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ABSTRACT 

 

Most medicinal drugs have adverse effects.  Among the most commonly used of 

these drugs are several types, known as “oxidative drugs”. These are believed to cause 

adverse effects that induce oxidative stress, an imbalance of generation and detoxification 

of reactive oxygen species. So it is a reasonable assumption that the antioxidant might 

alleviate the toxicity induced by these drugs. N-acetylcysteine (NAC), a synthetic thiol, is 

a free-radical scavenger and a precursor of glutathione (the main endogenous 

antioxidant). However, the negative charge of NAC at physiological pH limits its 

bioavailability.  N-acetylcysteineamide (NACA) is neutral in charge and is believed to 

have higher lipophilicity than NAC. Experiments were designed to determine the 

potential protective ability of NACA against different oxidative drugs. Positive results 

from our studies show that NACA seems to be a broad-spectrum protector that prevents 

oxidative damage. This underscores NACA’s potential for serving as a clinical protective 

antioxidant for patients who receive potentially dangerous oxidative drugs.  

Sutherlandia frutescens (SF), a legume native to South Africa, is a historical herb 

medicine for treatment of a variety of disorders. It is believed that SF therapeutic effects 

are at least partially due to its antioxidant potential. Cell-free studies were conducted for 

reducing power, radical-scavenging power and metal-chelating capacity of SF extract, as 

well as in-vitro study for its possible protective role against exogenous oxidative stress in 

three cell lines. Positive results from our preliminary studies further verified the 

antioxidant effect of SF, indicating its promising future as an antioxidant supplementation 

for clinical purpose.   
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1. INTRODUCTION 

“Adverse Effect”, in the field of pharmacy, refers to the undesired deleterious 

impact of certain medications on a patient. This can be seen upon administration of 

almost any type of medicinal drug. The underlying mechanisms that promote these 

adverse effects were investigated by a pharmacologist and a toxicologist to determine a 

way to diminish there severity or to eliminate any undesired effects.  

Upon clinical application, several types of medicinal drugs were found to cause 

severe hematotoxicity (i.e., acute hemolysis) in individuals with certain genetic disorders, 

among which the most common is glucose-6-phosphate dehydrogenase deficiency (G-6-

PDD). These drugs, upon further studies of the mechanisms of their adverse effects, were 

found to be hematotoxic because they cause oxidative stress by generating excessive 

reactive oxygen species (ROS) and/or disrupting the endogenous antioxidant defense 

system. They are collectively referred to as “oxidative drugs”. 

The most common “oxidative drugs” include: (1) several antipyretic-analgesic 

drugs (mainly NSAIDs), such as aspirin, phenacetin, and acetaminophen (Tylenol); (2) 

most sulfonamide antibiotics, such as sulfamethoxazole, dapsone, or sulfadiazine; (3) 

nitrofurans, such as nitrofurantoin; (4) some anti-tuberculosis drugs, such as isoniazid; 

(5) some anti-malarial drugs, such as quinine and primaquine; (6) alkylating agents, such 

as busulfan and cyclophosphamide; (7) anthracyclines, such as doxorubicin. 

Today, “oxidative drugs” are usually contraindicated in patients with the 

mentioned genetic disorders due to the high risk of a life-threatening hemolytic reaction.  

Nevertheless, these drugs also commonly induce dose-dependent hematic, pulmonary, 
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hepatic, or renal toxicities in patients of normal genotype, especially upon continuous 

administration and/or an overdose.  For example, a life-threatening acetaminophen 

overdose alone could cause ~56,000 emergency department visits in the U.S. annually.  

The severity of adverse effects, resulting from oxidative drug administration, may 

vary from being mildly uncomfortable to fatal complications, such as acute hepatic 

failure upon an overdose of acetaminophen or other analgesics. In certain cases, severe 

adverse effects can become the main concern of physicians who may resort to planning a 

therapeutic regimen and even restrict or prevent the administration of certain drugs. For 

example, this may be needed in cases such as the life-threatening adverse effect of 

pulmonary fibrosis induced by bleomycin. Accordingly, there is a pressing need for 

effective strategies that can: 

Minimize the side effects of therapeutic doses of oxidative drugs to improve the 

drug tolerance of patients, especially during cancer treatment; 

Alleviate or reverse the toxicity of an overdose of an oxidative drug. 

It is a reasonable hypothesis that the administration of an antioxidant might be a 

solution for oxidative-drug induced toxicity. However, another main concern is that an 

antioxidant might diminish the desired effect of the medicinal drug, especially when the 

drug exerts its primary effect via ROS-related pathways. Therefore, it is critical to 

unravel details about the mechanisms that result in desired and adverse effects of 

oxidative drugs, as well as the possible roles an antioxidant might play in co-

administration.   



3 
 

In human body, there are endogenous antioxidant compounds/enzymes, altogether 

serving as a defending system against oxidative damage. -L-Glutamyl-L-

cysteinylglycine, commonly known as glutathione (GSH), is the primary cellular 

antioxidant that reduces or conjugates with pro-oxidant species, as well as chelates 

transition metal ions which catalyze Fenton reaction, thereby detoxifying ROS and 

repairing oxidative damages. Direct administration of GSH, however, is proven not 

applicable due to presence of -glutamyltransferase in most tissues, which hydrolyzes 

GSH. Therefore, substitute antioxidants that might favor GSH repletion are taken into 

consideration. 

N-acetylcysteine (NAC), a synthetic derivative of L-cysteine, is a non-toxic 

precursor of GSH de-novo synthesis. NAC is FDA-approved as an antidote of 

acetaminophen overdose, due to its antioxidant potential. Bioavailability of NAC, 

however, is limited due to the negative charge on its carboxylic group at physiological 

pH. N-acetylcysteineamide (NACA), the amide form of NAC, has been found to possess 

higher antioxidant potency compared to NAC, possibly because its electrical neutrality 

increases its lipophilicity and bioavailability. In this study, the in-vitro antioxidant effects 

of NAC and NACA against oxidative stress induced by medicinal drugs were 

comparatively evaluated. The results my help develop a novel strategy in alleviation of 

oxidative-stress-related adverse effects of medicinal drugs, as well as promote future 

clinical substitution of NAC with NACA. 

Except synthetic compounds, plant-derived natural antioxidants are consistently 

highly interested due to their high efficacy and low toxicity. Sutherlandia frutescens, a 

legume native to South Africa, is historically used as herb medicine. It is believed that its 
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therapeutic effect is at least partially due to its antioxidant potential. Therefore, S. 

frutescens might be a candidate for treatment of adverse effects oxidative medicinal drug. 

For purpose of preliminary study, experiments were conducted for radical scavenging 

power of S. frutescens extract in cell-free system, as well as its in-vitro protective effect 

against tert-butyl hydroperoxide (tBHP). The results might help in comprehensive 

evaluation of antioxidant effect of S.frutescens as a potential treatment for oxidative 

stress induced by medicinal drugs.  
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2. REVIEW OF LITERATURE 

“Oxidative drug” is a collective term, as mentioned above. Different types of 

oxidative drugs induce oxidative stress via distinct mechanisms. In the following 

literature review, therefore, oxidative drugs are categorized into groups based on the 

mechanism of oxidative stress induction. Mechanisms of the adverse effects of these 

drugs were discussed; also, results are presented from previous studies about the roles of 

a co-administered antioxidant.  

2.1. OXIDATIVE STRESS: CYP-450 MEDIATED MECHANISM 

There are several groups of compounds that, although they induce oxidative stress 

in the human body, they do not manifest oxidative activity per se. Instead, they are 

metabolized to toxic intermediates by CYP450-dependent enzymes in the liver and/or by 

other enzymes in various tissues in the human body. These highly active intermediates 

directly attack essential biomolecules (such as DNA, proteins, and lipid), causing 

oxidative damage, or conjugate with reduced glutathione (GSH) via enzymatic or non-

enzymatic reactions due to their electrophilicity. They are then excreted, depleting 

intracellular GSH (especially from the liver, where the vast majority of detoxification 

reactions occur), and rendering the body’s cells vulnerable to oxidative damage.  

Drug metabolism refers to the process of biological modification of xenobiotics 

by organisms, during which foreign compounds are generally converted to more 

hydrophilic products to be readily excreted. Although these modification reactions 

mainly act to detoxify the compounds, there are many cases in which the intermediate or 

product of xenobiotics are more toxic, compared to the original compounds. 
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The drug metabolism process primarily occurs in the liver and kidneys. The 

process could be divided into three phases: primary modification, secondary conjugation, 

and excretion. In phase I, the reactive and polar functional groups, such as the epoxy, 

carbonyl, hydroxyl, sulfhydryl, and amine groups, are introduced in nonpolar 

hydrocarbons via catalysis of the hepatic CYP450-dependent mix function 

oxidase/reductase, or enzymes in other systems. These intermediates usually further 

undergo phase II metabolism and are detoxified and excreted; however, many of them are 

more reactive and toxic than the initial substrate and if, not eliminated rapidly, might 

react with neighboring bio-molecules to cause damage or form an antigen complex and 

initiate immunoreaction.  

In phase II, these activated primary metabolites conjugate with small endogenous 

molecules, so that hydrophilicity is further increased in favor of rapid excretion. The type 

of molecules conjugated depends on the chemical properties of the primary metabolites. 

Those bearing epoxy, carbonyl, or other electrophilic functional groups will be 

conjugated with nucleophilic molecules, such as GSH or other compounds with 

sulfhydryl groups, whereas those bearing hydroxyl, sulfhydryl, amine, or other 

nucleophilic groups are prone to sulfation, acetylation, or glucuronidation. Generally, the 

products of phase II metabolism are of reduced reactivity and are ready to undergo renal 

excretion. However, in cases of excessive phase I primary metabolite (such as an 

acetaminophen overdose, which will be discussed in a subsequent section), phase II 

metabolism could result in depletion of GSH and, therefore, make the cell vulnerable to 

oxidative stress.  
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CYP450-enzyme mediated metabolism partially or primarily accounts for 

oxidative stress induced by most oxidative drugs, including antipyretic/analgesic drugs, 

sulfonamide antibiotics, alkylating anti-tumor drugs, and isoniazid, which will be briefly 

introduced in the following section. Although “traditional” antimalarial drugs (such as 

primaquine), require CYP-450 mediated oxidation for activation, they exert oxidative 

toxicity via a redox cycle of their metabolite to generate “secondary” reactive oxygen 

species. This will be introduced in a separate section later.  

2.1.1. Antipyretics and Analgesics – NSAIDs and Acetaminophen. Non-

steroidal anti-inflammatory drugs (NSAIDs) in chemistry collectively refer to a class of 

drugs that are not steroids, but they exert antipyretic, analgesic, and anti-inflammatory 

effects. Acetaminophen (Tylenol), although not considered a NSAID, because of its 

minimal anti-inflammatory effect, will be discussed in this section as representative of 

NSAIDs due to its similar mechanism that affect desired as well as side effects. 

NSAIDs exert their therapeutic effects via inhibition of cyclooxygenases (COXs), 

which are a group of isozymes that converts arachidonic acid into prostaglandin and 

thromboxane, a subclass of eicosanoids that mediate the sense of pain, inflammation, and 

thermoregulation, and induce blood coagulation (platelet aggregation), and 

vasoconstriction (or vasodilation, depending on the type of receptor), as well as 

constriction of other smooth muscles. 

There are two major types of COXs. COX-1, generally referred to as 

“physiological COX”, is a ubiquitous and constitutively expressed enzyme that plays an 

essential role in many normal processes, one of which is stimulating the secretion of 



8 
 

gastric mucus as well as inhibition of excessive secretion of gastric acid; whereas COX-2, 

referred to as “pathological COX”, is used to express mediation of inflammation. 

Therefore, it is inhibition of COX-2 that produces the desired effects of NSAIDs. 

However, “old” NSAIDs, such as aspirin, indomethacin, or ibuprofen, unselectively 

inhibit both COXs and, therefore, induce or exacerbate gastric ulcer/bleeding and 

disorders in blood coagulation. The new NSAIDs, as well as acetaminophen, selectively 

inhibit COX-2 to exert antipyretic/analgesic functions with minimal side effects, 

discussed above. 

Acetaminophen is one of the most common over-the-counter drugs in the United 

States. According to Lee et al. [3] Tylenol alone produces over 1 billion USD for sale 

annually in the U.S. With a therapeutic dosage, acetaminophen is considered rather safe; 

however, a considerable number of cases of acetaminophen overdose, unintentional or 

intentional (suicidal), are still reported throughout the country every year. Statistically, 

there are more than 100,000 calls to Poison Control Centers annually due to an 

acetaminophen overdose, as well as over 56,000 Emergency Room visits, with an 

average of 2,600 cases requiring hospitalization. Of those hospitalized, about 460 patients 

die due to acute liver failure annually,. 

As for the mechanism of the therapeutic effect of acetaminophen, a highly 

selective COX-2 inhibitor, especially COX-2 in the central nervous system which 

prevents generation of prostaglandin E2 and exerts its antipyretic and analgesic effects. 

However, due to its selectivity, acetaminophen has a minimal anti-inflammatory function, 

nor is it an anti-coagulant, unlike aspirin.  Although it is not counted as a typical member 
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of NSAIDs, acetaminophen is still frequently studied, along with and compared to 

NSAIDs due to their similar mechanisms. 

The main adverse effect of an overdose of acetaminophen is its acute hepatic and 

renal toxicity, which may result in hepatic/renal failure and death of the patient, in 

extreme cases. The hepatotoxicity of acetaminophen are well studied and confirmed in 

both in-vitro and in-vivo models. Now, the best-known and most commonly-accepted 

mechanism is that acetaminophen, upon an overdose, is converted to N-acetyl-p-

benzoquinone imine (NAPQI) by hepatic cytochrome enzyme P450 (CYP450) and, 

thereafter, depletes intracellular glutathione, resulting in oxidative stress and subsequent 

necrosis of hepatocytes. 

Under physiological conditions, acetaminophen is mainly metabolized in the liver 

via glucuronidation (approximately 40%) and sulfation (20-40%) by UDP-

glucuronyltransferase and sulfotransferase, respectively, in favor of further excretion; [5] 

whereas only ~15% is oxidized by CYP450 isozymes (mainly CYP2E1, 1A2, and 2D6) 

to NAPQI, an electrophilic and highly active intermediate, which are conjugated with 

reduced glutathione at the sulfhydryl group either non-enzymatically or via catalysis of 

glutathione S-transferase (GST), to form 3-(glutathione-S-yl) acetaminophen.[6] With an 

overdose, however, enzymes for both the glucuronidation and sulfation pathways are 

saturated and a significant amount of NAPQI is generated, which is responsible for 

acetaminophen hepatic toxicity. Actually, the hypothesis that either CYP2E1-knockout or 

CYP450 inhibitor would significantly reduce acetaminophen toxicity is supported by 

experimental results [7].  The mechanism of APAP toxicity is schemed in Figure 2.1. 
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Figure 2.1. Metabolism of APAP. At therapeutic dose, acetaminophen is primarily 

glucoronidated or sulfated and excreted. However, upon overdose, excessive 

acetaminophen is mediated by cytochrome P450 isozymes, producing N-acetyl-p-

benzoquinone imine (NAPQI), which is conjugated with glutathione and excreted, 

therefore depleting intracellular glutathione.   

 

 

NAPQI results in acetaminophen toxicity via several pathways, among which the 

most commonly known is that, upon depletion of GSH (a 90% decrease in the 

intracellular GSH level), highly electrophilic NAPQI molecules attack and bind to 

protein-bearing sulfhydryl groups to form acetaminophen-protein adducts. This results in 

dysfunction of the corresponding proteins.  Actually, a number of proteins that form an 



11 
 

adduct with NAPQI have been isolated, purified, and identified by sequence analysis or 

mass spectroscopy studies [8]. This includes various enzymes that are normally expressed 

in cytosol (such as N-10-formyltetrahydrofolate dehydrogenase), mitochondria (such as 

glutamate dehydrogenase), and microsome (such as glutamine synthetase), indicating 

wide intracellular distribution and damage to NAPQI. Specifically, conjugation of 

NAPQI with mitochondrial enzymes causes a series of devastating consequences. It 

causes disruption of mitochondrial membranes and, therefore, mitochondrial permeability 

transition (MPT), the phenomenon that occurs when mitochondrion loses its 

impermeability and results in leakage of molecules lower than 15,000 Dalton (including 

cytochrome c), which could trigger apoptosis (once present in cytosol) and out-leakage of 

calcium ions. Besides, it also results in dysfunction of the electron-transport chain (ETC) 

on the mitochondrial inner membrane results in (1) decrease in ATP production; (2) 

“premature” leakage of electrons to oxygen molecules and generation of excessive 

superoxide anion, which is considered to be a source of “secondary oxidative stress” in 

acetaminophen-induced toxicity. Actually, superoxide anion over-production has been 

confirmed [9] by experimental results that show that the activity of aconitase (an enzyme 

typically inhibited by a superoxide ion) is due to the sensitivity of its iron-sulfur cluster 

that decreases upon acetaminophen dosing in human macrophages.  

Acetaminophen-SG, the conjugative product of acetaminophen and reduced 

glutathione, has long been considered to be non-toxic. In a recent study, [10] however, 

purified acetaminophen-SG was tested for its toxicity to rat liver mitochondria and was 

found to induce the generation of ROS upon co-incubation with either complex I or II 

substrates. This indicated that complex I and II could be the main mitochondrial enzymes 
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that are impaired by acetaminophen-SG dosing and cause the generation of ROS via 

premature electron leakage.  

Peroxynitrite toxicity could be an indirect consequence of GSH depletion 

resulting from an acetaminophen overdose. Peroxynitrite, the product of additive reaction 

between nitric oxide and superoxide anion, could not only directly attack biomolecules as 

a reactive nitrogen species (RNS) but also cause damage by the formation of cytotoxic 

nitrotyrosine. Normally, peroxynitrite is detoxified via the GSH/GSH peroxidase (GPx) 

pathway, which is impaired due to depletion of the substrate by an acetaminophen 

overdose.  

As for the role of GPx in mediating acetaminophen toxicity, however, there are 

some paradoxical results [11]. It was reported that over-expression of superoxide 

dismutase (SOD) or serum GPx would increase the resistance of experimental animals 

towards acetaminophen toxicity; however, an increase in intracellular GPx levels 

sensitized the animals. It was assumed that the reaction, catalyzed by intracellular GPx, 

exacerbated GSH depletion and primarily resulted from NAPQI conjugation. However, 

further study is necessary for elucidation of the exact mechanism.  

The other possible route, by which secondary ROS/RNS is generated, is that 

hepatic macrophages or other innate immunocytes are recruited and activated (triggered 

either directly by necrotic hepatocytes or due to up-regulation of several inflammatory 

factors) to produce superoxide or other reactive species. Actually, it has been reported 

that suppression of Kupffer cell (hepatic macrophages) activity desensitized the animals 

to acetaminophen toxicity. [12] 
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In some cases, oxidative enzymes other than CYP 450 (such as NADPH oxidase 

or myeloperoxidase) can also oxidize and activate acetaminophen and further exacerbate 

oxidative damage. Some in-vitro studies of rat liver microsomes were conducted to 

elucidate the enzymatic pathways of acetaminophen activation when CYP450 and 

NADPH oxidase are available, since both are capable of generating ROS through the 

metabolization of acetaminophen with NADPH as a substrate. [13] It was found that 

selective NADPH oxidase reversed the trend of increased lipid peroxidation and 

decreased the activity of GST upon acetaminophen dosing, but not that of decreased 

intracellular GSH level, whereas CYP 450 inhibitor prevented all alterations. It was thus 

confirmed that CYP450 was involved in acetaminophen activation and toxicity in rat 

liver microsomes to some extent, but was not the major contribution. 

One of the main adverse effects of acetaminophen on a CYP-2E1-mediated 

mechanism is renal toxicity, which is similar to the adverse effects of hepatic toxicity. 

[14] It was found that an acetaminophen overdose resulted in proximal tubular necrosis in 

humans, rats, and mice. The weight of the kidney as well as the blood urea nitrogen 

(BUN) both increased. In kidneys, it was found that certain proteins--27, 33, 56, 58kDa--

were predominantly arylated and conjugated with acetaminophen, resulting in their 

dysfunction. 

2.1.2. Sulfonamide Antibiotics. Sulfonamides are a group of traditional 

antibiotics that have been used in clinics since the 1930s. They were the most commonly 

used antibacterial drugs before the discovery of natural antibiotics such as penicillin. 

Today, sulfonamides have rekindled the interest of physicians and pharmacists due to 

their effect against both Gram-positive and Gram-negative bacteria, as well as the 
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concern about the increasing tolerance of “super” bacteria strains against traditional 

natural antibiotics. It is noted, however, that of all prescribed antibiotics, sulfonamides 

cause the most cases of emergency room visits, usually due to hypersensitivity reactions. 

The most commonly used sulfonamide antibiotics include sulfamethoxazole (SMX), 

sulfadiazine, and dapsone (DDS) (structures shown in Figure 2.2. and Figure 2.3.).  Their 

toxicity has been widely studied in a variety of cell models in in-vitro studies, as well as 

in in-vivo studies, and will be discussed in later sections. 

 
 

Figure 2.2. Comparison of SMX and DDS structures. There is one amine group para 

to sulfonyl group in SMX molecule, and two in DDS molecule. 

 

 

The antibiotic effects of sulfonamides mainly result from their structural similarity to 

para-aminobenzoic acid (PABA), which is one of the substrates involved in bacterial de-

novo biosynthesis of tetrahydrofolic acid, a pivotal co-factor for a variety of essential 

bioreactions. In the first step of tetrahydrofolic acid synthesis in prokaryotes, PABA 

conjugates with 2-amino-4-hydroxy-6-pyrophosphoryl-methylpteridine to form 

dihydropteroate, to which L-glutamate is further conjugated to form dihydrofolic acid. 

Sulfonamide mimics the structure of PABA and, therefore, could be similarly conjugated 

to pteridine via catalysis of dihydropteroate synthase. The sulfonamide-pteridine adduct, 
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however, blocks dihydrofolate synthetase, the enzyme for the second step, by (1) 

competitive inhibition with normal PABA-pteridine adduct; (2) non-competitive 

inhibition via occupation of the site which is normally occupied by L-glutamate. 

Therefore, bacterial biosynthesis of tetrahydrofolic acid is inhibited and bacterial cells die 

because of the consequent disruption of metabolism with requires tetrahydrofolic acid. 

Eukaryotic cells are less affected, since tetrahydrofolic acid could diffuse or be actively 

transported into a cell as an alternative route, other than de-novo synthesis.  

The main adverse effects of sulfonamide antibiotics include (1) necrotic 

epidermal detachment that involves hypersensitivity reaction; (2) hemolytic anemia. 

These two types of seemingly distinct adverse effects, surprisingly, are of the similar 

mechanism in the initial stage, although the details as well as the following steps of 

pathogenesis are different.  Both initial steps involve CYP450-mediated activation of the 

mother compound and covalent binding of the activated metabolite with protein (or other 

factors) to trigger the further reactions. The mechanism of SMX and DDS toxicity are 

shown in Figure 2.3.  

 

 



16 
 

 

Figure 2.3. CYP-mediated metabolism of SMX and DDS. As shown in the figure, the 

aromatic amino groups of both compounds are first hydroxylated by a variety of 

oxidoreductases to hydroxylamines, which are in turn auto-oxidized to arylnitroso and 

conjugates with intracellular glutathione. 

 

 

Upon uptake, sulfonamides follow a pathway that is similar to the CYP450-

mediated metabolic pathway. CYP450 monooxygenases (or other oxidases such as COX-

2, flavin-containing monooxygenases, or NAD(P)H oxidases) oxidize sulfonamide to 

corresponding hydroxylamine which, in turn, might be either acetylated to hydroxamic 

acid and undergo a series of the following reactions to be detoxified, or automatically 

oxidized to the corresponding nitroso. This is highly electrophilic and, therefore, may (1) 

conjugate with proteins or other biomolecules bearing nucleophilic functional groups; 

and (2) deplete GSH and directly cause oxidative stress. Furthermore, the reaction of the 
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auto-oxidation of hydroxylamine might couple with a partial reduction reaction of 

oxygen molecules to superoxide anion, which is another source of sulfonamide-induced 

oxidative stress.  

The fate of the nitroso intermediate varies depending on the relative activity of 

involved enzymes in the intriguing metabolic process which, in turn, determines the type 

of adverse effect. The mechanisms of each in the following sections will be discussed. 

The most common and severe adverse effects of sulfonamide antibiotics are 

hypersensitivity reactions, among which the best known ones are Steven-Johnson 

syndrome (SJS) and toxic epidermal necrolysis (TEN). The former one could be 

considered a “mild subtype” of the latter (defined clinically that patients with SJS have 

less than 10% body surface area of skin detachment, while those of overlapped SJS/TEN 

have 10-30%, and those with a “typical” TEN have over 30%) [15]. SJS and TEN are 

life-threatening skin conditions that involve separation of the epidermis from the dermis 

in skin, ulcers, and other lesions in mucous membrane, as well as epidermal necrosis with 

minimal associated inflammation.  

The underlying pathogenesis of SJS/TEN is a typical type I hypersensitivity 

reaction, which is antibody-mediated and only strikes a portion of individuals, i.e., 

“atopic individuals”. Type I hypersensitivity reactions are mostly referred to as “allergic 

reactions” by the public, and involve common food/drug allergies. Upon uptake, an 

allergen is presented on the surface of dendritic cells (or other antigen-presenting cells, 

APCs). The APCs attract helper T lymphocytes that bear corresponding CD4 

glycoproteins that combine with certain allergenic molecules on APCs. When combined, 
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the helper T lymphocytes are “switched on” and, in turn, secrete interleukin-4/5 to 

stimulate production of IgE by B lymphocytes. Also, activated helper T cells are capable 

of secreting other chemotactic factors, recruiting other immnocytes, and promoting 

further inflammatory reactions.  

In cases of drug-induced SJS, hydroxylamine, the active intermediate CYP450 

metabolite of sulfonamide, acts as “hapten” to conjugate with protein in host tissues to 

form antigen, which is thereafter presented by local dendritic cells. These APCs, in turn, 

produces a tumor-necrosis factor (TNF)-α and other factors to recruit CD8+ T-

lymphocytes (“killer” T-cells) which, upon activation, trigger apoptosis of epidermal 

keratinocytes via a pathway mediated by perforin, a cytolytic protein that inserts itself 

through the plasma membrane, creating a pore and eventually causing lysis of the cell. 

The other way keratinocyte apoptosis can be triggered is when the APCs attract and 

activate specific helper T cells, which secrete interferon to induce expression of a Fas 

receptor (the “receptor of death”) by keratinocytes, as well as Fas ligands. A combination 

of Fas ligand/receptor will be followed by activation of the caspase system and, 

ultimately, apoptosis.  

It had been believed that liver is the major site of conversion of sulfonamides to 

their corresponding hydroxylamines, which are thereafter distributed over the body, 

including the skin, due to its abundance in CYP450 and myeloperoxidases. However, 

researchers have subsequently discovered [18] that epidermal keratinocyte, per se, can 

metabolize the mother compounds to hydroxylamines, which further undergo 

autooxidation, form arylnitroso metabolites, and conjugate with protein to form the 

allergenic adduct. Meanwhile, the reaction of arylhydroxylamine oxidation can be 
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coupled with partial reduction of molecular oxygen to superoxide anions, i.e., the 

“secondary” ROS. These active species cause damage, not only directly, but also to the 

signaling pathway. In general, ROS will induce production of “dangerous” signals, such 

as heat-shock proteins (HSPs) and cytokines, for activation of the APCs. The mature 

APCs therefore express MHCs and migrate into draining lymph nodes, where they 

present MHCs to T-lymphocytes. The activated T cells, in turn, express a “skin-homing 

receptor” that is ready for “landing” in the keratinocyte layer beneath the epidermis. In 

detail, superoxide anions might up-regulate certain proteins on the APCs, which are 

stimulatory factors essential for activation and survival of T-lymphocytes, such as CD80, 

83 and 86. Also, hydrogen peroxide (generated via dismutation of superoxide anion) 

might induce expression of TNF-α and IL-8 by APCs. Furthermore, ROS can up-regulate 

expression of adhesion molecules, such as E-selectin and ICAM-1, providing “landing 

site” for T-lymphocytes. 

In this study, it was found that a variety of enzymes are capable of activating 

sulfonamides, including CYP2C9, 2E1, and 3A4, as well as myeloperoxidase, COX-2 

and prostaglandin H synthase. Hydroxylamine (NOH) of both SMX and DDS induces 

concentration- and time-dependent cell death; however, DDS-NOH is proven of higher 

toxicity by showing lower LC50 in all three different types of cells tested (peripheral 

blood mononuclear cells, PBMC/normal human epidermal keratinocytes, 

NHEK/erythrocytes).  The fact that DDS bears two N-4s and, therefore two equivalents 

of hydroxylamines can be generated, was assumed to be the underlying reason for the 

higher toxicity of DDS as compared to SMX. Similarly, in another article, toxic effects of 

both SMX- and DDS-NOH in NHEK, as well as their roles in the generation of 



20 
 

deleterious ROS, were studied [19]. It was concluded that both metabolites are ROS 

generators, but DDS-NOH produces a significantly larger amount.   

Another rare but life-threatening toxic effect of sulfonamides is hemolytic 

anemia, which is categorized as Type II hypersensitivity reaction [20]. The most 

commonly known instance of this is immunoreaction due to blood type incompatibility 

during a blood transfusion. Cases of drug-induced hemolytic anemia, depending on the 

nature of the drug, involve three typical mechanisms: immune-complex mechanism, 

“haptenic” immune mechanism, and true autoimmune mechanism. Sulfonamide-related 

hemolysis falls in the second type. For “hapten” mechanism, the drug molecules work as 

hapten to conjugate with the protein molecules on the cell surface of erythrocyte, forming 

“complete” antigen to be presented by macrophages that engulfs the “modified” 

erythrocyte. The presentation of antigen activates the corresponding B-lymphocytes 

which, in turn, produce IgG or IgM to combine with the antigen. The complex 

subsequently activates the complement system, resulting in either the formation of a 

membrane attack complex (“pore” on the cell surface) or macrophage uptake and 

erythrocyte degradation.  

In the case of SMX and DDS, they and their hydroxylamine metabolites undergo 

the process of enzyme-mediated protein haptenation, mainly “modifying” human 

erythrocyte carbonic anhydrase B&C or other components, but less likely hemoglobin. 

Besides the triggering the hemolytic hypersensitivity reaction, as mentioned above, 

“modification” and inactivation of carbonic anhydrase disrupt the osmolarity balance of 

erythrocytes and render them prone to rupture. Since carbonic anhydrase is the main 

enzyme that regulates the balance between carbonic acid, water, and carbon dioxide, as 
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well as proton and bicarbonate anion, this has a direct effect on the maintenance of 

osmotic pressure equilibrium.  

Besides the hypersensitivity mechanism (which is predominant in “slow 

acetylators”, as discussed in the section about SJS/TEN), sulfonamide antibiotics are 

capable of inducing hemolytic anemia via a distinct mechanism that involves oxidative 

stress. This typically occurs in patients with certain genetic disorders such as G-6-PDD. 

The oxidative stress-related mechanisms are similar to those discussed in the SJS/TEN 

section above. It was hypothesized that sulfonamide and its hydroxylamine/nitroso 

metabolites induce oxidative stress via two main strategies: (1) partial reduction of O2 to 

O2·
-
 during auto-oxidation of sulfonamide hydroxylamine to nitroso, and generation of 

downstream secondary ROS, such as H2O2 (via SOD), and highly active ·OH (in the 

presence of free transition metal ions, especially Fe(II) ); (2) conjugation of highly-

electrophilic nitroso metabolite with GSH, which may result in or exacerbate its 

depletion. Both hypotheses have been verified by experimental results. In an in-vitro 

study of mononuclear leukocytes [21], the toxicity of both hydroxylamine and nitroso of 

SMX were determined, and the potential protective role of GSH was studied. Findings 

confirmed that toxicity of SMX hydroxylamine in mononuclear leukocytes (quantified by 

cell viability values) was attenuated or prevented by exogenous glutathione, which 

indicated that SMX hydroxylamine conjugation with GSH could be an important 

detoxicification pathway. Also, in a cell-free experiment, GSH prevented conversion of 

SMX hydroxylamine to nitroso at the cost of its own oxidation. It was found that, in the 

initial stage, GSH might nucleophilically attack SMX nitroso for semimercaptal 

conjugation, which would either be cleaved to for SMX hydroxylamine at a high 
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concentration of GSH, or undergo isomerization to form more thermodynamically stable 

(and less active/less dangerous) sulfonamide with a lower concentration of GSH. This 

might explain theprotective role of GSH in cells in the presence of SMX metabolites. 

Results for the study of concentration-dependent in-vitro toxicity of SMX metabolites, 

however, showed that significant GSH depletion did not occur until the concentration of 

SMX metabolite was 3-fold of its LD50. Also, purified GST did not show a significant 

effect on reactions between SMX-NOH and GSH. Both findings indicated that, although 

GSH conjugation may not play a major role in detoxification of SMX metabolites, it 

could still make a significant contribution to sulfonamide-induced oxidative stress. 

2.1.3. Isoniazid (Anti-Tuberculosis Agent). Isoniazid (INH) is an organic 

compound that has long been (and is still currently) used for prophylaxis and treatment of 

tuberculosis (TB), a contagious disease caused by infection of Mycobacterium 

tuberculosis or other strains of mycobacteria. Although there have always been attempts 

to screen substitutive medications, INH still serves as the first-line and main drug against 

TB since its discovery in the early 20
th

 century and clinical use in early 1950s, due to its 

unique mechanisms of function, high efficiency, and relatively low toxicity.  

INH is of a unique and complicated mechanism of therapeutic effect, which was 

not completely unraveled until decades after its initial clinical application. [22] INH 

enters mycobacterial cell via passive diffusion as a non-toxic “precursor”. Thereafter it is 

oxidatively activated by KatG, a mycobacterial cytosolic multifunctional enzyme which 

mainly serves as catalase/peroxidase but also functions as peroxynitritase and NADH 

oxidase. Under “normal” conditions, KatG plays an important protective role against the 

peroxide generated by NAD(P)H oxidase of phagocytes of their hosts upon infection. In 

http://en.wikipedia.org/wiki/Mycobacterium_tuberculosis
http://en.wikipedia.org/wiki/Mycobacterium_tuberculosis
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the presence of INH, however, KatG is “hijacked” by INH, which turns it from an 

antioxidant enzyme into an intracellular “manufacturer” of toxic INH metabolites. This 

general mechanism is comparable to that of nitrofurantoin (another antibiotic) in the 

generation of ROS in mammal somatic cells. This will be discussed in later sections. The 

toxicity of INH decreases in strains of M. tuberculosis of the mutant KatG in the 

narrower heme access channel and, therefore, permits less access for INH to its oxidative 

site, compared to wild type strains. This verifies the role of the activation of KatG to INH 

in the mycobacteria. KatG is capable of oxidizing INH in the presence of a number of 

oxidants, including alkyl hydroperoxides, hydrogen peroxides (possibly a by-product of 

aerobic metabolism of M.tuberculosis, an obligate aerobe), and superoxides (possibly 

generated by another reaction that could be catalyzed by KatG, i.e., NADH oxidation/O2 

partial reduction). 

It was hypothesized that KatG oxidatively activates INH to numerous highly-

reactive intermediates, including carbon radicals (such as isonicotinoyl radical), nitrogen 

radicals (such as isonicotinic hydrazyl radical) or oxygen radicals. This was verified by 

results of EPR studies. These INH-derived radicals are capable of forming adduct with 

NAD(P)
+
 via attacking and covalently conjugating with them at the C-4 position of the 

pyridine ring of their nicotinamide moiety. The INH-NAD(P)
+
 adducts are now known to 

be potent inhibitors of a variety of mycobacterial enzymes, most significantly IhnA, an 

enoyl-acyl carrier protein reductase, that is involved in synthesis of mycolic acid, one of 

the main components of cell wall lipids of mycobacteria. Enoyl-acyl carrier protein 

reductase, which plays a pivotal role in type II fatty acid synthesis, is a common “target” 

for purpose of anti-bacterial compound synthesis, since the biological processes of fatty 
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acid synthesis are distinct in prokaryotes and eukaryotes. In case of M. tuberculosis, IhnA 

is inhibited by R-stereoisomer of isonicotinoyl-NAD
+
 adduct. Other important 

mycobacterial enzymes inhibited include Mab A(a NADPH-dependent β-ketoacyl-ACP 

reductase), M. tuberculosis dihydrofolate reductase (which has a different structure than 

the isozyme in humans), as well as Kas A (another enzyme involved in mycolic acid 

synthesis).  

Besides, these “organic” radicals are also capable of directly attacking biological 

macromolecules in mycobacteria, in a pattern similar to that of the “inorganic” low-

molecular weight radicals, such as O2·
-
, NO· and ·OH, which are also generated during 

KatG activation of INH. Nitric oxide, for instance, has been found to be “scavenged” by 

mycothiol, which is considered to be an important intracellular antioxidant compound for 

M.tuberculosis. The product, S-nitrosomycothiol, could undergo transnitrosylation and 

nitrosylate certain proteins. This process is verified to be the underlying reason for 

dysfunction of several respiratory enzymes in M. tuberculosis. Nitric oxide can also 

undergo an additive reaction with NAD(P)
+
 to form adducts that inhibit the synthesis of 

nucleic acid and lipid in mycobacteria. Wild-type strains of M. tuberculosis, especially, 

are a “knockout” for oxyR, a DNA-binding transcriptional factor that regulates the 

expression of antioxidant genes (i.e., those coding proteins that mediate peroxide 

metabolism, redox balance, and peroxide protection, such as the up-take of manganese in 

response to oxidative stress. This renders them even more vulnerable to an attack by 

reactive radical species.  

The main adverse effects of INH were its potential liver and kidney toxicity 

(especially with an overdose) and, for subjects of a certain genotype (such as those with 
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G-6-PDD or other genetic disorders that render them more vulnerable to oxidative stress), 

hemolytic anemia.  

Liver/kidney toxicities are the most common adverse effects of INH, especially in 

those individuals referred to as “slow acetylators”. An intense effort was made in an 

attempt to unravel the metabolic pathway of INH in the human body, and the main 

pattern was made clear, as shown in Figure 2.4.  

 

 

Figure 2.4.  Mechanism of INH – Induced Oxidative Stress. As shown in the 

flowchart, either isoniazid or its N-acetylation metabolite is hydrolyzed, producing 

hydrazine or acetylhydrazine, which are both metabolized by CYP2E1 to acylating 

compounds, conjugating and depleting intracellular glutathione. 
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Upon uptake, INH is mainly acetylated by arylamine N-acetyltransferase (NAT)-2 

while using Acetyl-CoA as a co-substrate. Acetyl-INH, therefore, undergoes hydrolysis 

via catalysis of amidase, yielding isonicotinic acid and acetylhydrazine. The former is 

normally conjugated with glycine and excreted, whereas the latter is believed to be the 

key intermediate metabolite that is responsible for INH toxicity. Acetylhydrazine, 

depending on its own intracellular level as well as activity of the corresponding enzymes, 

could either be further acetylated by NAT-2 to diacetylhydrazine, a non-toxic metabolite 

that is ready to be excreted, or activated by CYP2E1 to generate a toxic acylating 

metabolite, which is capable of conjugating to liver/kidney proteins or depleting GSH, Its 

toxic effect is exerted in a pattern similar to that of activated metabolite of 

acetaminophen. [23] 

Both in-vitro and in-vivo studies have been conducted to elucidate the metabolic 

process and determine the fate of INH. It has been confirmed that conjugation of 

acetylhydrazine and hepatic protein is subject to mediation of microsomal enzymes. [24] 

An inhibitor of acyl amidase, the enzyme that hydrolyzes acetyl-INH to isonicotinic acid 

and acetylhydrazine, alleviates the toxicity of INH, further supporting the hypothesis that 

INH exerts its toxicity via acetylhydrazine.  

Interestingly, the presence of INH, the “mother compound”, will affect the further 

metabolism of its own intermediate metabolite, which was confirmed by results of a 

number of experiments, mostly via radioactive isotope labeling. [25][26][27] There are 

contradictory results for in-vitro and in-vivo studies, however. It was found that INH 

inhibits microsomal activation of acetylhydrazine to the toxic acylating agent in-vitro; 

nevertheless, the presence of INH favors this process in-vivo and actually diminishes the 
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physiological reaction of acetylation of acetylhydrazine to diacetylhydrazine.  A 

reasonable explanation would be that INH undergoes acetylation via the same enzymatic 

system as well, so it would actually compete with acetylhydrazine and “force” it to 

undergo the other metabolic pathway.  

INH causes hemolytic anemia in slow acetylators due to Type II hypersensitivity 

reaction as well, but the detailed mechanism is different from that of sulfonamide-

induced hymolysis. It was found that acetylhydrazine from INH would induce production 

of a corresponding antibody and bind to it in the blood. The Ag-Ab complex would 

thereafter be adsorbed on the surfaces of erythrocytes and activate the complementary 

system. Therefore, the erythrocytes on which the complex “resides” are lysed as 

“innocent bystanders”. On the other hand, the INH-induced hemolysis in G-6-PDD 

patients has a similar mechanism to that of the sulfonamide-induced hemolysis in them. 

2.1.4. Antineoplastic Drugs-Alkylating Agents. “Antineoplastic drug” is a 

generic term referring to a wide collection of thousands of medicinal drugs that are 

clinically used for suppression of the growth of an abnormal mass (namely, “a tumor” or 

“a neoplasm”, benign or malignant in nature) in specific tissues and induction of death of 

the excessively dividing tumor cells. Today, there are a great number of antineoplastic 

drugs available for optimal therapeutic effects against different types of neoplasms. These 

drugs could be categorized into several groups, depending on their distinct chemical 

structures and/or mechanisms of action. The main types are: (1) alkylating agents (the 

earliest, most “classical” antineoplastic drugs); (2) anthracycline antibiotics; (3) platinum 

(Pt) – containing antineoplastic drugs; (4) camptothecin; (5) podophyllin derivatives; (6) 
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Vinca alkaloids; (7) others, such as Bleomycin (BLM), a glycopeptide antibiotic of a 

unique antineoplastic mechanism. 

Among these drugs, camptothecin (topoisomerase I inhibitor), podophyllin 

derivatives (topoisomerase II inhibitor), and Vinca alkaloids (mitosis suppressor due to its 

ability to bind tubulin dimers) will not be introduced here, since their mechanisms with 

either therapeutic or adverse effects are barely oxidative-stress related.  

 “Alkylating antineoplastic drugs”, by definition, refer to alkylating agents that 

are capable of attaching an alkyl group to DNA. Alkylating antineoplastic drugs are 

mostly strongly electrophilic compounds that can covalently conjugate with negatively-

charged DNA by the formation of carbonium ion intermediates or transition complexes 

with their targets. They exert their therapeutic function mostly by attaching the alkyl 

group to N-7 on the imidazole ring of guanine (which carries a long pair of electrons and 

is, therefore, highly nucleophilic) or, occasionally, to O-6 on the pyrimidine ring. Other 

nucleophilic atoms in the bases of DNA, such as N-1 or N-3 of adenine or N-3 of 

cytosine, are also prone to be attacked, but to a lesser extent. Generally, such an addition 

prevents the coiling or uncoiling of DNA, and thereafter approaches normal functioning 

of the DNA-processing enzyme. “Dialkylating agents”, such as cyclophosphamide (CPA) 

or busulfan, have two or more electrophilic sites in their molecules and, therefore, are 

capable of attacking more than one N7 of guanine residues. This results in cross-linkage 

of DNA and makes DNA incapable of strand uncoiling if the two residues are attached to 

different strands or “limpet attachment” may result if they are affiliated to the same 

strand. In contrast, “monoalkylating agents” can only react with one guanine moiety. 

Limpet attachment and monoalkylation, although not capable of preventing DNA helix 
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from separating, do block the access of DNA-processing enzymes.  Consequently, cell 

division ceases and apoptotic cell death will be triggered if damage to the DNA cannot be 

repaired. It is worth mentioning, however, that most alkylating antineoplastic drugs are, 

paradoxically, potential carcinogenic at the same time. It is well known that cell cycles of 

cells with damaged DNA will be arrested at either the G1/S or G2/M checkpoint to allow 

for repair of the DNA, and that programmed cell death (apoptosis) will be triggered if the 

damage is too extensive and attempts to repair it fail, so that the mutation in genes will 

not be mistakenly inherited by daughter cells. However, if these cells, by any means, 

overcome these checkpoints without the DNA being properly repaired, and/or if they do 

not undergo apoptosis due to mutation in certain genes that upregulate anti-apoptotic 

factors (such as Bcl-2) or downregulate pro-apoptotic factors (such as p53), they will 

proceed to uncontrolled mitosis and produce an excessive cell mass (neoplasm). This is 

also accepted as the mechanism of the main adverse effects of alkylating agents and that 

normal actively-mitotic cells are randomly affected as well. Skin/gastrointestinal tract 

epithelial cells, hematopoietic cells in bone marrow, and germ cells can be affected, 

resulting in malabsorption/malnutrition, hair loss, and myelosuppression.   

Classical alkylating antineoplastic agents are categorized according to their 

chemical structure into following groups: Nitrogen mustards (cyclophosphamide, 

melphalan, chlorambucil, etc), nitroureas (carmustine, steptozocin, etc), and alkyl 

sulfonates (busulfan). 

Regardless of category, a vast majority of alkylating antineoplastic agents are pro-

oxidants in vivo, although they have distinct mechanisms. Some (such as carmustine and 

diethyldithiocarbamic acid) induce oxidative stress by inhibiting certain antioxidant drugs 
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(this and other antioxidant enzyme inhibitors will be discussed later), while most of the 

rest are activated by CYP450 and form active intermediate metabolites to conjugate and 

complete intracellular GSH. Results of experiments in the study of alkylating agent-

induced oxidative stress are presented in the following sections.  

CPA is categorized into groups of nitrogen mustard alkylating agents. The 

“nitrogen mustards”, which are chemically similar to mustard gas, are typically amines 

with chlorine substitution on β-carbon. Nitrogen mustards may undergo an intracellular 

nucleophilic substitution reaction, during which electron-rich nitrogen attacks β-carbon, 

forming cyclic aminium ion, and chloride detaches as a leaving group. The aminium ion 

is thereafter attacked by N-7 in guanine and forms a covalent bond (alkylation).  To 

overcome the drawback of the non-selectivity of earlier nitrogen mustards, pharmacists 

take advantage of the differences in expression by enzymes and modify the structures of 

drugs accordingly, so that a drug can only be active in the presence or absence of specific 

enzymes. 

CPA, for instance, is one of the selective nitrogen mustards that are highly 

effective against malignant tumor cells but with minimal toxicity, as compared to the 

effects of “traditional” chemotherapy medications.  The mechanism of CPA toxicity is 

schemed as in Figure 2.5.  
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Figure 2.5. CPA Metabolism/Activation. Cyclophosphamide(CPA) is metabolized via 

following pathways: (1) Oxidation – hydrolysis, producing dechloroethyl-CPA and 

chloroaldehyde; (2) CYP450-mediated hydroxylation and tautomerization, producing 

aldophosphamide, which is either oxizdized to non-toxic carboxy-CPA or hydrolyzed to 

generate DNA-binding phosphoramide mustard, and GSH-conjugating acrolein. 

 

 

Upon uptake, a small portion of CPA (less than 10%) undergoes an oxidative 

pathway yielding dechloroethyl-CPA and chloroaldehyde (a neurotoxic agent), whereas a 

vast majority (over 90%) is oxidatively activated by CYP450 isozymes (mainly CYP3A4, 

2B6 and 2C9) to 4-hydroxy-CPA, which swiftly tautomerizes to form aldophosphamide. 

The latter undergoes either aldehyde dehydrogenase (ALDH) 1A1-mediated oxidation to 

form inactive, non-toxic carboxy-CPA, or non-enzymatic decomposition to form 

phosphoramide mustard and acrolein; both are electrophilic and capable of alkylating 
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DNA. The former, however, remains inactive until its phosphorus-nitrogen bond is 

cleavaged by intracellular phosphamidase. CPA exhibits its selective toxicity towards 

malignant cancer cells via two mechanisms: (1) high activity of ALDH (the detoxifying 

enzyme that oxidizes and deactivates aldophosphamide) in normal cells, which undergo 

active mitosis and are prone to being attacked by traditional alkylating agents, such as 

intestinal epithelial cells and hematopoietic cells; (2) high activity of phosphamidase (the 

activating enzyme that removes phosphoric moiety from phosphoramide mustard, 

enabling the “mustard” moiety to form cyclic aminium) in a majority of malignant cells. 

[28] It has been revealed, however, that multiple metabolites of CPA, including 

chloroaldehyde (the neurotoxic metabolite from side reaction), acrolein and 

phosphoramide, are capable of forming conjugates with GSH and thereby depleting it, 

rendering the cells vulnerable to oxidative damage. Other studies [29] indicate that a 

superoxide anion is generated during the process of decomposition of aldophosphamide 

to phosphoramide mustard and acrolein. Other oxidases have also been found to be 

capable of activating CPA to generate GSH-binding (and depleting) intermediate 

metabolites. The most important enzymes among them are prostaglandin H synthase and 

horseradish peroxidase [30], or lipoxygenases [31]. Results of experiments to determinate 

the extent of oxidative stress showed a decrease in the activity of several antioxidant 

enzymes (SOD, GPx and GR), and depletion of intracellular GSH, as well as lipid 

peroxidation, upon CPA administration to animals, further confirming the oxidative 

damage that CPA induces oxidative damage.  
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2.2. OXIDATIVE STRESS – REDOX CYCLE MECHANISM 

“Redox Cycle” is defined as the swift mutual conversion of a substance between 

its own oxidized and reduced form in inorganic chemistry (such as in transition-metal-

containing compounds, where the metal ions alternate between different oxidative states), 

or interconversion between two related compounds which are considered to be an 

“oxidized” or “reduced” form of each other in organic chemistry (such as conversion 

between thiols/disulfide, ketone (or aldehyde)/alcohol, diphenol/quinine, or 

amine/amine). In biochemistry, alternation between Fe(II)/Fe(III) and Cu(I)/Cu(II) in a 

variety of iron/copper-centered enzymes are the most common examples of the former, 

whereas conversion between reduced/oxidized glutathione (or other endogenous thiol 

antioxidants), NAD(P)H/NAD(P)
+
 and FMNH2/FMN are prevalent for the latter. In 

biological systems, redox couples are rarely in equilibrium in physiological conditions 

(e.g., intracellular GSH constitutes up to 98% of total glutathione under normal 

conditions). The ratio of reduced/oxidized forms is constantly affected by activities of 

related enzymes, and is tightly regulated by a number of factors that maintain their proper 

functioning.  

Redox cycle-based enzymatic reactions play pivotal roles in a variety of 

physiological processes, including generation of ATP through an electron-transporting 

chain, metabolism, and detoxicification of xenobiotics, as well as signal transduction 

pathways. It has been noticed, however, that redox cycle reactions of exogenous agents 

(toxins or medications) in the human body are extremely dangerous. The most common 

redox-cycling substances that people can be exposed to include bipyridyl herbicides and 

medicinal drugs bearing biphenol/quinone moieties (or their nitrogen equivalents). These 
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compounds generally have an “original oxidative form” and exert their toxicity/adverse 

effects via transformation to highly-active radical intermediates, usually through reducing 

half-action. The intermediate, in turn, either directly attack and damage nearby 

biomolecules in the absence of oxygen, or transport the excessive electron to oxygen 

molecules, generating superoxide anion and converting themselves back to their 

“original” oxidative state, thereby completing the entire redox cycle. The main types of 

medicinal drugs that undergo a redox cycle include traditional antimalarial drugs (such as 

primaquine), anthracycline antineoplastic drugs, and nitrofurans. Bleomycin (BLM), an 

anti-tumor drug with a unique mechanism of action, induces oxidative stress via its iron 

center, with a variable valence, and is therefore considered to be a “redox cycle” drug as 

well. This will be discussed along with anthracycline drugs.  

2.2.1. Antimalarial Drugs. Malaria is an infectious disease that is transmitted 

by female Anopheles mosquitoes.  It is caused by Plasmodium, a genus of pathogenic 

protozoans. The vast majority of malaria cases occur when the P. falciparum, P. vivax, 

and P. ovale in the saliva of an Anopheles mosquito are injected into a human’s 

bloodstream. After a sexual life cycle, the soprozoites enter the human red blood cells 

(RBCs) and reproduce, eventually resulting in lysis of the RBC. Malaria can be fatal if 

not treated properly since infected RBCs might breach the blood brain barrier (BBB), 

causing life-threatening cerebral malaria. In addition, malaria in pregnant women is a 

significant cause of stillbirth and infant mortality. Due to the complexity of the life cycle 

of the Plasmodium, various drugs are needed to kill or control this parasite at different 

stages.  

http://en.wikipedia.org/wiki/Plasmodium_falciparum
http://en.wikipedia.org/wiki/Plasmodium_vivax
http://en.wikipedia.org/wiki/Plasmodium_ovale


35 
 

Primaquine (PQ), a member of the 8-aminoquinoline group, is still the only 

available drug that blocks transmission of Plasmodium since its first-time synthesis 

decades ago, despite its relatively high toxicity. PQ is versatile in malaria treatment since 

it not only exerts the effect of a “radical cure” by clearing the latent sporozoites of 

Plasmodium from the liver after eliminating  merozoites from the bloodstream,, thereby 

preventing a relapse of malaria, but it is also highly cytotoxic towards gametocytes of the 

pathogen. It interrupts the sexual life cycle of Plasmodium in the mosquito which 

prevents further transmission of the disease. This is also the primary prophylactic drug 

recommended for use by travelers to certain regions with high malaria occurrence.  The 

mechanism of PQ killing the parasite (though not fully unraveled) may be by partial 

interference with the parasite’s mitochondrial ETC by its reactive metabolites generated 

by the CYP450-mediated pathway.  This will be discussed further in later sections. 

PQ is always associated with severe side effects, despite its great versatility and 

adaptability and the fact that it is highly effective towards all Plasmodium strains and 

drug tolerance rarely occurs. The most severe adverse effect of PQ is its hematotoxicity, 

i.e., the potential to induce hemolytic anemia in people with certain genetic disorders 

such as glucose-6-phosphate dehydrogenase deficiency (G-6-PDD) or NADH-

methemoglobin reductase deficiency.  Although not fully determined yet, the mechanism 

of PQ hematotoxicity has been reported to be associated with its active metabolite, 5-

hydroxyprimaquine, which undergoes an intracellular redox cycle and generates 

secondary free radicals that induce oxidative stress. 

Results from experiments conducted by various researchers primarily lead to the 

agreement that PQ, alone, does not cause “fatal” damage to erythrocytes (especially 
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normal ones with sufficiently high intracellular GSH).  Instead, it is metabolized by a 

variety of hepatic CYP450 isozymes to different activated intermediates which, in turn, 

undergo a redox cycle and generate ROS. The entire scheme of this mechanism has been 

well studied with the major active metabolites being separated, purified, and identified, 

and their relative toxicity compared to that of PQ. 

Several members of the CYP 450 family were found to be responsible for PQ 

activation. The main ones included CYP2E1, 2B6, 2D6, 3A4, and 1A2. It was found that 

PQ potently induces transcription of corresponding genes [32]. Among these, CYP2D6 

was believed to generate the most reactive PQ metabolites. The administration of a 

selective inhibitor of CYP2D6 significantly decreased the PQ metabolic rate, whereas (in 

CYP 2D6-knockout mice) PQ exerted no therapeutic effect, even though the dose was 

doubled. [33] Several intermediate metabolites were identified, including 5-

hydroxylprimaquine (5-HPQ), 5-hydroxyl-6-demethylprimaquine (5-H-6-DPQ), 6-

methoxy-8-aminoquinoline (6-M-8AQ), and 5,6-dihydroxyl-8-aminoquinoline (DHAQ). 

[34] [35] All of these metabolites except 6-M-8AQ could be oxidized intracellularly to 

form a corresponding quinone-imine (QI). This was confirmed by results of UV-Vis 

spectrophotometry, IR, NMR, and UPLC-MS, and generated H2O2. Spin-trapping EPR 

failed to detect hemoglobin (Hb) –thiyl or glutathionyl radicals, indicating that these QIs 

did not directly oxidize GSH nor did they directly react with NADPH. [35] In the 

presence of ferrodoxin:NADP
+
 oxidoreductase, however, these QIs underwent a redox 

cycle to generate H2O2 and OH, as well as oxidizing Hb to MetHb. It was confirmed that 

all of these QIs caused significant generation of MetHb, increased oxygen uptake and 

erythrocyte osmotic fragility, and depleted non-protein thiol. Among these QIs, that of 5-
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HPQ was found to be the most potent. This assumption was supported by the results of a 

toxicity study of purified 5-HPQ [36].  6-M-8AQ was prone to oxidation to form 

corresponding 8-hydroxylamine, which could be further oxidized to nitroso by O2 to 

generate O2∙
-
. [37] The main mechanism of PQ toxicity is depicted as in Figure 2.6.  

 

 

 

Figure 2.6. Redox-Cycling of PQ Metabolite. Primaquine (PQ) is primarily 

hydroxylated to 5-hydroxylprimaquine (5-HPQ), which reduces molecular oxygen to 

superoxide anion. The resulting quinone-imine (QI) can be reduced back to 5-HPQ at the 

cost of oxidation of NADPH. 
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2.2.2. Antineoplastic Drugs – Anthracycline Antibiotics; Bleomycin (BLM). 

Anthracycline antibiotics and bleomycin exert their antineoplastic effects through distinct 

mechanisms. It was found, however, that both of them cause oxidative-stress-related 

adverse effects via redox-cycling mechanisms, which are to be briefly discussed below. 

2.2.2.1. Anthracyclines. Anthracyclines are a group of anticancer drugs 

derived from Streptomyces peucetius var. caesius. They are, by far, the most effective 

antineoplastic compounds and are clinically used for treating various types of malignant 

tumors related to the reproductive systems, including breast, uterine, and ovary / 

testicular cancers. They also are used to treat cancers in other tissues/organs, especially 

those that are resistant to other types of chemotherapy. Most pharmacists believe that the 

high effectiveness of anthracyclines results from its multiple therapeutic mechanisms. 

One unique mechanism of action of anthracyclines is its inhibition of topoisomerase II 

(the intranuclear enzyme cutting of both DNA strands simultaneously and thereby 

relaxing DNA supercoils) and prevention of DNA transcription or replication. Results of 

recent studies have shown that anthracyclines do not impede topoisomerase II from 

combining with DNA. The opposite occurs since it stabilizes the topoisomerase II-DNA 

complex and prevents the enzyme from dissociating from DNA when necessary. 

Thereafter, DNA ligase would not be able to repair cleaved DNA, nor would other DNA 

processing enzymes be capable of approaching and functioning. “Damaged” DNA, in 

turn, would trigger apoptosis of the cells. There are two main types of topoisomerase II: 

Top 2α and Top 2β. Top 2α is known to be over-expressed in tumors, but cannot be 

detected in “quiescent” tissues. Therefore, it is believed to be the basis of anthracycline 

anti-tumor activity [38]. Other mechanisms of anthracyclines include intercalation 
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between base pairs of DNA similar to that of an alkylating agent (refer to 1.1.1.4.1. for 

details) and generation of free radicals that attack and damage various intracellular 

macromolecules similar to that of bleomycin. It has been hypothesized, however, that 

these reactive species are possibly the culprit that causes the adverse effects of 

anthracyclines, the most common and life-threatening of which is cardiotoxicity. In the 

following section, doxorubicin (DOX, previously known as adriamycin) will be discussed 

as representative of anthracycline mechanisms and oxidative stress-related adverse 

effects.  

Despite its high effectiveness in treating leukemia, lymphoma, and breast cancer, 

doxorubicin (DOX) has significant cardiotoxicity, which limits its clinical application. It 

has been revealed that DOX may trigger apoptosis or cause necrosis of cardiomyocytes 

with low or high dose, respectively. Comprehensive studies have been conducted of DOX 

cardiotoxicity, which was found to be mainly due to the excessive ROS it generates from 

the enzymatic redox-cycle. DOX redox-cycling reactions are schemed in Figure 2.7. 
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Figure 2.7. Structure and Redox Cycle of DOX. Doxorubicin induces oxidative stress 

via several pathways. The major one involves redox cycling on its quinone moiety of its 

C ring. One equivalent of doxorubicin could deplete 2 equivalents of NADPH and 

generate 2 equivalents of O2·
-
. 

 

 

The cardiomycytes are prone to oxidative damage due to their high content of 

mitochondria which, under certain types of stress, might turn into a major site of 

intracellular ROS generation. In case of DOX-induced cardiotoxicity, it is mainly the 

quinone moiety (C ring) of DOX that undergoes a one-electron reduction to form 

semiquinone (DOX-SQ) which, in turn, reduces O2 to generate O2·
-
. Several enzymes 

were found to be capable of catalyzing the conversion of DOX to DOX-SQ, including 

NADPH-CYP450 reductase [39], glutathione reductase [40], as well as a variety of other 

oxidoreductases. The one that is most commonly involved in DOX reduction, however, is 
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NADH dehydrogenase (which is also known as Complex I of electron-transporting chain, 

ETC, on the inner membrane of mitochondrion) [41][42][43]. In mitochondrial ETC, 

DOX-SQ could be oxidized by cytochrome c which, in turn, “leaks” electrons to O2. [44] 

The superoxide anion produced, in turn, will be further metabolized to H2O2 by SOD and 

generate OH in the presence of free iron. The other possible pathway of OH generation 

from O2·
-
 is that O2·

-
 could donate its electron to ATP-chelated ferric ion, reducing it to 

ferrous ion which catalyzes a Fenton-like reaction [42].  Iron plays a very important role 

in DOX-induced oxidative stress in cardiomyocytes. Physiologically, intracellular iron 

concentration is tightly regulated by a series of iron-binding and transporting proteins. 

DOX, however, has been found to be capable of disrupting iron balance via multiple 

pathways. In mitochondria, the main source of free iron, upon DOX-administration, is the 

4Fe-4S center of aconitase, which is vulnerable to oxidative stress and could release 

Fe(II) upon attack by O2·
-
 [45]. The iron-free aconitase has been found to behave like an 

iron-regulatory protein (IRP) that upregulates transferrin expression (plasma iron-binding 

protein mediating an iron import via a transferrin receptor on the cell membrane) and 

downregulates ferritin expression (“safe” intracellular iron-storing protein) [44]. The two 

derivatives of DOX, DOX-ol (product of A ring-α carbonyl reduction via NADPH 

dependent carbonyl reductase) and DOX-Fe(III) complex (ferric ion “bridges” between 

oxygen atoms of B and C rings) would dysregulate expression of IRP-1 as well, and 

further exacerbate disruption of the iron balance. Binding of DOX or its metabolites to 

cardiolipin (a lipid in cardiac mitochondria that keeps the inner membrane intact and 

maintains proper ETC function) will release caspase-3 directly, or via the p38-mediated 

process, triggering apoptosis. [42][45] 
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2.2.2.2. Bleomycin (BLM). Bleomycin (BLM), a glycopeptide antibiotic 

that is produced by Streptomyces verticillus., refers to a group of structurally-related 

chemotherapeutic agents used primarily in the treatment of lymphomas, squamous cell 

carcinomas, testicular tumors, and malignant pleural effusions. The antineoplastic effect 

of BLM is believed to be due to the formation of a BLM–oxygen complex that binds to 

DNA and cleaves to the phosphodiester– deoxyribose backbone. The most common and 

severe (essentially fatal) adverse effect of BLM is pulmonary fibrosis (PF), the 

accumulative and irreversible replacement of normal lung parenchyma with excessive 

connective tissues and, therefore, loss of lung elasticity, poor ventilation, and 

oxygenation in patients. [46] PF is the only dose- and time- dependent adverse effect of 

BLM and is usually the limiting factor of BLM administration.  

The mechanism of action of BLM has been comprehensively studied, and 

essential details determined, as shown in Figure 2.8. 

 

http://en.wikipedia.org/w/index.php?title=Streptomyces_verticillus&action=edit&redlink=1
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Figure 2.8. Structure of BLM and Its Complex with Fe(II) and O2. As shown in the 

figure, the Fe(II)-binding moiety of bleomycin A2 forms coordination bonds with Fe(II). 

The five nitrogen atoms (red) occupy all planar and one axial position. The resulting 

complex thereby combines with DNA, alters its configuration, which favors O2 

occupation of the other axial position. [47] 

 

 

The results of several in-vitro studies revealed that BLM molecules could 

anaerobically bind either ferrous or ferric ions. The BLM-Fe(II) complex could 

simultaneously combine with DNA, which resulted in a change in its configuration, 

making it easier for O2 molecules to bind, followed by “automatic” oxidation and 

breakage of DNA strands. [47] NMR results indicated that ferrous ion had formed five 

coordinations respectively with primary and secondary amine of b-aminoalanine, N-5 of 

pyrimidine ring, secondary amide attached to C4 of the pyrimidine ring, as well as N-1 of 

b-histidine ring, resulting in a ternary complex that allowed O2 to be the sixth ligand for 
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ferrous ion coordination [48]. The O2-binding spectra of the BLM-Fe(II) complex was 

similar to that of heme-containing oxygenase, while carbon monoxide or cyanide could 

inhibit O2 binding to both. Superoxide anion and hydroxyl radicals were found to have 

been generated, the “non-free radical”, i.e., BLM-Fe(III)-O2
2-

· also existed. All of these 

radicals were interacted with DNA, which caused breakage of the DNA strand and 

released the free base, especially in G-C-G-T sequences).  The results of UV-Vis 

spectrophotometry and spin-trapping of the BLM-Fe(III) complex, by contrast, showed it 

was not capable of breaking DNA unless a reducing agent was present. [47] In the 

presence of a reducing agent (such as Na2S2O4, NaBH4, or L-ascorbic acid), however, 

BLM-Fe(III) was prone to reduction. Some enzymes, such as NADPH-cytP450 reductase 

or NADH-cyt b5 reductase, could also facilitate the redox cycle of BLM-Fe(III) and 

generate ROS, resulting in DNA breakage, lipid peroxidation, GSH depletion, and other 

oxidative damages. [49][50] Lungs were shown to be vulnerable to BLM-induced 

oxidative stress, since it lacked BLM hydrolase, the protective enzyme that deaminizes 

BLM and attenuates its ability in O2 binding and ROS generation[48]; as well as the fact 

that lungs are the site of gas exchange and exposure to atmospheric O2.  

2.2.3. Antibiotics – Nitrofurans. Nitrofurantoin (NFT), a synthetic 

nitroaromatic compound belonging to the nitrofuran group, has been used as an antibiotic 

drug since 1952 and is still widely prescribed today. It has proved to be highly effective 

against various pathogenic bacteria that cause urinary tract infections, especially those 

Gram-negative and/or β-lactamase-producing species that are insensitive to penicillin and 

its derivatives, such as E.coli, Staph. Saprophyticus, and Enterococci.  
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Although complicated, the NFT mechanism hypothesis states that, upon uptake, 

NFT enters bacterial cells and is reduced to its active form by the cytoplasmic enzymes in 

its nitro group, and that, thereafter, either an attack or a break with the nearby circular 

DNA reduces O2 to O2·
-
. Further investigation is needed.  Similar redox cycling occurs in 

mammalian cells as well. In prokaryotes, this step is generally catalyzed by nitrofuran 

reductase (NADPH nitroreductase), while in eukaryotes, it could be NADPH-cytochrome 

P450 reductase (in ER), xanthine oxidase, ETC enzymes (such as NADH-ubiquinone 

oxidoreductase and cytochrome c reductase), or even glutathione reductase [51]. NFT 

redox cycling process is depicted in Figure 2.9. 

 

 

 

Figure 2.9. Redox Cycle of NFT. Nitrofurantoin is reduced at its nitroso group by 

different enzymes in prokaryotes and eukaryotes, followed by re-oxidation and 

generation of O2·
-
. The redox-cycling reaction has a higher rate in prokaryotes. 

Therefore, nitrofurantoin is more toxic to the pathogenic bacteria than to host human. 
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It was found that diphenyleneiodonium chloride, a known NADPH oxidase and 

other flavoenzyme inhibitor, is capable of impeding the process of NFT redox cycling 

[52]. Recent studies state that, in eukaryotes, NFT is suspected of being pro-oxidant by 

attacking key enzymes in the mitochondrion and causing its dysfunction, as well as 

damaging enzymes containing iron-sulfur clusters and mobilizing iron ions.  It also 

expanded the labile iron pool, which serves as a catalyst of the Fenton reaction. 

It was found that bacteria reduced the nitro group more rapidly than humans, 

which minimized oxidative damage to the host. However, NFT was contraindicated in 

patients with glucose-6-phosphate dehydrogenase deficiency due to the risk of fatal 

hemolytic anemia. In addition, it may cause pulmonary fibrosis, polyneuritis, and drug-

induced autoimmune hepatitis, especially in the elderly patients. 

 

2.3. OXIDATIVE STRESS-ANTIOXIDANT ENZYME INHIBITING 

MECHANISM 

Not many types of medicinal drugs induce oxidative stress by the mere inhibition 

of antioxidant enzymes (CAT, SOD, GPx, GR, GST, etc.). The enzyme-inhibiting drugs 

are mainly antineoplastic medications, especially alkylating agents and sulfoximines. 

Here is discussed the mechanism of action of buthionine sulfoximine (BSO), which is 

clinically used to accompany administration of alkylating agents to potentiate their 

cytotoxicity in tumors. [53] [54] 

BSO is an irreversible inhibitor of γ-glutamylcysteine synthetase (GCS), the first 

and rate-limiting step of GSH de novo synthesis. In the presence of Mg(II)-ATP, γ-GCS 

phosphorylates L-glutamate (Glu) forms γ-glutamyl phosphate, which binds to the 
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enzyme. The intermediate further undergoes condensation with L-Cysteine (Cys) to form 

γ-glutamylcysteine. BSO, as a structuralanalogue of γ-glutamylcysteine, reacts with 

Mg(II)-ATP to form BSO-phosphate, which combines tightly, but not covalently, to 

active sites of γ-GCS, by fitting its sulfoximine in the site normally for γ-carboxylic of 

glutamate, and the S-butyl group in the site normally for a Cys combination. Therefore, 

the reaction cycle cannot be finished and no more γ-glutamylcysteine can be generated to 

further produce GSH. By depleting intracellular GSH in tumor cells, BSO significantly 

increases their vulnerability to other antineoplastic drugs with pro-oxidative effects. The 

synergistic cytotoxicity provides the strategy for treatment of drug-resistant tumors. [55] 

 

2.4. POTENTIAL PROTECTIVE ROLES OF ANTIOXIDANT AGAINST 

MEDICINAL DRUG-INDUCED OXIDATIVE STRESS 

In general, it seems reasonable to hypothesize that antioxidants would help to 

alleviate the oxidative stress-related adverse effects of these medicinal drugs. Clinically, 

however, there are more concerns regarding the safety/toxicity of the antioxidants 

themselves, their possible interactions with the main drugs administrated, and whether 

they would attenuate the therapeutic effects of the main drugs, especially those that exert 

therapeutic and toxic effects with the same or similar mechanisms. Comprehensive 

studies have been made of the possible roles of antioxidants in preventing oxidative 

damage induced by medicinal drugs. It has generally been found that antioxidants do play 

a positive role to some extent.  

The biological antioxidants studied fall into two main categories: (1) Low 

molecular-weight compounds that are chemical reducing agents and are “sacrificed” upon 
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exertion of their protective roles (i.e., at the cost of their own oxidation, such as ascorbic 

acid, tocopherol, reduced glutathione, and their derivatives/precursors, including N-

acetylcysteine and N-acetylcysteineamide, the main antioxidant drugs tested in this 

laboratory); and (2) relatively high molecular-weight compounds/complexes, usually 

polyunsaturated macrocyclic aromatics that form a coordination bond with transition 

metal ions, referred to as “catalytic antioxidant mimetics” because they mimic the 

structures/functions of endogenous antioxidant enzymes (CAT, SOD, GPx, GR, GST). 

They rapidly react with and diminish ROS, and are themselves regenerated thereafter. 

Also, there are other compounds that may exert intracellular “antioxidant” effects 

although they are not chemically reductive agents. These compounds may either chelate 

free transition metal ions to prevent them from catalyzing hydroxyl radical-generating 

Fenton reactions, or inhibit certain enzymes that participate in generation of active 

metabolites of some medicinal drugs (mostly CYP450). A variety of plant extracts, which 

are essentially a natural antioxidant solution (mostly a mixture of polyphenols, 

flavonoids, and thiols) have also been studied to determine their protective effectiveness.  

2.4.1. The Protective Role of N-Acetylcysteine (NAC). Reduced glutathione 

(GSH) is the main endogenous antioxidant that defends against oxidative stress. It serves 

as a substrate for (1) a conjugation reaction, catalyzed by glutathione S-transferase, which 

plays a pivotal role in phase II of drug metabolism; (2) a reduction reaction, catalyzed by 

glutathione peroxidase, which is essential for detoxicification of peroxide radicals. 

Accordingly, the repletion of the intracellular GSH pool is presumed to be beneficial in 

cases of oxidative damage. However, direct glutathione administration is unlikely to 

significantly increase the circulatory GSH level due to the hydrolysis of GSH by 
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intestinal and hepatic γ-glutamyltransferase [56].  Therefore, administration of metabolic 

precursors of GSH synthesis is considered to be a possible strategy for increasing GSH 

levels.  

N-acetylcysteine (NAC) is a synthesized thiol and derivative of L-cysteine (Cys), 

an endogenous amino acid and the precursor of de novo synthesis of GSH. Upon 

administration, NAC is either deacetylated extracellularly to generate L-cysteine, which 

is transported into cells via an alanine-serine-cysteine transport system, or diffused into 

the cell to undergo hydrolysis via acylase. The L-cysteine produced from NAC could 

participate in the synthesis of γ-glutamylcysteine, which is the first and rate-limiting step 

of GSH synthesis. Therefore, NAC serves as an indirect precursor of GSH. [57] Besides, 

NAC is also known to have direct ROS-scavenging power due to its reducing sulfhydryl 

group [58] [59][60] and the chelating capability of heavy metal ions (including iron and 

copper). These are comparable to metallothionein, the endogenous cysteine-rich heavy 

metal chelator [61] that is known to be the catalyst of the Fenton reaction that generates 

highly active ·OH. NAC is also found to have anti-inflammatory and anti-apoptosis 

capability by inhibiting the nuclear factor (NF)-κB (the pro-inflammatory transcription 

factor) and preventing activation of the p38 MAP kinase (the upstream kinase that 

mediates the signal transduction pathway that leads to apoptosis). [58] The protective role 

of NAC against oxidative stress induced by medicinal drugs has been studied extensively. 

It was found that NAC, to a varying extent, showed its effect in alleviating oxidative 

damage resulting from drug administration, regardless of the mechanism of oxidative 

stress. In fact, NAC (because of its GSH-boosting capability) has been approved for both 

oral and intravenous administration as an antidote for an acetaminophen overdose that 
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induces CYP450-mediated oxidative stress. [63] [64] It has also been proved to be 

effective in alleviating oxidative stress induced by medicinal drugs that exert their pro-

oxidative effects via different mechanisms. These include CYP-450-mediated oxidative 

drugs such as sulfonamides [65][66], isoniazid[63] and busulfan[64], redox-cycling drugs 

such as primaquine [69] and doxorubicin [70], as well as antioxidant enzyme inhibitors 

such as buthionine sulfoximine [71].  

The main concern about NAC, however, is its bioavailability. NAC is a derivative 

of amino acid, and its α-carboxylic group, which is negatively charged at physiological 

pH, prevents it from freely diffusing across the hydrophobic cell membrane. Therefore, 

modification of NAC molecule is needed. N-acetylcysteineamide (NACA), the amide 

form of NAC, is hypothesized to be of higher lipophilicity and higher bioavailability, 

thereby requiring a lower dose and a shorter dosing time. [56] 

2.4.2. Antioxidant Potential of Sutherlandia frutescens. S. frutescens (SF) is a 

legume native to southern Africa (the Cape of Good Hope and nearby regions), where it 

is one of the best-known and most well-respected general medicinal plant in the native 

habitant of the Cape [72]. It has been found to have great versatility in its effects on 

various types of disorders, including infections (such as flu, TB, chicken pox, urinary 

tract infection, and diarrhea) [73]; cancer [74] and inflammatory diseases [75] [76]; and 

HIV/AIDS [77] [78]. It might also be helpful in treating Type II diabetes mellitus or other 

autoimmune diseases [79]. Though not a magic cure for all of the diseases above, S. 

frutescens, in some ex-/in-vivo studies, does show potency in alleviating symptoms or 

delaying the progression of these disorders and, therefore, has drawn the interest of 

medical researchers.  
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SF was of interest because of its possible protective role against medicinal drug-

induced oxidative stress. The present study, therefore, was conducted as a preliminary 

study to confirm its antioxidant potency.  

The anti-inflammatory effect of SF (at least partially) relies on its capability of 

scavenging phagocyte-derived oxidative species [76]. It was found that an extract of SF 

scavenges free radicals in both the cell-free system (which was verified by the results of a 

DPPH assay) as well as in-vitro (as for phagocyte-derived reactive oxygen species). The 

overall antioxidant capability of SF, however, has not been thoroughly studied. 

Phytochemical investigations of the SF plant showed that it contains significant amounts 

of γ-amino butyric acid and L-canavanine, pinitol, flavonol glycosides, and triterpenoid 

saponins, that may be pharmacologically relevant [72]. The great diversity in the possible 

antioxidant metabolites present in SF indicates that SF extract might be a promising 

candidate as antioxidant supplementation, as well as a solution for medicinal-drug-

induced oxidative stress.  
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3. IN-VITRO STUDIES TO COMPARE PROTECTION OF N-

ACETYLCYSTEINE AND N-ACETYLCYSTEINEAMIDE AGAINST 

STRESS INDUCED BY OXIDATIVE MEDICINAL DRUGS 

N-acetylcysteine (NAC), a synthetic derivative of L-Cys, is a well-known thiol-

containing antioxidant that has a clinical history that spans more than 50 years. [80] It is 

mainly used as an antidote for acetaminophen overdose [81], a mucolytic agent [82] and 

a nutritional supplement. [83] NAC exerts its antioxidant role mainly via the following 

mechanisms: (1) It enters the cell and undergoes hydrolysis (deacetylation) to yield L-

Cys, the precursor of de-novo synthesis of GSH; (2) It scavenges free radicals and 

chelates heavy metal ions, including transition metal ions that could catalyze ·OH - 

generating Fenton reaction. In addition, it has also been found to have anti-inflammatory 

and anti-apoptotic effects that mediate signaling-transduction pathways by reducing the 

sulfhydryl group of redox-sensitive factors. NAC was proved to be protective against 

oxidative stress induced by a large number of pro-oxidative medicinal drugs and other 

compounds, regardless of their mechanisms. N-acetylcysteineamide (NACA), the amide 

form of NAC, was designed and synthesized as a substitute for NAC because of its higher 

lipophilicity and bioavailability, as well as its ability to cross the blood-brain barrier [84]. 

With the positive results obtained with regard to the protective role of NACA when 

administering some medicinal drugs [85], it is reasonable to hypothesize that NACA 

would be a promising antioxidant to protect against oxidative damage induced by pro-

oxidative medicinal drugs.  

Two different studies were conducted to determine the in-vitro protective effect of 

NACA against the following two medicinal drugs with distinct mechanisms of action: 

Bleomycin (BLM) and Nitrofurantoin (NFT). NAC was also included as a comparison.  
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The NFT experiments were performed with human hepatoma (HepaRG) cells, 

whereas those of BLM were performed with human alveolar basal epithelial (A549) cells. 

Details of these experiments are included in the “Materials and Methods” section. 

3.1. EXPERIMENTAL DESIGN 

In general, treatment of cells with pro-oxidants (regardless of their mechanisms of 

action) results in time-and-dosage-dependent oxidative damage and cell death, increase in 

intracellular reactive oxygen species (ROS) levels and the extent of lipid peroxidation, 

decrease in intracellular GSH levels and the GSH/GSSG ratio, as well as alteration of 

activities of several antioxidant enzymes, in responses to oxidative stress. These 

“oxidative parameters” of cells will be measured after giving doses of the oxidative 

medicinal drugs, with or without pre-administration of NAC/NACA.  

Besides the “common” oxidative damages, however, certain oxidative drugs 

might also disrupt specific organelles or cause dysfunction/death of cells in some unique 

way, depending on the mechanism of the induction of oxidative stress. Cell models 

derived from different origins might also response differently due to the discrepancy in 

expression in some proteins (especially antioxidant enzymes or sensitive redox 

“indicators”). The specificities of the drugs and/or cell lines are to be discussed in the 

following sections.  

BLM is the collective name for a group of structurally-related glycopeptide 

antibiotics used as antineoplastic drugs clinically. It is only time-and-dose-dependent 

with a fatal adverse effect of pulmonary fibrosis (PF), which has an intricate mechanism 

and pathogenesis. It has been implied that oxidative stress is an important factor in BLM-



54 
 

induced PF. BLM chelates intracellular ferrous ion, forming a complex which might 

undergo a redox cycle and generate oxygen free radicals. Immobilized human alveolar 

basal epithelial cells (A549) were used as an in-vitro model to study (1) the oxidative 

effects of BLM on A549, and (2) to determine whether NACA provides any protection 

against BLM-induced cytotoxicity. NAC was used as a comparison in some parts of the 

experiments.  

NFT, a member of nitrofuran antibiotics, is used clinically for treatment of urinary 

tract infection or other infections caused by Gram-negative bacteria, which are 

recalcitrant to b-lactam antibiotics (such as penicillin). NFT exerts its antibacterial effect 

via reduction of its nitro group by prokaryotic cytosolic enzymes and consequently, re-

oxidation by molecular O2 and generation of O2·- that cleaves bacterial circular DNA. 

Such a redox cycle also occurs in eukaryotic cells, but is believed to be of a much lower 

rate. NFT could, however, result in life-threatening hemolysis in patients with G-6-PDD, 

or related genetic disorders, as well as cause PF and hepatic necrosis upon overdose or 

prolonged administration. NFT adverse effects are believed to involve oxidative stress of 

the mechanism discussed above. It has been indicated that NFT reversibly inhibits GR as 

well as several oxidoreductases in mitochondria, probably due to the fact that NFT might 

serve as a “substrate” of these enzymes and, therefore, disturb their normal functions. In 

this study, the HepaRG cell line was used to study the cytotoxicity of NFT and the 

protective role of NACA. NAC was used in part of the experiment.  

3.1.1. Cytotoxicity Studies. The Calcein AM assay was used in cytotoxicity 

studies. Calcein AM is a dye that is structurally related to phenolphthalein. It could be 

used to determine the cell viability of most eukaryotic cells. In living cells, non-



55 
 

fluorescent calcein AM is converted to green-fluorescent calcein after acetoxymethyl 

ester hydrolysis by intracellular esterases. The intensity of the fluorescence is 

proportionally indicative of the number of living cells. The fluorescence could be 

measured with an excitation wavelength of 485nm and an emission wavelength of 

530nm.  

3.1.1.1. Studies of dose-dependent cytotoxicity of the oxidative drugs. 

The purpose of this study is to assess the toxic effect of different doses of specific 

medicinal drugs on each cell line. The target is to determine the dose of each drug, which 

corresponds to 60-70% of cell viability that would be optimal for evaluation of 

NAC/NACA protective roles. 

The cells were seeded in a 96-well plate at a density of approximately 1×10
4
 

cells/well, and allowed to grow in complete medium at 37
⁰
C for 24 hours. Thereafter, the 

complete medium was replaced by a serum-free medium (SFM, vehicle) or appropriate 

drugs of various concentrations that had been dissolved in SFM for 24 hours. The cells 

were then washed three times and incubated with 100μM of calcein AM for 30 minutes, 

followed by measurement of the fluorescence. The optimal doses of tested drugs were 

determined according to a dose-response curve. 

3.1.1.2. Cytotoxicity of NAC/NACA. The purpose of this study is to 

assess the toxicities of different concentrations of NAC/NACA to cells, possible toxic 

effect of NACA, the more important antioxidant. Considering the short time required for 

pre-treatment of antioxidants, the highest non-toxic dose of NACA was chosen to 

maximize the possible protective effect. For further experiments, NAC (if used) would be 

at the same concentration as NACA so that the results would be comparable.  
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3.1.1.3. NAC/NACA protection on oxidative-drug-treated cells. The 

purpose of this study is to roughly assess the protective effects of different NAC/NACA 

doses on the cells treated with specific oxidative drugs.  

The cells were seeded and incubated, as described in 3.1.1.1. Thereafter, they 

were pre-treated with different concentrations of NAC or NACA dissolved in SFM for 2 

hours, followed by treatment with specific drugs for 24 hours.  

3.1.2. Measurement of Intracellular Reactive Oxygen Species (ROS). 

Administration of oxidative drugs, regardless of their mechanism, would result in 

generation of intracellular ROS, another marker of the severity of oxidative stress. 

Intracellular ROS could be measured using 2′, 7′-Dichlorofluorescin diacetate (DCFH-

DA), which is a cell-permeable, non-fluorescent dye. [8] DCFH-DA is de-esterified 

intracellularly (DCFH) and is converted to fluorescent 2′,7′-dichlorofluorescein 

(DCF)upon oxidation. Therefore, the intensity of the fluorescence is proportionally 

related to the quantity of intracellular ROS. The fluorescence could be measured with an 

excitation wavelength of 485nm and an emission wavelength of 520nm.  

3.1.2.1. Study of ROS generation upon treatment of oxidative drugs. 

The purpose of this study is to study the effect of different doses of specific oxidative 

drugs on ROS generation. The cells were seeded, as described in 3.1.1.1, washed and 

incubated with 50μM DCFH-DA in SFM for 30 minutes, followed by treatment with 

different concentrations of specific oxidative drugs of different concentration for 1hour 

and measurement of the fluorescence.  

3.1.2.2. Study of ROS-scavenging potency of NAC/NACA. The purpose 

of this study is to assess the dose-dependent radical scavenging power of NAC/NACA. 
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The cells were seeded, as described in 3.1.1.1, washed and pre-treated with different 

concentrations of NAC/NACA in SFM for 2 hrs, followed by the loading of DCFH-DA 

dye. The cells were then treated with specific oxidative drugs at concentrations 

corresponding to 60-70% cell viability and the fluorescence was measured afterwards.  

3.1.3. Oxidative Stress Studies. As discussed above, oxidative stress decreases 

the intracellular GSH level and the GSH/GSSG ratio, and increases the level of MDA 

(the product of lipid peroxidation), as well as altering the activities of major antioxidant 

enzymes such as CAT, GPx, GR, SOD, and GST. These parameters are, therefore, useful 

markers that indicate the extent of oxidative stress. In these studies, the cells were treated 

with specific oxidative drugs with or without the pre-treatment of NAC/NACA, and 

measured the intracellular levels of these markers, in an effort to elucidate the protective 

roles of NAC/NACA against oxidative stress induced by these medicinal drugs. 

The cells were seeded at an initial density of 5×10
6
 per flask (25cm

2
) with 5mL of 

complete medium. After cells attached, the culture flasks were divided into six groups 

with quadruplicates within each group, unless otherwise mentioned. All agents were 

dissolved in SFM.  

1) Control (n=4): 2 hours of SFM, followed by 24 hours of fresh SFM;  

2) Oxidative drug only (n=4): 2 hours of SFM followed by 24 hours of specific 

oxidative drug; 

3) NAC only(n=4): 2 hours of NAC, followed by 24 hours of SFM; 

4) NACA only(n=4): 2 hours of NACA, followed by 24 hours of SFM; 

5) Oxidative drug + NAC (n=4): 2 hours of NAC, followed by 24 hours of specific 

oxidative drug; 
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6) Oxidative drug + NACA (n=4): 2 hours of NACA, followed by 24 hours of 

specific oxidative drug. 

After treatment, the cells were trypsinized (unless otherwise mentioned) and 

collected by centrifugation. The following oxidative stress parameters were determined:  

(1) Levels of reduced glutathione, which is the main intracellular thiol for defense of 

oxidative damage; 

(2) Levels of oxidized glutathione; 

(3) Levels of malondialdehyde (MDA), the marker for lipid peroxidation; 

(4) Activities of antioxidant enzymes: catalase (CAT), glutathione reductase (GR), 

superoxide dismutase (SOD).  

(5) Mitochondrial membrane potential, the loss of which could be either a result or a 

cause of oxidative stress, depending on the mechanism of the oxidative drug. It 

will be discussed in detail in later sections. 

 

3.2. MATERIALS AND METHODS 

3.2.1. Materials. The human alveolar basal epithelial cells (A549) and human 

hepatoma cells (HepaRG) were obtained from Invitrogen. NACA was gifted by Dr. 

Glenn Goldstein (David Pharmaceuticals, New York, NY). N-(1-pyrenyl)-maleimide 

(NPM) was obtained from Sigma-Aldrich (St. Louis, MO). High performance liquid 

chromatography (HPLC) grade solvents were purchased from Fisher Scientific (Fair 

Lawn, NJ). All other chemicals were bought from Sigma-Aldrich (St. Louis, MO).  
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3.2.2. Cell Culture. Both cell lines used were adhesive cell lines, and techniques 

of cell culture are similar.  

3.2.2.1. Culture of human alveolar basal epithelial cells (A549). The 

human lung carcinoma pulmonary type II-like epithelium cells (A549) were seeded in 25 

cm
2
 tissue culture flasks coated with type 1 rat tail collagen (Sigma-Aldrich, St. Louis, 

MO) and maintained in F-12 Ham’s medium with 10% heat-inactivated fetal bovine 

serum in humidified 5% CO2-95% air at 37°C. The culture medium was changed every 3 

days. 

3.2.2.2. Culture of human hepatoma cells (HepaRG). The human 

hepatoma cells (HepaRG) were seeded in 75 cm
2
 tissue culture flasks coated with type 1 

rat tail collagen (Sigma-Aldrich, St. Louis, MO). They were maintained in William’s E 

medium supplemented with 10% FCS, 100U penicillin, 100 ug/ml streptomycin, 5 ug/ml 

insulin, and hydrocortisone in humidified 5% CO2/95% air at 37 °C. The culture medium 

was renewed every 3 days. After about 2 weeks, when the flask was full, the cells were 

shifted to the same medium supplemented with 2% DMSO (differentiation medium). The 

medium was renewed every 2 to 3 days for 2 more weeks. After that, the medium was 

switched to a DMSO-free medium for 1 day, and the cells were ready for experiments. 

3.2.3. Preparation of Cell Homogenate. After treatment, the cells were washed 

twice with PBS (pH=7.4), trypsinized and collected by centrifugation at 4⁰C, 3500RPM 

for 10min. The cell pellets collected were homogenized on ice with SBB (pH = 7.5), 

unless otherwise mentioned. The homogenate was then centrifuged at 4⁰C, 3500RPM for 

10min to remove debris. The clear supernatant was used to assess levels of 

reduced/oxidized glutathione, MDA, and activities of antioxidant enzymes.  



60 
 

3.2.4. HPLC System. The HPLC system (Thermo Electron Corporation) 

consisted of a Finnigan TM Spectra SYSTEM SCM1000 Vacuum Membrane Degasser, a 

Finnigan TM SpectraSYSTEM P2000 Gradient Pump, a Finnigan TM SpectraSYSTEM 

AS3000 Autosampler, and a FinniganTM SpectraSYSTEM FL3000 Fluorescence 

Detector (λex=330 nm and λem=376 nm). The HPLC column was a Reliasil ODS-1 C18 

column (Column Engineering, Ontario, CA, USA). 

3.2.5. Fluorescence Plate Reader. A FLUOstar OPTIMA microplate reader 

(BMG Labtechnologies. Inc, Durham, NC) was used for measuring fluorescence in the 

experiments for cell viability and for intracellular ROS studies. 

3.2.6. Fluorescent Microscope. The fluorescent microscope used for measuring 

mitochondrial membrane potential (Section 2.2.15) was an Olympus IX51 inverted 

microscope at 400× total magnification with a UPLFLN 60× NA 1.25 objective. FITC 

(ex 482/35, 506DM, em 536/40) and Texas red (ex 562/40, 593DM, em692/40) filters 

were used (Brightline). Images were captured with a Hamamatsu ORCA285 CCD 

camera. The shutters, filters, and camera were controlled using Slide Book software 

(Intelligent Imaging Innovations, Denver, CO, USA). 

3.2.7. Spectrophotometric System. The spectrophotometric instrument used for 

determination of activities of antioxidant enzymes was a Hitachi U-2000 double-beam 

UV-Vis spectrophotometer.  

3.2.8. Calcein AM Assay. As discussed in Section 2.1.1, a Calcein AM Cell 

Viability Assay Kit (Biotium, Inc. Hayward, CA, USA) was used in cytotoxicity studies. 

This assay used calcein AM (CAS name: Glycine, N,N'-[[3',6'-bis(acetyloxy)-3-

oxospiro[isobenzofuran-1(3H),9'-[9H]xanthene]-4',5'-diyl]bis(methylene)]bis[N-[2-
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[(acetyloxy)methyoxy]-2-oxoethyl]-, bis[(acetyloxy)methyl] ester), a non-toxic, 

membrane-permeable, non-fluorescent dye that, upon uptake of living cells, is 

hydrolyzed by endogenous esterase into negatively charged calcein with green 

fluorescence at an excitation wavelength of 485 nm and emission wavelength of 530 nm.  

3.2.9. DCFH-DA Assay. As discussed in Section 3.1.2, 2′, 7′-Dichlorofluorescin 

diacetate (DCFH-DA, CAS name: Benzoic acid, 2-[3, 6-bis(acetyloxy)-2,7-dichloro-9H-

xanthen-9-yl]) was used in the intracellular ROS study. DCFH-DA is a chemically 

reduced form of fluorescein used as an indicator for reactive oxygen species (ROS) in 

cells. Upon cleavage of the two acetate groups by intracellular esterases and oxidation, 

the non-fluorescent H2DCFDA was converted to the highly fluorescent 2', 7'-

dichlorofluorescein (DCF).  

3.2.10.  Determination of Reduced and Oxidized Glutathione. Reduced 

glutathione (GSH) is the principal endogenous thiol for scavenging free radicals and 

detoxification of xenobiotics. Upon oxidation, GSH is dehydrogenated and forms GSSG, 

a homologous dimer, as its oxidized form. The ratio of GSH/GSSG, therefore, is an 

important marker that indicates the extent of intracellular oxidative damage. Areversed-

phase HPLC system was used for measuring intracellular GSH and GSSG levels.  

3.2.10.1. GSH determination. The cell pellets collected were homogenized 

in SBB buffer (pH = 7.5). Approximately 1 mL of SBB was added to each 10
7
 cell. The 

homogenate was centrifuged, clear supernatant was collected, and 50 μL of the 

supernatant were added to 200 μL of HPLC water and 750 μL of NPM (1mM in 

acetonitrile). The resulting solution was incubated at room temperature in darkness for 5 

min, and the reaction was stopped by adding 10 μL of 2N HCl. The samples were 
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thereafter filtered through a 0.45 Om filter (Advantec MFS, Inc. Dulin, CA, USA) and 

injected onto HPLC system introduced in Section 2.2.4. The injection volume was 5 μL, 

and the mobile phase was 70%-30% (V/V) acetonitrile-water (HPLC grade) and was 

adjusted to pH 2.5 via adding 1 ml/L of both glacial acetic acid and o-phosphoric acid. 

The flow rate was 1 ml/minute. 

3.2.10.2. GSSG determination. The levels of oxidized glutathione (GSSG) 

were determined via enzymatic reduction of GSSG via glutathione reductase (GR) using 

NADPH as substrate. In brief, the cell pellets were homogenized and centrifuged, as 

discussed in a previous section, and 95 μL of 2mg/mL NADPH and 5 μL of 5U/mL GR 

were added to 100 μL of the supernatant. After 5 min of incubation, 100 μL of the 

mixture were transferred to another test tube, to which 50 μL of HPLC water and 750 μL 

of NPM were added. The following procedure was the same as that in 3.2.10.1. 

3.2.11. Determination of Malonaldehyde (MDA). The assay to determine the 

malondialdehyde (MDA) level relied on the nucleophilic attack of MDA by 2-

thiobarbituric acid (TBA) and the formation of a 1:2 (MDA: TBA) adduct with intense 

red fluorescence at an excitation wavelength of 510 nm and an emission wavelength of 

590 nm. In brief, the cell pellets were homogenized in SBB (pH = 7.5) and centrifuged. 

To 350 μL of supernatant, 550 μL of 5% trichloroacetic acid (TCA) and 100 μL of 500 

ppm butylated hydroxytoluene (BHT) in methanol were added. The resulting solutions 

were then heated in a boiling water bath for 30 min, cooled on ice, and centrifuged. The 

supernatant fractions were mixed 1:1 with saturated TBA. The mixture was again heated 

in a boiling water bath for 30 min and cooled on ice. Afterwards, the adduct in 500 μL of 

each sample was extracted with 1 ml of n-butanol and centrifuged. The upper layers were 
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filtered through a 0.45 μm filter, and 200 μL of the filtrate were transferred to a 96-well 

plate for measurement of fluorescence.  

3.2.12. Catalase (CAT) Activity Assay. The assay to determine CAT activity 

was based on the decreased absorbance of H2O2 at a wavelength of 240 nm due to its 

enzymatic decomposition. In brief, a 30% H2O2 stock solution was diluted in a potassium 

phosphate buffer (50 mM, pH =7.0), at a ratio of 3:1000 (v/v), to yield a working 

solution. The cell pellets were homogenized in the same buffer and centrifuged. A total 

1.2 mL of supernatant was equally divided into two quartz cuvettes, with 400 μl of a 

working solution going to one and 400 μl of the buffer being added to the other. Using 

the latter one as a reference, the absorbance of the former one was immediately 

kinetically read at 240nm for 5 min using the spectrophotometer described in Section 

2.2.7. One unit of CAT decomposed 1.0 µmole of H2O2 per minute with pH 7.0 at 25 °C. 

CAT activity was expressed in U/mg protein. 

3.2.13. Glutathione Reductase (GR) Activity Assay. The assay of GR activity 

determination relied on the decrease in absorbance of NADPH, the substrate consumed 

during enzymatic reduction of GSSG by GR, at 340 nm. Briefly, the cell pellets were 

homogenized in a sodium phosphate buffer (50 mM with 1mM EDTA, pH = 7.8) and 

centrifuged. To 40 μL of a 25 mM GSSG solution in two cuvettes, 800 μL of the 

supernatant or buffer were added. To initiate reaction, 160 μL of 1.25 mM NADPH 

solution were quickly added and mixed. Using the latter one as a reference, the 

absorbance of the former one was immediately kinetically read at 340 nm for 5 min. One 

unit of GR oxidized 1.0 mmole of NADPH at pH 7.5at 25 °C. GR activity was expressed 

in U/mg protein. 
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3.2.14. Superoxide Dismutase (SOD) Activity Assay. The assay to determine 

total superoxide dismutase (SOD) activity relied on its inhibition of the reduction of 

oxidized cytochrome c by the O2∙
-
 (produced enzymatically by xanthine oxidase, XOD). 

This resulted in a slower decrease in the absorbance of cyt c at 550nm. In brief, a reaction 

cocktail (potassium phosphate buffer, 50mM, pH=7.8; 0.17mM EDTA; 0.017mM 

oxidized cyt c; 0.084mM xanthine) was freshly prepared. The cell pellets were 

homogenized in a potassium phosphate buffer (50mM, pH=7.8) and centrifuged, and 600 

μL of the supernatant or buffer were mixed with 1.8 mL of cocktail and 600 μL of 0.01 

U/mL XOD. Using the latter as reference, the absorbance of the former was immediately 

read kinetically for 5 min. One unit of SOD inhibited the rate of reduction of oxidized cyt 

c by 50% in a coupled system, using xanthine and XOD with pH 7.8 at 25°C. SOD 

activity was expressed in U/mg protein. 

3.2.15. Studies of Mitochondrial Function. Mitochondrion is the major 

intracellular organelle for generation of ATP. Disruption of mitochondrial inner 

membrane potential due to oxidative stress might result in mitochondrial dysfunction, 

depletion of ATP, leakage of pro-apoptotic compounds (such as cyt c) and apoptosis.  

3.2.15.1. Measurement of mitochondrial membrane potential. A novel 

cationic fluorescent dye, JC-1(CAS name: 1H-Benzimidazolium, 5,6-dichloro-2-[3-(5,6-

dichloro-1,3-diethyl-1,3-dihydro-2H-benzimidazol-2-ylidene)-1-propenyl]-1,3-diethyl-, 

iodide, (E)-) was used to study mitochondrial membrane potential. This dye, at a low 

concentration, exists in cytosol as a monomer of a green fluorescence. At higher 

concentrations, however, it accumulates in the mitochondria and forms aggregates with a 

red fluorescence, which is only retained in the intact mitochondria. Therefore, JC-1 is a 
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useful tool for studying mitochondrial membrane potential. In brief, the cells were 

cultured in glass-bottom petri dishes and treated with NAC/NACA and specific oxidative 

drugs, as discussed in 2.1.3. The cells were washed twice with PBS and then incubated 

with JC-1 dye (1 μg/mL) in a medium for 30 minutes. The cells were then washed and 

placed under a fluorescence microscope in phenol-red-free SFM. The stained cells were 

observed with an Olympus IX51 inverted microscope at 400× total magnification with 

the microscope. 

3.2.15.2. Mitochondrial superoxide anion (O2∙
-
) measurement. 

Generation of mitochondrial superoxide anion (O2∙
-
) by NFT and effect of prevention by 

NAC/NACA was evaluated by MitoSOX Red Assay. MitoSOX Red is a fluorogenic dye 

of high selectivity of mitochondrial (O2∙
-
) in living cells; it is oxidized specifically in 

mitochondria by (O2∙
-
) to a compound of red fluorescence. In brief, the cells were seeded 

at a density of 1×10
4
 cells/well in 96-well plate. After 24hrs of growth in complete 

medium, the cells were pretreated with various concentrations of NAC/NACA and then 

incubated with 5μM of MitoSOX Red working solution for 1hr in darkness. After washed 

twice with serum-free medium and treatment of optimum concentration of NFT for 1 

hour, fluorescence was measured with an excitation wavelenth of 510nm and emission 

wavelength of 580nm using a microplate reader. Serum-free medium was used as 

negative control. 

3.2.15.3. Determination of mitochondrial GSH. Mitochondria of HepaRG 

cells were isolated via gradient centrifugation. In brief, harvested cells were homogenized 

in HEPES buffer in glass grinder and the crude homogenate was centrifuged at 700g for 

10min; then the supernatant was centrifuged at 10000g for 10min, and the pellet 
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(mitochondria) was collected, suspended in SBB, pH 7.5. Mitochondria were 

homogenized by electric homogenizer to release matrix GSH, and GSH content was 

determined as described above.  

3.2.15.4. Measurement of total cellular ATP level. Total cellular ATP 

level was measured by using a luminescent ATP detection assay kit. The assay was based 

production of light caused by reaction of ATP with added firefly (Photinus pyralis) 

luciferase and D-luciferin, and the emitted light is proportional to ATP concentration 

inside the cells. In brief, HepaRG cells were seeded on a 96-well plate in complete 

medium for 24 hours, followed by pretreatment of NAC/NACA or serum-free medium 

for 2 hours, and treatment of NFT or serum-free medium for another 24 hours. 

Afterwards, the treatment was replaced by 100μL of serum-free medium, and 50μL of 

detergent from the kit was added to each well and shaken at 700RPM for 5 minutes. After 

lysis of cells, 50 μL of reconstituted substrate/enzyme (D-luciferin/luciferase) was added, 

followed by another 5 minutes of shaking at 700RPM. The plate is then adapted in 

darkness for 10 minutes and the luminescence was measured. 

3.2.16. Determination of Protein. Protein levels of the cell samples were 

measured by the Bradford method [87]. Bovine serum albumin was used as the protein 

standard. 

3.2.17. Statistical Analysis. All reported values were represented as the mean ± 

S.D (n=4). Statistical analyses were performed using GraphPad Prism software 

(GraphPad, San Diego, CA). Statistical significance was ascertained by one way analysis 

of variance, followed by Tukey’s multiple comparison tests. Values of p<0.05 were 

considered significant. 



67 
 

3.3.RESULTS 

3.3.1. Results of Toxicities of Medicinal Drugs and NAC/NACA on Cells. A 

dose-dependent decrease in cell viability was observed in A549 cells upon exposure to 

BLM for 24 hours (Figure 3.1), which was confirmed using a calcein AM assay. Based 

on the dose response relationship, a 200 μM concentration of BLM, which decreased cell 

viability by about 40%, was determined to be optimal in evaluating the protective effects 

of NACA, as well as for all of the other following experiments.  
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Figure 3.1. Dose-Dependent Toxicity of BLM on A549 Cells. Treatment with BLM 

decreases cell viability in a dose-dependent manner. A concentration of 200µM of BLM 

was found to cause ~40% of cell death, and was used as optimum dose for following 

experiments. The graph is representative of at least 3 independent experiments. 
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To assess the cytotoxicity of NACA, the A549 cells were incubated with different 

concentrations of NACA (0.10, 0.20, 0.50, 1.0, 2.0 and 5.0 mM) over a 24-hour period. 

NACA was nontoxic to A549 cells at concentrations lower than 2mM (Figure 3.2). 

Therefore, the highest non-toxic concentration of 2mM NACA was determined to be the 

optimal concentration for further experiments. 
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Figure 3.2. Dose-Dependent Toxicity of NACA on A549 Cells. A549 cells were treated 

with various concentrations of NACA (0.1 mM – 5.0 mM). Cell viability was quantified 

by Calcein AM after 2 hours of treatment. A concentration of 2mM NACA was found to 

be the highest non-toxic dose and was used for the rest of the experiments. The graph is 

representative of at least 3 independent experiments. 
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Similarly, a dose-dependent decrease in cell viability was observed in HepaRG 

cells exposed to NFT for 24 hours (Figure 3.3), which was confirmed using a calcein AM 

assay. Based on the dose response relationship, a NFT concentration of 500μM, which 

decreased cell viability by about 42%, was determined to be optimal for evaluating the 

protective effects of NAC/NACA, as well as for all of the other following experiments.  
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Figure 3.3. Time- and Dose-Dependent Toxicity of NFT on HepaRG Cells. NFT 

treatment decreases cell viability in a time- and dose- dependent manner. A concentration 

of 500µM was found to cause ~40% cell death in 24 hours, and was used as the optimum 

dose for all following experiments. The graph is representative of at least 3 independent 

experiments. To assess the cytotoxicity of NAC/NACA, the HepaRG cells were 

incubated with different concentrations of NAC or NACA (0.10, 0.20, 0.50, 1.0, 2.0 and 

5.0 mM) over a 24 hour period. Both of them were shown non-toxic to HepaRG cells at 

all concentrations lower than 1mM, and NACA showed slightly lower toxicity than NAC 

at most concentrations. Therefore, the highest non-toxic concentration of 1mM 

NAC/NACA was determined to be the optimal concentration for further experiments.  
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To assess the cytotoxicity of NAC/NACA on HepaRG cells, they were incubated 

with different concentrations of NAC/NACA (0.10, 0.20, 0.50, 1.0, 2.0 and 5.0 mM) over 

a 24-hour period. As shown in Figure 3.4., the highest non-toxic concentrations of both 

NAC and NACA were found to be 1mM. Therefore, this was used as optimal 

concentration of NAC/NACA for the following experiments.  

 

Figure 3.4. Dose-Dependent NAC/NACA Toxicity on HepaRG Cells. HepaRG cells 

were treated with various concentrations of NAC or NACA (0.1 mM – 5.0 mM). After 2 

hours of treatment, cell viability was quantified by Calcein AM. A concentration of 1.0 

mM of both NAC and NACA were found to be highest non-toxic dose, and were used for 

the rest of the experiments in the study. The graph is representative of at least 3 

independent experiments. 
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3.3.2. Dose-Dependent Protection of NAC/NACA. To study the protective 

effects of NAC/NACA on BLM-induced cytotoxicity, A549 cells were pretreated for 2 

hours with NAC or NACA of various concentrations (0.10, 0.20, 0.50, 1.0, 2.0, and 5.0 

mM), followed by incubation with  200 μM of BLM for 24 hours (Figure 3.5). It was 

observed that both NAC- and NACA-pretreated A549 cells had significantly higher 

viabilities with BLM stress as compared to non-pretreated cells, and both 

pretreatments(up to 5mM) rendered dose-dependent increases in cell viability.  
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Figure 3.5. Dose-Dependent Protective Effects of NAC/NACA on BLM-Stressed 

A549 Cells. A549 cells were treated with various concentration of NAC or NACA, 

followed by treatment of 200 µM of BLM. Cell viability was quantified by Calcein AM 

assay. Both NAC and NACA pretreatments were found to protect against BLM toxicity 

in dose-dependent manners. NACA pretreatment resulted in higher cell viability below 

1.0 mM. The results are representative of at least 3 independent experiments. 
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To compare the protective effects of NAC/NACA on NFT-induced cytotoxicity, 

HepaRG cells were pretreated for 2 hours with NAC/NACA of various concentrations, 

followed by incubation with 500 μM of NFT for 24 hours (Figure 3.6). The result showed 

a trend of a dose-dependent increase in viability of cells pretreated with NAC/NACA as 

compared to that without pretreatment. Also, cell viability values of the NACA-

pretreatment groups were higher than those of the corresponding NAC-pretreated group.  
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Figure 3.6. Dose-Dependent Protective Effects of NAC/NACA on NFT-Stressed 

HepaRG Cells. HepaRG cells were treated with various concentration of NAC or 

NACA, followed by treatment of 200 µM of NFT. Both NAC and NACA pretreatments 

were found to protect against NFT toxicity in dose-dependent manners. NACA 

pretreatment resulted in higher cell viability at all concentrations. The results are 

representative of at least 3 independent experiments. 
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3.3.3. Effect of NAC/NACA on Intracellular ROS. To substantiate the 

hypothesis that BLM cytotoxicity is related to oxidative stress, ROS levels were 

measured after the exposure of cells to BLM at various concentrations (25, 50, 100, 200, 

400, and 800 μM) for 1 hour. As shown in Figure 3.7, a dose-dependent increase in the 

production of ROS in A549 cells was seen with exposure to BLM (at 200 μM, the 

optimal concentration, ROS was ~610% compared to control, but increased to 1096% at 

800 μM).  
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Figure 3.7. Dose-Dependent ROS Generation of BLM on A549 Cells. One-hour 

treatment of BLM generates intracellular ROS in a dose-dependent manner. The results 

are representative of at least 3 independent experiments.  
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To study the protective effects of NAC/NACA on BLM- induced increases in 

ROS levels, A549 cells were pretreated with NAC/NACA at various concentrations 

(0.10, 0.20, 0.50, 1.0, 2.0, and 5.0 mM) for 2 hours, followed by incubation with 200 μM 

of BLM for 1 hour. As shown in Figure 3.8, pretreatment with NAC/NACA decreased 

intracellular ROS, induced by BLM, in a dose-dependent manner up to 5 mM (54% for 

NAC-pretreatment and 48% for NACA-pretreatment, compared to non-pretreated cells).  
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Figure 3.8. Dose-Dependent ROS-Scavenging Effects of NAC/NACA on BLM-

Stressed A549 Cells. A549 cells were pretreated with NAC or NACA of various 

concentration (0.1 mM -5.0 mM) for 2 hours, followed by treatment of 200 µM of BLM 

for 1 hour. Both pretreatments decreased intracellular ROS level in dose-dependent 

manners. NACA pretreatments resulted in lower ROS level at all concentrations. The 

results are representative of at least 3 independent experiments.  
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To substantiate the hypothesis that NFT causes cell death through oxidative stress 

and to evaluate the protective effects of NAC/NACA, ROS levels were measured after 

cells were pretreated with NAC/NACA at various concentrations (0.10, 0.20, 0.50, 1.0, 

2.0, and 5.0 mM) followed by treatment with 500 μM of NFT for 1 hour. As shown in 

Figure 3.9, incubation of 500 μM of NFT alone increased the intracellular ROS level to 

about 1150% of control; however, pretreatment with NAC/NACA decreased ROS in a 

dose-dependent manner, illustrating their antioxidant nature.   

 

 

 

Figure 3.9. Dose-Dependent ROS-Scavenging Effects of NAC/NACA on NFT-

Stressed HepaRG Cells. HepaRG cells were pretreated with NAC or NACA of various 

concentration (0.1 mM -5.0 mM) for 2 hours, followed by treatment of 500 µM of NFT 

for 1 hour. Treatment with NFT alone significantly increased intracellular ROS, whereas 

both NAC and NACA pretreatments decreased intracellular ROS level in dose-dependent 

manners. NACA pretreatments resulted in lower ROS level at all concentrations. The 

results are representative of at least 3 independent experiments. 
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3.3.4. Effects of NAC/NACA on Intracellular Glutathione Levels. To further 

elucidate the mechanism by which BLM induces cell death and damage, its effects on 

intracellular levels of reduced glutathione (GSH), the main endogenous antioxidant 

defending oxidative stress, were studied. This is one of the most important markers 

indicative of the extent of oxidative damage. Figure 3.10 shows the effect of BLM on 

cellular GSH levels in A549 cells in the presence and absence of NAC/NACA. A 24-hour 

exposure to 200 μM of BLM decreased the GSH level to 47% of that of the control, 

fortifying the hypothesis that oxidative stress was involved in BLM-induced cell damage. 

A treatment with 200 μM of BLM, with a 2 mM pretreatment of NACA, had results 

significantly different from those of the BLM only group, as well as the NAC+BLM 

group. GSH concentration in the NACA+BLM group was close to that of the control 

group. NAC significantly increased the GSH levels, when compared with the BLM-only 

group; however, NACA was more successful than NAC at increasing GSH levels to close 

to that of the control group (~87.0% of control for the NACA+BLM group, compared to 

~76.6% of control for the NAC+BLM group). Besides, cells in both the NAC- and 

NACA-only groups had slightly higher GSH levels than those of the control group, and 

the NACA-only group had an even higher GSH level than the NAC-only group (~109.5% 

compared to ~102.7%), indicating that NAC/NACA scavenged the endogenous ROS 

and/or favored the intracellular de novo synthesis of GSH upon entering the cells, and 

that NACA had higher bioavailability than NAC. 
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Figure 3.10. NAC/NACA Effects on Intracellular GSH Level on BLM-Stressed A549 

Cells. A549 cells were pretreated for 2 hours with serum-free medium, 2mM of NAC or 

NACA, followed by treatment for 24 hours of 200 µM of BLM or serum-free medium. 

GSH levels were measured after all treatments. Exposure to BLM decreased intracellular 

GSH level to below 50% of control level, whereas both NAC and NACA pretreatment 

prevented such a dramatic decrease. NACA pretreatment resulted in ~10% higher GSH 

level than NAC. At least three independent experiments were performed.  
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In studies of NFT-induced oxidative stress in HepaRG cells, the effects of NFT on 

both reduced and oxidized glutathione (GSH/GSSG) were investigated. Figure 3.11 and 

3.12, respectively, show the effect of NFT on cellular GSH and GSSG levels in HepaRG 

cells in the presence/absence of NAC/NACA. A 24-hour treatment of 500μM NFT alone 

decreased the GSH level to 45% of the control value and correspondingly increased the 

GSSG level to 170% of control, indicating the role of oxidative stress in NFT-induced 

cell damage.  Pretreatment by NAC/NACA increased the GSH level back to 68% and 

88%, as well as decreasing the GSSG level back to 128% and 103%, respectively. This 

shows the better protective effect of NACA, as compared to NAC, in maintaining an 

intracellular ratio of the reduced and oxidized glutathione level. This conclusion was 

further supported by results of the determination of both GSH and GSSG levels for the 

NAC-/NACA-only groups, since 2mM NAC or NACA pretreatments increased the 

intracellular GSH level to 103% or 107%, and decreased the intracellular GSSG level to 

52% or 25% of control, respectively.  
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Figure 3.11. NAC/NACA Effects on Intracellular GSH Level on NFT-Stressed 

HepaRG Cells. Pretreatment of both NAC and NACA prevented depletion of GSH. 

NACA has significantly higher efficacy than NAC. At least three independent 

experiments were conducted.  
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Figure 3.12. NAC/NACA Effects on Intracellular GSSG Level on NFT-Stressed 

HepaRG Cells. GSSG level significantly increased after treatment of NFT alone, 

whereas both NAC and NACA pretreatment prevented accumulation of GSSG. At least 

three independent experiments were performed.   
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3.3.5. Protective Roles of NAC/NACA against Lipid Peroxidation. The level 

of malondialdehyde (MDA), a main by-product during the process of lipid peroxidation, 

was also used as an index to oxidative damage. The effects of NAC and NACA on MDA 

levels in BLM-treated A549 cells were studied. Figure 3.13 shows that treatment with 

BLM alone resulted in a dramatic increase in the MDA level, which was 226% of 

control; whereas pretreatment with 2mM of NACA almost completely reversed the trend.  
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Figure 3.13. Effect of NACA on MDA Level on BLM-Stressed A549 Cells. It was 

found that MDA levels significantly increased after 24 hours of BLM treatment. MDA 

levels in NACA-only group were lower than those of control level. Pretreatment of 

NACA effectively prevented MDA generation upon BLM treatment. The graph is 

representative of at least 3 independent experiments. 
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In studies of NFT-induced oxidative stress in HepaRG cells, the effects of 

NAC/NACA on MDA levels were compared. As shown Figure 3.14, treatment with 

500μM NFT for 24 hours increased the MDA level in HepaRG cells to 338% of the 

control level, whereas pretreatment with 2mM NAC or NACA reduced it to 242% or 

187% of control, respectively. The NACA-pretreated group had significantly lower MDA 

levels as compared to the NAC-pretreated group, indicating the higher potency of NACA 

in preventing lipid peroxidation.  
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Figure 3.14. Effects of NAC/NACA on NFT-Stressed HepaRG Cells. Treatment of 

NFT dramatically increased intracellular MDA levels. The trend was prevented by both 

NAC and NACA pretreatment. NACA had more significant effect. The graph is 

representative of at least 3 independent experiments.   
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3.3.6. Effects of NAC/NACA on Activities of Antioxidant Enzymes. For 

evaluation of protective effect of NACA against BLM-induced oxidative stress, the 

activities of glutathione reductase (GR), catalase (CAT) and superoxide dismutase 

(SOD), which are the main endogenous antioxidant enzymes defending intracellular 

oxidative stress, were measured. The results are tabulated in Table 3.1. As shown, BLM 

treatment reduced activities of all three antioxidant enzymes but to a different extent, 

indicating that the oxidative stress induced by BLM might have overwhelmed the 

endogenous defensive system of these antioxidant enzymes. NACA treatment prior to 

BLM administration significantly reversed the trends for all enzymes, whereas incubation 

of NACA alone resulted in similar or slightly lower antioxidant enzyme activity as 

compared to the control. Underlying reasons are addressed in “Discussion” section.  

 

 

Table 3.1. Effect of NACA on Antioxidant Enzyme Activity in BLM-Stressed A549 

Cells. The values are representative of at least 3 independent experiments.  

 
Groups Glutathione Reductase Catalase Superoxide Dismutase 

Control 100.00% 100.00% 100.00% 

BLM-only 64.91% 23.71% 58.57% 

NACA-only 100.53% 85.12% 101.81% 

BLM + NACA 85.76% 80.01% 94.68% 
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In studies of the protective roles of NAC/NACA against NFT-induced oxidative stress in 

HepaRG cells, the activities of GR, CAT, and SOD after administration of NFT with or 

without pretreatment of NAC or NACA were measured. The results are tabulated in 

Table 3.2. While treatment of NFT lowered the activities of all antioxidant enzymes, the 

activity of CAT was lowered the most, indicating that CAT might be especially 

vulnerable to oxidative stress. Both NAC and NACA pretreatment, prior to NFT dosing, 

effectively prevented the loss of activities of these antioxidant enzymes, but NACA 

apparently had the higher efficacy. This was consistent with the results obtained from 

determination of the other oxidative stress markers listed in previous sections. It was 

interesting that, while treatment of an antioxidant alone seemed to lower CAT activity to 

some extent, activities of the other two antioxidant enzymes were hardly affected.  This 

indicated that NAC/NACA might have effectively scavenged the endogenous H2O2 and, 

therefore, indirectly down-regulated the expression of CAT (this is covered in the 

“Discussion” section.)  

 

 

Table 3.2. Effect of NAC/NACA on Antioxidant Enzyme Activities in NFT-Stressed 

HepaRG Cells. The values are representative of at least three independent experiments.  

Groups Glutathione Reductase Catalase Superoxide Dismutase 

Control 100.00% 100.00% 100.00% 

NFT-only 54.09% 37.41% 54.13% 

NAC-only 100.70% 87.32% 101.14% 

NACA-only 101.99% 83.88% 102.97% 

NFT + NAC 75.48% 65.33% 82.58% 

NFT + NACA 85.29% 82.23% 88.74% 
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3.3.7. Effects of NAC/NACA on the Mitochondrial Membrane Potential. 

Mitochondria are an important intracellular target of oxidative drugs. A disrupted inner 

membrane of mitochondria could be either a source of intracellular ROS or, in turn, a 

result of oxidative damage (or both simultaneously), depending on the mechanism of the 

action of the xenobiotics. 

To elucidate the effect of BLM on mitochondrial membrane potential, as well as 

the possible protective role of NACA, the membrane permeative potentiometric dye JC-1 

was used. Cells with mitochondrial dysfunction showed primarily green fluorescence 

(which arose from the monomer of JC-1), whereas healthy cells with intact mitochondria 

(in which the dye molecules had accumulated and formed aggregates with a red shift in 

fluorescence) were differentiated by a green fluorescence as a background (cytosol) 

within which there are red fluorescent discrete spots (indicating mitochondria). As shown 

in Figure 3.15, control cells were stained both red and green, whereas a decrease in red 

fluorescence was seen in the BLM-treated group (as well as much more scarce cells, 

indicating the cytotoxic effect of BLM). Decrease in the red fluorescence in the BLM-

treated group indicated that the BLM treatment had disrupted mitochondrial membrane 

potential in the A549 cells. However, NACA pretreatment restored the mitochondrial 

membrane potential as evidenced by the red fluorescence similar to that of the control. 

These results support the hypothesis that NACA pretreatment restores mitochondria 

membrane potential and therefore preserves mitochondrial function. 
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Figure 3.15. Effect of NACA on Mitochondrial Membrane Potential on BLM-

Stressed A549 Cells. Green fluorescent patches indicated stained cells and red dots 

showed intact mitochondria. Treatment with BLM alone significantly decreased cell 

density and mitochondrial membrane potential. Pretreatment of NACA prevented the 

dysfunction.  
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NFT exerts its oxidative effect via redox cycling, which is catalyzed by various 

oxidoreductases, including mitochondrial ETC complex I and III. Therefore, it is 

reasonable to hypothesize that mitochondrial level of O2
-
, the primary ROS produced in 

redox cycling, would significantly increase upon NFT treatment. MitoSOX Red, a 

mitochondrion-selective fluorescent dye to study the effect of NFT and NAC/NACA on 

mitochondrial O2
-
 level, to which the intensity of red fluorescence from the O2

-
 

oxidative product of MitoSOX Red would be proportional, was used in the study. As 

shown in Figure 3.16, NFT treatment resulted in a dose-dependent increase of 

mitochondrial O2
-
 level. NAC/NACA pretreatment, meanwhile, reversed the trend in a 

dose-dependent manner, as shown in Figure 3.17. The mitochondrial O2
-
 levels in 

NACA-pretreated groups were lower than those in corresponding NAC-pretreated 

groups, implying the higher bioavailability of NACA.  
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Figure 3.16. Dose-Dependent Effect of NFT on Mitochondrial O2

-
 Level on HepaRG 

Cells. HepaRG cells were treated with NFT of various concentration ( 50 µM – 1000 

µM). NFT treatment increased mitochondrial O2
-
 level in a dose-dependent manner. At 

least three independent experiments were performed.  
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Figure 3.17. Dose-Dependent Effects of NAC/NACA on Mitochondrial O2
-
 Level on 

NFT-Stressed HepaRG Cells. HepaRG cells were pretreated with NAC or NACA of 

various concentration (0.1 mM – 5.0 mM), followed by treatment of 500 µM NFT. 

Treatment of NFT alone caused significant increase in mitochondrial O2
-
 levels, which 

was prevented by pretreatment of NAC or NACA in a dose-dependent manner. At least 

three independent experiments were performed.  
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Generation of significant amount of O2
-
 in mitochondria would cause “local” 

oxidative stress and, expectably, decrease of mitochondrial GSH level. As shown in 

Figure 3.18, 24-hour treatment of NFT decreased mitochondrial GSH to 45% of control 

level, whereas pretreatment of both NAC and NACA significantly restored the depleted 

GSH (back to 69% and 86%, respectively). The fact that NACA pretreatment rendered 

higher mitochondrial GSH indicated its higher efficacy. 
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Figure 3.18. Effects of NAC/NACA on Mitochondrial GSH Level on NFT-Stressed 

HepaRG Cells. Treatment of GSH decreased mitochondrial GSH level to lower than 

50% of control level. Both NAC and NACA pretreatment prevented depletion of 

mitochondrial GSH, and NACA was more effective. At least three independent 

experiments were performed.  
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Based on the knowledge that NFT disrupts function of mitochondrial ETC, it is 

reasonable to extrapolate that cellular level of ATP, the major intracellular energy 

“currency” that is primarily generated during oxidation-phosphrylation in ETC, would be 

negatively affected upon treatment of NFT. A luminescent assay was used to study 

effects of NFT and NAC/NACA on total cellular ATP. The intensity of luminescence 

would be proportional to ATP level. As shown in Figure 3.19, a 24-hour treatment of 

NFT almost completely depleted intracellular ATP, whereas pretreatment of NAC and 

NACA both prevented the trend of depletion, and NACA was of higher effect than NAC. 
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Figure 3.19. Effects of NAC/NACA on Cellular ATP Level on NFT-Stressed 

HepaRG Cells. ATP was depleted upon NFT treatment, but the trend was partially 

reversed by NAC or NACA pretreatment. At least three independent experiments were 

performed.   
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3.4.  DISCUSSION 

Oxidative stress, which is currently believed to be at least partially involved in a 

variety of pathogenesis and xenobiotic toxicity, occurs when reactive oxygen species 

(ROS) overpowers endogenous antioxidant defenses. Therefore, it is reasonable to 

assume that supplementation of a bio-compatible antioxidant would help alleviate 

oxidative damage. Reduced glutathione (GSH) is found to be the pivotal intracellular 

antioxidant compound; it was not feasible, however, to directly administer GSH to 

patients in cases of oxidative stress, because of the short half-life of GSH. Instead, N-

acetylcysteine (NAC), a non-toxic synthetic thiol antioxidant, served as a precursor of the 

de-novo synthesis of GSH and also scavenged intracellular free radicals per se. 

Therefore, NAC, a mucolytic agent as well as an antioxidant diet supplement, has been 

used clinically as an antidote for acetaminophen overdose. The negative charge on the 

carboxylic group of NAC at physiological pH, however, makes it difficult for NAC to 

freely penetrate cell membrane. N-acetylcysteineamide (NACA), a novel thiol drug and 

an amide derivative of NAC, is therefore believed to be of higher bioavailability than 

NAC due to its neutrality. In the current study, the protective role of NACA against 

oxidative stress induced by two medicinal drugs in the cell was investigated. 

Bleomycin (BLM), an antineoplastic drug, has not been widely applied clinically 

due to its pneumotoxicity. It induces pulmonary fibrosis (PF), an accumulative, 

irreversible and fatal pathologic process, in a dose- and time-dependent manner, and 

results in 3-5% mortality in patients. Toxicity of BLM is believed to be at least partially 

due to generation of ROS from redox cycling of the Fe(II)-BLM complex. This ROS, in 
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turn, would damage DNA, lipids and proteins and contribute to the loss of enzymatic 

activity and the structural integrity of epithelial membranes. 

Nitrofurantoin (NFT), a member of nitrofuran antibiotics, is clinically applied for 

treatment of recalcitrant urinary tract infection and other types of infections caused by 

Gram-negative pathogenic bacteria, which are resistant to traditional β-lactam antibiotics. 

However, its application is limited due to its pulmonary and hepatic toxicity. It is 

believed that NFT exerts its toxicity by undergoing single-electron reduction on its nitro 

group, via catalysis of several intracellular oxidoreductases. The highly reactive 

intermediate derived from NFT could cause damage to biomolecules, either by direct 

attack or via superoxide anions generated in the oxidative half of a redox cycle.   

Although there are concerns and debates regarding the “adverse effects” of 

antioxidant supplementation for the purpose of alleviating oxidative stress induced by 

“primary” medicinal drugs (i.e. toxicities of the antioxidants, attenuation of the 

therapeutic effects of primary drugs, as well as other possible drug interactions), 

supplements have always interested pharmacist and clinical doctors, and are reported to 

be beneficial to some extent. In-vitro studies were conducted to evaluate the protection 

efficacy of NACA against oxidative stress induced by the three medicinal drugs in their 

“target” cell lines, by measuring values of “oxidative stress markers”. Results of this 

“preliminary” study will help support further in-vivo studies, and even provide valuable 

reference for future clinical application. 

Clarification of the temporal sequence of the studies includes: 

1. Protective role of NACA on BLM-stressed A549 cells 
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2. Protective roles of NAC/NACA on NFT-stressed HepaRG cells 

Some modifications of methods used in some experiments were made during the 

studies. However, the principles for determining the main oxidative markers remained 

consistent, so it was still feasible to apply and interpret the results for the same markers in 

different studies. 

3.4.1.  Cytotoxicity of Oxidative Medicinal Drugs and NAC/NACA. First, the 

dose-dependent toxicities the two medicinal drugs were assessed in order to determine 

the appropriate doses with optimal concentrations of these drugs, at which 60%-70% 

viability was retained by the dosed cells after treatment. This was essential for an 

accurate evaluation of the protective effects of NAC and NACA. As expected, all three 

drugs studied showed significant cytotoxicity in a dose-dependent manner. It was noticed 

that the dose of BLM and NFT that caused 40% of cell death in A549 cells and HepaRG 

cells were 200µM and 500µM, respectively.  

It is difficult to transversely compare the toxicity of different drugs in distinct cell 

lines or accurately convert the concentrations of these drugs in in-vitro studies to clinical 

doses for patients. The finding that BLM and NFT are toxic at considerably lower 

concentrations, compared to other “oxidative medicinal drugs” of different mechanisms 

of reaction, e.g. acetaminophen (the data of acetaminophen toxicity study would not be 

shown, since it belongs to another project). The fact was in accordance with trends 

reported in clinical findings. Both BLM and NFT were found to have significant 

toxicities for patients, even at therapeutic dose, whereas acetaminophen did not cause 

severe adverse effect (hepatotoxicity) until the patient was overdosed. This discrepancy 
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might be due to the differences in their mechanisms for inducing oxidative stress. BLM 

and NFT, as “redox-cycling” drugs, are considered to be “direct generators of ROS”. 

Theoretically, they act as “catalysts” for ROS (primarily O2·
-
) generation, and are capable 

of continuously generating ROS much more than one equivalent, as long as proper 

intracellular reducing agent (e.g. NADPH) is available. Acetaminophen and other 

CYP450-mediated “pro-oxidative” drugs, nevertheless, exert their oxidative effect mainly 

via excessive generation of reactive metabolite, which conjugates with intracellular GSH 

and depletes it, at most “stiochiometrically”. Therefore, “redox-cycling” drugs are 

usually of much higher oxidative toxicity than “CYP450-mediated” ones.  

Thereafter, the toxicities of both NAC and NACA were assessed. NACA was not 

toxic for A549 cells, at a concentration of 2mM (NAC toxicities for A549 cells were not 

studied), whereas neither NAC nor NACA were significantly toxic for HepaRG cells 

with concentrations of 1mM. Therefore, 2mM of NACA as well as 1mM NAC/NACA 

were chosen as optimal pretreatment concentration for further studies to maximize the 

potential antioxidant effect of the compounds.   

The efficacies of in-vitro protection of NAC/NACA against cell death were also 

studied. In general, both NAC and NACA pretreatment rendered significantly higher cell 

viabilities in all three studies, regardless of the mechanisms of action of these oxidative 

drugs. The results indicated that NAC/NACA exerted their “general” antioxidant effects, 

rather than inhibiting the oxidative pathway of specific pro-oxidative drugs. The 

protective roles would be further discussed in following. NACA-pretreated groups were 

also observed to have higher cell viability than the NAC-pretreated group following 

treatment with oxidative drugs, indicating that NACA has higher bioavailability. 
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3.4.2.  Effects of NAC/NACA on Intracellular ROS. In this study, ROS-

generating effects of the interested medicinal drugs and ROS-scavenging powers of 

NAC/NACA were both studied. Treatment of both BLM and NFT dramatically increased 

intracellular ROS instantly (1 hour after incubation) in corresponding cell line (610% and 

1150% compared to control level, respectively). The results showed the high potential of 

“redox-cycling” drugs of generating ROS. 

As expected, the pretreatment of cells with either NAC or NACA resulted in 

significantly lower quantities of ROS as compared to non-pretreated groups, verifying the 

antioxidant potential of NAC/NACA. Considering the mechanisms of action of NAC and 

NACA, it is reasonable to assume that, upon pretreatment, NAC and NACA accumulated 

in the cells and served as a “precursor pool” for de-novo synthesis of GSH, upon its 

depletion due to oxidative stress, as well as radical scavengers per se. It was found that 

NACA pretreatment had a greater effect in preventing ROS generation than NAC 

pretreatment did, which was in accordance with results of cell viability studies.  

3.4.3.  Effects of NAC/NACA on Intracellular GSH/GSSG. Reduced 

glutathione (GSH) is the major endogenous antioxidant thiol that participates in a variety 

of important intracellular reactions. This includes protective reactions such as direct 

scavenging of free radicals, enzymatic detoxification of xenobiotics via reduction by 

glutathione peroxidase or conjugation by glutathione S-transferase, and the maintenance 

of levels of other antioxidants (ascorbic acid, tocopherol, etc). In addition, protection is 

provided by chelation of free heavy metal ions and other metabolic and biochemical 

reactions such as DNA/protein synthesis, amino acid transport and regulation of enzyme 

activity. Therefore, it is critical for cell survival that sufficient intracellular GSH be 
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maintained. GSH and GSSG levels are important markers of the extent of oxidative 

stress.  

In this study, the intracellular levels of GSH and GSSG with treatment of BLM or 

NFT and with or without pretreatment of NAC/NACA were studied.  Intracellular GSH 

levels decreased dramatically (over 50%) after 24 hours of incubation for all three drugs, 

and the NAC/NACA-pretreatment-only groups showed even slightly higher GSH levels 

than those of the control groups. This indicated that both compounds served as “precursor 

pool” for de novo synthesis of GSH. As for the NAC/NACA + drug groups, the GSH 

levels were significantly higher than those of the drug-only groups.  

It is interesting that the trends for these two indices may or may not be the same, 

but depend on the nature of the reactions of GSH participation in the stress of pro-

oxidants. Upon administration of redox-cycling drugs, the ROS directly generated would 

be diminished via reduction (such as the reaction catalyzed by glutathione peroxidase), at 

the cost of oxidation of GSH and accordingly, generation of GSSG. Therefore, GSH is 

depleted and GSH/GSSG ratio would decrease dramatically. In cases of “CYP450 

mediated” drugs, however, GSSG would not be the main fate of GSH, since most of the 

GSH would be consumed in reaction of conjugation (with the reactive CYP450 

metabolite of the drugs) instead of oxidation. Therefore, the ratio of GSH/GSSG would 

not decrease as significantly as in treatment of redox-cycling drugs, since there is 

minimal increase in denominator.  
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3.4.4. Effects of NAC/NACA on Lipid Peroxidation. Generation of ROS and 

depletion of GSH set off a cascade of further oxidative damage, including oxidation of 

lipid, protein, and DNA. Lipid peroxidation is one of the key mechanisms of ROS that 

cause cell death, not only by disruption of cytoplasmic/organelle membranes, but the by-

products of lipid peroxidation are deleterious also.  

Malondialdehyde (MDA) is one of the stable products of degradation of 

polyunsaturated fatty acid and a main marker of oxidative damage. By nature, it is a 

highly reactive and electrophilic aldehyde, being capable of forming a covalent protein 

adduct and reacting with deoxyadenosine and deoxyguanosine of DNA, thereby exerting 

its mutagenic effect. Thus, MDA must be maintained at a low intracellular level. 

In this study, the effects of NAC or NACA on MDA levels upon treatment with 

BLM and NFT were evaluated. Treatments with both oxidative drugs resulted in dramatic 

increases in intracellular MDA levels, which were effectively prevented by NAC/NACA 

pretreatment. Accumulation of MDA might be the result of depletion of GSH, the 

substrate for glutathione peroxidase (GPx), which is the main enzyme for peroxide 

detoxicification. NAC/NACA supplementation repleted the GSH pool for normal 

functioning of GPx and/or reacted with MDA, preventing its accumulation. 

3.4.5. Effects of NAC and NACA on Activities of Antioxidant Enzymes. 

Endogenous antioxidant enzymes, including superoxide dismutase (SOD), catalase 

(CAT), glutathione peroxidase (GPx) and glutathione reductase (GR), play pivotal roles 

in diminishing potentially deleterious reactive species, preventing damage of bio-

molecules from attack by ROS, and regulating activities of redox-sensitive enzymes. In 
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contrast to the consistent trends of alterations in other oxidative markers (i.e. decrease in 

intracellular GSH as well as increase in MDA levels) upon exogenous oxidative stress, 

there are contradictory reports regarding the change of activities of antioxidant enzymes. 

In this study, activities of SOD, CAT, and GR in cells upon BLM and NFT treatment 

with/without NAC/NACA pretreatment were measured. 

It was found that activities of all three enzymes decreased upon BLM and NFT 

incubation of corresponding cells, albeit to a different extent. Interestingly, in both 

studies, CAT activities decreased to the greatest extent (~2/3), whereas SOD and GR 

activities decreased moderately (~1/2). Decreases in antioxidant enzyme activities could 

be attributed to oxidation of their own redox-sensitive functional groups (e.g., the 

sulfhydryl group) at the reactive or allosteric site and/or loss of the central metal ion 

essential for reactivity. This was true for CAT upon oxidative stress, since it contains iron 

ion in its heme group attached to the peptide chain, as well as for sulfhydryl groups. On 

the other hand, activities of GR and SOD, decreased to a lesser extent since they were 

mainly affected by the former and latter factors, respectively. GR contains redox-

sensitive FADH2 and cysteinyl residues, whereas SOD contains transition metal ions in 

the central site. Both NAC and NACA pretreatment restored activities of all antioxidant 

enzymes, but NACA pretreatment was more effective.  

3.4.6. Effects of NAC/NACA on Mitochondrial Function. As discussed in 

earlier sections, mitochondrion could either be a source or a target of ROS upon 

treatment with oxidative xenobiotics, depending on the mechanisms of action. In a 

physiological condition, mitochondria generate superoxide anions via electron leakage to 

molecular oxygen through the electron transport chain (ETC), located on the inner 
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membrane. Upon oxidative stress, the redox status of the complexes in ETC might be 

altered, resulting in more generation of superoxide anions. These excessive “endogenous” 

ROS, together with the exogenous ones, in turn attack lipids of mitochondrial 

membranes, as well as mitochondrial proteins and DNA. Since intactness of the 

mitochondrial inner membrane is essential for the normal function of ETC and generation 

of ATP, its disruption would result in the uncoupling of oxidative phosphorylation and an 

inadequate intracellular energy supply. Moreover, leakage of cytochrome c or other pro-

apoptotic molecules from the mitochondria to the cytosol could also occur, switching on 

corresponding signaling pathways and eventually causing cell death. Therefore, it is 

critical for survival of cell survival that mitochondria remain intact and function properly.  

In this study, JC-1 dye was used to measure the mitochondrial inner membrane 

potential (ΔΨm) upon treatment of BLM with or without pretreatment of NAC/NACA. 

The results were observed via a fluorescent microscope. In spite of the distinct methods, 

loss of ΔΨm was observed upon BLM treatment, indicating that dysfunction of 

mitochondria is a general phenomenon upon oxidative stress. NAC and NACA both 

prevented the trend, showing their antioxidant potential. 

It was found that NFT mainly and primarily boosts oxidative stress in 

mitochondrion and endoplasmic reticulum (ER) via single-electron reduction by 

cytochrome P450 reductase on membrane of ER and complex I/III in electron transport 

chain on inner membrane of mitochondria, respectively. The resulting active intermediate 

or O2
-
 would deplete GSH and other antioxidant in these organelles, which is extremely 

dangerous in case of mitochondrion, since it is the main source of intracellular ATP. 

Depletion of mitochondrial GSH not only renders inner membrane of mitochondria 
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vulnerable to further ROS attack, but also results in disruption of function of enzymes 

involved in mitochondrial signal transduction, due to oxidation of critical –SH groups of 

the enzymes. Both factors cause mitochondrial permeability transition (MPT) and in turn, 

decrease of mitochondrial membrane potential and ATP production. Therefore, the effect 

of NFT on mitochondrial function and corresponding protective roles of NAC/NACA 

were the focal point of this study. As expected, mitochondrial O2
-
 increases as a 

concentration-dependent manner upon treatment of NFT and both mitochondrial GSH 

and cellular ATP was depleted, showing the effect of NFT in disruption of normal 

mitochondrial function. Pretreatment of both NAC and NACA effectively reversed these 

trends, displaying their protection on mitochondria from oxidative stress. NACA showed 

higher efficacy than NAC, indicating its higher bioavailability.   

 

3.5.  SUMMARY 

In summary, the results showed that both medicinal drugs caused oxidative 

damage to cells in in-vitro studies, although the extent of alterations to some oxidative 

markers was different due to distinct mechanisms for induction of oxidative stress. Both 

NAC and NACA were proven to be effective protectors against oxidative damage, 

regardless of mechanisms. They both prevented excessive cell death, decreased 

intracellular ROS, replenished GSH, prevented MDA generation, and restored 

antioxidant enzyme activities, as well as mitochondrial inner membrane potential. NACA 

was found to demonstrate more antioxidant potency than NAC did, probably because of 

its higher bioavailability. Therefore, NACA showed its promising potential as a GSH 
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pro-drug and as a substitute for NAC. More experiments are needed, however, to 

determine the short-term and long-term toxicity of NACA, as well as its possible 

reactions with co-administrated drugs. These need to be conducted prudently before 

conclusions about its safety and efficacy can finally be ascertained. Future studies might 

focus on in-vivo assessment of NACA’s antioxidant potential against oxidative stress 

induced by medicinal drugs. It will also be of interest to determine whether pre- or co-

administration of NACA will attenuate the therapeutic effects of the main drugs. This 

must be determined case-by-case before NACA can be considered as a clinical drug or 

supplement that can be widely used.  
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4. PRELIMINARY STUDY: ANTIOXIDANT POTENTIAL OF 

SUTHERLANDIA FRUTESCENS IN CELL-FREE SYSTEM AND ITS IN-

VITRO PROTECTION AGAINST OXIDATIVE STRESS  

 

For past decades, there have been a number of “artificial” antioxidants 

synthesized and used in the food industry to prevent deterioration and rancidity of lipid-

containing food due to the peroxidation of fatty acid.  The most commonly used phenolic 

synthetic antioxidants include butylated hydroxytoluene (BHT), butylated hydroxyanisole 

(BHA), tert-butylhydroxyquinone (TBHQ), and propyl gallate (PG). Dietary or medical 

application of these artificial antioxidants, however, poses risks due to their toxicity, 

since they are believed to be carcinogenic in nature. Therefore, pharmacists are interested 

in seeking natural antioxidants among plants, especially those utilized historically as 

food, dietary supplements, or ethnomedicine. These natural antioxidants are believed to 

be of higher efficacy and lower toxicity than synthetic ones.  

There are a great number of plants around the world that are used in folk 

medicine, including woody plants, herbs, algae, and mushrooms. Some of them have 

been found to have great versatility in medicinal effects, including 

antibacterial/antifungal/antiviral, anticoagulant, anti-inflammatory/antipyretic/analgesic, 

anticancer, astringent, and tonic effects. Many of these effects are found to be at least 

partially due to the antioxidant potential of the plants. There is considerable diversity in 

the metabolites of these plants that has proved to be responsible for their antioxidant 

effect, including phenolic compounds and their derivatives (such as tannins, flavonoids, 

phenolic acids/quinones, lignins, coumarins, betalains, etc.), nitrogen-containing 

compounds (alkaloids, chlorophyll, amines, amino acid and their derivatives, peptides, 

etc.), sulfur-containing compounds (mostly thiols), carotenoids, terpenoids, tocopherols, 
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ascorbic acid, etc. These metabolites are found to provide antioxidant activity due to their 

capability of reacting with free radicals, acting as O2
-
 scavengers, and chelating free 

catalytic metals.  

Several types of medicinal drugs induce oxidative stress via various mechanisms 

and therefore, exert their adverse effects (collectively referred to as “oxidative drugs”. 

These mainly include NSAIDs and acetaminophen, specific antimicrobial agents 

(sulfonamide, nitrofurans, and isoniazid), antimalarial drugs (quinones), and 

antineoplastic drugs (alkylating agents, anthracyclines, and bleomycin). The most 

commonly observed and potentially life-threatening adverse effect includes hemolytic 

anemia, especially in patients with certain types of inherited genetic disorders (such as G-

6-PDD) that increase vulnerability to oxidative stress. Other effects are toxic epidermal 

necrolysis, neurotoxicity, and toxicity in other major organs (pulmonary fibrosis, 

cardiotoxicity, and hepatorenal toxicity).  The oxidative-stress related adverse effects of 

these drugs not only render them contraindicated in patients with the genetic defects 

mentioned above, but also strike patients of normal genotypes and sometimes can even 

become dose-limiting factors upon administration, greatly restricting their clinical 

application.  There have been comprehensive studies, therefore, in attempts to find 

possible solutions that can alleviate the oxidative damage induced with minimal 

attenuation by the main effects.  

Although there have been concerns and conflicting reports of studies regarding 

decreases in the therapeutic efficacy of these oxidative drugs, co-administration of 

antioxidants has always been one of the most interesting strategies for pharmacists and 

clinical doctors. Specifically, the effects of “natural” antioxidants derived from plants 
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have been studied in the belief that their toxicity is lower and the therapeutic index is 

higher. In cases of anticancer therapies, for instance, it has been proved that 

supplementation of ascorbic acid, tocopherol, and carotenoids helps reduction of drug 

toxicity so that patients are more tolerant to treatment and are able to complete the 

desired regimen. There are also reports regarding the protective roles of these compounds 

against oxidative damage induced by other medicinal drugs. Straight extracts of some 

plants (most of which serve as ethnomedicines) that have also been assessed in a similar 

manner to determine their antioxidant potential have proved to be promising. However, 

more thorough in-vivo studies are needed regarding their toxicities (both short- and long-

term), as well as possible cross-reactions with the main drugs, before they can be used 

clinically in the future. 

Sutherlandia frutescens (SF) is a legume native to South Africa and has long been 

used as folk medicine. It has been found to be effective in prophylaxis and treatment for a 

variety of disorders, including bacterial/viral infection, Type II diabetes, cancer and 

inflammatory diseases. It was found that SF has antioxidant potential, which at least 

partially contributes to its therapeutic effects. Therefore, SF was interested due to its 

possible protective role against medicinal drug-induced oxidative stress.  

The previous studies of components of SF plant material revealed that there were 

a great variety of its secondary metabolites that are potentially antioxidant, which makes 

it necessary to consider organic solvents as possible candidates for extraction of SF 

antioxidant components, for the sake of maximum efficiency. In the present study, six 

different ways of extraction (hot water/cold water/homogenization/methanol/ethanol/ 

acetone/acetonitrile) were performed, and the six resulting extracts were tested for their 
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antioxidant potencies. These included the content of total phenols and flavanoids (the two 

major antioxidant metabolites in plants), total reducing power, radical scavenging power 

(total, as well as several most commonly seen in living organisms), and iron chelating 

capability. Based on the results of antioxidant potencies identified in these extracts in a 

cell-free system, it was concluded that hot water extract was the most effective. For in-

vitro studies, the extract was lyophilized and re-suspended in SFM, to test its protective 

role against t-butyl hydroperoxide (tBHP) in three cell lines (A549, CHO, and HepaRG). 

Although SF extract has been reported to have an antiproliferative effect against 

carcinoma cells, the present study found that, at a lower concentration (up to 1mg/mL), 

the extract does not present significant toxicity for the tested cell lines. On the other hand, 

pretreatment of these cells with the SF extract helped defend against tBHP-induced 

oxidative stress by repletion of intracellular GSH as well as decreasing intracellular ROS 

levels. The experimental results for both cell-free and cell-based studies led to the 

conclusion that SF is a good source as a potent natural antioxidant. The present study 

serves as a preliminary investigation prior to further assessment of the in-vivo antioxidant 

effectiveness of SF against medicinal drug-induced oxidative stress.  
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4.1. EXPERIMENTAL DESIGN 

Experiment I – Assessment of the antioxidant potency of Suthenlandia frutescens 

extracts in various solvents 

As introduced in the previous section, water as well as a variety of organic 

solvents were chosen as “candidates” for extracting the antioxidant components from SF.   

In brief, leaf samples of SF were dried, minced, and sieved for further use. In the 

present study, extracts of the samples were prepared as follows: 

(1) Extraction with boiling water; 

(2) Addition of cold water (room temperature) followed by homogenization; 

(3) Extraction with HPLC grade methanol (room temperature); 

(4) Extraction with ethanol (room temperature); 

(5) Extraction with acetone (room temperature); 

(6) Extraction with acetonitrile (room temperature). 

The extracts were prepared and diluted to the same extent, and the following 

determinations were made in a cell-free system to assess the antioxidant potency of each 

extract: 

(1) Total phenolic content; 

(2) Total flavonoid content; 

(3) Total reducing power; 

(4) Total free-radical scavenging power; 

(5) Superoxide anion scavenging power; 
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(6) Hydroxyl radical scavenging power; 

(7) Nitric oxide scavenging power; 

(8) Hydrogen peroxide scavenging power; 

(9) Free-iron chelating power. 

The results were compared transversely, based on which “optimal” method of 

extraction would be chosen for further experiments in part II. 

Experiment II: In-vitro antioxidant potential and toxicity assessment of SF extract 

in various cell lines 

The purpose of this experiment was to assess the in-vitro effectiveness of the 

protection provided by the SF extract against exogenous oxidative stress. The “optimal” 

strategy of extraction that was determined based on results of experiment I were used. 

The solvent of the extract was removed and the dry residues were re-suspended in 

corresponding serum-free media, followed by sterilization for further use. 

Three different cell lines were used in this experiment to test the extent of SF 

antioxidant protection: 

(1) human pulmonary alveolar carcinoma (A549) cells; 

(2) Chinese hamster ovary (CHO) cells; 

(3) human hepatoma (HepaRG) cells. 

Tert-butyl hydroperoxide (tBHP), an organic peroxide, was used to induce 

oxidative stress in the present study. The following experiments were conducted 

thereafter on all three cell lines: 
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(1) Toxicity of tBHP (for optimal concentration of tBHP in these cell lines, which 

corresponded to ~30-40% cell death) 

(2) Toxicity of SF extract (for optimal concentration of SF in these cell lines. The 

highest non-toxic concentration was chosen for further experiments) 

(3) SF extract dose-response studies of tBHP – stressed cells (pretreatment of cells 

with various concentrations of SF extract, followed by treatment of tBHP with 

optimal concentrations, and determination of cell viability) 

(4) Study of dose-dependent intracellular ROS-scavenging potency of SF extract in 

different concentrations  

(5) Determination of intracellular GSH/GSSG levels 

 

4.2. MATERIALS AND METHODS 

4.2.1. Chemicals. The human alveolar basal epithelial cells (A549) and human 

hepatoma cells (HepaRG) were obtained from Invitrogen. Chinese hamster ovary (CHO) 

cells were obtained from American Type Culture Collection (ATCC, Manassas, VA). All 

chemicals used were from Sigma (St. Louis, MO) and Fisher Scientific (Fair Lawn, NJ). 

4.2.2. Preparation of Plant Extracts. Dried/minced leaves of Sutherlandia 

frutescens (family: Fabaceae/Leguminosa), obtained from Big Tree Nutraceutical, Fish 

Hoek, South Africa, were extracted by using six different solvents. These were boiling 

water, room temperature water (with homogenization), and HPLC grade methanol, 

ethanol, acetone, and acetonitrile. Briefly, 1g of the dried SF was extracted with 50 mL of 

solvent. Methanol, ethanol, acetone, and acetonitrile extracts were prepared by adding the 

respective solvent to a dry SF sample, followed by sonication for 20 min. The hot water 
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extract was prepared by boiling the SF sample for 20 min and then cooling to room 

temperature. The cold water extract was prepared by homogenizing the SF sample in 

water by a tissue tearor (Biospec Products) for 20 min. All extracts were vacuum filtered 

and stored thereafter at 4°C until use (20 mg/mL). For in vitro studies, the hot water 

filtrate was lyophilized for 72 hours in a Savant refrigerated vapor trap (RVT4104-180) 

and then dissolved in a serum-free medium to a final concentration of 1mg/mL stock 

solution, referred to as a SFE (a yield of 5%). 

4.2.3. Determination of Total Polyphenolic Content. Total phenolic contents 

of the SF extracts were determined, as described by Konaté et al. with minor 

modifications [88], which relied on the formation of a bluish-grey complex between a 

Folin-Ciocalteu reagent (F-C reagent) with phenols. Briefly, 125 µL of the plant extract 

was mixed with 625 µL of a 10-fold diluted F-C reagent and incubated at room 

temperature for 5 min, followed by the addition of 500 µL of 75 mg/mL Na2CO3 

solution. The mixture was vortexed and incubated at room temperature in darkness for 90 

min. The absorbance at 760 nm was measured against a reagent blank. Gallic acid was 

used as the standard. The results were expressed as µg of gallic acid equivalents (GAE) / 

mg of dried plant leaves.  

4.2.4. Determination of Total Flavonoid Content. Total flavonoid contents of 

the extracts were determined as described by Kalava et al. with minor modifications, 

which relied on the formation of a bright yellow complex between aluminum chloride 

and flavones/flavonoids [89]. Briefly, 200 µL of plant extract were mixed with a solution 

of 60 µL of 5% (w/V) NaNO2 and 800 µL of HPLC water. The mixture was vortexed and 

allowed to stand at room temperature in the dark for 5 min. Thereafter, 60 µL of 10% 
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(w/V) AlCl3 were added to the mixture, followed by 5 min of incubation at room 

temperature in the dark. The color was developed by adding 400 µL of 1 M NaOH. The 

absorbance at 415 nm was measured against a reagent blank. Quercetin was used as a 

standard. The results were expressed as µg of quercetin equivalents (QE) / mg of dried 

plant leaves. 

4.2.5. Determination of Total Reducing Power. Total reducing powers of the 

SF extracts were determined as described by Jayanthi et al. with minor modifications, 

which relied on the formation of a dark blue complex [90].  Briefly, a solution 

comprising 2.5 mL of phosphate buffer (200 mM, pH 6.6) and 2.5 mL of 1% (w/V) 

K3[Fe(CN)6] were added to 1 mL of plant extract and vortexed. The mixtures were 

incubated at 50 
0
C

 
in a water bath for 20 min and then mixed with 2.5 mL of 10% (w/V) 

trichloroacetic acid (TCA) and centrifuged at 6,000 RPM for 10 min. From the 

supernatant, 2.5 mL were transferred into tubes containing 2.5 mL HPLC water and 0.5 

mL of 0.1% (w/V) ferric chloride (FeCl3.6H2O). The resulting solutions were well mixed 

and allowed to stand for 5 min in dark. The absorbance at 700 nm was measured against a 

reagent blank. Ascorbic acid was used as a standard. The results were expressed as µg of 

ascorbic acid equivalent (AAE)/ mg of dried plant leaves. 

4.2.6. Determination of Total Radical Scavenging Power. The total radical 

scavenging powers of SF extracts were determined as described by Shyamala et al. [91] 

with minor modifications, which relied on disappearance of the deep purple color of 2,2-

diphenyl-1-picrylhydrazyl (DPPH), a free-radical compound, upon its quenching by 

radical scavengers. In brief, 2.9 mL of 0.1mM DPPH were mixed with 0.1 mL of the SF 

extracts. The mixture was allowed to stand for 30 min in the dark. The absorbance at 520 
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nm was measured against a reagent blank. Decreases in intensity corresponded to a 

higher radical scavenging power, calculated as [1-A1/A2]*100%, whereas A1 and A2 were 

the absorbance with and without plant extract, respectively. Butylated hydroxytoluene 

(BHT) was used as a standard.  

4.2.7. Determination of H2O2 Scavenging Power. The H2O2 scavenging power 

of SF extracts was determined as described by Ozyurek et al. with minor modifications 

[92], which relied on formation of an orange-colored complex between neocuproine, a 

Cu(I)-specific chromogen, and Cu (I), the reduction product of Cu(II) by H2O2.  In brief, 

500 μL of phosphate buffer (200 mM; pH=7.4), 400 μL of 10 mM H2O2 or HPLC water, 

200 μL of extract or solvent,  and 400 μL of 0.1 mM CuCl2 were mixed and incubated at 

37 °C for 30 min. Then, 400 μL of HPLC water were added and 500 μL of this solution 

were added to a mixture of 1 mL of 10 mM CuCl2, 1 mL of 7.5 mM neocupronine, and 2 

mL of 1 M NH4Ac. The absorbance at 450 nm was measured against a reagent blank. The 

increase in intensity of color corresponded to a higher H2O2 radical scavenging power, 

calculated as [1-(A1-A2)/A0]*100%, where A0 was the absorbance of the mixture without 

the extract, but with H2O2; A1 was that with both the extract and H2O2, and A2 was that 

with the extract but without H2O2. Sodium pyruvate was used as a standard.  

4.2.8. Determination of NO Scavenging Power. The NO scavenging powers of 

SF extracts were determined as described by Kumar et al. [93] with minor modifications, 

which relied on the formation of a rose-colored diazo compound between Griess Reagent 

and nitrate, the oxidation product of nitric oxide released by sodium nitroprusside. 

Briefly, 1 mL of the extract or solvent was mixed with 0.3 mL of 60 mM sodium 

nitroprusside, and illuminated under fluorescent light at room temperature for 2.5 hrs. 
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Thereafter, 0.5 mL of Griess Reagent [1% (w/V) sulfanilamide, 2% (w/V) phosphoric 

acid and 0.1% (w/V) N-(1-naphthyl)-ethylenediamine∙2HCl] or HPLC water was added. 

The absorbance at 546 nm was measured against a reagent blank. The increase in 

intensity of the color corresponded to a higher NO scavenging power, calculated as [1-

(A1-A2)/A0]*100%, where A0 was the absorbance of the mixture without extract, A1 was 

the absorbance with both extract and Griess Reagent, and A2 was the absorbance with 

extract and without Griess Reagent. Curcumin was used as a standard.  

4.2.9. Determination of O2 ‾ Scavenging Power. The O2
‾ 

 scavenging power 

of the extract, determined as described by Bajpai et al. [94] with minor modifications, 

relied on reduction of nitroblue tetrazolium (NBT) to a purple product by O2
‾
, that was 

generated via a redox cycle by 5-methyl-phenazinium methyl sulfate (PMS). In brief, 1 

mL of 156 μM NBT (in 100 mM phosphate buffer, pH 7.4) or buffer alone, 1 mL of 486 

μM NADH (in a buffer) or a buffer, and 100 μL of extract or solvent were mixed. 

Thereafter, 100 μL of 330 μM PMS (in a buffer) or a buffer alone were added and the 

mixture was incubated at room temperature for 5 min. The absorbance at 560 nm was 

measured against a reagent blank. Increased intensity in color corresponded to a higher 

O2
‾ 

scavenging power, which was calculated as [1-(A1-A2)/A0]*100%, where A0 was the 

absorbance of the mixture without the extract but with NBT/NADH, A1 was the 

absorbance with the extract and NBT/NADH, and A2 was the absorbance with the extract 

and without NBT/NADH.  Quercetin was used as a standard. 

4.2.10. Determination of OH Scavenging Power. The 

OH scavenging powers 

of the extracts were determined as described by Kunchandy et al. [95] with minor 

modification, which relied on the formation of a red-colored complex between the 



112 
 

thiobarbituric acid (TBA) and the oxidation product of 2-deoxyribose by 

OH. In brief, 

100 μL of 28 mM 2-deoxyribose or HPLC water, as well as 500 μL of 20 mM phosphate 

buffer (pH 7.4), were added to 100 μL of the extract or solvent. Thereafter, 100 μL of 1 

mM of FeSO4, 100 μL of 1 mM EDTA tetrasodium salt, and 100 μL of 10 mM H2O2 

were added to the mixture, which was incubated at 37°C for 1 hr. Then, 2 mL of 2.8% 

(w/V) TCA and 2 mL of 1% (w/V) TBA were added. This mixture was boiled for 15 min 

and allowed to cool to room temperature. The absorbance at 532 nm was measured 

against a reagent blank. Decreased intensity in color corresponded to a higher 

OH 

scavenging power, which was calculated as [1-(A1-A2)/A0]*100%, where A0 was the 

absorbance of the mixture without extract but with deoxyribose, A1 was the absorbance 

with both extract and deoxyribose, and A2 was the absorbance without deoxyribose but 

with the extract. Mannitol was used as a standard. 

4.2.11. Determination of Iron (Fe
2+

) - Chelating Power. The iron-chelating 

powers of SF extracts were determined as described by Ercal et al. with minor 

modifications, which relied on the formation of a magenta-colored complex of ferrous 

ion and ferrozine. [96] In brief, 100 μL of the extract (or solvent) were mixed with 100 

μL of 0.6 mM FeSO4 and 1.7 mL of HPLC water and incubated at room temperature for 

5 min in the dark. Afterwards, 100 μL of a 5 mM ferrozine solution (in methanol) were 

added to the mixture and incubated for 5 min in the dark. The absorbance at 562 nm was 

measured against a reagent blank. Decreased intensity in color corresponded to a higher 

iron-chelating power, which was calculated as [1-(A1-A2)/A0]*100%, where A0 is the 

absorbance of the control (without extract), A1 is the absorbance in the presence of the 
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extract, and A2 is the absorbance without ferrozine. EDTA tetrasodium salt was used as a 

standard.  

4.2.12. Cell Culture. In brief, the human lung carcinoma pulmonary type II-like 

epithelium cells (A549) were seeded in 25 cm
2
 flasks coated with type 1 rat tail collagen 

(Sigma-Aldrich, St. Louis, MO) and maintained in F-12 Ham’s medium with 10% heat-

inactivated fetal bovine serum in humidified 5% CO2/95% air at 37 
0
C. The culture 

medium was changed every 3 days. 

Human hepatoma cells (HepaRG) were seeded in 75 cm
2
 flasks coated with type 

1 rat tail collagen (Sigma-Aldrich, St. Louis, MO) and  maintained in William’s E 

medium supplemented with 10% FCS, 100 U of penicillin, 100 μg/mL of streptomycin, 5 

ug/mL of insulin, and hydrocortisone in humidified 5% CO2/95% air at 37 
0
C. The 

culture medium was renewed every 3 days. After about 2 weeks, when the cells were 

confluent, they were shifted to the same medium supplemented with 2% DMSO 

(differentiation medium). The medium was renewed every 2 to 3 days for 2 more weeks, 

and then switched to a DMSO-free medium for 1 day prior to the cells being used for 

assays. 

Chinese hamster ovary (CHO) K1 cells were grown in Ham's F-12 culture 

medium, supplemented with 10% (v/v) fetal bovine serum (FBS), and 2 mM of L-

glutamine, 100 U/mL of penicillin and 100 μg/mL of streptomycin. The cells were 

maintained in a humidified incubator at 37 
0
C and supplied with 95% O2 and 5% CO2. 

4.2.13. Determination of Cell Viability. Cells were seeded in 96-well plates at a 

density of approximately 1.25 × 10
4 

cells/well, for 24 hrs. To assess cytotoxicity of the 



114 
 

SF extract, the cells were incubated with various concentrations of SFE (10 µg/mL to 1 

mg/mL) in a serum-free medium for 24 hrs.  

To assess cytotoxicity of t-BHP, the media were replaced by various 

concentrations of t-BHP (10 μM to 500 μM) in a serum-free medium for 24 hrs. The 

concentration corresponded to approximately 40% cell death which will be used for 

further studies. 

The protective effects of SFE were assessed by pretreating cells with various 

concentrations of SFE for 2 hours, followed by treatment with t-BHP for 24 hrs. 

Afterwards, the medium was discarded and viability was assessed with a Calcein AM 

assay kit (Biotium, Inc. CA). The cells were washed twice with PBS, and 100 μL of 2.0 

µM Calcein AM in PBS were added to each well for 30 min at 37 °C. The fluorescence 

was measured with an excitation wavelength at 485 nm and an emission wavelength of 

530 nm, using a microplate reader (FLUOstar, BMG Labtechnologies, Durham, NC, 

USA). 

4.2.14. Measurement of Intracellular ROS Levels. Intracellular ROS generation 

was measured using a well-characterized probe, 2',7'-dichlorodihydrofluorescein 

diacetate (H2DCF-DA). In brief, H2DCF-DA was diffused into cells and deacetylated by 

cellular esterases to non-fluorescent 2’, 7’-dichlorodihydrofluorescein, which was rapidly 

oxidized to highly fluorescent 2’, 7’-dichlorofluorescein (DCF) by ROS. The 

fluorescence intensity was proportional to intracellular ROS levels. 

In groups with SFE pretreatment, various concentrations of SFE were added to 

the cells seeded in a 96-well plate, followed by incubation for 2 hrs. Afterwards, the cells 

were washed twice with PBS and incubated with a working solution of 50 μM H2DCF-
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DA in a phenol-red-free medium for 30 min, followed by two PBS washings. The 

respective groups were then dosed either with t-BHP or serum-free medium for 24 hrs. 

Fluorescence was determined at 485 nm excitation and 520 nm emission, using a 

microplate reader (FLUOstar, BMG Labtechnologies, Durham, NC, USA). 

4.2.15. Determination of Intracellular Glutathione (GSH) Levels. Intracellular 

GSH content was determined by reverse phase HPLC. The protective effects of SFE were 

studied by pretreating cells with an optimal concentration of SFE for 2 hrs, followed by 

treatment with t-BHP for 24 hrs. Cells were collected by trypsinization/centrifugation and 

the pellets were homogenized in pH 7.5 SBB.  Thereafter, 20 µL of this homogenate 

were added to 230 µL of HPLC grade water and 750 µL of NPM (1 mM in acetonitrile).  

The resulting solutions were incubated at room temperature for 5 min.  The reaction was 

stopped by adding 10 µL of 2 N HCl.  The samples were filtered through a 0.45 µm filter 

(Advantec MFS, Inc. Dulin, CA, USA) and injected onto the HPLC system.  For analysis, 

5 µL of the sample were injected using a Thermo Finnigan TM Spectra SYSTEM 

SCM1000 Vacuum Membrane Degasser, Finnigan TM SpectraSYSTEM P2000 Gradient 

Pump, Finnigan TM SpectraSYSTEM AS3000 Autosampler, and FinniganTM 

SpectraSYSTEM FL3000 Fluorescence Detector (λex=330 nm and λem=376 nm).  The 

HPLC column was a Reliasil ODS-1 C18 column (Column Engineering, Ontario, CA, 

USA).  The mobile phase was 70% acetonitrile and 30% water and was adjusted to a pH 

of 2.5 through the addition of 1 mL/L of both acetic and o-phosphoric acids.  The NPM 

derivatives were eluted from the column isocratically at a flow rate of 1 mL/min.  
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4.2.16. Determination of Glutathione Disulfide (GSSG) Levels. Total 

glutathione content was determined by reverse phase HPLC.  Cell samples were 

homogenized in SBB.  Thereafter, 20 µL of this homogenate were added to 60 µL of 

NADPH (2 mg/mL) in nanopure water, and 20 μL of 1 unit/mL glutathione reductase 

were added to reduce GSSG. After 10 min of incubation at room temperature, 150 μL of 

H2O were added, and the diluted samples were immediately derivatized with 750 μL of 

1.0 mM NPM. The samples were analyzed by reverse phase HPLC, as detailed for the 

determination of GSH. Data from the original and total current GSH levels in each 

sample were subsequently used to calculate the levels of GSSG present in each sample. 

4.2.17. Determination of Protein. Protein levels in the cell samples were 

determined using the Bradford method. Concentrated Coomassie blue (Bio-Rad, 

Hercules, CA, USA) was diluted 1:5 (v/v) with distilled water and 1.5 mL were added to 

50 µL of diluted cell homogenate; the mixture was vortexed and allowed to stand at room 

temperature for 10 min. The absorbance at 595 nm was measured against a reagent blank. 

Bovine serum albumin (BSA) was used as a protein standard. 

4.2.18. Statistical Analysis. All reported values were represented as the mean ± 

S.D (n=4). Statistical analyses were performed using GraphPad Prism software 

(GraphPad, San Diego, CA). Statistical significance was ascertained by one-way analysis 

of variance, followed by Tukey’s multiple comparison tests. Values of p<0.05 were 

considered significant. 
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4.3.RESULTS  

4.3.1. Total Phenolic Content. Polyphenols are a structural class of natural 

organic compounds characterized by multiple phenol structural units. They are mostly 

secondary metabolites of a great variety of plants and play important roles including UV 

screens for protection against ionizing irradiation. Therefore, plant-derived phenolic 

compounds are of interest due to their antioxidant potential. 

In this study, gallic acid (a trihydroxybenzoic acid) was used as a standard. It was 

found that total phenolic content of the extracts, expressed as µg gallic acid equivalent 

(GAE)/mg dried  SF, was affected  by the polarity of the extraction solvent, since GAE 

values decreased in the following order: hot water > cold water/homogenization > 

methanol >ethanol > acetone > acetonitrile  (Table 4.1). Hot water appears to be the best 

extraction solvent for polyphenols with the total phenolic content of hot water extract 

being 12.9 ± 0.17µg gallic acid equivalent / mg of dried SF.  

 

 

Table 4.1. Total Phenolic, Flavonoid Content and Reducing Power of Tested SF 

Extracts. At least three independent experiments were performed.  

Extraction Method Total Phenolic 

Content(µg GAE/mg) 

Total Flavonoid 

Content(µg QE/mg) 

Total Reducing 

Power(µg AAE/mg) 

Hot water 12.9213 28.7207 8.6328 

Cold water 11.3923 17.4916 7.7434 

Methanol 9.2578 24.6844 7.1000 

Ethanol 4.6596 17.0028 2.0590 

Acetone 2.2935 9.3352 0.9812 

Acetonitrile 1.5681 6.0810 0.6779 
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4.3.2. Total Flavonoid Content. Flavonoids, the derivatives of 2-phenyl-1,4-

benzopyrone, are also major plant secondary metabolites. Similar to the polyphenols, 

flavonoids also fulfill the function of UV filtration in plants, and are found to be the 

effective component in some herb medicines against LDL oxidation and atherosclerosis 

due to their antioxidant potential. Therefore, they are also compounds of interest in the 

current study. Quercetin, a widely-distributed natural flavonol was used as a standard. 

The total flavonoid content was also found to be affected by the polarity of the extraction 

solvent in the following order: hot water > methanol > cold water/homogenization ≥ 

ethanol > acetone > acetonitrile (Table 4.1). The total flavonoid content of the hot water 

extract of SF was 28.7 ± 0.324 µg quercetin equivalent (QE) / mg of dried SF. 

4.3.3. Reducing Power. Chemical reducing power is associated with biological 

antioxidant activity and may serve as an important index of the antioxidant potential. 

Ascorbic acid, a naturally-occurring reducing agent, was used as a standard. Reducing 

power characteristics of different solvent extracts of SF were found to decrease in the 

following order: hot water > cold water/homogenization > methanol > ethanol > acetone 

> acetonitrile (Table 4.1). Total reducing power of hot water extract was 8.63 µg ascorbic 

acid equivalent (AAE)/mg of dried SF, only 1.11 times higher than that of cold water-

homogenization and 1.21 times higher than methanol extract. In contrast, the values of 

ethanol, acetone, and acetonitrile were 4.19 times, 8.80 times, and 12.74 times lower than 

that of hot water extract, respectively.  
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4.3.4. Radical Scavenging Power. Free radical scavenging power is an 

important property for evaluation of the protective effects of an antioxidant because of 

the deleterious effects of reactive free radicals in biological systems. Butylated 

hydroxytoluene (BHT), a derivative of phenol and a functionally synthetic analogue of 

Vitamin E that suppresses radical-mediated autoxidation, was used as a standard.  As 

shown in Figure 4.1, the radical scavenging activities of different SF extracts were 

affected by the extraction solvent, as the values decreased in the following order: hot 

water > cold water/homogenization > methanol > ethanol ≥ acetone ≥ acetonitrile.  
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Figure 4.1. Total Radical Scavenging Power of Tested SF Extracts. The absorbance 

values were converted to the scavenging effect (%) and data plotted as the means of the 

replicate scavenging effect (%) values ± S.D. (n = 4). The IC50 value of the reference 

compound BHT was 1.82 mg/ml. The concentration of SF extract was 20 mg of dry 

material/ml. (a: different from hot water extract, b: different from cold water extract, c: 

different from methanol extract, d: different from ethanol extract, e: different from 

acetone extract, p<0.05). 
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4.3.5. Hydrogen Peroxide Scavenging Capacity. H2O2 is a weakly reactive 

oxygen species per se; however, due to its neutrality in charge, it is of high cell 

permeability. Therefore, it enters cells readily and leads to the production of highly active 

hydroxyl radicals and superoxide radicals in the presence of metal ions. Thus, the 

scavenging activity for H2O2 is an important measure of the antioxidant activity. Sodium 

pyruvate, which stoichiometrically reacts with H2O2, was used as a standard. As shown in 

Figure 4.2, the H2O2 scavenging power of extracts was: hot water > cold 

water/homogenization > methanol > ethanol ≥ acetone > acetonitrile.  
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Figure 4.2. Hydrogen Peroxide Scavenging Power of Tested SF Extracts. The 

absorbance values were converted to the scavenging effect (%) and data plotted as the 

means of the replicate scavenging effect (%) values ± S.D. (n = 4). The IC50 value of the 

reference compound sodium pyruvate was 0.39 mg/ml. The concentration of SF extract 

was 20 mg of dry material/ml. (a: different from hot water extract, b: different from cold 

water extract, c: different from methanol extract, d: different from ethanol extract, e: 

different from acetone extract, p<0.05). 
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4.3.6. Hydroxyl Radical Scavenging Capacity. The hydroxyl radical is a short-

lived (with half-life of~10
-9

 s), highly-reactive free radical that tends to attack nearby 

biomolecules immediately upon its generation. Of the many different ways by which 

OH 

radicals can be produced, the most important is the Fenton reaction, which  involves the 

transition metal catalyzed decomposition of hydrogen peroxide to produce hydroxyl 

radicals [97]. Mannitol, a polyol which readily reacts with an 

OH radical, was used as a 

standard.  As shown in Figure 4.3, the SF extracts tested were found to have hydroxyl 

radical scavenging capacities that decreased in the following order: hot water > cold 

water/homogenization > methanol > ethanol > acetone > acetonitrile.  
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Figure 4.3. Hydroxyl Radical Scavenging Power of Tested SF Extracts. The 

absorbance values were converted to the scavenging effect (%) and data plotted as the 

means of the replicate scavenging effect (%) values ± S.D. (n = 4). The IC50 value of the 

reference compound mannitol was 0.74 mg/ml. The concentration of SF extract was 20 

mg of dry material/ml. (a: different from hot water extract, b: different from cold water 

extract, c: different from methanol extract, d: different from ethanol extract, e: different 

from acetone extract, p<0.05). 
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4.3.7. Superoxide Radical Anion Scavenging Capacity. Superoxide radical 

anion (O2
‾
) originates from the one-electron reduction of free molecular oxygen, and is 

implicated in a number of oxidative stress-related disorders. This is due to its ability to 

induce the peroxidation of lipids. In this study, quercetin was used as a standard. As 

shown in Figure 3.4, the superoxide scavenging activities of the tested SF extracts were 

found to decrease in the following order (Figure 4.4): hot water > cold 

water/homogenization >methanol > ethanol ≥acetone > acetonitrile. 
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Figure 4.4. Superoxide Scavenging Power of Tested SF Extracts. The absorbance 

values were converted to the scavenging effect (%) and data plotted as the means of the 

replicate scavenging effect (%) values ± S.D. (n = 4). The IC50 value of the reference 

compound quercetin was 0.59 mg/ml. The concentration of SF extract was 20 mg of dry 

material/ml. (a: different from hot water extract, b: different from cold water extract, c: 

different from methanol extract, d: different from ethanol extract, e: different from 

acetone extract, p<0.05). 
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4.3.8. Nitric Oxide Scavenging Capacity. NO is a short-lived (half-life 3–30 s) 

lipophillic colorless gas that can very easily diffuse between cells. Physiologically it 

functions as an important signal-transduction molecule for vasodilation. However, 

excessive NO can react with  oxygen to produce stable [98] upon reaction with a 

superoxide [99] which, in turn, can be deleterious. It also plays a role in reperfusion 

injury. In this study, curcumin was used as a standard. As shown in Figure 4.5, the NO 

scavenging ability of the extracts followed this order (from high to low): hot water > cold 

water/homogenization ≥ methanol ≥ ethanol > acetone > acetonitrile. 
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Figure 4.5. Nitric Oxide Scavenging Power of Tested SF Extracts. The absorbance 

values were converted to the scavenging effect (%) and data plotted as the means of the 

replicate scavenging effect (%) values ± S.D. (n = 4). The IC50 value of the reference 

compound curcumin was 0.085 mg/ml. The concentration of SF extract was 20 mg of dry 

material/ml. (a: different from hot water extract, b: different from cold water extract, c: 

different from methanol extract, d: different from ethanol extract, e: different from 

acetone extract, p<0.05). 
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4.3.9. Iron - Chelating Capacity. Metal chelating property is especially 

important because of the ability of transition metal ions to catalyze Fenton reaction. 

Hydroxyl radical
 
produced as a result of this reaction can accelerate lipid peroxidation by 

decomposing lipid hydroperoxides into peroxyl and alkoxyl radicals that can abstract 

hydrogen, propagate the chain reaction [100], and damage cell membranes. Metal 

chelating activity is, therefore, an important indicator of the antioxidant capacity of a 

compound. In this study, EDTA was used as standard. As shown in Figure 6, the iron 

chelating ability was in the following order: hot water > cold water/homogenization 

>methanol > ethanol >acetone > acetonitrile (Figure 4.6).  
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Figure 4.6. Iron Chelation Capacity of Tested SF Extracts. The absorbance values 

were converted to the scavenging effect (%) and data plotted as the means of the replicate 

chelating effect (%) values ± S.D. (n = 4). The IC50 value of the reference compound 

EDTA was 0.129 mg/ml. The concentration of SF extract was 20 mg of dry material/ml. 

(a: different from hot water extract, b: different from cold water extract, c: different from 

methanol extract, d: different from ethanol extract, e: different from acetone extract, 

p<0.05). 
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4.3.10. Cytotoxicity of SFE on A549, HepaRG, and CHO Cells. Based on 

previous results, it appeared that SF hot water extract had the highest antioxidant 

potential. Therefore, it was chosen for use in subsequent cell-based studies. 

As shown in Figure 4.7, SFE was not toxic to CHO cells or A549 cells with a 

concentration of 500 µg/mL for up to 24 hours. However, a decrease in cell viability was 

observed in HepaRG cells with SF extract (SFE) treatment above 100 µg/mL for 24 

hours. This was confirmed using a calcein AM assay.  

 

 

0 1 2 3
60

75

90

105

A549 cells

CHO cells

HepaRG cells

Log 10 X Concentration of Extract (g/ml)

C
el

l 
v
ia

b
ili

ty

(%
 o

f 
c
o

n
tr

o
l)

 

Figure 4.7. SFE Dose-Dependent Toxicity in A549, CHO and HepaRG Cells. 

Treatment of SFE showed dose-dependent toxicity in all three cell lines. However, at low 

concentrations (below 10µg/mL) the toxicity of SFE was negligible. At least three 

independent experiments were performed.  
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4.3.11. Effect of SFE on t-BHP-Induced Cytotoxicity. To study the protective 

effects of SFE on t-BHP-induced toxicity, cells were pretreated with various 

concentrations of SFE for 2 hours, followed by incubation with 50 µM of t-BHP for 24 

hours. This resulted in about 40% cell death alone. As shown in Figure 4.8, viability in all 

three cell lines decreased to approximately 40-50 % of the control, when treated with t-

BHP; however, it increased significantly to 500 µg/mL in a dose-dependent manner upon 

pretreatment with SFE. No further increase was observed upon increasing the 

concentration to 1000 µg/mL, possibly due to the toxicity of SFE.  
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Figure 4.8. Dose-Dependent Protective Effect of SFE on t-BHP-Stressed Cells. 

Treatment of t-BHP alone decreased cell viability to ~50% of control level in all three 

cell lines. Pretreatment of SFE prevented cell death in a dose-dependent manner, up to 

1000 µg/ml. At least three independent experiments were performed. 
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4.3.12. Effect of SFE on Intracellular ROS Levels. A dose-dependent increase 

in the production of ROS was observed in all three cell lines with exposure to tBHP (data 

not shown). To study the protective effects of SFE on a tBHP- induced increase in ROS 

levels, all three cell lines were pretreated with various concentrations of SFE for 2 hrs, 

followed by incubation with 50 µM of tBHP for 2 hrs. As shown in Figure 4.9, there was 

a significant dose-dependent decrease in levels of ROS with increases in the 

concentration of SFE, indicating the ROS-scavenging role of SFE. 

 

 

C
ontr

ol

M
 tB

H
P


50

 g/m
l S

FE



M
 tB

H
P
+ 

10
 


50

 

g/m
l S

FE 



M
 tB

H
P
+ 

25
 


50

 

g/m
l S

FE 



M
 tB

H
P
+ 

50
 


50

 

g/m
l S

FE 



M
 tB

H
P
+ 

10
0 


50

 

g/m
l S

FE 



M
 tB

H
P
+ 

25
0 


50

 

g/m
l S

FE 



M
 tB

H
P
+ 

50
0 


50

 

g/m
l S

FE 



M
 tB

H
P
+ 

10
00

 


50

 

0

150

300

450

600
CHO cells

HepaRG cells

A549 cells

D
C

F
-F

lu
o

re
s
c
e
n

c
e

(%
 o

f 
C

o
n

tr
o

l)

 

Figure 4.9. Dose-Dependent Intracellular ROS Scavenging Power of SFE on t-BHP 

Stressed Cells. Treatment with t-BHP alone significantly increased intracellular ROS in 

all three cell lines, whereas pretreatment with SFE prevented generation of excessive 

ROS in dose-dependent manner. At least three independent experiments were performed.  
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4.3.13. Effect of SFE on Intracellular Glutathione Levels. To examine whether 

SFE acts as an antioxidant by scavenging ROS (thereby preventing further GSH 

depletion), the levels of intracellular GSH was measured. As shown in Figure 4.10, a 24-

hr exposure with 50 μM of tBHP decreased the GSH levels in all three cell lines by more 

than 50 % of that of the control. Pretreatment with 500 μg/mL of SFE, however, 

significantly increased the GSH levels in all three cell lines, further verifying the 

hypothesis about the antioxidant role of SFE. 
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Figure 4.10. Role of SFE on Intracellular GSH Level in t-BHP Stressed Cells. 

Treatment with t-BHP alone depleted intracellular GSH in all three cell lines, whereas 

pretreatment with SFE partially restored GSH level. Treatment with SFE alone did not 

significantly alter the GSH level. At least three independent experiments were performed.  
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4.3.14. Effect of SFE on Glutathione Disulfide Levels and GSH/GSSG Ratio. 

As shown in Figure 4.11, the GSH/GSSG ratios decreased significantly in all three cell 

lines upon treatment with 50 μM t-BHP; however, pretreatment with 500 μg/mL of SFE 

restored the ratios of GSH/GSSG in all cells to approximately that of the control group. 
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Figure 4.11. Effect of SFE on GSH/GSSG Ratio in t-BHP Stressed Cells. GSH/GSSG 

ratio decreased dramatically in all three cell lines upon t-BHP treatment. Pretreatment of 

SFE partially reversed the trends. At least three independent experiments were 

performed.  
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4.4. DISCUSSION  

Previous studies have been made of the antioxidant role of SF [72][76][101]; 

however, a comprehensive study comparing the antioxidant potential of different solvent 

extracts of SF in a cell-free system and in cell lines has not been reported. Here is 

reported the antioxidant potential of SF extracts for three cell lines, as well as their 

protective role in t-BHP-induced oxidative stress. 

As discussed in Section 3.4., the extracting solvent significantly affected the total 

phenolic content, flavonoid content, reducing power, and the radical scavenging activities 

of SF extracts. The yield of the SF hot water extract was about 5% (weight of lyophilized 

extract/weight of dried plant leaves). Polarity, as well as the temperature of the solvent, 

affected the antioxidant potential of the extracts, and hot water was found to be the best 

solvent for extracting total phenolics, including flavonoids. The results were similar to 

reports of a previous study, in which the antibacterial and antioxidant activities of SF 

extracts (using two different extraction schemes) were investigated. It was reported that 

the more polar extract had substantial radical scavenging activity, which was attributed to 

the polar phenolic compounds [72]. In contrast, other researchers reported the highest 

radical scavenging activity in the methanol, ethyl acetate, and 1-butanol extracts, and the 

lowest in the aqueous extract. This was attributed to the origin of the plant sample and 

not the solvent polarity. Their semi-quantitative TLC tests showed smaller amounts of 

phenolic components in these more polar extracts [101].  

The results above indicated that SF plant extracts contained significant amounts 

of flavonoids, which exerted their antioxidant effect via scavenging or chelation 

[102][103]. It appeared that the hot water extract had the highest radical scavenging 
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power, and was more powerful than the BHT standard, considering that the actual yield 

of the hot water extract was 5% (20 mg yield for dried plant material and 1 mg for the 

lyophilized hot water extract). However, it did not show good reducing power and it 

appears that the superior radical scavenging capacity of the hot water extract might 

account for its significant antioxidant properties.   

Superoxide anion, together with its dismutation product, hydrogen peroxide, is 

deleterious to macromolecules. [104] Flavonoids are found to have an anti-inflammatory 

effect and to prevent LDL oxidation [105], as well as atherosclerosis[106]. Results of a 

previous study revealed that these effects were due to the scavenging capacity of 

superoxide anions and thereby provided protection against oxidative damage [107]. The 

results suggested that the SF extract is a potent scavenger of superoxide radicals and 

hydroxyl radicals. Hydroxyl radicals are one of the major reactive oxygen species 

produced by Fenton’s reaction, causing lipid peroxidation, DNA strand cleavage, and 

subsequent cellular damage [97]. The hot water plant extract proved to be the most potent 

scavenger of hydroxyl radicals, followed by the superoxide anion radical and then 

hydrogen peroxide. However, it did not exhibit considerable nitric oxide scavenging 

ability. Results above concur with a previous publication, which reported that extracts 

from hot water demonstrated superoxide and hydrogen peroxide scavenging activity, 

which attributed to the antioxidant activity of the SF hot water extract to the phenolic 

compounds [76]. 

Iron can stimulate lipid peroxidation via the Fenton reaction  and also by 

decomposing lipid hydroperoxides into peroxyl and alkoxyl radicals that can further 

propagate the chain reaction [98]. According to the results, the SF extract was not as 
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potent a chelating agent as the standard EDTA and, therefore, its antioxidant potential 

could be primarily attributed to its radical scavenging power. Differences in the 

antioxidant potential of extracts of SF in different solvents may have been due to the 

varying composition of the extracts. 

The SFE were not toxic to CHO and A549 cells below a concentration of 500 

µg/mL. However, mild toxicity was observed in HepaRG cells above100 µg/mL, which 

could have been due to differences in the cells and their susceptibility to SFE. SFE 

protected against t-BHP-induced oxidative stress and increased cell viability in all the 

three cell lines in a dose-dependent manner, up to 0.5 mg/mL 

However, no further increase in cell viability was observed above this 

concentration, possibly due to the toxicity of SFE itself. Results above were in 

accordance with previous research, which reported that SF hot water extract, up to 

concentrations of 40 µg/mL, had no adverse effect on the viability of human neutrophils 

after a 30 min treatment [76]. Results from present study were also supported by another 

study on proximal and distal convoluted tubule epithelial cell lines (LLC-PK1 and 

MDBK), in which the cell viability of both cell lines treated with concentrations between 

6 mg/mL and 0.3 mg/mL for 48 h was more than 89% [103]. Results from another study 

about toxicity of SFE were similar to the results where it was shown that, although high 

concentrations of a SF extract (ethanol) can be toxic to normal T cells, SFW (water) 

fractions were relatively non-toxic. It was found that 0.5 mg/mL SFW extract showed 

81% live cells after 24 hrs [105]. In addition, safety studies in vervet monkeys and 

humans have suggested that SF extracts are not toxic [106, 108].  
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In contrast, some studies have shown cytostatic and cytotoxic effects of SF 

extracts in cervical carcinoma cells, Chinese hamster ovary cancer cells, Caski and Jurkat 

T Lymphoma cells, human breast adenocarcinoma (MCF-7), human non-tumorigenic 

epithelial mammary gland cells (MCF-12A), MDA-MB-468 cell line, human leukemia 

Jurkat cells, human promyelocyte HL60 cells, MDA-MB-231 breast cancer cells,  DU-

145 prostate cancer cells, and proximal and distal convoluted tubule epithelial cell lines 

(LLC-PK1 and MDBK) [74, 103, 109-111].  

These contrasting results could be due to a variety of factors such as innate 

differences in cell lines, strategy of preparation of extracts (tablets vs. dried plant parts), 

the extraction solvent, dosage and time of administration, as well as varying components 

in plants grown in regions with different soil compositions and environmental factors 

(leading to synthesis and accumulation of secondary metabolites) [112].  

It was shown that SFE protected cells by scavenging ROS in a dose-dependent 

manner in all three cell lines. These results are also in line with a previous report that the 

SF hot water extract significantly decreased both the luminal and lucigenin enhanced 

chemiluminescence responses of neutrophils stimulated by FMLP in a dose-related 

manner [76]. 

To further elucidate the mechanism of protection against t-BHP-induced oxidative 

stress, GSH and GSSG levels were measured. GSH, in its reduced form, was the most 

powerful intracellular antioxidant, and the ratio of reduced to oxidized glutathione 

(GSH/GSSG) was representative of the oxidative status of the cell. An increase in ROS, 

together with a decrease in GSH, set off a cascade of further oxidative damage. SFE was 

able to prevent depletion of GSH in all three cell lines. Results of present study were 
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supported by a study done by Ngcobo [113] where the SF extracts decreased both cell 

viability and GSH levels in H9 cancerous cells, while the same extracts significantly 

increased cell viability and GSH levels in normal T cells. The extracts caused a time-

dependent decrease in GSH content in H9 cells with the SF water extract dilutions being 

more effective than the ethanol extracts. However, in normal T cells, the extracts 

negatively affected the levels of GSH at higher concentrations, but enhanced the GSH 

content at lower concentrations. The SF water extract dilutions were also more effective 

in increasing the GSH content of normal T cells than the ethanol extracts were. However, 

contrary to this, a significant decrease in GSH was reported in SF-treated MDBK cells 

and LLC-PK1 cells [103]. These contrary results could, again, be due to differences in 

cell lines, doses, and incubation times (considering the cytotoxicity of SFE at high 

concentrations), as well as extract preparation. 

 

4.5. CONCLUSION 

The results indicated that hot water is an ideal solvent for the extraction of the 

antioxidant ingredients of SF vegetative material. Flavonoids may be the key component 

responsible for the antioxidant potential of SF based on its superior radical scavenging 

ability. In addition, protection against t-BHP-induced oxidative stress for transformed as 

well as for normal cell lines further demonstrates its antioxidant potential. In vitro assays 

indicated that this plant extract is a significant source of natural antioxidants, which 

might be helpful in preventing the progression of various oxidative stresses.  
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