposome 3) of random coils and a considerable reduction of α-helices occurs. The 

predominant structures at the end of the incubation were β-sheets and to a lesser extent β-

turn.  

Similarly, only one transition is observed for bovine insulin incubated at 60 
o
C 

(source 6) in the presence of liposome 6 (50/50 PC/C) or PS-NH2 beads. The transition 

takes place within the first hour (0-60 min) in which the random coil and α-helix 

conformations are significantly reduced and replaced by mainly β-sheets. After 60 

minutes, no more conformational changes are observed.  

When incubated at 37 ˚C and 230 rpm, human insulin (source 1) in bulk shows 

two transitions. Its secondary structure remains virtually unchanged for the first 17 hours; 

hence, the initial transition takes place between 17-25 hours. During this time the 

dissolution of the protein may occur and a large increase in α-helix and the complete 

depletion of random coil conformations take place. After 36 hours, the secondary 

structure remains constant. Throughout the second transition (36-45 hr) a significant 

decrease in α-helix and an increase of  side chains, β-turns and (mainly) β-sheet takes 

place. 

Human insulin incubated at 37 ˚C and 230 rpm (source 1) in the presence of 

liposome 2 (20/80 PC/C), liposome 3 (80/20 PC/C), PS-NH2 or PS-COOH goes through 

the same changes in secondary structure. During the first transition (0-17 hr) a reduction 

of random coils and α-helices and an increase of β-sheets takes place. A second transition 

takes place after 17 hours in which a further reduction in random coils and α-helices and 

a further increase of β-turns and β-sheets occur. 
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Human insulin incubated at 37 ˚C and 230 rpm (source 1) in the presence of 

liposome 5 (10:5:7.5:16 PC/PE/PS/C) shows three transitions in secondary structure. The 

first transition (0-17 hr) may correspond to the dissolution of the protein; interestingly, 

the β-sheet content at time 0 is really high (53.4%), during this time a depletion of β-

sheet into random coil and α-helix structures takes place. The second transition (17-25 hr) 

consists of a reduction in α-helices and an increase in β-turns and β-sheets. After 25 hours 

(third transition), β-sheets are the predominantly structures. 

When incubated at 37 ˚C and 230 rpm, bovine insulin (source 6) in bulk and in 

the presence of liposome 3 (80/20 PC/C) shows two transitions. During the initial 

transition (0-10 hr) a complete depletion of random coils, a reduction of α-helices, and an 

increase in the amounts β-sheets, and to a lesser extent turns, take place. The secondary 

structure remains somewhat stable between 10-17 hours. After 17 hours, the second 

transition takes place in which a further replacement of α-helices by β-turns takes place.  

Only one transition is observed for bovine insulin incubated at 37 ˚C and 230 rpm 

(source 6) in the presence of liposomes 2 (20/80 PC/C), liposome 5 (10:5:7.5:16 

PC/PE/PS/C), or PS-NH2 beads. The transition takes place between 0-10 hours in which 

the amount of random coils and α-helices is significantly reduced with the simultaneous 

increase of β-sheets and turns. After 10 hours, no more conformational changes are 

observed.  

Three transitions are observed for bovine insulin incubated at 37 ˚C and 230 rpm 

(source 6) in the presence of PS-COOH beads. Replacement of α-helices and random 

coils by β-sheet takes place during the first transition (0-10 hr). Between 10 and 17 hours 

(second transition) a replacement of β-turns and β-sheets by α-helices occurs. A decrease 

in α-helices and an increase in β-turns and β-sheets takes place after 17 hours (third 

transition); after this point the secondary structure remains fairly constant.  

Bovine insulin amyloid fibril formation in bulk (incubated at 68 ˚C at pD 2.6, i.e. 

pH 2.2, at a concentration of 2.0 mM) was studied by Bouchard et al. (2000). Their 

sample preparation included leaving the protein at pD 1.9 at room temperature for 12 

hours followed by lyophilization (this procedure was repeated until the labile hydrogen in 

the sample were completely replaced by deuterium). Their results show that before 

heating, bovine insulin is in a helical/disordered conformation with bands at about 1639 
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and 1652 cm
-1

, respectively. Heating the sample for 1.5 hours results in a slight increase 

in the content of random coil structure, although the protein remains mostly helical. 

Similar to us, they also observed a shift of the IR band at about 1651 cm
-1

 with increasing 

incubation time toward lower frequencies and the appearance of a small shoulder on this 

band. After 18 hours of heating, the predominant secondary structure was β-sheet. 

Secondary structure percentages were not reported. 

Nielsen et al. (2000) used bovine insulin in bulk (at a concentration of 20 mg/mL 

in 0.05 M HCl, pH 1.6 incubated at 50 °C for 7 hours or agitated at 37 °C for 24 hours) to 

investigate fibril formation of insulin in acid media. Their FTIR spectroscopy studies 

showed that the native secondary structure of insulin was identical in hydrochloric acid 

and acetic acid, whereas the secondary structure of fibrils formed in hydrochloric acid 

was different from that formed in acetic acid. Fibrils of bovine insulin prepared by 

heating or agitating an acid solution of insulin showed an increased content of β-sheet 

and a decrease in the intensity of the α-helix band. In hydrochloric acid, the frequencies 

of the β-sheet bands depended on whether the fibrillation was induced by heating or 

agitation.  

Liu et al. (2010) investigated the fibrillation of bovine insulin in bulk at a 

concentration of 2 mg/ml in 20% acetic acid incubated at 60 ˚C. They also obtained 

sigmoidal curves from their ThT fluorescence kinetic experiments which reached the 

equilibrium phase after 70 hours of incubation. Furthermore, they noticed four different 

structural transitions occurring during the process of insulin fibrillation. Namely, the 

initial transition, characterized by the dissolution of insulin and an increase in α-helices; 

the second transition, which may be attributed to changes in the insulin monomer during 

the nucleation phase; the third transition, in which a replacement of α-helices by β-sheets 

is evident and the final transition in which most of insulin solution was in a β-sheet 

conformation. Secondary structure percentages were not reported. 
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3.3. DYNAMIC LIGHT SCATTERING 

An effort to follow insulin aggregation by dynamic light scattering (DLS) was 

made. The results are sensitive to bubbles and dust and therefore, some of them are 

inconclusive.  

The autocorrelation functions were analyzed by means of the program CONTIN. 

Size distribution histograms were generated in which relative scattering intensities and 

relative scattering by number were plotted versus particle diameter. The aggregation of 

insulin in bulk and in the presence of surfaces incubated at 37 ˚C and 230 rpm for up to 

55 hours was particularly challenging to follow.  

Figure 3.12 shows two typical histograms. The left panel corresponds to intensity 

averages where the presence of dust is evident (the scattering is dominated by the largest 

particles).  The right panel corresponds to number averages where the “dust signal” has 

disappeared and the size corresponds roughly to insulin monomer/dimer.  

 

 

Figure 3.12. DLS analysis of bovine insulin (source 4) aggregation in bulk. 

Histograms represent relative scattering by intensity (a) and by number (b). Results 

shown are for: (1a) & (1b) before incubation.  The signal at a few micrometers is 

due to dust.  

 

 

The quality of most experimental runs was quite poor. We used a couple of 

simple tools to clean the data. First, data sets with differences between calculated and 

experimental base lines higher than 1% were eliminated. Second, all data sets poorly 

fitted by the CONTIN algorithm were excluded. Unfortunately, many sample sets lost 

their duplicates after this exercise. The “surviving” histograms are included in 
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Appendices B, C and D for completeness but they have not been thoroughly analyzed. 

None of the data taken at 37 
o
C survived.  

 

 

3.4. CONGO RED HISTOLOGICAL DYE BINDING TO INSULIN FIBRILS  

 Congo red strongly stains amyloid aggregates by binding to the β-pleated sheet 

conformation of the protein (Klunk et al., 1989). This technique was used to confirm the 

presence of amyloid deposits at the end of each experiment. A representative absorbance 

spectrum of Congo red solution in the presence of β-pleated bovine insulin is shown in 

Figure 3.13. The remaining spectra are included in Appendix E.  

 

Figure 3.13.  Congo red spectrum of bovine insulin incubated at 37 ˚C and 230 rpm 

for 55 hours:  lank (         )  Sample (- - -). 

 

 

 

3.5. TRANSMISSION  AND SCANNING ELECTRON MICROSCOPY  

All the micrographs were obtained from the same sample unless otherwise 

specified. All samples were prepared in 0.025 M HCl and 0.1 M NaCl (pH 1.6). 

Statistical analysis of the size distribution of the length of the fibrils was performed, 

when possible. It is well known that amyloid fibrils have a width of 10-20 nm (Knowles 

et al., 2007; White et al., 2009). Nevertheless, statistical analysis of the width of the 
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fibrils was conducted as well in order to fully characterize the amyloid fibrils and make a 

sound comparison of the obtained results to those from the literature. Negative stained 

micrographs of different samples under different incubation conditions in the presence 

and in the absence of surfaces were acquired for both bovine and human insulin.  

Figure 3.14 shows micrographs of human and bovine insulin incubated at 60 ˚C 

for 6 hours; they show similar morphologies and sizes.  

 

 

 

Figure 3.14. Negative staining transmission electron images of amyloid fibril 

formation of (a) human and (b) bovine insulin incubated at 60 ˚C for 6 hours.  The 

scale bar represents 200 nm. 

 

 

 

The data is summarized in Table 3.16 and Figure 3.15. The mean length of human 

insulin fibrils is 158±24 nm while that of bovine insulin is 155±33 nm, with the longest 

insulin fibril being 173 nm and that of bovine insulin 213 nm.   The average width of the 

fibrils was measured to be 12±2 nm and 13±1 nm for human and bovine insulin, 

respectively. (Table 3.17 and Figure 3.16) 

 

  

(a) (b) 
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Table 3.16. Statistical analysis of the length of human and bovine insulin incubated 

at 60˚C for six hours.  

Sample 
Mean 

(nm) 

Std Deviation 

(nm) 

Minimum 

(nm) 

Median 

(nm) 

Maximum 

(nm) 

(a) 158 24 102 169 173 

(b) 155 33 118 146 213 

 

 

 

Figure 3.15. Length distribution of (A) human and (B) bovine insulin incubated at 

60˚C for six hours. 

 

 

Table 3.17. Statistical analysis of the width of human and bovine insulin incubated 

at 60˚C for six hours. 

Sample 
Mean 

(nm) 

Std Deviation 

(nm) 

Minimum 

(nm) 

Median 

(nm) 

Maximum 

(nm) 

(a) 12 2 10 12 15 

(b) 13 1 11 14 15 

 

(A) 

(B) 
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Figure 3.16. Width distribution of (A) human and (B) bovine insulin incubated at 

60˚C for six hours. 

 

 

 

In agreement with Liu et al., 2010, it was observed that fibrils attain a larger size 

when incubated for longer periods of time and under no mechanical stresses (i.e. stirring). 

These differences were observed between insulin incubated at 60˚C for 6 (Figure 3.14) 

and 40 (Figure 3.17) hours. Figures 3.17, 3.25, and 3.27 confirm these results. Liu et al. 

(2010) incubated the insulin for 26 hours at 60 ˚C in 20% acetic acid.  

(A) 

(B) 
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Figure 3.17. Negative staining transmission electron images of amyloid fibril 

formation of human and bovine insulin incubated at 60 ˚C for 40 hours. (a) and (b) 

human insulin. (c) and (d) bovine insulin.  The scale bar represents 500 nm.   

 

 

 

A statistical analysis of the length distribution of a few fibrils (most fibrils extend 

further outside the image) from Figure 3.17 was performed. The results are shown in 

Table 3.18. The mean length of human insulin fibrils is 1197±148 nm while that of 

bovine insulin is 1092±168 nm. These results clearly demonstrate the increase in length 

with increasing incubation time (without mechanical stresses). Figure 3.18 shows the 

histograms of the results obtained. It can be seen that the fibrils are several microns in 

length.  

(a) 

(c) 

(b) 

(d) 
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Table 3.18. Statistical analysis of the length of human and bovine insulin incubated 

at 60˚C for 40 hours. 

Samples 
Mean 

(nm) 

Std Deviation  

(nm) 

Minimum 

(nm) 

Median 

(nm) 

Maximum 

(nm) 

(a) & (b) 1197 148 1046 1186 1432 

(c) & (d) 1092 165 927 1047 1364 

 

 

 

 

 

Figure 3.18. Length distribution of (A) human and (B) bovine insulin incubated at 

60˚C for 40 hours. 

 

 

 

The average width of the fibrils was measured to be 18±2 nm and 15±3 nm for 

human and bovine insulin, respectively (Table 3.19 and Figure 3.19). 

 

(B) 

(A) 
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Table 3.19. Statistical analysis of the width of human and bovine insulin incubated 

at 60˚C for 40 hours. 

Samples 
Mean 

(nm) 

Std Deviation 

(nm) 

Minimum 

(nm) 

Median 

(nm) 

Maximum 

(nm) 

(a) & (b) 18 2 15 19 20 

(c) & (d) 15 3 11 16 20 

 

 

 

 

 

Figure 3.19. Width distribution of (A) human and (B) bovine insulin incubated at 

60˚C for 40 hours. 

 

 

 

Figure 3.20 shows that human insulin fibrils formed by incubation at 37 ˚C with 

stirring at 230 rpm for 55 hours look as if they had been “fragmented”. Their size was 

significantly shorter than that of insulin human incubated for at 60 ˚C 40 hours. Hill 

(A) 

(B) 
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(1983) showed that fibril fragmentation is a mechanism that drastically minimizes fibril 

length depending on the length distribution of the fibrils being fragmented.  

 

 

 

 

Figure 3.20. Negative staining transmission electron images of amyloid fibril 

formation of human insulin incubated for 55 hours at 37 ˚C and 230 rpm.  The scale 

bar represents 100 nm. 

 

 

 

When insulin is incubated at 37 ˚C with stirring at 230 rpm for 55 hours the 

median fibril length is 71±64 nm, with the smallest fibril length being 25 nm and the 

longest fibril attaining a size of 362 nm (Table 3.20 (A)). A few outliers (longer fibrils), 

(d) (c) 

(b) (a) 
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shown in the bimodal histogram in Figure 3.21 (A), were found between 200 to 400 nm. 

Therefore, a second analysis of the densest population (i.e. without taking into account 

fibrils larger than 300 nm) was performed (Figure 3.21 (B)) to obtain a more precise 

distribution of the length of the fibrils. The median fibril length became 68±44 nm. 

(Table 3.20 (B)). Overall, under these conditions, most of the fibrils do not reach an 

average size greater than 100 nm. 

 

 

 

Table 3.20. Statistical analysis of the length of human insulin incubated at 37˚C and 

230 rpm for 55 hours.  (A) Bimodal and (B) Unimodal analysis. 

Samples 
Mean 

(nm) 

Std Deviation 

(nm) 

Minimum 

(nm) 

Median 

(nm) 

Maximum 

(nm) 

(A): (a) to (d) 88 64 25 71 362 

(B): (a) to (d) 80 44 25 68 208 

 

 

Table 3.21 shows that the average width of the human insulin fibrils is 14±3 nm. 

Figure 3.22 depicts the histogram of such results. The same “fragmentation” occurred to 

bovine insulin under the same incubation conditions (37 ˚C and 230 rpm) (Figure 3.23). 

 

 

Table 3.21. Statistical analysis of the width of human insulin incubated at 37˚C and 

230 rpm for 55 hours. 

Samples 
Mean 

(nm) 

Std Deviation 

(nm) 

Minimum 

(nm) 

Median 

(nm) 

Maximum 

(nm) 

(a) to (d) 14 3 10 13 20 
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Figure 3.21. Length distribution of human insulin incubated at 37˚C and 230 rpm 

for 55 hours. (A) Bimodal and (B) Unimodal analysis. 

 

 

 

Table 3.22. Statistical analysis of the length (A) and width (B) of bovine insulin 

incubated at 37˚C at 230 rpm for 55 hours.   

Samples 
Mean 

(nm) 

Std Deviation 

(nm) 

Minimum 

(nm) 

Median 

(nm) 

Maximum 

(nm) 

(A): (a) to (d) 128 68 45 107 327 

(B): (a) to (d) 11 1 10 11 15 

 

 

 

(A) 

(B) 
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Figure 3.22. Width distribution of human insulin incubated at 37˚C and 230 rpm for 

55 hours. 

 

Comparing the length distributions of both insulins one may conclude that while 

bovine insulin fibrils were also fragmented, they are longer and thinner than human 

insulin fibrils. When human insulin is incubated at 37 ˚C with stirring at 230 rpm for 55 

hours the median fibril length is 71±64 nm, with the smallest fibril length being 25 nm 

and the longest fibril attaining a size of 362 nm (Table 3.20 (A)). In contrast, the mean 

fibril length of bovine insulin is 128±68 nm with the shortest fibril being 45 nm and the 

longest fibril 327 nm (a few longer fibrils were present but they were curved, therefore, 

they were not measured) (Table 3.22, Figure 3.24). The average width of the human 

insulin fibrils is 14±3 nm (Table 3.21) whereas the average width of bovine insulin fibrils 

is 11±1 nm, under the same conditions. 

Figure 3.25 shows images of amyloid fibril formation of human and bovine 

insulin in the presence of liposome 3 (80/20 PC/C) incubated at 60 ˚C for 40 hours. 

Regardless of the presence or the absence of surfaces, human and bovine insulin showed 

similar morphologies under the same incubation conditions. 
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Figure 3.23. Negative staining transmission electron images of amyloid fibril 

formation of bovine insulin incubated for 55 hours at 37 ˚C and 230 rpm.  The scale 

bar represents 200 nm. 

 

 

 

A statistical analysis of the length distribution of the fibrils from Figure 3.25 was 

not possible due to the fact that most fibrils extend further outside the image. However, 

the fibrils have similar morphologies and nearly all fibrils are several microns in length. 

The average width of the fibrils was measured to be 15±3 nm and 15±3 nm for human 

and bovine insulin, respectively (Table 3.23 and Figure 3.26). 

 

(d) (c) 

(b) (a) 
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Figure 3.24. Length (A) and width (B) distributions of bovine insulin incubated and 

37˚C at 230 rpm for 55 hours. 

 

 

 

(A) 

(B) 
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Figure 3.25. Negative staining transmission electron images of amyloid fibril 

formation of human and bovine insulin in the presence of liposome 3 (80/20 PC/C) 

incubated at 60 ˚C for 40 hours. (a) and (b) Human insulin. (c) and (d) Bovine 

insulin.  The scale bar represents 100 nm (a) 500 nm (b) & (d) and 200 nm (c).   

 

 

 

Table 3.23. Statistical analysis of the width of human and bovine insulin in the 

presence of liposome 3 (80/20 PC/C) incubated at 60 ˚C for 40 hours. 

Sample 
Mean 

(nm) 

Std Deviation       

(nm) 

Minimum 

(nm) 

Median 

(nm) 

Maximum 

(nm) 

(a) & (b) 15 3 10 15 20 

(c) & (d) 15 3 11 14 20 

(c) (d) 

(a) (b) 
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Figure 3.26. Width distribution of (A) human and (B) bovine insulin in the presence 

of liposome 3 (80/20 PC/C) incubated at 60 ˚C for 40 hours. 

   

 

Figure 3.27 shows that in the presence of PS-COOH surfaces longer fibrils were 

also obtained when incubated for longer periods of time, without stirring. These 

differences were observed in human insulin incubated at 60˚C for 6 and 40 hours, 

respectively.  

 

 

 

(B) 

(A) 
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Figure 3.27. Negative staining transmission electron images of amyloid fibril 

formation of human insulin in the presence of PS-COOH. Images were obtained 

from two different samples: (a) and (b) were obtained from one sample while (c) and 

(d) were obtained from another sample. (a) and (b) incubated for 6 hours. (c) and 

(d) incubated for 40 hours. The scale bar represents 100 nm (a) and (b) and 500 nm 

(c) and (d).  
 

When insulin (in the presence of PS-COOH) is incubated for six and 40 hours at 

60 ˚C the fibrils attain an average length of 96±43 nm, and 1278±511 nm, respectively 

(Table 3.24 & Figure 3.28).  When insulin (in the presence of PS-COOH) is incubated for 

(d) (c) 

(b) (a) 
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six and 40 hours at 60 ˚C the fibrils attain an average width of 13±2 nm and 15±4 nm, 

respectively (Table 3.25 and Figure 3.29).  

Table 3.24. Statistical analysis of the length of human insulin in the presence of PS-

COOH incubated for (A) six and (B) 40 hours. 

Samples 
Mean 

(nm) 

Std Deviation 

(nm) 

Minimum 

(nm) 

Median 

(nm) 

Maximum 

(nm) 

(A): (a) & (b)  96 43 35 90 201 

(B): (c) & (d)  1278 511 468 1251 2708 

 

 

 

Figure 3.28. Length distribution of human insulin in the presence of PS-COOH 

incubated at 60˚C for (A) six and ( ) 40 hours. 

(A) 

(B) 
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Table 3.25. Statistical analysis of the width of human insulin in the presence of PS-

COOH incubated for (A) six and (B) 40 hours. 

Sample 
Mean 

(nm) 

Std Deviation           

(nm) 

Minimum 

(nm) 

Median 

(nm) 

Maximum 

(nm) 

(A): (a) & (b) 13 2 10 12 18 

(B): (c) & (d) 15 4 7 16 20 

 

 

 

 

Figure 3.29. Width distribution of human insulin in the presence of PS-COOH 

incubated at 60˚C for (A) six and ( ) 40 hours. 

 

 

(A) 

(B) 
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4. CONCLUSIONS 

 

 

 

Not all the surfaces shorten the lag time (this is more evident for both insulins 

incubated at 60 ˚C). On the other hand, most surfaces had an impact (either significant or 

minute) on the growth rate of both insulins. The downhill mechanism can be used to 

describe the results represented by a sigmoidal curve while the “seeded” results can be 

described by the classical-nucleation polymerization model. An autocatalytic reaction 

may be plausible as well in which the formed fibril in solution can act as a preferential 

site for new nucleation or elongation events. Furthermore, several mechanisms may be 

necessary to fully describe the complex insulin aggregation process. In addition, it is 

probable that one mechanism is dominant at certain experimental conditions or at a 

certain stage in the aggregation process while another is more dominant at another stage.  

Structural changes taking place during fibril formation were followed. In general, 

the initial transition in which the the insulin decreases from random coil into α-helix 

conformation may be attributed to the dissolution of the insulin. The second transition 

along with a constant or a continuous increase in α-helix structure could be due to the 

changes within the dimeric protein in the nucleation phase; throughout this transition, the 

reaction pathway may be chosen and the formation of the active centers may take place. 

However, which one occurs first? Is it the reaction the one that dictates the type of 

nucleus/active centers or is the nucleus/active centers the one that dictates the reaction 

pathway? We don’t know but we do know that the choice of experimental conditions 

(temperature, mechanical stresses, pH, concentration, etc.) are a determinant factor in the 

rate of insulin aggregation and the amyloid fibril morphologies; this can give further 

insights into the reaction mechanism(s) and the subsequent build up of a model.  

Since our results show different reactions (this is clear from the turbidimetry 

graphs) we have more than one mechanism present). The third transition in which a 

reduction in α-helix and an increase in β-turn and β-sheet take place may be attributed to 

the precipitation phase in which floccule formation could take place. The final transition 

in which the secondary structure of the insulin is predominantly β-sheet may depict, 
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depending on the incubation conditions, the elongation phase of the mature insulin fibrils 

or the formation of spherulites.  

Both, human and bovine insulin formed fibril of similar morphologies (i.e. similar 

length, width, and structure) when treated under the same conditions in the presence and 

in the absence of surfaces with the exception of incubation at 37 ˚C and 230 rpm stirring 

for 55 hours. In addition, when human and bovine insulin are subjected to mechanical 

stresses the fibrils appear “fragmented” and hence their size is smaller when compared to 

insulin that has not been agitated. Bovine insulin fibrils were longer and thinner under 

these incubation conditions (37 ˚C and 230 rpm) than human insulin fibrils. Incubation 

temperatures were different between agitated insulin (37 ˚C) and non-agitated insulin (60 

˚C).  It is also noticeable that at 60 ˚C larger fibrils formed at longer incubation times. 

The width of the fibrils ranged between 10 to 20 nm, there is not a noticeable 

dependence/correlation between fibril length and width for human or bovine insulin. On 

the other hand, based on the obtained images, the statistical analysis, and in agreement 

with literature the incubation methods utilized determined the fibril morphologies.  

Nielsen et al. (2000b) have concluded that the fibrillation of bovine insulin has 

shorter lag times than human insulin. Our results partially agreed with that.  

 

 

 

 

 

 

 

 

 

 

 

 



APPENDIX A 

 

INSULIN FIBRILS BY THE METHOD OF BURKE AND ROUGVIE 
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Usually, a 1 % solution of insulin in water is adjusted to pH 2.0 with hydrochloric 

acid and the solution is placed in a sealed-glass test tube. The tube is heated in a water 

bath to between 80 and 100 °C until a clear gel is formed. The time required for gelling is 

between 2 and 10 minutes depending on the exact temperature and pH. The sample is 

then cooled and frozen rapidly by immersion in a dry ice acetone bath, thawed under 

running tap water, and reheated (80-100°) for approximately 2 min. The procedure of 

freezing and reheating is repeated three or four times until a firm gel is formed. Total 

conversion of native to fibrillar insulin is possible by this process. 



APPENDIX B 

 

DYNAMIC LIGHT SCATTERING HISTOGRAMS 

 

OF BOVINE INSULIN IN BULK AND IN THE PRESENCE OF POLYSTYRENE 

 

LATEX INCUBATED AT 60 ˚C 



67 

1. BLANKS 

 

 

 

Figure B.1. DLS analysis of the blanks: histograms represent relative scattering by 

intensity (a) and by number (b). Results shown are for: (1a) & (1b) buffer solution after 7 

hours; (2a) & (2b) buffer+PS after 7 hours; and (3a) & (3b) buffer+PSOH after 1 hour. 
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Figure B.2. DLS analysis of the blanks: histograms represent relative scattering by 

intensity (a) and by number (b). Results shown are for: (4a) & (4b) buffer+PSCOOH 

solution after 60 min; (5a) & (5b) buffer+PSNH2 before incubation; and (6a) & (6b) 

buffer+PSNH2 after 7 hours of incubation. 
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2. BOVINE INSULIN IN BULK 

 

 

 

Figure B.3. DLS analysis of bovine insulin (SIGMA, Cat. #: I5500 (lot 019K17765V) 

aggregation in bulk: histograms represent relative scattering by intensity (a) and by 

number (b). Results shown are for: (1a) & (1b) before incubation; (2a), (2b), (3a) & (3b) 

after 25 minutes of incubation. Sample (3) is the duplicate of sample (2).  
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Figure B.4. DLS analysis of bovine insulin (SIGMA, Cat. #: I5500 (lot 019K17765V) 

aggregation in bulk: histograms represent relative scattering by intensity (a) and by 

number (b). Results shown are for: (4a) & (4b) after 45 minutes; (5a), (5b), (6a) & (6b) 

after 90 minutes of incubation. Sample (6) is the duplicate of sample (5).  
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Figure B.5. DLS analysis of bovine insulin (SIGMA, Cat. #: I5500 (lot 019K17765V) 

aggregation in bulk: histograms represent relative scattering by intensity (a) and by 

number (b). Results shown are for: (7a), (7b), (8a) & (8b) after 120 minutes; and (9a) & 

(9b) after 150 minutes of incubation. Sample (8) is the duplicate of sample (7).  
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Figure B.6. DLS analysis of bovine insulin (SIGMA, Cat. #: I5500 (lot 019K17765V) 

aggregation in bulk: histograms represent relative scattering by intensity (a) and by 

number (b). Results shown are for: (10a) & (10b) after 180 minutes of incubation; and 

(11a) & (11b) after 210 minutes.  
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3. BOVINE INSULIN IN THE PRESENCE OF PS SURFACE  

 

 

 

 

Figure B.7. DLS analysis of bovine insulin (SIGMA, Cat. #: I5500 (lot 019K17765V) 

aggregation in the presence of PS surface: histograms represent relative scattering by 

intensity (a) and by number (b). Results shown are for: (1a), (1b), (2a), (2b), (3a) & (3b) 

before incubation. Sample (2) is the duplicate of sample (1).  
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Figure B.8. DLS analysis of bovine insulin (SIGMA, Cat. #: I5500 (lot 019K17765V) 

aggregation in the presence of PS surface: histograms represent relative scattering by 

intensity (a) and by number (b). Results shown are for: (4a) & (4b) before incubation; 

(5a), (5b), (6a) & (6b) after 25 minutes of incubation. Sample (4) is the duplicate of 

sample (3) and sample (6) is the duplicate of sample (5).  
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Figure B.9. DLS analysis of bovine insulin (SIGMA, Cat. #: I5500 (lot 019K17765V) 

aggregation in the presence of PS surface: histograms represent relative scattering by 

intensity (a) and by number (b). Results shown are for: (7a), (7b), (8a) & (8b) after 30 

minutes; and (9a) & (9b) after 45 minutes of incubation. Sample (8) is the duplicate of 

sample (7). 
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Figure B.10. DLS analysis of bovine insulin (SIGMA, Cat. #: I5500 (lot 019K17765V) 

aggregation in the presence of PS surface: histograms represent relative scattering by 

intensity (a) and by number (b). Results shown are for: (10a), (10b), (11a) & (11b) after 

60 minutes; and (12a) & (12b) after 90 minutes of incubation. Sample (11) is the 

duplicate of sample (10). 
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Figure B.11. DLS analysis of bovine insulin (SIGMA, Cat. #: I5500 (lot 019K17765V) 

aggregation in the presence of PS surface: histograms represent relative scattering by 

intensity (a) and by number (b). Results shown are for: (13a) & (13b) after 120 minutes; 

and (14a), (14b), (15a) & (15b) after 240 minutes. Sample (15) is the duplicate of sample 

(14). 
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Figure B.12. DLS analysis of bovine insulin (SIGMA, Cat. #: I5500 (lot 019K17765V) 

aggregation in the presence of PS surface: histograms represent relative scattering by 

intensity (a) and by number (b). Results shown are for: (16a) & (16b) after 300 minutes; 

(17a) & (17b) after 330 minutes; and (18a) & (18b) after 360 minutes of incubation. 
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Figure B.13. DLS analysis of bovine insulin (SIGMA, Cat. #: I5500 (lot 019K17765V) 

aggregation in the presence of PS surface: histograms represent relative scattering by 

intensity (a) and by number (b). Results shown are for: (19a) & (19b) after 390 minutes 

of incubation. 
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Figure B.14. DLS analysis of bovine insulin (SIGMA, Cat. #: I5500 (lot 019K17765V) 

aggregation in the presence of PS-OH surface: histograms represent relative scattering by 

intensity (a) and by number (b). Results shown are for: (1a), (1b), (2a), (2b), (3a) & (3b) 

before incubation. Sample (2) is the duplicate of sample (1). 
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Figure B.15. DLS analysis of bovine insulin (SIGMA, Cat. #: I5500 (lot 019K17765V) 

aggregation in the presence of PS-OH surface: histograms represent relative scattering by 

intensity (a) and by number (b). Results shown are for: (4a), (4b), (5a) & (5b) after 25 

minutes; and (6a) & (6b) after 30 minutes of incubation. Sample (5) is the duplicate of 

sample (4). 
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Figure B.16. DLS analysis of bovine insulin (SIGMA, Cat. #: I5500 (lot 019K17765V) 

aggregation in the presence of PS-OH surface: histograms represent relative scattering by 

intensity (a) and by number (b). Results shown are for: (7a) & (7b) after 30 minutes; (8a), 

(8b), (9a) & (9b) after 60 minutes of incubation. Sample (7) is the duplicate of sample (6) 

and sample (9) is the duplicate of sample (8). 
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Figure B.17. DLS analysis of bovine insulin (SIGMA, Cat. #: I5500 (lot 019K17765V) 

aggregation in the presence of PS-OH surface: histograms represent relative scattering by 

intensity (a) and by number (b). Results shown are for: (10a), (10b), (11a) & (11b) after 

65 minutes; and (12a) & (12b) after 85 minutes of incubation. Sample (11) is the 

duplicate of sample (10). 
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Figure B.18. DLS analysis of bovine insulin (SIGMA, Cat. #: I5500 (lot 019K17765V) 

aggregation in the presence of PS-OH surface: histograms represent relative scattering by 

intensity (a) and by number (b). Results shown are for: (13a) & (13b) after 90 minutes; 

(14a) & (14b) after 180 minutes; and (15a) & (15b) after 210 minutes of incubation. 
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Figure B.19. DLS analysis of bovine insulin (SIGMA, Cat. #: I5500 (lot 019K17765V) 

aggregation in the presence of PS-OH surface: histograms represent relative scattering by 

intensity (a) and by number (b). Results shown are for: (16a) & (16b) after 330 minutes; 

and (17a) & (17b) after 210 minutes of incubation. 
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Figure B.20. DLS analysis of bovine insulin (SIGMA, Cat. #: I5500 (lot 019K17765V) 

aggregation in the presence of PS-COOH surface: histograms represent relative scattering 

by intensity (a) and by number (b). Results shown are for: (1a), (1b), (2a), (2b), (3a) & 

(3b) before incubation. Sample (2) is the duplicate of sample (1).  
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Figure B.21. DLS analysis of bovine insulin (SIGMA, Cat. #: I5500 (lot 019K17765V) 

aggregation in the presence of PS-COOH surface: histograms represent relative scattering 

by intensity (a) and by number (b). Results shown are for: (4a) & (4b) before incubation; 

(5a), (5b), (6a) & (6b) after 30 minutes of incubation. Sample (4) is the duplicate of 

sample (3) and sample (6) is the duplicate of sample (5). 
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Figure B.22. DLS analysis of bovine insulin (SIGMA, Cat. #: I5500 (lot 019K17765V) 

aggregation in the presence of PS-COOH surface: histograms represent relative scattering 

by intensity (a) and by number (b). Results shown are for: (7a), (7b), (8a) & (8b) after 45 

minutes; and (9a) & (9b) after 60 minutes of incubation. Sample (8) is the duplicate of 

sample (7). 
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Figure B.23. DLS analysis of bovine insulin (SIGMA, Cat. #: I5500 (lot 019K17765V) 

aggregation in the presence of PS-COOH surface: histograms represent relative scattering 

by intensity (a) and by number (b). Results shown are for: (10a) & (10b) after 60 

minutes; (11a) & (11b) after 90 minutes; and (12a) & (12b) after 150 minutes of 

incubation. Sample (10) is the duplicate of sample (9). 
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Figure B.24. DLS analysis of bovine insulin (SIGMA, Cat. #: I5500 (lot 019K17765V) 

aggregation in the presence of PS-COOH surface: histograms represent relative scattering 

by intensity (a) and by number (b). Results shown are for: (13a) & (13b) after 420 

minutes of incubation.  
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6. BOVINE INSULIN IN THE PRESENCE OF PS-NH2 SURFACE  

 

 
 

 
 

 
 

Figure B.25. DLS analysis of bovine insulin (SIGMA, Cat. #: I5500 (lot 019K17765V) 

aggregation in the presence of PS-NH2 surface: histograms represent relative scattering 

by intensity (a) and by number (b). Results shown are for: (1a), (1b), (2a), (2b), (3a) & 

(3b) before incubation. Sample (2) is the duplicate of sample (1).  
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Figure B.26. DLS analysis of bovine insulin (SIGMA, Cat. #: I5500 (lot 019K17765V) 

aggregation in the presence of PS-NH2 surface: histograms represent relative scattering 

by intensity (a) and by number (b). Results shown are for: (4a) & (4b) before incubation; 

(5a), (5b), (6a) & (6b) after 30 minutes of incubation. Sample (4) is the duplicate of 

sample (3) and sample (6) is the duplicate of sample (5). 
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Figure B.27. DLS analysis of bovine insulin (SIGMA, Cat. #: I5500 (lot 019K17765V) 

aggregation in the presence of PS-NH2 surface: histograms represent relative scattering 

by intensity (a) and by number (b). Results shown are for: (7a) & (7b) after 45 minutes; 

(8a), (8b), (9a) & (9b) after 60 minutes of incubation. Sample (9) is the duplicate of 

sample (8). 
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Figure B.28. DLS analysis of bovine insulin (SIGMA, Cat. #: I5500 (lot 019K17765V) 

aggregation in the presence of PS-NH2 surface: histograms represent relative scattering 

by intensity (a) and by number (b). Results shown are for: (10a), (10b), (11a) & (11b) 

after 90 minutes; and (12a) & (12b) after 120 minutes of incubation. Sample (11) is the 

duplicate of sample (10). 
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Figure B.29. DLS analysis of bovine insulin (SIGMA, Cat. #: I5500 (lot 019K17765V) 

aggregation in the presence of PS-NH2 surface: histograms represent relative scattering 

by intensity (a) and by number (b). Results shown are for: (13a) & (13b) after 120 

minutes; (14a) & (14b) after 150 minutes; and (15a) & (15b) after 180 minutes of 

incubation. Sample (13) is the duplicate of sample (12). 
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Figure B.30. DLS analysis of bovine insulin (SIGMA, Cat. #: I5500 (lot 019K17765V) 

aggregation in the presence of PS-NH2 surface: histograms represent relative scattering 

by intensity (a) and by number (b). Results shown are for: (16a) & (16b) after 180 

minutes; (17a), (17b), (18a) & (18b) after 210 minutes of incubation. Sample (16) is the 

duplicate of sample (15) and sample (18) is the duplicate of sample (17). 
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Figure B.31. DLS analysis of bovine insulin (SIGMA, Cat. #: I5500 (lot 019K17765V) 

aggregation in the presence of PS-NH2 surface: histograms represent relative scattering 

by intensity (a) and by number (b). Results shown are for: (19a) & (19b) after 240 

minutes; (20a) & (20b) after 270 minutes; and (21a) & (21b) after 360 minutes of 

incubation.  
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Figure B.32. DLS analysis of bovine insulin (SIGMA, Cat. #: I5500 (lot 019K17765V) 

aggregation in the presence of PS-NH2 surface: histograms represent relative scattering 

by intensity (a) and by number (b). Results shown are for: (22a) & (22b) after 420 

minutes of incubation.  
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APPENDIX C 

 

DYNAMIC LIGHT SCATTERING HISTOGRAMS 

 

OF HUMAN ISULIN IN BULK AND IN THE PRESENCE OF POLYSTYRENE 

  

LATEX INCUBATED AT 60 ˚C  
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1. HUMAN INSULIN IN BULK 

 

 
 

 
 

 
Figure C.1. DLS analysis of human insulin (SACF Biosciences, Cat. #: 91077 (lot 

10L917) aggregation in bulk: histograms represent relative scattering by intensity (a) and 

by number (b). Results shown are for: (1a) & (1b) before incubation; (2a), (2b)  25 

minutes; and (3a) & (3b) 65 minutes of incubation.  
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Figure C.2. DLS analysis of human insulin (SACF Biosciences, Cat. #: 91077 (lot 

10L917)) aggregation in bulk: histograms represent relative scattering by intensity (a) 

and by number (b). Results shown are for: (4a) & (4b) 100 minutes; (5a), (5b) 110 

minutes; and (6a) & (6b) 120 minutes of incubation.  
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Figure C.3. DLS analysis of human insulin (SACF Biosciences, Cat. #: 91077, lot 

10L917) aggregation in the presence of PS surface: histograms represent relative 

scattering by intensity (a) and by number (b). Results shown are for: (1a), (1b), (2a) & 

(2b) before incubation; and (3a) & (3b) 25 minutes of incubation. Sample (2) is the 

duplicate of sample (1). 
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Figure C.4. DLS analysis of human insulin (SACF Biosciences, Cat. #: 91077, lot 

10L917) aggregation in the presence of PS surface: histograms represent relative 

scattering by intensity (a) and by number (b). Results shown are for: (4a) & (4b) 25 

minutes; and (5a), (5b), (6a) & (6b) 45 minutes of incubation. Sample (4) is the duplicate 

of sample (3) and sample (6) is the duplicate of sample (5). 
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Figure C.5. DLS analysis of human insulin (SACF Biosciences, Cat. #: 91077, lot 

10L917) aggregation in the presence of PS surface: histograms represent relative 

scattering by intensity (a) and by number (b). Results shown are for: (7a), (7b), (8a) & 

(8b) 65 minutes; and (9a) & (9b) 85 minutes of incubation. Sample (8) is the duplicate of 

sample (7). 
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Figure C.6. DLS analysis of human insulin (SACF Biosciences, Cat. #: 91077, lot 

10L917) aggregation in the presence of PS surface: histograms represent relative 

scattering by intensity (a) and by number (b). Results shown are for: (10a) & (10b) 85 

minutes; and (11a), (11b), (12a) & (12b) 100 minutes of incubation. Sample (12) is the 

duplicate of sample (11). 
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Figure C.7. DLS analysis of human insulin (SACF Biosciences, Cat. #: 91077, lot 

10L917) aggregation in the presence of PS surface: histograms represent relative 

scattering by intensity (a) and by number (b). Results shown are for: (13a) & (13b) 110 

minutes; and (14a) & (14b) 120 minutes of incubation.  
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Figure C.8. DLS analysis of human insulin (SACF Biosciences, Cat. #: 91077, lot 

10L917) aggregation in the presence of PS-OH surface: histograms represent relative 

scattering by intensity (a) and by number (b). Results shown are for: (1a), (1b), (2a) & 

(2b) before incubation; and (3a) & (3b) 25 minutes of incubation. Sample (2) is the 

duplicate of sample (1). 
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Figure C.9. DLS analysis of human insulin (SACF Biosciences, Cat. #: 91077, lot 

10L917) aggregation in the presence of PS-OH surface: histograms represent relative 

scattering by intensity (a) and by number (b). Results shown are for: (4a) & (4b) 25 

minutes; and (5a), (5b), (6a) & (6b) 45 minutes of incubation. Sample (4) is the duplicate 

of sample (3) and sample (6) is the duplicate of sample (5). 
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Figure C.10. DLS analysis of human insulin (SACF Biosciences, Cat. #: 91077, lot 

10L917) aggregation in the presence of PS-OH surface: histograms represent relative 

scattering by intensity (a) and by number (b). Results shown are for: (7a), (7b), (8a) & 

(8b) 65 minutes of incubation. Sample (8) is the duplicate of sample (7). 
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Figure C.11. DLS analysis of human insulin (SACF Biosciences, Cat. #: 91077, lot 

10L917) aggregation in the presence of PS-COOH surface: histograms represent relative 

scattering by intensity (a) and by number (b). Results shown are for: (1a), (1b), (2a) & 

(2b) before incubation; and (3a) & (3b) 25 minutes of incubation. Sample (2) is the 

duplicate of sample (1). 
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Figure C.12. DLS analysis of human insulin (SACF Biosciences, Cat. #: 91077, lot 

10L917) aggregation in the presence of PS-COOH surface: histograms represent relative 

scattering by intensity (a) and by number (b). Results shown are for: (4a) & (4b) 25 

minutes; and (5a), (5b), (6a) & (6b) 45 minutes of incubation. Sample (4) is the duplicate 

of sample (3) and sample (6) is the duplicate of sample (5). 
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Figure C.13. DLS analysis of human insulin (SACF Biosciences, Cat. #: 91077, lot 

10L917) aggregation in the presence of PS-COOH surface: histograms represent relative 

scattering by intensity (a) and by number (b). Results shown are for: (7a), (7b), (8a) & 

(8b) 65 minutes; and (9a) & (9b) 85 minutes of incubation. Sample (8) is the duplicate of 

sample (7). 
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Figure C.14. DLS analysis of human insulin (SACF Biosciences, Cat. #: 91077, lot 

10L917) aggregation in the presence of PS-NH2 surface: histograms represent relative 

scattering by intensity (a) and by number (b). Results shown are for: (1a), (1b), (2a) & 

(2b) before incubation; and (3a) & (3b) 25 minutes of incubation. Sample (2) is the 

duplicate of sample (1). 
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Figure C.15. DLS analysis of human insulin (SACF Biosciences, Cat. #: 91077, lot 

10L917) aggregation in the presence of PS-NH2 surface: histograms represent relative 

scattering by intensity (a) and by number (b). Results shown are for: (4a) & (4b) 25 

minutes; and (5a), (5b), (6a) & (6b) 45 minutes of incubation. Sample (4) is the duplicate 

of sample (3) and sample (6) is the duplicate of sample (5). 
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Figure C.16. DLS analysis of human insulin (SACF Biosciences, Cat. #: 91077, lot 

10L917) aggregation in the presence of PS-NH2 surface: histograms represent relative 

scattering by intensity (a) and by number (b). Results shown are for: (7a), (7b), (8a) & 

(8b) 65 minutes; and (9a) & (9b) 85 minutes of incubation. Sample (8) is the duplicate of 

sample (7). 

 

0

50

100

0

1
1

9

1
5

9

2
1

1

1
1

6
8

1
5

5
4

2
0

6
7

2
7

4
9

3
6

5
6

Diameter (nm) 

(7a) 

0

50

100

0

1
1

9

1
5

9

2
1

1

1
1

6
8

1
5

5
4

2
0

6
7

2
7

4
9

3
6

5
6

Diameter (nm) 

(7b) 

0

50

100

0

4
1

1
7

9

2
1

5

2
5

8

Diameter (nm) 

(8a) 

0

50

100

0

4
1

1
7

9

2
1

5

2
5

8

Diameter (nm) 

(8b) 

0

50

100

0

1
3

6

1
7

6

2
2

7

2
9

3

3
7

8

4
8

9

8
1

4

1
0

5
1

1
3

5
7

1
7

5
2

Diameter (nm) 

(9a) 

0

50

100

0

1
3

6

1
7

6

2
2

7

2
9

3

3
7

8

4
8

9

8
1

4

1
0

5
1

1
3

5
7

1
7

5
2

Diameter (nm) 

(9b) 



116 

 
 

Figure C.17. DLS analysis of human insulin (SACF Biosciences, Cat. #: 91077, lot 

10L917) aggregation in the presence of PS-NH2 surface: histograms represent relative 

scattering by intensity (a) and by number (b). Results shown are for: (10a) & (10b) 100 

minutes of incubation. 

0

50

100

0

1
1

4

1
5

5

2
1

0

2
8

6

3
8

8

5
2

8

1
8

0
1

2
4

4
8

3
3

2
7

Diameter (nm) 

(10a) 

0

50

100

0

1
1

4

1
5

5

2
1

0

2
8

6

3
8

8

5
2

8

1
8

0
1

2
4

4
8

3
3

2
7

Diameter (nm) 

(10b) 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

APPENDIX D 

 

DYNAMIC LIGHT SCATTERING HISTOGRAMS 

 

OF BOVINE INSULIN IN BULK AND IN THE PRESENCE OF LIPOSOMES  

 

INCUBATED AT 60 ˚C 

 

  



118 

1. BOVINE INSULIN IN BULK  

 

 
 

 
 

 
Figure D.1. DLS analysis of bovine insulin (SIGMA, Cat. #: I5500 (lot 019K17765V) 

aggregation in bulk: histograms represent relative scattering by intensity (a) and by 

number (b). Results shown are for: (1a) & (1b) 30 minutes; (2a) & (2b) 60 minutes; and 

(3a) & (3b) 150 minutes of incubation.  
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Figure D.2. DLS analysis of bovine insulin (SIGMA, Cat. #: I5500 (lot 019K17765V) 

aggregation in bulk: histograms represent relative scattering by intensity (a) and by 

number (b). Results shown are for: (4a) & (4b) 150 minutes of incubation. Sample (4) is 

the duplicate of sample (3). 
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2. BOVINE INSULIN IN THE PRESENCE OF LIPOSOME 1 (80/20)% PC/PS  

 

 
 

 
 

 
Figure D.3. DLS analysis of bovine insulin (SIGMA, Cat. #: I5500 (lot 019K17765V) 

aggregation in the presence of liposome 1 (80/20)%  PC/PS: histograms represent relative 

scattering by intensity (a) and by number (b). Results shown are for: (1a), (1b), (2a) & 

(2d) 30 minutes; and (3a) & (3b) after 90 minutes of incubation.  
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Figure D.4. DLS analysis of bovine insulin (SIGMA, Cat. #: I5500 (lot 019K17765V) 

aggregation in the presence of liposome 1 (80/20)%  PC/PS: histograms represent relative 

scattering by intensity (a) and by number (b). Results shown are for: (4a) & (4b) 90 

minutes; (5a) & (5b) 120 minutes and (6a) & (6b) after 150 minutes of incubation. 

Sample (4) is the duplicate of sample (3). 
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3. BOVINE INSULIN IN THE PRESENCE OF LIPOSOME 2 (20/80)% PC/C  

 

 
 

 
 

 
Figure D.5. DLS analysis of bovine insulin (SIGMA, Cat. #: I5500 (lot 019K17765V) 

aggregation in the presence of liposome 2 (20/80)%  PC/C: histograms represent relative 

scattering by intensity (a) and by number (b). Results shown are for: (1a), (1b), (2a) & 

(2d) 30 minutes; and (3a) & (3b) after 90 minutes of incubation.  
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Figure D.6. DLS analysis of bovine insulin (SIGMA, Cat. #: I5500 (lot 019K17765V) 

aggregation in the presence of liposome 2 (20/80)%  PC/C: histograms represent relative 

scattering by intensity (a) and by number (b). Results shown are for: (4a) & (4b) 90 

minutes; (5a), (5b), (6a) & (6b) after 150 minutes of incubation. Sample (4) is the 

duplicate of sample (3) and sample (6) is the duplicate of sample (5).  
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Figure D.7. DLS analysis of bovine insulin (SIGMA, Cat. #: I5500 (lot 019K17765V) 

aggregation in the presence of liposome 2 (20/80)%  PC/C: histograms represent relative 

scattering by intensity (a) and by number (b). Results shown are for: (7a) & (7b) 180 

minutes of incubation.  
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4. BOVINE INSULIN IN THE PRESENCE OF LIPOSOME 3 (80/20)% PC/C  

 

 
 

 
 

 
Figure D.8. DLS analysis of bovine insulin (SIGMA, Cat. #: I5500 (lot 019K17765V) 

aggregation in the presence of liposome 3 (80/20)%  PC/C: histograms represent relative 

scattering by intensity (a) and by number (b). Results shown are for: (1a), (1b), (2a) & 

(2d) 60 minutes; and (3a) & (3b) 120 minutes of incubation. Sample (3) is a duplicate of 

sample (2). 
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Figure D.9. DLS analysis of bovine insulin (SIGMA, Cat. #: I5500 (lot 019K17765V) 

aggregation in the presence of liposome 3 (80/20)%  PC/C: histograms represent relative 

scattering by intensity (a) and by number (b). Results shown are for: (4a), (4b), (5a) & 

(5d) 180 minutes; and (6a) & (6b) 210 minutes of incubation. Sample (5) is a duplicate of 

sample (4). 
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5. BOVINE INSULIN IN THE PRESENCE OF LIPOSOME 4 (2:2:1:1) C/PC/PG/PE  

 

 
 

 
 

 
Figure D.10. DLS analysis of bovine insulin (SIGMA, Cat. #: I5500 (lot 019K17765V) 

aggregation in the presence of liposome 4 (2:2:1:1) C/PC/PG/PE: histograms represent 

relative scattering by intensity (a) and by number (b). Results shown are for: (1a) & (1b) 

30 minutes; and (2a), (2b), (3a) & (3b) after 60 minutes of incubation. Sample (3) is the 

duplicate of sample (2). 
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Figure D.11. DLS analysis of bovine insulin (SIGMA, Cat. #: I5500 (lot 019K17765V) 

aggregation in the presence of liposome 4 (2:2:1:1) C/PC/PG/PE: histograms represent 

relative scattering by intensity (a) and by number (b). Results shown are for: (4a) & (4b) 

120 minutes; and (5a) & (5b) after 150 minutes of incubation.  
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6. BOVINE INSULIN IN THE PRESENCE OF LIPOSOME 5 (10:5:7.5:16) 

PC/PE/PS/C  

 

 
 

 
 

 
Figure D.12. DLS analysis of bovine insulin (SIGMA, Cat. #: I5500 (lot 019K17765V) 

aggregation in the presence of liposome 5 (10:5:7.5:16) PC/PE/PS/C: histograms 

represent relative scattering by intensity (a) and by number (b). Results shown are for: 

(1a) & (1b) 30 minutes; and (2a), (2b), (3a) & (3b) after 60 minutes of incubation. 

Sample (3) is the duplicate of sample (2). 
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Figure D.13. DLS analysis of bovine insulin (SIGMA, Cat. #: I5500 (lot 019K17765V) 

aggregation in the presence of liposome 5 (10:5:7.5:16) PC/PE/PS/C: histograms 

represent relative scattering by intensity (a) and by number (b). Results shown are for: 

(4a) & (4b) 150 minutes; and (5a) & (5b) after 210 minutes of incubation.  
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BOVINE INSULIN INCUBATED FOR 6 HOURS AT 60 ˚C 

 

 

 
 
 

Figure E.1 Congo red results of bovine insulin in bulk and in the presence of surfaces:  

(CELL Applications, INC. Cat.  :128 -100 (lot 104), lyophilized): Blank (         ); Sample (- 

- -). (1) and (1d) are bovine insulin and its duplicate; (2) and (2d) are bovine insulin and 

its duplicate in liposome 2 (20/80)% PC/C; (3) and (3d) are bovine insulin and its 

duplicate in liposome 3 (80/20)% PC/C.  
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Figure E.2. Congo red results of bovine insulin in bulk and in the presence of surfaces:  

(CELL Applications, INC. Cat.  : 128 -100 (lot 104), lyophilized): Blank (         ); Sample 

(- - -). (4) and (4d) are bovine insulin and its duplicate in liposome 5 (10:5:7.5:16) 

PC/PE/PS/C; (5) and (5d) are bovine insulin and its duplicate in liposome  6 (50/50)% 

PC/C; (6) and (6d) are bovine insulin and its duplicate in PS-NH2. 
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Figure E.3. Congo red results of bovine insulin in bulk and in the presence of surfaces:  

(CELL Applications, INC. Cat. #: 128 -100 (lot 104), lyophilized): Blank (         ); Sample 

(- - -). (7) and (7d) are bovine insulin and its duplicate in PS-COOH. 
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BOVINE INSULIN INCUBATED FOR 55 HOURS AT 37 ˚C AND 230 RPM 
 

 

 

 
 

Figure E.4 Congo red results of bovine insulin in bulk and in the presence of surfaces:  

(CELL Applications, INC. Cat. #: 128 -100 (lot 104), lyophilized): Blank (       ); Sample (- 

- -). (1) and (1d) are bovine insulin and its duplicate; (2) and (2d) are bovine insulin and 

its duplicate in liposome 2 (20/80)% PC/C; (3) and (3d) are bovine insulin and its 

duplicate in liposome 3 (80/20)% PC/C.  
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Figure E.5. Congo red results of bovine insulin in bulk and in the presence of surfaces:  

(CELL Applications, INC. Cat. #: 128 -100 (lot 104), lyophilized): Blank (       ); Sample (- 

- -). (4) and (4d) are bovine insulin and its duplicate in liposome 5 (10:5:7.5:16) 

PC/PE/PS/C; (5) and (5d) are bovine insulin and its duplicate in liposome  6 (50/50)% 

PC/C; (6) and (6d) are bovine insulin and its duplicate in PS-NH2. 
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Figure E.6. Congo red results of bovine insulin in bulk and in the presence of surfaces:  

(CELL Applications, INC. Cat. #:128-100 (lot 104), lyophilized): Blank (       ); Sample (- - 

-). (7) and (7d) are bovine insulin and its duplicate in PS-COOH. 
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HUMAN INSULIN INCUBATED FOR 6 HOURS AT 60 ˚C 

 

 
 

 
Figure E.7 Congo red results of human insulin in bulk and in the presence of surfaces  

(SACF Biosciences, Cat. #: 91077C-250MG (lot 10L917)): Blank (         ); Sample (- - -). 

(1) and (1d) are human insulin and its duplicate; (2) and (2d) are human insulin and its 

duplicate in liposome 2 (20/80)% PC/C; (3) and (3d) are human insulin and its duplicate 

in liposome 3 (80/20)% PC/C.  
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Figure E.8. Congo red results of human insulin in bulk and in the presence of surfaces  

(SACF Biosciences, Cat. #: 91077C-250MG (lot 10L917)): Blank (       ); Sample (- - -). (4) 

and (4d) are human insulin and its duplicate in liposome 5 (10:5:7.5:16) PC/PE/PS/C; (5) 

and (5d) are human insulin and its duplicate in liposome  6 (50/50)% PC/C; (6) and (6d) 

are human insulin and its duplicate in PS-NH2. 
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Figure E.9. Congo red results of human insulin in bulk and in the presence of surfaces  

(SACF Biosciences, Cat. #: 91077C-250MG (lot 10L917)): Blank (         ); Sample (- - -). 

(7) and (7d) are human insulin and its duplicate in PS-COOH. 
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HUMAN INSULIN INCUBATED FOR 55 HOURS AT 37 ˚C AND 230 RPM 

 

 
Figure E.10 Congo red results of human insulin in bulk and in the presence of surfaces 

(SIGMA I2643, lot (096K03811V)): Blank (       ); Sample (- - -). (1) and (1d) are human 

insulin and its duplicate; (2) and (2d) are human insulin and its duplicate in liposome 2 

(20/80)% PC/C; (3) and (3d) are human insulin and its duplicate in liposome 3 (80/20)% 

PC/C.  
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Figure E.11. Congo red results of human insulin in bulk and in the presence of surfaces: 

(SIGMA I2643, lot (096K03811V)): Blank (       ); Sample (- - -). (4) and (4d) are human 

insulin and its duplicate in liposome 5 (10:5:7.5:16) PC/PE/PS/C; (5) and (5d) are human 

insulin and its duplicate in liposome  6 (50/50)% PC/C; (6) and (6d) are human insulin 

and its duplicate in PS-NH2. 

0.0

0.9

1.8

300 500 700

A
b

so
rb

an
ce

 a
t 

6
0

0
n

m
 (

A
U

) 

Wavelength (nm) 

(4) 

0.0

0.9

1.8

300 500 700

Wavelength (nm) 

(4d) 

0.0

0.9

1.8

300 500 700

A
b

so
rb

an
ce

 a
t 

6
0

0
n

m
 (

A
U

) 

Wavelength (nm) 

(5) 

0.0

0.9

1.8

300 500 700

Wavelength (nm) 

(5d) 

0.0

1.0

2.0

300 500 700

A
b

so
rb

an
ce

 a
t 

6
0

0
n

m
 (

A
U

) 

Wavelength (nm) 

(6) 

0.0

1.0

2.0

300 500 700

Wavelength (nm) 

(6d) 



143 

 
 

Figure E.12. Congo red results of human insulin in bulk and in the presence of surfaces: 

(SIGMA I2643, lot (096K03811V)): Blank (       ); Sample (- - -). (7) and (7d) are human 

insulin and its duplicate in PS-COOH. 
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