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ABSTRACT 

 

The first part of this thesis work focuses on developing a bifunctional catalyst for 

electrochemical water splitting encompassing both oxygen and hydrogen evolution. A 

highly efficient catalyst is necessary to improve kinetics of the sluggish four electron 

process for oxygen evolution reaction (OER) and two-electron process for hydrogen 

evolution reaction (HER). Recently, transition metal phosphides have gained increasing 

interest in this field because of their good electrical conductivity properties as well as better 

catalytic activity. Many transition-metal phosphides are being considered for this 

application and iron phosphide (FeP) has proved to be a good HER catalyst. In this work, 

we will discuss that FeP can also be used as an OER catalyst which suggest us to consider 

iron phosphide (FeP) as a bifunctional catalyst for electrochemical water splitting.  

The second part of this thesis deals with a novel method of synthesizing transition-

metal arsenides and the analysis of their properties. Synthesized transition-metal arsenides 

like FeAs, CoAs, MnAs, and CrAs and their superparamagnetic behavior was investigated. 

FeAs and CoAs obtained from this synthesis method yielded superparamagnetic 

nanoparticles with high blocking temperature.  

Nanostructured nanomaterials are well known for their changing property as a 

function of reduced dimension as well as possessing high surface to volume ratio (enhanced 

surface area). These as-synthesized nanostructures have diverse applications in many 

fields. 
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SECTION 

1. INTRODUCTION 

 

 

Our energy sources are currently dependent on fossil fuels like oil, coal, and natural 

gas and it is predicted to be depleted in around 100 years. These non-renewable energy 

resources emit greenhouse gases which creates large environmental problems. The 

economy, the environment, human health, and increased amount of energy are the primary 

factors to be considered for renewable and sustainable sources like solar energy, wind 

energy, geothermal energy, etc. Water electrolysis is an important method to produce 

hydrogen, which is considered to be another source of clean energy. This is a feasible and 

the most attractive form of energy source. Renewable fuels generation has emphasized 

water splitting to produce hydrogen and oxygen and is completely carbon neutral reactions. 

 

1.1 ELECTROCHEMICAL WATER OXIDATION 

Electrolysis of water consists of two half reactions which are the hydrogen 

evolution reaction (HER) and the oxygen evolution reaction (OER). The HER is a less 

energy demanding reaction when compared with water oxidation (OER), which is 

considered as the bottleneck in the whole water splitting process. The difficulty of the water 

oxidation is due to its complexity involving multiple electron transfer process and O-O 

bond formations [1,2]. Water oxidation is extremely energy demanding and occurs 

thermodynamically at 1.23V (vs. RHE). The thermodynamics of water splitting is 

described by following oxygen evolution and hydrogen evolution electrochemical 

reactions, which can be given as- 
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At acidic pH:  

   OER:     2𝐻2𝑂 → 𝑂2 + 4𝐻+ + 4𝑒−(1.23V vs RHE)  (1) 

   HER:    4𝐻+ + 4𝑒− →  2𝐻2    (0.0 V vs RHE)  (2) 

And at basic pH: 

   OER: 4𝑂𝐻−  ↔  2𝐻2𝑂 + 𝑂2 + 4𝑒− (1.23V vs RHE)  

  

(3) 

   HER: 4𝐻2𝑂 + 4𝑒−  ↔  2𝐻2 +  4𝑂𝐻− (0.0 V vs RHE)  (4) 

Combining these two equations indicates that a total voltage of 1.23 V is needed to 

drive the uphill water splitting reaction. An additional voltage is necessary to drive the 

reaction kinetics or rate of the reaction and the overall voltage for water splitting. In 

practice, large overpotential is required leading to higher operation potentials. To minimize 

the overpotential and increase the reaction rate, a catalyst is needed. For large scale 

applications, the following criteria help in selecting a suitable catalyst for water oxidation, 

such as long-term durability, low overpotential, high activity, low cost, and low toxicity. 

The development of effective catalyst for this application is difficult and no catalyst has 

reached the level of large scale application up to date. The overpotential of the material is 

from the intrinsic activation barrier occurring at the electrode-solution interface and 

accounts for resistive losses which can arise from resistance through the electrodes, 

contacts, or mass transport limitations. While the impact of the overpotential can be 

minimized through optimal cell designs [3, 4, 5], the activation overpotential is the intrinsic 

property of the catalysts utilized at the anode and cathode. In real situation, several non-

idealities play role for example thermodynamic loss. At redox potential, the reactions are 

in equilibrium so net reaction rate is zero. A small disturbance from the redox potential is 

enough to increase either oxidation or reduction but the net production is very less. The 
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redox potential helps in understanding when the reactions occur but does not explain about 

the kinetics. The reactions undergo complex steps involving formation/cleavage of 

chemical bonds or intermediate states. These intermediate products are not stable and need 

high energy bonding leading to high activation potential, which decelerates the overall 

reaction. The anode reaction of water splitting is a very complex reaction [6]. One of the 

O-H bonds must be broken for a proton to be released and two of these O-H intermediates 

must be present in the close proximity to form O-O bond as shown in Figure 1.1. This is a 

four electron process and the physical proximity limitation in the anode reaction makes it 

a complex reaction to occur. This complexity leads to high overpotential requirement 

resulting in intrinsic loss thus an introduction of catalyst is needed. Hence, an introduction 

of catalyst is necessary. 

 

 

 

Figure 1.1. Electrochemical water splitting to oxygen molecules 
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The pH dependency plays a crucial role in understanding the electrochemical 

reactions. At a given condition, the redox potential does not change and the values depend 

on the electrochemical environment. The chemical reactions like oxidation and reduction 

rely on molar concentration corresponding to chemical potential which relates to Nernst 

equation.  

   𝐸𝑟𝑒𝑑 = 𝐸𝑟𝑒𝑑
𝑜 −

𝑅𝑇

𝑧𝐹
ln

𝑎𝑟𝑒𝑑

𝑎𝑜𝑥
  (5) 

𝐸𝑟𝑒𝑑: reduction potential 

Eo
red : standard reduction potential 

R : Universal gas constant 

T : Temperature 

z: valance number 

F: Faraday constant 

ared: chemical activity of reductant 

 aox: chemical activity of oxidant  

The slope RT/F at standard condition is 0.0591 V. If a reaction follows a redox 

potential change of 0.0591 V per log concentration, it follows Nernst equation. In case of 

water redox reactions, since oxygen and water concentration is assumed constant, the 

proton concentration is the only variable of reaction potential, which can be expressed by 

pH as in Figure 1.2., also known as the Pourbaix diagram. 

Electrocatalytic systems and their recent research in this field provides us with 

catalytic motifs as an options. Diverse array of operating conditions includes electrolyte, 

solvent, working electrode, catalytic activity, efficiency, and stability. Electrochemical 

references for catalytic operations differ as their use varies greatly depending on the solvent 
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conditions. A number of problems are still needed to be solved regarding the water 

oxidation. There are some concerns regarding the catalysts which we choose. 

 

 

 

Figure 1.2. Water Pourbaix Diagram 

 

 

Firstly, durability of the catalyst usually ranges from few minutes to days during 

the catalytic process. The lifetime of the catalyst for practical purposes needs to be long as 

it gets decomposed as the reaction proceeds. Secondly, the catalyst should not be air-

sensitive otherwise, with the atmospheric oxygen, it will be oxidized rapidly. Ideal water 

reduction catalyst should be able to initiate hydrogen production at a much faster rate than 

oxygenation to prevent decomposition or deactivation pathways. Thirdly, working 

potential for electrocatalytic water splitting is crucial and it should be close enough to the 

thermodynamic potentials of the two half-reactions for water oxidation and water 

reduction. For the catalyst if the working potential is too large than an overpotential, then 

some energy is lost which leads to loss in efficiency. Decreasing the overpotentials to the 
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minimum levels for water splitting is a challenge in the catalytic process and lots of 

research is involved in this particular field.  

Catalyst helps in building bonds with the dangling bonds of ionic species and 

transition metals are considered as a preferred catalyst because their electronic 

configuration can be changed partial occupation of the d-orbital since they have several 

stable oxidation states. Other factors include lattice distance and crystal direction, which 

affect their activity.  

 

1.2 EARTH ABUNDANT WATER SPLITTING CATALYSTS 

Traditionally catalysts for splitting water are rare earth elements of noble metals 

like Pt, Ir, and Ru. Even though, these precious metal catalysts show excellent catalytic 

activity, they are of high cost and low abundance which prevent them from being a potential 

application for large scale water splitting. Materials based on metal alloys, carbides, 

sulfides, and phosphides show high activity of HER and cobalt phosphate, metal oxides, 

and hydroxides demonstrate good activity for OER[7]. Research in this area shows very 

few earth abundant catalysts are capable of catalyzing both HER and OER in the same pH 

range for full water splitting. But recent research has discovered that transition-metal 

phosphides can be used for this purpose effectively.  

1.2.1 Metal Phosphides.  Main-group metal phosphides are formed with phosphide 

anions, P3- and a less electronegative metal. These compounds include Na3P, Ca3P2, GaP, 

InP, Cu3P, Cu3P2, etc. GaP [8] and InP [9] are semiconductors at room temperature and are 

used in making LEDs as their band gaps are accurate and can be doped in the 

semiconductor lattice. This band gap helps in tuning the emission and electronic properties 
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of the metal phosphides. For instances, GaP nanowires give high efficiency green light [10] 

and InP is a good solar cell material. The most common synthesis method for making metal 

phosphides is using precursors like trioctylphosphine (TOP) and tricoctylphosphine oxide 

(TOPO) [11]. Many research results convince that phosphides are functional materials. 

They display extraordinary applications and their synthesis method is simple and 

reproducible. 

1.2.2 Nanostructured Transition-metal Phosphides. The property change in 

nanostructured phosphides is attributed to the reduced dimensions and the intrinsic 

property of the material. When these materials are nanostructured, the properties related to 

electrons and their mobility are altered or enhanced accordingly. Nanostructured transition 

metal phosphides are investigated by various groups. Dodecylamine-capped FeP 

nanoparticles show magnetic moments within each particle as antiferromagnetic in contrast 

with bulk FeP and no Neel relaxation was observed [12]. Synthesis of FeP, Fe2P, MnP, 

MnAs and Ni2P nanoparticles by precipitation method has been reported giving narrow 

size distribution of nanoparticles [13, 14, 15]. When Fe nanoparticles gets converted to FeP 

and Fe2P nanorods they show ferromagnetic behavior with a transition temperature of 179 

K, whereas bulk FeP was metamagnet with a Neel temperature of 120K [13].  

 

1.3 RESEARCH PROBLEM 

In the past, transition-metal chalcogenides, nitrides, and carbides have shown 

excellent electrocatalytic acitivity [16]. Recently, transition-metal phosphides (TMP) open 

a new research stream as electrocatalyst towards water splitting. They gain interest as they 

are very active towards HER in electrolytes of all pH range [16]. Iron phosphide displays 
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chemical and physical properties similar to nitrides and carbides. This metal-rich TMP is 

also a good conductor of heat and electricity and has high thermal and chemical stability 

[16]. Further, in contrast to transition-metal chalcogenides FeP does not form layered 

structures which has an advantage of better active sites on the crystal surface. This makes 

FeP beneficial for electrocatalytic material for both OER also. Many research is going on 

for a potential bifunctional catalyst for electrochemical water splitting and FeP is one 

amongst them and in this work, FeP as a bifunctional catalyst for overall water splitting is 

developed. 

 

1.4 CATALYTIC ACTIVITY OF FeP 

1.4.1 Hydrogen Evolution Reactions. Extensive study about potential pathway for 

proton reduction is very important for effective hydrogen evolution catalyst. Hydrogen 

evolution usually proceeds through a metal hydride intermediate which is formed either by 

consecutive or coupled proton and electron transfers. The metal-hydride should have open 

active sites and appropriate electronic characteristics for hydrogen production.  

For hydrogen evolution, at the interface between the solid catalyst and the 

electrolyte, solvated protons from the liquid gain electrons from the electrode. These are 

the reactions which are believed to be undergoing and * denoted the catalytic active site. 

   𝐻𝐴 + ∗ →  𝐻∗ +  𝐴−  (6) 

   𝐻∗ + 𝐻𝐴 →  𝐻2 +  𝐴−   (7) 

   2𝐻∗ →  𝐻2  (8) 

There are two possible mechanisms invoked for hydrogen evolution. The solvated 

protons from the electrolyte start to absorb on the catalyst surface which combines with the 
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electrons. This reaction is called Volmer step. The two adsorbed H atoms on the surface of 

the catalyst may combine to give H2 molecule. This reaction is known as Tafel step. 

Alternately, a solvated proton may directly react with a hydrogen atom and an electron on 

the surface and form an H2 molecule. This reaction is familiarly known as the Heyrovsky 

step. The second proton never binds on the surface of the catalyst. For the overall reaction 

to occur it should either happen through Volmer-Tafel mechanism or Volmer-Heyrovsky 

mechanism.  

Au-coated glass substrates were used in preparing the electrode for studying both 

Oxygen evolution and Hydrogen evolution reactions. All solutions were prepared using 

deionized (DI) water . Prior to electrodeposition, the substrates were cleaned by ultrasonic 

treatment followed by isopropanol rinse for three times and eventually rinsed with 

deionized water (15 min each step) to ensure the clean surface.  FeP catalyst ink was 

prepared by ultrasonically dispersing 10.0 mg catalysts in 1.0 mL isopropyl alcohol (IPA) 

and ultrasonicated for 30 min. Au-coated glass  plates was covered with a Teflon tape, 

leaving an exposed geometric area of 0.283 cm2, served as an underlying conductive 

substrate of the working electrode. A quantity of 20 μL of the ink was pipetted out on the 

top of the Au. The catalyst layer was dried at room temperature. Then, an aliquot of Nafion 

solution (10 µL of 1 mg/mL solution in 50% IPA in water) was applied onto the catalyst 

layer. The Nafion-coated working electrode was dried at room temperature and finally 

heated at 130 oC for 30 min in air in an oven. 

The electrocatalytic activity for catalytic HER with FeP over Au-coated glass was 

determined in N2-saturated 1.0 M KOH , 0.5M H2SO4, and 1.0 M PBS solutions at a scan 

rate of 10 mV s-1.  
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1.4.1.1 Hydrogen evolution reaction in alkaline medium. From the Figure 1.3., 

HER activity is exhibited clearly with an onset potential of 220 mV and an overpotential 

of 390 mV to achieve 10 mA cm-2. The observed tafel plot show 157 mV per decade. 

 

 

 

  

Figure 1.3. (a) LSV for HER in 1.0 M KOH at a scan rate of 10mV s-1 (b) Tafel plot of 

catalyst (c) stability for 1 hr of the catalyst 
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1.4.1.2 Hydrogen evolution reaction in acidic medium. From the figure 1.4., 

HER activity is exhibited clearly with an onset potential of 100 mV and an overpotential 

of 317 mV to achieve 10 mAcm-2. A stability study was conducted and Figure- (b) shows 

that the catalyst is stable under H2 evolution for one hour. The observed tafel plot show 

95.6 mV per decade. 

 

 

 

 

Figure 1.4. (a) LSV for HER in 0.5 M H2SO4 at a scan rate of 10mV s-1 (b) Stability 

study for 1 hr of the catalyst (c) Tafel plot of catalyst 
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1.4.1.3 Hydrogen evolution reaction in pbs medium. From the Figure 1.5., 

HER activity is exhibited clearly with an onset potential of 115 mV and an overpotential 

of 275 mV to achieve 10 mA cm-2. A stability study was conducted and figure -(b) shows 

that the catalyst is stable under H2 evolution for one hour. The observed tafel plot show 

151.23 mV per decade.  

 

  

 

 

Figure 1.5. (a) LSV for HER in 1 M PBS at a scan rate of 10mV s-1 (b) Stability study for 

1 hr of the catalyst (c) Tafel plot of catalyst. 
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1.4.2 Oxygen Evolution Reactions. Oxygen evolution reaction (OER) is a 

common and an important anodic process in electrolysis process in aqueous medium. 

Numerous metals and alloys have been approved to be electrocatalyst and among them 

nickel and noble metals are the best option. Industrial electrochemical process like water 

electrolysis prefer a stable anode material with low overvoltage. The main prerequisites for 

the anode material for OER production are high surface area, high electrical conduction, 

good electrocatalytic behavior, minimization of gas bubble problems, low cost and safety 

with respect to health. These characters influence the electrode reaction and the 

overpotential of the catalyst in OER. The comparison of the overpotential at a constant 

current density or the current density at a constant overpotential is a more advantageous 

way for elucidating electrocatalysis for pragmatic use. The OER mechanism is complex 

when compared to HER because many intermediate states exist in the reaction steps and at 

times there might be many activation steps which controls the rate of the OER. The active 

site of a transition metal is on the surface, will involve in decreasing the activation energy 

in the rate controlling step also contributes to the electron transfer. The main factors which 

determine the electrocatalysis for OER are the bond strength between the transition metal 

and the oxygen atom because it affects the rate of desorption and the adsorption steps. The 

other factor is due to the electron transfer rate which relates the density of the electron 

states at the fermi level and the degree of overlapping between the orbitals of the active 

site. The adsorbed species at the electrode surface will help in determining the rate of the 

electron transfer.  
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PAPER 

I. EARTH ABUNDANCE METAL PHOSPHIDE (IRON PHOSPHIDE) AS 

AN EFFICIENT CATALYST FOR OXYGEN EVOLUTION 

REACTIONS IN ALKALINE SOLUTION 

 

N. Ashokan,a J. Masudb and M. Nathb,* 

aDepartment of Chemical and Biological Engineering, Missouri University of Science & 

Technology, Rolla, MO 65409. 
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ABSTRACT 

 

Herein, for the first time, we report solution phase synthesis of iron phosphide as 

efficient catalyst for oxygen evolution reaction. It needs only 290 mV overpotential to 

achieve a current density of 10 mA cm-2 with small Tafel slope of 50.8 mV/decade and 

maintains high stability in 1 M KOH. 
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1. INTRODUCTION 

 

The development of renewable and clean energy technologies, [1-3] such as water 

splitting for hydrogen production, artificial photosynthesis and metal-air batteries, is 

hindered because of very sluggish oxygen evolution reaction (OER) kinetics. Despite Ru, 

Ir based catalysts being known as highly effective OER catalysts, [4-5] their prohibitive 

cost and scarce reserves have significantly prohibited large-scale application. Therefore, it 

is highly desirable and imperative to develop new OER electrocatlysts with both excellent 

activity and low cost. Consequently, great efforts have been devoted to developing low-

cost alternatives.  Recently, transition metal oxides [6-7] have been subject of intense 

research as an alternative electrode materials of these expensive noble metals. Beside 

oxides, transition metal chalcogenides [8-9], nowadays, considered as potential candidate 

for the OER due to their remarkable electronic structures [10]. More recently, transition-

metal phosphides (TMPs) [11-18] which are intrinsically metallic have been intensively 

studied as an electrocatalysts for OER and HER. For instance, FeP [11], Ni2P [12], CoP 

[13], etc. have already shown great potentials as HER catalysis at high current densities 

and at low overpotentials. On the other hand, there have been few reports on TMPs (e.g., 

CoP, NiP) as OER catalyst in alkaline media. Recently, Yan et. Al [18] has reported iron 

phosphide nanotubes coated with an iron oxide/phosphides @ carbon cloths as full water 

splitting catalyst.  Herein, we report that solution phase synthesis of iron phosphide (FeP) 

can be directly utilized as electrocatalysts for OER in strong alkaline electrolyte, which can 

achieve a current density of 10 mA cm−2 at overpotentials of 290 mV for OER with very 

small Tafel slopes, 50.8 mV/dec. Electrode prepared from FeP catalyst shows an excellent 

stability and activity after 4 h of constant current electrolysis. 
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2. CHARACTERIZATION OF FeP 

 

 

Figure 1.1. (a) shows the TEM image and corresponding histogram (inset of Figure. 

1.1. (a) where catalyst was found to be uniform particles size with a narrow size distribution 

(from 3-7 nm), centered at 5 nm based on the counting of 100 randomly chosen particles. 

The high-resolution TEM (HRTEM) image, as shown in Figure. 1.1. (b), reveals the lattice 

fringes with interplanar spacings of 1.54, 2.42 and 2.73 Å, corresponding to <020>, <111> 

and <011> planes of the FeP, respectively. The crystallinity of film was further confirmed 

by SAED pattern shown as inset of Figure 1.1 (b) where bright rings made up of discrete 

spots, which can be indexed to the <111> and <211>  planes of FeP, respectively. The 

TEM EDS spectrum of FeP imples the presence of Fe and P elements with the atomic ratio 

close to 1:1. Pxrd was carried out to further characterize the chemical structures of the as-

prepared catalyst. As shown in Figure 1.1. (c), all the diffraction peaks could be well 

indexed to FeP (JCPDS Card No.01-078-1443), with almost no detectable impurities. The 

X-ray photoelectron spectroscopy (XPS) analysis of the as-prepared FeP is shown in Figure 

1.1 d. The doublet peaks for the binding energy (BE) of Fe 2p3/2 appear at 707.1 and 711.8 

eV and P 2p peaks at 129.3 and 133.8 eV. The peak at 707.1 eV is associated with Fe in 

FeP,[19] hereas that of 711.8 eV due to oxidized Fe,[20] resulting from the superficial 

oxidation of FeP exposed to air.[20]  The P 2p XPS spectrum reveals two peaks at 133.6 

and 129.4 eV, respectively. The lower energy peak is consistent with the binding energy 

for FeP (129.4 eV),[19,20] and peak at 133.6 might due to the presence of oxidized 

phosphorus as the samples were exposed to air.   

Figure 1.2. shows the polarization curves of FeP @ Au and bare Au in N2 saturated 

1 M KOH at a scan rate of 10 mV s–1. Bare Au clearly did not have catalytic activity (or 
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very poor activity). But the loading of FeP on Au showed excellent onset potential and 

overpotential for OER. Specifically, the onset potential of FeP @ Au was 1.48 V (vs. RHE) 

and yielded a current density of 10 mA cm–2 at an overpotential of 320 mV, which was 

comparable to IrOx (320 mV) [21] and /-or better than the metal phosphide based catalysts. 

At this stage it is difficult to explain the reason of enhanced OER activity at FeP. One of 

the reasons might due to the high electrical conductivity of FeP like other transition metal 

phosphides [14], which may favors fast electron transport and enhances the activity. Inset 

of Figure 1.2. presents Tafel plot, η vs. log(j), for FeP @ Au. The Tafel slope, 50.8 mV/dec 

is comparable for all TMPs based OER [15-17].  

The stability of catalyst was performed through the time dependent voltages under 

a constant current of 10 mA cm-2 for 4h and shown in Figure 1.3. Initially the high 

overpotential was required to achieve 10 mA cm-2 compare to after 4h. The inset of Figure 

1.3. depicts comparison of LSVs showed the better activity after 4 h of 

chronopotentiometry (only 290 mV overpotential requires to get 10 mA cm-2) compared to 

the initial curve, suggesting the superior stability of catalyst in the long term process. The 

SEM implies the electrode surface remained unchanged after 4 h of continuous electrolysis 

and EDX line scan shows the uniform distribution of Fe and P in both of before and after 

activity catalyst film.  

The turnover frequency (TOF) of the FeP catalyst was calculated at an overpotential 

of 370 mV in 1 M KOH, assuming all of the active metals in the catalyst are catalytically 

active for OER. The TOF value of FeP were calculated to be 0.021 and 0.032 s−1 for initial 

and after 4 h of chronopotentiometry, respectively which are comparable with the 

previously reported TOF values of metal phosphide based catalyst[17] , and higher than 
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well-known IrOx (0.0089 s−1) [22] OER catalyst, also indicating a better OER activity on 

FeP. This enhanced activity after 4 h of choropotentiometry compare to the initial might 

be due to the increasing of wettability of the thin Nafion layer covering the catalysts 

particles with time, which may allow the electrolyte to the contact of active material 

surfaces. Table 1.1. Compares different OER catalysts. 
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Figure 1.2. (a) LSVs measured in N2 saturated 1.0 M KOH solution at a scan rate of 10 

mV s-1and inset is the Tafel plot of catalyst, (b) Stability study of catalyst under 

continuous O2 evolution (at 10 mA/cm2) for 4 h studied through chronopotentiometry. 

Inset shows the LSVs of catalyst synthesized in N2 saturated 1 M KOH before and after 

chronopotentiometry for 4 h. 

 

 

 

 

 

Table 1.1. Comparison of OER activity at different catalysts. 

 

Catalyst Electrolyte Onset 

potential 

/ vs. 

RHE 

η at 10 

mA cm-

2 / mV 

Tafel 

/ mV 

dec-1 

TOF at 

370 mV 

/ s-1 

References 

(Co0.54Fe0.46)2P 0.1 M KOH 1.46 370 - - 14 

Ni-P 1.0 M KOH 1.54 344 49 - 15 

CoP 1.0 M KOH 1.56 345 47 - 16 

CoP NPs 0.1 M 

NaOH 

1.52 330 50 0.0287 17 

Iron 

Oxide/phosphate 

layer coated FeP 

 

1.0 M KOH 

 

1.48 

 

288 

 

43 

 

- 

 

18 

FeP 1.0 M KOH 1.48 Initially 

320 

After 

4h 290 

51 0.021 

0.032 

This work 

a 
b 
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3. CONCLUSION 

 

In summary, we reported a simple synthesis of the topmost earth-abundant metal 

phosphide based, FeP, catalyst for the oxygen evolution reaction in alkaline solution. This 

catalyst requires comparatively lower overpotential to achieve the 10 mA cm-2 which is, 

even, lower than the overpotential of robust IrOx catalyst. FeP is reported as the OER 

catalyst for the first time which requires comparatively lower overpotential (290 mV) to 

achieve the 10 mA cm-2 and exhibited a very high stability in alkaline media. 
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APPENDIX 

 

 

SYNTHESIS OF FeP 

All reagents used in this synthesis were purchased from Sigma Aldrich. In a typical 

experiment, 1.00 g of trioctylphosphine oxide (TOPO) and 1.2 ml of trioctylphosphine 

(TOP) were mixed and heated at 300˚C for 30 mins in a three neck round bottom flask 

under vigorous stirring in N2 medium. Subsequently, 0.3 mL of solution 1 (made from 0.2 

mL of Fe(CO)5 and 0.8 mL TOP) were added into the TOP/TOPO solution. Instantly, the 

solution changed to black and the temperature was constantly maintained at 300˚C for 30 

mins. The black solution was washed and centrifuged several times with hexane using 

ultrasonification to remove the unreacted reactants. The black product was dried and 

characterized. 

 

ELECTRODE PREPARATION 

 

Au-coated glass substrates were purchased from Deposition Research Lab 

Incorporated (DRLI), Lebanon Missouri. All solutions were prepared using deionized 

(DI) water with a resistivity of 18 MΩ·cm. Prior to electrodeposition, the substrates were 

cleaned by ultrasonic treatment in micro-90 followed by isopropanol rinse for three times 

and eventually rinsed with deionized water (15 min each step) to ensure the clean surface.  

FeP catalyst ink was prepared by ultrasonically dispersing 10.0 mg catalysts in 1.0 mL 

isopropyl alcohol (IPA) and ultrasonicated for 30 min. Au-coated glass  plates was covered 

with a Teflon tape, leaving an exposed geometric area of 0.283 cm2, served as an 

underlying conductive substrate of the working electrode. A quantity of 20 μL of the ink 

was pipetted out on the top of the Au. The catalyst layer was dried at room temperature. 
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Then, an aliquot of Nafion solution (10 µL of 1 mg/mL solution in 50% IPA in water) was 

applied onto the catalyst layer. The Nafion-coated working electrode was dried at room 

temperature and finally heated at 130 oC for 30 min in air in an oven. 

 

CHARACTERIZATIONS AND CATALYTIC ACTIVITY 

 

Characterizations: Transmission Electron Microscopy (TEM):  FEI Tecnai F20 

was used to obtain TEM, high resolution TEM images (HRTEM) and selected area 

electron diffraction (SAED) patterns of the catalysts.  

Powder X-ray Diffraction. The electrodeposited substrates were studied as such 

without any further treatment. The product was characterized through powder X-ray 

diffraction (pxrd) with Philips X-Pert using CuKα (1.5418Ǻ) radiation. Pxrd pattern was 

collected from the as-synthesized product spread on the growth substrate. Because the 

product formed a very thin layer on the substrate, the pxrd was collected at grazing angles 

in thin film geometry (GI mode with Göbel mirrors). 

X-ray Photoelectron Spectroscopy (XPS): XPS measurements of the catalysts were 

performed by KRATOS AXIS 165 X-ray Photoelectron Spectrometer 

using monochromatic Al X-ray source. The spectra were collected for the as-prepared 

sample and the sample after sputtering with Ar for 2 min, which removed approximately 2 

nm from the surface. 

 

ELECTROCHEMICAL CHARACTERIZATION AND CATALYTIC STUDIES 

The OER catalytic performance was estimated from linear scan voltammetry (LSV) 

plots while the stability of the catalyst was studied by chronoamperometry. 
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Electrochemical measurements were performed in a three-electrode system with 

an IvumStat potentiostat using Ag/AgCl and Pt mesh as reference and counter electrodes, 

respectively. All measured potentials vs the Ag/AgCl were converted to the reversible 

hydrogen electrode (RHE) scale via Nernst equation (eq. 1):   

   ERHE = EAg/AgCl + 0.059 pH + EoAg/AgCl  (1) 

where ERHE is the converted potential vs. RHE, EAg/AgCl is the experimentally  

measured potential against Ag/AgCl reference electrode, and EoAg/AgCl is the standard 

potential of Ag/AgCl at 25 oC (0.197 V). For most of the electrochemical 

characterizations, the electrode area of the film surface was kept constant at 0.283 cm2. 

Turnover Frequency (TOF). The turnover frequency (TOF) was calculated from the 

following equation: 

       TOF =   I/(4 × F ×m)   (2) 

Where I is the current in Amperes, F is the Faraday constant and m is number of moles of 

the active catalyst. 

Tafel plots. The Tafel slope was calculated from the following equation: 

       η=a+(2.3 RT)/αnF log(j)  (1) 

where η is the overpotential, j is the current density and the other symbols have their usual 

meanings.  

The Tafel equation as shown in Eq. (1) is a fundamental equation which acquires 

from the kinetically controlled region of OER / HER, and relates the overpotential η with 

the current density j where the Tafel slope is given by 2.3RT/αnF. To calculate Tafel slopes, 

LSV plots were obtained with a slow scan speed (2 mV s-1) in non-stirred solution.   
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SECTION 

2. CONCLUSIONS AND FUTURE WORK 

 

 

The topmost earth-abundant metal phosphide, FeP, catalyst for the oxygen 

evolution reaction in alkaline solution shows comparatively lower overpotential to achieve 

the 10 mA cm-2. In this thesis, FeP obtained has a lower overpotential of 290 mV to achieve 

the 10 mA cm-2 and exhibited very high stability in alkaline media. FeP catalyst for 

Hydrogen Evolution Reaction in alkaline, acidic and neutral solution shows overpotential  

of 470 mV, 317mV, and 275 mV respectively. Future steps can involve in checking the 

catalytic activity of FeP for Oxygen Reduction Reactions (ORR) making it a trifunctional 

catalyst. FeP nanorods and nanostructure arrays would provide better catalytic activities.  
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APPENDIX 

 

 

INTRODUCTION 

 

Main-group metal phosphides are formed with anions, P3- and a less electronegative 

metal. GaAs is a direct band-gap semiconductor. When it is combined with zinc blende its 

characters as semiconductor improves as its electron mobility increases. This is a good 

material for making high frequency transistors. GaAs nanoparticles especially quantum 

dots based have good electronic and optical properties [16]. Metal arsenides have their 

importance as detectors, photodiodes and solar cells.   

 

TRANSITION-METAL ARSENIDES 

 

Both transition arsenides and phosphides come under the category of transition-

metal pnictides and they are gaining importance due to their d-electron configuration of the 

central atom.  Fe-based pnictides show superconductivity property [18] which can store 

charge layers. Binary EAs are formed when transition metals in +3 oxidation state 

combines with -3 oxidation state of As. Binary arsenides are of mostly with transition 

metals which have partially filled 3d shell which is highlighted in the Figure A1. 

Many other transition-metal pnictides are RhP3, RuP, Ru2P, Pd3P, Ni2P, MoP, 

FeP,etc. These transition-metal pnictides have their applications in electronic, magnetic 

properties and electrochemical properties also due to their facile redox chemistry. Magnetic 

properties of these transition-metal pnictides are rare and they can be implemented in 

magnetic refrigeration built on magnetocaloric effect (MCE). If a material exhibits MCE, 

when an external magnetic field is applied the magnetic moment gets oriented randomly 
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giving heat.  This heat can be extracted from the MCE material through heat transfer and 

given out to the atmosphere. If the magnetic field is taken off, magnetic moments get 

randomized again, cooling the environment below the ambient temperature because of the 

heat withdrawal from the material. MnFeP0.45As0.55 is an example of MCE at room 

temperature [19,20].  

 

 

 

Figure A1: Binary Arsenides formed from transition metals 

 

 

 

Transition-metal pnictides have their importance in superconductivity after the 

discovery of Fe based pnictides, especially arsenides because they exhibit high Tc (critical 

temperature for superconductivity). Even Fe-based phosphides display superconductivity, 

one such material is La0.8Rh4P12 with a Tc of 13.6 K [21]. To conclude, transition-metal 

arsenides and phosphides have their usefulness in superconductivity and magnetism 

[22,23].  
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NANO-STRUCTURED METAL ARSENIDES 

 

Magnetism and superconductivity are expected to display unique features when 

they are nanostructures. Reduction in dimension of superconductors develops artificial 

potential wells where the superconducting flux lines are confined and the boundary 

conditions of the potential wells change leading to change in properties similar to quantum 

confinement known as quantum size effect in superconductors. Nano-magnetism is a scope 

of research in magnetic phenomenon occurring at submicron level. Binary transition-metal 

pnictides especially arsenides when nanostructured show interesting magnetic interactions. 

In ferromagnetic materials, when the material size is reduced below to critical size the 

magnetic spins get confined in a single magnetic domain. This effect makes the particle to 

behave as monodomain magnetic chunks thereby to superparamagnetic behavior. 

Nanostructuring breaks the electron pair and makes the surface magnetic phenomenon 

more prominent causing ferromagnets and antiferromagnets to exhibit unique properties.  

  

SYNTHESIS METHOD OF TRANSITION-METAL PNICTIDE 

 

Nanomaterial synthesis using novel, facile and scalable methods provides way to 

new evolution of materials with varied applications. Many advancement, improvements 

and establishments have been made in the synthesis methods of nanomaterials in the past 

few decades. Some common synthesis methods are being illustrated. Cobalt phosphide 

(Co2P) nanowires were synthesized using one pot synthesis with cobalt oleate in TOP at 

290˚C or 320˚C [24]. Co2P or CoP nanoparticles of 5nm were achieved using cobalt 

diselenophosphinate precursor dissolved in TOP to TOPO or HDA at 300˚C after 60 and 

150 mins respectively. Thermolysis of Co(C5H7O2)2 precursor in TOPO at 350˚C for 5h 
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gives Co2P [25]. General method of converting metal nanoparticles to transition-metal 

phosphides such as Ni2P, PtP2, Rh2P, PdP2, Pd5P2, and Au2P3 is by reacting TOP in a hot 

solvent at 360˚C. In this method, metal nanoparticles act as reactive template to produce 

these transition-metal phosphides [26,27]. TOP can be used as an applicable precursor in 

the synthesis of metal phosphides from metal nanoparticles. Fe phosphide nanoparticles 

can be synthesized through reductive annealing of Fe phosphate nanoparticle as a precursor 

casted on mica surface [28]. This route can be applied for a wide range of transition metals 

and pnictogens to avoid highly toxic precursors for synthesis. FeP nanoparticles can be 

also synthesized using Fe(III) acetylacetonate with tris(trimethylsilyl)phosphine at 320˚C 

with TOPO as a solvent and decylamine, myristic acid or hexylphosphonic acid as capping 

agents [13]. FeAs nanocrystals were made by reductive recombination reaction with 

transition metal chrolides like FeCl3 and AsCl3 at 150-180˚C [29]. This synthesis method 

did not give an insight about the magnetic nature and the morphology was also unclear. 

The synthesis method of arsenside nanostructures through solution chemistry has Sa-

precursor like AsCl3, AsH3, and As, which are toxic. Lately, triphenylarsenide (TPA) is 

being used as an alternative As-precursor in the synthesis of InAs and GaAs [30]. TPA is 

less toxic, easy to handle, and moderately reactive, which makes it a preferred candidate 

as As-precursor for synthesizing arsenide nanostructures. Mesh like CoAs nanostructures 

[31] and thin film CoAs using metal-organic complex 1,3-bis(tert-butyl)-2-

112[tetracarbonyl-cobalt(-1)]-1,3,2-diazarsolidine were synthesized using chemical vapor 

deposition method [32]. These conventional methods produce pure sample, but their 

morphology cannot be controlled.  
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SYNTHESIS OF BINARY METAL ARSENIDES 

 

A general method for synthesis of EAs nanoparticles was carried out in a nitrogen 

filled glove box containing less than 1 ppm of O2. The experiment was carried out in a 

three-neck round bottom flask assembled with a magnetic stirring bar and air condenser. 

To this round bottom flask 1mM of triphenylarsine (TPA) and 5 mM of HAD was weighed 

and added. This mixture was heated to 325˚C and the reactants melt to form a colorless 

solution. 1mM of Fe(CO)5,/Co2(CO)8,/Mn(CO)5,/Cr(CO)6 was then injected using a 

syringe or as solid into the hot HDA + TPA mixture. After the addition of the carbonyl 

precursor the solution turns black immediately with rapid evolution of gases. After the gas 

subsides, the black solution gets refluxed depending on the reaction for variable length of 

time and the heating is stopped and allowed to cool down to room temperature. The black 

solution was washed 3-4 times with ethanol and hexane using ultra-sonication to remove 

excess HDA or any other unreacted precursors. The powder gets settled at the end of the 

centrifuge tube which is air dried and collected for further characterization. The powder 

was characterized using powder X-ray diffraction (pxrd), scanning and transmission 

electron microscopy (SEM and TEM respectively), XPS, and EDAX. All arsenides made 

by this method gave solid product except CrAs, which formed a black suspension.  

 

 

CHARACTERIZATION OF BINARY ARSENIDES  

 

The synthesized product was finely ground and used for powder X-ray diffraction 

(pxrd) with diffractometer scanning from 5˚ to 90˚. A Tecnai F20 microscope operating at 

200 kV was used for TEM while a dual beam Helios FIB microscope was used for SEM 

and STEM studies. Samples for TEM and STEM were made by dispersing these 
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synthesized arsenide nanoparticles in ethanol by ultra-sonication for 30 mins and adding 

drops from this diluted dispersion on a carbon coated 200 mesh Cu TEM grid followed by 

drying in air.  

SQUID studies were performed to measure field-dependent isothermal 

magnetization and temperature-dependent magnetic moment at constant field. The 

powdered sample of 13.1 mg of FeAs and 16.9 mg of CoAs was loaded in a gel cap and 

inserted into the magnetometer. Background data was collected from the diamagnetic gel 

cap separately and subtracted from the sample signal. The isothermal magnetization at 

various temperature (5K, 100K, and 300 K) was collected by varying applied magnetic 

field from -20,000 Oe to 20,000 Oe and reported the change in sample magnetization.  

Figure A2 (a) shows the pxrd pattern of FeAs nanoparticles, and is compared with 

the standard reference in JCPDS file 01-076-0458. These nanoparticles were found to be 

highly crystalline. A TEM image is shown in Figure A2. 

 

 

 

Figure A2. (a) pXRD of FeAs nanosparticles, (b) TEM of FeAs 
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From Figure A3, the pXrd pattern suggest that pure-phase CoAs nanostructures 

(JCPDS -01-077-1351) were formed and Figure A3 (b) shows the TEM image of CoAs 

nanorod indicating crystalline growth. The probability of nanowire formation is higher in 

CoAs. In the case of CoAs, hot-injection method gave rise to 1D nanostructures within first 

10 mins of Co2(CO)8 introduction to the mixture. As the reaction proceeded for another 40 

mins, longer CoAs nanorods with uniformity was obtained. 

 

 

 

Figure A3. (a) pXRD of CoAs, (b) TEM of CoAs nanorods 

 

 

 

MnAs nanoparticles were obtained by reacting manganese carbonyl with TPA and 

the pXrd pattern figure shows that JCPDS-0072-1065 was formed with Mn3As in small 

trace as impurity which was picked up by pXrd. Figure A4 (b) shows STEM image of 

MnAs nanoparticle revealed the size range to be 5 to 10 nm. These MnAs nanoparticles 
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are considerably smaller compared to FeAs and CoAs. MnAs nanoparticles have 

magnetostructural properties and are known to have electromotive force.  

 

 

 

Figure A4 (a) pXRD of MnAs, (b) TEM of MnAs nanoparticles 

 

 

CrAs is a ferromagnetic semiconductor and in this synthesis process it was very 

difficult to isolate the product in the form of a dry product because of its small size and it 

is well dispersed in solvents. In order to characterize, TEM, EDS and UV-Vis spectroscopy 

were conducted. PXRD pattern could not be conducted because of very small quantity and 

lack of dry powder. Figure A5 (a) shows HRTEM image of CrAs nanoparticles or quantum 

dots. Both TEM and EDS confirm the particle morphology and composition. Figure A5 (b) 

shows the absorption spectrum of CrAs nanoparticle and a strong absorption peak at 560 

nm was observed and a band gap of 1.9 eV was estimated from the absorption edge. In this 

case, the nature and peak positions of the absorption spectra indicate to be CrAs 
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nanoparticle and considerable quantum confinement in the nanoparticles resulted in a blue 

shift of the absorbance band.  

 

 

 

Figure A5. (a) TEM image of CrAs nanostructure, and (b) the UV-Vis spectra 

 

 

 

Transition metal arsenides are known for their novel magnetic properties and 

nanostructured transition metal arsenides also exhibit interesting magnetic properties. 

Magnetic properties of FeAs and CoAs nanostructures were measured using temperature-

dependent and field-dependent magnetization plots implying these nanoparticles to be 

superparamagnetic with high blocking temperature (TB). CoAs nanostructures show 

ferromagnet-like ordering at low temperature attributing to their anisotropic shape as in 

Figure A6. Prediction has been made that when superparamagnetic TB can be increased by 

increasing the shape anisotropy. Higher TB along with larger coercivity increases the 

applicability of these nanostructures making them suitable for magnetic memory storage 
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and related devices, and the ability to tune TB through subtle variation in the synthesis 

methodology.  

 

 

 

Figure A6. Anhysteretic isothermal magnetization showing the superparamagnetic nature 

of the (a) FeAs and (b) CoAs. 

 

 

In general, we observed that the propensity towards the formation of 1-D 

nanostructures increases as the d electrons availability increases (Cr to Co). CoAs forms 

nanorods whereas MnAs and FeAs form nanoparticles and CrAs form extremely small 

quantum dots. This may be due to several factors like stability/reactivity of acid-base 

adduct-like intermediate formed through ligand exchange, growth-rate of the nuclei, and 

the rate conversion. A facile one-step precipitation method to synthesize monoarsenides of 

3d transition element involving very simple redox reaction between the metal carbonyl and 

the arsine precursors with the help of amine surfactant to provide a slightly basic medium. 

The morphology evolution of the product nanostructures across the transition metal series 

was observed and concluded that reaction kinetics plays an influential role.  
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