Library and
Learning Resources

A coarse-grain molecular dynamics study of the nanotribological properties of nanoparticle solutions

Ramesh Chembeti

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses
Part of the Chemical Engineering Commons

Department:

Recommended Citation

Chembeti, Ramesh, "A coarse-grain molecular dynamics study of the nanotribological properties of nanoparticle solutions" (2008). Masters Theses. 4629.
https://scholarsmine.mst.edu/masters_theses/4629

This thesis is brought to you by Scholars' Mine, a service of the Missouri S\&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

A COARSE-GRAIN MOLECULAR DYNAMICS STUDY OF

THE NANOTRIBOLOGICAL PROPERTIES OF NANOPARTICLE SOLUTIONS by

RAMESH CHEMBETI

A THESIS

Presented to the Faculty of the Graduate School of the MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree MASTER OF SCIENCE IN CHEMICAL ENGINEERING

2008
Approved by

Dr. Jee-Ching Wang, Advisor
Dr. Parthasakha Neogi
Dr. Louis Ge

© 2008

RAMESH CHEMBETI
All Rights Reserved

Abstract

In this study, solutions of alkanethiol-capped nanoparticles in alkane are examined using molecular dynamics simulations for their nanotribological potential based on the hypothesis that fluid molecules of very different sizes may interrupt each other's layering tendency to result in less layered or non-layered configurations and provide better lubrication for nanodevices. An effective nanoparticle-nanoparticle pair potential based on previous atomistic approach is used and the temperature and parallel pressure are controlled in place of chemical potential for defining thermodynamic state. When compressed, the confined nanoparticle-containing alkane films generate reduced oscillations in perpendicular forces and smoother expansion in lateral dimensions, indicating lesser extent of layering due to the presence of much bigger nanoparticles. The nanoparticles are found to be well dispersed by the alkane solvent throughout all separations, meaning no or little tendency to form clusters or aggregate towards the confining surfaces, which is important for the stability and quality of the nanoparticle solutions as nanotribological lubricant. When sheared by a sliding surface, the confined fluids tend to move in the same parallel direction so that their density profiles remain practically unchanged. The shear stress resulting from the sliding surface has been calculated and found to increase with faster sliding speed but not proportionally. More importantly, the presence of the nanoparticles in the lubricant films reduces the shear stress noticeably and thereby reducing the apparent viscosity and frictional force. This effect is particularly evident under relatively large sliding speed and large surface separations. Regarding mobility, the nanoparticles exhibit lower diffusivity in nanoconfinement than typical fluids and their diffusivity can be enhanced by shearing.

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor Dr. Jee-Ching Wang for being very patient and helpful throughout the course of my thesis. I would like to thank Dr. Parthasakha Neogi and Dr. Louis Ge for spending their valuable time as committee members. Financial support from Missouri Research Board and National Science Foundation is greatly acknowledged. My heartfelt thanks to my parents, my sister and all my friends for being there for me all the time.

TABLE OF CONTENTS

Page
ABSTRACT iii
ACKNOWLEDGMENTS iv
LIST OF ILLUSTRATIONS vi
LIST OF TABLES vii
SECTION

1. INTRODUCTION 1
1.1. NANOTRIBOLOGY 1
1.2. NANOCONFINED FLUIDS 2
1.3. SOLUTIONS OF ALKANETHIOL-CAPPED NANOPARTICLES IN ALKANE 5
1.4. PROPOSED RESEARCH METHODOLOGY 7
2. SIMULATION METHODOLOGY 9
2.1. MOLECULAR DYNAMICS COMPUTER SIMULATION TECHNIQUE 9
2.2. SIMULATION APPROACH AND MODELS 10
2.3. SIMULATION DETAILS 16
3. RESULTS AND DISCUSSIONS 18
3.1. PC-BASED MOLECULAR SIMULATIONS 18
3.2. CONTINUOUS COMPRESSION 20
3.3. NANOCONFINED NANOPARTICLE SOLUTIONS UNDER SHEAR 23
3.4. CONCLUSIONS 30
APPENDIX
\qquad 32
BIBLIOGRAPHY 68
VITA 72

LIST OF ILLUSTRATIONS

Figure
1.1. Schematics of (a) a nanoconfined fluid, surface force, f_{s}, and frictional force, f_{f}, (b) solvation/surface force profiles for confined fluids with layered or non-layered configurations, and (c) stick-slip motion of confined fluids with layered configurations4
1.2. Ball model and a coarse-grained representation of an alkanethiol-capped nanoparticle 7
2.1. Ball models of (a) silicon diamond structure, (b) a side view of the $\operatorname{Si}(111)$ surface, (c) a top-down view of the $\operatorname{Si}(111)$ surface with depth fading indicated by different colors, and (d) a top-down view of the $\operatorname{Si}(111)$ surface with pink balls and the rectangle showing one surface unit cell. a_{1} and a_{2} are the dimensions of a surface unit cell and equal to $3.84 \AA$ and $6.65 \AA$ A , respectively 12
3.1. Instantaneous (a) parallel pressure, (b) lateral dimension, and (c) perpendicular pressure as a function surface separation during continuous compression 19
3.2. Instantaneous (a) lateral dimension and (b) perpendicular pressure as a function surface separation during continuous compression for different solutions 20
3.3. (a) Side and top-down views of the nanoconfined cyclohexane (green beads) solution containing 10 nanoparticles (red beads) at $h=31.25 \AA$, (b) side view of confined cyclohexane at $h=31.25 \AA$, and (c) side and top- down views of the nanoconfined cyclohexane solution containing 10 nanoparticles at $h=93.75 \AA$ 22
3.4. Profiles of cyclohexane number density where (a) (c) at $h=93.75 \AA$, (d) $\sim(\mathrm{f})$ at $h=56.25$, and (h) $\sim(\mathrm{j})$ at $h=31.25 \AA$; and (a), (d), (h): 0 nanoparticle, (b), (e), (i): 5 nanoparticles, and (c), (f), (j): 10 nanoparticles 24
3.5. Shear stress on the confined fluid having 10 nanoparticles at $h=56.25 \AA$ caused by different sliding speeds 26
3.6. A plot of mean square displacement where the fitted dashed line is used to determine the diffusivity 28

LIST OF TABLES

Table Page
2.1 Lennard-Jones 12-6 potential parameters 11
3.1 Apparent shear viscosity of nanoparticle-cyclohexane solutions under different surface separation and sliding speeds 26
3.2 Diffusion coefficients 29

1. INTRODUCTION

1.1 NANOTRIBOLOGY

A nanometer (nm) is 10^{-9} of a meter and equivalent to 10 angstrom (\AA). It is roughly 4-5 times the size of a typical atom. Recently a scientific and technological revolution has begun to systematically study, manipulate, and devise matter on the nanometer length scale. The terms "nanoscience" and "nanotechnology" have generally been used to represent such efforts. As nicely explained by Eric Drexler in his book "Engines of Creation" [1] and by Richard Feynman in his lecture "There's plenty of room at the bottom" [2], atoms are the root cause for everything and the ability to deal with individual atoms and molecules is the basis for nanotechnology. While nanoscale devices based on moving atomic/molecular components have the potential to drastically alter and improve technologies for energy transfer, data storage, drug delivery, computing, chemical manufacture, and so on, they can unfortunately be very vulnerable to friction and wear due to their extremely small sizes. From a fundamental point of view, friction originates from atomic interactions/forces between moving parts, which resist the motion and jiggle the atoms to generate heat and cause structural deformation (wear). While friction and wear may be as simple an issue as added material and energy costs to conventional macroscale devices and structures, they could turn envisioned nanotechnologies into unrealizable dreams or substantially reduce the working life of nanodevices and nanostructures because the resultant stress per unit volume can be too much to bear. Nanoelectromechanical systems (NEMS) and microelectromechanical systems (MEMS) are good examples.

The term "tribology" is derived from the Greek words "tribo" meaning rubbing and "logy" meaning knowledge. Its original application by the Greeks was to understand the motion of large stones sliding across the earth's surface. Today tribology has grown into a field that deals with all issues involving friction, wear, and lubrication. Lubricants are substances interposed between two surfaces in relative motion for the purpose of reducing the friction and/or the wear between them. In decreasing order of lubricant film thickness, lubrication has traditionally been divided into three regimes [3]: hydrodynamic or bulk, mixed or intermediate, and boundary. The past few decades have seen increasing miniaturization of device components, the advent of modern surface proximity probes, and extension of boundary lubrication into nanometer scales. All these developments are pertinent to the chemical and mechanical stability of the moving nanostructures and have inspired the birth of a new field, namely nanotribology [4] or molecular tribology.

1.2 NANOCONFINED FLUIDS

It is easy to see that in nanotribology the lubricant films are confined to highly restricted geometries whose dimensions are nanoscale and comparable to a few molecular diameters. It should not be difficult to perceive that such molecularly thin films could have drastically different behavior than the same materials in the unconstrained bulk phase. Recent experimental studies using surface force apparatus (SFA) [5-9], atomic force microscopy (AFM) [10-12], friction force microscopy (FFM) [13,14], and quartz crystal microbalance (QCM) [15-17] have confirmed the significant effects of the confining surfaces on the properties of nanoscopically confined fluid films and further suggested that nanoscale confinement can induce fluid molecules to form layered
configurations, causing nanoconfined fluids to have very different properties than those of bulk fluids, where molecules possess no preferred orientation. Explicit evidences at the molecular level have come from computer molecular simulation studies using Monte Carlo (MC) [18-23] and molecular dynamics (MD) [24-30] techniques. Other theoretical approaches such as density functional theory [31,32] and integral equation theory $[33,34]$ have also been extended to analyze nanoconfined fluids and confirm the formation of fluid layers under confinement.

It has now been well established that when the separation/spacing between the confining surfaces is larger than about 10 molecular diameters, confined fluids behave much the same as bulk fluids in many aspects. As the separation decreases, molecular orientation and fluid configuration undergo changes and, more interestingly and importantly, the isotropy between the perpendicular and parallel directions breaks down. From thermodynamic point of view, such configurational changes are entropy changes, which, according to $(\partial S / \partial V)_{U, N}=P / T$, cause the pressure of a nanoconfined fluid to not only change but also become different in the perpendicular and parallel directions. The difference between the perpendicular pressure $\left(P_{\perp}\right)$ and parallel pressure $\left(P_{\|}\right)$has been measured as solvation force $\left(f_{\mathrm{s}}\right)$ by the surface force apparatus (SFA) [5-9], where the confined fluid is open to the bulk reservoir under isothermal-isobaric condition and the parallel pressure as a result is taken to be the same as the bulk pressure. Interestingly, when symmetric molecules are confined under a constant bulk/parallel pressure, solvation/surface force oscillates as a function of surface separation with a periodicity that is equivalent to the mean molecular diameter [cf. Fig. 1(b)]. This behavior is not in accord with the expectations from conventional continuum theories such as lubrication
theory $[35,36]$ and DLVO theory $[37,38]$, but signifies the importance of the discrete excluded volume of the fluid molecules at small separations. Specifically, nanoscale confinement and exclude volume can work together to pack symmetric fluid molecules into layers parallel to the confining surfaces and one oscillation in the surface/solvation force corresponds to an increase or decrease of one molecular layer in the confined fluid film. As the surface separation becomes smaller, the layering phenomenon and the force oscillation become stronger.

Figure 1.1. Schematics of (a) a nanoconfined fluid, surface force, f_{s}, and frictional force, f_{f}, (b) solvation/surface force profiles for confined fluids with layered or non-layered configurations, and (c) stick-slip motion of confined fluids with layered configurations.

In relation to nanotribology, when a strongly layered confined fluid is sheared, instead of lubricated smooth motion, it exhibits yield stress, stick-slip motion [cf. Fig. 1(c)], and apparent shear viscosity that could be orders of magnitude higher than bulk values $[39,40]$. It should be emphasized that the stick-slip motion is not caused by surface asperities as would be explained by the traditional "rough surface" model. These solid-like responses reflect the solid-like nature of the layered configurations, which could be linked to the peaked, repulsive surface forces [cp. Fig. 1(a)]. It is important to emphasize here that the layered configurations of nanoconfined lubricant films can cause undesirably large friction and wear and consequently significant material and energy costs. On the other hand, between two peaked surface forces and during the slip phase, nanoconfined fluids undergo configurational changes to become less layered, thereby exhibiting lubricated smooth motion and reduced friction and wear.

1.3 SOLUTIONS OF ALKANETHIOL-CAPPED NANOPARTICLES IN ALKANE

The above observations and discussion suggest that more desirable nanotribological properties can be obtained from lubricants that would be more resistant to being layered in nanoconfinement. One source of such resistance can come from structural asymmetry. Indeed, branched alkanes have been shown to exhibit reduced or even no oscillation in their solvation/surface forces measured by SFA [6,23], which is understood to be because of the side branches that disrupt the formation of layered configurations. More generally, it can be reasoned that the proper lubricants for nanotribology should be those that have strong intrinsic means to resist the layering tendency under nanoconfinement. This research considers one such possibility, namely the hypothesis that molecules of
sufficiently different sizes, when mixed together, could disrupt each other's layering tendency in nanoconfined space to result in less layered or even non-layered configurations to satisfy nanotribological needs. One necessary condition worth mentioning is that there should be good solubility between the molecules in order to not have phase separation in nanoconfinement. In this research work, we propose to examine the solution of alkanethiol-capped nanoparticles in alkane.

Liquid alkanes $\left(\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+2}\right)$ are oils and very commonly used lubricants. They were also one of the first nanoconfined systems to be studied by SFA, but the results suggested that liquid alkanes alone may not be good lubricants for moving nanodevices and nanostructures. Here we hypothesize that their nanotribological properties could be improved by adding alkanethiol $\left(\mathrm{C}_{\mathrm{n}} \mathrm{H}_{2 \mathrm{n}+1} \mathrm{SH}\right)$-capped nanoparticles whose sizes are several times larger than alkane molecules. These nanoparticles represent a recent breakthrough and have been touted as one the most important ingredients for nanotechnologies [41-43]. As depicted in Figure 2, they are charge-neutral composites with an inorganic crystalline core capped in a dense shell of alkanethiol molecules. The capping molecules have been called surfactants because they have a polar head group (e.g. S) that strongly bonds to the core and nonpolar alkyl chains that disperse the nanoparticles in nonpolar alkane solutions. Today, it has become virtually a routine to synthesize such nanoparticles. As mentioned earlier, the good solubility and the significant size mismatch could impede the formation of layered configurations, thereby making the solutions of alkanethiol-capped nanoparticles in alkane promising viable lubricants for nano- and micro-scale systems.

Figure 1.2. Ball model and a coarse-grained representation of an alkanethiol-capped nanoparticle.

1.4 PROPOSED RESEARCH METHODOLOGY

Despite fast progress, modern experimental techniques still have limited resolutions and difficulties in accessing the physics of confined complex fluids at the nanoscale to evaluate their nanotribological potential. Theoretical studies of nanoconfined fluids using density functional theory [31,32], integral equation theory [33,34], Enskog theory [44], and functional perturbation theory [45] have advanced our understanding, but their current status is still limited to simple atomic or highly idealized fluids. For complex nanoconfined fluid systems, computer molecular simulation has become a major and sometimes preferred research method [13-30]. In this project, MD simulation technique [46, 47] is adopted for its better handling of dynamic properties and complex simulation models. A number of important variables are investigated including nanoparticle loading, surface separation, and shear rate. For computational efficiency and as a first
attempt, coarse grained simulation models are considered. Details of the employed methodology are provided in the next section.

It is worth noting that the future of scientific computing and molecular simulation has shifted from expensive supercomputers to PC-based systems for their superior performance/cost ratio, much increased speed and stability, and excellent expandability. This trend is moving fast in both academia and industries. As an added value, this project runs the same simulation codes on both PC and more conventional IBM workstation in order to make comparison and pave the way for future work.

2. SIMULATION METHODOLOGY

2.1 MOLECULAR DYNAMICS COMPUTER SIMULATION TECHNIQUE

Molecular dynamics (MD) simulation is a technique for computing equilibrium and transport properties for classical many-body systems. The word classical means that the motion of the constituent particles (e.g. atoms or pseudo-atoms) obeys the laws of classical mechanics (e.g. $\dot{\mathbf{r}}_{i}=\mathbf{v}_{i}, \ddot{\mathbf{r}}_{i}=\mathbf{a}_{i}$). This is a reasonable and often excellent approximation for a wide range of systems and properties. In this context, every phenomenon and every property can be traced back to the coordinates and momenta of the constituent particles. The essence of the MD method is to numerically integrate the equation of motion of classical mechanics for every particle in the model system and the direct simulation results are the coordinates and momenta of all moving particles at different time instants. This is equivalent to generating many microstates in the same ensemble (controlled macroscopic conditions) and permits the use of statistical mechanically derived equations to complete property calculation. In general, MD can be applied to identify molecular origins, test hypotheses, estimate missing or unreliable data, and characterize the relative importance of different parameters and variables. MD thus bridges between and complements both theoretical and experimental approaches. It is of particular value for systems that are too complicated to be studied by first principles or too difficult to experimental studies.

In general, the equation of motion of classical mechanics for a specific particle i can be expressed as a second-order differential equation,

$$
\begin{equation*}
m_{i} \ddot{\mathbf{r}}_{i}=\mathbf{f}_{i}+\mathbf{g}_{i}, \tag{2.1}
\end{equation*}
$$

where m_{i} and $\ddot{\mathbf{r}}_{i}$ are the mass and acceleration of the particle $i . \boldsymbol{f}_{\boldsymbol{i}}$ and \boldsymbol{g}_{i} denote the total force on particle i from other particles and the extra force(s) due to external constraint(s) imposed on the system. Equivalently, Eq. (2.1) can be converted into two first-order differential equations,

$$
\left\{\begin{array} { l }
{ m _ { i } \dot { \mathbf { r } } _ { i } = \mathbf { p } _ { i } + \mathbf { g } _ { i } ^ { r } \mathbf { r } _ { i } } \tag{2.2}\\
{ \dot { \mathbf { p } } _ { i } = \mathbf { f } _ { i } + \mathbf { g } _ { i } ^ { p } \mathbf { p } _ { i } }
\end{array} \Rightarrow \left\{\begin{array}{l}
\dot{\mathbf{r}}_{i}=\mathbf{v}_{i}+\frac{1}{m_{i}} \mathbf{g}_{i}^{r} \mathbf{r}_{i} \\
\dot{\mathbf{v}}_{i}=\mathbf{a}_{i}+\frac{1}{m_{i}} \mathbf{g}_{i}^{p} \mathbf{p}_{i}
\end{array}\right.\right.
$$

Here \mathbf{g}_{i}^{r} and \mathbf{g}_{i}^{p} are the corresponding constraint forces acting on the coordinate (\mathbf{r}_{i}) and momentum $\left(\dot{\mathbf{r}}_{i}\right) . f_{i}$ is derived from the total potential energy $U(\mathbf{r})$ of the system,

$$
\begin{equation*}
\mathbf{f}_{i}=-\nabla_{\mathbf{r}_{i}} U(\mathbf{r}), \tag{2.4}
\end{equation*}
$$

where $U(\mathbf{r})$ is generally constructed by pair-wise additions of two types of contributions,

$$
\begin{equation*}
U(\mathbf{r})=U^{\text {inter }}(\mathbf{r})+U^{\text {intra }}(\mathbf{r}) \tag{2.5}
\end{equation*}
$$

where $U^{\text {inter }}(\mathbf{r})$ is the sum over all interactions between atoms in different molecules and $U^{\text {intra }}(\mathbf{r})$ is the sum over interactions between atoms within the same molecule. The nanoconfined fluids considered in this project are consisted of Lennard-Jones (LJ) particles whose $U^{\text {intra }}(\mathbf{r})=0$ and $U^{\text {extra }}(\mathbf{r})$ will be discussed in detail below.

2.2 SIMULATION APPROACH AND MODELS

In this project, we consider hexanethiol-capped gold nanoparticle (cf. Figure 1.2), $\mathrm{Au}_{140}\left(\mathrm{SC}_{6} \mathrm{H}_{13}\right)_{62}$, to be the model nanoparticle. This nanoparticle has recently been
simulated with atomistic models in our group [48] and its size and interaction characteristics have been studied and formulated into a Lennard-Jones 12-6 potential

$$
\begin{equation*}
U_{\mathrm{L}-\mathrm{J}}=4 \varepsilon\left[\left(\frac{\sigma}{r}\right)^{12}-\left(\frac{\sigma}{r}\right)^{6}\right] \tag{2.6}
\end{equation*}
$$

For computational consistency and efficiency, we also opted for an alkane as the solvent that can be approximated as a spherical particle and has been modeled as a LJ particle. Cyclohexane is chosen for this purpose and its LJ parameters are adopted from the literature [49] and tabulated in Table 2.1 together with those for nanoparticles.

The main role of the confining surfaces is to create nanoscale confinement for lubricant films. In principle, as long as the fluid molecules can be layered, the layering phenomenon, surface force oscillations, and other relevant issues persist regardless of the confining surfaces being structured or structure less [50-52] and having attractive or repulsive interaction [52,53-55] with the confined fluid. Since a relatively large portion of the envisioned nanotechnologies involve silicon (Si), this project considers the $\operatorname{Si}(111)$ surface as the confining surfaces. Silicon has the diamond structure with a lattice constant equal to $5.43 \AA$. Figure 2.1 shows the ball models of different views of silicon.

Table 2.1. Lennard-Jones 12-6 potential parameters.

Particles	$\varepsilon(\mathrm{J} / \mathrm{mol})$	$\sigma(\mathrm{A})$
$\mathrm{Au}_{140}\left(\mathrm{SC}_{6} \mathrm{H}_{13}\right)_{62}$	$10827.08 \times \mathrm{R}$	29.000
Cyclohexane	$484.00 \times \mathrm{R}$	5.466
Si	$202.45 \times \mathrm{R}$	3.826

Figure 2.1. Ball models of (a) silicon diamond structure, (b) a side view of the $\operatorname{Si}(111)$ surface, (c) a top-down view of the $\operatorname{Si}(111)$ surface with depth fading indicated by different colors, and (d) a top-down view of the $\operatorname{Si}(111)$ surface with pink balls and the rectangle showing one surface unit cell. a_{1} and a_{2} are the dimensions of a surface unit cell and equal to $3.84 \AA$ and $6.65 \AA$, respectively.

To systematically simulate nanoconfined nanoparticle-alkane solutions under different conditions while allowing meaningful comparison, the thermodynamic state of the confined fluids should be defined and controlled in our simulation studies. Since the confined fluids in SFA are open to and in equilibrium with the bulk reservoir, temperature (T) and chemical potential (μ) are thus the most natural thermodynamic
variables for this purpose. However, evaluating and controlling chemical potential is extremely difficult for MD simulations, especially when complex systems and conditions are considered. Alternative approaches to overcome this difficulty have been developed recently and termed the NAPT [56,57] and NhPT methods [30]. The essence of these two methods is to constrain the temperature (T) and the pressure (or stress) parallel to the confining surfaces $\left(P_{\|}\right)$to prespecified values to offer a virtual isothermal-isobaric reservoir for confined fluids to reach equilibrium with. In classical statistical mechanics and molecular simulation, T and P can be expressed as follows as function of particle coordinates and momenta,

$$
\begin{align*}
&\left\langle\frac{1}{2 m} p^{2}\right\rangle=\left\langle\frac{1}{2} m v^{2}\right\rangle=\frac{3}{2} k_{\mathrm{B}} T \Rightarrow T=\sum_{i=1}^{N} \frac{m_{i} \mathbf{v}_{i}^{2}}{3 N k_{\mathrm{B}}}, \tag{2.7}\\
& P_{\|}=\frac{1}{2 A h} \sum_{\lambda=x, y}\left[\sum_{i} m_{i} \mathbf{v}_{i}^{\lambda} \cdot \mathbf{v}_{i}^{\lambda}+\sum_{i} \sum_{j>i} \mathbf{f}_{i j}^{\lambda} \cdot \mathbf{r i}_{i j}^{\lambda}+\sum_{i} \sum_{s} \mathbf{f}_{i s}^{\lambda} \cdot \mathbf{r}_{i s}^{\lambda}\right], \tag{2.8}\\
& P_{\perp}=\frac{1}{A h}\left[\sum_{i} m_{i} \mathbf{v}_{i}^{z} \cdot \mathbf{v}_{i}^{z}+\sum_{i} \sum_{j>i} \mathbf{f}_{i j}^{z} \cdot \mathbf{r}_{i j}^{z}+\sum_{i} \sum_{s} \mathbf{f}_{i s}^{z} \cdot\left(\mathbf{r}_{i}^{z} \pm \frac{h}{2}\right)\right], \tag{2.9}
\end{align*}
$$

where \mathbf{v}_{i} is the velocity of a fluid particle and $\mathbf{f}_{i j}, \mathbf{f}_{i s}$ are the interaction forces between a pair of particles separated by $\mathbf{r}_{i j}=\mathbf{r}_{i}-\mathbf{r}_{j}$ and $\mathbf{r}_{i s}=\mathbf{r}_{i}-\mathbf{r}_{s}$. Here \mathbf{r}_{s} represents the coordinate of a Si atom and $-h / 2$ is for the upper confining substrate located at $z=h / 2$ and $+h / 2$ is for the lower one at $z=-h / 2$. Both methods are 2D extensions of the original 3D NPT simulation method and constrain the total number of particles (N) and temperature (T). However, $P_{\|}$is controlled in the NhPT method [30] by adjusting the lateral dimensions (i.e. surface area A) of the confined space and the lateral (x, y) coordinates of the fluid
particles, and in the NAPT method $[56,57]$ by adjusting the separation (h) and the perpendicular (z) coordinates of the fluid particles. It should be noted that these two methods are equivalent to each other under the same conditions when time/ensemble averaged properties are compared. In the project, the $N h P T$ method is employed because we are interested in studying the responses of confined nanoparticle-alkane solutions to continuous compression at constant speeds.

Since the parallel pressure constraint is imposed in the x and y directions, the equations of motion in the two lateral directions take on the NPT form [30,46,56,57],

$$
\begin{align*}
& \dot{\mathbf{r}}_{i}^{\lambda}=\mathbf{p}_{i}^{\lambda} / m_{i}+\chi \mathbf{r}, \mathbf{p} \mathbf{r}_{i}^{\lambda}, \tag{2.10}\\
& \dot{\mathbf{p}}_{i}^{\lambda}=\mathbf{f}_{i}^{\lambda}-\chi \mathbf{r}, \mathbf{p} \mathbf{p}_{i}^{\lambda}-\xi_{\|} \mathbf{r}, \mathbf{p} \mathbf{p}_{i}^{\lambda}, \tag{2.11}\\
& \dot{S}_{\lambda}=\chi \quad \mathbf{r}, \mathbf{p} S_{\lambda}, \tag{2.12}
\end{align*}
$$

where S_{λ} denotes the lateral dimensions of a simulation box and $\chi \mathbf{r}, \mathbf{p}$ is a dilation coefficient evaluated instantaneously to adjust S_{λ} or equivalently surface area A to achieve constant $P_{\|}$. In the perpendicular z direction, the equations of motion assume the NVT form,

$$
\begin{align*}
& \dot{\mathbf{r}}_{i}^{z}=\mathbf{p}_{i}^{z} / m_{i} \tag{2.13}\\
& \dot{\mathbf{p}}_{i}^{z}=\mathbf{f}_{i}^{z}-\xi_{\perp} \mathbf{r}, \mathbf{p} \mathbf{p}_{i}^{z} \tag{2.14}
\end{align*}
$$

$\xi_{\|} \mathbf{r}, \mathbf{p}$ and $\xi_{\perp} \mathbf{r}, \mathbf{p}$ are friction coefficients for temperature control and evaluated instantaneously using the Nose-Hoover method [46,58]. Proper evaluation of χ is more
difficult and has been accomplished via the loose coupling method of Berendsen et al. [46,59],

$$
\begin{gather*}
\chi=-\frac{\kappa_{\|} P_{\|, \text {set }}-P_{\|}}{2 t_{P}}, \tag{2.15}\\
\frac{1}{\kappa_{\|}}=P_{\|}-\frac{1}{4 A h}\left\{\sum_{i} \sum_{j>i}\left[\frac{X\left(r_{i j}\right)}{r_{i j}^{4}} \mathbf{r}_{i j}^{\lambda} \cdot \mathbf{r}_{i j}^{\lambda}-\frac{2}{r_{i j}} \frac{d U}{d r}\right] \mathbf{r}_{i j}^{\lambda} \cdot \mathbf{r}_{i j}^{\lambda}\right. \tag{2.16}\\
\left.+\sum_{i} \sum_{s}\left[\frac{X\left(r_{i s}\right)}{r_{i s}^{4}} \mathbf{r}_{i s}^{\lambda} \cdot \mathbf{r}_{i s}^{\lambda}-\frac{2}{r_{i s}} \frac{d U}{d r}\right] \mathbf{r}_{i s}^{\lambda} \cdot \mathbf{r}_{i}^{\lambda}\right\},
\end{gather*}
$$

where t_{P} is the so-called pressure coupling/relaxation time and set to be $250 \Delta t$ in this project.

As usual, periodic boundary conditions are applied in the x and y directions to make the simulation systems infinite in the lateral directions. To allow $P_{\|}$to be controlled instantaneously, the lateral dimensions and coordinates need to be adjusted differentially. In this regard, varying the inter-row spacing between surface atoms or changing the number of rows of surface atoms both have significant shortcomings because the former undesirably alters the crystalline structure of the surfaces and the latter represents finite, not differential, dimension changes. To resolve this difficulty, the periodic boundary conditions are applied only to the confined fluids and the infinite confining surfaces are constructed using a special approach. Specifically, based on the repetitive nature of the crystalline structure possess, surface unit cells can be identified and replicated laterally to form an infinite surface. The smallest unit cell for this purpose is shown in Figure 2.1, where each layer of the $\mathrm{Si}(111)$ surface is represented by two Si atoms. Each fluid
particle can now be attributed to a particular surface unit cell characterized by ($n a_{1}, m a_{2}$), where n, m are integers and $\boldsymbol{a}_{\mathbf{1}}, \boldsymbol{a}_{\mathbf{2}}$ are the 2D vectors defining the shape and lateral dimensions of a unit cell (cf. Figure 2.1). By varying n and m from their central values, a block of surface unit cells centering around a fluid particle can be generated to effectively represent an infinite surface. An additional computational advantage from the method is the neighbor lists for fluid-surface interaction no longer required.

2.3. SIMULATION DETAILS

Throughout the whole project, the total number of confined fluid particles is fixed at 1600 , while the number of bigger particles representing $\mathrm{Au}_{140}\left(\mathrm{SC}_{6} \mathrm{H}_{13}\right)_{62}$ nanoparticles changes from $0,1,3,5$, to 10 in order to investigate the effects of nanoparticle loading/volume fraction. The LJ interaction potential between the solvent cyclohexane particles is truncated and corrected at a center-of-mass cut-off distance of $r_{c}=3 \sigma_{\text {cyclohexane }}$, or equivalently across a cut-off spacing of $2 \sigma_{\text {cyclohexane }}$. For simplicity, the same cut-off spacing of $2 \sigma_{\text {cyclohexane }}$ was also used for all the other pair interactions including $\mathrm{Au}_{140}\left(\mathrm{SC}_{6} \mathrm{H}_{13}\right)_{62}-\mathrm{Au}_{140}\left(\mathrm{SC}_{6} \mathrm{H}_{13}\right)_{62}, \quad \mathrm{Au}_{140}\left(\mathrm{SC}_{6} \mathrm{H}_{13}\right)_{62}-$ cyclohexane, $\quad \mathrm{Au}_{140}\left(\mathrm{SC}_{6} \mathrm{H}_{13}\right)_{62}-\mathrm{Si}$, and cyclohexane-Si. For unlike-pair interactions, the Lorentz-Berthelot mixing rules are used, that is $\varepsilon_{12}=\sqrt{\varepsilon_{1} \varepsilon_{2}}$ and $\sigma_{12}=\sigma_{1}+\sigma_{2} / 2$.

The integrator for the equations of motion is the fourth-order Gear predictorcorrector algorithm along with a time step of 5 fs . The temperature is set at 300 K and the parallel pressure at $1 \mathrm{~atm}(0.1 \mathrm{MPa})$. All confined nanoparticle solutions are first equilibrated to the set temperature and pressure at a separation of $10 \mathrm{~nm}(100 \AA)$ between
the confining Si (111) surfaces as initial conditions and starting points for continuous compression at a moderate speed of $5 \mathrm{~m} / \mathrm{s}$. Practically, to implement continuous compressions at this speed, the surface separation (h) is manually decreased by 0.00025 \AA At every time step ($\Delta t=5 \mathrm{fs}$). For precaution, additional $25000 \Delta t^{\prime} \mathrm{s}$ were spent to reequilibrate the simulation systems before compression and every production run in this project.

3. RESULTS AND DISCUSSION

3.1 PC-BASED MOLECULAR SIMULATIONS

The same simulation code and initial conditions were used to run simulations of continuous compression of confined nanoparticle-alkane solutions having $0,1,3,5$, and 10 nanoparticles were run on IBM RISC/6000 workstations and on a dual-core Dell XPS computer installed with Linux. As demonstrated in Figure 3.1 where the case with 5 nanoparticles is shown, the simulation results from the two systems are not identical but statistically and physically equivalent. This was expected because after a large number of iterations, the differences in computer architecture, operation system, and compiler will cause numerical calculations to deviate on different computer systems. Nevertheless, the physics and the simulated properties are not altered, which is of critical importance. It should be emphasized here that with a relatively finite number of fluid particles (e.g. 1600), the pressure of a MD simulation cannot be precisely controlled to any specific value, which is very unlike temperature control. In fact, it is natural for MD simulations to have pressure fluctuations whose magnitudes are on the order of several tens to several hundreds atm. From this point of view, the method of parallel pressure $\left(P_{\|}\right)$control explained in the previous section works very well and the calculated perpendicular pressures $\left(P_{\perp}\right)$ from the two computer systems also agree well.

It should be mentioned that with multiple cores and free parallel computing software such as Open MPI, the new generation of PC's are readily capable of parallel computing. We have tested serial and parallel MD simulations on the Dell XPS computer and
interestingly found the results to be similar to what are demonstrated here, numerically not identical but statistically and physically equivalent.

Figure 3.1. Instantaneous (a) parallel pressure, (b) lateral dimension, and (c) perpendicular pressure as a function surface separation during continuous compression.

3.2 CONTINUOUS COMPRESSION

Figure 3.2 shows the simulation results from continuous compression of different nanoparticles solutions. The data are instantaneous properties calculated and recorded

Figure 3.2. Instantaneous (a) lateral dimension and (b) perpendicular pressure as a function surface separation during continuous compression for different solutions.
every $1000 \Delta t$'s. Exhibiting the strongest force oscillations [cf. Fig. 3.2(b)] is the pure cyclohexane fluid in nanoconfinement that can be understood to be most layered among all solutions studied. A closer examination of the force oscillations reveals that the periodicity is about the same as the cyclohexane molecular diameter, $5.466 \AA$. The connection between the surface force and the fluid configuration can be analyzed by comparing Figures 3.2 (a) and (b) together. It can be easily seen that the lateral dimension of the confined cyclohexane under continuous compression undergoes steplike expansion and the width of the steps is the same as the periodicity of the force oscillations. More specifically, minimum surface forces occur at separations that correspond to completion of step-like expansion and more disordered, less layered configurations. When compression continues, the less layered confined fluid are squeezed to become more layered and the surface force builds up again until the confined fluid could not sustain the strong pressure any more and sudden expansion occurs in the lateral directions.

When nanoparticles are added to the confined alkane fluid, they significantly reduce the magnitudes of the step-like expansion and force oscillations. In addition, the bigger nanoparticles can now resist compression and strong perpendicular pressure at larger separations that are about the same as the size of the nanoparticles [cf. Fig. 3.2(a)]. These behaviors signify better nanotribological properties that could be provided by the presence of alkanethiol-capped nanoparticles in alkane/oil solutions.

Since the nanoparticles have much bigger size and stronger interaction, there may exist a possibility that they could aggregate together in the solutions and this possibility could get enhanced by the nanoscale confinement. In order to obtain an answer and more
insight, we examine the top-down views and side views of the confined nanoparticle solutions. Shown in Figure 3.3 are the representative case that has 10 nanoparticles and pure cyclohexane for comparison. It can be clearly seen that at large separations [cf. Fig. 3.3 (c)], nanoparticles are well dispersed in the confined fluid without either forming clusters or aggregating towards the confining surfaces and they remain well dispersed as the confined fluid film becomes thinner and thinner. Even when the nanoparticles are the confined fluid film becomes thinner and thinner. Even when the nanoparticles are encapsulated and touch both confining surfaces, they are still surrounded by solvent

(c)

Figure 3.3. (a) Side and top-down views of the nanoconfined cyclohexane (green beads) solution containing 10 nanoparticles (red beads) at $h=31.25 \AA$, (b) side view of confined cyclohexane at $h=31.25 \AA$, and (c) side and top-down views of the nanoconfined cyclohexane solution containing 10 nanoparticles at $h=93.75 \AA$.
molecules [cf. Fig. 3.3(a)]. These observations indicate a proper affinity between the nanoparticles and the solvent. As can bee seen in Figure 3.3, solvent molecules within certain distance from the nanoparticles are under the influence of nanoparticle interactions which lessens the layering effect of nanoconfinement. However, outside this influence range, solvent molecules are still largely layered.

3.3 NANOCONFINED NANOPARTICLE SOLUTIONS UNDER SHEAR

Form the results presented and discussed above, adding nanoparticles appears to be able to improve the nanotribological properties of alkane-type lubricants. To further validate this point, the nanoparticle solutions are sheared by sliding the upper confining surface in the $+x$ direction at a speed of $v_{x}=0 \mathrm{~m} / \mathrm{s}, 1 \mathrm{~m} / \mathrm{s}$, or $10 \mathrm{~m} / \mathrm{s}$ while keeping the lower surface stationary at three selected separations $h=31.25 \AA, 56.25 \AA$, and $93.75 \AA$. The resultant nonzero shear rates, $\dot{\gamma}=v_{x} / h$, depend on both the sliding speed and surface separation and range from $1.07 \times 10^{8} \mathrm{sec}^{-1}$ to $3.2 \times 10^{9} \mathrm{sec}^{-1}$. The stationary confined systems with zero shear rate are simulated for comparison purposes.

We first examine the density profiles of cyclohexane solvent molecules under various conditions. As shown in Figure 3.4, the density profile depends quite strongly on the number of nanoparticles. Without the presence of nanoparticles, the symmetric cyclohexane molecules can form well-layered configurations in nanoconfinement, which can be disrupted to become less layered when nanoparticles are present. On the other hand, the density profile is a very weak function of shear rate and exhibits only very insignificant changes within the explored shear rate range.

Figure 3.4. Profiles of cyclohexane number density where (a) $\sim(\mathrm{c})$ at $h=93.75 \AA$, (d) $\sim(\mathrm{f})$ at $h=56.25$, and (h) $\sim(\mathrm{j})$ at $h=31.25 \AA$;
and (a), (d), (h): 0 nanoparticle, (b), (e), (i): 5 nanoparticles, and (c), (f), (j): 10 nanoparticles.

Shear stress could be imparted into the nanoconfined fluids in different manners. Another major method is to apply a constant shear force to a confining surfacewhich is assigned a proper artificial mass so that it has its own equations of motion to determine its displacement and sliding velocity. While this method allows a constant shear stress, the shear rate is variable. In contrast, the method adopted in this work can maintain a constant shear rate but the shear stress becomes variable. Nevertheless, these two methods can be made equivalent by taking time averages of shear stress and shear rate. In our simulations, the applied shear generates a nonzero drag force on the confined fluid in the x direction, f_{x}, which would become noisy fluctuations around zero under no shear condition. Shear stress can be calculated by dividing the drag force f_{x} by surface area of the confining surface. Figure 3.5 shows the calculated shear stress for the confined fluid film with 10 nanoparticles at $h=56.25 \AA$. The time averaged shear stress is 3.71 MPa for $v_{x}=10 \mathrm{~m} / \mathrm{s}$ corresponding to $\dot{\gamma}=1.78 \times 10^{9} \mathrm{sec}^{-1}$ and 0.87 MPa for $v_{x}=1 \mathrm{~m} / \mathrm{s}$ corresponding to $\dot{\gamma}=1.78 \times 10^{8} \mathrm{sec}^{-1}$. As a result, the apparent viscosity is $0.021 \mathrm{~Pa} \cdot \mathrm{~s}$ and $0.0049 \mathrm{~Pa} \cdot \mathrm{~s}$, respectively. We have performed such calculations for different cases considered in this project and summarized the results in Table 3.1. The calculated viscosities appear to be in good agreement with those from similar simulation studies [60]. Most importantly, at both sliding speeds and all three separations, the presence of nanoparticles in the confined thin films does help reduce noticeably the viscosity or equivalently shear stress and frictional force. We can thus conclude that nanoparticlecontaining solutions have great potential to be good lubricants for nanotribology.

Figure 3.5. Shear stress on the confined fluid having 10 nanoparticles at $h=56.25 \AA$ caused by different sliding speeds.

Table 3.1. Apparent shear viscosity of nanoparticle-cyclohexane solutions under different surface separation and sliding speeds.

No. of nanoparticles	$h=93.75 \AA$		$h=65.25 \AA$		$h=31.25 \AA$	
	$v_{x}=1 \mathrm{~m} / \mathrm{s}$	$10 \mathrm{~m} / \mathrm{s}$	$1 \mathrm{~m} / \mathrm{s}$	$10 \mathrm{~m} / \mathrm{s}$	$1 \mathrm{~m} / \mathrm{s}$	$10 \mathrm{~m} / \mathrm{s}$
0	0.0385	0.0444	0.00866	0.0255	0.00716	0.0234
5	0.00368	0.0136	0.00726	0.00973	0.00384	0.00276
10	0.000677	0.000671	0.00491	0.0209	0.00472	0.00675

Despite their sizes, alkanethiol-capped nanoparticles have been shown by simulation studies to have fluid-like diffusivity [48]. Since the potential models used in this work are atomistically based, it would be of relevance and value to compute both the nanoparticles and cyclohexane diffusivities. To this end, the following Einstein relation is used,

$$
\begin{equation*}
D_{\|}=\lim _{t \rightarrow \infty} \frac{\left\langle\mathbf{r}_{\|}(t)-\mathbf{r}_{\|}(0)^{2}\right\rangle}{4 t}, \tag{3.1}
\end{equation*}
$$

where $\left\langle\mathbf{r}_{\| \mid}(t)-\mathbf{r}_{\| \mid}(0)^{2}\right\rangle$ is the ensemble-averaged mean-square displacement in the lateral x and y directions. It should be self-evident that a confined fluid has zero net displacement/diffusivity in the z direction. By calculating and plotting the mean-square displacement using the x and y components, the limiting slope after sufficiently long times is equal to $4 D_{\|}$. Shown in Figure 3.6 is a plot of the nanoparticles mean square displacement for the 10 -nanoparticle confined film at $h=93.75 \AA$ with zero shear. All the calculated diffusivities are collected in Table 3.2. In general, nanoparticles in nanoconfinement have diffusivity noticeably lower than that of typical liquids. In particular at small separation when nanoparticles directly touch both confining surfaces, their mobility is virtually zero. Also, as can be expected, sliding speed shears the confined fluid components and increases their mobility.

Figure 3.6. A plot of mean square displacement where the fitted dashed line is used to determine the diffusivity.

Table 3.2. Diffusion coefficients $D \times 10^{10} \mathrm{~m}^{2} / \mathrm{s}$.

No. of nanoparticles	$h=93.75 \AA$					
	$v_{x}=0 \mathrm{~m} / \mathrm{s}$		$v_{x}=1 \mathrm{~m} / \mathrm{s}$		$v_{x}=10 \mathrm{~m} / \mathrm{s}$	
	cycloC	nanoparticle	cycloC6	nanoparticle	cycloC	nanoparticle
0	0.27		1.08		25.72	
5	11.14	0.48	15.21	3.41	62.47	64.02
10	15.23	0.54	14.87	0.63	21.51	7.74
No. of nanoparticles	$h=65.25 \AA$					
	$v_{x}=0 \mathrm{~m} / \mathrm{s}$		$v_{x}=1 \mathrm{~m} / \mathrm{s}$		$v_{x}=10 \mathrm{~m} / \mathrm{s}$	
	cycloC6 $_{6}$ nanoparticle		cycloC6 ${ }_{6}$ nanoparticle		cycloC6 ${ }^{\text {n }}$ nanoparticle	
0	0.12		2.24		10.96	
5	2.09	0.02	2.51	0.15	76.18	73.85
10	6.27	0.42	7.02	0.75	79.86	79.35
No. of nanoparticles	$h=31.25 \AA$					
	$v_{x}=0 \mathrm{~m} / \mathrm{s}$		$v_{x}=1 \mathrm{~m} / \mathrm{s}$		$v_{x}=10 \mathrm{~m} / \mathrm{s}$	
	cycloC6 ${ }_{6}$ nanoparticle		cycloC6 nanoparticle		cycloC6 nanoparticle	
0	0.12		1.34		50.19	
5	0.84	0.06	1.97	1.17	56.17	55.87
10	1.22	0.02	2.48	1.43	32.95	32.18

4. CONCLUSIONS

Current advances in micro and nano-electromechanical devices (MEMS and NEMS), micro and nanofluidic systems, and other nanotechnology areas constantly involve the tribological issues of friction, wear, and lubrication at the nanometer i.e. molecular scale. Despite recent progresses, major challenges still loom over nanometerthin lubricant films, partly due to the unusual and undesirable tribological properties of typical lubricant molecules forming layered configurations in nanoconfinement and partly due to the limitation of experimental techniques and conventional theories. In this study, solutions of alkanethiol-capped nanoparticles in alkane are examined using molecular dynamics simulations for their nanotribological potential based on the hypothesis that fluid molecules of very different sizes may interrupt each other's layering tendency to result in less or non-layered configurations and provide better lubrication for nanodevices. An effective nanoparticle-nanoparticle pair potential based on previous atomistic approach is used and the temperature and parallel pressure are controlled in place of chemical potential for defining thermodynamic state. When compressed, the confined nanoparticle-containing alkane films generate reduced oscillations in perpendicular forces and smoother expansion in lateral dimensions. This indicate lesser extent of layering due to the presence of much bigger nanoparticles, which was confirmed by the density profiles obtained in his study. Further examination reveal that the nanoparticles are well dispersed by the cyclohexane solvent molecules throughout all separations. This means that the nanoparticles will not tend to form clusters or aggregate towards the confining surfaces, which is important for the stability of the nanoparticle solutions as nanotribological lubricant. When sheared by a sliding surface, the confined
fluids tend to move in the same parallel manner so that their density profiles remain virtually unchanged. The shear stress imposed by the sliding surface has also been calculated and then used to estimate the apparent viscosity. It is found that greater shear stress does result from faster sliding but not proportionally. More importantly, the presence of nanoparticles in the lubricant films reduces the shear stress and thereby apparent viscosity noticeably. This effect is particularly evident under relatively large sliding speed and large surface separations. In addition, the nanoparticles exhibit lower diffusivity in nanoconfinement than typical fluids and their mobility can be enhanced by shearing. In summary, this study has demonstrated the great potential of nanoparticlecontaining solutions as an improved lubricant for moving nanodevices and nanostructures.

Additionally, simulations have been run on regular PC's and physically and statistically equivalent results have been obtained. This points out a future direction for similar simulation studies, that is, using multi-core PC's and freely available compilers and parallel computing software is the most efficient and most cost-effective way. With parallel computing, much larger simulation system can be employed and semi-continuous variation of nanoparticles loading/volume fractions and more systematic knowledge can be achieved in simulations.

APPENDIX

FORTRAN77 code for the Molecular Dynamics Simulation.

```
c PROGRAM real
C
    IMPLICIT real*8 (a-h,o-z),integer*4 (i-n)
    include 'ljmix'
    POTENTIAL PARAMETERS
C
C
C
C
C
C
```

```
sigma = 5.4660d-10 ! meter
```

sigma = 5.4660d-10 ! meter
epsi = 484.00d0*R ! J/mol
epsi = 484.00d0*R ! J/mol
unitm = 0.084160d0 ! kg/mol
unitm = 0.084160d0 ! kg/mol
System parameters
Note that
1 fs = 0.00020002
1 m/s = 0.00457325
1 Pa = 2.444e-8
dt = 5.00d-15 ! time step: second
h = dt*dsqrt(epsi/unitm)/sigma ! non-dimensionalized dt
temp = tset*R/epsi
uconv = dsqrt(unitm/epsi) ! u*=u*uconv
pconv = sigma*sigma*sigma*6.0220d23/epsi !0.244396E-07
pset = (ppara*101325)*pconv
pi = dacos(-1.0d0)
C
C
C
C
Lennard-Jones interaction parameters and long-range corrections
sa: sa-sa (surface atom-surface atom)
gsgs: solvent-solvent (smaller fluid particles)
gssa: solvent-surface
gbgb: nanoparticle-nanoparticle (bigger fluid particles)
gbsa: nanoparticle-surface
lrc: long-range corrections

Stationary confining Si surfaces
al = 5.43d-10/sigma ! Si diamond structure lattice const.
x_L = al*sqrt(2.0)/2.0d0 ! 3.84A
y_L = x_L*sqrt(3.0) ! 6.65A

```
```

 z_L=(al/2.0d0)*sqrt(3.0)/2.0d0 ! Si-Si bond length,2.35A
 sa_sig = 3.8260000d-10 ! sa-sa
 sa_eps = 202.450d0*R ! sa-sa
 sam = 0.0280855d0 ! kg/mol
 sam = sam/unitm
 epssa = sa_eps/epsi
 eps4sa = 4.\overline{0}0d0*epssa
 eps24sa = 24.0d0*epssa
 sigsa = sa_sig/sigma
 sig2sa = sigsa*sigsa
 zk = pi/(sqrt(2.0d0/3.0d0)*1.09d0)
 C
C Like pair of smaller solvent particles
C
C
rlrc2 = sig2sfsf/rcut2sfsf
rlrc6 = rlrc2*rlrc2*rlrc2
rlrc12 = rlrc6*rlrc6
vcsfsf = (13.0d0*rlrc12 - 7.0d0*rlrc6)
fcsfsf = (2.0d0*rlrc12 - rlrc6)/rcutsfsf
fcvsfsf = 6.0d0*fcsfsf
C
C Like pair of bigger nanoparticles
C
resembling Au140(SC6H13)62
gbgb_sig = 29.000000d-10 ! bfa-bfa
gbgb_eps = 22.37*gsgs_eps ! bfa-bfa
bfam = 34.844000d0 ! kg/mol
bfam = bfam/unitm
epsbfbf = gbgb eps/epsi
eps4bfbf = 4.00\overline{d}0*epsbfbf
eps24bfbf = 24.0d0*epsbfbf
sigbfbf = gbgb_sig/sigma
sig2bfbf = sigbfbf*sigbfbf
rcutbfbf = sigbfbf+2.0d0*sigsfsf ! potential cut-off distance
rcut2bfbf = rcutbfbf*rcutbfbf
drnblbfbf = 0.30d0 ! neighbor list buffer
rnbl2bfbf = (rcutbfbf+2.0d0*drnblbfbf)**2 ! distance for
rlrc2 = sig2bfbf/rcut2bfbf ! neighbor list
rlrc6 = rlrc2*rlrc2*rlrc2
rlrc12 = rlrc6*rlrc6
vcbfbf = (13.0d0*rlrc12 - 7.0d0*rlrc6)

```
```

 fcbfbf = (2.0d0*rlrc12 - rlrc6)/rcutbfbf
 fcvbfbf = 6.0d0*fcbfbf
 C
C unlike pair of solvent-nanoparticle
C
C
C

epssfsa	= dsqrt(epssfsf*epssa)
eps4sfsa	= 4.00d0*epssfsa
eps24sfsa	= 24.0d0*epssfsa
sigsfsa	$=0.50 \mathrm{~d} 0$ (sigsfsf+sigsa)
sig2sfsa	= sigsfsa*sigsfsa
rcutsfsa	= sigsfsa+2.0d0*sigsfsf ! potential cut-off distance
rcut2sfsa	$=$ rcutsfsa*rcutsfsa
drnblsfsa	$=0.30 d 0$! neighbor list buffer
rnbl2sfsa	$=$ (rcutsfsa+2.0d0*drnblsfsa)**2 ! distance for
rlrc2	= sig2sfsa/rcut2sfsa ! neighbor list
rlrc6	= rlrc2*rlrc2*rlrc2
rlrc12	= rlrc6*rlrc6
vcsfsa	$=(13.0 d 0 * r l r c 12-7.0 d 0 * r l r c 6)$
fcsfsa	= (2.0d0*rlrc12 - rlrc6)/rcutsfsa
fcvsfsa	$=6.0 \mathrm{~d} 0$ *fcsfsa
unlike pai	ir of Rnanoparticle-surface
epsbfsa	= dsqrt(epsbfbf*epssa)
eps 4bfsa	$=4.00 \mathrm{~d} 0$ *epsbfsa
eps24bfsa	= 24.0d0*epsbfsa
sigbfsa	$=0.50 \mathrm{~d} 0$ * (sigbfbf+sigsa)
sig2bfsa	= sigbfsa*sigbfsa
rcutbfsa	= sigbfsa+2.0d0*sigsfsf ! potential cut-off distance
rcut2bfsa	= rcutbfsa*rcutbfsa
drnblbfsa	$=0.30 d 0 \quad$! neighbor list buffer
rnbl2bfsa	$=$ (rcutbfsa+2.0d0*drnblbfsa)**2 ! distance for
rlrc2	= sig2bfsa/rcut2bfsa ! neighbor list
rlrc6	= rlrc2*rlrc2*rlrc2
rlrc12	= rlrc6*rlrc6
vcbfsa	$=(13.0 d 0 * r l r c 12-7.0 d 0 * r l r c 6)$
fcbfsa	$=(2.0 \mathrm{~d} 0 * r l r c 12-\mathrm{rlrc} 6) / \mathrm{rcutbfsa}$
fcvbfsa	$=6.0 \mathrm{dO}$ *fcbfsa

```
C
C
C
C
C
C
C
C
```

MAIN PROGRAM

```
MAIN PROGRAM
    CALL
    SUBROUTINE simulation
    IMPLICIT real*8 (a-h,o-z),integer*4 (i-n)
    include 'ljmix'
    DIMENSION diff(3,nadmol),disp(2,nadmol)
    DIMENSION z1(nadmol), z2(nadmol), z3(nadmol), z4(nadmol)
    DIMENSION vz1(nadmol),vz2(nadmol),vz3(nadmol),vz4(nadmol)
    DIMENSION x1(nadmol),x2(nadmol),x3(nadmol),x4(nadmol)
    DIMENSION vx1(nadmol),vx2(nadmol),vx3(nadmol),vx4(nadmol)
    DIMENSION y1(nadmol),y2(nadmol),y3(nadmol),y4(nadmol)
    DIMENSION vy1(nadmol),vy2(nadmol),vy3(nadmol),vy4(nadmol)
    DIMENSION vy1(nadmol),vy2(nadmol), vy3(nadmol),vy4(nadmol)
    LOGICAL disptest
    OPEN(1,file='5np.sh_m',status='unknown',form='formatted')
    OPEN(2,file='5np.dat_m0',status='unknown',form='formatted')
    OPEN(3,file='5np.rec_m0',status='unknown',form='formatted')
    vcmx = 0.0d0
    vcmy = 0.0d0
    vcmz = 0.0d0
    systemas = 0.0d0
    DO m=1,nsfmol
    read(1, 100) x0 (m),y0(m), z0 (m),vx0 (m),vy0 (m),vz0 (m)
    systemas = systemas + sfam
    CALL simulation
    -------------------------------
    velocities if needed
    ------------------------------
    Call gauss(v1,v2,v3,temp)
    vx0(m) = v1
    vy0(m) = v2
    vz0(m) = v3
    vcmx = vcmx + vx0(m)*sfam
    vcmy = vcmy + vy0(m)*sfam
    vcmz = vcmz + vz0(m)*sfam
ENDDO
DO m=nsfmol+1,nadmol
    read(1,100) x0 (m),y0(m), z0 (m),vx0 (m),vy0 (m),vz0 (m)
    systemas = systemas + bfam
    vcmx = vcmx + vx0(m)*bfam
    vcmy = vcmy + vy0(m)*bfam
    vcmz = vcmz + vz0(m)*bfam
ENDDO
read (1, *) bLx0 ,bLy0,hz0
```

```
    vcmx = vcmx/systemas
    vcmy = vcmy/systemas
    vcmz = vcmz/systemas
    vsumx = 0.0d0
    vsumy = 0.0d0
    vsumz = 0.0d0
    DO m=1,nsfmol
    vx0(m) = vx0(m) - vcmx
    vy0(m) = vy0(m) - vcmy
    vzO(m) = vzO(m) - vcmz
    vsumx = vsumx + vx0(m)*vx0(m)*sfam
    vsumy = vsumy + vy0(m)*vy0(m)*sfam
    vsumz = vsumz + vz0(m)*vz0(m)*sfam
ENDDO
DO m=nsfmol+1,nadmol
    vx0(m) = vx0(m) - vcmx
    vy0(m) = vy0(m) - vcmy
    vz0(m) = vz0(m) - vcmz
    vsumx = vsumx + vx0(m)*vx0(m)*bfam
    vsumy = vsumy + vy0(m)*vy0(m)*bfam
    vsumz = vsumz + vz0(m)*vz0(m)*bfam
ENDDO
etuax = vsumx/nadmol
etuay = vsumy/nadmol
etuaz = vsumz/nadmol
tratx = sqrt(temp/etuax)
traty = sqrt(temp/etuay)
tratz = sqrt(temp/etuaz)
do m=1,nadmol
    vx0(m) = vx0(m)*tratx
    vy0(m) = vy0(m)*traty
    vz0(m) = vz0(m)*tratz
enddo
    100 format(6(1x,e11.5))
C --------------------------------------------------------
C Determine (x,y,z) coordnates for surface atoms
C --------------------------------------------------
        rsold(1) = -0.50d0*hz0 !! lower surface z position
        rsold(2) = rsold(1) - z_L/3.0d0
        rsold(3) = rsold(2) - z_L
        rsold(4) = rsold(3) - z_L/3.0d0
        rsold(5) = rsold(4) - z_L
        rsold(6) = rsold(5) - z_L/3.0d0
        rsold(7) = rsold(6) - z_L
        rsold(8) = rsold(7) - z_L_L.0d0
        DO i=1,layers
        rsold(i+layers)=-rsold(i)
    ENDDO
C -------------------------------------------------
C Generate (x,y) coordnates for surface atoms
C that represent the Si_diamond(111) surface.
C -----------------------------------------------
Call setup_sa_position
C
```

C	Options: istart=1: separation fixed at the input value
C	istart=2: separation adjustment is activated
C	istart=3: production run at a fixed separation
C	
istart = 2	
C	
C	hzi: initial separation (to be adjusted)
C	hzf: final separation (after certain no. of steps)
C	
	hzi $=$ hzo
	hzf = 10.0d0/5.4660d0 ! use desired value
C	
C	deltz: displacement of the surfaces per time step due to
C	continuous compression.
C	deltx: displacement of the upper surface per time step
C	for continuous shearing (stationary lower surface)
C	
C	```deltz = 0.50d0*(hzf - hzi)/nsimut deltz = -0.50d0*(unorm*uconv)*h deltx = (upara*uconv)*h dxtot = 0.0d0```
C	
C	Gear predictor-corrector integration coefficients
C	
	$\mathrm{f} 01=251.0 \mathrm{dO} / 720.0 \mathrm{~d} 0$
	$\mathrm{f} 21=11.0 \mathrm{do} / 12.0 \mathrm{~d} 0$
	$\mathrm{f} 31=1.0 \mathrm{do} / 3.0 \mathrm{~d} 0$
	$\mathrm{f} 41=1.0 \mathrm{~d} 0 / 24.0 \mathrm{~d} 0$
C	
C	Pressure and thermal bath coupling constants
C	Thermal bath: Nose-Hoover thermostat
c	Pressure bath: Berendsen's loose coupling
C	
	$\begin{array}{ll} \operatorname{tp} & =250 * \mathrm{~h} \\ \operatorname{ttnh} & =45.0 \mathrm{~d} 0 \end{array}$
C	
C	Bin sizes for analyzing various distributions
C	
	$\begin{aligned} & \text { ncen }=(n b i n+1) / 2 \\ & \mathrm{dz}=\mathrm{hz} 0 /(\mathrm{nbin}+1) \end{aligned}$
200	$\begin{array}{ll} \text { nstp } & =0 \\ \text { icntpt } & =0 \\ \text { icnt } & =0 \\ \text { index } & =0 \end{array}$
	totint $=0.0 \mathrm{~d} 0$
	totmol $=0.0 \mathrm{~d} 0$
	tmolsum $=0.0 \mathrm{~d} 0$
	tmol2sum $=0.0 \mathrm{~d} 0$
	bLxtot $=0.0 \mathrm{~d} 0$
	$\mathrm{bLxt2}=0.0 \mathrm{~d} 0$
	bLxt $4=0.0 \mathrm{~d} 0$
	skztot $=0.0 \mathrm{~d} 0$
	schange $=0.0 \mathrm{~d} 0$

```
ppsfsftot = 0.0d0
ppsfbftot = 0.0d0
ppsfsatot = 0.0d0
ppbfbftot = 0.0d0
ppbfsatot = 0.0d0
pzsfsftot = 0.0d0
pzsfbftot = 0.0d0
pzsfsatot = 0.0d0
pzbfbftot = 0.0d0
pzbfsatot = 0.0d0
pxytot = 0.0d0
pxy2 = 0.0d0
pztot = 0.0d0
pz2 = 0.0d0
fsoltot = 0.0d0
fsol2 = 0.0d0
fzsftot = 0.0d0
fzbftot = 0.0d0
fxxdtot = 0.0d0
fxxutot = 0.0d0
DO m=1,nadmol
    x1(m) = 0.0d0
    x2(m) = 0.0d0
    x3(m) = 0.0d0
    x4(m) = 0.0d0
    vx1(m) = 0.0d0
    vx2(m) = 0.0d0
    vx3(m) = 0.0d0
    vx4(m) = 0.0d0
    y1(m) = 0.0d0
    y2(m) = 0.0d0
    y3(m) = 0.0d0
    y4(m) = 0.0d0
    vy1 (m) = 0.0d0
    vy2(m) = 0.0d0
    vy3(m) = 0.0d0
    vy4(m) = 0.0d0
    z1(m) = 0.0d0
    z2(m) = 0.0d0
    z3(m) = 0.0d0
    z4(m) = 0.0d0
    vz1(m) = 0.0d0
    vz2(m) = 0.0d0
    vz3(m) = 0.0d0
    vz4(m) = 0.0d0
    DO i=1,3
            diff(i,m) = 0.0d0
ENDDO
    DO i=1,2
                disp(i,m) = 0.0d0
    ENDDO
    DO k=1,itau
        rm2(1,m,k) = 0.0d0
```

```
        rm2 (2,m,k) = 0.0d0
    ENDDO
ENDDO
DO n=1,nbin
    densf(n) = 0.0d0
    denbf(n) = 0.0d0
ENDDO
```

```
INITIATE NEIGHBOR LISTS and use
disptest=.true. Update neighbor lists
CALL fluid_neighbor_list
disptest=.false.
MAIN LOOP over nsimut tme steps
```

```
DO while (nstp.le.nsimut)
```

DO while (nstp.le.nsimut)
nstp = nstp+1
icntpt = icntpt+1
IF (disptest.eqv..true.) then !! update neighbor lists
write(*,*)'nstp=',nstp,'--- update neighbor lists ---'
CALL fluid_neighbor_list
disptest=.\overline{false.}
DO m=1,nadmol
diff (1,m)=0.0d0
diff (2,m)=0.0d0
diff(3,m)=0.0d0
ENDDO
schange=0.0d0
ENDIF
GEAR'S PREDICTOR PHASE : truncated power series
to predict coordinates and velocities
vx2sum = 0.0d0
vy2sum = 0.0d0
vz2sum = 0.0d0
v13sum = 0.0d0
v23sum = 0.0d0
vxytemp= 0.0d0
vztemp = 0.0d0
DO m=1,nsfmol
vxsq = vx0 (m)*vx0 (m)
vysq}= vy0(m)*vy0(m
vzsq = vz0(m)*vz0(m)
vx2sum = vx2sum+vxsq

```
```

vy2sum = vy2sum+vysq
vz2sum = vz2sum+vzsq
v13sum = v13sum+vx0(m)*vz0(m)
v23sum = v23sum+vy0(m)*vz0(m)
xold(m)=x0(m)
x0(m)=x0(m)+\quadx1(m)+\quad x2(m)+\quadx3(m)+x4(m)
x1 (m) =x1 (m) +2.0d0*x2(m)+3.0d0*x 3 (m) +4.0d0*x4 (m)
x2(m) =x2(m)+3.0d0*x3(m)+6.0d0*x4 (m)
x3 (m) =x3 (m) +4.0d0*x4(m)
vx0 (m) = vx0 (m)+ vx1 (m)+ vx2(m)+\quadvx3(m)+vx4(m)
vx1 (m) =vx1 (m)+2.0d0*vx2 (m)+3.0d0*vx3 (m)+4.0d0*vx4 (m)
vx2 (m) =vx2 (m) +3.0d0*vx3 (m) +6.0d0*vx4 (m)
vx3(m)=vx3(m)+4.0d0*vx4(m)
yold(m)=y0(m)
y0(m)=y0(m)+\quady1(m)+\quady2(m)+\quady3(m)+y4(m)
y1 (m) = y1 (m) +2.0d0*y2 (m)+3.0d0*y3 (m) +4.0d0*y4 (m)
y2(m)=y2(m)+3.0d0*y3(m)+6.0d0*y4(m)
y3 (m) =y3 (m)+4.0d0*y4 (m)
vy0(m)=vy0(m)+\quadvy1(m)+\quadvy2(m)+\quad vy3(m)+vy4(m)
vy1 (m) = Vy1 (m)+2.0d0*Vy2 (m)+3.0d0*Vy3 (m)+4.0d0*Vy4 (m)
vy2 (m) =vy2 (m) +3.0d0*vy3 (m) +6.0d0*vy4 (m)
vy3 (m) =vy3 (m) +4.0d0*vy4 (m)
zold(m)=z0(m)
z0(m)=z0(m)+ z1(m)+ z2(m)+ z3(m)+z4(m)
z1 (m)= z1 (m) +2.0d0*z2(m)+3.0d0* z3(m)+4.0d0*z4 (m)
z2(m)=z2(m)+3.0d0*z3(m)+6.0d0*z4 (m)
z3 (m) = z3 (m)+4.0d0*z4 (m)
vz0(m)=vz0(m)+ vz1(m)+ vz2(m)+\quadvz3(m)+vz4(m)
vz1(m)=vz1 (m)+2.0d0*Vz2 (m) +3.0d0*vz3(m)+4.0d0*vz4 (m)
vz2(m)=vz2(m)+3.0d0*vz3(m)+6.0d0*vz4 (m)
vz3(m)=vz3(m)+4.0d0*vz4(m)
vxytemp = vxytemp + vx0(m)*vx0 (m) + vy0(m)*vy0(m)
vztemp = vztemp + vz0(m)*vz0(m)

```

\section*{ENDDO}
```

vx2sum = vx2sum*sfam
vy2sum = vy2sum*sfam
vz2sum = vz2sum*sfam
v13sum = v13sum*sfam
v23sum = v23sum*sfam
vxytemp = vxytemp*sfam
vztemp = vztemp*sfam
vx2sumb = 0.0d0
vy2sumb = 0.0d0
vz2sumb = 0.0d0
v13sumb = 0.0d0
v23sumb = 0.0d0
vxytempb= 0.0d0

```
```

vztempb = 0.0d0
DO m=nsfmol+1,nadmol

```
```

vxsq = vx0(m)*vx0(m)

```
vxsq = vx0(m)*vx0(m)
vysq = vy0(m)*vy0 (m)
vysq = vy0(m)*vy0 (m)
vzsq = vz0(m)*vz0(m)
vzsq = vz0(m)*vz0(m)
vx2sumb = vx2sumb+vxsq
vx2sumb = vx2sumb+vxsq
vy2sumb = vy2sumb+vysq
vy2sumb = vy2sumb+vysq
vz2sumb = vz2sumb+vzsq
vz2sumb = vz2sumb+vzsq
v13sumb = v13sumb+vx0(m)*vz0(m)
v13sumb = v13sumb+vx0(m)*vz0(m)
v23sumb = v23sumb+vy0(m)*vz0(m)
v23sumb = v23sumb+vy0(m)*vz0(m)
xold(m) =x0(m)
xold(m) =x0(m)
x0(m)=x0(m)+\quadx1(m)+\quad x2(m)+\quadx3(m)+x4(m)
x0(m)=x0(m)+\quadx1(m)+\quad x2(m)+\quadx3(m)+x4(m)
x1 (m) =x1 (m) +2.0d0*x2(m)+3.0d0*x3(m)+4.0d0*x4 (m)
x1 (m) =x1 (m) +2.0d0*x2(m)+3.0d0*x3(m)+4.0d0*x4 (m)
x2(m) =x2(m)+3.0d0*x3(m)+6.0d0*x4 (m)
x2(m) =x2(m)+3.0d0*x3(m)+6.0d0*x4 (m)
x3 (m) =x3 (m)+4.0d0*x4 (m)
x3 (m) =x3 (m)+4.0d0*x4 (m)
vx0 (m) =vx0(m)+ vx1(m)+\quadvx2(m)+\quadvx3(m)+vx4(m)
vx1 (m) =vx1 (m) +2.0d0*vx2 (m) +3.0d0*vx3 (m) +4.0d0*vx4 (m)
vx2 (m) =vx2 (m) +3.0d0*vx3 (m) +6.0d0*vx4 (m)
vx3(m)=vx3(m)+4.0d0*vx4(m)
yold(m)=y0(m)
y0(m)=y0(m)+\quady1(m)+\quad y2(m)+\quady3(m)+y4(m)
y1 (m) = y1 (m) +2.0d0*y2 (m)+3.0d0*y3 (m)+4.0d0*y4 (m)
y2 (m) =y2 (m)+3.0d0*y3 (m) +6.0d0*y4 (m)
y3 (m) =y3 (m)+4.0d0*y4 (m)
vy0(m)=vy0(m)+\quad vy1(m)+\quadvy2(m)+\quadvy3(m)+vy4(m)
vy1 (m) =vy1 (m) +2.0d0*vy2 (m) +3.0d0*vy3 (m)+4.0d0*vy4 (m)
vy2 (m) =vy2 (m) +3.0d0*vy3 (m) +6.0d0*vy4 (m)
vy3 (m) =vy3 (m) +4.0d0*vy4 (m)
zold(m)=z0(m)
z0(m)=z0(m)+ z1(m)+ z2(m)+ z3(m)+z4(m)
z1 (m)= z1 (m) +2.0d0*z2(m)+3.0d0* z3(m)+4.0d0*z4 (m)
z2(m)=z2(m)+3.0d0*z3(m)+6.0d0*z4 (m)
z3(m)=z3(m)+4.0d0*z4 (m)
vz0(m)=vz0(m)+ vz1(m)+ vz2(m)+ vz3(m)+vz4(m)
vz1(m)=vz1(m)+2.0d0*vz2(m)+3.0d0*vz3(m)+4.0d0*vz4 (m)
vz2(m)=vz2(m)+3.0d0*vz3(m)+6.0d0*vz4 (m)
vz3(m)=vz3(m)+4.0d0*vz4(m)
vxytempb = vxytempb + vx0(m)*vx0(m) + vy0(m)*vy0(m)
vztempb = vztempb + vz0(m)*vz0(m)
```


ENDDO

```
vx2sum = vx2sum+vx2sumb*bfam
vy2sum = vy2sum+vy2sumb*bfam
vz2sum = vz2sum+vz2sumb*bfam
vxy2sum = vx2sum+vy2sum
v2sum = vxy2sum+vz2sum
v13sum = v13sum+v13sumb*bfam
v23sum = v23sum+v23sumb*bfam
```

```
vxytemp = vxytemp+vxytempb*bfam
vztemp = vztemp+vztempb*bfam
etua = v2sum/(3.0d0*nadmol) ! instantaneous T at t
tmolsum = tmolsum+etua ! for average T
tmol2sum = tmol2sum+etua*etua ! for T fluctuations
Temperature Controls in the parallel (tcl)
and perpendicular (tcz) directions
```



```
bLxold=bLx0
bLx0=bLx0+ bLx1+ bLx2+ bLx3+bLx4
bLx1=bLx 1+2.0d0*bLx2+3.0d0*bLx3+4.0d0*bLx 4
bLx2=bLx2+3.0d0*bLx3+6.0d0*bLx 4
bLx3=bLx3+4.0d0*bLx4
bLyold=bLy0
bLy0=bLy0+ bLy1+ bLy2+ bLy3+bLy4
bLy1=bLy1+2.0d0*bLy2+3.0d0*bLy3+4.0d0*bLy4
bLy2=bLy2+3.0d0*bLy3+6.0d0*bLy4
bLy3=bLy3+4.0d0*bLy4
IF (istart.eq.2) THEN ! allowing separation to change
    do i=1,layers
        rsnew(i) = rsold(i) - deltz
        rsnew(i+layers)= rsold(i+layers) + deltz
    enddo
ELSE ! fixed separation
    do i=1,layers
        rsnew(i) = rsold(i)
        rsnew(i+layers) = rsold(i+layers)
    enddo
ENDIF
hz0 = rsold(layers+1) - rsold(1) ! old separation
hz1 = rsnew(layers+1) - rsnew(1) ! new separation
sconold = bLxold*bLyold ! old confining surface area
vold = sconold*hz0 ! old confined volume
dvold = 2.0d0*vold
scon = bLx0*bLy0 ! new confining surface area
```

C
C
C
C
C
C
C
C
C
C

```
dscon = 2.0d0*scon
```

C
C
c
c
C
c
c
c

```
    ptemp = (ptemp+vxytemp)
beta = 4.0*scon*hz1/(2.0*ptemp-deno) !! This is k||
    coe = (-beta*(dscon*pset*hz1-ptemp))/(dscon*hz1*tp)
    pxy = (pxy+vxy2sum)/dvold !! parallel P
    pxytot = pxytot+pxy
    pxy2 = pxy2+pxy*pxy
    pz = (pz+vz2sum)/vold !! perpendicular P
    pztot = pztot+pz
    pz2 = pz2+pz*pz
    fsol = pz-pxy !! solvation force
    fsoltot= fsoltot+fsol
    fsol2 = fsol2+fsol*fsol
    ppsfsf = ppsfsf/dvold ! solvent-solvent to Pxy
    ppsfsftot = ppsfsftot + ppsfsf
    ppsfbf = ppsfbf/dvold ! solvent-nanoparticle to Pxy
    ppsfbftot = ppsfbftot + ppsfbf
    ppsfsa = ppsfsa/dvold ! solvent-surface to Pxy
    ppsfsatot = ppsfsatot + ppsfsa
    ppbfbf = ppbfbf/dvold ! nanoparticle-nanoparticle to Pxy
    ppbfbftot = ppbfbftot + ppbfbf
    ppbfsa = ppbfsa/dvold ! nanoparticle-surface to Pxy
    ppbfsatot = ppbfsatot + ppbfsa
    pzsfsf = pzsfsf/vold
    pzsfsftot = pzsfsftot + pzsfsf
    pzsfbf = pzsfbf/vold
    pzsfbftot = pzsfbftot + pzsfbf
    pzsfsa = pzsfsa/vold
    pzsfsatot = pzsfsatot + pzsfsa
    pzbfbf = pzbfbf/vold
    pzbfbftot = pzbfbftot + pzbfbf
    pzbfsa = pzbfsa/vold
    pzbfsatot = pzbfsatot + pzbfsa
    fzsf = 0.50d0*fzsf/sconold ! perpendicular force/A = Pz
fzsftot = fzsftot+fzsf
fzbf = 0.50d0*fzbf/sconold
```

```
```

fzbftot = fzbftot+fzbf

```
```

fzbftot = fzbftot+fzbf
fxxutot = fxxutot+fxxu/sconold ! parallel force/A = drag
fxxutot = fxxutot+fxxu/sconold ! parallel force/A = drag
fxxdtot = fxxdtot+fxxd/sconold
fxxdtot = fxxdtot+fxxd/sconold
bLxtot = bLxtot+bLxold
bLxtot = bLxtot+bLxold
bLxt2 = bLxt2+bLxold*bLxold
bLxt2 = bLxt2+bLxold*bLxold
bLxold2 = bLxold*bLxold
bLxold2 = bLxold*bLxold
bLxt4 = bLxt4+bLxold2*bLxold2

```
bLxt4 = bLxt4+bLxold2*bLxold2
```

```
GEAR'S CORRECTOR PHASE
```

GEAR'S CORRECTOR PHASE
vcoe = ttnh*(vxytemp/(2.0d0*nadmol*temp)-1.0d0)
vcoe = ttnh*(vxytemp/(2.0d0*nadmol*temp)-1.0d0)
vcoez= ttnh*(vztemp/(nadmol*temp)-1.0d0)
vcoez= ttnh*(vztemp/(nadmol*temp)-1.0d0)
tclcor = vcoe*h-tcl1
tclcor = vcoe*h-tcl1
tcl0 = tcl0+tclcor*f01
tcl0 = tcl0+tclcor*f01
tcl1 = tcl1+tclcor
tcl1 = tcl1+tclcor
tcl2 = tcl2+tclcor*f21
tcl2 = tcl2+tclcor*f21
tcl3 = tcl3+tclcor*f31
tcl3 = tcl3+tclcor*f31
tcl4 = tcl4+tclcor*f41
tcl4 = tcl4+tclcor*f41
fcoe = ttnh*tcl0
fcoe = ttnh*tcl0
tczcor = vcoez*h-tcz1
tczcor = vcoez*h-tcz1
tcz0 = tcz0+tczcor*f01
tcz0 = tcz0+tczcor*f01
tcz1 = tcz1+tczcor
tcz1 = tcz1+tczcor
tcz2 = tcz2+tczcor*f21
tcz2 = tcz2+tczcor*f21
tcz3 = tcz3+tczcor*f31
tcz3 = tcz3+tczcor*f31
tcz4 = tcz4+tczcor*f41
tcz4 = tcz4+tczcor*f41
fcoez = ttnh*tcz0
fcoez = ttnh*tcz0
bLxcor = coe*bLx0*h-bLx1
bLxcor = coe*bLx0*h-bLx1
bLx0 = bLx0+bLxcor*f01
bLx0 = bLx0+bLxcor*f01
bLx1 = bLx1+bLxcor
bLx1 = bLx1+bLxcor
bLx2 = bLx2+bLxcor*f21
bLx2 = bLx2+bLxcor*f21
bLx3 = bLx3+bLxcor*f31
bLx3 = bLx3+bLxcor*f31
bLx4= bLx4+bLxcor*f41
bLx4= bLx4+bLxcor*f41
schange = schange + bLx0 - bLxold
schange = schange + bLx0 - bLxold
IF((schange*schange).ge.drneig) disptest=.true.
IF((schange*schange).ge.drneig) disptest=.true.
DO m=1,nadmol

```
```

xcor = (vx0 (m) +coe*x0(m))*h-x1 (m)

```
xcor = (vx0 (m) +coe*x0(m))*h-x1 (m)
x0(m) = x0(m)+xcor*f01 !! new positions at (t+dt)
x0(m) = x0(m)+xcor*f01 !! new positions at (t+dt)
x1(m) = x1 (m) +xcor
x1(m) = x1 (m) +xcor
x2(m) = x2(m)+xcor*f21
x2(m) = x2(m)+xcor*f21
x3(m) = x3(m)+xcor*f31
x3(m) = x3(m)+xcor*f31
x4(m)= x4(m)+xcor*f41
x4(m)= x4(m)+xcor*f41
vxcor = (ax(m)-fcoe*vx0 (m))*h-vx1 (m)
vxcor = (ax(m)-fcoe*vx0 (m))*h-vx1 (m)
vx0(m) = vx0(m) +vxcor*f01 !! new velocities at (t+dt)
vx0(m) = vx0(m) +vxcor*f01 !! new velocities at (t+dt)
vx1(m) = vx1 (m) +vxcor
vx1(m) = vx1 (m) +vxcor
vx2(m) = vx2(m)+vxcor*f21
vx2(m) = vx2(m)+vxcor*f21
vx3(m) = vx3(m)+vxcor*f31
```

vx3(m) = vx3(m)+vxcor*f31

```
C
C
C
C
```

vx4(m) = vx4(m)+vxcor*f41
diff(1,m) = diff(1,m)+x0(m)-xold(m)
ycor = (vy0(m)+coe*y0(m))*h-y1 (m)
y0(m) = y0(m)+ycor*f01 !! new positions at (t+dt)
y1 (m) = y1 (m) +ycor
y2(m) = y2(m)+ycor*f21
y3 (m) = y3(m)+ycor*f31
y4(m)= y4(m)+ycor*f41
vycor = (ay(m)-fcoe*vy0 (m))*h-vy1 (m)
vy0(m) = vy0(m)+vycor*f01 !! new velocities at (t+dt)
vy1 (m) = vy1 (m) +vycor
vy2(m) = vy2(m)+vycor*f21
vy3(m) = vy3(m)+vycor*f31
vy4(m) = vy4(m)+vycor*f41
diff(2,m) = diff(2,m) +y0(m) -yold(m)
zcor = vz0(m)*h-zl(m)
z0(m) = z0(m)+zcor*f01 !! new positions at (t+dt)
z1(m) = z1(m)+zcor
z2(m) = z2(m)+zcor*f21
z3(m) = z3(m)+zcor*f31
z4(m)= z4(m)+zcor*f41
vzcor = (az(m)-fcoez*vz0(m))*h-vz1(m)
vzO(m) = vz0(m)+vzcor*f01 !! new velocities at (t+dt)
vz1(m) = vz1 (m)+vzcor
vz2(m) = vz2(m)+vzcor*f21
vz3(m) = vz3(m)+vzcor*f31
vz4(m) = vz4(m)+vzcor*f41
diff(3,m)= diff(3,m)+z0(m)-zold(m)
dispvec=0.0d0
DO j=1,3
dispvec = dispvec+diff(j,m)*diff(j,m)
ENDDO
IF (dispvec.ge.drneig) THEN
disptest =.true.
ELSE
disp(1,m) = disp(1,m)+x0(m) -xold(m)
disp(2,m) = disp (2,m) +y0(m) -yold(m)
ENDIF
Apply periodic boundary conditions
nbcx $=\operatorname{dnint}(x 0(m) / b L x 0)$
$\mathrm{nbcy}=\operatorname{dnint}(\mathrm{y} 0(\mathrm{~m}) / \mathrm{bLy0})$
if(nbcx.ne.0) then

Adjustments due to system dimension change
bLx0sq = bLx0*bLx0
bLx1sq = bLx1*bLx1

```
```

 edotx1 = bLx1/bLx0
 edotx2 = (2.0d0*bLx2*bLx0-bLx1sq)/(bLx0sq)
 edotx3 = ((6.0d0* (bLx3*bLx0-bLx 2*bLx1)*bLx0)
 +(2.0d0*bLx1*bLx1sq)) / (bLx0*bLx0sq)
 edotx4 = ((24.0d0*(bLx4*bLx0sq-bLx3*bLx1*bLx0
 +bLx2*bLx1sq)*bLx0) -12.0d0*bLx2*bLx2*bLx0sq
 -6.0d0*bLx1sq*bLx1sq) /(bLx0sq*bLx0sq)
    ```
    corr0 \(=-\mathrm{bLx} 0 * \mathrm{nbcx}\)
    corr1 = edotx1*corr0
    corr2 \(=(\) edotx \(1 *\) corr1+edotx \(2 * \operatorname{corr} 0) / 2.0 \mathrm{~d} 0\)
    corr3 \(=\left(2.0 \mathrm{~d} 0 *\left(\right.\right.\) edotx \(1 * \operatorname{corr} 2+\) edotx \(\left.2{ }^{*} \operatorname{corr} 1\right)\)
        +edotx3*corr0)/6.0d0
    corr4 \(=\left(6.00^{*}{ }^{*}\left(\right.\right.\) edotx \(1^{*} \operatorname{corr} 3+\) edotx \(\left.2^{*} \operatorname{corr} 2\right)\)
        \(+3.0 d 0 *\) edotx3*corr1+edotx4*corr0)/24.0d0
        \(x 0(m)=x 0(m)+\operatorname{corr} 0\)
        \(\mathrm{x} 1(\mathrm{~m})=\mathrm{x} 1(\mathrm{~m})+\mathrm{corr} 1\)
        \(x 2(m)=x 2(m)+\operatorname{corr} 2\)
        \(\mathrm{x} 3(\mathrm{~m})=\mathrm{x} 3(\mathrm{~m})+\operatorname{corr} 3\)
        \(\mathrm{x} 4(\mathrm{~m})=\mathrm{x} 4(\mathrm{~m})+\operatorname{corr} 4\)
    endif
    if(nbcy.ne.0) then
    Adjustments due to system dimension change
    -------------------------------------------
    \(\mathrm{bLy0} \mathrm{sq}=\mathrm{bLy} 0 * \mathrm{bLy} 0\)
    bLy1sq \(=\) bLy1*bLy1
    edoty1 \(=\) bLy1/bLy0
    edoty2 \(=(2.0 \mathrm{~d} 0 * \mathrm{bLy} 2 * \mathrm{bLy} 0-\mathrm{bLy} 1 \mathrm{sq}) /(\mathrm{bLy} 0 \mathrm{sq})\)
    edoty3 \(=((6.0 d 0 *(b L y 3 * b L y 0-b L y 2 * b L y 1) * b L y 0)\)
        \(+(2.0 d 0 * b L y 1 * b L y 1 s q)) /(b L y 0 * b L y 0 s q)\)
    edoty \(4=((24.0 d 0 *(b L y 4 *\) bLy 0 sq-bLy \(3 *\) bLy \(1 *\) bLy 0
                \(+b L y 2 * b L y 1 s q) * b L y 0)-12.0 d 0 * b L y 2 * b L y 2 * b L y 0 s q\)
                \(-6.0 d 0 * b L y 1 s q * b L y 1 s q) /(b L y 0 s q * b L y 0 s q)\)
    corr0 \(=-\) bLy0*nbcy
    corr1 = edoty1*corr0
    corr2 \(=(\) edoty \(1 * \operatorname{corr} 1+\) edoty \(2 * \operatorname{corr} 0) / 2.0 d 0\)
    corr3 \(=(2.0 \mathrm{~d} 0 *(\) edoty \(1 * \operatorname{corr} 2+\) edoty \(2 * \operatorname{corr} 1)\)
            +edoty3*corr0)/6.0d0
    corr4 \(=\left(6.0 d^{*}\left(\right.\right.\) edoty \(1^{*}\) corr3+edoty \(\left.2^{*} \operatorname{corr} 2\right)\)
            \(+3.0 d 0 *\) edoty3*corr1+edoty4*corr0)/24.0d0
    \(\mathrm{y} 0(\mathrm{~m})=\mathrm{y} 0(\mathrm{~m})+\operatorname{corr} 0\)
    \(\mathrm{y} 1(\mathrm{~m})=\mathrm{y} 1(\mathrm{~m})+\mathrm{corr} 1\)
    \(\mathrm{y}^{2}(\mathrm{~m})=\mathrm{y} 2(\mathrm{~m})+\mathrm{corr} 2\)
    y3 \((\mathrm{m})=\mathrm{y} 3(\mathrm{~m})+\operatorname{corr} 3\)
    \(y^{4}(\mathrm{~m})=\mathrm{y}^{4}(\mathrm{~m})+\operatorname{corr} 4\)
    endif
ENDDO
C
C
C
prepare the surfaces for next iteration
do \(i=1\), layers
    rsold(i) \(\quad=\) rsnew (i)
```

 rsold(i+layers) = rsnew(i+layers)
 enddo

```

C
```

istart=3: equilibration has been reached
Record displacement every 'isave' time steps
to calculate diffusivity from mean square
displacement

```
IF (istart.eq.3) THEN
    icnt \(=\) icnt+1
    IF (icnt.eq.isave) then
        icnt \(=0\)
        Calculate density profiles
        DO m=1, nsfmol
            ncom=dnint (z0 (m)/dz) +ncen
            densf \((\mathrm{ncom})=\operatorname{densf}(\mathrm{ncom})+1\)
        ENDDO
        DO \(j=1, n b f m o l\)
            \(\mathrm{m}=\mathrm{nsfmol}+\mathrm{j}\)
            ncom=dnint (z0(m)/dz) +ncen
            denbf \((\mathrm{ncom})=\operatorname{denb} f(\mathrm{ncom})+1\)
        ENDDO
        index \(=\) index+1
        IF (index.le.itau) THEN
            DO i=1,index-1
                \(n d t=i n d e x-i\)
                DO m = 1, nsfmol
                    \(d x=\operatorname{disp}(1, m)-r m 2(1, m, i)\)
                    \(d y=\operatorname{disp}(2, m)-r m 2(2, m, i)\)
                    \(d r s f(n d t)=d r s f(n d t)+d x * d x+d y * d y\)
                ENDDO
                DO m = nsfmol+1, nadmol
                    \(d x=\operatorname{disp}(1, m)-r m 2(1, m, i)\)
                    \(d y=\operatorname{disp}(2, m)-r m 2(2, m, i)\)
                    \(d r b f(n d t)=d r b f(n d t)+d x * d x+d y * d y\)
                ENDDO
            ENDDO
            DO m = 1, nadmol
                        \(\operatorname{rm} 2(1, m\), index \()=\operatorname{disp}(1, m)\)
                        \(\operatorname{rm2}(2, m\), index \()=\operatorname{disp}(2, m)\)
            ENDDO
        ELSE
            DO m = 1, nsfmol
                    \(d x=\operatorname{disp}(1, m)-\operatorname{rm} 2(1, m, 1)\)
                    \(d y=\operatorname{disp}(2, m)-r m 2(2, m, 1)\)
                    drsf(itau) \(=d r s f(i t a u)+d x * d x+d y * d y\)
```

 ENDDO
 DO m = nsfmol+1, nadmol
 dx = disp (1,m)-rm2 (1,m,1)
 dy = disp (2,m)-rm2 (2,m,1)
 drbf(itau) = drbf(itau)+dx*dx+dy*dy
 ENDDO
 DO j = 2,itau
 ndt=(itau+1) -j
 DO m = 1,nsfmol
 dx = disp (1,m)-rm2 (1,m,j)
 dy = disp (2,m)-rm2 (2,m,j)
 drsf(ndt) = drsf(ndt) +dx*dx+dy*dy
 rm2(1,m,j-1)=rm2(1,m,j)
 rm2(2,m,j-1)=rm2(2,m,j)
 ENDDO
 DO m = nsfmol+1,nadmol
 dx = disp (1,m)-rm2 (1,m,j)
 dy = disp (2,m)-rm2 (2,m,j)
 drbf(ndt) = drbf(ndt) +dx*dx+dy*dy
 rm2(1,m,j-1)=rm2(1,m,j)
 rm2 (2,m,j-1)=rm2 (2,m,j)
 ENDDO
 ENDDO
 DO m=1, nadmol
 rm2(1,m,itau)=disp (1,m)
 rm2 (2,m,itau)=disp (2,m)
 ENDDO
 ENDIF !itau
 ENDIF !isave
    ```
    ENDIF
C
c
c
INTERMEDIATE RESULTS
```

IF (icntpt.eq.iprint) then
icntpt = 0
tempmol = tmolsum/iprint
stdtmol = sqrt(tmol2sum/iprint-tempmol*tempmol)*epsi/R
tempmol = tempmol*epsi/R
avb = bLxtot/iprint
ava = bLxt2/iprint
avpxy = pxytot/iprint
stdpxy = sqrt(pxy2/iprint-avpxy*avpxy)
avpz = pztot/iprint
stdpz = sqrt(pz2/iprint-avpz*avpz)
avfsol = fsoltot/iprint
avfzsf = fzsftot/iprint
avfzbf = fzbftot/iprint
avfxxd = fxxdtot/iprint
avfxxu = fxxutot/iprint
avint = totint/iprint

```
```

 avmol = totmol/iprint
 avskz = skztot/iprint
 avppsfsf = ppsfsftot/iprint
 avppsfbf = ppsfbftot/iprint
 avppsfsa = ppsfsatot/iprint
 avppbfbf = ppbfbftot/iprint
 avppbfsa = ppbfsatot/iprint
 avpzsfsf = pzsfsftot/iprint
 avpzsfbf = pzsfbftot/iprint
 avpzsfsa = pzsfsatot/iprint
 avpzbfbf = pzbfbftot/iprint
 avpzbfsa = pzbfsatot/iprint
 tmolsum = 0.0d0
 tmol2sum= 0.0d0
 bLxtot = 0.0d0
 bLxt2 = 0.0d0
 pxytot = 0.0d0
 pxy2 = 0.0d0
 pztot = 0.0d0
 pz2 = 0.0d0
 fsoltot = 0.0d0
 fzsftot = 0.0d0
 fzbftot = 0.0d0
 fxxdtot = 0.0d0
 fxxutot = 0.0d0
 totint = 0.0d0
 totmol = 0.0d0
 skztot = 0.0d0
 ppsfsftot = 0.0d0
ppsfbftot = 0.0d0
ppsfsatot = 0.0d0
ppbfbftot = 0.0d0
pp.bfsatot = 0.0d0
pzsfsftot = 0.0d0
pzsfbftot = 0.0d0
pzsfsatot = 0.0d0
pzbfbftot = 0.0d0
pzbfsatot = 0.0d0

```
```

write(*,*)nstp,hz0,bLx0,pxy,pz,potff,potfs,skz
write(*,900)nstp, dxtot,tempmol, stdtmol,avb,ava, avint,avmol,
avpxy,stdpxy,avppsfsf,avppsfbf,avppsfsa,avppbfbf,avppbfsa,
avpz,stdpz,avpzsfsf,avpzsfbf,avpzsfsa,avpzbfbf,avpzbfsa,
avfsol,avfzsf,avfzbf,avfxxd,avfxxu,avskz
IF (istart.eq.2) THEN
if(nstp.eq.25000)then
DO m=1,nadmol
write(2,999) x0 (m),y0 (m), z0 (m),vx0 (m),vy0 (m),vz0 (m)
ENDDO
write(2,*)bLx0,bLy0,hz1

```
```

 istart = istart + 1
 write(*,*)'
    ```
\(\qquad\)
``` Shearing Begins
``` \(\qquad\)
``` \({ }^{\prime}\)
 GO TO 200
 endif
 ELSE
 if (mod(nstp,50000).eq.0) then
 DO m=1, nadmol
 write (2,999)x0(m),y0(m), z0(m),vx0(m),vy0 (m),vz0(m)
 ENDDO
 write(2, *) bLx0, bLy0, hz1
 write (2,*)'XXX'
 endif
 format(I7,32(1x,E11.5))
 ENDIF
 ENDIF
```

```
ENDDO !! end of main loop
```

ENDDO !! end of main loop
DO m=1, nadmol
write (2, 999) x0 (m), YO (m), z0 (m) , vx0 (m), vyO (m),vz0 (m)
ENDDO
write (2, *) bLx0, bLy0,hz1
write(2,*)nstp,nbfmol,h*sigma/dsqrt(epsi/unitm)
do i=1,99
densf(i) = densf(i)/kmax/(dz*ava)
denbf(i) = denbf(i)/kmax/(dz*ava)
write(3,999) (i-ncen)*dz,densf(i), denbf(i)
enddo
DO i=1,kmax !! length of record
DO j=i,min0(kmax,itau+i)
ndt = j - i
ncnt1(ndt)= ncnt1(ndt) + 1
ENDDO
ENDDO
drsf(0) = 0.0d0
drbf(0) = 0.0d0
do i=0,itau
drsf(i) = drsf(i)/ncnt1(i)/nsfmol
if (nbfmol.gt.0) drbf(i) = drbf(i)/ncnt1(i)/nbfmol
enddo

```
 sumx = 0.0d0
 sumx2 = 0.0d0
 sumxy = 0.0d0
 sumy = 0.0d0
 sumy2 = 0.0d0
 num = 3*(itau+1)/4 ! using the last 1/4 section
 DO i=num,itau
 rsqt = drsf(i)
 xt = i*isave*h
 sumy = sumy + rsqt
 sumy2 = sumy2 + rsqt*rsqt
 sumx = sumx + xt
 sumx2 = sumx2 + xt*xt
 sumxy = sumxy + xt*rsqt
 ENDDO
 diff_coef = (sumy*sumx-num*sumxy)
& /(sumx*sumx-num*sumx2)/4.0
write(3,*)'Dsf_rm2=',diff_coef
sumx = 0.0d0
sumx2 = 0.0d0
sumxy = 0.0d0
sumy = 0.0d0
sumy2 = 0.0d0
DO i=num,itau
 rsqt = drbf(i)
 xt = i*isave*h
 sumy = sumy + rsqt
 sumy2 = sumy2 + rsqt*rsqt
 sumx = sumx + xt
 sumx2 = sumx2 + xt*xt
 sumxy = sumxy + xt*rsqt
 ENDDO
 diff_coef = (sumy*sumx-num*sumxy)
 &
 /(sumx*sumx-num*sumx2)/4.0
write(3,*)'Dbf_rm2=',diff_coef
DO i=0,itau,4
 write(3,999)i*isave*h,drsf(i),drbf(i)
ENDDO
 format(20(1x,e11.5))
stop
END
SUBROUTINE setup_sa_position
IMPLICIT real*8 (a-\overline{h},o-z),integer*4 (i-n)
include 'ljmix'
C
C
C
C
This SUBROUTINE sets up the surface atoms in a
surface unit cell for both confining substrates
```

```
sx(1,1) = 0.0d0
sy(1,1) = 0.0d0
sx(2,1) = sx(1,1)-0.50d0*x_L
sy(2,1) = sy(1,1)-0.50d0*y_L
sx(1,2) = sx(1,1)
sy(1,2) = sy(1,1)-y_L/3.0d0
sx}(2,2)=sx(1,1)-0.50d0*x_L
sy(2,2) = sy (1,1)+y_L/6.0d\overline{0}
sx(1,3) = sx(1,1)
sy(1,3)=sy(1,1)-y_L/3.0d0
sx}(2,3)=sx(1,1)-0.50d0*x_L
sy(2,3) = sy(1,1)+y_L/6.0d0
sx(1,4) = sx(1,1)-0.50d0*x_L
sy(1,4) = sy(1,1)-y_L/6.0d\overline{0}
sx(2,4) = sx(1,1)
sy(2,4) = sy(1,1)+y_L/3.0d0
sx(1,5) = sx(1,1)-0.50d0*x_L
sy(1,5) = sy(1,1)-y_L/6.0d\overline{0}
sx}(2,5)=sx(1,1
sy(2,5) = sy(1,1)+y_L/3.0d0
sx(1,6) = sx(1,1)
sy(1,6) = sy (1,1)
sx(2,6) = sx(2,1)
sy(2,6) = sy(2,1)
sx(1,7) = sx(1,1)
sy(1,7) = sy(1,1)
sx(2,7) = sx(2,1)
sy(2,7) = sy(2,1)
sx(1,8) = sx(1,2)
sy(1,8) = sy(1,2)
sx}(2,8)=sx(2,2
sy(2,8) = sy(2,2)
do i=1,layers
 sx(1,i+layers) = sx(1,i)
 sy(1,i+layers) = sy(1,i)
 sx(2,i+layers) = sx(2,i)
 sy(2,i+layers) = sy(2,i)
enddo
RETURN
END
SUBROUTINE gauss(vx,vy,vz,tempe)
IMPLICIT real*8 (a-h,o-z),integer*4 (i-n)
include 'ljmix'
RETURN
END
SUBROUTINE fluid_neighbor_list
IMPLICIT real*8 (a-h,o-z), integer*4 (i-n)
include 'ljmix'
C
c
c
C
C
C Like pair of smaller-smaller fluid atoms
C
```

CALL SRAND(ISEED)

```
CALL SRAND(ISEED)
vxpick = 0.0d0
vxpick = 0.0d0
vxpick = 0.0d0
vypick = 0.0d0
vypick = 0.0d0
vypick = 0.0d0
vzpick = 0.0d0
vzpick = 0.0d0
vzpick = 0.0d0
DO k=1,12
DO k=1,12
DO k=1,12
 ran1 = rand()
 ran1 = rand()
 ran1 = rand()
 ran2 = rand()
 ran2 = rand()
 ran2 = rand()
 ran3 = rand()
 ran3 = rand()
 ran3 = rand()
 vxpick = vxpick+ran1
 vxpick = vxpick+ran1
 vxpick = vxpick+ran1
 vypick = vypick+ran2
 vypick = vypick+ran2
 vypick = vypick+ran2
 vzpick = vzpick+ran3
 vzpick = vzpick+ran3
 vzpick = vzpick+ran3
ENDDO
ENDDO
ENDDO
vx = (vxpick-6.0d0)*dsqrt(tempe)
vx = (vxpick-6.0d0)*dsqrt(tempe)
vx = (vxpick-6.0d0)*dsqrt(tempe)
vy = (vypick-6.0d0)*dsqrt(tempe)
vy = (vypick-6.0d0)*dsqrt(tempe)
vy = (vypick-6.0d0)*dsqrt(tempe)
vz = (vzpick-6.0d0)*dsqrt(tempe)
```

vz = (vzpick-6.0d0)*dsqrt(tempe)

```
vz = (vzpick-6.0d0)*dsqrt(tempe)
```

Construct neighbor lists of other UA's for molecules
[
---------------------------
DO m=1,nsfmol+1
inblss(m) $=0$
inblsb(m) $=0$
ENDDO
DO m=1,nnblss
inblstss (m) $=0$
ENDDO
DO m=1, nnblsb
inblstsb (m) $=0$
ENDDO
DO m=1, nbfmol+1
inblbb(m) $=0$
ENDDO
DO m=1, nnblbb
inblstbb $(\mathrm{m})=0$
ENDDO
nlistss $=0$
nlistsb $=0$
DO m=1,nsfmol

```
C
C solvent-solvent pairs
C
C
C solvent-nanoparticle pairs
C
C
C nanoparticle-nanoparticle pairs
C
ENDDO
nlistbb = 0
DO j=1,nbfmol
 m = j + nsfmol
 inblbb(j) = nlistbb+1
 DO i=m+1,nadmol
 xij = x0(m)-x0(i)
 yij = y0(m)-y0(i)
 zij = z0(m)-z0(i)
 xij = xij-bLx0*dnint(xij/bLx0)
 yij = yij-bLy0*dnint(yij/bLy0)
 rij2=xij*xij+yij*yij+zij*zij
 IF (rij2.le.rnbl2bfbf) then
 nlist.bb=nlistbb+1
 inblst.bb(nlist.bb)=i !! molecule
 ENDIF
 ENDDO
```

```
ENDDO
IF(nlistss.gt.nnblss) then
 print *,'make nnblss > ',nlistss+1
 stop
ENDIF
IF(nlistsb.gt.nnblsb) then
 print *,'make nnblsb > ',nlistsb+1
 stop
ENDIF
IF(nlistbb.gt.nnblbb) then
 print *,'make nnblb.b > ',nlistbb+1
 stop
ENDIF
RETURN
END
SUBROUTINE accel
IMPLICIT real*8 (a-h,o-z),integer*4 (i-n)
include 'ljmix'
DO m=1,nadmol
 ax(m) = 0.0d0
 ay(m) = 0.0d0
 az(m) = 0.0d0
ENDDO
ppsfsf = 0.0d0
ppsfbf = 0.0d0
ppsfsa = 0.0d0
ppbfbf = 0.0d0
ppbfsa = 0.0d0
pzsfsf = 0.0d0
pzsfbf = 0.0d0
pzsfsa = 0.0d0
pzbfbf = 0.0d0
pzbfsa = 0.0d0
fzsf = 0.0d0
fzbf = 0.0d0
fxxd = 0.0d0
fxxu = 0.0d0
potsfsf = 0.0d0
potbfbf = 0.0d0
potsfsa = 0.0d0
pot.bfsa = 0.0d0
ptemp = 0.0d0
deno = 0.0d0
skzc = 0.0d0
skzs = 0.0d0
```

```
C
C dxtot: displacement of the upper surface
 for continuous shearing (stationary lower surface)
 dxtot = dxtot + deltx
C
C
C
INTERACTIONS BASED ON SOLVENT
DO m=1,nsfmol
 xorig = xold(m)
 yorig = yold(m)
 zorig = zold(m)
 rkz = (zorig-rsold(1))*zk
 skzc = skzc+cos(rkz)
 skzs = skzs+sin(rkz)
 xpred = x0 (m)
 ypred = y0(m)
 zpred = z0(m)
 aclx = ax(m)
 acly = ay(m)
 aclz = az(m)
C
C
C
 solvent-solvent pair interactions
C
C
 ibegss = inblss(m)
 iendss = inblss(m+1)-1
 DO ilist=ibegss,iendss ! No. of interacting pairs
 i=inblstss(ilist) ! identity of interacting partner
 --
 Use old coordinates to calculate properties

 Xij = xorig - xold(i) !! old positions
 Yij = yorig - yold(i)
 Zij = zorig - zold(i)
 xpbc = -bLxold*dnint(Xij/bLxold)
 ypbc = -bLyold*dnint(Yij/bLyold)
 Xij = Xij+xpbc
 Yij = Yij+ypbc
 xij2 = Xij*Xij
 yij2 = Yij*Yij
 rxy2 = xij2 + yij2
 zij2 = Zij*Zij
 rij2 = rxy2 + zij2
 IF (rij2.le.rcut2sfsf) then
 rho2 = sig2sfsf/rij2
 rho6 = rho2*rho2*rho2
 rho12 = rho6*rho6
 rij = dsqrt(rij2)
 Fij = eps24sfsf*((2.0d0*rhol2-rho6)/rij2 -fcsfsf/rij)
```

```
potsfsf = potsfsf+(rho12-rho6)-vcsfsf+fcvsfsf*rij
```


## ENDIF

```
 Use predicted coordinates to estimate properties
 x0ij = xpred - x0(i) !! predicted positions for calculating
 y0ij = ypred - y0(i) !! accelerations and coefficients
 zOij = zpred - z0(i)
 xOij = xOij + xpbc
 yOij = yOij + ypbc
 r0xy2 = x0ij*x0ij + y0ij*y0ij
 z0ij2 = z0ij*z0ij
 r0ij2 = r0xy2 + z0ij2
 IF (r0ij2.le.rcut2sfsf) then
 r0ij4 = r0ij2*r0ij2
 r0xy4 = r0xy2*r0xy2
 rho2 = sig2sfsf/r0ij2
 rho6 = rho2*rho2*rho2
 rho12 = rho6*rho6
 r0ij = dsqrt(r0ij2)
 FOij = eps24sfsf*((2.0d0*rho12-rho6)-fcsfsf*r0ij)/r0ij2
 x0ff_r4 = epssfsf*(-672.0d0*rho12+192.0d0*rho6
 +24.0d0*r0ij*fcsfsf)/r0ij4
```

    ptemp \(=\) ptemp+F0ij*r0xy2
    deno \(=\) deno+r0xy \(4 * x 0 f f\) _r \(4+2.0 *\) F0ij*r0xy2
    fx0lj = FOij*(XOij) !! Fij=(-dv/dr)/r
    fyOlj = FOij*(YOij)
    fzOlj = FOij*(ZOij)
    aclx \(=\) aclx \(+f x 0 l j\)
    acly \(=a c l y+f y 0 l j\)
    aclz = aclz + fzolj
    ax(i) = ax(i) - fx0lj
    \(a y(i)=a y(i)-f y 0 l j\)
    \(a z(i)=a z(i)-f z 0 l j\)
    ENDIF

ENDDO
solvent-nanoparticle pair interactions
ibegsb $=$ inblsb (m)
iendsb $=$ inblsb $(m+1)-1$
DO ilist=ibegsb,iendsb ! No. of interacting nanoparticles j=inblstsb(ilist) ! identity of interacting nanoparticles
--------------------------------------------------
Use old coordinates to calculate properties
Xij $=$ xorig - xold(j) !! old positions

```
Yij = yorig - yold(j)
Zij = zorig - zold(j)
xpbc = -bLxold*dnint(Xij/bLxold)
ypbc = -bLyold*dnint(Yij/bLyold)
Xij = Xij+xpbc
Yij = Yij+ypbc
xij2 = Xij*Xij
yij2 = Yij*Yij
rxy2 = xij2 + yij2
zij2 = Zij*Zij
rij2 = rxy2 + zij2
IF (rij2.le.rcut2sfbf) then
 rho2 = sig2sfbf/rij2
 rho6 = rho2*rho2*rho2
 rho12 = rho6*rho6
 rij = dsqrt(rij2)
 Fij = eps24sfbf*((2.0d0*rho12-rho6)/rij2 -fcsfbf/rij)
 ppsfbf = ppsfbf + Fij*rxy2
 pzsfbf = pzsfbf + Fij*zij2
 potsfbf = potsfbf+(rho12-rho6)-vcsfbf+fcvsfbf*rij
ENDIF
Use predicted coordinates to estimate properties
x0ij = xpred - x0(j) !! predicted positions for calculating
y0ij = ypred - y0(j) !! accelerations and coefficients
z0ij = zpred - z0(j)
x0ij = x0ij + xpbc
y0ij = y0ij + ypbc
r0xy2 = x0ij*x0ij + y0ij*y0ij
z0ij2 = z0ij*z0ij
r0ij2 = r0xy2 + z0ij2
IF (r0ij2.le.rcut2sfbf) then
r0ij4 = r0ij2*r0ij2
r0xy4 = r0xy2*r0xy2
 rho2 = sig2sfbf/r0ij2
 rho6 = rho2*rho2*rho2
 rho12 = rho6*rho6
 r0ij = dsqrt(r0ij2)
 F0ij = eps24sfbf*((2.0d0*rho12-rho6)-fcsfbf*r0ij)/r0ij2
 x0ff_r4 = epssfbf*(-672.0d0*rho12+192.0d0*rho6
 +24.0d0*r0ij*fcsfsf)/r0ij4
 ptemp = ptemp+F0ij*r0xy2
 deno = deno+r0xy4*x0ff_r4+2.0*F0ij*r0xy2
 fxOlj = FOij*(XOij) !! Fij=(-dv/dr)/r
 fyOlj = FOij*(YOij)
 fzOlj = FOij*(ZOij)
 aclx = aclx + fx0lj
 acly = acly + fy0lj
 aclz = aclz + fz0lj
 ax(j) = ax(j) - fx0lj
 ay(j) = ay(j) - fy0lj
```

C
C
C
ENDDO
C stationary (lower) surface

```
```

```
 az(j) = az(j) - fzOlj
```

```
 az(j) = az(j) - fzOlj
ENDIF
```

ENDIF

```
```

solvent-surface interactions
_________________
nyo = dnint(yorig/y_L)
yshfto = yorig - nyo*y_L
nyp = dnint(ypred/y_L)
yshftp = ypred - nyp*y_L
nxo = dnint(xorig/x_L)
xshfto = xorig - nxo*x_L_L
nxp = dnint(xpred/x_L)
xshftp = xpred - nxp*x_L
DO k=1,layers !stationary surface
zij = zorig - rsold(k)
zij2 = zij*zij
IF (zij2.le.rcut2sfsa) THEN
DO k1=1,2
DO i=-3,3
syad = i*y_L
rsy = sy(\overline{k}1,k) + syad
DO j=-4,4
sxad = j*x_L
rsx = sx(k k 1,k) + sxad
Xij = xshfto - rsx
Yij = yshfto - rsy
xij2 = Xij*Xij
yij2 = Yij*Yij
rxy2 = xij2 + yij2
rij2 = rxy2 + zij2
IF (rij2.le.rcut2sfsa) then
rij = dsqrt(rij2)
rho2 = sig2sfsa/rij2
rho6 = rho2*rho2*rho2
rho12= rho6*rho6
Fij = eps24sfsa*((2.0d0*rho12-rho6)-fcsfsa*rij)/rij2
potsfsa = potsfsa+((rho12-rho6)-vcsfsa+fcvsfsa*rij)
fzsf = fzsf + Fij*abs(zij)
ppsfsa = ppsfsa + Fij*rxy2
fxxd = fxxd + Fij*Xij
dis = zorig + (hz0/2.0)
pzsfsa = pzsfsa + Fij*zij*dis
ENDIF
Xij = xshftp - rsx
Yij = yshftp - rsy
Zij = zpred - rsnew(k)

```
C
C
C
C
C
C
```

                rxy2 = Xij*Xij + Yij*Yij
                zij2 = Zij*Zij
                rij2 = rxy2 + zij2
                IF (rij2.le.rcut2sfsa) then
                    rxy4 = rxy2*rxy2
                    rij4 = rij2*rij2
                    rho2 = sig2sfsa/rij2
                        rho6 = rho2*rho2*rho2
                        rho12= rho6*rho6
                    rij = dsqrt(rij2)
                    Fij = eps24sfsa*((2.0d0*rho12-rho6)/rij2-fcsfsa/rij)
                    xwf_r4 = epssfsa*(-672.0d0*rho12+192.0d0*rho6
                    +24.0d0*rij*fcsfsa)/rij4
                    rxys = Xij*xpred+Yij*ypred
                ptemp = ptemp+Fij*rxy2
            deno = deno+rxy2*rxys*xwf_r4ws+2.0*Fij*rxys
                        fxlj = Fij*(Xij) !! Fij=(-dv/dr)/r
                        fylj = Fij*(Yij)
                        fzlj = Fij*(Zij)
                        aclx = aclx + fxlj
                        acly = acly + fylj
                        aclz = aclz + fzlj
                ENDIF
            enddo ! do nx
            enddo ! do ny
        enddo ! do k1
    endif
    enddo !!k
C moving/shearing (upper) surface
xshfto = xorig - dxtot
nxo = dnint(xshfto/x_L)
xshfto = xshfto - nxo*x_L
xshftp = xpred - dxtot
nxp = dnint(xshftp/x_L)
xshftp = xshftp - nxp*x_L
DO k=layers+1,2*layers ! moving/searing surface
zij = zorig - rsold(k)
zij2 = zij*zij
IF (zij2.le.rcut2sfsa) THEN
DO k1=1,2
DO i=-3,3
syad = i*y_L
rsy = sy(k k 1,k) + syad
DO j=-4,4
sxad = j*x_L
rsx = sx(kl,k) + sxad
Xij = xshfto - rsx
Yij = yshfto - rsy
xij2 = Xij*Xij

```
C
C
```

                    yij2 = Yij*Yij
                    rxy2 = xij2 + yij2
                    rij2 = rxy2 + zij2
                    IF (rij2.le.rcut2sfsa) then
                        rij = dsqrt(rij2)
                        rho2 = sig2sfsa/rij2
                        rho6 = rho2*rho2*rho2
                        rho12= rho6*rho6
                    Fij = eps24sfsa*((2.0d0*rho12-rho6)-fcsfsa*rij)/rij2
                        potsfsa = potsfsa+((rho12-rho6)-vcsfsa+fcvsfsa*rij)
                        fzsf = fzsf + Fij*abs(zij)
                        ppsfsa = ppsfsa + Fij*rxy2
                        fxxu = fxxu + Fij*Xij
                        dis = zorig - (hz0/2.0)
                        pzsfsa = pzsfsa + Fij*zij*dis
                ENDIF
                    Xij = xshftp - rsx
                    Yij = yshftp - rsy
    Zij = zpred - rsnew(k)
rxy2 = Xij*Xij + Yij*Yij
zij2 = Zij*Zij
rij2 = rxy2 + zij2
IF (rij2.le.rcut2sfsa) then
rxy4 = rxy2*rxy2
rij4 = rij2*rij2
rho2 = sig2sfsa/rij2
rho6 = rho2*rho2*rho2
rho12= rho6*rho6
rij = dsqrt(rij2)
Fij = eps24sfsa*((2.0d0*rho12-rho6)/rij2-fcsfsa/rij)
xwf_r4 = epssfsa*(-672.0d0*rho12+192.0d0*rho6
+24.0d0*rij*fcsfsa)/rij4!! added truncated term
rxys = Xij*xpred+Yij*ypred
ptemp = ptemp+Fij*rxy2
deno = deno+rxy2*rxys*xwf_r4ws+2.0*Fij*rxys
fxlj = Fij*(Xij) !! Fij=(-dv/dr)/r
fylj = Fij*(Yij)
fzlj = Fij*(Zij)
aclx = aclx + fxlj
acly = acly + fylj
aclz = aclz + fzlj
ENDIF
enddo ! do nx
enddo ! do ny
enddo ! do k1
endif
enddo !!k
ax(m) = aclx/sfam
ay(m) = acly/sfam
az(m) = aclz/sfam

```
\&

ENDDO
```

c
c
C
C
DO jj=1,nbfmol
m= jj+nsfmol
xorig = xold(m)
yorig = yold(m)
zorig = zold(m)
xpred = x0(m)
ypred = y0(m)
zpred = z0(m)
aclx = ax(m)
acly = ay(m)
aclz = az(m)
C
C
C nanoparticle-nanoparticle pair interactions

```
 ibegbb = inblbb(jj)
```

    ibegbb = inblbb(jj)
    iendbb = inblbb(jj+1)-1
    iendbb = inblbb(jj+1)-1
    DO ilist=ibegbb,iendbb
    DO ilist=ibegbb,iendbb
        k=inblstbb(ilist)
        k=inblstbb(ilist)
        Use old coordinates to calculate properties
        Use old coordinates to calculate properties
        --------------------------------------------
        --------------------------------------------
        Xij = xorig - xold(k) !! old positions
        Xij = xorig - xold(k) !! old positions
        Yij = yorig - yold(k)
        Yij = yorig - yold(k)
        Zij = zorig - zold(k)
        Zij = zorig - zold(k)
        xpbc = -bLxold*dnint(Xij/bLxold)
        xpbc = -bLxold*dnint(Xij/bLxold)
        ypbc = -bLyold*dnint(Yij/bLyold)
        ypbc = -bLyold*dnint(Yij/bLyold)
        Xij = Xij+xpbc
        Xij = Xij+xpbc
        Yij = Yij+ypbc
        Yij = Yij+ypbc
        xij2 = Xij*Xij
        xij2 = Xij*Xij
        yij2 = Yij*Yij
        yij2 = Yij*Yij
        rxy2 = xij2 + yij2
        rxy2 = xij2 + yij2
        zij2 = Zij*Zij
        zij2 = Zij*Zij
        rij2 = rxy2 + zij2
        rij2 = rxy2 + zij2
        IF (rij2.le.rcut2bfbf) then
        IF (rij2.le.rcut2bfbf) then
            rho2 = sig2bfbf/rij2
            rho2 = sig2bfbf/rij2
            rho6 = rho2*rho2*rho2
            rho6 = rho2*rho2*rho2
            rho12 = rho6*rho6
            rho12 = rho6*rho6
            rij = dsqrt(rij2)
            rij = dsqrt(rij2)
            Fij = eps24bfbf*((2.0d0*rho12-rho6)/rij2 -fcbfbf/rij)
            Fij = eps24bfbf*((2.0d0*rho12-rho6)/rij2 -fcbfbf/rij)
            ppbfbf = ppbfbf + Fij*rxy2
            ppbfbf = ppbfbf + Fij*rxy2
            pzbfbf = pzbfbf + Fij*zij2
            pzbfbf = pzbfbf + Fij*zij2
            potbfbf = potbfbf+(rho12-rho6)-vcbfbf+fcvbfbf*rij
            potbfbf = potbfbf+(rho12-rho6)-vcbfbf+fcvbfbf*rij
        ENDIF
    ```
 ENDIF
```

```
 Use predicted coordinates to estimate properties
 x0ij = xpred - x0(k) !! predicted positions for calculating
 y0ij = ypred - y0(k) !! accelerations and coefficients
 z0ij = zpred - z0(k)
 x0ij = x0ij-bLx0*dnint(x0ij/bLx0)
 y0ij = y0ij-bLy0*dnint(y0ij/bLy0)
 r0xy2 = x0ij*x0ij + y0ij*y0ij
 z0ij2 = z0ij*z0ij
 r0ij2 = r0xy2 + z0ij2
 IF (r0ij2.le.rcut2bfbf) then
 r0ij4 = r0ij2*r0ij2
 r0xy4 = r0xy2*r0xy2
 rho2 = sig2bfbf/r0ij2
 rho6 = rho2*rho2*rho2
 rho12 = rho6*rho6
 r0ij = dsqrt(r0ij2)
 FOij = eps24bfbf*((2.0d0*rho12-rho6)-fcbfbf*r0ij)/r0ij2
 x0ff_r4=epsbfbf*(-672.0d0*rho12+192.0d0*rho6
 +24.0d0*r0ij*fcbfbf)/r0ij4 !! added truncated term
 ptemp = ptemp+F0ij*r0xy2
 deno = deno+r0xy4*x0ff_r4+2.0*F0ij*r0xy2
 fxOlj = FOij*(XOij) !! Fij=(-dv/dr)/r
 fyOlj = FOij*(YOij)
 fzOlj = FOij*(ZOij)
 aclx = aclx + fx0lj
 acly = acly + fy0lj
 aclz = aclz + fz0lj
 ax(k) = ax(k) - fx0lj
 ay(k) = ay(k) - fy0lj
 az(k) = az(k) - fzOlj
ENDIF
```

ENDDO

```
nanoparticle-surface pair interactions
```

C
----------------------------
stationary (lower) surface
nyo $=$ dnint (yorig/y_L)
yshfto = yorig - nyo*y_L
nyp $=$ dnint (ypred/y_L)
yshftp $=$ ypred - nyp*y_L
nxo $=\operatorname{dnint}\left(x o r i g / x \_L\right)$
xshfto $=$ xorig - nxo*x_L
nxp $=$ dnint (xpred/x_L)
xshftp $=$ xpred $-n x p * x \_L$
DO k=1,layers
zij = zorig - rsold(k)
zij2 = zij*zij

IF (zij2.le.rcut2bfsa) THEN
DO $k 1=1,2$
DO $i=-4,4$
syad $=i^{*} y \_L$ rsy $=$ sy $(\overline{\mathrm{k}} 1, \mathrm{k})+$ syad DO $j=-6,6$
sxad $=j * x \_L$
rsx $=s x(\bar{k} 1, k)+s x a d$
Xij = xshfto - rsx
Yij = yshfto - rsy
xij2 = Xij*Xij
yij2 = Yij*Yij
rxy2 = xij2 + yij2
rij2 $=$ rxy2 + zij2
IF (rij2.le.rcut2bfsa) then
rij $=$ dsqrt(rij2)
rho2 = sig2bfsa/rij2
rho6 $=$ rho2*rho2*rho2
rho12= rho6*rho6
Fij $=$ eps24bfsa*((2.0d0*rho12-rho6)-fcbfsa*rij)/rij2
potbfsa $=$ potbfsa+((rho12-rho6)-vcbfsa+fcvbfsa*rij)
fzbf = fzbf + Fij*abs(zij)
ppbfsa $=$ ppbfsa + Fij*rxy2
fxxd $=$ fxxd + Fij*Xij
dis $=$ zorig $+(h z 0 / 2.0)$
pzbfsa $=$ pzbfsa + Fij*zij*dis ENDIF

Xij = xshftp - rsx
Yij = yshftp - rsy
Zij $=$ zpred - rsnew (k)
rxy2 = Xij*Xij + Yij*Yij
zij2 = Zij*Zij
rij2 $=$ rxy2 + zij2
IF (rij2.le.rcut2bfsa) then
rxy4 $=r x y 2^{*} r x y 2$
rij4 = rij2*rij2
rho2 = sig2bfsa/rij2
rho6 $=$ rho2*rho2*rho2
rho12= rho6*rho6
rij = dsqrt(rij2)
Fij $=$ eps24bfsa*((2.0d0*rho12-rho6)/rij2-fcbfsa/rij)
xwf_r4 $=$ epsbfsa* (-672.0d0*rho12+192.0d0*rho6
$+\overline{2} 4.0 \mathrm{~d} 0 *$ rij*fcbfsa)/rij4 !! added truncated term
rxys = Xij*xpred+Yij*ypred
ptemp = ptemp+Fij*rxy2
deno = deno+rxy2*rxys*xwf_r4+2.0*Fij*rxys
fxlj = Fij*(Xij) ! ! Fij=(-dv/dr)/r
fylj = Fij*(Yij)
fzlj = Fij*(Zij)
aclx $=$ aclx $+f x l j$
$a c l y=a c l y+f y l j$
aclz = aclz + fzlj
ENDIF

```
 enddo ! do nx
 enddo ! do ny
 enddo ! do k1
 endif
enddo !!kk
```

C
moving/shearing (upper) surface
xshfto $=$ xorig - dxtot
nxo $=$ dnint (xshfto/x_L)
xshfto $=$ xshfto $-n x o^{*}$ L
xshftp $=$ xpred - dxtot
nxp $=$ dnint (xshftp/x_L)
xshftp $=x \operatorname{shftp}-n x p * x_{-}^{-}$
DO k=layers+1,2*layers !moving
zij = zorig - rsold(k)
zij2 = zij*zij
IF (zij2.le.rcut2bfsa) THEN
DO $k 1=1,2$
DO $i=-4,4$
syad $=i^{*} y \_L$
rsy $=$ sy $(\bar{k} 1, k)+$ syad
DO $j=-6,6$
sxad $=j^{\star} x_{-} L$
rsx $=s x(\bar{k} 1, k)+s x a d$
Xij = xshfto - rsx
Yij = yshfto - rsy
xij2 = Xij*Xij
yij2 = Yij*Yij
rxy2 = xij2 + yij2
rij2 = rxy2 + zij2
IF (rij2.le.rcut2bfsa) then
rij $=$ dsqrt(rij2)
rho2 $=$ sig2bfsa/rij2
rho6 $=$ rho2*rho2*rho2
rho12= rho6*rho6
Fij = eps24bfsa*((2.0d0*rho12-rho6)-fcbfsa*rij)/rij2
potbfsa $=$ potbfsa+((rho12-rho6)-vcbfsa+fcvbfsa*rij)
fzbf = fzbf + Fij*abs(zij)
ppbfsa $=$ ppbfsa + Fij*rxy2
fxxu $=$ fxxu + Fij*Xij
dis $=$ zorig - (hz0/2.0)
pzbfsa $=$ pzbfsa + Fij*zij*dis
ENDIF
Xij = xshftp - rsx
Yij = yshftp - rsy
Zij = zpred - rsnew(k)
rxy2 = Xij*Xij + Yij*Yij
zij2 = Zij*Zij
rij2 = rxy2 + zij2
IF (rij2.le.rcut2bfsa) then
rxy4 $=r x y 2 * r x y 2$

```
 rij4 = rij2*rij2
 rho2 = sig2bfsa/rij2
 rho6 = rho2*rho2*rho2
 rho12= rho6*rho6
 rij = dsqrt(rij2)
 Fij = eps24bfsa*((2.0d0*rho12-rho6)/rij2-fcbfsa/rij)
 xwf_r4 = epsbfsa*(-672.0d0*rho12+192.0d0*rho6
 +24.0d0*rij*fcbfsa)/rij4 !! added truncated term
 rxys = Xij*xpred+Yij*ypred
 ptemp = ptemp+Fij*rxy2
 deno = deno+rxy2*rxys*xwf_r4+2.0*Fij*rxys
 fxlj = Fij*(Xij) !! Fij=(-dv/dr)/r
 fylj = Fij*(Yij)
 fzlj = Fij*(Zij)
 aclx = aclx + fxlj
 acly = acly + fylj
 aclz = aclz + fzlj
 ENDIF
 enddo ! do nx
 enddo ! do ny
 enddo ! do k1
 endif
 enddo !!k
 ax(m) = aclx/bfam
 ay(m) = acly/bfam
 az(m) = aclz/bfam
```

ENDDO

```
pxy = ppsfsf + ppsfbf + ppbfbf + ppsfsa + ppbfsa
pz = pzsfsf + pzsfbf + pzbfbf + pzsfsa + pzbfsa
potff = eps4sfsf*potsfsf+eps4sfbf*potsfbf+eps4bfbf*potbfbf
potfs = eps4sfsa*potsfsa+eps4bfsa*pot.bfsa
skzc = skzc/nsfmol
skzs = skzs/nsfmol
skz = dsqrt(skzc*skzc+skzs*skzs)
RETURN
END
```



## BIBLOGRAPHY

[1] K. Eric Drexler, Engines of Creation: The Coming Era of Nanotechnology, Anchor books, New York (1986).
[2] Richard Feynman, Eng. Sci. 23, 22 (1960).
[3] H. Yoshizawa and J. N. Israelachivili, J. Phys. Chem. 75, 1400 (1981).
[4] B. Bhushan (ed.), Handbook of Micro/Nanotribology, CRC Press, Boca Raton, FL, (1998).
[5] R. G. Horn and J. N. Israelachvili, J. Chem. Phys. 75, 1400 (1981).
[6] H. K. Christenson, J. Chem. Phys. 78, 6906 (1983).
[7] M. L. Gee, P. M. McGuiggan, J. N. Israelachvili, and A. M. Homola, J. Chem. Phys. 93, 1895 (1990).
[8] A. L. Demirel and S. Granick, Phy. Rev. Lett. 77, 2261 (1996).
[9] J. Klein and E. Kumacheva, J. Chem. Phys. 108, 6996 (1998).
[10] C. M. Mate, G. C. McClelland, R. Erlandsson, and S. Chiang, Phy. Rev. Lett. 59, 1942 (1987).
[11] R. Erlandsson, G. Hadziioannou, C. M. Mate, G. C. McClelland, and S. Chiang, J. Chem. Phys. 89, 5190 (1988).
[12] C. M. Mate, Phy. Rev. Lett. 68, 3323 (1992).
[13] R. Overney, E. Meyer, J. Frommer, D. Brodbeck, R. Luthi, L. Howald, H.-J. Guntherodt, M. Fujihira, H. Takano, and Y. Gotoh, Nature 359, 133 (1992).
[14] R. Overney and E. Meyer, MRS Bulletin 18, 26 (1993).
[15] J. Krim and A. Wisdom, Phy. Rev. B 38, 12184 (1988).
[16] E. T. Watts, J. Krim and A. Wisdom, Phy. Rev. B 41, 3466 (1990).
[17] J. Krim, D. H. Solina, and R. Chiarello, Phy. Rev. Lett. 66, 181 (1991).
[18] I. K. Snook and W. van Megan, J. Chem. Phys. 72, 2907 (1980).
[19] C. L. Rhykerd Jr., M. Schoen, and D. J. Diestler, Nature 330, 461 (1987).
[20] M. Schoen, D. J. Diestler, and J. H. Cushman, J. Chem. Phys. 87, 5464 (1987).
[21] S. A. Somers and H. T. Davis, J. Chem. Phys. 96, 5389 (1992).
[22] M. Miyahara and K. E. Gubbins, J. Chem. Phys. 106, 2865 (1997).
[23] M. Dijkstra, J. Chem Phys. 107, 3277 (1997).
[24] S. Toxvaerd, J. Chem. Phys. 74, 1998 (1981).
[25] J. J. Magda, M. Tirrell, and H. T. Davis, J. Chem. Phys. 83, 1888 (1985).
[26] Y. Wang, K. Hill, and J. G. Harris, J. Chem. Phys. 100, 3276 (1994).
[27] J. Gao, W. D. Luedtke, and U. Landman, Phys. Rev. Lett. 79, 705 (1997).
[28] J. Gao, W. D. Luedtke, and U. Landman, J. Phys. Chem. B 101, 4013 (1997).
[29] J.-C. Wang and K. A. Fichthorn, J. Chem. Phys. 112, 8252 (2000).
[30] S. Saroja and J.-C. Wang, Mol. Simul. 29, 495 (1993).
[31] T. K. Vanderlick, L. E. Scriven, and H. T. Davis, J. Chem. Phys. 90, 2422 (1989).
[32] C. Lastoskie, K. E. Gubbins, and N. Quirke, Langmuir 9, 2693 (1993).
[33] S. Sarman, J. Chem. Phys. 92, 4447 (1990).
[34] Y. Duda, D. Henderson, A. Trokhymchuk, and D. Wasan, J. Phys. Chem. B 103, 7495 (1999).
[35] O. Reynolds, Phil. Trans. Roy. Soc. (Lond.) 177, 157 (1886).
[36] A. V. Nguyen, J. Colloid Interface Sci. 231, 195 (2000).
[37] H. K. Christenson, J. Chem. Soc., Faraday Trans. 1 80, 1933 (1984).
[38] J. N. Israelachvili, Intermolecular and Surface Forces, 2nd ed. Academic Press, San Diego (1992).
[39] H. Yoshizawa and J. N. Israelachvili, J. Phys. Chem. 97, 11300 (1993).
[40] H.-W. Hu, G. A. Carson, and S. Granick, Phys. Rev. Lett. 66, 2758 (1991).
[41] M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, J. Chem. Soc., Chem. Commun. 801 (1994).
[42] C. P. Collier, T. Vossmeyer, and J. R. Heath, Annu. Rev. Phys. Chem. 49, 371 (1998).
[43] H. S. Nalwa, Handbook of Nanostructured Materials and Nanotechnology, Academic Press, San Diego, CA, (2000).
[44] I. Bitsanis, T. K. Vanderlick, M. Tirrel, and H. T. Davis, J. Chem. Phys. 89, 3152 (1988).
[45] L. A. Pozhar and K. E. Gubbins, J. Chem. Phys. 99, 8970 (1993).
[46] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Clarendon Press, Oxford (1989).
[47] D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to Applications, Academic Press, San Diego (1996).
[48] X. Bi, Molecular Dynamics Study of Nanoparticle Self-Assembly, PhD dissertation, University of Missouri-Rolla (2006).
[49] I. I. Adamenko, A. N. Grigoriev, and Yu. I. Kuzovkov, J. Mol. Liq. 120, 63 (2005).
[50] M. Schoen, D. J. Diestler, and J. H. Cushman, J. Chem. Phys. 87, 5464 (1987).
[51] M. Schoen, J. H. Cushman, D. J. Diestler, and C. L. Rhykerd, Jr., J. Chem. Phys. 88, 1394 (1988).
[52] T. Matsuda, G. D. Smith, R. G. Winkler, and D. Y. Yoon, Macromolecules 28, 165 (1995).
[53] S. K. Kumar, M. Vacatello, and D. Y. Yoon, J. Chem. Phys. 89, 5206 (1988).
[54] I. A. Bitsanis and G. Hadziioannou, J. Chem. Phys. 92, 3827 (1990).
[55] I. A. Bitsanis and C. Pan, J. Chem. Phys. 99, 5520 (1993).
[56] J.-C. Wang and K. A. Fichthorn, , J. Chem. Phys. 112, 8252 (2000).
[57] J.-C. Wang and K. A. Fichthorn, J. Chem. Phys. 116, 410 (2002).
[58] W. G. Hoover, Phys. Rev. A 31, 1695 (1985).
[59] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R. Haak, J. Chem. Phys. 81, 3684 (1984).
[60] H.-W. Hu, G. A. Carson, and S. Granick, Phys. Rev. Lett. 66, 2758 (1991).

## VITA

Ramesh Chembeti was born on March 16, 1983 in Pallamala, Chittoor (District), Andhra Pradesh, India. He received his primary, secondary and intermediate education in Tirupathi, India. He earned a Bachelor of Technology degree in Chemical Engineering from Jawaharlal Nehru Technological University, Hyderabad, India in April 2004.

He enrolled into Master's program at the University of Missouri-Rolla (currently Missouri University of Science and Technology), Rolla in the Spring of 2006 in the department of Chemical Engineering and held a Graduate Research Assistantship throughout the Master's program. He obtained his Master's degree in Chemical Engineering in August 2008.

