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ABSTRACT 

In this study, the hydrodynamic, i.e. flow regime identification, line average liquid 

holdup, and the internal liquid holdup of a co-current moving packed bed reactor were 

studied. For the sake of hydrodynamics study, moving bed reactor is investigated as two – 

phase upflow packed bed reactor. Scaled down configuration was used to simulate of the 

moving bed reactors utilized in the industrial process. First, line average liquid holdup is 

measured with different geometrical configurations covering empty, dry, wet, and packed 

column under flowrates operation conditions. A new methodology has been developed to 

determine the line average liquid holdup for a porous catalyst. Second, flow regime is 

identified by variation of superficial gas velocity at constant liquid superficial velocity. The 

experiments were carried out in an 11 - inch inner diameter Plexiglas column using the air-

water system, at superficial gas velocities in the range of 0.6 to 7.7 cm/s and at a constant 

liquid superficial velocity of 0.017 cm/s. Gamma ray densitometry (GRD) technique was 

used to obtain the line average liquid holdup and to identify the flow regime at different 

axial and radial positions along the column. The obtained results showed that the flow 

regimes are bubble flow and pulse flow regimes with a transition flow in-between under 

the operation conditions used. The result showed that the liquid holdup decreased as the 

superficial gas velocity increased. It was also found that the liquid holdup radial 

distribution was not uniform. These kinds of information are essential to improve the 

performance of the reactor. 
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SECTION 

1. INTRODUCTION 

Multiphase flow reactors and multiphase flow are encountered widely in industr ia l 

processes where more than one phase (gas-liquid, and solid) interact in a complex manner. 

Moving packed bed reactors belong to a general class of catalytic multiphase flow reactors, 

which are consisting of a combination of gas, liquid, and solid phases. Moving bed reactors 

exist in hydrotreating industries, such as hydrodesulfurization, hydrodenitrogenation, and 

hydrodemetallization, etc. They are typically vertical reactors with gas and liquid flow 

upward through catalyst particles bed that periodically move downward. These reactors 

have the distinctive design of its bottom that support the catalyst and facilitated their 

removal periodically while fresh catalyst are added at the top of the bed. Hence, catalysts 

of the moving bed reactor are supported by a cone-like shape bottom to enable withdrawn 

the deactivated catalysts. The catalysts move downward in a counter current mode with the 

two phase flow of the gas and liquid. The catalyst removal would occur at a rate of 2 to 8% 

per week depending on the feed metals content, and that is in small increments with no 

interruption to the process. The advantage of continuous regeneration processes in the 

moving – bed processes, is to avoid the process interruption (Liu et al., 2009; Reynolds et 

al., 2003). These reactors operate at the condition of incipient fluidization and hence the 

top level of the catalyst bed faced a slight expansion and fluidization, which reduces the 

pressure drop and avoids plugging of the system (Liu et al., 2009). The moving bed is 

usually used as a leading guard reactor in front of the conventionally hydrotreating fixed 

bed to prolong the operating cycle (Liu et al., 2009). The moving – bed configurat ion, 
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offers a relatively large catalyst migration time, in comparison with the liquid and gas 

phases mean residence time, and it can be considered as a pseudo-two-phase (gas-liquid) 

flow fixed bed (Iliuta and Larachi, 2013a) but with a configuration of the bottom of the 

catalysts support differs from the conventional fixed bed two-phase upflow reactors. 

Therefore, for the sake of hydrodynamics study, moving bed reactor is investigated as two 

– phase upflow packed bed reactor with the bottom design represents the upflow moving 

bed. The understanding of the hydrodynamic of these reactors is essential for proper design, 

scale-up, operation and performance. The knowledge of the flow regime, the liquid holdup 

and bed structure are indispensable in the understanding and analysis of the moving upflow 

packed bed reactors and their performance. 

Three types of flow regimes are commonly observed in upflow packed beds. These 

flow regimes are bubble flow, pulse flow regime, and spray flow with water and air as 

liquid and gas phase (Raghavendra Rao et al., 2011; Varma et al., 1997). Flow regimes 

vary depending on operation conditions, fluid and packing properties, and flow rates. They 

are typically categorized in co-current upflow packed bed reactors into low interaction 

regime (bubble flow) and high interaction regime (pulse and spray flow regimes).  

Depending on the level of interaction between phases, therefore, each regime has different 

hydrodynamic characteristics which affect the rate of the mass and heat transfer, pressure 

drop, and liquid holdup. Bubble flow regime occurs at low gas and liquid flowrates, which 

is characterized by small bubbles flow as a dispersed gas in a continuous liquid within the 

void of the bed. The buoyancy force leads to rise the bubbles in the upward flowing liquid 

in the bubbly flow regime where the bed particles are fully wetted by the continuous liquid 

phase (Guo and Al-Dahhan, 2005). This flow regime refers as a low interaction regime, as 
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there is a little interaction between the liquid and gas phases and their friction with the solid 

particles. Pulse flow regime occurs at moderate to high gas and liquid flow rates and has a 

very interesting hydrodynamic behavior. In this regime, the flow is characterized by an 

alternating gas rich region followed by liquid rich region. It occurs in packed beds due to 

increasing the diameter of the gas bubbles, which may not bridge the entire column cross-

section (Raghavendra Rao et al., 2011). Pulse flow regime refers as a high interaction 

regime, in which high degree of mixing and interaction between the phases and with the 

solid particles enhance overall heat and mass transport while reducing axial dispersion. 

This makes it a potentially attractive mode of operation for industrial processes. When 

further increasing in gas superficial velocity and at low liquid superficial velocity, spray 

flow regime occurs. This flow regime is characterized by liquid droplets entrained in the 

packed bed by the higher gas flow rate. Another important hydrodynamic parameter in 

catalytic multiphase reactor is the liquid holdup, which is considered as one of the 

significant design and operating variables. In three phase contacting systems, the 

interactions between gas – liquid – solid is more complicated and hence, the liquid holdup 

is essential for achieving desirable of pressure drop, mass and heat transfer where the liquid 

phase serves to transport mass and heat to and from the catalyst bed particles. 

The knowledge of liquid holdup is a key in the reactor design and model 

calculations of the reactor performances, and it’s one of the important hydrodynamic  

parameters for the gas – liquid flow in upflow moving packed bed reactors. In a packed 

bed, the liquid holdup is affected by the gas superficial velocity more than the liquid 

velocity (Molga and Westerterp, 1997b). For exothermic reactions, higher liquid holdup 

and well distributed ensure a complete wetting efficiency and better temperature control 
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thus contributing to the prevention of hot spots formation and thermal instabilities. Two 

phase upflow packed bed reactor could be a satisfactory alternative to the classical trickle 

bed reactor for liquid limited reactions, because of increased liquid holdup to ensure a 

complete wetting efficiency of the catalytic where increase the efficiency of the solid 

contact lead to better heat transfer and higher overall mass transfer coefficient (Al-Dahhan 

and Duduković, 1996). 

These hydrodynamic parameters in a co-current upflow packed bed reactors such 

as flow regimes and liquid holdup have been studied by many researchers (Bouteldja et al., 

2013; Kumar et al., 2012; Moreira and Freire, 2003b; Murugesan and Sivakumar, 2002; 

Raghavendra Rao et al., 2011; Varma et al., 1997) for packed bed with a horizonta l 

perforated distributor. While, there is no work has been done on moving packed bed 

configuration with a conical bottom. Therefore, in our work, an attempt has been made for 

the first time to identify the prevailing flow regimes and to measure the line average liquid 

holdup in this type of catalytic multiphase reactors using the newly developed non-invas ive 

gamma ray densitometry technique. 
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2. MOTIVATION 

The Recent trend toward improving the quality of light fuels, converting heavier 

oils into lighter and more valuable products efficiently while protecting the environment 

have become a challenge for refineries to come up with advanced refinery processes. The 

availability of heavy crude oil and residuum feed make the fixed bed catalyst system 

difficult to handle feedstock with more than 250 ppm level of metal contaminations. As an 

advanced residue hydroconversion, moving bed processing can deal with a heavier metal 

content feedstock up to 400 ppm (Liu et al., 2009). The best utilization of the 

hydroprocessing is by employing the moving bed reactor as a guard reactor before the 

conventional fixed bed reactor. Since the first commercial unit has been started in operation 

in the 1990’s, there are five commercial units worldwide in operation (Liu et al., 2009). 

Some problems associated with the operation of these reactors are maldistribution, hot spot, 

and reduced expected conversion. To overcome these challenges, detailed studies to 

enhance the understanding of the hydrodynamics parameters that characterized this reactor 

are still required, and unfortunately, they lack in the open literature. Although research has 

been conducted on hydrodynamic of upflow packed bed reactors with a horizonta l ly 

bottom plate distributor, but to the best of the author’s knowledge, there is no study to 

evaluate hydrodynamic parameters in the open literature has accounted for the presence of 

a cone – like shape bottom in these reactors which represent the design of the upflow 

moving bed reactor. The knowledge of the flow regime and the liquid holdup are of great 

importance for the proper design scale-up, operation and performance of the upflow 

moving packed bed reactor as mentioned earlier. 
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In order to accomplish an improved understanding of the hydrodynamics of upflow 

moving packed bed reactors equipped with a cone – like shaped bottom, an investiga t ion 

of the flow regime and line average liquid holdup by using newly developed advanced non-

invasive gamma ray densitometry technique which are considered among the most 

important hydrodynamic parameters that govern the performance of packed beds reactors, 

is required. Investigations on these parameters in moving beds are currently not available 

in the open literature. 
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3. RESEARCH OBJECTIVES 

The primary objective of this work is to advance the knowledge of the 

Hydrodynamic of the Co-Current Upflow Moving Packed Bed Reactors with a Porous 

Catalyst. To achieve this goal, extensive experimental work has been performed to identify 

and study the flow regime and to measure the line average liquid holdup in the two phase 

upflow moving packed bed with a cone shaped like bottom which is packed randomly with 

porous catalysts. The following objectives are set for this work as the main parameters to 

study: 

1. Investigate the indentification of the flow regiemes under flow rates that 

represent the typical operating conditions using a scaled down two-phase 

upflow moving bed reactor. Our newly gamma ray densitometry has been 

implemented. 

2. For the first time, we study and meausre the line averaged external and 

internal liquid holdups and the bed porosity. Along the bed diameter at 

selected heights using our newly developed gamma ray densitometry. 

For the sake of the hydrodynamics study, a scaled down configuration of moving 

bed with two phase upflow has been used. The experiments have been conducted using an 

air-water system in a Plexiglas column with a diameter of 11 – inch and height of 30 – 

inch. The column packed randomly with a 3 mm diameter spherical catalysts with a total 

bed height of 24 – inch. The results and findings of this work will enhance the 

understanding of the hydrodynamics of moving packed bed reactors equipped with a cone 

– like shaped bottom, and it will facilitate the proper operation of these kinds of reactors. 
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In addition, the obtained data serve as valuable information for evaluation and validat ion 

of the objectives above have been achieved through the following two manuscripts: 

1. Liquid holdup studies in a co-current gas liquid upflow moving pakced bed 

reactor with a porous catalyst using a new methodology for gamma ray 

densitometry. 

2. Identification of flow regime in a co-current gas – liquid upflow moving 

packed bed reactor using statistical and chaos analyses. 
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PAPER 

I. LIQUID HOLDUP STUDIES IN A CO-CURRENT GAS LIQUID UPFLOW 

MOVING PACKED BED REACTOR WITH POROUS CATALYST USING 

GAMMA RAY DENSITOMETRY  

ABSTRACT 

The upflow moving packed bed reactor are heavily used in hydrotreating. The 

problems associated with this reactor are maldistribution, hot spot, and reduced expected 

conversion, and found to be directly linked to liquid phase maldistribution. To overcome 

these challenges, detailed study to enhance the understanding of liquid phase 

hydrodynamics parameters that characterized this reactor is still required. The liquid 

holdup is one of the significant and important parameters in mass transfer and design of 

packed bed reactors, as it serves as heat and mass transport from and to the catalyst of the 

packed bed. In this work, the line-average liquid holdup was determined using Gamma-

Ray Densitometry (GRD) in a scaled down lab scale upflow packed bed column. Gamma 

ray densitometry is a non-invasive radioactive technique that can be implemented to 

monitor the flow distribution even at industrial scale. There are no studies reported on the 

determination of the line average phase distribution for porous catalyst packed bed having 

conical bottom. In this study, a new methodology has been developed to determine the line 

average liquid holdup for the porous catalyst, line average void space of catalyst bed, and 

the line average internal porosity of catalyst. This study has been conducted on a Plexiglas 

column of 11-inch ID and 30-inch height, randomly packed with extrudate catalyst of 3 

mm diameter till 24-inch height. GRD scanning is conducted at various axial and radial 

locations. The operation conditions for the study are at superficial liquid (water) at 0.017 
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cm/sec and varying superficial gas (air) velocity in the range of 0.6 – 7.7 cm/sec. The result 

showed decrease in liquid holdup with increasing in the superficial gas velocity, and the 

liquid holdup radial distribution was seen to be non-uniform. These kinds of information 

are essential to improve the performance of the reactor. 

Keywords: Gas-liquid-solid reactor, Porous Catalyst, Upflow Moving Packed Bed 

Reactor, Line Average Liquid Holdup, Gamma Ray Densitometry. 
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1. INTRODUCTION 

Improving the quality of light product and the increasing demand for heavy oil in 

compliance with strict environmental concerns have become a challenge facing leading 

petroleum industry. Catalytic hydroprocessing considers one of the most promising 

technologies for conversion of heavy oils into high-value products, and it has been 

extensively practiced nowadays in refineries worldwide (Liu et al., 2009). These aspects 

represent a motivation for developing the existing processes or designing specific advanced 

refining processes, related to hydroprocessing. Hydrotreatment (hydroprocessing) is a well 

know technology to remove undesirable components (sulfur, nitrogen, organometallic, etc) 

from hydrocarbon feed streams. Such hydroprocessing conditions are typically in the range 

of 212° F to 1200° F (100° to 650° C) at pressures from 20 to 300 atmospheres (Stangeland 

et al., 1991), at these operation conditions catalyst deactivate. In hydrotreatment process, 

the main issue is the catalyst life and its performance, because impurities can deposit on 

the catalyst resulting in rapid loss of its activity and deactivate it. Under high temperature 

and pressure, coke, poisoning, and sintering could cause agglomeration and hence 

maldistribution in which then the unit shutdown is unavoidable. Contaminating metals, 

such as nickel and vanadium, usually will be readily removed under hydrotreating 

conditions and will plate out on the surface and in the pores of the catalyst. The deposition 

of metals on the catalyst will result in a rapid loss of hydrogenation activity. However, 

hydrogenation activity is necessary for the removal of other contaminants, such as carbon 

residue, nitrogen, and sulfur, from the feedstock. Coke and various hydrocarbon products 

deposit on the particles and deactivate them as well. Various designs of residue 

hydrotreating reactors have been described in the literature for treating heavy feedstocks. 
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Commercial designs include a moving bed of catalyst (MBR), (U.S. Pat. No. 5,076,908), 

fixed bed reactor (FBR) (U.S. Pat. No. 5879642 A), ebullating catalyst bed (EBR), (U.S. 

Pat. Nos. 4,571,326 and 4,744,887). The fixed bed catalyst systems deal with middle 

distillates feed, but they cannot deal with every residuum feed that is available. Heavy feeds 

with highly metallic contaminations > 250 ppm, make the fixed bed catalytic hydrotreating 

system inefficient as run length become too short because of catalyst deactivation 

(Scheuerman et al., 1993). On the other hand, the high metals feeds which make fixed bed 

residuum desulfurization (RDS) units impractical are often the most economica lly 

attractive feeds because of their relatively lower price. To deal with drastic change in heavy 

petroleum feed properties, moving bed technology has been developed (Liu et al., 2009). 

In general, the moving bed reactors are having a conical bottom in which gas – liquid 

moves co-currently upwards and catalyst moves downwards periodically and spent catalyst 

are replaced using a conical bottom support. In this case, the flow of upward fluid with a 

slight bed expansion could avoid coking and plugging and reduce the pressure drop of the 

system to some extent (Liu et al., 2009; Reynolds et al., 2003). As the feed moves up 

through the catalyst and contaminants are retained on the catalyst, these particles become 

heavier and by periodically withdrawing they move downward through the reactor towards 

the entering products stream which is finally withdrawn at the bottom of the reactor. The 

removed catalysts can be reprocessed and injected alone or in combination with fresh 

catalyst at the top of the reactor. The advantages of using moving packed bed reactors are: 

it has represented a good methods for utilizing space within a hydroprocessing vessel, 

characterized by a slight back mixing for both the catalyst and the feedstock, providing a 

better quality of products and higher efficiency of the process than of an ebullated bed 
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reactor (Liu et al., 2009), the continuous replacement of spent catalyst without shutdown.  

The moving – bed configuration, offers a relatively large catalyst migration time, in 

comparison with the liquid mean residence time, and it can be considered as a pseudo two-

phase (gas-liquid) upflow with fixed bed (Iliuta and Larachi, 2013a). Therefore, for the 

sake of the hydrodynamics study, the moving bed reactor can be investigated as two – 

phase upflow packed bed reactor. The liquid holdup in upflow moving packed bed reactor 

is one of the important design and operating hydrodynamic variables, and it measurement 

is essential to get a better understanding for the prediction of pressure drop, mass and heat 

transfer mechanisms since the liquid serves as a transport of mass and heat to and from the 

catalyst bed particles. Moreover, the upflow packed bed reactor gives advantages for liquid 

limited reaction (Chander et al., 2001). For exothermic reactions, higher liquid holdup and 

well distribution ensure a complete wetting efficiency and better temperature control thus 

contributing to the prevention of hot spots formation and thermal instabilities. Two-phase 

upflow packed bed reactor could be a satisfactory alternative to the classical trickle bed 

reactor for liquid limited reactions, because of increased liquid holdup to ensure a complete 

wetting efficiency thus increase the effectiveness of contact leading to better heat transfer 

and higher overall mass transfer coefficient (Al-Dahhan and Duduković, 1996). Total 

liquid holdup (𝜀𝐿𝑡) is defined as the ratio of the liquid volume in the bed to the total bed 

volume. Total liquid holdup can be divided into two types: external and internal liquid 

holdup, according to the type of catalyst used in the packed column in both upflow and 

downflow modes of operation (Al‐Dahhan and Highfill, 1999). For nonporous particles, 

there is no internal liquid holdup. The ratio of the volume of the liquid occupying the void 

volume of the bed (void between particles) to the reactor volume is the external liquid 
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holdup (liquid contained outside porous particles). For porous particles, the internal liquid 

holdup is the ratio of the volume of the liquid held by capillary forces in the pores of porous 

catalysts to the reactor volume (liquid contained inside porous particles) (Al‐Dahhan and 

Highfill, 1999). In packed bed, liquid saturation has been sometimes used instead of the 

liquid holdup in the description of liquid retention in the bed regarding the void volume or 

the bed volume. The volume of the liquid occupied in voidage between the catalytic 

particles to the void volume of the reactor is described as the external liquid saturation (Al‐

Dahhan and Highfill, 1999; de Klerk, 2003). The relationship between the external liquid 

saturation and external liquid holdup are interrelated as follows (Al‐Dahhan and Highfil l, 

1999; Bensetiti et al., 1997; Jagadeesh-Babua et al., 2007). 

                                             𝜀𝐿 𝑒𝑥𝑡. = 𝛽𝐿 𝑒𝑥𝑡. 𝜀                                                     (1.1) 

Where: 

𝜀𝐿 𝑒𝑥𝑡.: External liquid holdup, 𝛽𝐿 𝑒𝑥𝑡. : External liquid saturation, and 𝜀: porosity of 

the bed. 

Experimental data on the overall liquid holdup or saturation can be obtained by 

various techniques  such as for example drainage (Iliuta and Thyrion, 1997; Moreira et al., 

2004; Urrutia et al., 1996), weighing (Kumar et al., 2012) and tracer methods (Cassanello 

et al., 1998; Guo and Al-Dahhan, 2004; Saroha and Khera, 2006; Thanos et al., 2003), 

Electric capacitance tomography (ECT) (Bouteldja et al., 2013; Hamidipour and Larachi, 

2010). The liquid holdup measurements techniques can be divided into integral, semi – 

integral and local measurements methods (Al‐Dahhan and Highfill, 1999). Integral 

methods provide liquid holdup information over the entire volume of the packed bed, these 

methods include the draining, weighting and tracer methods. Semi – integral measurement 
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methods provide liquid holdup information over a section or a line – integral of the packed 

bed, which include radiation methods (e.g. gamma Ray and X – Ray), that can be applied 

at many axial and radial positions in order to get a line averaged information. The local 

measurement methods provide a local liquid information are obtained by inserting a sensor 

(e.g. electromagnetic radiation) or a probe (e.g. optical fiber probe) inside the packed bed 

at different positions or using time averaged tomography (gamma ray tomography) or 

instantaneous tomography (X-ray and electrical capacitance resistive tomography).  

However, liquid draining and tracer methods can only give the average holdup for a whole 

packed column; it cannot offer any information on how the liquid is distributed in packings 

(Yin et al., 2002). In Fact, the liquid holdup can vary with spatial position and this 

information is very important for a better understanding of flow hydrodynamics and mass 

transport in packed columns. Since, in gas – liquid – solid conditions where the catalytic 

bed being dense and opaque, it is hard to implement instrumentation inside three phase 

systems. While the noninvasive methods such as advanced radioactive measurements 

techniques eliminate the alteration during the measurements (Hubers et al., 2005). These 

techniques can determine the flow distribution over the whole reactor section with a good 

spatial resolution and that are not too intrusive (Boyer et al., 2002). The radiation method 

is based on attenuation of the radiation beam as it passes through an absorption medium, 

where the liquid holdup can be obtained by Beer-Lambert’s equation. Non-invasive 

techniques have become the tools of choice in pursuance of the detailed flow structures 

within porous media unlike the more traditional interfering probes inserted within flows 

(Hamidipour and Larachi, 2010). 
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Attempts have been made to study the liquid holdup in two phase co-current upflow 

packed bed reactor which are summarized as follow: (Bouteldja et al., 2013) studied the 

effect of inclination on the hydrodynamic of gas–liquid cocurrent upflow packed beds. 

They measured the Liquid saturation, bed pressure drop and gas–liquid segregation. They 

found at vertical position and constant liquid velocity the increasing in the gas velocity will 

lower the liquid saturation because the higher presence of gas phase. They observed from 

their results that bed inclination creates short circuits for the gas phase along the upper wall 

where it can flow in a segregated manner. (Kumar et al., 2012) studied the liquid holdup in 

upflow packed bed with two types of packing (randomly and structured packing) and they 

found that the liquid holdup in structured packing is 50% higher than the randomly packing 

catalysts. They observed that both total and dynamic liquid holdup in randomly packings 

decreased with increasing in gas flowrate, increased with liquid flowrates and viscosity of 

the liquid. They also observed the combine effect of bed porosity and size of the packing 

on both liquid holdups. They developed correlations for total and dynamic liquid holdup 

in both corrugated structured packings and the random packings as well. (Saroha and 

Khera, 2006) studied three hydrodynamic parameters of fixed beds with cocurrent upflow 

and downflow: two-phase pressure drop, total liquid holdup and axial dispersion and they 

compared the results for both modes of operation. They found that at low gas and liquid 

velocities the two phase pressure drop and liquid holdup for upflow is higher than the 

downflow. They also observed by increasing the flowrates these parameters became 

comparable for both the upflow and downflow. (Colli-Serrano and Midoux, 2000) 

measured the liquid holdup in two phase upflow by conductimetric probes using a salt 

tracer technique. They studied the influence the coalescence inhibition. They used nitrogen 
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as a gas and both water and aqueous solutions of pentanol (pOH) flow upwards to get their 

data. Their experiments performed in a packed bed that heated electrically through its wall. 

They obtained the heat transfer parameters by fitting a two-dimension model. They found 

that the heat transfer is strongly depend on the flow regime in the packed bed. Liquid 

holdup for (pOH solution) is lower than water as coalescing system. Their result leaded to 

a two experimental correlations for single and two phase flow. (Cassanello et al., 1998) 

studied the liquid saturation and back mixing in cocurrent upflow three phase fixed bed 

reactors using residence-time distributions (RTD). They tested two types of correlations 

for liquid saturation, one based on dimensionless number and the second one based on the 

drift flux concept. They found that the drift flux correlation is account with their 

experimental results. (Bensetiti et al., 1997) proposed a correlation for the prediction of 

external liquid saturation, their correlation relied upon combination of dimensiona l 

analysis and artificial neural networks that allowed identification of six most expressive 

dimensionless groups. (Iliuta and Thyrion, 1997) analyzed the hydrodynamic in packed 

bed operated with upflow and downflow using air/Newtonian and non-Newtonian fluid 

systems. They studied the liquid holdup (dynamic and residual liquid holdup) and found 

its value is strongly influenced by using non-Newtonian liquids. Their result for liquid 

holdup in two phase upflow and downflow are close to each other with highly viscous non-

Newtonian liquids. However, to the best of our knowledge, there is study reported in the 

literature that studied liquid holdup in two phase upflow moving beds where the bottom 

configuration differs, with the present of the cone from the conventional two phase upflow 

packed bed reactors. Radiation techniques are commonly used in a wide range of 

applications as measuring methods since they are generally considered simple and non-
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intrusive. Radiation methods include the use of fast neutron scattering and attenuation 

techniques as well as the use of gamma and X-ray attenuation techniques. Since the 

catalytic packed bed is opaque, some noninvasive visualization technique such as such as 

Digital Particle Image Velocimetry (DIPV) and Laser Doppler Anemometry (LDA), 

cannot measure the liquid/gas holdup distribution over its cross-section. Compared with 

other radiation techniques, the gamma ray technique is well developed and more versatile 

because gamma rays of different energies have the power of penetrating wide ranges of 

material and can be chosen depending on the test section used (Park and Chung, 2007). 

Therefore, gamma ray approaches have played a major role and have become the tools of 

choice in the measurement technology for gas–liquid two-phase system and gas–liquid–

solid three phase system (Al-Dahhan et al., 2007; Shollenberger et al., 1997). (Wang et al., 

2001) measured local porosity distribution in packed columns, the result indicated that the 

porosity in the column wall region is higher than that in the bulk region, due to the effect 

of the column wall. However, to the best of our knowledge, there are no studies reported 

in the literature that studied liquid holdup in two-phase upflow moving beds with the 

conical bottom.  Attenuation of the gamma radiation is mostly due to the presence of the 

liquid and solid compared to gas in the flow. Thus, information on the two-phase (liquid – 

gas) distribution can be obtained for flow over fixed bed of catalyst, as the attenuation due 

to catalyst will be fixed and the variation of attenuation is due to the flowing liquid. Hence, 

measurement technique using gamma ray densitometry leads to measure the line averaged 

liquid holdup (Al-Dahhan et al., 2007; Wild et al., 1991). Accordingly, in this work a 

method has been developed using the gamma-ray densitometry to measure and investigate 

the diameter profile of the line averaged void, catalyst porosity, solid, liquid and gas holdup 
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and the internal liquid holdup inside the porous catalyst. For the cold flow laboratory 

packed bed used in this study, the column was packed randomly with a commercia l 

extrudate catalyst. The catalyst is a porous particle which yields to an internal and external 

liquid holdup in the bed. The flow conditions, ranges of air and water flow rates, were kept 

at such levels as to simulate the industrial operation conditions of typical lab-scale 

hydroprocessing units. Owing to the distinct advantages of GRD, we employed it for the 

first time to measure the line average liquid holdup in a co-current gas-liquid upflow 

moving packed bed reactor operated under flowrates matching the operating conditions. 

The proposed correlations to predict liquid holdup or saturation are summarized in Table 

1.1. 

 

Table 1.1 Selected Liquid holdup and saturation correlations for two-phase 
upflow packed bed reactor. 

 

Author (year) Correlation  

Lamine, A. S., Colli Serrano, M. T., and 

Wild, G., 1992 

     𝛽𝑙 = (0.6 𝑢𝑔 +  𝑢𝑙)/(𝑢𝑔 + 𝑢𝑙) 

COLLI-SERRANO AND MIDOUX, 

2000 

𝛽𝑙 = 1 − (1.28 + 1.7 𝑢𝑙
0.508 𝑈𝑔

−0.264 )−1 

ANIL K. SAROHA, RITESH KHERA 

2006 

𝐻𝐿 = 0.21 + 0.00083𝑅𝑒𝑙 − 0.0026𝑅𝑒𝑔 
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2. EXPERIMENTAL SETUP 

The cold flow experimental setup is scale down version of industrial upflow 

moving packed bed reactor. The scaled down from an industrially operated moving bed is 

based on dynamic and geometrical similarities. The set-up consists of a Plexiglas packed 

bed column, gas – supplying rotameter, liquid cycling tank, and pump. The dimensions are 

57 – inch height and 11 - inch internal diameter as shown in Figure 2.1. a photograph of 

the experimental setup is shown in Figure 2.2. The bottom consists of two main sections, 

viz., gas-liquid distributor plenum and perforated cone. The plenum contains a deflector to 

disperse the inlet mixture of gas and liquid phases which is located at the base of the plenum 

to ensure that the gas and liquid are well distributed. To minimize initial maldistribution of 

the gas-liquid phases in the plenum and to maintain the even distribution of the two phases 

into the column, a gas-liquid distributor equipped with a chimney is mounted between the 

plenum and the cone sections. The distributor consisted of 19 holes connected with the 

chimneys with 0.1-inch diameter and 1.2-inch height for liquid passing through the hole. 

The chimney has a side hole (pitch) at the top of the chimney with 0.03 - inch diameter for 

gas passing. The cone section is located in between the packed bed section and the plenum 

section. The space between the column wall and the perforated cone wall (conical frustum 

distributor) contains glass marbles. Both the glass marbles and the conical frustum in the 

cone section are designed to provide a uniform upflow phases distribution into the catalyst 

bed and to maintain a stable bed operation. The packed bed section is the test section and 

located at the top of the cone section. The bed section was packed randomly with a 3 mm 

diameter industrially used porous spherical catalyst up to 24-inch as a packed bed height, 

and the conical frustum was used to support the catalyst. The gas-liquid flow is concurrent 
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and upwards through the bed particles. Tap water and oil free compressed air were used as 

liquid and gas feedstock in the laboratory experiment and were taken directly from the lab 

supply lines. Filtered compressed process air, passed through a ball valve, pressure 

regulator, and monitored using Dwyer Air Flowmeter, then mixed with water first before 

they enter the column from the bottom. The flowmeter models are accurate within ± 2% of 

full–scale reading. Similarly, water was pumped into to mix with air before they entered 

the column with the help of a liquid feed pump and returned with the air to a recircula t ing 

tank. The main purpose of this tank is to store the bypass and recycled water and vent the 

air to atmosphere. The mixture of gas and liquid phases are introduced to the column via 

an inlet pipe connected to the column base, where their streams are merged and passed 

upflow through the deflector. The experiments were performed at room temperature and 

pressure over a wide range of superficial gas velocities, and at a fixed liquid superfic ia l 

velocity. The liquid velocity is selected based on the value of the scaled down liquid 

velocity of an industrial hydrotreating unit. The properties of the bed material and the range 

of operating conditions are listed in Table 2.1. Gamma ray densitometry (GRD) has been 

employed at various axial heights: bottom of the bed (Z/D = 0.3), and middle of the packed 

bed (Z/D = 1 as discussed in the following section. The horizontal measurement step was 

1-inch as shown in Figure 3.1 to cover the diameter profile along the bed diameter under 

normal conditions and the measurement time was about 40 s in each position. For 

quantitative analysis of this work, each point was measured three times, and the average 

value was obtained of the gamma ray intensity. The horizontal and vertical measurement 

distance can be measured by a ruler. The experiments were run, when the stable operation 

was considered to have achieved, the GRD system was traversed horizontally, and scans 
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were performed along several chord lines parallel to the diameter of the column at any 

given operating conditions as shown in Figure 3.2. Eleven specified positions were equally 

distributed along the diameter of the column with a space interval of 1-inch. Position (0 

inch) is at the center of the column and positions (5 -inch, r/R = 0.9) and (– 5 -inch, r/R = 

– 0.9) are the right and left horizontal positions, respectively. Liquid holdup in the packed 

bed was first evaluated using GRD at the same axial levels used for the actual flow scans, 

i.e., at Z/D = 0.3, and 1 from the bottom of the packed bed Figure 2.1, where D denotes the 

diameter of the packing and Z denotes the bed height. The result for the two section (bottom 

and middle of the bed) have been shown and discussed. Since at the top section of the bed, 

the catalyst has been fluidized, and the bed is not stationary, a single source cannot be used 

to measure the liquid holdup when the three phases are dynamically moving, where dual 

sources are needed (Al-Dahhan et al., 2007). 
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Table 2.1 System properties and range of operating conditions. 

Parameter Value / Range ρ (kg/m3 ) 

Column I.D. 11 – inch  

Column Height 57 – inch  

Packed bed Height 24 – inch  

Spherical catalyst diameter 3 mm 570 

Air at 25℃  1.2 

water at 25℃  1000 

Liquid superficial velocity, 

Ul 

0.017 cm/s  

Gas superficial velocity, 

Ug 

0.6 – 7.7 cm/s  
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Figure 2.1 Schematic diagram of Plexiglas moving packed bed column, gas and 
liquid system. 
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Figure 2.2 Experimental setup systems with GRD source, packed bed column, and 

NaI (Tl) detector. 
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3. GAMMA RAY TECHNIQUE 

Studying the line averaged of the phase’s holdup, flow regime and pattern 

demarcation, maldistribution identification, and online monitoring have been made 

possible by developing a Gamma ray densitometry (GRD) technique in our multiphase 

reactors engineering and applications laboratory (m-Real) at Missouri University of 

Science and Technology. A new methodology for the GRD technique has been developed 

in this study for measurement of line averaged external (in the void bed) and internal (inside 

the pores of the catalyst) liquid holdup. The GRD technique composes of an encapsulated 

250-mCi Cs-137 gamma source with an energy of 660 keV and half-life of 30 years; 

thallium activated sodium iodide NaI (Tl) scintillation detector, an aluminum frame 

structure to support the source and detector, and data acquisition hardware and software. 

The ray source and the scintillation detector are both lead-shielded and placed diametrica l ly 

on opposite sides of an extruded aluminum frame outside of the column. The aluminum 

frame is equipped with two different chain wheels to provide the vertical displacement and 

horizontal displacement of the source and the detector. The source-to-detector separation 

distance is sufficient to accommodate reactors of diameter 1.0 m. The Cs-137 source is 

radio-nuclide, often used in conventional gamma-ray nuclear gauge densitometers, which 

produces a fairly mono-energetic spectrum of gamma photons in its decay process gamma-

radiation. Advantages of the long half-life of 30.17 years and appropriate emitting energy 

of 660 keV, Cs-137 was chosen as the common radioisotope in industrial nuclear 

measurements (Al-Dahhan et al., 2007). The GRD scan measurements can be made along 

the diameter and at any axial position of the column under study to obtain the line averaged 

phase distributions and holdup profiles. The packed bed column is placed at the center of 
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the source-to-detector separation distance. The distance from the gamma ray source to the 

center of the column wall is 13 cm, the total distance between the gamma ray and the 

detector is 57 cm as shown in Figure 3.2. 

 

 

Figure 3.1 Radial scanning positions (r/R). 

 

The photon beam of Gamma-ray coming from the radioactive encapsulated source 

is made such that it provides a point beam, which was custom made for the requirements 

of the measurement of Tracer Co Company (Pasadena, Texas). The gamma ray source is 

collimated by using a small diameter aperture as a radiation channel. The gamma ray then 

penetrate the cross-section of the experimental column section, before reaching the 
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collimated detector. A cubic lead collimator also collimates the detector with 4-inch length, 

4-inch height and 1-inch width. Having a rectangular slot of 0.08-inch wide, 2-inch high, 

and 1-inch deep at a location appropriate to the detectors for sampling the radiated beam 

from the source. This transmitted radiation which reaches the detector contributes to the 

measurement. The electronic system of the NaI scintillating detector of the GRD consists 

of Osprey USB interface. The Osprey USB interface acts as All-in-one HVPS (higher-

voltage power supply), preamplifier, and digital MCA (multi-channel analyzer), thus 

simplifying the electronic system. Most detectors can be represented as a capacitor into 

which a charge is deposited. Scintillation detector consists of a material which produces 

flashes of light when it absorbs radiations. Thallium-activated sodium iodide NaI (Tl) is 

widely used scintillators to detect the gamma rays and other ionizing radiations, the fact of 

its great light output among scintillators yields good efficiency and energy resolution 

(Khabaz and Yaghobi, 2015). The remaining gamma radiation received by the scintilla t ion 

detector material generates impulse signals in response to incident radiation by a sensitive 

photomultiplier tube. These collected signals are amplified (The amplifier serves to shape 

the signal as well as further amplify it), the output signals from the amplifier discriminated 

for different low energy levels by multichannel analyzer (MCA), translated to a radiation 

intensity in the form of a measurable pulse, and transmitted to a computer as an analog 

signal. These signals carry information about the energy of the original incident radiation, 

and the ProSpect® Gamma Spectroscopy Software is used to analyze the counts received 

from the detector. Gamma densitometer utilizes the concept of degree of attenuation along 

the beam path in matter where the amount of residual radiation reaching the detector is 

directly related to the density of the material (i.e. a low density absorber will give less 
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attenuation than a high density absorber since the chances of an interaction between the 

radiation and the atoms of the absorber are relatively higher in latter case). Depending on 

a variety of flow geometries along the beam path, the amount of residual radiation that 

reaches the detector through the process material reflects the different flow regimes present 

in the column and their properties (Shaikh and Al-Dahhan, 2013). The liquid holdup 

measurements were made for different configuration conditions of the column to obtain 

the baseline data for each of the GRD scanning cases. The same measurements were later 

made at the same positions with liquid and flowing through the column. The average liquid 

holdup along each chord was then calculated based on these measurements as outlined in 

the next section. Using these radiation counts, which are photon counts and time series that 

was obtained using non-destructive inspection measurements, is analyzed to obtain 

meaningful results from them without any disturbance of the signal. 

 

 

Figure 3.2 Schematic diagram of GRD showing Arrangement of Source, Plexiglas 

Column, Collimators and Detector. 
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4. PRINCIPLE OF THE HOLDUPS MEASUREMENTS AND THE NEW 

METHODOLOGY FOR MEASURING EXTERNAL AND INTERNAL  

LIQUID HOLDUPS AND CATALYST POROSITY 

 

As mentioned earlier principle of the gamma rays densitometer technique 

measurement for the holdups and bed structure is based on the absorptions of gamma 

radiation along the beam path as it passes through the tested material (Schlieper, 2000). 

The attenuation of gamma ray beam depends on the radiation energy of the source, and the 

density and thickness of the absorbing material (Al-Dahhan et al., 2007; Jin et al., 2005). 

The reduction in the radiation intensity from 𝐼0 at the source to 𝐼 can be expressed by The 

Beer – Lambert’s law according to the following equation (Chen et al., 1998): 

                                                      𝐼 = 𝐼0 𝑒−𝜇𝜌𝐿                                                               (4.1) 

This equation states that the intensity of the detected radiation 𝐼 is directly 

proportional to the intensity of the incident radiation 𝐼0 and varies exponentially with the 

thickness of the absorbing medium 𝐿 and its density 𝜌 and the mass absorption 

coefficient 𝜇. The attenuation ratio (𝑙𝑛
𝐼0

𝐼
 ) called (𝛢), and can be calculated by the natural 

logarithm sum of the measured attenuation 𝐼 and 𝐼0  along the gamma ray beam bath (Al‐

Dahhan et al., 2006) as: 

−𝐴 =  𝑙𝑛
𝐼

𝐼0

=  −𝜇𝜌𝐿 

                                              𝐴 = 𝑙𝑛
𝐼𝑜

𝐼
  = 𝜇𝜌𝐿                                                    (4.2) 

Eq. (4.2) is the general form of the GRD beam attenuation by different material.  

Hence, the attenuation ratio will be different by introducing two phases inside the column.  
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(Schlieper, 2000) defined the incident radiation intensity (𝐼0), as the measured 

intensity of radiation reaching the detector without any absorber in between the source and 

the detector in the form of reference count rate (counts/s). While the detected radiation 

intensity (𝐼), is different for each scan and depends on the constituting materials of the 

attenuating medium. Once the attenuation ratio (𝐴) obtained for each case, the line 

averaged holdup of the phases can be estimated as discussed below. In our system, three 

phases are used where the solid phase (catalyst) is stationary while the gas and liquid are 

flowing co-currently upward. Hence, the attenuation ratio (𝐴) will be the summation of the 

line attenuation of the individual phases. For three phases in operation of gas – liquid – 

solid system the attenuation ratio (𝐴) will be: 

                         𝐴𝑠𝑙𝑔 = ln
𝐼0

𝐼𝑠𝑙𝑔
=  𝜇𝑠𝜌𝑠 𝑙𝑠 + 𝜇𝑙𝜌𝑙𝑙𝑙 +  𝜇𝑔𝜌𝑔 𝑙𝑔                              (4.3) 

Where: 

𝜇𝑠, 𝜇𝑙,and 𝜇𝑔 : Mass attenuation coefficient of solid, liquid, and gas in (
𝑐𝑚2

𝑔
). 

𝜌𝑠  𝜌𝑙, and𝜌𝑔 : Density of solid, liquid, and gas respectively in (
𝑔

𝑐𝑚3 ). 

𝑙𝑠 = length occupied by solid (catalyst) among the total length (𝑐𝑚). 

𝑙𝑙 = length occupied by liquid (water) among the total length (𝑐𝑚). 

𝑙𝑔 = length occupied by gas (air) among the total length (𝑐𝑚). 

𝐿 = Total length that is occupied by the gas, liquid and solid along the GRD beam 

path including   the length of air outside the column (𝑐𝑚) and the thickness of the column 

wall. 

Since the path of air outside the column and the column wall are the same in each 

scan that we performed and these will be cancelled in the steps of manipulating the 

equations, the attenuation due to these medium and lengths are not included in the 
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following equations. Therefore, in the following equation and their manipulation only the 

materials inside the column of solid, gas, and liquid are included. 

Where: 𝐿 =  𝑙𝑠 + 𝑙𝑙 + 𝑙𝑔, 𝑙𝑠 =  𝜀𝑠  𝐿, 𝑙𝑙 =  𝜀𝑙  𝐿, and 𝑙𝑔 =  𝜀𝑔  𝐿, 

𝜀𝑠,𝜀𝑙, and 𝜀𝑔 = the holdup for solid, liquid and gas respectively. 

The attenuation ratio (𝐴) for two phase will be: 

 Gas – solid system: 𝐴𝑔𝑠 = 𝑙𝑛
𝐼0

𝐼𝑔𝑠
 = 𝜇𝑔𝜌𝑔 𝑙𝑔 +  𝜇𝑠 𝜌𝑠𝑙𝑠                                                       (4.4) 

 Liquid – solid syste: 𝐴𝑙𝑠 = 𝑙𝑛
𝐼0

𝐼𝑙𝑠
 = 𝜇𝑙𝜌𝑙𝑙𝑙 +  𝜇𝑠 𝜌𝑠𝑙𝑠                                                         (4.5) 

 Gas – liquid system: 𝐴𝑔𝑙 = 𝑙𝑛
𝐼0

𝐼𝑔𝑙
 = 𝜇𝑔𝜌𝑔𝑙𝑔 + 𝜇𝑙𝜌𝑙𝑙𝑙                                                       (4.6) 

The attenuation ratio (𝐴) for single phase will be: 

 Gas phase: 𝐴𝑔 = 𝑙𝑛
𝐼0

𝐼𝑔
 = 𝜇𝑔𝜌𝑔 𝑙𝑔                                                                                       (4.7) 

 Solid phase: 𝐴𝑠 = 𝑙𝑛
𝐼0

𝐼𝑠
 = 𝜇𝑠𝜌𝑠 𝑙𝑠                                                                                      (4.8) 

 Liquid phase: 𝐴𝑙 = 𝑙𝑛
𝐼0

𝐼𝑙
 = 𝜇𝑙𝜌𝑙𝑙𝑙                                                                                     (4.9) 

In this study, a new methodology is developed to measure the line average external 

void space and catalyst bed external liquid holdup in void space, and the line average 

internal porosity of catalyst. All GRD measurements are carried out the same axial and 

radial locations as mentioned in experimental setup section, with different material inside 

the column as described below. All GRD scans contain the attenuation value of the column 

wall which is constant. We removed the wall attenuation by subtracting the wall attenuation 

ratio (𝐴𝑤𝑎𝑙𝑙 ) from each attenuation ratio (𝐴). The catalyst bed is fixed during our 

experiment except the top of the bed where the catalysts are fluidized. Therefore, the liquid 
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holdup, void holdup of the bed, and internal liquid holdup and porosity of the catalyst, were  

measured by performing the following GRD scans: 

 Without column. 

 An empty column for the wall attenuation. 

 The column is filled only with water for the liquid attenuation. 

 The column is filled with packed bed for a dry catalyst representing 

attenuatuoin of the gas and solid phases. 

 The packed column is filled with water first, then it is drained where the 

scan was for a wet catalyst attenuation. 

 The packed bed is filled with water representing both liquid and solid 

attenuation. 

 Scanning the gas-liquid-solid flow under the desired operation at the same 

position where the holdups for all the three phases can be obtained. 

GRD scanning procedures for different constituting materials and flowrate 

conditions were followed as reported by (Efhaima and Al-Dahhan, 2015; Rados et al., 

2005; Yin et al., 2002). New methodology to measure line average liquid holdup in void 

space, liquid holdup inside the catalyst pores and the catalyst position for porous catalyst, 

has been developed and performed as follows: 

1. Scannig without column (absorbing medium) 𝐼0 (i.e. air only) In this scanning case, 

GRD beam passes through the atmosphere from the source to the detector without any 

absorbing medium in between them. The obtained attenuation 𝐼 is due to air only (𝐼𝑔 ) 

which represents the incident radiation (𝐼0) (Schlieper, 2000). The gamma ray source is 

placed on one side and the scintillation detector is on the other side. 
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2. Scannig the empty column, for wall attenuation 𝐴𝑐  of plexiglass (air inside only, base  

line). In this scanning case, the GRD beam passes through the empty column, the 

attenuation is due to the wall of the column and the gas (air) inside it. The obtained 

attenuation 𝐼𝑐  is due to wall column and air: 

                                                             𝐴𝑔 = 𝑙𝑛
𝐼0

𝐼𝑔
 = 𝜇𝑔𝜌𝑔 𝑙𝑔 

                                                             𝐴𝑔 = 𝑙𝑛
𝐼0

𝐼0
 = 𝑙𝑛 1 = 0 

                                                             𝐴𝑐 = ln
𝐼0

𝐼𝑐
 = 𝜇𝑐𝜌𝑐𝑙𝑐+ 𝜇𝑔𝜌𝑔𝑙𝑔 

                         𝐴𝑐 = 𝑙𝑛
𝐼0

𝐼𝑐
 = 𝜇𝑐𝜌𝑐𝑙𝑐                                                     (4.10) 

Where: 𝐼𝑐  : represents the attenuation coefficient due to column wall. 

The mass attenuation coefficient of the air (𝜇𝑔) is negligible compared to the 

Plexiglas (𝜇𝑐), less interaction of air in comparison with Plexiglas. 

3. Scannig the column full of water, for liquid attenuation 𝐴𝑙(i.e. water inside only). In this 

scanning case, the same packed column filled with water only in which the GRD beam 

passes through the column wall and the water. The obtained attenuation is due to the 

wall of the column and the liquid inside it:  

                                         𝐴𝑙𝑐 = 𝑙𝑛
𝐼0

𝐼𝑙𝑐
 = 𝜇𝑙𝜌𝑙𝑙𝑙+ 𝜇𝑐𝜌𝑐𝑙𝑐                                (4.11) 

𝐴𝑙 = 𝐴𝑙𝑐 −  𝐴𝑐  

            𝐴𝑙 =  𝜇𝑙𝜌𝑙𝑙𝑙                                                             (4.12) 

By subtraction (eq.4.10) from (eq.4.11), the net attenuation of liquid (𝐴𝑙) is obtained, 

where, the attenuation of air outside the column is neglected as illustrated in step 2. 
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4. Scanning the column packed with dry solid catalyst, as a 𝐴𝑑𝑠 𝑔  𝑐  (i.e. dry catalyst inside 

only, dry solid phase). In this scanning case, the same packed column was packed with 

dry solid particles only in which the GRD beam passes through the column wall, the dry 

catalyst and the gas in voids. The obtained attenuation is due to the wall of the column, 

the dry solid catalyst and the gas in voids between solid catalysts, where the latter is 

negligible in comparison with the density of the solid along the path of the gamma ray 

beam from the source to the detector. By subtraction (eq.4.10) from (eq.4.13), the net 

attenuation of dry solid catalyst (𝐴𝑑𝑠 ) is obtained: 

                             𝐴𝑑𝑠 𝑔 𝑐 = 𝑙𝑛
𝐼0

𝐼𝑑𝑠  𝑔 𝑐
 = 𝜇𝑑𝑠 𝜌𝑑𝑠𝑙𝑑𝑠 + 𝜇𝑐𝜌𝑐𝑙𝑐                           (4.13) 

                                                   𝐴𝑑𝑠 = 𝐴𝑑𝑠 𝑔 𝑐 − 𝐴𝑐  

               𝐴𝑑𝑠 = 𝜇𝑠𝜌𝑠 𝑙𝑠                                                             (4.14) 

𝐼𝑑𝑠  : represents the attenuation coefficient due to dry solid catalyst, and 𝜇𝑑𝑠 ˃˃ 𝜇𝑔, 

so 𝜇𝑔𝜌𝑔 𝑙𝑔 ≅ 0 

5. Scannig the column packed with wet solid catalyst, 𝐴𝑤𝑠 𝑔 𝑐  (i.e. wet catalyst inside only 

– wet solid phase). The same packed bed, that has the dry solid catalyst particles, was 

filled with water for a sufficient time then the column was left to drain for a number of 

hours to ensure that the static liquid becomes negligible. The static holdup in the step is 

negligible as proper draining ensures that is no liquid outside of the catalyst pores in the 

measured line averaged location. Hence the only left liquid is detained inside the catalyst 

porous due to the capillary force (Al‐Dahhan and Highfill, 1999). In this scanning case, 

the GRD beam passes through the column wall, the wet catalyst, and the void space of 

gas. The obtained attenuation is due to the wall of the column, the solid catalyst, liquid 
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inside the catalyst (porous), and the gas in voids between solid catalysts, where the latter 

is negligible: 

                            𝐴𝑤𝑠 𝑔 𝑐 = 𝜇𝑠 𝜌𝑠𝑙𝑠 +  𝜇𝑙𝜌𝑙𝑙𝑖𝑛𝑡.  cat.  pores + 𝜇𝑐𝜌𝑐𝑙𝑐                  (4.15) 

The obtained attenuated of the air also neglected in this case as illustrated in step2.  

By subtraction (eq.4.10) from (eq.4.15), the net attenuation of wet solid catalyst (𝐴𝑤𝑠 ) 

is obtained, Where: 𝜇𝑔𝜌𝑔 𝑙𝑔 ≅ 0: 

𝐴𝑤𝑠 = 𝐴𝑤𝑠−𝑔−𝑐 −  𝐴𝑐  

                                                      𝐴𝑤𝑠 = 𝜇𝑠𝜌𝑠 𝑙𝑠 + 𝜇𝑙𝜌𝑙𝑙𝑖𝑛𝑡.  𝑐𝑎𝑡 .  𝑝𝑜𝑟𝑒𝑠                         (4.16) 

6. Scannig the column packed with solid and liquid, 𝐴𝑙  𝑠 𝑐  (water – catalyst inside, liquid – 

solid phase).The same packed bed, contains wet solid catalyst inside, was filled with 

water so the voids between the particles currently filled with water. In this scanning 

case, the GRD beam passes through the column wall, the solid catalyst and water. The 

obtained attenuation is due to the wall of the column, the solid catalyst, liquid inside the 

catalyst (porous) and the liquid outside the catalyst in voids between solid catalysts: 

       𝐴𝑙  𝑠 𝑐 = 𝜇𝑙𝜌𝑙𝑙𝑖𝑛𝑡.  𝑐𝑎𝑡.  𝑝𝑜𝑟𝑒𝑠 + 𝜇𝑙𝜌𝑙𝑙𝑒𝑥𝑡.  𝑣𝑜𝑖𝑑 +  𝜇𝑠 𝜌𝑠𝑙𝑠 + 𝜇𝑐𝜌𝑐𝑙𝑐                   (4.17) 

𝐴𝑙  𝑠 = 𝐴𝑙  𝑠 𝑐 −  𝐴𝑐  

                          𝐴𝑙  𝑠 = 𝜇𝑙𝜌𝑙𝑙𝑖𝑛𝑡.cat.  pores + 𝜇𝑙𝜌𝑙𝑙𝑒𝑥𝑡.  𝑣𝑜𝑖𝑑 +  𝜇𝑠 𝜌𝑠𝑙𝑠               (4.18) 

By subtraction (eq.4.10) from (eq.4.17), the net attenuation of liquid-solid (𝐴𝑙𝑠 ) is 

obtained in eq. (4.18), Since: 𝑙𝑒𝑥𝑡.  𝑣𝑜𝑖𝑑 =  𝜀𝛽𝐿. 

                                  𝐴𝑙  𝑠 = 𝜇𝑙𝜌𝑙𝑙𝑖𝑛𝑡.  cat.  pores + 𝜇𝑙𝜌𝑙  𝜀𝛽𝐿 +  𝜇𝑠𝜌𝑠 𝑙𝑠                     (4.19)  

Where (𝜀𝛽) is the line average void holdup which is completely occupied by the liquid , 

which is equal to the bed void. 
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7. Scanning the column with the desired operation of gas and liquid phases, 𝐴𝑙  𝑠 𝑔 𝑐 (air – 

water – catalyst, gas – liquid – solid). The packed bed contains the solid catalyst and the 

liquid – gas phases are introduced into the packed bed column as the desired flow 

operating conditions. In this scanning case, the GRD beam passes through the column 

wall, catalyst, liquid, and gas as a three phase liquid – solid – gas attenuation. The 

obtained attenuation is due to the wall of the column, the solid catalyst, liquid inside the 

pore, total liquid in external void (dynamic + static), and the gas phase: 

                 𝐴𝑙  𝑠 𝑔 𝑐 = 𝜇𝑙𝜌𝑙𝑙𝑖𝑛𝑡.cat.  pores +  𝜇𝑙𝜌𝑙𝑙𝑒𝑥𝑡.  𝑣𝑜𝑖𝑑 +  𝜇𝑠𝜌𝑠 𝑙𝑠 +  𝜇𝑐𝜌𝑐𝑙𝑐               (4.20) 

By subtraction (eq.4.10) from (eq.4.20), the net attenuation of liquid – solid – gas (𝐴𝑙  𝑠 𝑔 ) 

is obtained: 

                                                           𝐴𝑙  𝑠 𝑔 = 𝐴𝑙  𝑠 𝑔 𝑐 −  𝐴𝑐  

                             𝐴𝑙  𝑠 𝑔 = 𝜇𝑙𝜌𝑙𝑙𝑖𝑛𝑡.cat.  pores + 𝜇𝑙𝜌𝑙𝑙𝑒𝑥𝑡.  𝑣𝑜𝑖𝑑 + 𝜇𝑠𝜌𝑠 𝑙𝑠                      (4.21) 

Where: 𝑙𝑠 =  𝜀𝑠 𝐿, 𝑙𝑒𝑥𝑡.  𝑣𝑜𝑖𝑑 =  𝜀𝑙  𝐿, and the 𝜇𝑔 gas is neglected. 

                   𝐴𝑙  𝑠 𝑔 = 𝜇𝑙𝜌𝑙𝑙𝑖𝑛𝑡.  cat.  pores + 𝜇𝑙𝜌𝑙  𝜀𝑙𝐿 +  𝜇𝑠𝜌𝑠 𝜀𝑠 𝐿                       (4.22) 

To measure the Bed void distribution, that represents the tortious path among the bed 

particles, by subtraction (eq.4.16) from (eq.4.18): 

                                       𝐴𝑙  𝑠 − 𝐴𝑤𝑠 =  𝜇𝑙𝜌𝑙𝜀𝛽 𝐿 =  𝜀𝛽𝐴𝑙 

                            𝜀𝛽 =  (
𝐴𝑙 𝑠− 𝐴𝑤𝑠

𝐴𝑙
)                                                        (4.23) 

This represents the void between the bed catalyst particles that is randomly packed. The 

attenuation of the gas phase outside the packed bed column which is the air in this scanning 

work. Also, the different densities of the geometries for the absorbing material along the 

GRD beam bath make a difference in the attenuation of the gamma ray beam. 
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To measure the total liquid holdup in external void space (dynamic and static liquid 

holdup). Therefore, subtraction of (eq.4.16) from (eq.4.21), yields: 

𝐴𝑙 𝑔 𝑠 − 𝐴𝑤𝑠 =  𝜇𝑙𝜌𝑙𝜀𝑙𝐿 =  𝜀𝑙  𝐴𝑙 

                           𝜀𝑙 =  (
𝐴𝑙 𝑠 𝑔− 𝐴𝑤𝑠

𝐴𝑙
)                                                      (4.24) 

Here due to capillary force and in the absence of surface reactions, the the catalyst 

pores are always intact with the liquid.  

To measure the catalyst porosity fraction with respect to the total bed volume, 

which is equivalent to the internal liquid holdup inside the catalyst particle, subtraction of 

(eq.4.14) from (eq.4.16), gives: 

𝐴𝑤𝑠 − 𝐴𝑑𝑠 =  𝜇𝑙𝜌𝑙𝑙𝑖𝑛𝑡.  cat.  pores  =  𝜇𝑙𝜌𝑙𝜀𝑖𝑛𝑡. 𝐿 

Where: 𝐴𝑙 =  𝜇𝑙𝜌𝑙  𝐿 

𝐴𝑤𝑠 − 𝐴𝑑𝑠 =  𝜀𝑖𝑛𝑡 . 𝐴𝑙   

                                                     𝜀𝑖𝑛𝑡 . =  (
𝐴𝑤𝑠 − 𝐴𝑑𝑠

𝐴𝑙
)                                           (4.25) 

𝜀𝑖𝑛𝑡 . :  It is equivalent to the catalyst porosity fraction with respect to the bed volume. 

The line average gas holdup can be measured by𝜀𝛽 − 𝜀𝑙 = 𝜀𝑔 . Therefore, 

𝐴𝑙  𝑠 −𝐴𝑙 𝑠 𝑔 = 𝜇𝑙𝜌𝑙𝑙𝑖𝑛𝑡.  cat.  pores −  𝜇𝑙𝜌𝑙𝑙𝑒𝑥𝑡.  𝑣𝑜𝑖𝑑  

𝐴𝑙 𝑠 − 𝐴𝑙  𝑠 𝑔 = 𝜇𝑙𝜌𝑙  (𝜀𝛽𝐿 − 𝜀𝑙𝐿) 

Where 𝜀𝑔 = 𝜀𝛽 − 𝜀𝑙 

The attenuation will be different between the phases as the densities are different, which is 

depending on the interaction of the gamma ray with the absorbing material. Higher density 

material will result in a higher attenuation of the gamma ray beam than the lower density 

material. 
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By subtraction the attenuation of the liquid-solid phase from the attenuation of the three 

phases, we can get the gas holdup: 

𝐴𝑙 𝑠 − 𝐴𝑙  𝑠 𝑔 = 𝜇𝑙𝜌𝑙𝐿 (𝜀𝑔) 

                              𝜀𝑔 =  (
𝐴𝑙 𝑠− 𝐴𝑙 𝑔 𝑠

𝐴𝑙
)                                                       (4.26) 

Then the sold holdup: 

                𝜀𝑠 =  1 −  𝜀𝑙 −  𝜀𝑔                                                      (4.27) 
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5. RESULT AND DISCUSSION 

5.1 DIAMETER PROFILE OF FIXED PARAMETERS OF THE BED 

In this section, the line average diameter distribution of the parameters like external 

voidage, solids holdup, and the internal liquid holdup inside the catalyst which is equivalent 

to the internal porosity fraction with respect to bed volume. All these parameters are fixed 

for a packed bed unit irrespective of the operating conditions. The methods used to obtain 

these parameters have been discussed in the section of the principle of measurements. 

5.1.1 Diameter Profile Of External Catalyst Bed Void Space (𝜺𝜷). Figure 5.1 

shows the line average radial profiles of external bed void at the axial locations of Z/D = 

0.3 and 1. The bed was randomly packed which is visible from Figure 5.1 where the void 

fraction varies along the measured diameter of the column. The diameter profile of void 

was seen to vary at the middle location less than that at the bottom of the bed. The 

percentage deviation calculated based on the following equation: 

𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛 =
max(𝑟𝑎𝑑𝑖𝑎𝑙) − min(𝑟𝑎𝑑𝑖𝑎𝑙)

max(𝑟𝑎𝑑𝑖𝑎𝑙)
 

The percentage change with respect to maximum and minimum value is around 15 

percent at the middle axial location and 13 percent at the bottom axial location. There is 

variation along the radial direction for both the axial location and it can still significantly 

affect flow distribution and efficiency of the catalyst bed (Wang et al., 2001). The randomly 

way in packing the catalyst inside the column can affect the diameter profile of bed voids. 

Higher voidage structure can create less resistance flow path and hence flow channeling 

and bypassing and hence flow maldistribution (Du et al., 2016). 
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Figure 5.1 Diameter profile of external catalyst bed void space (εβ). 

 

5.1.2 Diameter Profile Of Line Average Internal Liquid Holdup (𝜺𝒊𝒏𝒕 .). 

Figure 5.2 shows the line average internal liquid holdup which is equivalent to the interna l 

porosity fraction of the catalyst particle with respect to the bed volume. This is the first 

time that these types of information are obtained for the porous catalyst of packed bed 

using Gamma-Ray Densitometry. The results indicate that the line average internal liquid 

holdup is not exactly same or uniform along the radial direction. The percentage deviation 

(section 5.1.1) along the radial direction is around 18 percent at the middle location and 

around 8 percent at the bottom. This can also be attributed to the fact of random distribut ion 

of packed bed, where the catalyst particles can form a small gab inside the bed. These gaps 

can be filled by the liquid or the gas separately, or the two phases together during the flow 

operation conditions. This parameter is independent of the flow rate for fixed bed reactor, 

and moreover, it is a function of catalyst property and bed distribution. 
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Figure 5.2 Radial distribution of line average porosity of the catalyst. 

 

5.1.3 Radial Distribution Of Solid Holdup (𝜺𝒔). Figure 5.3 shows the line 

average radial profile of solid holdup and its shows random distribution and it is due to 

random packing and the average values is around 0.348. The percentage deviation (section 

5.1.1) along radial direction at middle is around 8 percent and at bottom is around 17 

percent. There is a study done to measure line average solid holdup for packed bed using 

GRD on random bed structure (30 cm ID column) on a similar kind of catalyst geometry ( 

3.2 mm alumina particle) (Chen et al., 2001). Their finding shows line average solid holdup 

at around 0.66 but this catalyst is non-porous in nature. In our study, the catalyst is porous 

particles that has an internal voidage and solid matrix, therefore, the resulting summation 

of solid holdup (≅0.348) and line average internal porosity (≅ 0.27) gives approximate 

0.61. This summation is done to ensure geometrical similarity between non-porous and 

porous catalyst; this also validated the method of determination of solid holdup. 
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Figure 5.3 Radial distribution of Solid holdup (εs). 

 

5.2 THE LINE AVERAGE TOTAL EXTERNAL LIQUID HOLDUPS 

In this study and methodology, the measured external liquid holdup is the sum of 

the static liquid holdup and dynamic liquid holdup. The static liquid holdup is trapped 

liquid molecule in the catalyst bed, and dynamic liquid holdup is flowing liquid along the 

external void space of catalyst bed. For this study, the baseline operating condition is the 

scaled down flowrate with respect to the industrial flow rate. The gas flow rate is varied 

keeping the baseline liquid flow rate fixed to see the effect of the gas flow rate on external 

liquid holdup. The method used to obtain this parameter is showed in section 4 (princip le 

of measurements). 

5.2.1 Measurement Of Line Average External Liquid Holdup. The line 

average measurements of the external liquid holdup have been done on varying flow rate 

at fixed locations using gamma ray densitometry and scintillation detector. 
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Figure 5.4 Liquid Holdup (εl) at the Center (r/R = 0) for the packed bed. 

 

 

Figure 5.5 Liquid Holdup (εl) at (r/R = 0.5) right side of the packed bed. 
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Figure 5.6 Liquid Holdup (εl) at (r/R = - 0.5) Left side of the packed bed. 

 

 

Figure 5.7 Liquid Holdup (εl) at (r/R = 0.9) right side of the packed bed. 
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Figure 5.8 Liquid Holdup (εl) at (r/R = - 0.9) Left side of the packed bed. 

 

Figure 5.4 to Figure 5.8 shows that the external line average liquid holdup (εl) at 

r/R = (0, + 0.5, - 0.5, + 0.9, - 0.9) and bottom and middle axial locations (Z/D = 0.3 and 1). 

It is observed that the liquid holdup is gradually decreasing, and decreasing trend is sharp 

after 4cm/sec for all the position except at wall (r/R = ± 0.9), it is usually seen in this reactor 

the transition occurs from bubble to pulse flow occurs at this flow rate “Hydrodynamic of 

A Co-Current Gas Liquid Upflow in A Moving Packed Bed Reactor with Porous 

Catalysts”. Increasing gas flow rate results in a transition in the flow regime from bubbly 

to pulse flow for gas phase. At Bubbly flow regime the reduction of liquid holdup is not 

sharp, as this regime is characterized by a low interaction between bubbles themselves, 

bubbles and packing, and also a little effect of bed porosity and geometry on these 

quantities (Molga and Westerterp, 1997b). As gas velocity is increased, the fluid turbulence 

and the bubble number will increase, and the interference between bubbles and the 

coalescence/re-split will occur, which reduces bubble size and increases the gas holdup in 
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the reactor and then reduces the liquid holdup sharply with increasing gas flow rate. All 

the location irrespective of the axial and radial location showed decreasing trend of the 

liquid holdup with increasing gas flow rate, and the same trend is observed by (Colli-

Serrano and Midoux, 2000; Kumar et al., 2012; Thanos et al., 1996). The decreasing trend 

calculated with respect to maximum holdup ((max-min)/max)) for all location is varying 

between 15 percent and 33 percent. At wall (r/R= ± 0.9) the transition of the regime is not 

clear due to the significant wall effect. The trend at both sides of column wall, as seen in 

Figure 5.7 and Figure 5.8 show quite different behavior, and this can be directly linked to 

the effect conical bottom and the plenums. In all the cases the liquid holdup is higher for 

the bottom part and this is due to external bed voidage/ external porosity of the bed structure 

as seen in Figure 5.1 where the void space is higher for the bottom location compared to 

the middle section. 

5.2.2 Diameter Profile Of External Liquid Holdup. The radial profiles of the 

liquid holdup for the bottom part (Z/D = 0.3) of the packed bed at superficial gas velocit ies 

(Ug = 0.6, 1.2, 3.8 and 7.7 cm/s) and at constant liquid velocity (Ul = 0.017 cm/s), are shown 

in Figure 5.9. The radial average is calculated for each gas velocity (Ug = 0.6, 1.2, 3.8 and 

7.7 cm/s) and it is as follows (𝜺𝒍 = 0.3, 0.29, 0.27 and 0.24). It seen to be decreasing as 

expected. The percentage deviation (section 5.1.1) for increasing flow rate is approximate 

as follows (11%,12%,13%,20%). At lower flow rate the radial distribution of external 

liquid holdup is quite uniform but on increasing the gas velocity the distribution shifts more 

toward one side. Where, the gas phase flows in one side and the liquid phase on the other 

side. This phenomenon can be due to the effect of cone base and plenums. 
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Figure 5.9 Effect of superficial gas velocity (Ug) on the liquid holdup at Bottom 

(Z/D = 0.3) of the packed bed at Ul = 0.017 cm/s. 
 

 

Similarly, the radial profiles of the liquid holdup for the middle part (Z/D = 1) of 

the packed bed, are shown in Figure 5.10. It appears in Figure 5.10, a slight decrease in the 

average liquid holdup values obtained for superficial gas velocities (Ug = 0.6, 1.2, 3.8 and 

7.7 cm/s), are (εl = 0.27, 0.26, 0.24 and 0.21). On comparison of the average external liquid 

holdup values at Z/D = 0.3 and Z/D = 1 for respective liquid velocity it is found to be quite 

similar expect little higher value for the bottom part. The percent deviation (5.1.1) 

calculated for increasing flow rate is approximate as follows (10%,11%,11%,25%) and is 

seen to be increasing due to more random behavior due to complex interaction of phases.  

At lower flow rate the radial distribution is quite uniform as also observed for the bottom 

part. At higher flow rate the flow distribution is better with respect to bottom part, this is 

due to the flow rearrangement along the axial height of bed structure. 
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Figure 5.10 Effect of superficial gas velocity (Ug) on the liquid holdup at Middle 

(Z/D = 1) of the packed bed at Ul = 0.017 cm/s. 
 

 

5.2.3 Comparison With Liquid Holdup Correlations. The overall liquid 

holdup is measured for respective superficial gas velocity by algebraically averaging values 

obtained at both axial and radial locations. It is compared with the correlation of overall 

liquid holdup for upflow packed bed with the horizontal bottom. As this is the first time 

studies have been conducted on upflow moving packed bed reactor with conical bottom. 

One study on  packed bed for two phase upflow have proposed following correlation 

(Saroha and Khera, 2006). 

𝐻𝐿 = 0.21 + 0.00083𝑅𝑒𝑙 − 0.0026𝑅𝑒𝑔 

Where:  𝑅𝑒𝑙= Liquid Reynold Number and 𝑅𝑒𝑔= Gas Reynolds Number. 

The correlation proposed by (Saroha and Khera, 2006) gives a fair estimate of the 

liquid holdup and yields an average deviation of 25%. 
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6. REMARKS 

The current study investigated the effect of varying superficial gas velocity at a 

constant superficial liquid velocity on the line average external liquid holdup in a co-

current two phase upflow moving packed bed reactor using Gamma ray densitometry 

(GRD). The line average internal porosity of the catalyst particles, and line average external 

bed porosity have been measured also. The scanning experiments performed on an 11 - 

inch internal diameter upflow moving packed bed operated with an air-water system. The 

moving packed bed was packed randomly with 3 mm extrudate porous particles. The liquid 

holdup was calculated based on the new methodology developed using Beer – lambert’s 

equation. It has been found that the liquid holdup decreased as the superficial gas velocity 

increased at all axial and radial locations. The rate of decrease in liquid holdup at all 

location except at walls is higher after 3.8 cm/sec and it is due to transit ion from bubbly to 

pulse flow regime at this superficial gas velocity “Hydrodynamic of A Co-Current Gas 

Liquid Upflow in A Moving Packed Bed Reactor with Porous Catalysts”. The same trend 

observed for reported studies on upflow packed bed reactor. The external liquid holdup is 

higher for the bottom part than middle section of the packed bed for the same range of 

superficial gas velocities. At lower flow rate the liquid holdup distribution is quite uniform 

at both axial locations, but at higher flow rate the middle sections shows better liquid flow 

distributions. The result shows that the gamma ray densitometry can indicate and measure 

the online liquid holdup, and it's a reliable method for measuring the holdup inside packed 

beds with a thick wall. The comparison with available correlation on upflow packed bed 

showed similar trend but large absolute deviation. This necessitates further studies to 

develop predictable correlations for this kind of systems. 
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II.  IDENTIFICATION OF FLOW REGIME IN A COCURRENT GAS – LIQUID 

UPFLOW MOVING PACKED BED REACTOR USING GAMMA RAY 

DENSITOMETRY 

ABSTRACT 

In industries, upflow moving packed bed reactors are widely used as a leading 

guard reactor preceding the conventional fixed bed residual desulfurization unit (RDS). 

Identification of flow regimes is one of the important aspects of design, scale up, predictive 

model and reactor performance. Flow regime identification in this reactor was studied 

using gamma-ray densitometry (GRD). GRD is an important noninvasive measurement 

technique and flow identification can be determined by on-line monitoring. Time domain, 

and state space or chaotic methods are employed on photon count time series of GRD to 

determine flow regime. Time domain analysis includes determination of Standard 

Deviation, Mean, and Variance. Chaotic analyses include determination of Kolmogorov 

entropy (KE). All analyses are done using in-house developed programs. GRD experiments 

were performed on a lab scale upflow packed bed reactor built by scaling down the 

industrial reactor. The lab scale reactor is Plexiglas column of 11-inch I.D and 30-inch 

height, and it is packed randomly with 3 mm diameter catalyst till 24” height. Various axial 

and radial position are selected to conduct GRD scanning. The selected test location covers 

the bottom, middle and top of the packed bed. The measurements are conducted at 

superficial liquid (water) velocity 0.017 cm/s and superficial gas (air) velocity in the range 

of 0.6 – 7.7 cm/s. All analysis showed similar flow regime trend. When compared with 

flow regime map for upflow packed bed, the results indicate bubbly and pulse flow are the 

main regimes under this operating conditions. 
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1. INTRODUCTION 

The recent worldwide trend in improving the quality of light fuels with the 

increased reserve of heavy oil have necessitated the need for designing advanced refinery 

processes, which are more economical, efficient, long run in combination with strict laws 

of environmental protection (Dorai et al., 2015; Kressmann et al., 1998). There are four 

main types of commercial hydroprocessing reactors that have been considered, designed 

and employed which are: two phase down flow fixed-bed reactors (trickle bed reactors) 

two phase upflow fixed bed reactors (bubble packed bed reactors), moving-bed reactors 

(MBR) and ebullated bed reactors (EBR). Generally, fixed bed reactor has been used for 

treating light petroleum feeds such as naphtha, middle distillate and heavy feedstocks < 

250 ppm metal impurities. For more than 250 ppm and extra heavy petroleum feeds with 

higher amount of metals the moving-bed reactors and the ebullated-bed reactors have been 

used (Liu et al., 2009). In such a process, catalysts can lose their activity and become 

deactivated during the process for a variety of reasons, e.g. coke, poisoning, and sintering 

in which unit shutdown is unavoidable. It has been indicated, from the simulation results 

that gas-liquid-solid moving bed reactors could be a promising alternative in comparison 

with fixed bed reactors (Iliuta and Larachi, 2013b) due to a severe reduction of catalyst 

activity. To overcome catalyst deactivation and to attain the longest life for the catalyst, 

one approach is to operate the moving bed reactor, as a pretreatment system followed by 

the fixed bed reactor. Moving bed reactor offers a relatively large catalyst migration time, 

in comparison with the liquid and gas phases mean residence times, and hence, can be 

considered as a pseudo-two- phase gas-liquid upflow fixed bed where the catalysts are 

periodically removed and supplied to the reactor. Therefore, for the sake of hydrodynamics 
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study, moving bed reactor is investigated as two-phase uflow packed bed reactor. The only 

difference in this case is the configuration and the design of the bottom part of the bed 

which takes a cone shape to facilitate the removal of the catalyst and to distribute the 

upflow of gas and liquid phases. While there are a number of studies reported in the 

literature on the packed bed upflow reactors, where the bottom is a flat perforated or 

chimneys mounted plate for the catalyst support, and for distributing the upflow of gas and 

liquid phases. There is no study in the open literature related to the packed bed upflow 

configuration of moving bed with a cone design bottom. It is generally recognized, that 

various flow regimes exist in co-current upflow packed bed reactors, such as bubble flow, 

spray flow, and pulse flow regime (Shah, 1979). The reactor performance, volume 

productivity, mixing characteristics, flow distribution and the mass and heat transfer 

processes within a reactor depend strongly on the prevailing flow regimes (Nedeltchev, 

2015; Thome, 2004). Hence, it is important to know how to identify the flow regime 

(Nedeltchev et al., 2003). In packed bed reactors, the flow regime depends on the bed 

parameters, liquid physical properties, particle size, and the fluid flow rates (Colli-Serrano 

and Midoux, 2000). Identification of these flow regimes in a packed bed is necessary in 

order to ensure the desired flow regime for the selected gas-liquid reaction. The results are 

often displayed in the form of a flow regime map that identifies various flow regimes with 

respect to flow and physical properties parameters such as for example the proposed flow 

regime map of Fukushima and Kusaka (1977). Flow regime maps can be obtained using 

different experimental methodologies, such as by monitoring either a sharp increase in the 

pressure fluctuations, sudden changes in the gas – liquid mass transfer coefficients and 

analysis of variations in the apparent electrical conductivity of the bed, or the analysis of 
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flow images obtained using capacitive sensors (Moreira and Freire, 2003b). Techniques 

employed for identifying the flow regimes commonly measure simple pressure fluctua t ion 

signals, two-phase electric conductivity probe signals, or visual observation through a 

transparent wall (Revankar et al., 2007). There are limitations with using the visual 

observation as it requires a transparent wall and a transparent liquid while at the wall. 

Hence, visual observation is not always applicable especially with opaque reactor or with 

combination of multiphase gas – liquid – solid that is also effectively opaque. Also, at 

higher flow rates the visual observation might not be very reliable as well, because only 

the vicinity of the wall can be observed. Pressure drop technique can give global 

information at the wall for the flow regime measurement and it may not reflect what 

happens inside the bed. For packed bed reactors, the limitation to use this measurement 

technique is a care should be taken in order no solid particles are in direct contact with the 

membrane of the pressure sensor (Boyer et al., 2002) besides the measurement is at the 

wall. (Raghavendra Rao et al., 2011) classified the flow regimes in the upflow packed bed 

into two main classifications: first, single phase pore flow and two phase pore flow, and 

second, bubble flow, pulse flow, spray flow, and different names for the intermed iate 

regimes. Bubble flow, pulse flow and spray flow also were reported by other researchers 

(Lamine et al., 1992a; Molga and Westerterp, 1997a; Moreira and Freire, 2003b; Varma et 

al., 1997). The single phase pore flow happens at low gas flow rates when the interst ices 

pores between the packing particles are predominantly covered by either of the phases 

separately, while the two phase pore happens at high gas flow rates when the interst ices 

pores between the packing particles are filled by both phases. These kinds of pore flow 

regimes are observed when the sizes of the column packing particles were small or equal 
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to 2 mm in diameter , while bubble flow, pulse flow and spray flow have been observed 

for packing particles greater than 2 mm (Raghavendra Rao et al., 2011). Bubble flow exists 

at low gas flowrate and it’s characterized by dispersed gas flows as bubbles in the 

continuous liquid phase. Pulse flow occurs at higher gas flowrate and it is characterized by 

liquid rich waves or “pulses” followed by a gas rich portion traverse upwards through the 

column length at almost regular time intervals. These pulses result in local fluctuations in 

liquid holdup, pressure drop, and heat and mass transfer rates. Hence, pulse flow regime 

enhances overall heat and mass transport while reducing axial dispersion, making it a 

potentially attractive mode of operation (Wilhite et al., 2005). When the reactor operates 

in pulse flow regime, the rate of the reaction will enhance and increase in value up to 30% 

while holding the other parameter in the reactor at constant (Wilhite et al., 2005). Spray 

flow takes place at highest gas flowrates and it is characterized by continuous gas flow 

with dispersed liquid flowing as film over the particles and partly as droplets in the 

continuous gas phase. Therefore, the proper understanding and identification of these 

regimes are crucial for designing and operating any reactor. Only few investigations of 

flow regime identification for co-current gas liquid upflow regular packed beds, with a 

plate at the bottom to support the catalyst and to distribute the phases, were published 

compared to co-current downflow packed beds (trickle bed reactors). Investigation of flow 

regime identification for co-current gas liquid upflow packed bed are: (Raghavendra Rao 

et al., 2011) identified the flow regime in two phase upflow packed bed reactor, Bubble 

flow, pulse flow and spray flow were identified by visual observation in their study.  

(Moreira and Freire, 2003b) identified the flow regime by visual observation and they 

described three flow regimes: bubble flow, transition I flow, pulse flow and spray flow.  
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(Murugesan and Sivakumar, 2002) observed the bubble flow regime as uniform bubbles 

flow in liquid, dispersed bubble flow regime as uniform and tiny bubbles flow in liquid 

and pulse flow regime. (Colli-Serrano and Midoux, 2000) reported bubble flow, transition 

flow and pulse flow regime. Their experiments were carried out at low gas flowrates, so 

they didn’t detect the spray flow regime. The transition from bubble flow to pulse flow 

regime was identified at (0.05 kg/m2 s) air flow rates and water flow rate range 1 – 10 

kg/m2 s. (Iliuta and Thyrion, 1997) identified two flow regimes for upflow packed bed: 

bubble flow and pulse flow regimes for two systems air – water and air – Carboxymethy l-

cellulose (CMC). They mentioned that the transition from bubble flow to pulse flow was 

unclear for upflow mode of operation. Instead, they noticed a common zone of transition 

(0.092 ˂ G ˂ 0.12 kg / m2 s). (Varma et al., 1997) identified bubble flow, pulse flow and 

spray flow regimes for bed of a ceramic spheres they used. They presented a criteria for 

transition from a regime to another.(Molga and Westerterp, 1997a) observed by visual 

observation the bubble flow regime and churn and pulsation flow regime at highest gas 

velocity. (Lamine et al., 1992b) identified for glass spheres of 4 and 6 mm: bubble flow, 

pulse flow and spray flow regimes. For smaller packing of 1 and 2 mm, they observed a 

regime which is termed a separated flow in the pores or single phase pore flow. They 

mentioned the transition between from bubble to pulse flow occurred for gas flow rates 

range 0.1 – 0.15 kg/m2 s. Most of the reported studies above used the visual observation to 

identify the flow regimes. However, radiation based techniques have been used in a wide 

range of applications as measuring and monitoring techniques, since they are generally 

considered non-intrusive, independent of the environment, temperature and pressure of the 

system, non-contact with the media and continuous in their measurements (Khorsandi and 
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Feghhi, 2011). Radiation methods include the use of fast neutron scattering and attenuation 

techniques as well as the use of gamma and X-ray attenuation, and fast neutron scattering. 

Compared with other radiation techniques, the gamma ray technique is more versatile due 

to its penetration power different energies can be chosen and used safely depending on the 

test section (Park and Chung, 2007). Among many gamma ray based techniques, nuclear 

gauge densitometry which is called here gamma ray densitometry is one of the most non-

invasive techniques used on industrial scale units as a diagnostic tool and on-line level 

monitoring device (Khorsandi and Feghhi, 2011; Shollenberger et al., 1997; Shaikh and 

Al-Dahhan, 2013). (Park and Chung, 2007) used single beam gamma ray densitometry to 

study the average void fraction in a 10.9 mm diameter stainless steel pipe under critical 

flow conditions. (Wang et al., 2001) measured local porosity distribution in packed 

columns, using single beam and scintillation detector. (Shaikh and Al-Dahhan, 2013) used 

single beam gamma ray to identify flow regime in bubble column. As the actual flow  

regimes are time varying combinations of different flow regimes; Therefore, flow regimes 

can also be identified by the use of only one source/detector module (Tjugum et al., 2002). 

The attenuation of the gamma ray passing through the bed of catalyst with upflow of gas 

and liquid depends on the nature of the flow conditions and on the holdups of the liquid / 

gas phases along the line of the gamma ray. The dynamic variation of the flow patterns and 

phases holdups depends on the type of flow regime. The reactor is operating at gas 

superficial velocity (0.6 – 7.7 cm/s) and at constant liquid superficial velocity (0.017 cm/s). 

Therefore, the photon counts of the measured time series fluctuate depending on the type 

of the flow regime and pattern that the gamma ray beam is passing through. Accordingly, 

the focus of this work is to implement the gamma ray densitometry (GRD) technique to 
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identify the flow regime in an upflow moving packed bed reactor by processing chaotically 

and statistically the measured time series of the photon counts. The gamma ray source and 

the scintillation detector are aligned externally of the packed column. Thus, the 

measurements were taken without disturbing the flow operation conditions inside the 

packed column.
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2. EXPERIMENTAL WORK 

2.1 EXPERIMENTAL SET-UP 

A packed bed with the bottom design that represents a selected design of industr ia l 

moving bed has been developed to conduct the investigation on a flow regime and its 

identification of these types of reactors using gamma ray densitometry. Hence, our cold 

flow scale down experimental set–up used in this work consists of a Plexiglas packed bed 

column, a representative bottom configure of a cone type of a moving bed, gas – supplying 

and rotameter, liquid cycling tank and rotameter, and a pump as schematically shown in 

Figure 2.1. The bed and its bottom were scaled down from and industrially operated 

moving bed based on dynamic matching pressure drop and geometrical similarities. The 

laboratory packed bed of 145 cm height and 27.94 cm internal diameter consists of three 

main sections, which are gas – liquid distributor plenum section, cone section, and packed 

bed section as shown in Figure 2.1. The plenum contains a deflector to disperse the inlet 

mixture of gas and liquid which is located at the base of the plenum to ensure that the gas 

and liquid are well distributed. To minimize initial maldistribution of the gas-liquid phases 

into the packed bed, a gas-liquid distributor equipped with chimneys is mounted between 

the plenum and the cone section. The distributor consisted of 19 holes connected with 

chimneys with 0.25 cm diameter and 3 cm height for liquid passing through their bottom 

openings. Each chimney has a side hole (pitch) with 0.07 cm diameter for gas passing 

through the top as the gas phase forming a top gas layer at the top of the plenum. Both the 

deflector and the distributor plate with chimneys are distributed on an integral part of 

distribution section where it is followed by the cone section. The cone section is located in 

between the packed bed section and the plenum section. The cone section contains glass 
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marbles and a conical frustum distributor. Both the glass marbles and the conical frustum 

in the cone section are designed to provide a well distributed upflow phases and to mainta in 

a stable bed operation. The packed bed section is the test section which consists of the 

packing particles (catalyst) that fill the cone and the top cylindrical column mounted at the 

top of the cone section. The gas-liquid flow is co-current and upwards through the bed 

particles. The experimental measurements were performed on the cylindrical section of the 

bed which was packed randomly with a 3 mm diameter spherical catalyst up to 63 cm 

height. These spherical catalyst particles also fill the perforated frustum cone that was used 

to support the catalyst as shown in Figure 2.1. Water and oil free compressed air were used 

as liquid and gas phases. Filtered compressed process air, passed through a ball valve, 

pressure regulator, and monitored using Dwyer Air Flowmeter before entering the column 

from the bottom. The flowmeter models are accurate within ± 2% of full–scale reading. 

Similarly, water was pumped into the column with the help of a liquid feed pump and 

returned with the air to a recirculating tank. The main purpose of this tank is to store the 

bypass and recycled water and vent the air to the atmosphere. The gas and liquid phases 

are introduced to the column via an inlet pipe connected to the column base, where their 

streams are merged and passed upflow through the deflector. The experiments were 

performed at room temperature and pressure over a wide range of gas superficia l velocit ies 

and at fixed liquid superficial velocity. The properties of the bed material and the range of 

operating conditions are listed in Table 2.1. The scaled down liquid and gas superfic ia l 

velocities are 0.017 cm/s and the range for gas (0.6 – 7.7 cm/s) respectively. These have 

been selected to represent the operation of the industria l moving bed which it is at incip ient 

fluidization. Therefore, in this work, the superficial liquid velocity was kept constant at 
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0.017 cm/s while the superficial gas velocity was varied from 0.6 to 7.7 cm/s. Gamma ray 

densitometry (GRD) technique which provide line beam of gamma ray has been used to 

measure and identify flow regime by processing chaotically and statistically the time series 

of the attenuated gamma ray that is received as counts by the detector. The received photon 

counts through the lead collimator in front of the scintillation detector are only contribute 

to the measurements. The received photon counts vary in value due to the variation in the 

geometries inside the column. As the density of the absorbing material vary along the path 

of the gamma ray beam, the received photon counts vary accordingly. Higher density 

material will result in more attenuation for the gamma ray beam which depending on the 

interaction of the gamma ray beam with the atoms of the absorbing material. 

 

 

Table 2.1 System properties and range of operating conditions. 

Parameter Value / Range ρ (kg/m3) 

Reactor I.D. 27.94 cm  

Reactor Height 145 cm  

Packed bed Height 63 cm  

Spherical catalyst diameter 0.3 cm 570 

Air at 25℃  1.2 

water at 25℃  1000 

Liquid superficial velocity, UL 0.017 cm/s  

Gas superficial velocity, Ug 0.6 – 7.7 cm/s  
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Figure 2.1 Schematic diagram of Plexiglas moving packed bed column, gas and 
liquid system. 
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2.2 THE USE OF GAMMA RAY DENSITOMETRY FOR FLOW REGIME 

IDENTIFICATION  

In this work, identification of the flow regime has been made by implementing a 

Gamma ray densitometry (GRD) technique developed in our multiphase reactors 

engineering and applications laboratory (m-Real) at Missouri University of Science and 

Technology. The radiation based techniques such as gamma ray densitometry (GRD) are 

commonly used in a wide range of applications as measuring methods, since they are 

generally considered relatively simple, not expensive, and non-intrusive. It appears as a 

continuous measurement, non-contact  and its independent performance from environment, 

temperature and pressure (Khorsandi and Feghhi, 2011). Among the many radiation 

techniques, the gamma ray technique is well developed and have played an important role 

in measurement technology for multiphase system which is applied in many industr ia l 

fields including petroleum industry (Khorsandi and Feghhi, 2011; Shollenberger et al., 

1997; Shaikh and Al-Dahhan, 2013; Park and Chung, 2007). The principle of GRD 

measurement technique is based on the attenuation of the gamma ray beam depending on 

the density of the tested medium. The gamma ray densitometry used in this study for 

identification of flow regime is composed of an encapsulated 250-mCi Cs-137 gamma 

source with appropriate emitting energy of 660 keV, thallium activated sodium iodide NaI 

(Tl) scintillation detector, an aluminum frame structure to position the source and detector, 

and data acquisition hardware and software. The Cs-137 gamma source and the NaI (Tl) 

scintillation detector are both lead-shielded and placed diametrically on opposite sides of 

an extruded aluminum frame externally of the tested column. Thus, the GRD scan 

measurements can be made along the diameter and at any axial position of the column 

under study to identify the flow regime in this work. The horizontal and vertical 
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measurement distance can be measured by a ruler. The horizontal measurements and then 

results that is presented where made at r/R = 0,  0.5, and  0.9 as shown in Figure 2.2, 

and the measurement time was about 2 mins in each position. The experiments were run, 

when the stable operation was considered to have achieved, the GRD system was traversed 

horizontally and scans were performed along the chord lines mentioned above parallel to 

the diameter of the column at any given operating conditions. These measurements have 

been done at two axial heights bottom of the bed (Z/D = 0.3), and middle of the packed 

bed (Z/D = 1). 

 

Figure 2.2 Radial scanning positions (r/R). 

 

This transmitted radiation, that reaches the detector as time series of photon counts 

have been processed chaotically and statistically to identify the flow regimes and their 

transition since the attenuation and its dynamic fluctuations of the transmitted gamma ray 

vary depending on the type of flow patterns and flow regimes. 
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2.3 METHODS OF PROCESSING OF THE GRD SIGNALS AND DATA 

ANALYSIS 

In the present study, the time series signal of the photon counts measured by the 

gamma ray densitometry in the moving packed bed at various conditions have been 

processed using both state space analysis (chaotic analysis) and the statistical analysis to 

identify the flow regimes as follows: 

2.3.1 Time Series Of The Photon Counts. In this work, the time series has been 

taken for over 2 minutes long of data acquisition at 50 Hz that generated ≅ 3000 points for 

each measurement. To demonstrate the nature of dynamic fluctuations of the photon count 

and how they vary with the change of the flow conditions, we present here the first 100 

points to show how it looks like the print of the signal. As shown in Figure 2.3 to Figure 

2., the signals consist of a sequence of time series of photon count measured by NaI 

scintillation detector at various conditions. The GRD stet up consist of a scintilla t ion 

detector (NaI) with a radiation source (Cs-137) on the opposite side. The amount of 

attenuated radiation reached the scintillation detector after passed the material depends on 

the density of that flow inside the column. The dynamic fluctuation of the attenuated 

radiation possess information about the flow behavior of the flow inside in the column and 

its properties (Nedeltchev, 2015; Shaikh and Al-Dahhan, 2013). These are a data point, we 

collected approximately 3000 points these 3000 points at frequency 50 Hz, and the Δt 

measurements = 1/frequency. The fluctuation measurements have been done by varying 

the flow rate conditions using gamma ray densitometry. The radiation source and the 

scintillation detector were aligned externally of the column. The gas superficial velocity 

was varied from 0.6-7.7 cm/s at a constant liquid superficial velocity. 
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Figure 2.3 The segment of the time series of photon count fluctuations recorded in 

a moving packed for dry solid. 
 

 

(a) 

Figure 2.4 The segment of time series of photon count fluctuations recorded at 

Bottom (Z/D = 0.3 and r/R = 0) for the liquid superficail velocity of 0.017 cm/s and gas 
superficial velocity: (a) Ug = 1.2 cm/s. (b) Ug = 3.8 cm/s. (c) Ug = 7.7 cm/s. 
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(b) 

 

 

(c) 

 

Figure 2.4 The segment of time series of photon count fluctuations recorded at 

Bottom (Z/D = 0.3 and r/R = 0) for the liquid superficail velocity of 0.017 cm/s and gas 
superficial velocity: (a) Ug = 1.2 cm/s. (b) Ug = 3.8 cm/s. (c) Ug = 7.7 cm/s (cont.). 
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          (a) 

 

 

(b) 

Figure 2.5 The segment of the time series of photon count fluctuations recorded at 
Middle (Z/D = 1 and r/R = 0) for the liquid superficail velocity of 0.017 cm/sec and gas 

superficial velocity: (a) Ug = 1.2 cm/s (b) Ug = 3.8 cm/s (c) Ug = 7.7 cm/s. 
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              (c) 

 

Figure 2.5 The segment of the time series of photon count fluctuations recorded at 

Middle (Z/D = 1 and r/R = 0) for the liquid superficail velocity of 0.017 cm/sec             
and gas superficial velocity: (a) Ug = 1.2 cm/s (b) Ug = 3.8 cm/s (c) Ug = 7.7 

cm/s(cont.). 

 

 

We can see from the Figure 2.4 as the superficial gas velocity increases at constant 

superficial liquid velocity of 0.017 cm/sec the signal varies looks wavy and where the 

intensity of fluctuation of measured photon counts will change slightly from the range (60 

– 80) to (60 – 100). The pulse flow regime in co-current upflow packed bed is characterized 

by increased in small bubbles inside the bed (Shah, 1979) that form as described earlier the 

gas rich followed by liquid rich flow pattern. Increasing in gas velocity, the voids between 

the bed particles will fill with both the gas – liquid which is called two phase pore flow 

(Raghavendra Rao et al., 2011). Thus, more randomly moving bubbles will intercept the 

path of γ-rays, and the signal looks unstable. At the middle section of the moving packed 
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bed as shown in Figure 2.5 the little expansion in the bed as the superficial gas velocity 

increased will introduce more and could be larger bubbles. Thus, appearance of peaks 

occurs as a succession of several ones. At higher superficial gas velocity (Ug) these bubbles 

will intercept the path of γ-rays result in increased the higher peaks in the photon count 

fluctuation (Nedeltchev et al., 2011). 

2.3.2 Kolmogorov Entropy (KE). This approach of time series analyses is 

generally used to determine the level of disorder and non-linear characteristics in a dynamic 

system. Kolmogorov Entropy is a state space analysis which includes other parameters too 

such as the attractor reconstruction, the correlation dimension, and entropy analysis (Sasic 

et al., 2007; Van Ommen et al., 2011). The advantage of attractor comparison as a certain 

state space methods in comparison with frequency domain methods is that they are more 

sensitive to small changes in the initial state after differential time steps, and this feature 

can be used for, e.g., on-line monitoring (Van Ommen et al., 2011). 

Many systems are chaotic whose behaviors appear random at the beginning but can 

be defined in phase space by plotting the long-term evolution of the system to form an 

attractor (Briens and Ellis, 2005). The hydrodynamics of gas – liquid – solid moving bed 

exhibit many features of chaotic dynamic systems, that are caused either by the flow of the 

phases through the bed and the voids of the fixed bed catalysts or by the frequent formation 

and breaking of bubbles. A chaotic system is a highly non-linear deterministic system that 

is usually characterized by its sensitive dependence on small changes in initial conditions 

(Gourich et al., 2006). Generally, the evolution of two initial states of a system will be 

completely different after some time, even they are started almost identical because the 

initial differences grow exponentially with time. The rate at which the disorder levels, that 
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in turn can be expressed in terms of quantities which is called Kolmogorov entropy (KE) 

represents the characteristics of the system disorder (Nedeltchev et al., 2003). Hence, the 

Kolmogorov entropy is used frequently to identify the flow regime, and to characterize the 

dynamics of the multiphase reactor. The Kolmogorov entropy value is a quantitat ive 

measure of the rate of information loss of the system dynamics and their disorders. It also 

quantifies the degree of unpredictability of the multiphase system. In most generic form, 

three different classes of systems can be distinguished depending on the rate at which these 

disorders increase (Nedeltchev et al., 2011): 

 When the value of KE is zero which is limited cases for zero growth, the system 

is completely periodic (ordered) systems. 

 When the value of KE is large (infinitely fast growth), the system is a purely 

random system making it impossible to predict the state of the system even after 

a differential time step, stochastic system. 

 When the value of KE is small (finite), the system is in the case of more regular 

(periodic-like) behavior, chaotic system.   

By means of the KE, some useful dynamic information within the time series can 

be extracted about the boundaries of the main hydrodynamic flow regimes. Thus in the 

present work, we use Kolmogorov Entropy which is calculated from the nonlinear chaos 

analysis to photon count time series. We will demonstrate its applicability to provide useful 

insights for the identification of the main flow regime boundaries in a moving bed as 

multiphase systems. The approach of Schouten; the maximum likelihood estimation of 

entropy (Schouten et al., 1994) is considered since it has been demonstrated of its 

successful implementation of pressure drop fluctuation signal to identify flow regime by 
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KE values (Nedeltchev et al., 2011). Therefore, in this work, we have applied the Schouten 

approach by programming it in a MATLAB program in our lab. 

The maximum-likelihood estimator of the KE can be expressed as follows in Eq. (3.1). 

               𝐾𝐸 = − 𝑓𝑠 𝑙𝑛 (1 −
1

𝑏𝑚
)                                         (3.1) 

Where: 

bm is the number of sequential pair of points on the attractor, and it’s defined by: 

                   𝑏𝑚 =
1

𝑀
∑ 𝑏𝑖

𝑀
𝑖=1                                                     (3.2) 

𝑓𝑠 is the sampling frequency in (s-1). 

The attractor is basically set of values towards which the system evolves, and each 

data point is taken in this case. Hence, according to the time series when two points are 

move away that’s mean a more chaotic system. The points in an experimental time series 

are measured at discrete, constant time intervals with a time step between two sampled data 

points that equals
1

𝑓𝑠
. Following (Nedeltchev et al., 2007; Nedeltchev et al., 2006), the 

number of vector elements is set to 50, and the delay time is chosen to be unity. 

                                                        𝐴𝐴𝐷 =  
1

𝑁
 ∑ |𝑥𝑖 − �̅�|𝑁

𝑖=1                                           (3.3) 

�̅� is defined by eq. (3.4) 

                   �̅� =  
1

𝑁
 ∑ 𝑥𝑖

𝑁
𝑖=1                                                    (3.4) 

In most of the cases, the number of vector elements in each state vector is equal to 

the embedding dimension. In this work, the maximum inter-points distance, (the so-called 

cut-off distance I0) can be fixed at one, two or three times the average absolute deviation 

(AAD), when (I0 = 3* AAD), as given by Eq. (3.3). 
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Researchers (Lin et al., 2001; Nedeltchev et al., 2007; Nedeltchev et al., 2011) used 

Kolmogorov entropy to identify the flow regime and the transition velocity in bubble 

column since it represents level of disorder. (Nedeltchev et al., 2012) identified the flow 

regime by calculating the Kolmogorov Entropy from the Gamma Ray Densitometry data 

for a fluidized bed. They have also found that nonlinear chaos analysis can be a useful tools 

and can be applied on the photon count time series data to identify the boundaries of the 

main flow regimes as well as their corresponding hydrodynamic behavior. The gamma ray 

densitometry data is a chaotic signal that measures in a time series. 

2.3.3 Statistical Analysis. One of the simplest approach for the analysis of the 

time series is the statistical analysis in terms of calculating the standard deviation (σ) of the 

fluctuation as follows: 

𝜎 = √
∑ (𝑥𝑖−𝜇)2𝑁

𝑖=1

𝑁−1
  

Where (𝑥𝑖) the data is point and (𝜇) is the mean and (N) is the total number of the 

data points. The transition from one flow regime to another has often been identified by 

the change in amplitude with operation conditions (Johnsson et al., 2000; Van Ommen et 

al., 2011). 
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3. RESULT AND DISCUSSION 

3.1 FLOW REGIME IDENTIFICATION BY KOLMOGOROV ENTROPY (KE) 

Figure 3.1 shows the KE values extracted from photon counts in moving bed reactor 

operated with air water as a function of Ug at the bottom section of the bed (Z/D = 0.3). 

We can see two local minimums in the KE curve. These minimum in the KE curve 

corresponding to the reorganization between two flow regimes, where the gas – liquid 

dispersion exhibits a self–organization step (Letzel et al., 1997; Nedeltchev et al., 2007). 

Hence, the peaks in the KE can be regarded as instability in the state of multiphase system,  

while the minimum KE can be regarded as stabilization states of the system (Nedeltchev 

et al., 2007). In other word, the peak in KE can be consider as a sensitive indicator of 

regime transition to other flow regime. In Figure 3.1, it sees higher KE value initial at very 

low flow rate and it can be due the phase maldistribution along the measured path of GRD. 

The value gradually decreases till Ug 1.2 cm/s this shows the flow is re-organizing or more 

organized in bubble regime itself. On increasing the Ug the KE value gradually increases 

it shows the flow is in transition towards pulse flow regime and on maximum value at Ug 

3.8 cm/s the flow is transitioned to pulse flow regime. Then again the same trend repeats 

on increasing gas velocity, as the flow becomes more organized and then again transiting 

to other flow regime. In this case transition velocity from bubble flow to pulse flow is 3.8 

cm/s, a similar result is reported by (Moreira and Freire, 2003b) for the transition region 

between bubble and transition I in their experiments in upflow mode. They mentioned that 

the interface between the bubble flow and transition I appeared at air flowrate close to 3.2 

cm/s (0.04 kg/m2 s), and it is similar to the result reported by (Colli-Serrano and Midoux, 

2000). This transition region shows a little dependence on the water flowrate as they 
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explained. The flow regime transition is not a sharp condition rather than a range of 

conditions. (Iliuta and Thyrion, 1997) noticed visually a common transition region between 

the bubble and pulse flow regimes (7.6 ˂ Ug ˂ 10 cm/s) for air – water upflow with 3.3 

mm porous particles. 

 

 

Figure 3.1 Kolmogorov entropy at the Bottom (Z/D = 0.3) of the moving packed bed 

column at center (r/R = 0). 
 

 

Figure 3.2 below shows the KE values at the middle section of the moving packed 

bed and at the center region of the bed (r/R = 0). This region although behaves as packed 

bed in operational range is slightly expanded compared to the bottom part of the bed 

(Z/D=0.3). It shows clearly at Ug = 1.2 cm/s the first local maximum occurs, at these low 

gas flow rate conditions the pressure drop is less across the bed and the movement of gas 

and liquid is in disorder state due to channeling, and other forms of chaotic flow although 

it is in bubbly flow. 
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Figure 3.2 Kolmogorov entropy at the Middle (Z/D = 1) of the moving packed bed 

column at center (r/R = 0). 
 

 

The same trend is repeated here also as seen in the Figure 3.1. At Ug 3.8 cm/s the 

onset of the pulse regime was discriminated, at this point the second local minimum occurs 

and this point of instability is due to regime change. When the pulse is entered the slug of 

liquid is followed by slug of gas and this flow structure is less disordered and hence KE 

reduces as gas flow rate is increased and it can be seen in Figure 3.2 after 3.8cm/sec 

increasing the gas velocity the KE decreases gradually as the flow become more organized 

and seems to be in fully developed region. This changing in the trend of flow regimes 

happened at increased in gas velocity 0.6-7.7 cm/s with constant liquid flowrate at 0.017 

cm/s. (Raghavendra Rao et al., 2011) observed the bubble flow, pulse flow, and spray flow 

as the gas rate increases from low rates to high rates at a constant liquid flow rate in two 

phase up-flow packed bed. Since the range of velocity of gas (air) within a low to moderate 

we didn’t face the spray flow, which happens at very high gas superficial velocity. 

1.54

1.56

1.58

1.6

1.62

1.64

1.66

1.68

1.7

1.72

1.74

0 1 2 3 4 5 6 7 8

K
o
lm

o
go

ro
v 

E
nt

ro
p
y 

(b
its

/s
)

Superficial Gas velocity Ug (cm/s)

At Middle (Z/D=1)



82 
 

 

 

 

(a) 

 

 
 

(b) 

 
Figure 3.3 Kolmogorov entropy (KE) at the Middle (Z/D = 1) of the moving packed bed 

column: (a) at (r/R = 0.5), and (b) at (r/R = - 0.5). 
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(a) 

 

 

(b) 

Figure 3.4 Kolmogorov entropy (KE) at the Middle (Z/D = 1) of the moving 

packed bed column: (a) at (r/R = 0.9), and (b) at (r/R = - 0.9). 
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Figure 3.3 and Figure 3.4 represent the Kolmogorov Entropy as a function of 

superficial gas velocity Ug at the axial position (Z/D = 1) middle section of the moving 

packed bed and the radial position (r/R = ± 0.5) and (r/R = ± 0.9), from the center toward 

the wall region. We can see clearly that the values of the KE is lower than their values at 

the center of the bed. KE at the radial position (r/R = 0) with the average values = 1.6163, 

while the average values = 1.26 at the wall region of the column. (Muzen and Cassanello, 

2007) obtained a low KE value from the time series at the wall measured in their 

experiments. They explained that these values corresponded to the existence of liquid slugs 

or waves at the wall region. The transition pattern is quite different among different 

locations of the bed it clearly shows how maldistributed the entire system is along both 

radial and axial directions. So the first local maximum represents the bubbly flow itself. 

but the high KE value is attributed to the chaotic nature arises due to channeling, bypassing 

etc. 

3.2 FLOW REGIME IDENTIFICATION BY STATISTICAL ANALYSIS 

At low gas superficial velocity, the curve of the standard deviation starts from high 

value and then decreases, this is because at low superficial gas velocity the disordered 

behavior of the system due to channeling, bypassing or other form of chaotic flow is 

prominent. The transition point can be identified from plotting the standard deviation of 

the signal, and its value varied with the superficial gas velocities as shown in Figure 3.5. 

The figure shows that the evolution of the standard deviation for two axial positions along 

the center of the bed. The plot of the standard deviation gives a less clear view of the 

transition as an increase in trend of standard deviation is observed at Ug = 3.8 cm/s. The 

slope of the standard deviation curve varied at this gas velocity, and this marked the onset 
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of transition region. As mentioned earlier a result reported by (Moreira and Freire, 2003b) 

for the transition region between bubble and transition I appeared at air flowrate close to 

3.2 cm/s, and it is similar to the result reported by (Colli-Serrano and Midoux, 2000). 

(Raghavendra Rao et al., 2011) found that the bubble flow regime agreed with the bubble 

and transition I regime detected by (Moreira and Freire, 2003a). In deep pulsing regime the 

system is more ordered as seen from the KE findings. It is also visible from the standard 

deviation plot (Figure 3.5) that higher flow rate the standard deviation increase is in very 

small increment on increasing gas flow rate. In two phase upflow packed bed reactor, we 

may face a pulse flow regime at the bottom section of the packed bed which represents by 

the increase in small diameter gas bubbles as gas flowrate increased (Shah, 1979). (Varma 

et al., 1997) noticed by visual observation the pulses at the transition between the bubble 

flow and the pulse flow originate at the bottom of the packed column and move to the top 

of the packed column, and they also noticed the frequency of the pulses increasing with 

increase in gas rate. (Raghavendra Rao et al., 2011) explain that the pulse flow regime will 

be developed at low liquid flowrate by coalescing of the gas bubbles. Low liquid flow rate 

results in a low liquid velocity as passed through the voids of the bed. They explain that 

the transition line between the bubble and pulse flow regimes depends strongly on the gas 

flow rates. Where, the liquid velocity is lower than the gas velocity and can’t remove the 

gas bubbles upwards through the bed particles. The photon counts fluctuations will increase 

as more gas bubbles intercept the gamma ray beam in the voids along the beam path. The 

density of the gas phase, in this case (air), is lower than the liquid phase (water). Therefore, 

the interaction between the gamma ray beam and the atoms of the gas phase (air) is lower 

than the interaction with the liquid phase (water). 
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Figure 3.5 STD profile as a function of the superficial gas velocity Ug at the center 

(r/R = 0) of the moving packed bed column. 
 

 

 

Figure 3.6 STD as a function of the superficial gas velocity Ug at (r/R = 0.5) right of 
moving packed bed column. 

 

 

Figure 3.6 and Figure 3.7 show a noticeable change in the slop of the standard 

deviation curve around superficial gas velocity of 3.8 cm/s at the bottom (Z/D=0.3) where 
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the pulse flow regime starts. Based on the chaos analysis, transition from the bubble flow 

regime to transition flow occur at the same superficial gas velocity. As we can see, the 

value of the standard deviation is low at low superficial gas velocity. A larger change in 

the slop of the standard deviation curve observed after this velocity (3.8 cm/s). For their 

experiments in upflow packed bed,  (Varma et al., 1997) noticed the transition between the 

regimes is not sharp and occurs at a small range in the gas and liquid flowrates. 

 

 

Figure 3.7 STD as a function of the superficial gas velocity Ug at (r/R = - 0.5) left of 
moving packed bed column. 

 

 

As a summary, the curves of the standard deviation in Figure 3.6 and Figure 3.7, 

demonstrate that the deviation from the average value at each superficial gas velocity 

became larger and reached a relative stable level when the superficial gas velocity was 

greater than 3.8 cm/s. This behavior implies that the photon time series underwent large 

fluctuations as the gas velocity increased. 
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Figure 3.8 STD as a function of the superficial gas velocity Ug at (r/R = 0.9) right of 

moving packed bed column. 
 

 

 

Figure 3.9 STD as a function of the superficial gas velocity Ug at (r/R = - 0.9) left of 
moving packed bed column. 
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The movement of liquid and gas bubbles along the bed is restricted by the solid 

catalyst and the pore dimension. That will affect several deterministic physical phenomena 

such as bubbles formation, passing, coalescence and breakup, since the column was packed 

randomly with catalyst particles. (Jo and Revankar, 2009) saw different flow behavior 

along different axial and radial positions in the packed bed, and explain the reason is due 

to the variety in the bubbles velocity as they moved through the pores of the packed bed. 

Figure 3.8 and Figure 3.9, show the standard deviation of photon counts at radial positions 

(r/R = ± 0.9) respectively. We can see a different behavior for the curve of standard 

deviation which indicate a maldistribution of the two phases along the axial positions of 

the bed this is because at the wall the void fraction is high and approach unity where the 

flow structure varies due to least resistant to flow path (low pressure drop), hence in that 

region where both gas and liquid phase tend to move to flow there. (Jo and Revankar, 2009) 

explain that an increase and decrease in the local velocity of the gas – liquid phases flow 

can occur through narrow channels and pores along the path of the bed. The authors also 

explain there are stagnation points in the bed, where the bubble also can come to a complete 

stop. The static gas bubble will be isolated by a bridge of liquid, until its oscillat ion 

increased to release upwards or renewed by upcoming gas bubble. These behaviors in the 

column, in turn, will affect the gamma photon counts. 
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4. REMARKS 

Bubble, transient, and pulse flow have been obtained at various axial and vertical 

positions by a noninvasive technique of gamma-ray densitometry in a co-current upflow 

moving packed bed column. The results were in a good agreement with the published data 

for upflow packed beds. The results demonstrated that the flow regimes of the upflow 

packed moving beds can be identified by the gamma ray densitometry technique by 

analyzing the time series of the photon counts which can be helpful in online monitor ing 

in both laboratory and large scale industrial column with opaque wall. The photon counts 

were analyzed by both chaos and statistical approach. The boundary between the flow 

regimes were determined based on the trend of change in KE quantity and change in the  

slope of standard deviation curve. Kolmogorov Entropy (KE) showed that it can distinguish 

the transition region clearly than the statistical method based on the variation of standard 

deviation. 
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SECTION 

3. RECOMMENDATIONS 

Although the current study provides useful information about moving packed bed 

reactor, many questions remain unanswered in topics of relevance to this work. Below are 

few recommendations for potential future research opportunities to yield a better  

understanding of the subject.  

1. This work presents a deep insight on the liquid holdup, internal liquid holdup and 

average porosity in the packed bed section. However, it is limited to air water system 

under fixed liquid velocity to match the industrial operation conditions, as it 

assumed the perfect conditions. Therefore, it is important to adopt a study 

investigating these hydrodynamic parameters under various liquid superfic ia l 

velocities, to assure the validity of the findings and results of the current work. 

2. In future studies, it is necessary to investigate the effect of the distributor, and 

plenum sections on the two phase flow distribution and on other related 

hydrodynamic parameters. 

 

 

 

 



96 
 

 

 

REFERENCES 

Al-Dahhan, M. H., and Duduković, M. P., 1996, Catalyst Bed Dilution for Improving 
Catalyst Wetting in Laboratory Trickle-Bed Reactors: AIChE Journal, v. 42, no. 9, 

p. 2594-2606. 
 
Al-Dahhan, M. H., Kemoun, A., Cartolano, A. R., Roy, S., Dobson, R., and Williams, J., 

2007, Measuring gas–liquid distribution in a pilot scale monolith reactor via an 
Industrial Tomography Scanner (ITS): Chemical Engineering Journal, v. 130, no. 

2–3, p. 147-152. 
 
Al‐Dahhan, M., and Highfill, W., 1999, Liquid holdup measurement techniques in 

laboratory high pressure trickle bed reactors: The Canadian Journal of Chemical 

Engineering, v. 77, no. 4, p. 759-765. 
 
Al‐Dahhan, M., Kemoun, A., and Cartolano, A., 2006, Phase distribution in an upflow 

monolith reactor using computed tomography: AIChE journal, v. 52, no. 2, p. 745-
753. 

 
Bensetiti, Z., Larachi, F., Grandjean, B. P. A., and Wild, G., 1997, Liquid saturation in 

cocurrent upflow fixed-bed reactors: a state-of-the-art correlation: Chemical 
Engineering Science, v. 52, no. 21–22, p. 4239-4247. 

 

Bouteldja, H., Hamidipour, M., and Larachi, F., 2013, Hydrodynamics of an inclined gas–
liquid cocurrent upflow packed bed: Chemical Engineering Science, v. 102, p. 397-

404. 
 
Boyer, C., Duquenne, A.-M., and Wild, G., 2002, Measuring techniques in gas–liquid and 

gas–liquid–solid reactors: Chemical Engineering Science, v. 57, no. 16, p. 3185-
3215. 

 
Briens, L. A., and Ellis, N., 2005, Hydrodynamics of three-phase fluidized bed systems 

examined by statistical, fractal, chaos and wavelet analysis methods: Chemical 

Engineering Science, v. 60, no. 22, p. 6094-6106. 
 

Cassanello, M., Martı́nez, O., and Cukierman, A. L., 1998, Liquid hold-up and backmixing 
in cocurrent upflow three-phase fixed-bed reactors: Chemical Engineering Science, 
v. 53, no. 5, p. 1015-1025. 

 
Chander, A., Kundu, A., Bej, S. K., Dalai, A. K., and Vohra, D. K., 2001, Hydrodynamic 

characteristics of cocurrent upflow and downflow of gas and liquid in a fixed bed 
reactor: Fuel, v. 80, no. 8, p. 1043-1053. 

 

 



97 
 

 

 

Chen, J., Gupta, P., Degaleesan, S., Al-Dahhan, M. H., Duduković, M. P., and A. Toseland, 
B., 1998, Gas holdup distributions in large-diameter bubble columns measured by 

computed tomography: Flow Measurement and Instrumentation, v. 9, no. 2, p. 91-
101. 

 
Chen, J., Rados, N., Al‐Dahhan, M. H., Duduković, M. P., Nguyen, D., and Parimi, K., 

2001, Particle motion in packed/ebullated beds by CT and CARPT: AIChE journal, 
v. 47, no. 5, p. 994-1004. 

 
Cheng, Z.-M., and Yuan, W.-K., 2002, Influence of hydrodynamic parameters on 

performance of a multiphase fixed-bed reactor under phase transition: Chemical 

Engineering Science, v. 57, no. 16, p. 3407-3413. 
 

Colli-Serrano, M. T., and Midoux, N., 2000, Hydrodynamics and heat transfer in packed 
bed with co current up flow for coalescing and non-coalescing liquids. A simple 
model: Chemical Engineering Science, v. 55, no. 19, p. 4149-4157. 

 
de Klerk, A., 2003, Liquid holdup in packed beds at low mass flux: AIChE journal, v. 49, 

no. 6, p. 1597-1600. 
 
Dorai, F., Moura Teixeira, C., Rolland, M., Climent, E., Marcoux, M., and Wachs, A., 

2015, Fully resolved simulations of the flow through a packed bed of cylinders : 
Effect of size distribution: Chemical Engineering Science, v. 129, p. 180-192. 

 
Du, W., Quan, N., Lu, P., Xu, J., Wei, W., and Zhang, L., 2016, Experimental and statistica l 

analysis of the void size distribution and pressure drop validations in packed beds: 

Chemical Engineering Research and Design, v. 106, p. 115-125. 
 

Efhaima, A., and Al-Dahhan, M. H., 2015, Local time-averaged gas holdup in fluid ized 
bed reactor using gamma ray computed tomography technique (CT): Internationa l 
Journal of Industrial Chemistry, v. 6, no. 3, p. 143-152. 

 
Gourich, B., Vial, C., Essadki, A. H., Allam, F., Belhaj Soulami, M., and Ziyad, M., 2006, 

Identification of flow regimes and transition points in a bubble column through 
analysis of differential pressure signal—Influence of the coalescence behavior of 
the liquid phase: Chemical Engineering and Processing: Process Intensification, v. 

45, no. 3, p. 214-223. 
 

Guo, J., and Al-Dahhan, M., 2004, Liquid holdup and pressure drop in the gas-liquid 
cocurrent downflow packed-bed reactor under elevated pressures: Chemical 
Engineering Science, v. 59, no. 22-23, p. 5387-5393. 

 
Hamidipour, M., and Larachi, F., 2010, Characterizing the liquid dynamics in cocurrent 

gas–liquid flows in porous media using twin-plane electrical capacitance 

tomography: Chemical Engineering Journal, v. 165, no. 1, p. 310-323. 
 



98 
 

 

 

Hubers, J. L., Striegel, A. C., Heindel, T. J., Gray, J. N., and Jensen, T. C., 2005, X-ray 
computed tomography in large bubble columns: Chemical Engineering Science, v. 

60, no. 22, p. 6124-6133. 
 

Iliuta, I., and Larachi, F., 2013a, Catalytic Wet Oxidation in Three-Phase Moving-Bed 
Reactors: Modeling Framework and Simulations for On-Stream Replacement of a 
Deactivating Catalyst: Industrial & Engineering Chemistry Research, v. 52, no. 1, 

p. 370-383. 
 

Iliuta, I., and Larachi, F., 2013b, Catalytic wet oxidation in three-phase moving-bed 
reactors: Modeling framework and simulations for on-stream replacement of a 
deactivating catalyst: Industrial and Engineering Chemistry Research, v. 52, no. 1, 

p. 370-383. 
 

Iliuta, I., and Thyrion, F. C., 1997, Flow regimes, liquid holdups and two-phase pressure 
drop for two-phase cocurrent downflow and upflow through packed beds: 
air/Newtonian and non-Newtonian liquid systems: Chemical Engineering Science, 

v. 52, no. 21–22, p. 4045-4053. 
 

Jagadeesh-Babua, P., Arunagiri, A., Reghupathi, I., and Murugesan, T., 2007, Pressure 
drop and liquid holdup in co-current gas-liquid downflow of air-CMC solutions 
through packed beds: Chemical and biochemical engineering quarterly, v. 21, no. 

2, p. 121-129. 
 

Jin, H., Yang, S., He, G., Guo, Z., and Tong, Z., 2005, An experimental study of holdups 
in large-scale p-xylene oxidation reactors using the -ray attenuation approach: 
Chemical Engineering Science, v. 60, no. 22, p. 5955-5961. 

 
Jo, D., and Revankar, S. T., 2009, Bubble mechanisms and characteristics at pore scale in 

a packed-bed reactor: Chemical Engineering Science, v. 64, no. 13, p. 3179-3187. 
 
Johnsson, F., Zijerveld, R. C., Schouten, J. C., van den Bleek, C. M., and Leckner, B., 

2000, Characterization of fluidization regimes by time-series analysis of pressure 
fluctuations: International Journal of Multiphase Flow, v. 26, no. 4, p. 663-715. 

 
Khabaz, R., and Yaghobi, F., 2015, Design and employment of a non-intrusive γ-ray 

densitometer for salt solutions: Radiation Physics and Chemistry, v. 108, p. 18-23. 

 
Khorsandi, M., and Feghhi, S., 2011, Design and construction of a prototype gamma-ray 

densitometer for petroleum products monitoring applications: Measurement, v. 44, 
no. 9, p. 1512-1515. 

 

Kressmann, S., Morel, F., Harlé, V., and Kasztelan, S., 1998, Recent developments in 
fixed-bed catalytic residue upgrading: Catalysis Today, v. 43, no. 3-4, p. 203-215. 

 



99 
 

 

 

Kumar, R. K., Rao, A. R., Sankarshana, T., and Khan, A., Liquid Holdup in Concurrent 
Gas Liquid Upflow Through Packed Column with Random and Corrugated 

Structured Packing, in Proceedings Proceedings of the World Congress on 
Engineering and Computer Science2012, Volume 2. 

 
Lamine, A. S., Colli Serrano, M. T., and Wild, G., 1992a, Hydrodynamics and heat transfer 

in packed bed with cocurrent upflow: Chemical Engineering Science, v. 47, no. 13-

14, p. 3493-3500. 
 

-, 1992b, Hydrodynamics and heat transfer in packed beds with liquid upflow: Chemical 
Engineering and Processing: Process Intensification, v. 31, no. 6, p. 385-394. 

 

Letzel, H. M., Schouten, J. C., Krishna, R., and Van den Bleek, C. M., 1997, 
Characterization of regimes and regime transitions in bubble columns by chaos 

analysis of pressure signals: Chemical Engineering Science, v. 52, no. 24, p. 4447-
4459. 

 

Lin, T. J., Juang, R. C., and Chen, C. C., 2001, Characterizations of flow regime transitions 
in a high-pressure bubble column by chaotic time series analysis of pressure 

fluctuation signals: Chemical Engineering Science, v. 56, no. 21-22, p. 6241-6247. 
 
Liu, Y., Gao, L., Wen, L., and Zong, B., 2009, Recent advances in heavy oil 

hydroprocessing technologies: Recent Patents on Chemical Engineering, v. 2, no. 
1, p. 22-36. 

 
Molga, E., and Westerterp, K., 1997a, Experimental study of a cocurrent upflow packed 

bed bubble column reactor: pressure drop, holdup and interfacial area: Chemical 

Engineering and Processing: Process Intensification, v. 36, no. 6, p. 489-495. 
 

-, 1997b, Gas-liquid interfacial area and holdup in a cocurrent upflow packed bed bubble 
column reactor at elevated pressures: Industrial & engineering chemistry research, 
v. 36, no. 3, p. 622-631. 

 
Moreira, M. F., Ferreira, M. C., and Freire, J. T., 2004, Total liquid saturation in gas-liquid 

cocurrent downflow and upflow through packed beds and analysis of correlations 
for predicting the total liquid saturation: Industrial & engineering chemistry 
research, v. 43, no. 4, p. 1096-1102. 

 
Moreira, M. F. P., and Freire, J. T., 2003b, Influence of Gas and Liquid Flow Rates and 

the Size and Shape of Particles on the Regime Flow Maps Obtained in Concurrent 
Gas−Liquid Downflow and Upflow through Packed Beds: Industrial & 
Engineering Chemistry Research, v. 42, no. 4, p. 929-936. 

 
Murugesan, T., and Sivakumar, V., 2002, Pressure drop and flow regimes in cocurrent gas–

liquid upflow through packed beds: Chemical Engineering Journal, v. 88, no. 1–3, 
p. 233-243. 



100 
 

 

 

Muzen, A., and Cassanello, M. C., 2007, Flow regime transition in a trickle bed with 
structured packing examined with conductimetric probes: Chemical engineer ing 

science, v. 62, no. 5, p. 1494-1503. 
 

Nedeltchev, S., 2015, New methods for flow regime identification in bubble columns and 
fluidized beds: Chemical Engineering Science, v. 137, p. 436-446. 

 

Nedeltchev, S., Ahmed, F., and Al-Dahhan, M., 2012, A new method for flow regime 
identification in a fluidized bed based on gamma-ray densitometry and information 

entropy: Journal of Chemical Engineering of Japan, v. 45, no. 3, p. 197-205. 
 
Nedeltchev, S., Jordan, U., Lorenz, O., and Schumpe, A., 2007, Identification of various 

transition velocities in a bubble column based on Kolmogorov entropy: Chemical 
Engineering and Technology, v. 30, no. 4, p. 534-539. 

 
Nedeltchev, S., Kumar, S. B., and Dudukovic, M. P., 2003, Flow regime identification in 

a bubble column based on both Kolmogorov entropy and quality of mixedness 

derived from CAERPT data: The Canadian Journal of Chemical Engineering, v. 
81, no. 3‐4, p. 367-374. 

 
Nedeltchev, S., Shaikh, A., and Al-Dahhan, M., 2006, Flow regime identification in a 

bubble column based on both statistical and chaotic parameters applied to computed 
tomography data: Chemical Engineering and Technology, v. 29, no. 9, p. 1054-

1060. 
 
Nedeltchev, S., Shaikh, A., and Al‐Dahhan, M., 2011, Flow regime identification in a 

bubble column via nuclear gauge densitometry and chaos analysis: Chemical 
engineering & technology, v. 34, no. 2, p. 225-233. 

 
Park, H.-S., and Chung, C.-H., 2007, Design and application of a single-beam gamma 

densitometer for void fraction measurement in a small diameter stainless steel pipe 
in a critical flow condition: Nuclear Engineering and Technology, v. 39, no. 4, p. 
349-358. 

 
Rados, N., Shaikh, A., and Al-Dahhan, M., 2005, Phase distribution in a high pressure 

slurry bubble column via a single source computed tomography: Canadian Journal 
of Chemical Engineering, v. 83, no. 1, p. 104-112. 

 

Raghavendra Rao, A. V., Kishore Kumar, R., Sankarshana, T., and Khan, A., 2011, 
Identification of flow regimes in a concurrent gas liquid upflow through packed 

beds: Chemical Engineering and Technology, v. 34, no. 11, p. 1909-1917. 
 
Revankar, S. T., Olenik, H., Jo, D., and Motil, B., 2007, Local instrumentation for the 

investigation of multi-phase parameters in a packed bed: Proceedings of the 
Institution of Mechanical Engineers, Part E: Journal of Process Mechanical 

Engineering, v. 221, no. 4, p. 187-199. 



101 
 

 

 

 
Reynolds, B. E., Lam, F. W., Chabot, J., Antezana, F. J., Bachtel, R., Gibson, K. R., 

Threlkel, R., and Leung, P. C., 2003, Upflow reactor system with layered catalyst 
bed for hydrotreating heavy feedstocks, Google Patents. 

 
Saroha, A. K., and Khera, R., 2006, Hydrodynamic study of fixed beds with cocurrent 

upflow and downflow: Chemical Engineering and Processing: Process 

Intensification, v. 45, no. 6, p. 455-460. 
 

Sasic, S., Leckner, B., and Johnsson, F., 2007, Characterization of fluid dynamics of 
fluidized beds by analysis of pressure fluctuations: Progress in Energy and 
Combustion Science, v. 33, no. 5, p. 453-496. 

 
Scheuerman, G. L., Johnson, D. R., Reynolds, B. E., Bachtel, R. W., and Threlkel, R. S., 

1993, Advances in Chevron RDS technology for heavy oil upgrading flexibil ity: 
Fuel processing technology, v. 35, no. 1, p. 39-54. 

 

Schlieper, G., 2000, Principles of gamma ray densitometry: Metal Powder Report, v. 55, 
no. 12, p. 20-23. 

 
Schouten, J. C., Takens, F., and van den Bleek, C. M., 1994, Maximum-likelihood 

estimation of the entropy of an attractor: Physical Review E, v. 49, no. 1, p. 126. 

 
Shah, Y. T., 1979, Gas-liquid-solid reactor design, McGraw-Hill New York. 

Shaikh, A., and Al-Dahhan, M., 2013, A new method for online flow regime monitor ing 
in bubble column reactors via nuclear gauge densitometry: Chemical Enginee r ing 

Science, v. 89, p. 120-132. 
 

Shollenberger, K. A., Torczynski, J. R., Adkins, D. R., O'Hern, T. J., and Jackson, N. B., 
1997, Gamma-densitometry tomography of gas holdup spatial distribution in 
industrial-scale bubble columns: Chemical Engineering Science, v. 52, no. 13, p. 

2037-2048. 
 

Stangeland, B. E., Kramer, D. C., Smith, D. S., McCall, J. T., Scheuerman, G. L., and 
Bachtel, R. W., 1991, Method and apparatus for an on-stream particle replacement 
system for countercurrent contact of a gas and liquid feed stream with a packed 

bed, Google Patents. 
 

Thanos, A. M., Bellos, G. D., Galtier, P. A., and Papayannakos, N. G., 2003, Bed length 
effect on the liquid phase non-idealities and holdup in pilot scale upflow reactors: 
Catalysis Today, v. 79–80, p. 235-240. 

 
Thanos, A. M., Galtier, P. A., and Papayannakos, N. G., 1996, Liquid flow non-idealit ies 

and hold-up in a pilot scale packed bed reactor with cocurrent gas-liquid upflow: 
Chemical Engineering Science, v. 51, no. 11, p. 2709-2714. 



102 
 

 

 

Thome, J. R., 2004, Engineering data book III: Wolverine Tube Inc. 

Tjugum, S., Hjertaker, B., and Johansen, G., 2002, Multiphase flow regime identifica t ion 
by multibeam gamma-ray densitometry: Measurement Science and Technology, v. 

13, no. 8, p. 1319. 
 
Urrutia, G., Bonelli, P., Cassanello, M. C., and Cukierman, A. L., 1996, On dynamic liquid 

holdup determination by the drainage method: Chemical Engineering Science, v. 
51, no. 15, p. 3721-3726. 

 
Van Ommen, J. R., Sasic, S., Van der Schaaf, J., Gheorghiu, S., Johnsson, F., and Coppens, 

M. O., 2011, Time-series analysis of pressure fluctuations in gas-solid fluid ized 

beds - A review: International Journal of Multiphase Flow, v. 37, no. 5, p. 403-428. 
 

Varma, Y. B. G., Khan, A., and Khan, A. A., 1997, Flow regime identification and pressure 
drop in cocurrent gas-liquid upflow through packed beds: Bioprocess Engineer ing, 
v. 16, no. 6, p. 355-360. 

 
Wang, Z., Afacan, A., Nandakumar, K., and Chuang, K. T., 2001, Porosity distribution in 

random packed columns by gamma ray tomography: Chemical Engineering and 
Processing, v. 40, no. 3, p. 209-219. 

 

Wild, G., Larachi, F., and Laurent, A., 1991, The hydrodynamic characteristics of 
cocurrent downflow and cocurrent upflow gas-liquid-solid catalytic fixed bed 

reactors: the effect of pressure: Oil & Gas Science and Technology, v. 46, no. 4, p. 
467-490. 

 

Wilhite, B., Blackwell, B., Kacmar, J., Varma, A., and McCready, M., 2005, Origins of 
pulsing regime in cocurrent packed-bed flows: Industrial & engineering chemistry 

research, v. 44, no. 16, p. 6056-6066. 
 
Yin, F., Afacan, A., Nandakumar, K., and Chuang, K. T., 2002, Liquid holdup distribution 

in packed columns: gamma ray tomography and CFD simulation: Chemical 
Engineering and Processing: Process Intensification, v. 41, no. 5, p. 473-483. 

 

 

 



103 
 

 

 

VITA 

Ali Jabbar Toukan was born in Thi-Qar, Iraq.  He received his bachelor degree in 

the Petrochemical Engineering from Basrah Technical College, Basrah, Iraq in 2006; he 

was among the top three out of more than 45 students graduated from the petrochemica l 

engineering department of Basrah Technical in 2006 with a cumulative average of 77.5 %.  

After graduation, Ali Toukan joined Basrah Technical College as a faculty member in 

2007. In Feb 2008 he joined Thi-Qar oil refinery as a Process and Operation Engineer in 

Asphalt unit for four years. In Feb 2013, he was awarded Scholarship by The Higher 

Committee for Education Development in Iraq to study for Master’s degree in Chemical 

Engineering. He started at Missouri University of Science and Technology during the 

spring semester of 2014 to work under the supervision of Dr. Muthanna Al-Dahhan.  He 

received Master of Science degree in Chemical Engineering from Missouri University of 

Science and Technology in December 2016. 

 

 

 

 

 

 

 

 


	Hydrodynamic of a co-current gas liquid upflow in a moving packed bed reactor with porous catalysts
	Recommended Citation

	tmp.1488900247.pdf.6z442

