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ABSTRACT 

 Various computational methods have been used to generate potential energy 

surfaces, which can help us simulate and interpret how atoms or molecules behave during 

a chemical reaction.  For accurate work, ab initio wavefunction methods have 

traditionally been used, which have some disadvantages.  For example, highly accurate 

methods scale poorly with system size (n7 or higher) and are mostly not well parallelized 

for calculations with multiple processors. One alternative method that has more favorable 

scaling with system size and is well parallelized is a computational technique called 

quantum Monte Carlo (QMC).  QMC methods scale with the number of electrons as n3 

and have been found to scale almost linearly with the number of processors, even beyond 

500,000 cores.  However, despite the favorable scaling towards large systems, the cost of 

QMC methods is relatively expensive for small systems. Small systems nevertheless 

make important benchmarks necessary for the new methods to gain acceptance. Thus, it 

was determined to study QMC methods in a few benchmark systems in order to assess its 

accuracy and routine applicability.   

It was found that QMC methods can be very accurate comparing well with 

experimental measurements and other high-level ab initio methods.  Benchmark 

calculations with QMC produced realistic spectroscopic parameters for CO and N2.  

However, for small system sizes, they are relatively very expensive to perform with the 

cost being orders of magnitude higher than traditional methods.  Consequently, their use 

in small systems will likely most often be restricted to only a few geometrical points of 

interest, unlike traditional methods.  Nevertheless, deep insight into the electronic 

structure of a system can be obtained.  
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1. INTRODUCTION 

Chemistry is the branch of science investigating the properties, transformation, 

kinetics, dynamics, etc. of molecules.  Molecules are made up of atoms, which in turn are 

composed of charged particles, positively charged nuclei and negatively charged 

electrons.  Theoretical chemistry is the branch of chemistry that applies the laws of 

physics and mathematics to the study of molecular systems.  Computational chemistry 

implements these theories into algorithms to be solved using computational resources.  

Various properties and phenomena of systems can be studied, a few examples being 

relativistic energies, photodissociation, vibrational frequencies, NMR coupling constants, 

dipole moments, band gaps, surface reactions, and pharmaceutical drug design.  Quantum 

chemistry applies quantum mechanics to study and investigate molecular and atomic 

systems.  For many applications, the fundamental equation governing these interactions is 

the time-independent Schrödinger equation (SE),  

�Ψ = �Ψ                   (1) 

in which � is the Hamiltonian operator, Ψ is the wavefunction describing the positions of 

all the fundamental particles for the system of interest, and � is the eigenvalue of the 

solution to the Hamiltonian.  The Hamiltonian operator � is the sum of the potential 

energy operator � and kinetic energy operator 	, i.e.,  

� = 	 + �                   (2) 

The Coulomb Hamiltonian can be written explicitly as the interactions of charged 

particles, i.e., the nuclei and the electrons, which includes electron-electron repulsion, 

nuclear-electron attraction, and electron-electron repulsion terms, 
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� 

�# .  If the Schrodinger equation can be solved exactly, then the 

total energy and the exact wave function of the system will be known.   

Due to the many terms and structure of the Coulomb Hamiltonian, it is very 

difficult to solve due to the motion of the nuclei and electrons being coupled.  To 

simplify the situation, the Born-Oppenheimer (BO) approximation is often introduced, 

which decouples the motion of the nuclei and the electrons.  It is often rationalized by the 

large relative mass ratio of the nuclei to the electrons with the mass of an electron being 

9.109 x 10-31 kg and the mass of a proton being 1.727 x 10-27 kg.  Since the electrons 

adjust more quickly than the nuclei, their motions can be separated.  In the BO 

approximation, the nuclei are fixed at a series of geometric configurations, and the 

electronic energy is solved, which in turn provides the potential for the nuclear dynamics.   

1.1 ELECTRONIC STRUCTURE THEORY 

Brief descriptions of a few pertinent methods in the hierarchy of electronic 

structure theory are presented.  This is by no means intended to be a comprehensive or 

exhaustive description of the various levels of theories.  The interested reader is 

encouraged to examine the references for a more detailed account. 

1.1.1 Hartree-Fock (HF) Method.  The simplest wave function model in ab 

initio electronic structure theory is the Hartree-Fock (HF) method.  This method 

primarily serves as the reference configuration for more accurate and sophisticated 

treatments in electronic structure.   
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In the HF method, the electronic wave function is approximated by a single 

configuration (determinant) of spin orbitals, and the energy and the orbitals are optimized 

with respect to variations of these spin orbitals.  The HF ground state is obtained by an 

iterative procedure where the energy and orbitals are minimized with respect to the 

orbital rotations.  By solving a set of one-electron Schrödinger equations for the spin 

orbitals, an optimal determinant may be found, which is called the Hartree-Fock 

determinant.  The associated Hamiltonian to solve these equations is called the Fock 

operator: 

  % = ∑ %&'(&
)('&'                   (5)         

where the elements %&' compose the Fock matrix.  The Fock operator replaces the two-

electron interaction by an effective one-electron Fock potential �: 

% = ℎ + �                   (6) 

which treats the Coulomb repulsion of the electrons in an averaged way.  The equations 

are solved by diagonalizing the Fock matrix.  The resulting eigenvectors and eigenvalues 

are called the canonical spin orbitals and the orbital energies, respectively, of the system.  

An iterative procedure is used to solve the Fock matrix, and this procedure is called the 

self-consistent field (SCF) method and, the resulting wave function, the SCF wave 

function.    

 To describe the orbitals, basis sets are used, which provides a flexible set of 

functions.  In the limit of an infinite basis set, the complete basis set (CBS) limit is 

reached.  As is shown in Figure 1, there is a hierarchy of different methods that show 

increasing accuracy.  Full configuration interaction with complete basis set demands a lot 
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of computational resources with computational time, memory, and data storage, making 

the method infeasible for routine use.  The memory, storage, and I/O also increases with 

increasing basis size.  Therefore, a decision must be made to the level of theory and also 

to the basis set in order to provide sufficiently accurate results for the chemical system of 

interest.  
 
  

 
Figure 1.1  Hierarchy of ab initio methods.1 
 
 

At an early stage,2  it was known that, while the HF method can capture a large 

amount of the total energy of a system (~99%), it is limited in the accuracy of its 

description of molecular systems.  Due to the approximation of average Coulomb 

electronic repulsion, the instantaneous interactions (correlations) of the electrons are not 

treated, which are crucial for the description of chemical bond formation.3  The electron 

correlation captured by FCI is often separated into the strong (or static correlation) and 

the dynamic (or weak) correlation. A shortcoming of the HF method can be seen in the 

example of the H2 molecule.  The HF method incorrectly calculates the dissociation 

FCI/CBS (Exact 

nonrelativistic 

solution to the SE) 

CCSD(T)-F12 

CCSDT(Q) 
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energy by ~190 kcal/mol (due to neglect of both types of correlation). At the equilibrium 

bond distance, the Hartree-Fock wave function reasonably describes the most relevant 

configuration from the exact FCI wave function. 
 
  

 
Figure 1.2  Molecular orbital diagram for H2.4 

 
 
However as the H-H bond distance increases, the HF wave function becomes 

physically unreasonable, since, at longer distances, each electron should but can’t localize 

on one H atom.  The reason is that, as the H-H bond distance increases, the single 

Hartree-Fock determinant is incapable of accurately treating the evolution in the exact 

wave function due to bond breaking.  A point needs to be made about the different types 

of electron correlation.  For the stable H2 molecule at equilibrium geometry, the need 

arises to describe dynamic correlation, the correlated motion of electrons, which comes 

from the instantaneous Coulomb repulsion of the electrons.  In the limit of molecular 

dissociation, the configurations arising from the degeneracy, or near degeneracy, of the 
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bonding and antibonding configurations must be treated.  This static (or strong) 

correlation arises because these configurations interact strongly, cannot be treated in 

isolation, and are unrelated to the repulsion between the electrons.   

In order to capture the electron correlation energy, more sophisticated methods 

are employed.  These are called post-Hartree-Fock methods, because the HF method is 

used as the starting point for the initial orbitals and Slater determinant.  The correlation 

energy is defined as the difference between the energy obtained in the exact solution of 

the nonrelativistic solution Schrödinger equation, i.e., the full configuration interaction 

(FCI) energy, and the Hartree-Fock energy and can be written mathematically as 

�+,��-./0�,1 = �-!/+0 − �23                                                        (7) 

It is very accurate, but can only be solved for systems with few (<12 electrons) and 

limited to small basis sets. The computer time required to reach the FCI solution for 

larger systems is prohibitive.  Therefore, in solving for the electron correlation energy, 

there is a balance accuracy and computational cost (CPU time).  A few of these methods 

are highlighted in the following sections. 

1.1.2 Multiconfigurational Self-Consistent Field (MCSCF).  One method to 

improve HF is to allow for more configurations within the electronic wavefunction in 

what is called the multi-configurational self-consistent field (MCSCF) method.  Similar 

to HF, MCSCF uses the SCF method to converge to a set of molecular orbitals.  

However, instead of producing a single Slater determinant, MCSCF gives a reference 

wave function which includes all possible configurations from a group of active orbitals 

(see Figure 2), corresponding to perhaps many configurations and thus allowing for the 
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treatment of static correlation.  The wave function is written as a linear combination of 

these determinants, and, applying the variational method and minimizing the energy, the 

weights of these configurations are optimized simultaneously with the molecular orbitals.  
 
 

 
Figure 1.3  MCSCF illustration of excitations within a set of valence orbitals.5 

 
 
MCSCF gives more flexibility to the wave function in describing bonded systems.  

The reference space is chosen so that the underlying wave function can be qualitatively 

correct with respect to important valence correlation contributions such as excited states 

and bond breaking due to dissociation.  During dissociation of a diatomic molecular 

system, the configurations describing the wave function are continuously changing from 

the equilibrium geometry all the way to separate atomic configurations, and MCSCF 

allows the important configurations to be determined.  Whereas HF gave an unreasonable 

description as the bond of H2 was stretched, MCSCF improves description of the 

wavefunction and gives at least qualitatively correct behavior toward dissociation, e.g., 

see Figure 1.3.  MCSCF allows for the treatment of static correlation, the correlation 
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arising from degenerate or near-degenerate electron configurations.6  However, it does 

not fully account for the instantaneous interactions of electrons (dynamic correlation). To 

obtain higher accuracy, MCSCF is applied as a reference method for further excitation 
 
  

Figure 1.4  Qualitative Comparison of the Hartree-Fock and MCSCF methods for H2.5 
 
 
treatments which describe dynamic correlation, some of which are described in the 

following sections. (Strictly speaking some dynamic correlation is obtained in MCSCF, 

so the classification of dynamic correlation is less rigorous for MCSCF than eq. 4 which 

applies to single determinant descriptions). 

1.1.3 Coupled-Cluster (CC).  For systems with a single, dominant electronic 

configuration, dynamic electron correlation can be well-described by using the coupled-

cluster (CC) method, which uses HF as the reference.7  Mathematically, the CC method 

begins with an exponential form of the wave function  

Ψ = exp (	)Ψ9                           (5) 
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where 	 = 	� + 	 + ⋯.  A basic coupled-cluster method is CCSD, coupled-cluster with 

single and double excitations only, i.e., 	 = 	� + 	.  With full excitations, the FCI 

energy is recovered, but since the computational expense is too large for practical use, the 

excitation level of couple cluster must be truncated.  CCSD is often not sufficient for 

highly accurate work, and the next level of excitation, coupled-cluster with full single, 

double, and triple excitations (CCSDT), is, while more accurate, is much more 

computationally demanding.  For instance, with system size in which n is the number of 

electrons, CCSD scales as n6 whereas CCSDT scales as n8.  To have a method that is 

more accurate than CCSD but less computationally expensive than CCSDT, a hybrid 

method was developed: coupled-cluster with single, double, and perturbative 

contributions of connected triple excitations [CCSD(T)], which scales as n7.  This method 

is considered the “gold standard” of quantum chemistry due to being more practical than 

CCSDT and yet still being a highly accurate approximation for computational study.8 

1.1.4 Multireference Configuration Interaction (MRCI).  Multireference 

configuration interaction (MRCI)9,10 allows for the calculation of additional dynamic 

correlation for those systems with multiple important configurations.  The reference 

space for the MRCI method is usually taken from MCSCF.  The orbitals and 

determinants from the MCSCF method are used to construct the initial wave function.  A 

common method is MRCI with single and double excitations of electrons from the active 

space called MRCI-SD.  More excitations can be used but these become extremely 

expensive to evaluate and very rapidly increases the memory storage and usage of a 

single or multiple processors.  To include some contributions of higher excitations (and 

approximately restore size consistency), a Davidson correction11 can be used, which is 



10 
 

abbreviated as (Q).  There are several types of available theories but they are beyond the 

scope of this work.  

1.1.5 Moore’s Law.  In 1965, Gordon Moore observed that the number of 

components in an integrated circuit had doubled since 1959, and he predicted that this 

process would continue in the future.  In 1975, he later amended this prediction by stating 

that the semiconductor components would double every two years.12 
 
 

Figure 1.5  A plot of CPU transistor counts vs. dates of introduction.13 

 
 

As the number of components has increased, the speed of these microchips has 

increased as well.  Faster microchips enable the processors to work much more quickly, 
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rapidly expanding the role of computational chemistry. Theoretical chemists have 

developed theories and algorithms to give great insight into the electronic structure 

problem.  More recently, microchips are not increasing as much in speed, and a popular 

idea has been to increase the number of processors used for computation (parallel 

processing).  Many ab initio methods are not well parallelized and are thus unable to take 

advantage of state-of-the-art computational resources.  Also, as has been discussed, the 

scaling with the number of electrons is poor for many methods.  One method for which 

there is better scaling with system size and well parallelized algorithms is quantum 

Monte Carlo. 

1.2 MONTE CARLO METHODS 

 A brief description and example is given of the Monte Carlo method.  This is then 

followed by highlighting two of the Quantum Monte Carlo methods used in this work. 

1.2.1 Monte Carlo (MC).  Monte Carlo methods are algorithms that involve 

random sampling to obtain numerical results.14,15 One such example is to evaluate pi 

using the Monte Carlo method.  
 
  

 
Figure 1.6  Circle of radius R inscribed in a square. 
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To determine the value of pi, points are first randomly placed in the square. Then ratio of 

the points found inside and outside the circle can be used to estimate pi .  For example, 

;<=(+��+.- = >? and the ;<=(@AB/�- = 4?.  If these are rearranged to solve for pi, 

then pi can be defined as  

> = 4
��-/D�EDFG

��-/HIJKEG
                                                                                                                 (6) 

This means that the ratio of the points sampled inside the circle to those inside the square.  

With many points sampled, then an accurate value of pi will be approached. 

The Monte Carlo method can also be used to estimate the value of an integral.  Consider 

an integral L to be evaluated (equation 7): 

L = M %(N)ON                  (7) 

This integral can be approximated with the Monte Carlo method by: 

L ≈ Q1 = �
�

R
∑ %(N�)

R
�S�                  (8) 

In the limit of infinite sampling, the value of the integral is obtained (equation 9): 

lim
R→X

QR = L                  (9) 

Of course, infinite sampling is impractical, but, if a finite number of points are used, the 

integral can be estimated by statistical averaging.  This problem alone isn’t very useful, 

but the method can be applied to a wide range of problems and becomes very important 

for calculating the value for multi-dimensional integrals. 
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1.2.2 Quantum Monte Carlo (QMC).  Applying the Monte Carlo methods to 

quantum chemistry is known as Quantum Monte Carlo.16,17  These methods scale with the 

number of electrons as n3 whereas traditional high accuracy ab initio methods scale as n7 

or higher.  These algorithms are also well parallelized, being able to take advantage of 

and use hundreds, thousands, or even millions of cores efficiently.  These methods can be 

applied to a variety of electronic structure problems, from atoms to solids.18,19  QMC 

methods are routinely applied to solid-state problems in which traditional methods simply 

cannot be applied.  Since QMC methods make use of sampling methods, there is an 

uncertainty associated with each calculation. 

 For efficient sampling, these methods require an initial reference called a trial 

wave function, which can be constructed from various methods, such as HF for a single-

configurational trial wave function, or MCSCF for a multi-configurational trial wave 

function.  To describe dynamic electron correlation, QMC methods make use of a 

Jastrow factor,20,21 which make the trial wave function depend explicitly on interparticle 

separations, similar to explicitly correlated F12 methods.22,23  A multi-determinant trial 

wave function can be represented mathematically in Equation 10: 

ΨY(Z) = =[(Z) ∑ \]Q]
↑Q]

↓R`
]S�               (10) 

where ΨY  is the trial wave function, =[ is the Jastrow factor, \] are the determinant 

coefficients for the multi-determinant expansion describing static correlation, and Q]
↑ and 

Q]
↓ are the spin-up and spin-down Slater determinants, respectively.  Of the QMC 

methods, two are presented: variational Monte Carlo (VMC) and diffusion Monte Carlo 

(DMC). 
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 VMC calculates the expectation value of the Hamiltonian using Monte Carlo 

integration.  Mathematically, it can be represented as: 

�a�b =  M cd
∗ (Z)2cd(Z) fZ

M cd
∗ (Z)cd(Z) fZ

               (11) 

VMC is primarily used to optimize parameters of the trial wave function, such as the 

Jastrow factor, for subsequent use in the more accurate DMC.  The time-dependent SE 

can be written mathematically as a generalized diffusion equation 

�c(�,g)

�g
=

�


∇Ψ(<, h) − �(<)Ψ(<, h)             (12) 

A random walk procedure is used to simulate equation 10, in which an initial distribution 

of walkers is allowed to diffuse and multiply in a series of finite time steps.  As the 

simulation continues in time and in the number of iterations, the distribution of walkers 

approaches a fluctuation about an average steady-state distribution corresponding to the 

lowest energy wave function that satisfies the time-independent SE.24  In the long time 

limit, the method converges to the ground state wave function. 

Ψ(<, h → ∞) ≃ expk−(�9 − �Y) h]\9(0)n9(<)            (13) 

For electronic wavefunctions, since electrons are Fermions and require an antisymmetric 

wavefunction, DMC uses the fixed-node approximation, i.e., the nodes are fixed by the 

trial wave function.  If the trial wave function has the correct nodal structure of the exact 

wave function, the SE will be solved exactly.  Since the nodes are not usually known, 

then the fixed-node DMC method gives the best wave function while constrained by the 

nodes of the trial wave function.  
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ABSTRACT 

Building upon our recent studies of radical addition pathways following excitation of the 

I2 chromophore in the donor-acceptor complex of ethylene and I2 (C2H4LI2), in this 

article we extend our studies to examine photoinduced electron transfer.  Thus, irradiation 

into the intense charge transfer band of the complex (λmax = 247 nm) gave rise to a band 

at 366 nm which is assigned to the bridged ethylene-I radical complex on the basis of our 

prior work.  The formation of the radical complex is explained by a mechanism that 

involves rapid back electron transfer leading to I-I bond fission.  Excitation into the 

charge transfer band of the radical complex led to regeneration of the parent complex, 

and the formation of the final photoproduct, anti– and gauche–1,2-diiodoethane, which 

confirms that the reaction proceeds ultimately by a radical addition mechanism.  This 

finding is contrasted with our previous study of the C2H4LBr2 complex, where CT 

excitation led to only one product, anti–1,2-dibromoethane, a result explained by a single 

electron transfer mechanism proceeding via a bridged bromonium ion intermediate.  For 

the I2 complex, the breakup of the photolytically generated I2
–• anion radical is apparently 



16 
 

 

sufficiently slow to render it uncompetitive with back electron transfer.   Finally, we 

report a detailed computational examination of the parent and radical complexes of both 

bromine and iodine, using high level single– and multi–reference methods, which provide 

insight into the different behaviors of the charge-transfer states of the two radicals and the 

role of spin-orbit coupling. 

Keywords:  matrix isolation, neon matrix, donor-acceptor complex, ethylene-iodine. 

1. INTRODUCTION  

 The electron donor-acceptor (EDA) complexes of halogens with π-electron 

donors such olefins and aromatic compounds are model systems for examining halogen 

bonding and the mechanism of electrophilic addition and substitution reactions.1-5  Such 

complexes, which were initially observed and described by Benesi and Hildebrand in 

1949,6 and later characterized by Mulliken,5,7,8 have been shown to be important 

precursors in a variety of organic electron transfer reactions,3 and the study of ion pairs 

generated by excitation of EDA complexes has been used to examine many key issues in 

electron transfer theory.9 

The reaction of dihalogens such as X2 (X = F, Cl, Br, I) with the simplest π-

electron donor, ethylene, is a textbook organic reaction of electrophilic addition, which is 

usually presumed to proceed through an EDA complex.  On the basis of electron affinity, 

the halogen reactivity is predicted to decrease in the order F > Cl > Br > I.   Recently, we 

investigated the mechanism of electrophilic addition in the C2H4LBr2 EDA complex by 

initiating photoinduced electron transfer of the complex trapped in an Argon matrix at 5 

K.2  Following excitation into the intense UV charge-transfer band, only the anti-

conformer of the 1,2-dibromoethane product was observed, in agreement with a single 
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electron transfer mechanism proceeding through a bridged bromonium ion intermediate.  

In contrast, excitation of the Br2 chromophore leads to Br-Br bond fission and radical 

addition, producing the anti– and gauche–conformers in nearly equal yield.  

In another recent study, we examined radical pathways to electrophilic addition in 

the I2 + ethylene system by irradiating the matrix-isolated EDA complex in the visible I2 

absorption band, leading to cleavage of the I-I bond.10  In these steady state experiments, 

we observed formation of the bridged iodoethyl radical and both conformers of the 1,2-

addition product, with a 2:1 preference for the anti-conformer.  This was explained by 

stepwise addition via the bridged intermediate.  These observations were supported by 

theory, which predicted that the bridged radical is the global minimum on the C2H4I 

potential energy surface (PES). 

In this work we turn our attention to the photoinitiated charge transfer chemistry 

of the ethylene complex with molecular iodine.  There are few previous reports on 

experimental and theoretical studies of molecular iodine complexes with ethylene,11-13 

but many studies of iodine complexes with arenes.4,14-23  In an elegant set of experiments, 

Zewail and co-workers examined photoinduced electron transfer in arene (AR)LI2 

complexes formed in the gas-phase in a supersonic beam using mass spectrometry 

combined with ultrafast laser spectroscopy.17  Since in the gas-phase ion pair separation 

is highly endoergic, the final products arise from two channels – an ionic channel leading 

to AR+• LI–• + I, and a neutral channel producing ARLI + I or AR + I + I.17   The latter 

can be thought as arising from back electron transfer (BET), which produces an excited I2 

molecule at the same energy as the CT state.  At this energy the nascent I2 molecule is 

found on a repulsive electronic surface, leading to rapid bond cleavage.  The energy 
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release into these channels was also characterized by Young and co-workers.19,20   In the 

solution phase, a variety of ultrafast studies of areneLI2 complexes have been 

performed.16,17,21-24  These have revealed the rapid (sub ps) formation of an areneLI 

complex, which is presumed to arise from a similar mechanism (i.e., BET followed by I-I 

bond fission) as elucidated in the gas-phase studies. 

With these results in mind, here we report experimental and computational studies 

of photoinduced electron transfer in the C2H4LI2 donor-acceptor complex, trapped in Ne 

matrices at ~ 4 K.  We also report the first studies, to our knowledge, of the photoinduced 

electron transfer in this complex following excitation into the intense charge-transfer 

band in the UV region.   Our experimental results are supported by Density Functional 

Theory (DFT) calculations and high level single– and multi–reference calculations, 

which have examined in detail the influence of spin-orbit coupling on the binding 

energies of molecular and radical complexes.    

2. EXPERIMENTAL AND COMPUTATIONAL METHODS 

The experimental apparatus has been described in detail in earlier 

publications.2,25,26  Briefly, a mixture of ethylene:Ne (~1:500) was prepared in a 0.5 L 

mixing tank using standard manometric methods.  This was passed over iodine crystals 

held in a home-made sample holder that was heated to 5-10 degrees above room 

temperature, and sprayed onto a cold window held at ~ 5 K using the pulsed deposition 

method with a solenoid activated pulsed valve (Parker-Hannifan, General Valve Division, 

Iota-1). Typical deposition conditions were: 1 ms pulse duration, 5 Hz repetition rate, 1-2 

h deposition time, 1 bar backing pressure.  
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Following deposition, IR spectra were obtained with an FTIR spectrometer 

(ThermoNicolet 6700) equipped with a DTGS detector, which was purged at a flow rate 

of 20 L/min using a purge gas generator (Parker-Balston 75-52A).  IR spectra were 

recorded at 1 cm-1 resolution and typically averaged over 128 scans. UV-Visible spectra 

(200-1100 nm) were obtained using an Agilent diode array spectrophotometer, with a 

typical integration time of 1 s.  All spectra were referenced to the cold sample window, 

and subsequently transferred to a spreadsheet and analysis program (Origin 9.0) for 

workup.   Photolysis of the complex was initiated by irradiating the cold window with 

laser light at 240 nm, generated from the frequency doubled output of a dye laser system 

(Lambda-Physik Scanmate 2E) operating on Coumarin 480 dye, pumped by the third 

harmonic (355 nm) of a Nd:YAG laser (Continuum NY-61).  The photolysis beam was 

expanded using a 4:1 beam expander to fill the cold window and avoid damage to the 

KBr windows.  Typical irradiation times were 1-2 h.  In some experiments, a second 

photolysis step was performed with laser light at 355 nm, generated from the third 

harmonic of a pulsed Nd:YAG laser (Continuum Minilite). 

 Initial geometry optimizations were performed using Density Functional Theory 

(M06 and M06-2X functionals) methods with Peterson’s aug-cc-pVTZ-pp basis set for 

Iodine and an aug-cc-pVTZ basis set for all other atoms, as implemented in the 

Gaussian09 program.{Frisch, 2010 #34}  Electronic absorptions and oscillator strengths 

were calculated using time-dependent DFT, with the CAM-B3LYP and M06 functionals.  

Subsequently, multistate MRCI calculations were performed using Molpro27 to examine 

the low-lying singlet and triplet states of the ethylene-I2 complex as well as their 

correlations upon dissociation to form the bridged radical ethylene-I∙ species, and the 



20 
 

 

effects of spin-orbit (SO) coupling.   These calculations used Peterson’s new triple-zeta 

post-d F12 basis sets for Iodine,28 which has 25 explicit electrons surrounding a 

relativistic pseudo-potential representing 28 core-electrons.  Calculations of the structure 

and harmonic frequency of I2 as well as the splitting due to spin-orbit coupling for atomic 

iodine are in close agreement with experiment (see Supporting Information). The 

CASSCF level is at least semi-quantitative and is easily affordable for scanning multiple 

states of the complexes along the dissociation coordinate. We also present some limited 

MRCI-F12 results, correlating as many electrons as was feasible.   

3. RESULTS AND DISCUSSION  

Figure 1 displays UV/Visible spectrum of C2H4:I2:Ne (~1:2:500) sample at ~5 K, 

and a stick spectrum representing the TDDFT prediction of the spectrum of ethylene-

iodine complex at the (TD)M06/aug-cc-pVTZ level. When ethylene and iodine were co-

deposited in neon matrix an intense band appeared at 247 nm, which is in excellent 

agreement with theoretical predictions (Table 1), being essentially bracketed by the 

TDCAM-B3LYP and TDM06 predictions. 
 
  

 
Figure 1.  The UV-Visible spectrum (blue) of the Ethylene/I2/Ne (~2:1:500), with the 
predicted spectrum (red, shown as stick spectrum) of the singlet states of the ethylene-I2 
complex at the TDM06/aug-cc-pVTZ-pp level. 
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Table 1.  Predicted and observed electronic absorptions for C2H4 complexes.  a With aug-
cc-pVTZ-pp basis set on optimized M062x/aug-cc-pVTZ-pp geometry.  b In Ar matrix.11 
The excited states of the molecular complex are of singlet spin multiplicity, while those 
of the radical complex are of doublet spin multiplicity. 

 

Complex 

 

Excited 

State 

Predicted vertical excitation λ in nm (oscillator 

strength, ƒƒƒƒ) 

CAM-B3LYPa            M06a                  M06–2Xa 

λmax 

(ƒƒƒƒ) 

Ne 

λmax 

(nm) 

Other 

 

 

 

 

C2H4LI2 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

497.3(0.0009) 

494.7(0.0005) 

296.9(0.0001) 

296.3(0.0003) 

237.4(0.7591) 

196.2(0.0001) 

195.8(0.0004) 

194.5(0.0000) 

189.5(0.2660) 

177.6(0.2248) 

505.0(0.0008) 

502.6(0.0005) 

310.6(0.0001) 

310.1(0.0002) 

257.6(0.4240) 

240.5(0.0013) 

240.4(0.0030) 

238.9(0.0000) 

231.1(0.3088) 

222.8(0.0000) 

494.7(0.0009) 

492.7(0.0006) 

293.7(0.0001) 

293.4(0.0004) 

235.7(0.8043) 

194.0(0.0008) 

193.8(0.0000) 

192.8(0.0000) 

188.0(0.1692) 

182.8(0.2877) 

… 

… 

… 

… 

247 

… 

… 

… 

… 

… 

… 

… 

… 

… 

248.5b 

… 

… 

… 

… 

… 

 

 

 

 

C2H4LI• 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

2434.2(0.0000) 

2337.5(0.0001) 

356.4(0.2036) 

306.9(0.0008) 

229.2(0.0000) 

198.3(0.0013) 

196.7(0.0000) 

193.7(0.0000) 

190.8(0.0256) 

190.0(0.0178) 

2525.6(0.0000) 

2460.1(0.0001) 

383.5(0.1724) 

304.1(0.0012) 

264.1(0.0000) 

238.2(0.0037) 

237.8(0.0000) 

235.7(0.0075) 

235.6(0.0108) 

231.3(0.0000) 

1906.0(0.0001) 

1900.5(0.0001) 

300.6(0.1671) 

276.2(0.0006) 

205.6(0.0000) 

193.8(0.0000) 

193.5(0.0157) 

190.0(0.0247) 

189.8(0.0447) 

188.6(0.0402) 

… 

… 

366 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 

… 
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The position of the charge-transfer band in the Ne matrix is similar to previous 

results in Ar and nitrogen matrices (248.5 nm in Argon and 246.5 nm in N2).11 The 

highest-level CCSD(T)-F12b/VTZ-F12 calculation predicts a binding energy of 17.47 

kJ/mol for the C2H4:I2 complex (slightly more than the value of 15.96 kJ/mol predicted 

for the C2H4:Br2 complex at the same level of theory). 
 
 

Table 2.  Predicted vertical excitation with and without spin-orbit coupling for the 
bridged iodoethyl racdical.  a Fine structure levels occur in precisely degenerate pairs. 

Excited state Predicted vertical excitation λ in 

nm 

 Without SO With SOa 

1 6573.6 9158.1 

2 6355.2 1247.9 

3 340.5 324.6 

4 283.1 284.2 

5 275.4 278.3 

6 274.2 277.8 

7 272.4 276.2 

8 271.8 275.5 

9 263.3 262.1 

10 184.0 232.3 

 
 

The formation of the complex is also evident in the IR spectra, by the appearance 

of bands that are IR inactive in ethylene due to symmetry lowering (Figure S1 in the 

supporting information).  The IR inactive ethylene bands ν2 (C-C stretch) and ν3 (CH2 

deformation) appear at 1342 and 1613 cm-1, respectively, upon formation of the complex, 

while the infrared active ethylene bands display only small shifts upon complex 

formation.10  Under the assumption that the IR and UV/Visible spectra sample the same 

region of the matrix, the integrated IR and UV/Vis intensities can be combined with 

calculated IR intensities to estimate the oscillator strength of the UV/Vis transitions.  The 

integrated IR absorbance of a given feature was divided by the calculated intensity (M06-
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2X/aug-cc-pVTZ-pp, in km/mol) to derive a column density in the matrix, and an average 

value was obtained over the observed IR absorptions.  The oscillator strength of a given 

electronic (UV/Visible) band was then obtained as:31 

 (1) 

where NIR is the column density derived from the IR measurements and the numerator 

represents the integrated ultraviolet absorbance (over cm-1).  Using this approach, the 

derived oscillator strength of the CT band is ~ 0.46 (εmax = 12,900 M-1 cm-1), similar to 

the TD M06 prediction (Table 1). 
 
   

 
Figure 2.  Difference UV-Visible spectrum obtained following 240 nm irradiation of an 
ethylene:I2:Ne (~2:1:500) matrix.   The disappearance of features assigned to the 
ethylene-I2 complex coincides with the rise of a feature at 366 nm which is assigned 
to the bridged iodoethyl radical. 
 
 

  

f =
A

UV
υ( )∫  dυ

N
IR

× 1.87 × 10−7  mol/km( )
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The CT photochemistry of the complex was probed by 240 nm laser irradiation of 

the matrix.  Figure 2 demonstrates that irradiation leads to the loss of the C2H4LI2 band 

at 247 nm and the appearance of an intense band at 366 nm, which is readily assigned to 

the bridged C2H4LI complex on the basis of our earlier work.  The observed red-shift in 

this absorption is similar to that observed for the corresponding complexes with benzene 

(BzLI2, λmax = 295 nm; BzLI, λmax = 430 nm), and the position of this band is in 

excellent agreement with TDDFT predictions, particularly when the M06 functional is 

used (Table 1).  The experimentally determined oscillator strength determined using 

equation (1) is also in good agreement with theory (Table 1).  The formation of the 

radical complex is also evident in the IR spectra (Figure S1, supporting information).  For 

example, considering the 1613 cm-1 absorption, difference-spectra of the matrix obtained 

pre- and post-photolysis reveal a decrease in intensity of this feature and growth of a 

feature at 1589 cm-1.10  

Previous studies of areneLI2 complexes in the gas-phase and solution have 

shown that CT excitation followed by rapid back electron transfer leads to formation of a 

neutral I2 molecule on an excited repulsive potential energy surface, resulting in rapid 

fission of the I-I bond.4,14-18,22-24,32,33  Zewail and co-workers identified a second 

“harpoon” like mechanism that led to a smaller translational energy release,17 and in the 

gas-phase accounts for some 30-40% of products.19,20  In the matrix, cleavage of the I-I 

bond following BET leads to formation of the separated radical pair C2H4I and I.  That 

the same bridged C2H4I radical is observed following excitation into both the CT and 

Visible bands of the C2H4LI2 complex speaks to the fast BET that must follow CT 

excitation in this system. 
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Figure 3.  Schematic of the photochemical pathways of the C2H4LBr2 (a) and C2H4LI2 
(b) complexes. 
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Figure 4.  Plot of A1, B1 and B2 states, scanning the distance from the C-C bond midpoint 
(X) to I (or Br), in C2H4---I∙ (upper panel) and C2H4---Br∙ (lower panel) with and without 
the effects of SO-coupling. The Davidson-corrected MRCI(Q)-F12 method was used to 
compute the energies and couplings. The dashed lines show three pairs of fine-structure 
states correlated with the I(2P1/2) and I(2P3/2) atomic states compared with the results 
obtained without SO coupling (solid symbols). 
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Figure 5.  Plot of excited states scanning the distance from the C-C bond midpoint (X) to 
I in C2H4---I∙ at the MRCI-F12 level. (upper) without SO coupling. (lower) pairs of fine- 
structure states obtained by including the effects of SO-coupling. 
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Figure 6.  Plot of excited states scanning the distance from the C-C bond midpoint (X) to 
Br in C2H4---Br∙ at the MRCI-F12 level. A direct C2V approach is followed (not the 
relaxed path shown in Figure 4. (upper) without SO coupling. (lower) pairs of fine- 
structure states obtained by including the effects of SO-coupling. 
 
 

Our observation of the radical complex suggests that the second iodine atom has 

escaped the primary cage, avoiding geminate recombination.  However, upon excitation 
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of CT band of the radical complex, regeneration of the parent C2H4LI2 complex is 

observed, as are the two conformers of the 1,2-addition product.  These experiments 

probed the dynamics of the C2H4LI complex by performing a second irradiation at 355 

nm following a first irradiation at 240 nm.  The UV-Visible difference spectrum shows a 

loss of the 366 nm band of the C2H4LI complex, with a concomitant increase in bands of 

the C2H4LI2 complex, while the IR spectrum shows the appearance of 1,2-diiodoethane.  

Following electron transfer, the C2H4
+
LI– intermediate can decay via BET to ethylene 

and a secondary iodine atom, which can recombine with the primary atom to form I2.   

Alternatively, a sequential radical addition of the two iodine atoms to ethylene can yield 

anti– and gauche–1,2-diiodoethane.   

 Barbara and co-workers examined the dynamics following CT excitation in 

related areneLBr atom complexes in various solvents using ultrafast transient 

absorbance spectroscopy over a range of probe wavelengths.34,35  Typically, the observed 

BET kinetics exhibited multiexponential behavior, with a fast component (ca. 1 ps), a 

slow component (ca. 0.2–1 ns), and intermediate components.  The multiexponential 

behavior was attributed to a distribution of arene+/Br- geometries in the initial ion pair 

state, which was presumed to involve specific, geometry dependent electronic 

interactions between donor and acceptor.35  

It is instructive to compare the CT photochemistry of C2H4LI2 with our previous 

study of the C2H4LBr2 complex.2  The combined insights are summarized in Figure 3.  

For the Br2 complex, CT excitation leads to only one product, anti–1,2-dibromoethane, 

which is explained by a single electron transfer mechanism proceeding via a bridged 
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bromonium ion intermediate (Figure 3a).  For this ion to form, the breakup of the Br2
–• 

anion radical (kdiss in Figure 3a) must be sufficiently fast to compete with BET.  In 

contrast, excitation of the visible Br2 centered absorption leads through a classical 

haloaklyl intermediate to both stereoisomers of the 1,2-addition product, in nearly equal 

yield, consistent with a radical addition mechanism.   For the I2 complex, the lower 

reactivity of I2
–• favors BET, and the fragmentation therefore occurs on a repulsive 

neutral potential surface, leading to formation of a bridged haloaklyl radical (Figure 

3(b)).36  Thus, in this case the product yield is similar to that obtained through excitation 

of the visible I2 centered absorption.  This work illustrates that, following CT excitation, 

the competition between BET and fragmentation of the radical anion is important in 

controlling the subsequent chemistry.  

 In order to examine the two complexes in more detail and the role of spin-orbit 

coupling, calculations were performed at the UCCSD(T)-F12b, SA-CASSCF, and MRCI-

F12 levels. Where applicable (i.e., for the lowest energy state of a particular symmetry 

and spin in regions where multiple configurations are not important), the UCCSD(T)-

F12b method provides highly accurate benchmarks, benefitting from inclusion of 

(perturbative) triples in the correlation treatment. The SA-CASSCF provides at least a 

semi-quantitative description of the behavior of multiple states and the effects of SO 

coupling, and MRCI-F12 (to the extent it is affordable) provides greater accuracy to the 

multistate calculations. The iodine complex structures were optimized using UCCSD(T)-

F12b, yielding an inter-iodine distance in C2H4---I2 of rI-I = 2.702 Å, only slightly longer 

than in the I2 diatomic.  The distances from the C-C bond midpoint to the I-atom in C2H4-

--I∙ and the closer I-atom in C2H4---I2 were 2.98 Å and 3.13 Å respectively. This distance 



31 
 

 

is sensitive to the correlation treatment. MRCI calculations with a full-valence active 

space and all electrons correlated are prohibitively expensive, and successive reductions 

in the number of orbitals included in the correlation procedure resulted in 

correspondingly longer optimized distances.  The geometric parameters of ethylene are 

insensitive to the presence of iodine atoms in these complexes.  Values for the C-C bond 

distance of 1.334 Å, 1.343 Å, and 1.338 Å were recorded for C2H4, C2H4---I∙ and C2H4---

I2 respectively. Other geometric parameters such as C-H bonds and CCH angles varied 

even less. The hydrogen atoms do bend very slightly out-of-plane (away from the iodine 

atom(s)). For the bromine complex C2H4---Br2 the behavior is similar to that of the iodine 

system since the calculated inter-bromine distance of 2.311 Å is only slightly longer than 

in the Br2 diatomic and again the structure of ethylene is not strongly perturbed. The 

distance to the closer Br atom is 2.966 Å. Whereas the ground state of the weakly bound 

C2H4---I∙ complex is bridged, the corresponding bromine system C2H4---Br∙ forms a more 

strongly bound classical radical with the bromine atom intimately bonded to one carbon.  

A relaxed scan was performed beginning with the C2H4---I2 complex (binding 

energy of 17.47 kcal/mol at the CCSD(T)-F12b/VTZ-F12 level), increasing the rI-I 

distance (asymptotically reaching the C2H4---I∙ complex). Additional details and results 

can be found in SI. The scan using the UCCSD(T)-F12b method was only used to obtain 

a series of geometries at which to plot energies obtained by the state-averaged CASSCF 

(SA-CASSCF) method. As the I2 fragment is pulled apart the optimized distance from the 

C-C bond midpoint to the near I-atom initially decreases to a minimum of 2.803 Å, 

corresponding to an rI-I distance of 3.6 Å, before recovering toward the asymptotic value 

of 2.98 Å for the C2H4---I∙ structure. 
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Without considering SO-coupling, a single iodine atom associated with ethylene 

to form the C2H4---I∙ complex breaks the degeneracy of the A1, B1, and B2 states.  The 

stabilization of the 1A1 state likely comes from the electrostatic interactions between the 

quadrupole moments of I• and ethylene molecule, with the positive side of the I• 

quadrupole due to the electron hole interacting with the negative side of the ethylene 

quadrupole due to the π-cloud.  In the 1B1 and 1B2 states, the I• atom faces the ethylene π-

cloud with a doubly-occupied p-orbital, and these states are thus highly repulsive.  

Indeed, the 1B1 and 1B2 states appear 97.1 and 101.7 kJ/mol above the ground 1A1 

respectively at the SA-CASSCF level. More quantitative descriptions obtained with 

UCCSD(T)-F12 and MRCI-F12 produce gaps to the B1 and B2 states of about 65-70 

kJ/mol (discussed in more detail below).   

 Considering the C2H4---I∙ complex, SO-coupling is predicted to significantly 

impact the states and their splittings, even shifting the equilibrium distance to the I-atom 

by ~0.6 Angstroms. The ground states of C2H4 and I-atom combine to yield three states 

(A1, B1 and B2), the lowest (A1) having its minimum (without SO-coupling) at a distance 

of 2.98 Angstroms by the UCCSD(T)-F12b method as discussed above. Since the other 

two states are each the lowest states of different symmetries, they can also be calculated 

at the UCCSD(T)-F12b level. At the equilibrium distance without SO-coupling (2.98 Å), 

the gaps to the B1 and B2 states are 68.3 and 71.2 kJ/mol at the UCCSD(T)-F12b level, 

and the well depth on the ground A1 state is 20.3 kJ/mol. Dynamic electron correlation is 

quite important, as MRCI-F12 produces similar gaps to the B1 and B2 states of 66.6 and 

69.1 kJ/mol, respectively, and a well depth on the A1 state of 14.6 kJ/mol, but the SA-

CASSCF calculation produces a much shallower well (1.7 kJ/mol) at larger separation 
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and is significantly repulsive where the UCCSD(T)-F12b and MRCI-F12 methods have 

their minima.  Figure 4 plots the three states A1, B1 and B2 at the MRCI-F12 level as a 

function of distance from the C-C midpoint.  Also shown are the three pairs of fine-

structure levels produced by including the effects of SO-coupling. Remarkably, the 

minimum on the lowest pair of fine-structure levels is shifted outward by more than 0.6 

Å, relative to the result obtained without considering SO-coupling.  

The binding in the C2H4---Br∙ complex is quite different. At large distances from 

the C-C midpoint the behavior is similar to that of the C2H4---I∙ system with the Br-atom 

preferring to associate directly above (C2V symmetry) a negligibly perturbed ethylene. 

Beginning at a distance of ~2.75 Å the Br atom prefers to bond more intimately with one 

C-atom (lowering symmetry to CS) and ethylene relaxes rapidly toward the classical 

radical structure (rC-Br = 2.014 Å). This transition appears as a shoulder in the energy 

along the minimum energy path (MEP) shown in Figure 4. SO-coupling becomes 

negligible at the shortest bond distance and thus in contrast to the iodine system does not 

significantly perturb the energy or structure of the radical. Additional plots showing the 

relaxation of the angle and C-C distance along the MEP are included in SI. 

 Plots of the excited states of C2H4---I∙ and C2H4---Br∙ (Figures 5 and 6) provide 

some insight into the different behaviors of the charge-transfer states of the two radicals. 

Figure 5 plots the excited states along the direct (C2V) approach of a Br atom. Thus the 

zero of energy is the shoulder of the curve in Figure 4 just before the MEP deviates 

sharply to form the classical radical bound to one C-atom. The lower panel shows the 

effects of SO-coupling and plots the fine-structure pairs. In Figure 6 corresponding plots 

are shown for C2H4---I∙. Experimentally irradiation at 355 nm excites C2H4---I∙ into the 
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CT state. This corresponds to an energy of ~398 kJ/mol which is close to the gap to a pair 

of fine-structure levels above the minimum on the ground fine-structure state (at 3.6 Å, 

see Figure 4). It can be seen that SO-coupling affects the stability of the state providing a 

path to the repulsive C2H4(X 1Ag) + I(2P1/2) component of the ground state.    

An effort was made to make more quantitative predictions of vertical excitation 

energies for the bridged C2H4---I∙ radical at the MRCI-F12 level with and without the 

effects of spin-orbit coupling. Calculations were performed using the structure 

corresponding to the minimum on the lowest fine-structure levels shown in Figure 4 

(with a distance from the C-C bond midpoint to the I-atom of 3.6 Å as discussed above).  

Some details can be found in SI. In brief, MRCI-F12 calculations using a Rydberg 

extended basis set, and the largest affordable active space were employed. A total of 11 

doublet (4 A1, 3 B1, 3 B2, and 1 A2) and 5 quartet (1 A1, 1 B1, 2 B2, and 1 A2) state 

energies were computed including an applied rotated Davidson correction. The scans in 

Figures 5 and 6 employed a less costly reduced active space and fewer states (the lowest 

6 doublet and 3 quartet states). Energies obtained this way were combined with SO-

couplings computed without excitations (at the CASSCF level), and these are listed in 

Table 2.  They are only in rough accord with experiment, which suggests that the 

agreement of experiment and TDDFT predictions (Table 1) for the radical complex is 

probably fortuitous.    
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4. CONCLUSIONS 

The donor-acceptor complex of ethylene and I2 (C2H4LI2) was isolated in a neon 

matrix at 5 K and characterized by infrared and electronic spectroscopy, supported by ab 

initio and Density Functional Theory (DFT) calculations.  Irradiation into the intense CT 

band (λmax = 247 nm, ƒ=0.46) of the complex gave rise to a band at 366 nm that is 

assigned to the bridged C2H4LI• radical complex on the basis of (TD)DFT calculations.  

Following CT excitation, the formation of the radical complex (C2H4LI•) is explained 

by rapid back electron transfer leading to I-I bond fission, and this is supported by 

observation of the same complex following excitation of the visible absorption band (λmax 

= 451 nm) of the C2H4LI2 complex, which is centered on the I2 chromophore.  The 

radical complex is the only photoproduct observed following either UV or Visible 

irradiation. 

To probe the spectroscopy and photochemistry of the radical complex, irradiation 

into the charge transfer band was performed, at 355 nm.  In addition to the C2H4LI2 

complex, IR bands assigned to anti– and gauche–1,2-diiodoethane are observed, which 

confirms that the reaction proceeds by radical addition, rather than through an iodonium 

ion intermediate.  This stands in contrast to our previous study of the C2H4LBr2 

complex, where CT excitation led to only one product, anti–1,2-dibromoethane, a result 

explained by a single electron transfer mechanism proceeding via a bridged bromonium 

ion intermediate.  In this case, the breakup of the Br2
–• anion radical generated following 

CT was sufficiently fast to compete with BET; however, for the I2 complex, the slower 

fragmentation of I2
–• favors BET and subsequent I-I bond fission on a repulsive neutral 

potential energy surface.  
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The observed UV-Visible absorptions and associated oscillator strengths, and IR 

bands of the C2H4LI2 and C2H4LI• complexes are largely in excellent agreement with 

(TD)DFT predictions.  For the radical complex, this is possibly fortuitous, as high level 

multireference calculations reveal the important role of spin-orbit coupling in this system, 

which significantly reduces the binding energy of the ground state complex and leads to a 

rich set of crossings and avoided crossings.   

In future studies, it would be particularly revealing to probe the short-time 

dynamics following photoinduced electron transfer of this prototypical complex in both 

the gas-phase and condensed phases.   
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ABSTRACT 

This study reports on the prospect for routine use of Quantum Monte Carlo (QMC) for 

the electronic structure problem, applying fixed-node Diffusion Monte Carlo (DMC) to 

generate highly-accurate Born-Oppenheimer potential energy curves (PECs) for small 

molecular systems. The singlet ground electronic states of CO and N2 were used as test 

cases. The PECs obtained by DMC employing multiconfigurational trial wavefunctions 

were compared with those obtained by conventional high-accuracy electronic structure 

methods such as multireference configuration interaction (MRCI) and/or the best 

available empirical spectroscopic curves. The goal was to test whether a straightforward 

procedure using available QMC codes could be applied robustly and reliably. Results 

obtained with DMC codes were found to be in close agreement with the benchmark PECs 

and the n3 scaling with the number of electrons (compared with n7 or worse for 

conventional high-accuracy quantum chemistry) could be advantageous depending on the 

system size.  Due to a large pre-factor in the scaling, for the small systems tested here it is 

currently still much more computationally intensive to compute PECs with QMC. 

Nevertheless, QMC algorithms are particularly well-suited to large-scale parallelization 

and are therefore likely to become more relevant for future massively-parallel hardware 

architectures. 

Keywords: Potential Energy Curves, Quantum Monte Carlo, DMC 
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1. INTRODUCTION 

Quantum Monte Carlo (QMC) methods have shown promise in performance and 

scalings as an approach to quantum mechanical calculations.1-5  These methods have been 

applied to the electronic structure, especially of solids6-10 and medium-sized molecules,11 

but also to atoms and small molecules12-28 presenting an alternative to traditional high-

accuracy quantum chemistry methods such as configuration interaction (CI)29 and 

coupled-cluster (CC).30,31 Some typical limitations of standard ab initio methods are: 1) 

high-order dynamic electron correlation may be neglected or is prohibitively costly to 

compute, 2) scaling with the number of electrons is poor,32,33 3) some error may be 

introduced by internal contraction,34 and 4) many algorithms are not yet efficient for large 

scale parallelization.   

Key advantages for QMC methods are favorable scaling with the number of 

electrons and efficient parallelization (scaling with the number of computing cores).  CI 

and CC methods can scale as n7 (for n electrons) or worse32 and thus rapidly become 

prohibitively expensive with increasing system size, whereas QMC methods scale as n3 

making them especially favorable for larger systems.  In practice for small systems, 

despite the impressive n3 scaling, QMC tends to have a large cost-prefactor making it 

relatively expensive compared with traditional quantum methods. Nevertheless, the 

vastly better scaling means that there exists a crossover point in system size beyond 

which QMC is favored. In addition, QMC algorithms can be very efficiently parallelized, 

scaling essentially linearly with the number of cores.35  QMC methods can take full 

advantage of massively parallel machines, and are thus well-suited for next-generation 

computer architectures with millions of cores.3,5  
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During the development of QMC methods over the past few decades, there have 

been numerous reported studies of first-row atoms and (mostly) homonuclear diatomics12-

28,36 as well as hydrides.37,38 The majority of those studies have focused on a single 

equilibrium geometry for each species while treating the total binding energy as well as 

components of the energy as method development benchmarks. It is well established that 

QMC methods can capture large fractions of both the strong and dynamic correlation 

energy, illustrated for example, by its impressive performance for the challenging Be2 

system.17,25 Methods to compute forces have also been developed39 and estimates of 

anharmonic force constants based on a few near-equilibrium points have been reported.15 

Some PECs calculated with QMC have been reported40-42 including most recently 

by Giner et al.40  Those studies focus on technical aspects of the wavefunction 

construction and sampling as well as accuracy performance, but with less emphasis on 

assessments of cost and routine feasibility. They did achieve high-accuracy in 

comparison with reference curves, and reported that the fixed-node error (due to the 

fixed-node approximation)43 was reduced as increasing numbers of determinants were 

used. Some of the studies didn’t pursue the highest degree of accuracy, limiting the size 

of basis set in the trial wavefunction.40 The largest bond dissociation distances were the 

least well converged relative to reference PECs,37-40 and this was ascribed to limitations 

in the number of determinants.  

For PECs, single-reference methods (with typical levels of truncation of the 

excitation operators) often do not produce correct behavior over the entire bond-distance 

range, because they cannot easily account for the evolution toward other configurations 

as the bond is stretched toward dissociation. The problem is common when breaking 
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multiple bonds, a well-known example being N2.44  Even though CCSD(T), i.e., coupled-

cluster with single, double, and perturbative triple excitations, is considered the “gold 

standard” of quantum chemistry, for N2 it cannot accurately calculate the region of the 

PEC corresponding to dissociation. CCSD(T) breaks down at about twice the equilibrium 

bond length re and produces an artificial hump.44, 45   

Multi-reference methods are often preferred as a globally applicable approach 

with correct dissociative behavior, and have been found necessary in previous QMC 

studies.37  The single determinant FN-DMC atomization benchmarks reported by 

Grossman in 2002 found a 2.9 kcal/mol average absolute deviation over a 55 molecule 

test set, with deviations of 3.0 and 4.1 kcal/mol for CO and N2 respectively.14 The 

efficient use of multideterminants in QMC codes is not trivial but has been successfully 

addressed by an algorithm known as the table method46,47 implemented in the 

QMCPACK48 code package. The work reported here focuses on assessing the accuracy, 

cost, and routine feasibility of using QMC as implemented in two freely available 

packages, calculating ground state potential energy curves (PECs) for two test systems 

(CO and N2). The multi-determinant trial wave functions used in this study were 

generated from orbitals and determinants using the multi-configurational self-consistent 

field (MCSCF) and configuration interaction (CI) methods from GAMESS (U.S.).49  The 

CASINO50 package was used for most of the QMC calculations reported here, along with 

some timing comparisons conducted using the QMCPACK48 code.  

2. FIXED-NODE QUANTUM MONTE CARLO  

Here, we give a brief summary of some important aspects of QMC.  For more 

technical details, the reader is referred to references 50 and 51.  
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2.1 VARIATIONAL MONTE CARLO 

Variational Monte Carlo (VMC), using an approximate trial wave function ΨY , 

calculates the expectation value of a Hamiltonian H, with the integrals being performed 

by a Monte Carlo method.52-54  The variational energy Ea�b is an upper bound to the 

exact ground state energy �9 and is mathematically defined as 

�a�b =  M cd
∗ (Z)2cd(Z) fZ

M cd
∗ (Z)cd(Z) fZ

  ≥ �9                                                                                       (1) 

Z is a 3N-dimensional vector of the coordinates (r1,r2,..,rN) of the N particles in the 

system (in this case electrons).50  The expectation value of the Hamiltonian � can be 

rewritten with respect to the trial wave function ΨY  as  

〈�〉 = M|cd(Z)| tFuD(Z) fZ

M|cd(Z)| fZ
                                                                                                    (2) 

with the local energy �.,+ = ΨY
���ΨY .  By sampling the points Z� according to the 

distribution |ΨY| with v configurations, the variational energy can then be computed 

from a set of local energies: 

�a�b = lim
�→X

�

�
∑ �.,+(Z�)

�
�S�                                                                                            (3) 

Statistical uncertainty in a Monte Carlo method decreases as 1/√v where v is the 

number of samples.  The primary purpose of the VMC method in this application is to 

optimize the parameters of a trial wave function, such as the Jastrow factor,55-59 for 

subsequent use in the more accurate DMC (Diffusion Monte Carlo) method.    

In this work, to help describe dynamic electron correlation, a three-body Jastrow 

factor was used,52 which includes electron-electron u terms, electron-nucleus χ terms, and 
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electron-electron-nucleus f terms.  The Jastrow factor makes the trial wave function 

depend explicitly on particle separations and is symmetric under the interchange of 

identical particles.60  Note that in a similar application to the F2 molecule, Giner et al. 

justified not employing a Jastrow factor, primarily in order to avoid the costly 

optimization of parameters.40  They state that non-linear optimizations of Jastrow factors 

may make it more difficult to obtain smooth PECs. The main drawback to lacking a 

Jastrow factor conceded by Giner et al. is a greatly increased variance in the trial 

wavefunction and corresponding increased simulation times.40 For a detailed description 

of the form of the Jastrow factor that is used in CASINO, see reference 52. 

2.2 DIFFUSION MONTE CARLO 

The Diffusion Monte Carlo (DMC) method61,62 uses the importance-sampled 

imaginary-time Schrödinger equation to evolve an ensemble of electronic configurations 

toward the ground state.  The Schrödinger equation can be written in integral form as 

%(Z, x) = M y(Z ← Z{, x − x{)%(Z{, x{)OZ{                                                                     (4) 

where Z is a point in the configuration space of an N-particle system.  Here, %(Z, x) is a 

mixed distribution dependent on some trial wave function ΨY , and written 

mathematically as %(Z, x) = Ψ(Z, x)ΨY(Z).  The Green’s function y(Z ← Z{, x − x{) 

gives the probability of a transition from Z to Z{ in the time interval x − x{, and satisfies 

the initial condition y(Z ← Z{, 0) = |(Z − Z{). 

Due to the fermion sign problem,51 the DMC method in CASINO adopts the 

fixed-node approximation, in which the nodes of %are constrained to be the same as those 

of the trial wave function ΨY .  The DMC method then produces the lowest energy 

possible for this nodal surface and can be considered variational with respect to it.41 
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Interestingly, for both atoms and diatomic molecules, Giner et al. reported a systematic 

decrease in the fixed-node error with respect to both the number of determinants retained 

and the size of the one-particle basis.40 

2.3 COMPUTATIONAL METHOD  

For all of the QMC calculations, multi-determinant Slater-Jastrow (MD-SJ) trial 

wave functions were used, which can be written mathematically as  

ΨY(Z) = =[(Z) ∑ \]
R`
]S� Q]

↑Q]
↓                                                                                            (5) 

where ΨY  is the trial wave function, =[ is the Jastrow factor, \] are the determinant 

coefficients for the multi-determinant expansion describing static correlation,52 and Q]
↑ 

and Q]
↓ are the spin-up and spin-down Slater determinants, respectively.  For both CO 

and N2, the aug-cc-pwCV5Z basis sets63 were truncated to 11s10p8d, i.e., angular 

momentum functions ≥ % were removed.  The orbitals in the trial wave functions were 

cusp corrected using the scheme of Ma et al.21   

All DMC calculations were performed with the electrons moving one at a time (electron-

by-electron).  The time steps for all the systems were chosen so that the acceptance ratio 

of the proposed moves would be ~99.5%.    

2.4 APPLICATIONS 

For both systems, the Jastrow factor was defined using an expansion of order 8 

for the u terms (}B = 8), an expansion also of order 8 for the χ terms (}� = 8), and an 

order of 4 for the f terms (}�
-1 = }�

-- = 4), resulting in a total of 149 variable parameters 

for N2 and 281 parameters for CO in the two respective Jastrow factors.  For all trial 

wave functions, the truncation order-parameter �, which determines the behavior at the 
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cutoff lengths, was set to a value of 3, providing a local energy that is continuous in 

configuration space.60  For the electron-electron u terms and electron-electron-nucleus f 

terms, different parameter values were used for the parallel- and the antiparallel-spin 

electron-pairs, and, for the electron-nucleus χ terms, different parameters were used for 

spin-up and spin-down electrons.   

The parameters of the Jastrow factor were optimized with unreweighted variance 

minimization.  For each initial optimization cycle, the default cutoff lengths for the u, χ, 

and f terms were used and the initial Jastrow parameters were set to zero.  To see how 

uncertainties in the optimized Jastrow factors would carry over to the subsequent DMC 

calculations, two procedures with vastly different costs were tested. Procedure 1 is 

designed to seek high precision during the optimization stage, thus incurring a high 

computational cost. Procedure 2 explores what compromises in accuracy are suffered 

when a less rigorous and time consuming optimization is performed. In Procedure 1, the 

Jastrow parameters were optimized using 5.0 x 105 configurations for one initial cycle, 

followed by a system-dependent number of additional optimization cycles.  For N2, the 

number of additional cycles was 6 and, for CO, the number of additional cycles was 9.  In 

Procedure 2, the Jastrow parameters were optimized using 1.0 x 105 configurations (five 

times fewer than procedure 1) for 10 cycles with the cost of the optimizations being 

roughly an order of magnitude fewer CPU-hrs than Procedure 1. In both procedures, the 

subsequent DMC calculations were performed with target populations of 2500, a 

minimum of 1.5 x 105 sample points, and time steps of 0.002 a.u. for all geometries.  For 

comparison with DMC, MRCI calculations were also done using the MOLPRO64 

package. 
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2.4.1 CO: C(3Pg) + O(3Pg) ���� CO(X1Σ+).  When the ground states of carbon and 

oxygen atoms combine, the number of molecular states of CO, resolved into C2v 

symmetry, is:65 

5,3,1(3 A1 + 2 B1 + 2 B2 + 2 A2) 

which represents a total of nine states of each of three spin-multiplicities (singlet, triplet 

and quintet). Since there are nine singlet-states, dynamic weighting66 was used to 

facilitate robust convergence near the asymptote for the full-valence (10e,8o), state-

averaged multi-configurational self-consistent field (SA-MCSCF) calculations.  As in the 

case of N2, a high-spin (quintet) ROHF calculation was performed before the subsequent 

singlet DW-SA-MCSCF calculations.  

To control the cost of the QMC calculations, only a limited number of 

determinants were retained (specified by two contending criteria). First, a coefficient 

cutoff of 0.002 was used at each point, such that all determinants with an absolute weight 

coefficient value > 0.002 were retained. This resulted in a varying number of retained 

determinants at each rCO distance. Secondly, for comparison, a fixed number of 250 

determinants (those with the largest coefficients) were retained throughout the coordinate 

range. 

To assess the quality of the QMC results for CO in comparison to typical high-

level conventional electronic structure methods, an accurate MRCI-based reference PEC 

by Dawes et al.67 was used.  It was constructed from Davidson-corrected MRCI data, 

based on a dynamically-weighted state-averaged CASSCF reference (DW-SA-CASSCF), 

with a full-valence active space. The MRCI(Q) data was extrapolated to the complete 

basis set (CBS) limit with the aug-cc-pwCVnZ (n = 3-5) bases and all electrons 
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correlated. The vibrational levels on the PEC are of spectroscopic accuracy. The MRCI-

based PEC also includes small spin-orbit (SO) and scalar-relativistic (SR) corrections. 

The small SO and SR correction terms were removed from the MRCI-based PES for the 

comparisons with DMC presented here. This permits a more direct comparison since the 

DMC Hamiltonian does not include those terms.  

2.4.2 N2: N(4Su) + N(4Su) ���� N2(X1��
�).  When two ground state N(4Su) nitrogen 

atoms combine, the total number of molecular states of N2, resolved into D2h symmetry, 

is 7,5,3,1Ag (one state of each of four spin-multiplicities).65 

For the calculations in GAMESS, to ensure convergence to the ground state of N2, 

a high-spin (in this case septet) restricted-open Hartree-Fock (ROHF) calculation was 

performed at the largest N-N distance, followed by a 1-state MCSCF calculation for the 

desired singlet ground state with the full-valence (10e,8o) active space.  In the QMC 

calculations, based on the results for CO discussed above, the strategy of retaining a 

variable number of determinants based on a coefficient threshold was abandoned, and a 

fixed (generous) number of 396 determinants were retained. The QMC data obtained 

along the coordinate range was assessed by comparison with an empirical spectroscopic 

PEC by Le Roy et al.68  

3. RESULTS AND DISCUSSION 

For CO, initially a coefficient weight cutoff of 0.002 was used to restrict the 

number of determinants retained in the trial wavefunctions, generally resulting in a 

different number of determinants employed at each CO bond distance. The DMC energy 

data and numbers of determinants are given in Tables 1 and 2 for Procedure 1 and 

Procedure 2 (respectively), which differ by roughly an order of magnitude in the 



50 
 

 

computational expense devoted to optimizing the Jastrow factor (the parameters are 

better converged by Procedure 1). The DMC energy data was overlaid with the reference 

PEC using weighted least-squares to account for the different uncertainties at each data 

point. The RMSD of the DMC energy data with respect to the reference PEC is 315 cm-1. 

As shown in Figure 1, the points obtained via both (Jastrow optimization) procedures 

follow the reference PEC quite well near the equilibrium geometry.  At bond distances > 

2.0 Å where fewer determinants are retained, the DMC points tend to deviate slightly 

from the reference PEC (to higher energies). To see if this behavior might be related to 

the reduced numbers of determinants, trial wave functions with a fixed number of 

determinants (250) were optimized via both procedures and then recalculated with DMC.  

The results are given in Tables III and IV and in Figure 2. The RMSD of the DMC 

energy data computed using a fixed number of determinants with respect to the reference 

PEC is 292 cm-1.  This is only slightly less than that of the variable determinants data. 

Note that corresponding to the number of DMC samples, the uncertainties at each data 

point are in the range of 40-90 cm-1 (see Tables). It is not clear from these results that 

retaining a fixed number of determinants produces significantly more consistent results 

than the lower-cost coefficient weight cutoff strategy (which results in a variable number 

of retained determinants). Regarding the Jastrow optimization, since the results obtained 

by Procedures 1 and 2 are of similar quality and are essentially interchangeable, it 

appears that the investment of considerably more CPU time in Procedure 1, was not 

warranted.  

To test whether sensible spectroscopic parameters could be obtained from the 

data, a fit to a Morse function was performed (it is straightforward to convert the Morse 
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parameters into anharmonic parameters).15 First, since the most accurate PEC will not be 

precisely Morse-like, parameters obtained by fitting the reference PEC were compared to 

the experimental CO parameters of: re = 1.128 Å, ωe = 2170.2 cm-1, ωexe = 13.46 cm-1.65  

The Morse form could not accurately accommodate the entire coordinate range of the 

reference PEC and produced a fitted value for the harmonic constant that is significantly 

too high (ωe = 2215.1 cm-1). Fitting data in a more limited range of rCO = [0.9, 1.6] Å, 

produced more reasonable values of re = 1.128 Å, ωe = 2174.9 cm-1 and ωexe = 13.05 cm-

1. Fitting the DMC data over the same coordinate range yields parameters of: re = 1.129 

Å, ωe = 2187.0 cm-1, ωexe = 13.28 cm-1, all of which are quite useful estimates. 

For N2, a fixed number of 396 determinants was employed for all geometries.  

The data for Jastrow optimizations via Procedure 1 and Procedure 2 are given in Tables 

V and VI respectively, and are plotted in Figure 3. The data are compared with an 

empirical spectroscopic PEC by Le Roy et al.68  The DMC data are generally consistent 

with the empirical PEC and are much closer to it than moderately high-level 

MRCI/AVTZ data shown for additional comparison. The RMSD of the DMC data with 

respect to the empirical PEC is 598 cm-1, which is significantly larger than was found for 

CO discussed above. Since the empirical PEC for N2 was obtained via direct fit to 

spectroscopic data, it implicitly includes small effects such as relativistic corrections not 

included in the DMC Hamiltonian (that were removed for this reason from the CO PEC 

for the previous comparison discussed above). However, this is not likely to be a 

significant source of discrepancy as these sort of corrections are relatively small for N2. It 

is noteworthy that the DMC data point at rNN = 0.8 Å (listed in Tables V and VI) was 

excluded from the comparison as it is an outlier roughly 5000 cm-1 more stable than the 
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value given by the reference PEC. The empirical PEC is expected to be unreliable for 

repulsive geometries far beyond the turning points of the contributing spectroscopic data. 

Indeed, the empirical PEC was confirmed to be much more repulsive at short range than a 

high quality ab initio PEC by Gdanitz which is consistent with the DMC value.69 Again, 

as was found for CO, the additional cost of a stricter Jastrow optimization procedure did 

not yield obviously improved results.   

As was done for CO, the reference and DMC-based PECs were each fit to a 

Morse function to extract spectroscopic parameters. The experimental values used for 

comparison are: re = 1.094 Å, ωe = 2359.6 cm-1, ωexe = 14.46 cm-1.65 Fitting the reference 

PEC over the range rNN = [0.9, 1.3] Å produced values of re = 1.098 Å, ωe = 2360.6 cm-1, 

ωexe = 14.70 cm-1.  Fitting the DMC data over the same coordinate range yields 

parameters of: re = 1.097 Å, ωe = 2373.4 cm-1, ωexe = 14.45 cm-1, all of which are again 

quite accurate. 

The costs of generating high quality energies via DMC for the two 14-electron 

systems (CO and N2) were assessed. A significant fraction of the total cost relates to the 

optimization of a Jastrow factor that was employed in this study. As mentioned 

previously, some advantages and disadvantages of using a Jastrow have been noted by 

Giner et al.40 The initial Jastrow optimizations for N2 with a fixed number of 

determinants using cheaper Procedure 2 took ~800-1300 CPU-hrs per point. With CO, 

for Jastrow optimizations via Procedure 2 with a varying number of determinants (using 

a coefficient cutoff strategy), the CPU-hrs depend significantly on the number of retained 

determinants.  The lowest cost was the bond distance of 3.5 Å, which includes 87 

determinants and took about 300 CPU-hrs.  The largest cost was 1.5 Å, which includes 
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317 determinants and took about 1860 CPU-hrs.  For Procedure 1, the cost for CO 

increased to ~5,000-15,000 CPU-hrs per point, and the cost for N2 increased to ~18,000-

25,000 CPU-hrs per point.  

Once the Jastrow has been optimized by VMC via either Procedure 1 or 

Procedure 2, the subsequent DMC energy calculations add a significant additional cost 

which depends on the number of DMC samples which in turn determines the final 

uncertainties (related as 1/√v where v is the number of samples).  For N2, to reach 

uncertainties on the order of 100 cm-1 (see Tables), the DMC cost was ~1800-2200 CPU-

hrs per point. Specifically, after Jastrow optimization via Procedure 1, the cost of the 

DMC sampling for the N2 points located at rNN = 0.8 Å, 1.1 Å, and 2.5 Å took 2170 CPU-

hrs, 1850 CPU-hrs, and 2010 CPU-hrs, respectively, to reach an average uncertainty in 

the three points of ~86 cm-1. Similarly, after Procedure 2 optimization, the DMC cost for 

the same points was about 1880 CPU-hrs, 2035 CPU-hrs, and 2030 CPU-hrs, 

respectively, for an average uncertainty of ~93 cm-1.   

For CO, the DMC sampling cost after Jastrow optimization was ~775-1900 CPU-

hrs per point to reach similar uncertainties. The cost of the DMC calculations for CO and 

N2 (both 14-electron systems) was approximately the same, but the Jastrow optimizations 

via Procedure 1 took about an order of magnitude longer than those of Procedure 2.  The 

quality of the final energies are similar for the two procedures, indicating that a more 

conservative Jastrow optimization is reasonable since it appears that diminishing returns 

are realized with respect to further optimization. Trial wave functions for CO with 250 

(fixed) determinants were also optimized using Procedure 2 with a cost of ~1,000-1500 
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CPU-hrs per point.  To achieve an average uncertainty ~33 cm-1 in the DMC, an 

additional cost of ~7,000-10,000 CPU-hrs per point was required.   

The QMCPACK code was used to test the improved efficiency that is expected 

through use of the table method algorithm for multideterminant calculations.46,47 The 

QMCPACK code was found to reach similar uncertainties for our two test systems in 

about 30% fewer CPU-hrs. For much larger numbers of determinants (up to 16,000), 

Clark et al. reported much more significant speedups in the range of factors of 15-40.47 

They noted smaller speedup factors for smaller numbers of determinants. The speedup 

that one might expect from the QMCPACK algorithm will depend on the size of the 

system and the number of determinants as well as hardware limitations such as memory 

and cache.70 In our study of two small systems with only 14 electrons and modest 

numbers of determinants, the speedup is already significant indicating that this method 

should be preferred in future larger scale multideterminant applications. 
 
 

Table 1.  DMC energies for CO following Procedure 1 (see text) for Jastrow factor 
optimization (data plotted in Figure 1).  

Bond Distance (Å) Number of 
determinants 

DMC (a.u.) uncertainty (+/-) 
(a.u) 

0.90 107 -113.0951174 0.000413133 
1.00 133 -113.2489414 0.000380672 
1.10 153 -113.2959859 0.000415229 
1.30 229 -113.2527814 0.000348658 
2.60 204 -112.9007928 0.000193650 
3.00 113 -112.8882332 0.000321403 
3.30 95 -112.8846690 0.000296271 
3.50 87 -112.8845678 0.000310887 

 
 
Table 2.  DMC energies for CO following Procedure 2 (see text) for Jastrow factor 
optimization (data plotted in Figure 1). 

Bond Distance (Å) Number of 
determinants 

DMC (a.u.) uncertainty (+/-) 
(a.u.) 

0.90 107 -113.0944380 0.000389325 
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Table 2.  DMC energies for CO following Procedure 2 (see text) for Jastrow factor 
optimization (data plotted in Figure 1). (cont.) 

0.95 127 -113.1896378 0.000436312 
1.00 133 -113.2494457 0.000436334 
1.10 153 -113.2966373 0.000396878 
1.20 202 -113.2880833 0.000415661 
1.30 229 -113.2530581 0.000446796 
1.50 317 -113.1619425 0.000352915 
2.10 276 -112.9596469 0.000301529 
2.50 229 -112.9078498 0.000321865 
3.00 113 -112.8887365 0.000296142 
3.30 95 -112.8856601 0.000307478 
3.50 87 -112.8848458 0.000329048 

 
 

 
Figure 1.  DMC calculations for CO with variable numbers of determinants are compared 
with two MRCI reference curves (see text).   
 
 
Table 3.  DMC energies for CO following Procedure 1 Jastrow optimization with a fixed 
number of determinants. 

Bond Distance (Å) Number of 
determinants 

DMC (a.u.) uncertainty (+/-) 
(a.u.) 

1.10 250 -113.2962092 0.000430335 
1.20 250 -113.2874847 0.000453569 
1.60 250 -113.1157087 0.000396781 
2.20 250 -112.9419681 0.000350373 
3.50 250 -112.8841369 0.000288665 
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Table 4.  DMC energies for CO following Procedure 2 Jastrow optimization with a fixed 
number of determinants. 

Bond Distance (Å) Number of 
determinants 

DMC (a.u.) uncertainty (+/-) 
(a.u.) 

0.80 250 -112.7426924 0.000170137 
0.90 250 -113.0946215 0.000182671 
1.00 250 -113.2489800 0.000158881 
1.10 250 -113.2961455 0.000167728 
1.20 250 -113.2874901 0.000149456 
1.30 250 -113.2537880 0.000168859 
1.40 250 -113.2090661 0.000158616 
1.50 250 -113.1623059 0.000164298 
1.60 250 -113.1160313 0.000144766 
2.00 250 -112.9814970 0.000139589 
2.20 250 -112.9413138 0.000137728 
2.50 250 -112.9071136 0.000138389 
3.00 250 -112.8887795 0.000121424 
3.50 250 -112.8852231 0.000126156 

 
 

 
Figure 2.  DMC calculations for CO with a fixed number (250) of determinants are 
compared with two MRCI reference curves (see text). 
 
 
Table 5.  DMC energies for N2 following Procedure 1 (see text) for Jastrow factor 
optimization (data plotted in Figure 3). 

Bond Distance 
(Å) 

Number of 
determinants 

DMC energy (a.u.) 
uncertainty (+/-) 

a.u. 
0.80 396 -109.0167192 0.000434940 
1.10 396 -109.5155949 0.000434508 
1.20 396 -109.4944091 0.000447115 
1.60 396 -109.2936484 0.000367967 
1.80 396 -109.2220315 0.000335620 
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Table 5.  DMC energies for N2 following Procedure 1 (see text) for Jastrow factor 
optimization (data plotted in Figure 3). (cont.) 

2.00 396 -109.1811613 0.000554249 
2.50 396 -109.1543457 0.000308338 

 
 
Table 6.  DMC energies for N2 following Procedure 2 (see text) for Jastrow factor 
optimization (data plotted in Figure 3). 

Bond Distance 
(Å) 

Number of 
determinants 

DMC (a.u.) uncertainty (+/-) 
(a.u.) 

0.80 396 -109.0162778 0.000501235 
0.90 396 -109.3448002 0.000453625 
0.95 396 -109.4325595 0.000506966 
1.10 396 -109.5155327 0.000455739 
1.20 396 -109.4937945 0.000427817 
1.30 396 -109.4478390 0.000430446 
1.40 396 -109.3937795 0.000361739 
1.50 396 -109.3405374 0.000365678 
1.60 396 -109.2934221 0.000408069 
2.00 396 -109.1806242 0.000341908 
2.20 396 -109.1634908 0.000323882 
2.50 396 -109.1548083 0.000323347 

 
 

                            
Figure 3.  DMC calculations for N2 compared with an MRCI curve and an empirical 
curve from Le Roy et al.68 
 
 
4. CONCLUSION 

It was determined that straightforward application of QMC methods implemented 

in two freely available codes (CASINO and QMCPACK) could robustly compute 
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electronic energies along dissociation coordinates of small molecules that are comparable 

in accuracy to high level traditional quantum chemistry. A QMC tutorial aimed at 

graduate students who have some familiarity with traditional quantum chemistry, but no 

experience with QMC is provided as Supporting Information.   

Points along the potential energy curves of the ground states of CO and N2 were 

generated with multideterminant fixed-node diffusion Monte Carlo methods and were 

found to be in close agreement with spectroscopically accurate curves. The spectroscopic 

constants obtained by fitting the data are in close agreement with experiment.  

For the two 14-electron test systems, generating comparably high-quality 

electronic structure data by conventional methods such as MRCI takes less than 0.5 CPU-

hr per point, compared with at least 4000 CPU-hr for the employed DMC method, as 

implemented in CASINO, depending on the desired final uncertainty. The QMCPACK 

code is known to be more efficient for multideterminant trial wavefunctions. For the 

small test systems and modest numbers of determinants employed in this study, the 

QMCPACK code was only slightly faster (~30%), but is indicated for larger scale 

applications where more significant speedups have been reported.47 The favorable n3 

scaling of DMC does ensure a cross-over point in system size beyond which it becomes 

cheaper than conventional high-accuracy electronic structure methods (scaling as n7 or 

worse). The large cost pre-factor of DMC seems to preclude it from routine use in the 

construction of global PESs (which for 3-5 atom systems typically require thousands of 

points) at this time. However, in addition to the favorable scaling with system size, QMC 

methods scale nearly linearly with the number of cores, which could lead to short time-

to-solution using next generation architectures with millions of cores.  
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Even now, given the high accuracy that is achievable via QMC methods we also 

see it as a possible arbiter in difficult cases where high-level conventional methods might 

disagree about the presence or height of a rate determining reaction barrier.71,72  It is 

anticipated that QMC methods will become increasingly relevant in the near future.  
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ABSTRACT 

The association/dissociation reaction path for ozone (O2 + O ↔ O3) is notoriously 

difficult to describe accurately using ab initio electronic structure theory, due to the 

importance of both strong and dynamic electron correlation. Experimentally, 

spectroscopic studies of the highest lying recorded vibrational states combined with the 

observed negative temperature dependence of the kinetics of oxygen isotope exchange 

reactions confirm that the reaction is barrierless, consistent with the latest potential 

energy surfaces. Previously reported potentials based on Davidson-corrected internally 

contracted MRCI, suffer a spurious reef feature in the entrance channel even at the 

complete basis set limit. Here, we report an analysis of comparisons between a variety of 

electronic structure methods including internally contracted and uncontracted MRCI 

(with and without Davidson corrections), as well as full configuration interaction 

quantum Monte Carlo, fixed-node diffusion Monte Carlo and Density Matrix 

Renormalization Group.  

keywords:  Ozone, MRCI, Quantum Monte Carlo, internal contraction 
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1. INTRODUCTION 

Ozone plays several crucial roles in the atmosphere,1 including protecting life 

from harmful UV radiation, as well as participating in reactions with a number of trace 

gases.2-4 Signatures of ozone’s usual isotope dynamics are imparted into other species 

and can provide insight into modern hydrological cycles and the dynamics of 

stratosphere-troposphere exchange, and through biogeochemical pathways can also tell us 

about Earth’s environment millions of years ago.5 

The measured thermal rate coefficients of ozone isotope exchange reactions 

xO + yOzO → O3
* → zO + xOyO or yO + xOzO,                       (1) 

where x, y, and z represent the different 16O, 17O and 18O masses respectively, have steep 

negative temperature dependencies indicative of a barrierless mechanism to form the O3
* 

complex.6-9 Strong kinetic isotope effects (KIE) have been observed in these nearly 

thermoneutral exchange processes, leading to mass-independent fractionation (MIF) in 

the stratosphere.10-13 The dynamics are non-statistical and the relative roles of differences 

in zero-point energy, symmetry and nuclear spin-statistics, unbound resonances, 

competing stabilization processes, as well as nonadiabatic effects such as spin-orbit and 

derivative coupling, and geometric phase effects are still under investigation. 

Spectroscopic evidence also supports a barrierless topography of the potential energy 

surface (PES). Recent measurements of progressions of vibrational levels approaching 

the highest-lying bound states, combined with theoretical analysis by Tyuterev et al., are 

much more consistent with a barrierless PES.14   

 Efforts to construct a PES for ozone useful to investigate some of the above-

mentioned dynamical processes are constrained and guided by the large number of 
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recorded vibrational levels for various isotopologues as well as by the dissociation energy 

which is specified to remarkable precision (D0 = 8563 ± 3.5 cm-1) by the Argonne active 

thermochemical tables approach (ATcT),15 which infers De ~ 9219 ± 10 cm-1. The long 

range interaction between well-separated O2 and O-atom fragments has been 

characterized by Lepers et al.16  The region that is least well-defined is the transition 

region just below dissociation. No vibrational levels have so far been recorded within 600 

cm-1 of dissociation, yet the topography in the uppermost part of the wells crucially 

determines the dynamics and kinetics, including the observed negative temperature 

dependence of the exchange reactions.     

An accurate global potential energy surface (PES) for the ground electronic state 

of ozone was published in by Dawes et al. in 2013.17 The PES lacks the spurious reef 

feature found in several previous studies18-20 and was used in wavepacket based quantum 

scattering calculations to successfully reproduce the negative temperature dependence of 

exchange rate coefficients as well as the large KIEs.21-24 More recently the PES was used 

in studies of the total number of bound vibrational states, their symmetry, and their 

density as a function of energy.25 Prior to constructing the PES, an understanding of the 

origin of the reef feature and its sensitivity to calculational parameters was sought.  

Preliminary insight into the origin of the spurious reef was reported in a 2011 

study that showed that the height and even the existence of the barrier depend on the 

details of the ab initio calculations.26 The reef was attributed to a widely avoided crossing 

in the transition region between the lowest lying excited 1A′ state and the ground 

molecular state connecting to the O2(3Σ�
�) + O(3P) asymptote. If adiabatic dissociation of 

ozone is considered,  
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O3(1A1) → O2(3Σ�
�) + O(3Pg)                          (2) 

three-fold degeneracy is reached asymptotically, represented as (2 A′ + A′′) in the 

Cs symmetry group. Diabatically, the ground state of ozone connects to excited states of 

both atomic and molecular oxygen: 

O3(1A1) → O2(1∆�) + O(1Dg)                          (3) 

which combine asymptotically to give (5 A′ + 5 A′′). These two lowest singlet blocks 

combine to give a total of 13 singlet states (7A′, 6A′′). In that study, to facilitate the 

switch in state character and to represent the asymptotically degenerate states on an equal 

footing, the 13 lowest singlet states were included in state-averaged complete active 

space self-consistent (SA-CASSSCF) calculations with dynamic weighting (DW).27 

Subsequent internally contracted icMRCI calculations were found to be sensitive to 

several factors: 1) active space, 2) basis set completeness, 3) Davidson correction, 4) and 

perhaps the internal contraction error. The height of the reef feature was found to be 

lower using a full-valence active space (18e, 12o) than for a reduced space (12e, 9o) in 

which the 2s orbitals are closed (held doubly occupied). The height of the reef is 

progressively lower for each basis set in the correlation consistent series aug-cc-pVnZ (n 

= 3-6) approaching the CBS limit. The Davidson correction yields a significantly more 

attractive PES with a lower barrier and dissociation energy in much better agreement 

with experiment, confirming the importance of high-order dynamic correlation. However, 

despite all of that, results at the icMRCI(Q)/CBS level (using a full-valence active space), 

still exhibit a very slight reef about 10 cm-1 in height. A 2013 PES reported by Ayouz and 

Babikov28 fit to data at the icMRCI(Q)/CBS level, used a single CASSCF reference state 
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with the reduced (12e, 9o) active space, and has a reef feature with a height of more than 

100 cm-1. The last important factor appeared to be internal contraction error in the MRCI 

calculations. Internal contraction has since been shown to introduce small but kinetically 

significant errors in the bottleneck region of the PES for other systems.29,30 In the 2011 

study, it was found that by using two reference states in the icMRCI calculation, the 

transition was made slightly more attractive, just enough to be monotonically attractive 

(barrierless). The number of employed reference states affects, but does not 

systematically control the internal contraction error. Uncontracted ucMRCI calculations 

are much more computationally expensive and so no explicit tests were performed at that 

time. Nevertheless it was concluded that by considering the four factors listed above, a 

more realistic barrierless PES could be obtained.    

In 2013, Tyuterev et. al.31 published a spectroscopic PES fit to an analytic form 

describing one of the three global minimum isomer wells. This PES used a full valence 

(18e, 12o) CASSCF reference to calculate one-state Davidson-corrected MRCI data. The 

PES combines data from the AV5V basis with other data extrapolated to CBS(5,6) limit. 

The authors reported a submerged reef in their data, but produced two versions of the 

PES, one of which included a Dawes correction to remove the reef. They found that the 

reef feature or its absence affected the highest-lying vibrational levels. The PES without a 

reef produced much better agreement with experimental level progressions.32 

The 2013 PES by Dawes et al.17 was constructed using the insights reported in 

2011. To promote convergence with respect to basis set completeness, the newly 

available explicitly-correlated multireference configuration interaction (MRCI-F12)33 

method was used. Explicitly-correlated F12 methods have proven to greatly improve 
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convergence with respect to basis set, and have been shown to provide near CBS quality 

with relatively small basis sets.34 Using the VTZ-F12 basis directly produced a tiny 

barrier (~3 cm-1), while bases at or beyond VQZ-F12 yield barrierless results. For the 

PES, the VQZ-F12 basis was used without further extrapolation as this best matched the 

dissociation energy. The full-valence (18e, 12o) active space was used, and to promote 

orbital stability for some stretched geometries, 20 singlet states (rather than 13) were 

included in the DW procedure. Further tests were conducted with respect to the number 

of reference states used in the icMRCI-F12 calculations (which affects the internal 

contraction error as mentioned above). Ultimately, 7 reference states were used, 

(corresponding to all of the 1A′ states from the two lowest blocks), making the PES still 

more attractive in the transition region. The PES was used in time-dependent wave packet 

scattering calculations of the thermal rate constants for the O + O2 isotope exchange 

reactions, which agree well with experiment, including their negative temperature 

dependence.21-24 

Here, to more systematically determine the effect of internal contraction on the 

MEP, large basis set uncontracted MRCI (ucMRCI) calculations were performed with the 

COLUMBUS35 program and compared with internally contracted MRCI (icMRCI) 

calculations performed with the MOLPRO36 program. In an effort to assess the high-

order correlation contribution and role of the Davidson correction, initiator full 

configuration interaction quantum Monte Carlo (i-FCIQMC) calculations were performed 

with the NECI37 code, and density matrix renormalization group (DMRG) calculations 

were performed using the BLOCK code38 interfaced to MOLPRO. Finally, fixed-node 

diffusion Monte Carlo (DMC) calculations were performed with the quantum Monte 
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Carlo (QMC) package QMCPACK39 to test the routine feasibility of benchmarking 

challenging reaction paths using that method. Section II briefly describes the Monte 

Carlo based methods, while Section III provides results and discussion, followed by a 

conclusion in section IV.  

2. MONTE CARLO METHODS 

 Here we give a brief description of the different Quantum Monte Carlo methods 

used within this work. 

2.1 QUANTUM MONTE CARLO (QMC) 

Variational Monte Carlo (VMC) uses an approximate trial wave function ΨY , an 

initial reference for QMC, to calculate the expectation value of the Hamiltonian, the 

integration of which is performed by a Monte Carlo method.40 In this study, VMC is 

primarily used to optimize parameters of a trial wave function for subsequent use in the 

more accurate diffusion Monte Carlo (DMC) method.  DMC uses the importance-

sampled imaginary-time Schrödinger equation to evolve an ensemble of electronic 

configurations toward the ground state.41 Due to the fermion sign problem, DMC adopts 

the fixed-node approximation.42 Since both VMC and DMC are Monte Carlo methods, 

statistical uncertainty decreases as 1/√} where } is the number of samples.   

For all of the QMC calculations, multi-determinant Slater-Jastrow (MD-SJ) trial 

wave functions were used, which can be written mathematically as  

ΨY(Z) = =[(Z) ∑ \]
R`
]S� Q]

↑Q]
↓                                                                                           (4) 

where ΨY  is the trial wave function, =[ is the Jastrow factor, \] are the determinant 

coefficients for the multi-determinant expansion describing static correlation, and Q]
↑ and 
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Q]
↓ are the spin-up and spin-down Slater determinants, respectively.  The multi-

configurational trial wave functions were generated with the multi-configurational self-

consistent field (MCSCF) and configuration interaction (CI) methods from GAMESS.43 

The aug-cc-pVQZ (AVQZ) basis set was used with the full valence (18e,12o) active 

space. Each trial wave function was combined with a three-body Jastrow factor 

containing electron-electron, electron-nucleus, and electron-electron-nucleus terms.  An 

expansion order of 10 was used for the electron-electron and electrons nucleus terms, and 

an expansion order of 3 was used for the electron-electron-nucleus terms, resulting in a 

total of 82 optimizable parameters.  VMC calculations with energy minimization were 

used to simultaneously optimize the Jastrow factor parameters and the coefficients of the 

configuration state functions (CSFs).  For the initial optimization, the default cutoffs 

lengths were used with the initial Jastrow parameters set to zero.  The Jastrow parameters 

and CSFs were optimized simultaneously for 10 cycles.  The scheme of Ma et al.44 was 

used to correct for the electron-nuclear cusps.  Selecting the number of CSFs used in the 

trial wave functions involves balancing cost with accuracy.  In this study, to limit the 

QMC cost, each trial wave function employed a fixed number of 750 CSFs with the 

largest coefficients.  The DMC calculations were performed with a target population of 

2880, and a time step of 0.0005 a.u. for all geometries.  

2.2 FULL CONFIGURATION INTERACTION QUANTUM MONTE CARLO 

      (FCIQMC) 

FCIQMC is a quantum Monte Carlo method45 designed to converge to the full 

configuration-interaction (FCI) energy, i.e., the exact solution to the Schrödinger 

equation for a given basis set. Thus is contrast to DMC described in the previous 

subsection, results are directly comparable to those obtained by standard electronic 
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structure methods. The method simulates the imaginary-time Schrödinger equation of the 

interacting Hamiltonian based on a stochastic population dynamics of an evolving set of 

walkers which live and propagate in Slater determinant space.  The method is able to 

converge to the FCI energy of a system once a system-dependent number of walkers is 

reached. Its initiator extension (i-FCIQMC) is designed to accelerate convergence to the 

FCI energy by reducing the number of walkers required.46 Both FCIQMC and i-FCIQMC 

methods have been used to compute FCI energies in several benchmark studies.47-49 

For this study, the NECI calculations were performed with the aug-cc-pVDZ 

(AVDZ) basis set. 

3. RESULTS AND DISCUSSION 

For all of the calculations, the O-O (O2) fragment bond distance was fixed at its 

asymptotic equilibrium value of 2.282 a.u. The bond angle varies negligibly along the 

minimum energy path (MEP) in valence coordinates and so was held constant at 116.8°. 

Calculations were carried out for the dissociating bond at a series of distances between 

3.60 a.u. and 4.95 a.u which cover the transition region. An optional correction for spin-

orbit (SO) coupling reduces the dissociation energy of the reference PES by ~80 cm-1 at 

the asymptote. Since the SO correction was not applied to the energies compared here, 

the uncorrected PES with De = 9355 cm-1 was used in all comparisons. The long range 

region of the reference PES is consistent with other PESs and also with electrostatic 

treatments,17,16 so to focus on the transition region, the zero of energy in the comparisons 

presented here was set at 4.95 a.u. along the dissociation coordinate. (This is ~243 cm-1 

below the asymptote on the non-SO-corrected reference PES). At each point icMRCI 

energies were computed with Molpro and ucMRCI energies were computed using the 
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Columbus code. For both the icMRCI and the ucMRCI methods, a one-state full valence 

(18e, 12o) CASSCF reference wave function was used followed by a one-state MRCI 

calculation with the standard relaxed Davidson correction (Q). In all cases precise 

agreement was obtained between the two codes for the CASSCF reference energy. Three 

basis sets: aug-cc-pVDZ (AVDZ), aug-cc-pVTZ (AVTZ), and aug-cc-pVQZ (AVQZ) 

were used, and both the icMRCI and the ucMRCI energies (with and without the 

Davidson correction) were extrapolated to the CBS limit (l-3 formula) using the AVTZ 

and AVQZ bases.  

For i-FCIQMC, the restricted Hartree-Fock (RHF) method at the AVDZ basis 

level was used as the reference wave function. The simulation was initialized with a 

single walker on the reference determinant D0, and then the calculation proceeded with a 

shift value of zero, allowing for an initial exponential growth of walkers. The initial time 

step was chosen to be 0.00014 a.u., which was allowed to be dynamically updated so that 

multiple walkers spawning from the same attempt would be rare. For the initiator 

method, a parameter na which governs which determinates to include in the initiator 

space, was selected as na = 3 (walkers). If na = 0, then all determinants would have been 

included in the initiator space. To reduce the memory requirements and CPU time due to 

a large number of additional spawned walkers, a cutoff κ of 0.01 was applied, meaning 

that the walkers with weights greater than κ would be left unchanged. For each point, the 

total number of walkers was initially grown to 8.0x106, after which point, a series of 

calculations using the semi-stochastic adaptation were performed, which contained 

450,000 of the largest weighted determinants in the core space. The number of walkers 

was then doubled and subsequently followed by semi-stochastic calculations until the 
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total number of walkers reached 2.56 x 108. When the walkers reached this value, in 

order to reduce the CPU cost, the core space was reduced to 200,000 of the most 

dominant determinates. After a few semi-stochastic calculations, the number of walkers 

was then doubled again to 5.12x108 for all geometries.  To determine how further 

increases in the total number of walkers could affect the FCIQMC energy, for the 

geometry of 3.75 a.u., the number of walkers was expanded to 1.0x109, then to 8.0x109 

and even a final test at 16.0x109. 
 
 
Table 1.  Comparison of energies at AVDZ. 
Geometry 
(Bohr) 

icMRCI icMRCI(Q) ucMRCI ucMRCI(Q) i-FCIQMC 

3.60 -224.90399 -224.94390 -224.91301 -224.95390 -224.947(1) 
3.75 -224.90441 -224.94403 -224.91313 -224.95360 -224.9551(2) 
4.05 -224.90554 -224.94467 -224.91373 -224.95345 -224.9489(3) 
4.50 -224.90647 -224.94514 -224.91415 -224.95314  
4.95 -224.90629 -224.94466 -224.91373 -224.95227 -224.9520(2) 

 
 
Table 2.  Comparison of energies at AVTZ. 
Geometry 
(Bohr) 

icMRCI icMRCI(Q) ucMRCI ucMRCI(Q) 

3.60 -225.06075 -225.11240 -225.07141 -225.12394 
3.75 -225.06063 -225.11191 -225.07096 -225.12298 
4.05 -225.06122 -225.11189 -225.07097 -225.12208 
4.50 -225.06201 -225.11213 -225.07123 -225.12148 
4.95 -225.06191 -225.11166 -225.07068 -225.12034 

 
 
Table 3.  Comparison of energies at AVQZ. 
Geometry 
(Bohr) 

icMRCI icMRCI(Q) ucMRCI ucMRCI(Q) DMC 

3.60 -225.11018 -225.16506 -225.12096 -225.17662 -225.3431(4) 
3.75 -225.10997 -225.16445 -225.12042 -225.17553 -225.3437(4) 
4.05 -225.11044 -225.16427 -225.12031 -225.17447 -225.341(1) 
4.50 -225.11116 -225.16441 -225.12048 -225.17375 -225.343(1) 
4.95 -225.11102 -225.16389 -225.11991 -225.17258 -225.3444(3) 
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Table 4.  Comparison of energies at the CBS limit. 
Geometry 
(Bohr) 

icMRCI icMRCI(Q) ucMRCI ucMRCI(Q) 

3.60 -225.14625 -225.20348 -225.15712 -225.2150730 
3.75 -225.14597 -225.20279 -225.15650 -225.2138893 
4.05 -225.14636 -225.20250 -225.15631 -225.2127035 
4.50 -225.14702 -225.20256 -225.15643 -225.2119044 
4.95 -225.1468691 -225.2020169 -225.1558374 -225.2107143 

 
 

 
Figure 1.  Comparison of icMRCI, ucMRCI, icMRCI(Q), and ucMRCI(Q) with the 
AVDZ basis set. Zero of energy is set at rOO = 4.95 a.u., roughly 243 cm-1 
below the asymptote (see text). 
 
 

 
Figure 2.  Comparison of icMRCI, ucMRCI, icMRCI(Q), and ucMRCI(Q) with the 
AVTZ basis set. Zero of energy is set at rOO = 4.95 a.u., roughly 243 cm-1 
below the asymptote (see text). 
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Figure 3.  Comparison of icMRCI, ucMRCI, icMRCI(Q), and ucMRCI(Q) with the 
AVQZ basis set. 
 
 

 
Figure 4.  Comparison at the CBS limit. 
 
 

 
Figure 5.  icMRCI at different basis set levels.  
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Figure 6.  icMRCI(Q) at different basis set levels. 
 
 

 
Figure 7.  Comparison of ucMRCI at different basis set levels. 
 
 

 
Figure 8.  Comparison of ucMRCI(Q) at different basis set levels.  
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Table 5. i-FCIQMC results for the first nine most heavily weighted determinants.  Total 
number of walkers = 2.56x108. 

rOO (a.u.) Excitation level from 
reference determinant 

Number of walkers on 
each determinant 

Weight 

3.75 

0 14013 0.43040 
4 13073 0.40152 
1 7014 0.21543 
3 6521 0.20029 
2 5541 0.17021 
2 5158 0.15843 
1 3404 0.10456 
2 3244 0.09966 
4 3161 0.09709 

 
 
Table 6. i-FCIQMC results for the first nine most heavily weighted determinants.  Total 
number of walkers = 1.0x109. 

rOO (a.u.) Excitation level from 
reference determinant 

Number of walkers on 
each determinant 

Weight 

3.75 

0 41579 0.45093 
4 38758 0.42034 
1 21357 0.23163 
3 20006 0.21697 
2 17841 0.19349 
2 17162 0.18613 
2 10992 0.11921 
2 10684 0.11588 
2 10626 0.11524 

 
 
Table 7. i-FCIQMC results for the first nine most heavily weighted determinants. 
Total number of walkers = 5.12x108. 

rOO (a.u.) Excitation level from 
reference determinant 

Number of walkers on 
each determinant 

Weight 

3.60 

0 25687 0.46118 
1 16140 0.28977 
4 15870 0.28493 
2 12540 0.22513 
3 10749 0.19299 
2 9769 0.17540 
2 8561 0.15371 
2 6811 0.12228 
1 6684 0.12000 
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Table 8. i-FCIQMC results for the first nine most heavily weighted determinants. 
Total number of walkers = 5.12x108. 

rOO (a.u.) Excitation level from 
reference determinant 

Number of walkers on 
each determinant 

Weight 

4.05 

0 49497 0.71100 
1 15715 0.22574 
4 12114 0.17402 
1 10906 0.15667 
2 9624 0.13825 
1 8147 0.11704 
1 7493 0.10763 
1 6325 0.09085 
2 5759 0.08274 

 
 
Table 9. i-FCIQMC results for the first nine most heavily weighted determinants.  Total 
number of walkers = 5.12x108. 

rOO (a.u.) Excitation level from 
reference Determinant 

Number of walkers on 
each determinant 

Weight 

4.95 

0 57077 0.64135 
4 44433 0.49928 
1 9930 0.11159 
1 9747 0.10953 
1 8935 0.10040 
4 7738 0.08696 
4 7559 0.08494 
1 7527 0.08459 
4 6938 0.07796 

 
 
Table 10. i-FCIQMC results for the first 1,000 determinants with the excitation level and 
the total number of each excitation. 

rOO 
(a.u.) 

Total 
number of 
walkers Nw 

Excitation level from the reference determinant with number of 
such excitations 

Single Double Triple Quadruple Quintuple Sextuple 
3.60 5.12x108 89 467 217 166 52 8 
3.75 1.0x109 85 381 163 198 129 43 
4.05 5.12x108 116 747 92 37 6 1 
4.95 5.12x108 88 524 34 126 162 65 

 
 
Table 11. Results for the first 10,000 determinants with the excitation level and the total 
number of each excitation. 

rOO 
(a.u.) 

Excitation level from the reference determinant with number of such excitations 
Single Double Triple Quadruple Quintuple Sextuple 
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Table 11. Results for the first 10,000 determinants with the excitation level and the total 
number of each excitation. (cont.) 

3.60 214 3578 1764 1813 1714 916 
 
 

Energies computed with small basis, one-state icMRCI/AVDZ exhibit a 

pronounced barrier with a height of ~556 cm-1. [In this discussion we refer to the barrier 

height (if any) relative to what would be a vdW minimum were the barrier not spurious. 

Depending on the basis set and method, the barrier under discussion might be submerged 

with respect to the asymptote]. With the Davidson correction, the barrier height is 

reduced to ~272 cm-1. Uncontracted ucMRCI/AVDZ without Davidson correction has a 

similar barrier as icMRCI(Q) (with Davidson correction) with a barrier height of ~250 

cm-1. However, Davidson corrected ucMRCI(Q) is already barrierless even at the AVDZ 

basis level. For the AVDZ basis only, FCIQMC calculations with the initiator extension 

were used in an effort to benchmark the FCI limit and hence provide insight into the 

accuracy of the various calculations and the Davidson correction. Due their enormous 

cost (10s of thousands of CPU hours), all of the geometries except 3.75 a.u. were 

converged to 5.12x108 walkers with nominal statistical uncertainties on the order of 40 

cm-1. The i-FCIQMC energies at those points are between the icMRCI(Q) and 

ucMRCI(Q) results, which might lead one to conclude that the Davidson correction 

slightly overcorrects in this case. However, it is noteworthy that the uncertainties given 

for the i-FCIQMC method in Table I should be interpreted cautiously. The derived 

uncertainties at intermediate stages of the calculations (smaller numbers of walkers) did 

not accurately reflect the range of where the energy might end up. In fact, in these results 

only the point at 3.75 a.u. appears to be truly well-converged. For that point, no further 

lowering of the energy was obtained beyond 8 billion walkers, but drops much larger 
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than the nominal uncertainty at earlier stages were noted upon each doubling of the 

walkers. For the point at 3.75 a.u. the i-FCIQMC energy is below that of all the other 

methods including the Davidson corrected uncontracted ucMRCI(Q) result. Thus, the 

best estimate of the FCI/AVDZ energy is below ucMRCI(Q), but unfortunately it was 

deemed too computationally expensive to converge all of the points to that same degree. 

The total CPU time to converge to 5.12x108 walkers for the points at 3.60, 4.05 and 4.50 

a.u. was ~83,000 CPU-hrs, ~128,000 CPU-hrs, and ~103,000 CPU-hrs, respectively. In 

order to reach 8.0x109 walkers at 3.75 a.u., the computational cost was >175,000 CPU-

hrs. Note that these results are for the AVDZ basis set and of course capturing a large 

fraction of the dynamic correlation energy requires much larger basis sets. 

The i-FCIQMC method was able to provide insight into the multireference 

character of the electronic structure of ozone along the studied pathway. Note that the 

details of specific configurations important to the bonding description of ozone have been 

discussed before by Ruedenberg and coworkers.50,51 Here we confine our discussion to 

the excitation levels and the implications for various computational approaches. At 3.75 

a.u. with 2.56x108 walkers, the two most heavily weighted determinants were the HF 

reference and a configuration related by a quadruple excitation, both of which had nearly 

equal populations of ~14,000 walkers. As given in Table V, the next seven leading 

determinants, in terms of decreasing weights, were related by a single excitation, a triple 

excitation, two double excitations, another single excitation, a double excitation, and 

finally a quadruple excitation. At 1.0x109 walkers (Table VI), the first few leading 

configurations were the same with similar relative weights. At this number of walkers, 

considering the first 10,000 determinants, ~1800 determinants were found to be 
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quadruple excitations with respect to the HF reference, while ~1700 were quintuple 

excitations and ~900 were sextuple excitations.  This highlights the challenge that ozone 

presents for single-reference based approaches. Indeed, it has been noted previously that 

the triples contribution shifts the harmonic frequencies by more than 100 cm-1.52 At the 

geometries of 3.60, 4.05, and 4.95 a.u. with 5.12x108 walkers, many important 

contributions from quadruply excited configurations were also found. The second most 

heavily weighted determinant at 4.95 a.u. was a quadruple excitation, while at 3.60 and 

4.05 a.u., it was found to be the third most weighted determinant. Interestingly at 4.95 

a.u., of the top nine most heavily weighted determinants, four were quadruple excitations, 

and in the first 1,000 determinants, the number of quintuple excitations (~160) was found 

to be greater than the number of quadruple excitations (~130). These examples of 

important contributions from high excitation levels indicate why even triple-excitation 

single reference based methods will not suffice for ozone. 

There has been some speculation about a significant strong/static correlation 

contribution from the 3s and 3p orbitals in this system. The cost to perform CASSCF 

calculations with larger than full-valence active spaces has been prohibitive for ozone 

even for small basis sets. Here to explore this issue, the DMRG method (as implemented 

in the Block program)38 was used to perform CASSCF calculations also opening the 3s 

and 3p orbitals to construct an (18e, 24o) active space. The calculation was performed for 

a dissociating bond distance of 3.90 a.u. using the AVDZ basis set. The progression of 

energies is rather interesting. The HF/AVDZ energy of -224.2362 a.u. is lowered to -

224.5089 a.u. for CASSCF with the usual full-valence active space (18e, 12o). This large 

drop is due to the fact that no particular configuration is very dominant and many 
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configurations contribute significantly. The leading squared coefficient is only 0.34, with 

the next few values being 0.22, 0.11, 0.10, 0.05 etc. However, the CASSCF energy for 

the (18e, 24o) active space including the 3s and 3p orbitals only lowers the energy to -

224.5357, not as significant a drop as might be expected if the 3s and 3p orbitals 

contribute significantly to the bonding description. Note that the corresponding icMRCI 

and icMRCI(Q) values are -224.9050 and -224.9443 a.u. respectively (the ucMRCI and 

ucMRCI(Q) values are -224.9134 and -224.9535 a.u.). Overall this indicates that while 

strong correlation within the valence space is very important, strong correlation 

contributions from 3s and 3p orbitals are relatively insignificant. On the other hand, 

dynamic correlation is also very large and based on the large size of the Davidson 

correction, so too is the high-order contribution not directly captured in the MRCI(SD) 

treatment.  

The icMRCI has a significant barrier at each basis set with a barrier height of 

~240 cm-1 remaining at CBS. Interestingly, the icMRCI(Q) and ucMRCI show a similar 

difference in relative energies and have similar curves to each other at each basis level 

from AVDZ to the CBS limit (see Graphs I-IV). At CBS, icMRCI(Q) still has a slight 

barrier of ~15 cm-1 while ucMRCI has a slightly larger barrier of ~25 cm-1.  

As the graphs show, the reef is strongly dependent upon the basis set. The 

icMRCI(Q) has a barrier height of ~272 cm-1 for AVDZ, while at AVTZ, the is reduced 

to ~70 cm-1. At CBS, the barrier nearly disappears completely (height of ~15 cm-1). 

Similarly, ucMRCI has a barrier of ~250 cm-1 at AVDZ, but at CBS, the barrier is 

reduced to a height of ~25 cm-1. 
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The Davidson corrected uncontracted ucMRCI(Q) does not produce a barrier at 

any basis set level. Thus, the use of internally contracted methods can certainly have a 

dynamically relevant impact. Similar to the reference PES, the ucMRCI(Q) has 

monotonically decreasing energies. However, the inclusion of the Davidson correction to 

the one-state ucMRCI(Q) calculation makes the method too attractive in this application 

when compared to the spectroscopically accurate PES. It will be of interest in the future 

to further characterize the PES at this level of theory, but with a balanced multistate 

treatment as was used to construct the PES. It is still prohibitively expensive to use 

ucMRCI(Q) (and large basis sets) to compute all of the points needed to construct a 

global PES. 

The fixed-node DMC method seems to predict a barrier within the uncertainties, 

in contrast to the reference PES. However, in these tests only 750 CSFs were included in 

the trial wave functions, and it is not known at this time how sensitive the topography of 

the PES is to this restriction.  

As an aside, both the restricted Hartree-Fock (RHF) and the configuration 

interaction with single and double excitations (CISD) methods, produce no submerged 

reef or barrier at any basis set level (in contrast to most of the MRCI methods).  

4. CONCLUSION 

 Calculations were performed with internally contracted and uncontracted MRCI, 

i-FCIQMC, and fixed-node DMC along the association/dissociation MEP and were 

compared to a spectroscopically and dynamically accurate PES. Comparing icMRCI and 

ucMRCI, it was found that internal contraction error indeed plays a significant role in 

producing the reef feature. One-state calculations with icMRCI, icMRCI(Q), and 
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ucMRCI all produce a barrier in contrast to the reference PES. The ucMRCI(Q) produced 

monotonically decreasing energies, but with respect to the PES, was too attractive, which 

would be inconsistent with the spectroscopy and dynamics. The i-FCIQMC method was 

used to benchmark energies at the AVDZ basis set. However, due to its very high 

computational cost, only the geometry at 3.75 a.u was fully converged. The best resulting 

energy at that point was found to be even lower than ucMRCI(Q), but the other points 

were not well enough converged to draw conclusions about the reef feature. The 

important configurations determined by the i-FCIQMC method reflect the multireference 

character of ozone, indicating important determinants of quadruple (and even sextuple) 

excitation levels from the single reference at geometries along the pathway. CASSCF 

calculations performed using the DMRG method with an active space expanded beyond 

full-valence to include the 3s and 3p orbitals, obtained a negligible strong correlation 

contribution from those orbitals. Thus, while strong correlation within the valence space 

is very important, strong correlation contributions from 3s and 3p orbitals are relatively 

insignificant. On the other hand, dynamic correlation is also very large and based on the 

large size of the Davidson correction, so too is the high-order contribution not directly 

captured in the MRCI(SD) treatment. These results highlight the challenging nature of 

ozone’s electronic structure.  
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SECTION 

2. CONCLUSION 

 In this work, both traditional ab initio methods and quantum Monte Carlo 

methods were employed to solve the electronic Schrödinger equation for a variety of 

chemical systems.  QMC was applied to potential energy surfaces, and in comparisons 

with ab initio, was generally found to be very accurate.  The primary disadvantage of 

QMC is that it suffers from a large cost prefactor which make the calculations much more 

expensive than traditional methods for small systems.  For comparable precision in the 

studied systems, traditional methods use <500 CPU-hrs, while QMC methods take 

thousands of CPU-hrs, as in the case of CO and N2, or even up to hundreds of thousands 

of hours for ozone.   Thus, QMC is not as applicable for routine use for small molecular 

systems as traditional methods.  However, the algorithms of QMC are well parallelized, 

meaning that it can take advantage of thousands or hundreds of processors and reduce the 

time to solution, while most standard ab initio methods cannot.  The time to solution 

could still be small depending on the number of processors used.   

Since DMC has n3 scaling with the number of electrons, it is often used for 

systems for which traditional high-accuracy ab initio methods cannot be used due to their 

expensive computational cost, e.g., solids, since they scale as n7 or higher (e. g., 

CCSD(T)).  Also, FCIQMC can highlight some important aspects of electronic structure 

as in the case of ozone.  These methods can take full advantage of modern architectures 

of computing resources containing millions of cores thus making the methods more 

relevant and applicable for future work.  
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