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ABSTRACT   

 

In this study, solutions of alkanethiol-capped nanoparticles in alkane are 

examined using molecular dynamics simulations for their nanotribological potential 

based on the hypothesis that fluid molecules of very different sizes may interrupt each 

other’s layering tendency to result in less layered or non-layered configurations and 

provide better lubrication for nanodevices.  An effective nanoparticle-nanoparticle pair 

potential based on previous atomistic approach is used and the temperature and parallel 

pressure are controlled in place of chemical potential for defining thermodynamic state.  

When compressed, the confined nanoparticle-containing alkane films generate reduced 

oscillations in perpendicular forces and smoother expansion in lateral dimensions, 

indicating lesser extent of layering due to the presence of much bigger nanoparticles.  

The nanoparticles are found to be well dispersed by the alkane solvent throughout all 

separations, meaning no or little tendency to form clusters or aggregate towards the 

confining surfaces, which is important for the stability and quality of the nanoparticle 

solutions as nanotribological lubricant.  When sheared by a sliding surface, the confined 

fluids tend to move in the same parallel direction so that their density profiles remain 

practically unchanged.  The shear stress resulting from the sliding surface has been 

calculated and found to increase with faster sliding speed but not proportionally.  More 

importantly, the presence of the nanoparticles in the lubricant films reduces the shear 

stress noticeably and thereby reducing the apparent viscosity and frictional force.  This 

effect is particularly evident under relatively large sliding speed and large surface 

separations.  Regarding mobility, the nanoparticles exhibit lower diffusivity in 

nanoconfinement than typical fluids and their diffusivity can be enhanced by shearing.                  
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                                   1. INTRODUCTION 

1.1 NANOTRIBOLOGY  

A nanometer (nm) is 10
-9

 of a meter and equivalent to 10 angstrom (Å).  It is roughly 

4-5 times the size of a typical atom.  Recently a scientific and technological revolution 

has begun to systematically study, manipulate, and devise matter on the nanometer length 

scale. The terms “nanoscience” and “nanotechnology” have generally been used to 

represent such efforts. As nicely explained by Eric Drexler in his book “Engines of 

Creation” [1] and by Richard Feynman in his lecture “There’s plenty of room at the 

bottom” [2], atoms are the root cause for everything and the ability to deal with 

individual atoms and molecules is the basis for nanotechnology. While nanoscale devices 

based on moving atomic/molecular components have the potential to drastically alter and 

improve technologies for energy transfer, data storage, drug delivery, computing, 

chemical manufacture, and so on, they can unfortunately be very vulnerable to friction 

and wear due to their extremely small sizes.  From a fundamental point of view, friction 

originates from atomic interactions/forces between moving parts, which resist the motion 

and jiggle the atoms to generate heat and cause structural deformation (wear). While 

friction and wear may be as simple an issue as added material and energy costs to 

conventional macroscale devices and structures, they could turn envisioned 

nanotechnologies into unrealizable dreams or substantially reduce the working life of 

nanodevices and nanostructures because the resultant stress per unit volume can be too 

much to bear. Nanoelectromechanical systems (NEMS) and microelectromechanical 

systems (MEMS) are good examples. 
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The term “tribology” is derived from the Greek words “tribo” meaning rubbing and 

“logy” meaning knowledge.  Its original application by the Greeks was to understand the 

motion of large stones sliding across the earth's surface. Today tribology has grown into a 

field that deals with all issues involving friction, wear, and lubrication. Lubricants are 

substances interposed between two surfaces in relative motion for the purpose of 

reducing the friction and/or the wear between them. In decreasing order of lubricant film 

thickness, lubrication has traditionally been divided into three regimes [3]: hydrodynamic 

or bulk, mixed or intermediate, and boundary.  The past few decades have seen increasing 

miniaturization of device components, the advent of modern surface proximity probes, 

and extension of boundary lubrication into nanometer scales.  All these developments are 

pertinent to the chemical and mechanical stability of the moving nanostructures and have 

inspired the birth of a new field, namely nanotribology [4] or molecular tribology.    

1.2 NANOCONFINED FLUIDS 

It is easy to see that in nanotribology the lubricant films are confined to highly 

restricted geometries whose dimensions are nanoscale and comparable to a few molecular 

diameters.  It should not be difficult to perceive that such molecularly thin films could 

have drastically different behavior than the same materials in the unconstrained bulk 

phase.  Recent experimental studies using surface force apparatus (SFA) [5-9], atomic 

force microscopy (AFM) [10-12], friction force microscopy (FFM) [13,14], and quartz 

crystal microbalance (QCM) [15-17] have confirmed the significant effects of the 

confining surfaces on the properties of nanoscopically confined fluid films and further 

suggested that nanoscale confinement can induce fluid molecules to form layered 
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configurations, causing nanoconfined fluids to have very different properties than those 

of bulk fluids, where molecules possess no preferred orientation.  Explicit evidences at 

the molecular level have come from computer molecular simulation studies using Monte 

Carlo (MC) [18-23] and molecular dynamics (MD) [24-30] techniques.  Other theoretical 

approaches such as density functional theory [31,32] and integral equation theory [33,34] 

have also been extended to analyze nanoconfined fluids and confirm the formation of 

fluid layers under confinement.  

It has now been well established that when the separation/spacing between the 

confining surfaces is larger than about 10 molecular diameters, confined fluids behave 

much the same as bulk fluids in many aspects. As the separation decreases, molecular 

orientation and fluid configuration undergo changes and, more interestingly and 

importantly, the isotropy between the perpendicular and parallel directions breaks down. 

From thermodynamic point of view, such configurational changes are entropy changes, 

which, according to (∂S/∂V)U,N = P/T, cause the pressure of a nanoconfined fluid to not 

only change but also become different in the perpendicular and parallel directions. The 

difference between the perpendicular pressure ( P ) and parallel pressure ( ||P ) has been 

measured as solvation force ( sf ) by the surface force apparatus (SFA) [5-9], where the 

confined fluid is open to the bulk reservoir under isothermal-isobaric condition and the 

parallel pressure as a result is taken to be the same as the bulk pressure.  Interestingly, 

when symmetric molecules are confined under a constant bulk/parallel pressure, 

solvation/surface force oscillates as a function of surface separation with a periodicity 

that is equivalent to the mean molecular diameter [cf. Fig. 1(b)].  This behavior is not in 

accord with the expectations from conventional continuum theories such as lubrication 
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theory [35,36] and DLVO theory [37,38], but signifies the importance of the discrete 

excluded volume of the fluid molecules at small separations. Specifically, nanoscale 

confinement and exclude volume can work together to pack symmetric fluid molecules 

into layers parallel to the confining surfaces and one oscillation in the surface/solvation 

force corresponds to an increase or decrease of one molecular layer in the confined fluid 

film.  As the surface separation becomes smaller, the layering phenomenon and the force 

oscillation become stronger.  

 

    

 

 

 

 

 

 

 

 

 

Figure 1.1.  Schematics of (a) a nanoconfined fluid, surface force, fs, and frictional force, 

ff, (b) solvation/surface force profiles for confined fluids with layered or non-layered 

configurations, and (c) stick-slip motion of confined fluids with layered configurations.  
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In relation to nanotribology, when a strongly layered confined fluid is sheared, 

instead of lubricated smooth motion, it exhibits yield stress, stick-slip motion [cf. Fig. 

1(c)], and apparent shear viscosity that could be orders of magnitude higher than bulk 

values [39,40].  It should be emphasized that the stick-slip motion is not caused by 

surface asperities as would be explained by the traditional “rough surface” model.  These 

solid-like responses reflect the solid-like nature of the layered configurations, which 

could be linked to the peaked, repulsive surface forces [cp. Fig. 1(a)].  It is important to 

emphasize here that the layered configurations of nanoconfined lubricant films can cause 

undesirably large friction and wear and consequently significant material and energy 

costs.  On the other hand, between two peaked surface forces and during the slip phase, 

nanoconfined fluids undergo configurational changes to become less layered, thereby 

exhibiting lubricated smooth motion and reduced friction and wear.   

1.3 SOLUTIONS OF ALKANETHIOL-CAPPED NANOPARTICLES IN ALKANE  

The above observations and discussion suggest that more desirable nanotribological 

properties can be obtained from lubricants that would be more resistant to being layered 

in nanoconfinement. One source of such resistance can come from structural asymmetry. 

Indeed, branched alkanes have been shown to exhibit reduced or even no oscillation in 

their solvation/surface forces measured by SFA [6,23], which is understood to be because 

of the side branches that disrupt the formation of layered configurations.  More generally, 

it can be reasoned that the proper lubricants for nanotribology should be those that have 

strong intrinsic means to resist the layering tendency under nanoconfinement.  This 

research considers one such possibility, namely the hypothesis that molecules of 
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sufficiently different sizes, when mixed together, could disrupt each other’s layering 

tendency in nanoconfined space to result in less layered or even non-layered 

configurations to satisfy nanotribological needs. One necessary condition worth 

mentioning is that there should be good solubility between the molecules in order to not 

have phase separation in nanoconfinement. In this research work, we propose to examine 

the solution of alkanethiol-capped nanoparticles in alkane.  

  Liquid alkanes (CnH2n+2) are oils and very commonly used lubricants.  They were 

also one of the first nanoconfined systems to be studied by SFA, but the results suggested 

that liquid alkanes alone may not be good lubricants for moving nanodevices and 

nanostructures.  Here we hypothesize that their nanotribological properties could be 

improved by adding alkanethiol (CnH2n+1SH)-capped nanoparticles whose sizes are 

several times larger than alkane molecules.  These nanoparticles represent a recent 

breakthrough and have been touted as one the most important ingredients for 

nanotechnologies [41-43].  As depicted in Figure 2, they are charge-neutral composites 

with an inorganic crystalline core capped in a dense shell of alkanethiol molecules.  The 

capping molecules have been called surfactants because they have a polar head group 

(e.g. S) that strongly bonds to the core and nonpolar alkyl chains that disperse the 

nanoparticles in nonpolar alkane solutions. Today, it has become virtually a routine to 

synthesize such nanoparticles. As mentioned earlier, the good solubility and the 

significant size mismatch could impede the formation of layered configurations, thereby 

making the solutions of alkanethiol-capped nanoparticles in alkane promising viable 

lubricants for nano- and micro-scale systems. 

 



7 

 

   

       

  

 

 

Figure 1.2.  Ball model and a coarse-grained representation of an alkanethiol-capped 

nanoparticle. 

 

1.4 PROPOSED RESEARCH METHODOLOGY   

Despite fast progress, modern experimental techniques still have limited resolutions 

and difficulties in accessing the physics of confined complex fluids at the nanoscale to 

evaluate their nanotribological potential. Theoretical studies of nanoconfined fluids using 

density functional theory [31,32], integral equation theory [33,34], Enskog theory
 
[44], 

and functional perturbation theory [45] have advanced our understanding, but their 

current status is still limited to simple atomic or highly idealized fluids.  For complex 

nanoconfined fluid systems, computer molecular simulation has become a major and 

sometimes preferred research method [13-30]. In this project, MD simulation technique 

[46, 47] is adopted for its better handling of dynamic properties and complex simulation 

models.  A number of important variables are investigated including nanoparticle 

loading, surface separation, and shear rate.  For computational efficiency and as a first 
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attempt, coarse grained simulation models are considered.  Details of the employed 

methodology are provided in the next section. 

It is worth noting that the future of scientific computing and molecular simulation 

has shifted from expensive supercomputers to PC-based systems for their superior 

performance/cost ratio, much increased speed and stability, and excellent expandability.  

This trend is moving fast in both academia and industries.  As an added value, this project 

runs the same simulation codes on both PC and more conventional IBM workstation in 

order to make comparison and pave the way for future work.    

. 
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2. SIMULATION METHODOLOGY 

2.1 MOLECULAR DYNAMICS COMPUTER SIMULATION TECHNIQUE  

Molecular dynamics (MD) simulation is a technique for computing equilibrium and 

transport properties for classical many-body systems.  The word classical means that the 

motion of the constituent particles (e.g. atoms or pseudo-atoms) obeys the laws of 

classical mechanics (e.g. ,  i i i ir v r a  ).  This is a reasonable and often excellent 

approximation for a wide range of systems and properties.  In this context, every 

phenomenon and every property can be traced back to the coordinates and momenta of 

the constituent particles.  The essence of the MD method is to numerically integrate the 

equation of motion of classical mechanics for every particle in the model system and the 

direct simulation results are the coordinates and momenta of all moving particles at 

different time instants.  This is equivalent to generating many microstates in the same 

ensemble (controlled macroscopic conditions) and permits the use of statistical 

mechanically derived equations to complete property calculation.  In general, MD can be 

applied to identify molecular origins, test hypotheses, estimate missing or unreliable data, 

and characterize the relative importance of different parameters and variables.  MD thus 

bridges between and complements both theoretical and experimental approaches. It is of 

particular value for systems that are too complicated to be studied by first principles or 

too difficult to experimental studies.   

In general, the equation of motion of classical mechanics for a specific particle i can 

be expressed as a second-order differential equation, 

      i i i imr f g  ,                                                                  (2.1) 
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where mi and ir   are the mass and acceleration of the particle i.  fi and gi denote the total 

force on particle i from other particles and the extra force(s) due to external constraint(s) 

imposed on the system.  Equivalently, Eq. (2.1) can be converted into two first-order 

differential equations, 

          

1
                                              (2.2)

    
1 

                                            (2.3)

r
r i i i i

i i i i i i

p
pi i i i

i i i i

i

m m

m

r v g r
r p g r

p f g p
v a g p




 
 

Here 
r
ig  and 

p
ig  are the corresponding constraint forces acting on the coordinate ( ir ) and 

momentum ( ir ).  fi is derived from the total potential energy U(r) of the system,  

                                                        ( )
ii Urf r ,                                                       (2.4) 

where U(r) is generally constructed by pair-wise additions of two types of contributions,  

    
   U(r) =U inter(r) + U intra(r)    ,                                     (2.5) 

where U
inter

(r) is the sum over all interactions between atoms in different molecules and 

U
intra

(r) is the sum over interactions between atoms within the same molecule. The 

nanoconfined fluids considered in this project are consisted of Lennard-Jones (LJ) 

particles whose U
intra

(r) = 0 and U
extra

(r) will be discussed in detail below.   

2.2 SIMULATION APPROACH AND MODELS 

In this project, we consider hexanethiol-capped gold nanoparticle (cf. Figure 1.2), 

Au140(SC6H13)62, to be the model nanoparticle.  This nanoparticle has recently been 
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simulated with atomistic models in our group [48] and its size and interaction 

characteristics have been studied and formulated into a Lennard-Jones 12-6 potential  

12 6

L-J 4U
r r

  ,                                              (2.6) 

For computational consistency and efficiency, we also opted for an alkane as the solvent 

that can be approximated as a spherical particle and has been modeled as a LJ particle.  

Cyclohexane is chosen for this purpose and its LJ parameters are adopted from the 

literature [49] and tabulated in Table 2.1 together with those for nanoparticles. 

The main role of the confining surfaces is to create nanoscale confinement for 

lubricant films.  In principle, as long as the fluid molecules can be layered, the layering 

phenomenon, surface force oscillations, and other relevant issues persist regardless of the 

confining surfaces being structured or structure less [50-52] and having attractive or 

repulsive interaction [52,53-55] with the confined fluid.  Since a relatively large portion 

of the envisioned nanotechnologies involve silicon (Si), this project considers the Si(111) 

surface as the confining surfaces.  Silicon has the diamond structure with a lattice 

constant equal to 5.43 Å.  Figure 2.1 shows the ball models of different views of silicon. 

Table 2.1.  Lennard-Jones 12-6 potential parameters. 

Particles  (J/mol)  (Å) 

Au140(SC6H13)62
    10827.08×R 29.000 

Cyclohexane
 

       484.00×R         5.466 

Si  202.45×R 3.826 
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Figure 2.1.  Ball models of (a) silicon diamond structure, (b) a side view of the Si(111) 

surface, (c) a top-down view of the Si(111) surface with depth fading indicated by 

different colors, and (d) a top-down view of the Si(111) surface with pink balls and the 

rectangle showing one surface unit cell.  a1 and a2 are the dimensions of a surface unit 

cell and equal to 3.84 Å and 6.65 Å, respectively. 

To systematically simulate nanoconfined nanoparticle-alkane solutions under 

different conditions while allowing meaningful comparison, the thermodynamic state of 

the confined fluids should be defined and controlled in our simulation studies.  Since the 

confined fluids in SFA are open to and in equilibrium with the bulk reservoir, 

temperature (T) and chemical potential ( ) are thus the most natural thermodynamic 

(a) (b) 

(d) 

a1 

a2 

(c) 

a1 

a2 
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variables for this purpose.  However, evaluating and controlling chemical potential is 

extremely difficult for MD simulations, especially when complex systems and conditions 

are considered.  Alternative approaches to overcome this difficulty have been developed 

recently and termed the NAPT [56,57] and NhPT methods [30].  The essence of these two 

methods is to constrain the temperature (T) and the pressure (or stress) parallel to the 

confining surfaces (P||) to prespecified values to offer a virtual isothermal-isobaric 

reservoir for confined fluids to reach equilibrium with.  In classical statistical mechanics 

and molecular simulation, T and P can be expressed as follows as function of particle 

coordinates and momenta, 

          

2
2 2

B

B1

1 1 3

2 2 2 3

N
i i

i

m
p mv k T T

m Nk

v
   ,                                          (2.7) 

||

, 

1

2
i i i ij ij is is

x y i i j i i s

P m
Ah

v v f r f r   ,               (2.8) 

1

2

z z z z z z

i i i ij ij is i

i i j i i s

h
P m

Ah
v v f r f r   ,               (2.9) 

where iv  is the velocity of a fluid particle and fij, fis are the interaction forces between a 

pair of particles separated by rij = ri  rj and ris = ri  rs.   Here rs represents the coordinate 

of a Si atom and -h/2 is for the upper confining substrate located at z = h/2 and +h/2 is for 

the lower one at z = -h/2. Both methods are 2D extensions of the original 3D NPT 

simulation method and constrain the total number of particles (N) and temperature (T).  

However, P|| is controlled in the NhPT method [30] by adjusting the lateral dimensions 

(i.e. surface area A) of the confined space and the lateral (x,y) coordinates of the fluid 
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particles, and in the NAPT method [56,57] by adjusting the separation (h) and the 

perpendicular (z) coordinates of the fluid particles.  It should be noted that these two 

methods are equivalent to each other under the same conditions when time/ensemble 

averaged properties are compared.  In the project, the NhPT method is employed because 

we are interested in studying the responses of confined nanoparticle-alkane solutions to 

continuous compression at constant speeds.   

Since the parallel pressure constraint is imposed in the x and y directions, the 

equations of motion in the two lateral directions take on the NPT form [30,46,56,57], 

λ λ λ

i i i i= /m + ,r p r p r  ,                                                     (2.10) 

λ λ λ λ

i i i i= , ξ ,p f r p p r p p
||  ,                                     (2.11) 

,λ λS = Sr p  ,                                                                 (2.12) 

where λS  denotes the lateral dimensions of a simulation box and ,r p  is a dilation 

coefficient evaluated instantaneously to adjust λS  or equivalently surface area A to 

achieve constant P||.  In the perpendicular z direction, the equations of motion assume the 

NVT form, 

z z

i i i= /mr p  ,                                                                    (2.13) 

z z z

i i i= ξ ,p f r p p  .                                                     (2.14) 

andξ , ξ ,r p   r p||  are friction coefficients for temperature control and evaluated 

instantaneously using the Nose-Hoover method [46,58].  Proper evaluation of  is more 
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difficult and has been accomplished via the loose coupling method of Berendsen et al. 

[46,59],  

|| ||,set ||

2 P

P P

t
  ,                                                 (2.15) 

4

4

( )1 1 2

4

( ) 2
                       

ij

|| ij ij ij ij

i j i|| ij ij

is
is is is i

i s is is

X r dU
P

Ah r r dr

X r dU

r r dr

r r r r

r r r r

 ,               (2.16) 

where tP is the so-called pressure coupling/relaxation time and set to be 250 t in this 

project.   

As usual, periodic boundary conditions are applied in the x and y directions to make 

the simulation systems infinite in the lateral directions.  To allow P|| to be controlled 

instantaneously, the lateral dimensions and coordinates need to be adjusted differentially. 

In this regard, varying the inter-row spacing between surface atoms or changing the 

number of rows of surface atoms both have significant shortcomings because the former 

undesirably alters the crystalline structure of the surfaces and the latter represents finite, 

not differential, dimension changes.  To resolve this difficulty, the periodic boundary 

conditions are applied only to the confined fluids and the infinite confining surfaces are 

constructed using a special approach. Specifically, based on the repetitive nature of the 

crystalline structure possess, surface unit cells can be identified and replicated laterally to 

form an infinite surface.  The smallest unit cell for this purpose is shown in Figure 2.1, 

where each layer of the Si(111) surface is represented by two Si atoms.  Each fluid 
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particle can now be attributed to a particular surface unit cell characterized by ( , )n m1 2a a , 

where n, m are integers and a1, a2 are the 2D vectors defining the shape and lateral 

dimensions of a unit cell (cf. Figure 2.1).  By varying n and m from their central values, a 

block of surface unit cells centering around a fluid particle can be generated to effectively 

represent an infinite surface. An additional computational advantage from the method is 

the neighbor lists for fluid-surface interaction no longer required.   

2.3. SIMULATION DETAILS 

Throughout the whole project, the total number of confined fluid particles is fixed at 

1600, while the number of bigger particles representing Au140(SC6H13)62 nanoparticles 

changes from 0, 1, 3, 5, to 10 in order to investigate the effects of nanoparticle 

loading/volume fraction. The LJ interaction potential between the solvent cyclohexane 

particles is truncated and corrected at a center-of-mass cut-off distance of rc = 3 cyclohexane , 

or equivalently across a cut-off spacing of 2 cyclohexane .  For simplicity, the same cut-off 

spacing of 2 cyclohexane  was also used for all the other pair interactions including 

Au140(SC6H13)62−Au140(SC6H13)62, Au140(SC6H13)62−cyclohexane, Au140(SC6H13)62−Si,  

and cyclohexane-Si.  For unlike-pair interactions, the Lorentz-Berthelot mixing rules are 

used, that is 
12 1 2

 and 12 1 2 / 2 .  

The integrator for the equations of motion is the fourth-order Gear predictor-

corrector algorithm along with a time step of 5 fs. The temperature is set at 300 K and the 

parallel pressure at 1 atm (0.1 MPa).  All confined nanoparticle solutions are first 

equilibrated to the set temperature and pressure at a separation of 10 nm (100 Å) between 
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the confining Si (111) surfaces as initial conditions and starting points for continuous 

compression at a moderate speed of 5 m/s. Practically, to implement continuous 

compressions at this speed, the surface separation (h) is manually decreased by 0.00025 

Å at every time step ( t = 5 fs).  For precaution, additional 25000 t’s were spent to re-

equilibrate the simulation systems before compression and every production run in this 

project.  

 

        

 

 

 

 

 



18 

 

                                 3. RESULTS AND DISCUSSION 

3.1 PC-BASED MOLECULAR SIMULATIONS  

The same simulation code and initial conditions were used to run simulations of 

continuous compression of confined nanoparticle-alkane solutions having 0, 1, 3, 5, and 

10 nanoparticles were run on IBM RISC/6000 workstations and on a dual-core Dell XPS 

computer installed with Linux.  As demonstrated in Figure 3.1 where the case with 5 

nanoparticles is shown, the simulation results from the two systems are not identical but 

statistically and physically equivalent.  This was expected because after a large number of 

iterations, the differences in computer architecture, operation system, and compiler will 

cause numerical calculations to deviate on different computer systems. Nevertheless, the 

physics and the simulated properties are not altered, which is of critical importance.  It 

should be emphasized here that with a relatively finite number of fluid particles (e.g. 

1600), the pressure of a MD simulation cannot be precisely controlled to any specific 

value, which is very unlike temperature control.  In fact, it is natural for MD simulations 

to have pressure fluctuations whose magnitudes are on the order of several tens to several 

hundreds atm.  From this point of view, the method of parallel pressure (P||) control 

explained in the previous section works very well and the calculated perpendicular 

pressures ( P ) from the two computer systems also agree well.     

 It should be mentioned that with multiple cores and free parallel computing software 

such as Open MPI, the new generation of PC’s are readily capable of parallel computing.  

We have tested serial and parallel MD simulations on the Dell XPS computer and 
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interestingly found the results to be similar to what are demonstrated here, numerically 

not identical but statistically and physically equivalent.     

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1.  Instantaneous (a) parallel pressure, (b) lateral dimension, and (c) 

perpendicular pressure as a function surface separation during continuous compression. 
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3.2 CONTINUOUS COMPRESSION 

Figure 3.2 shows the simulation results from continuous compression of different 

nanoparticles solutions.   The data are instantaneous properties calculated and recorded  

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.  Instantaneous (a) lateral dimension and (b) perpendicular pressure as a 

function surface separation during continuous compression for different solutions. 
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every 1000 t’s. Exhibiting the strongest force oscillations [cf. Fig. 3.2(b)] is the pure 

cyclohexane fluid in nanoconfinement that can be understood to be most layered among 

all solutions studied.  A closer examination of the force oscillations reveals that the 

periodicity is about the same as the cyclohexane molecular diameter, 5.466 Å.  The 

connection between the surface force and the fluid configuration can be analyzed by 

comparing Figures 3.2 (a) and (b) together.  It can be easily seen that the lateral 

dimension of the confined cyclohexane under continuous compression undergoes step-

like expansion and the width of the steps is the same as the periodicity of the force 

oscillations.  More specifically, minimum surface forces occur at separations that 

correspond to completion of step-like expansion and more disordered, less layered 

configurations.  When compression continues, the less layered confined fluid are 

squeezed to become more layered and the surface force builds up again until the confined 

fluid could not sustain the strong pressure any more and sudden expansion occurs in the 

lateral directions. 

When nanoparticles are added to the confined alkane fluid, they significantly reduce 

the magnitudes of the step-like expansion and force oscillations.  In addition, the bigger 

nanoparticles can now resist compression and strong perpendicular pressure at larger 

separations that are about the same as the size of the nanoparticles [cf. Fig. 3.2(a)].  These 

behaviors signify better nanotribological properties that could be provided by the 

presence of alkanethiol-capped nanoparticles in alkane/oil solutions.  

Since the nanoparticles have much bigger size and stronger interaction, there may 

exist a possibility that they could aggregate together in the solutions and this possibility 

could get enhanced by the nanoscale confinement.  In order to obtain an answer and more 
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insight, we examine the top-down views and side views of the confined nanoparticle 

solutions.  Shown in Figure 3.3 are the representative case that has 10 nanoparticles and 

pure cyclohexane for comparison.  It can be clearly seen that at large separations [cf. Fig. 

3.3 (c)], nanoparticles are well dispersed in the confined fluid without either forming 

clusters or aggregating towards the confining surfaces and they remain well dispersed as 

the confined fluid film becomes thinner and thinner.  Even when the nanoparticles are the 

confined fluid film becomes thinner and thinner.  Even when the nanoparticles are 

encapsulated and touch both confining surfaces, they are still surrounded by solvent  

 

 

 

 

 

 

 

 

Figure 3.3.  (a) Side and top-down views of the nanoconfined cyclohexane (green beads) 

solution containing 10 nanoparticles (red beads) at h = 31.25 Å, (b) side view of confined 

cyclohexane at h = 31.25 Å, and (c) side and top-down views of the nanoconfined 

cyclohexane solution containing 10 nanoparticles at h = 93.75 Å. 

(c) 

(b) 

(a) 
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molecules [cf. Fig. 3.3(a)].  These observations indicate a proper affinity between the 

nanoparticles and the solvent.  As can bee seen in Figure 3.3, solvent molecules within 

certain distance from the nanoparticles are under the influence of nanoparticle 

interactions which lessens the layering effect of nanoconfinement.  However, outside this 

influence range, solvent molecules are still largely layered. 

3.3 NANOCONFINED NANOPARTICLE SOLUTIONS UNDER SHEAR 

Form the results presented and discussed above, adding nanoparticles appears to be 

able to improve the nanotribological properties of alkane-type lubricants.  To further 

validate this point, the nanoparticle solutions are sheared by sliding the upper confining 

surface in the +x direction at a speed of 
xv 0 m/s, 1 m/s, or 10 m/s while keeping the 

lower surface stationary at three selected separations h = 31.25 Å, 56.25 Å, and 93.75 Å.  

The resultant nonzero shear rates, /xv h , depend on both the sliding speed and surface 

separation and range from 8 11.07 10  sec  to 9 13.2 10  sec .  The stationary confined 

systems with zero shear rate are simulated for comparison purposes. 

We first examine the density profiles of cyclohexane solvent molecules under various 

conditions.  As shown in Figure 3.4, the density profile depends quite strongly on the 

number of nanoparticles.  Without the presence of nanoparticles, the symmetric 

cyclohexane molecules can form well-layered configurations in nanoconfinement, which 

can be disrupted to become less layered when nanoparticles are present. On the other 

hand, the density profile is a very weak function of shear rate and exhibits only very 

insignificant changes within the explored shear rate range. 
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Shear stress could be imparted into the nanoconfined fluids in different manners.  

Another major method is to apply a constant shear force to a confining surfacewhich is 

assigned a proper artificial mass so that it has its own equations of motion to determine 

its displacement and sliding velocity.  While this method allows a constant shear stress, 

the shear rate is variable.  In contrast, the method adopted in this work can maintain a 

constant shear rate but the shear stress becomes variable.  Nevertheless, these two 

methods can be made equivalent by taking time averages of shear stress and shear rate.  

In our simulations, the applied shear generates a nonzero drag force on the confined fluid 

in the x direction, fx, which would become noisy fluctuations around zero under no shear 

condition.  Shear stress can be calculated by dividing the drag force fx by surface area of 

the confining surface.  Figure 3.5 shows the calculated shear stress for the confined fluid 

film with 10 nanoparticles at h = 56.25 Å.  The time averaged shear stress is 3.71 MPa for 

10 m/sxv  corresponding to 9 11.78 10  sec  and 0.87 MPa for 1 m/sxv  

corresponding to 8 11.78 10  sec .  As a result, the apparent viscosity is 0.021 Pa·s and 

0.0049 Pa·s, respectively.  We have performed such calculations for different cases 

considered in this project and summarized the results in Table 3.1.  The calculated 

viscosities appear to be in good agreement with those from similar simulation studies 

[60].  Most importantly, at both sliding speeds and all three separations, the presence of 

nanoparticles in the confined thin films does help reduce noticeably the viscosity or 

equivalently shear stress and frictional force.  We can thus conclude that nanoparticle-

containing solutions have great potential to be good lubricants for nanotribology.    
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Figure 3.5.  Shear stress on the confined fluid having 10 nanoparticles at h = 56.25 Å 

caused by different sliding speeds. 

 

Table 3.1. Apparent shear viscosity of nanoparticle-cyclohexane solutions under different 

surface separation and sliding speeds. 

 

 

                                    h =     93.75 Å                      h =     65.25 Å                    h =     31.25 Å 

                      vx = 1 m/s      10 m/s  1 m/s        10 m/s            1 m/s        10 m/s 

 

    0 0.0385 0.0444          0.00866     0.0255  0.00716     0.0234 

          5 0.00368 0.0136 0.00726     0.00973  0.00384 0.00276  

   10 0.000677 0.000671 0.00491     0.0209 0.00472     0.00675    
 

 

     No.  of 

nanoparticles 
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Despite their sizes, alkanethiol-capped nanoparticles have been shown by simulation 

studies to have fluid-like diffusivity [48].  Since the potential models used in this work 

are atomistically based, it would be of relevance and value to compute both the 

nanoparticles and cyclohexane diffusivities.  To this end, the following Einstein relation 

is used,   

2
( ) (0)

lim
4t

t
D

t

|| ||

||

r r
 ,                      (3.1) 

where 
2

( ) (0)t|| ||r r  is the ensemble-averaged mean-square displacement in the lateral 

x and y directions.  It should be self-evident that a confined fluid has zero net 

displacement/diffusivity in the z direction.  By calculating and plotting the mean-square 

displacement using the x and y components, the limiting slope after sufficiently long 

times is equal to 4D|| .  Shown in Figure 3.6 is a plot of the nanoparticles mean square 

displacement for the 10-nanoparticle confined film at h =    93.75 Å with zero shear.  All 

the calculated diffusivities are collected in Table 3.2.  In general, nanoparticles in 

nanoconfinement have diffusivity noticeably lower than that of typical liquids.  In 

particular at small separation when nanoparticles directly touch both confining surfaces, 

their mobility is virtually zero.  Also, as can be expected, sliding speed shears the 

confined fluid components and increases their mobility.   
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Figure 3.6.  A plot of mean square displacement where the fitted dashed line is used to 

determine the diffusivity. 
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Table 3.2. Diffusion coefficients D×10
10

 m
2
/s. 

 

                                                                           h =     93.75 Å 

                                     vx = 0 m/s                           vx = 1 m/s                        vx = 10 m/s 

                     cycloC6   nanoparticle cycloC6   nanoparticle     cycloC6   nanoparticle 

 

    0 0.27    1.08  25.72     

          5 11.14 0.48 15.21        3.41 62.47 64.02  

   10 15.23 0.54 14.87        0.63 21.51           7.74    
 

                                                                           h =     65.25Å 

                                     vx = 0 m/s                           vx = 1 m/s                        vx = 10 m/s 

                     cycloC6   nanoparticle cycloC6   nanoparticle     cycloC6   nanoparticle 

 

    0 0.12  2.24       10.96     

          5 2.09 0.02 2.51      0.15 76.18 73.85  

   10 6.27 0.42 7.02      0.75  79.86        79.35    
 

                                                                   h =     31.25Å 

                                     vx = 0 m/s                           vx = 1 m/s                        vx = 10 m/s 

                     cycloC6   nanoparticle cycloC6   nanoparticle     cycloC6   nanoparticle 

 

    0 0.12   1.34       50.19     

          5 0.84 0.06 1.97         1.17 56.17 55.87  

   10 1.22 0.02 2.48      1.43 32.95      32.18    
 

 

 

     No.  of 

nanoparticles 

     No.  of 

nanoparticles 

     No.  of 

nanoparticles 
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4. CONCLUSIONS 

Current advances in micro and nano-electromechanical devices (MEMS and 

NEMS), micro and nanofluidic systems, and other nanotechnology areas constantly 

involve the tribological issues of friction, wear, and lubrication at the nanometer i.e. 

molecular scale.  Despite recent progresses, major challenges still loom over nanometer-

thin lubricant films, partly due to the unusual and undesirable tribological properties of 

typical lubricant molecules forming layered configurations in nanoconfinement and 

partly due to the limitation of experimental techniques and conventional theories.  In this 

study, solutions of alkanethiol-capped nanoparticles in alkane are examined using 

molecular dynamics simulations for their nanotribological potential based on the 

hypothesis that fluid molecules of very different sizes may interrupt each other’s layering 

tendency to result in less or non-layered configurations and provide better lubrication for 

nanodevices.  An effective nanoparticle-nanoparticle pair potential based on previous 

atomistic approach is used and the temperature and parallel pressure are controlled in 

place of chemical potential for defining thermodynamic state.  When compressed, the 

confined nanoparticle-containing alkane films generate reduced oscillations in 

perpendicular forces and smoother expansion in lateral dimensions.  This indicate lesser 

extent of layering due to the presence of much bigger nanoparticles, which was 

confirmed by the density profiles obtained in his study.  Further examination reveal that 

the nanoparticles are well dispersed by the cyclohexane solvent molecules throughout all 

separations.  This means that the nanoparticles will not tend to form clusters or aggregate 

towards the confining surfaces, which is important for the stability of the nanoparticle 

solutions as nanotribological lubricant.  When sheared by a sliding surface, the confined 
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fluids tend to move in the same parallel manner so that their density profiles remain 

virtually unchanged.  The shear stress imposed by the sliding surface has also been 

calculated and then used to estimate the apparent viscosity.  It is found that greater shear 

stress does result from faster sliding but not proportionally.  More importantly, the 

presence of nanoparticles in the lubricant films reduces the shear stress and thereby 

apparent viscosity noticeably.  This effect is particularly evident under relatively large 

sliding speed and large surface separations.  In addition, the nanoparticles exhibit lower 

diffusivity in nanoconfinement than typical fluids and their mobility can be enhanced by 

shearing.  In summary, this study has demonstrated the great potential of nanoparticle-

containing solutions as an improved lubricant for moving nanodevices and 

nanostructures. 

Additionally, simulations have been run on regular PC’s and physically and 

statistically equivalent results have been obtained.  This points out a future direction for 

similar simulation studies, that is, using multi-core PC’s and freely available compilers 

and parallel computing software is the most efficient and most cost-effective way.  With 

parallel computing, much larger simulation system can be employed and semi-continuous 

variation of nanoparticles loading/volume fractions and more systematic knowledge can 

be achieved in simulations.  
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APPENDIX 

 

FORTRAN77 code for the Molecular Dynamics Simulation.         

 
c     PROGRAM real 

c 

      IMPLICIT real*8 (a-h,o-z),integer*4 (i-n) 

      include 'ljmix'  

 

C     POTENTIAL PARAMETERS 

C     _________________________________________________ 

C 

C     Three basic quantities for non-dimensionalization 

C     based on parameters for cyclohexane(l) as solvent  

C     J. Mol. Liq. 120, 63 (2005) 

C     _________________________________________________ 

 

      sigma  = 5.4660d-10 ! meter 

      epsi   = 484.00d0*R ! J/mol 

      unitm  = 0.084160d0 ! kg/mol 

C     ____________________ 

C 

C     System parameters 

C     Note that  

C       1 fs  = 0.00020002 

C       1 m/s = 0.00457325 

C       1 Pa  = 2.444e-8  

C     ____________________ 

 

      dt    = 5.00d-15                   ! time step: second 

      h     = dt*dsqrt(epsi/unitm)/sigma ! non-dimensionalized dt 

      temp  = tset*R/epsi 

      uconv = dsqrt(unitm/epsi)          ! u*=u*uconv 

      pconv = sigma*sigma*sigma*6.0220d23/epsi  !0.244396E-07 

      pset  = (ppara*101325)*pconv 

      pi    = dacos(-1.0d0) 

C     _______________________________________________________________ 

C 

C     Lennard-Jones interaction parameters and long-range corrections 

C     sa:   sa-sa (surface atom-surface atom) 

C     gsgs: solvent-solvent (smaller fluid particles) 

C     gssa: solvent-surface 

c     gbgb: nanoparticle-nanoparticle (bigger fluid particles) 

c     gbsa: nanoparticle-surface 

C     lrc:  long-range corrections 

C     _______________________________________________________________ 

C     --------------------------------  

C     Stationary confining Si surfaces  

C     -------------------------------- 

      al    = 5.43d-10/sigma     ! Si diamond structure lattice const. 

      x_L   = al*sqrt(2.0)/2.0d0 ! 3.84A 

      y_L   = x_L*sqrt(3.0)      ! 6.65A 
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      z_L   = (al/2.0d0)*sqrt(3.0)/2.0d0  ! Si-Si bond length,2.35A 

 

      sa_sig    = 3.8260000d-10  ! sa-sa 

      sa_eps    = 202.450d0*R    ! sa-sa 

      sam       = 0.0280855d0    ! kg/mol 

      sam       = sam/unitm 

      epssa     = sa_eps/epsi                 

      eps4sa    = 4.00d0*epssa 

      eps24sa   = 24.0d0*epssa 

      sigsa     = sa_sig/sigma 

      sig2sa    = sigsa*sigsa   

 

      zk    = pi/(sqrt(2.0d0/3.0d0)*1.09d0) 

C     -------------------------------------- 

C     Like pair of smaller solvent particles 

C     -------------------------------------- 

      gsgs_sig  = 5.4660000d-10  ! sfa-sfa 

      gsgs_eps  = 484.00d0*R     ! sfa-sfa 

      sfam      = 0.084160d0     ! kg/mol 

      sfam      = sfam/unitm 

      epssfsf   = gsgs_eps/epsi                

      eps4sfsf  = 4.00d0*epssfsf 

      eps24sfsf = 24.0d0*epssfsf 

      sigsfsf   = gsgs_sig/sigma 

      sig2sfsf  = sigsfsf*sigsfsf 

      rcutsfsf  = sigsfsf+2.0d0*sigsfsf    ! potential cut-off distance 

      rcut2sfsf = rcutsfsf*rcutsfsf 

      drneig    = 0.30d0                    ! neighbor list buffer 

      rnbl2sfsf = (rcutsfsf+2.0d0*drneig)**2   ! distance for neighbor 

C                                               !list  

      rlrc2     = sig2sfsf/rcut2sfsf 

      rlrc6     = rlrc2*rlrc2*rlrc2 

      rlrc12    = rlrc6*rlrc6 

      vcsfsf    = (13.0d0*rlrc12 - 7.0d0*rlrc6) 

      fcsfsf    = (2.0d0*rlrc12 - rlrc6)/rcutsfsf 

      fcvsfsf   = 6.0d0*fcsfsf 

C     ------------------------------------- 

C     Like pair of bigger nanoparticles 

C     resembling Au140(SC6H13)62 

C     ------------------------------------- 

      gbgb_sig  = 29.000000d-10  ! bfa-bfa 

      gbgb_eps  = 22.37*gsgs_eps ! bfa-bfa 

      bfam      = 34.844000d0    ! kg/mol 

      bfam      = bfam/unitm 

      epsbfbf   = gbgb_eps/epsi                

      eps4bfbf  = 4.00d0*epsbfbf 

      eps24bfbf = 24.0d0*epsbfbf 

      sigbfbf   = gbgb_sig/sigma 

      sig2bfbf  = sigbfbf*sigbfbf 

      rcutbfbf  = sigbfbf+2.0d0*sigsfsf    ! potential cut-off distance 

      rcut2bfbf = rcutbfbf*rcutbfbf 

      drnblbfbf = 0.30d0                         ! neighbor list buffer 

      rnbl2bfbf = (rcutbfbf+2.0d0*drnblbfbf)**2  ! distance for  

      rlrc2     = sig2bfbf/rcut2bfbf              ! neighbor list 

      rlrc6     = rlrc2*rlrc2*rlrc2 

      rlrc12    = rlrc6*rlrc6 

      vcbfbf    = (13.0d0*rlrc12 - 7.0d0*rlrc6) 
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      fcbfbf    = (2.0d0*rlrc12 - rlrc6)/rcutbfbf 

      fcvbfbf   = 6.0d0*fcbfbf 

C     ------------------------------------- 

C     unlike pair of solvent-nanoparticle  

C     ------------------------------------- 

      epssfbf   = dsqrt(epsbfbf*epssfsf) 

      eps4sfbf  = 4.00d0*epssfbf 

      eps24sfbf = 24.0d0*epssfbf 

      sigsfbf   = 0.50d0*(sigbfbf+sigsfsf) 

      sig2sfbf  = sigsfbf*sigsfbf 

      rcutsfbf  = sigsfbf+2.0d0*sigsfsf    ! potential cut-off distance 

      rcut2sfbf = rcutsfbf*rcutsfbf 

      drnblsfbf = 0.30d0                         ! neighbor list buffer 

      rnbl2sfbf = (rcutsfbf+2.0d0*drnblsfbf)**2  ! distance for  

      rlrc2     = sig2sfbf/rcut2sfbf              ! neighbor list 

      rlrc6     = rlrc2*rlrc2*rlrc2 

      rlrc12    = rlrc6*rlrc6 

      vcsfbf    = (13.0d0*rlrc12 - 7.0d0*rlrc6) 

      fcsfbf    = (2.0d0*rlrc12 - rlrc6)/rcutsfbf 

      fcvsfbf   = 6.0d0*fcsfbf 

C     ------------------------------------- 

C     unlike pair of solvent-surface  

C     ------------------------------------- 

      epssfsa   = dsqrt(epssfsf*epssa) 

      eps4sfsa  = 4.00d0*epssfsa 

      eps24sfsa = 24.0d0*epssfsa 

      sigsfsa   = 0.50d0*(sigsfsf+sigsa) 

      sig2sfsa  = sigsfsa*sigsfsa 

      rcutsfsa  = sigsfsa+2.0d0*sigsfsf    ! potential cut-off distance 

      rcut2sfsa = rcutsfsa*rcutsfsa 

      drnblsfsa = 0.30d0                         ! neighbor list buffer 

      rnbl2sfsa = (rcutsfsa+2.0d0*drnblsfsa)**2  ! distance for  

      rlrc2     = sig2sfsa/rcut2sfsa             ! neighbor list 

      rlrc6     = rlrc2*rlrc2*rlrc2 

      rlrc12    = rlrc6*rlrc6 

      vcsfsa    = (13.0d0*rlrc12 - 7.0d0*rlrc6) 

      fcsfsa    = (2.0d0*rlrc12 - rlrc6)/rcutsfsa 

      fcvsfsa   = 6.0d0*fcsfsa 

C     ------------------------------------- 

C     unlike pair of Rnanoparticle-surface 

C     ------------------------------------- 

      epsbfsa   = dsqrt(epsbfbf*epssa) 

      eps4bfsa  = 4.00d0*epsbfsa 

      eps24bfsa = 24.0d0*epsbfsa 

      sigbfsa   = 0.50d0*(sigbfbf+sigsa) 

      sig2bfsa  = sigbfsa*sigbfsa 

      rcutbfsa  = sigbfsa+2.0d0*sigsfsf    ! potential cut-off distance 

      rcut2bfsa = rcutbfsa*rcutbfsa 

      drnblbfsa = 0.30d0                         ! neighbor list buffer 

      rnbl2bfsa = (rcutbfsa+2.0d0*drnblbfsa)**2  ! distance for  

      rlrc2     = sig2bfsa/rcut2bfsa              ! neighbor list 

      rlrc6     = rlrc2*rlrc2*rlrc2 

      rlrc12    = rlrc6*rlrc6 

      vcbfsa    = (13.0d0*rlrc12 - 7.0d0*rlrc6) 

      fcbfsa    = (2.0d0*rlrc12 - rlrc6)/rcutbfsa 

      fcvbfsa   = 6.0d0*fcbfsa 
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c     ____________ 

C 

C     MAIN PROGRAM 

C     ____________ 

 

      CALL simulation 

 

      STOP 

      END 

 

  

      SUBROUTINE simulation  

      IMPLICIT real*8 (a-h,o-z),integer*4 (i-n) 

      include 'ljmix' 

  

      DIMENSION  diff(3,nadmol),disp(2,nadmol)  

      DIMENSION  z1(nadmol),z2(nadmol),z3(nadmol),z4(nadmol) 

      DIMENSION  vz1(nadmol),vz2(nadmol),vz3(nadmol),vz4(nadmol) 

      DIMENSION  x1(nadmol),x2(nadmol),x3(nadmol),x4(nadmol) 

      DIMENSION  vx1(nadmol),vx2(nadmol),vx3(nadmol),vx4(nadmol) 

      DIMENSION  y1(nadmol),y2(nadmol),y3(nadmol),y4(nadmol) 

      DIMENSION  vy1(nadmol),vy2(nadmol),vy3(nadmol),vy4(nadmol) 

      DIMENSION  densf(nbin),denbf(nbin),adist(nbin),bdist(nbin) 

      LOGICAL    disptest 

 

      OPEN(1,file='5np.sh_m',status='unknown',form='formatted') 

      OPEN(2,file='5np.dat_m0',status='unknown',form='formatted') 

      OPEN(3,file='5np.rec_m0',status='unknown',form='formatted') 

 

      vcmx     = 0.0d0 

      vcmy     = 0.0d0 

      vcmz     = 0.0d0 

      systemas = 0.0d0 

      DO m=1,nsfmol 

        read(1,100)x0(m),y0(m),z0(m),vx0(m),vy0(m),vz0(m) 

        systemas = systemas + sfam 

C       ------------------------------ 

C       Call gauss to generate initial 

C       velocities if needed 

C       ------------------------------ 

c       Call gauss(v1,v2,v3,temp) 

c       vx0(m) = v1 

c       vy0(m) = v2 

c       vz0(m) = v3 

        vcmx = vcmx + vx0(m)*sfam 

        vcmy = vcmy + vy0(m)*sfam 

        vcmz = vcmz + vz0(m)*sfam 

      ENDDO 

      DO m=nsfmol+1,nadmol 

        read(1,100)x0(m),y0(m),z0(m),vx0(m),vy0(m),vz0(m) 

        systemas = systemas + bfam 

        vcmx = vcmx + vx0(m)*bfam 

        vcmy = vcmy + vy0(m)*bfam 

        vcmz = vcmz + vz0(m)*bfam 

      ENDDO 

      read(1,*)bLx0,bLy0,hz0 
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      vcmx = vcmx/systemas 

      vcmy = vcmy/systemas 

      vcmz = vcmz/systemas 

      vsumx = 0.0d0 

      vsumy = 0.0d0 

      vsumz = 0.0d0 

      DO m=1,nsfmol 

        vx0(m) = vx0(m) - vcmx 

        vy0(m) = vy0(m) - vcmy 

        vz0(m) = vz0(m) - vcmz 

        vsumx  = vsumx + vx0(m)*vx0(m)*sfam 

        vsumy  = vsumy + vy0(m)*vy0(m)*sfam 

        vsumz  = vsumz + vz0(m)*vz0(m)*sfam 

      ENDDO 

      DO m=nsfmol+1,nadmol 

        vx0(m) = vx0(m) - vcmx 

        vy0(m) = vy0(m) - vcmy 

        vz0(m) = vz0(m) - vcmz 

        vsumx  = vsumx + vx0(m)*vx0(m)*bfam 

        vsumy  = vsumy + vy0(m)*vy0(m)*bfam 

        vsumz  = vsumz + vz0(m)*vz0(m)*bfam 

      ENDDO 

      etuax = vsumx/nadmol 

      etuay = vsumy/nadmol 

      etuaz = vsumz/nadmol 

      tratx = sqrt(temp/etuax) 

      traty = sqrt(temp/etuay) 

      tratz = sqrt(temp/etuaz) 

      do m=1,nadmol 

        vx0(m) = vx0(m)*tratx 

        vy0(m) = vy0(m)*traty 

        vz0(m) = vz0(m)*tratz 

      enddo 

 100  format(6(1x,e11.5)) 

 

C     ---------------------------------------------- 

C     Determine (x,y,z) coordnates for surface atoms 

C     ---------------------------------------------- 

      rsold(1) = -0.50d0*hz0  !! lower surface z position 

      rsold(2) = rsold(1) - z_L/3.0d0 

      rsold(3) = rsold(2) - z_L 

      rsold(4) = rsold(3) - z_L/3.0d0 

      rsold(5) = rsold(4) - z_L 

      rsold(6) = rsold(5) - z_L/3.0d0 

      rsold(7) = rsold(6) - z_L 

      rsold(8) = rsold(7) - z_L/3.0d0 

      DO i=1,layers 

        rsold(i+layers)=-rsold(i) 

      ENDDO 

C     -------------------------------------------- 

C     Generate (x,y) coordnates for surface atoms 

C     that represent the Si_diamond(111) surface.   

C     -------------------------------------------- 

           

      Call setup_sa_position 

 

C     ------------------------------------------------------- 
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C     Options: istart=1: separation fixed at the input value 

C              istart=2: separation adjustment is activated  

C              istart=3: production run at a fixed separation  

C     ------------------------------------------------------- 

 

      istart = 2 

 

C     -------------------------------------------------- 

C     hzi: initial separation (to be adjusted) 

C     hzf: final separation (after certain no. of steps) 

C     -------------------------------------------------- 

      hzi   = hz0 

      hzf   = 10.0d0/5.4660d0   ! use desired value 

C     --------------------------------------------------------- 

C     deltz: displacement of the surfaces per time step due to 

C            continuous compression.  

C     deltx: displacement of the upper surface per time step 

C            for continuous shearing (stationary lower surface) 

C     --------------------------------------------------------- 

c     deltz = 0.50d0*(hzf - hzi)/nsimut 

      deltz = -0.50d0*(unorm*uconv)*h 

      deltx = (upara*uconv)*h  

      dxtot = 0.0d0 

C     ------------------------------------------------- 

C     Gear predictor-corrector integration coefficients 

C     ------------------------------------------------- 

      f01 = 251.0d0/720.0d0 

      f21 = 11.0d0/12.0d0 

      f31 = 1.0d0/3.0d0 

      f41 = 1.0d0/24.0d0 

C     -------------------------------------------- 

C     Pressure and thermal bath coupling constants 

C     Thermal bath: Nose-Hoover thermostat 

c     Pressure bath: Berendsen's loose coupling   

C     -------------------------------------------- 

      tp       = 250*h 

      ttnh     = 45.0d0 

C     --------------------------------------------- 

C     Bin sizes for analyzing various distributions  

C     --------------------------------------------- 

      ncen = (nbin+1)/2 

      dz   = hz0/(nbin+1) 

 

 200  nstp   = 0 

      icntpt = 0 

      icnt   = 0 

      index  = 0 

 

      totint   = 0.0d0 

      totmol   = 0.0d0 

      tmolsum  = 0.0d0 

      tmol2sum = 0.0d0 

      bLxtot   = 0.0d0 

      bLxt2    = 0.0d0 

      bLxt4    = 0.0d0 

      skztot   = 0.0d0 

      schange  = 0.0d0 
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      ppsfsftot = 0.0d0 

      ppsfbftot = 0.0d0 

      ppsfsatot = 0.0d0 

      ppbfbftot = 0.0d0 

      ppbfsatot = 0.0d0 

      pzsfsftot = 0.0d0 

      pzsfbftot = 0.0d0 

      pzsfsatot = 0.0d0 

      pzbfbftot = 0.0d0 

      pzbfsatot = 0.0d0 

 

      pxytot   = 0.0d0 

      pxy2     = 0.0d0 

      pztot    = 0.0d0 

      pz2      = 0.0d0 

      fsoltot  = 0.0d0 

      fsol2    = 0.0d0 

 

      fzsftot  = 0.0d0 

      fzbftot  = 0.0d0 

      fxxdtot  = 0.0d0 

      fxxutot  = 0.0d0 

     

      DO m=1,nadmol 

        x1(m)  = 0.0d0 

        x2(m)  = 0.0d0 

        x3(m)  = 0.0d0 

        x4(m)  = 0.0d0 

        vx1(m) = 0.0d0 

        vx2(m) = 0.0d0 

        vx3(m) = 0.0d0 

        vx4(m) = 0.0d0 

        y1(m)  = 0.0d0 

        y2(m)  = 0.0d0 

        y3(m)  = 0.0d0 

        y4(m)  = 0.0d0 

        vy1(m) = 0.0d0 

        vy2(m) = 0.0d0 

        vy3(m) = 0.0d0 

        vy4(m) = 0.0d0 

        z1(m)  = 0.0d0 

        z2(m)  = 0.0d0 

        z3(m)  = 0.0d0 

        z4(m)  = 0.0d0 

        vz1(m) = 0.0d0 

        vz2(m) = 0.0d0 

        vz3(m) = 0.0d0 

        vz4(m) = 0.0d0 

        DO i=1,3 

          diff(i,m)  = 0.0d0 

 ENDDO 

        DO i=1,2 

          disp(i,m)  = 0.0d0 

        ENDDO 

        DO k=1,itau 

          rm2(1,m,k) = 0.0d0 
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          rm2(2,m,k) = 0.0d0 

        ENDDO 

      ENDDO 

 

      DO n=1,nbin 

        densf(n) = 0.0d0 

        denbf(n) = 0.0d0 

      ENDDO 

c     _____________________________________ 

c 

c     INITIATE NEIGHBOR LISTS and use  

c     disptest=.true. Update neighbor lists  

c     _____________________________________ 

  

      CALL fluid_neighbor_list 

 

      disptest=.false. 

c     _______________________________ 

c 

c     MAIN LOOP over nsimut tme steps 

c     _______________________________ 

  

      DO while (nstp.le.nsimut) 

 

 nstp   = nstp+1 

        icntpt = icntpt+1 

 

        IF (disptest.eqv..true.) then   !! update neighbor lists 

c         write(*,*)'nstp=',nstp,'--- update neighbor lists ---' 

          CALL fluid_neighbor_list 

          disptest=.false. 

          DO m=1,nadmol 

            diff(1,m)=0.0d0 

            diff(2,m)=0.0d0 

            diff(3,m)=0.0d0 

          ENDDO 

          schange=0.0d0 

        ENDIF 

c       _______________________________________________ 

c 

c       GEAR'S PREDICTOR PHASE : truncated power series 

C       to predict coordinates and velocities 

c       _______________________________________________ 

 

        vx2sum = 0.0d0 

        vy2sum = 0.0d0 

        vz2sum = 0.0d0 

        v13sum = 0.0d0 

        v23sum = 0.0d0 

        vxytemp= 0.0d0 

        vztemp = 0.0d0 

        DO m=1,nsfmol 

 

          vxsq   = vx0(m)*vx0(m) 

          vysq   = vy0(m)*vy0(m) 

          vzsq   = vz0(m)*vz0(m) 

          vx2sum = vx2sum+vxsq 
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          vy2sum = vy2sum+vysq 

          vz2sum = vz2sum+vzsq 

          v13sum = v13sum+vx0(m)*vz0(m) 

          v23sum = v23sum+vy0(m)*vz0(m) 

          

          xold(m)=x0(m) 

          x0(m)=x0(m)+      x1(m)+      x2(m)+      x3(m)+x4(m) 

          x1(m)=x1(m)+2.0d0*x2(m)+3.0d0*x3(m)+4.0d0*x4(m) 

          x2(m)=x2(m)+3.0d0*x3(m)+6.0d0*x4(m) 

          x3(m)=x3(m)+4.0d0*x4(m) 

 

          vx0(m)=vx0(m)+      vx1(m)+      vx2(m)+      vx3(m)+vx4(m) 

          vx1(m)=vx1(m)+2.0d0*vx2(m)+3.0d0*vx3(m)+4.0d0*vx4(m) 

          vx2(m)=vx2(m)+3.0d0*vx3(m)+6.0d0*vx4(m) 

          vx3(m)=vx3(m)+4.0d0*vx4(m) 

           

          yold(m)=y0(m) 

          y0(m)=y0(m)+      y1(m)+      y2(m)+      y3(m)+y4(m) 

          y1(m)=y1(m)+2.0d0*y2(m)+3.0d0*y3(m)+4.0d0*y4(m) 

          y2(m)=y2(m)+3.0d0*y3(m)+6.0d0*y4(m) 

          y3(m)=y3(m)+4.0d0*y4(m) 

 

          vy0(m)=vy0(m)+      vy1(m)+      vy2(m)+      vy3(m)+vy4(m) 

          vy1(m)=vy1(m)+2.0d0*vy2(m)+3.0d0*vy3(m)+4.0d0*vy4(m) 

          vy2(m)=vy2(m)+3.0d0*vy3(m)+6.0d0*vy4(m) 

          vy3(m)=vy3(m)+4.0d0*vy4(m) 

 

          zold(m)=z0(m) 

          z0(m)=z0(m)+      z1(m)+      z2(m)+      z3(m)+z4(m) 

          z1(m)=z1(m)+2.0d0*z2(m)+3.0d0*z3(m)+4.0d0*z4(m) 

          z2(m)=z2(m)+3.0d0*z3(m)+6.0d0*z4(m) 

          z3(m)=z3(m)+4.0d0*z4(m) 

 

          vz0(m)=vz0(m)+      vz1(m)+      vz2(m)+      vz3(m)+vz4(m) 

          vz1(m)=vz1(m)+2.0d0*vz2(m)+3.0d0*vz3(m)+4.0d0*vz4(m) 

          vz2(m)=vz2(m)+3.0d0*vz3(m)+6.0d0*vz4(m) 

          vz3(m)=vz3(m)+4.0d0*vz4(m) 

 

          vxytemp = vxytemp + vx0(m)*vx0(m) + vy0(m)*vy0(m) 

          vztemp  = vztemp  + vz0(m)*vz0(m) 

 

        ENDDO 

 

        vx2sum  = vx2sum*sfam 

        vy2sum  = vy2sum*sfam 

        vz2sum  = vz2sum*sfam 

        v13sum  = v13sum*sfam  

        v23sum  = v23sum*sfam  

        vxytemp = vxytemp*sfam 

        vztemp  = vztemp*sfam 

 

        vx2sumb = 0.0d0 

        vy2sumb = 0.0d0 

        vz2sumb = 0.0d0 

        v13sumb = 0.0d0 

        v23sumb = 0.0d0 

        vxytempb= 0.0d0 
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        vztempb = 0.0d0 

        DO m=nsfmol+1,nadmol 

 

          vxsq   = vx0(m)*vx0(m) 

          vysq   = vy0(m)*vy0(m) 

          vzsq   = vz0(m)*vz0(m) 

          vx2sumb = vx2sumb+vxsq 

          vy2sumb = vy2sumb+vysq 

          vz2sumb = vz2sumb+vzsq 

          v13sumb = v13sumb+vx0(m)*vz0(m) 

          v23sumb = v23sumb+vy0(m)*vz0(m) 

 

          xold(m)=x0(m) 

          x0(m)=x0(m)+      x1(m)+      x2(m)+      x3(m)+x4(m) 

          x1(m)=x1(m)+2.0d0*x2(m)+3.0d0*x3(m)+4.0d0*x4(m) 

          x2(m)=x2(m)+3.0d0*x3(m)+6.0d0*x4(m) 

          x3(m)=x3(m)+4.0d0*x4(m) 

 

          vx0(m)=vx0(m)+      vx1(m)+      vx2(m)+      vx3(m)+vx4(m) 

          vx1(m)=vx1(m)+2.0d0*vx2(m)+3.0d0*vx3(m)+4.0d0*vx4(m) 

          vx2(m)=vx2(m)+3.0d0*vx3(m)+6.0d0*vx4(m) 

          vx3(m)=vx3(m)+4.0d0*vx4(m) 

 

          yold(m)=y0(m) 

          y0(m)=y0(m)+      y1(m)+      y2(m)+      y3(m)+y4(m) 

          y1(m)=y1(m)+2.0d0*y2(m)+3.0d0*y3(m)+4.0d0*y4(m) 

          y2(m)=y2(m)+3.0d0*y3(m)+6.0d0*y4(m) 

          y3(m)=y3(m)+4.0d0*y4(m) 

 

          vy0(m)=vy0(m)+      vy1(m)+      vy2(m)+      vy3(m)+vy4(m) 

          vy1(m)=vy1(m)+2.0d0*vy2(m)+3.0d0*vy3(m)+4.0d0*vy4(m) 

          vy2(m)=vy2(m)+3.0d0*vy3(m)+6.0d0*vy4(m) 

          vy3(m)=vy3(m)+4.0d0*vy4(m) 

 

          zold(m)=z0(m) 

          z0(m)=z0(m)+      z1(m)+      z2(m)+      z3(m)+z4(m) 

          z1(m)=z1(m)+2.0d0*z2(m)+3.0d0*z3(m)+4.0d0*z4(m) 

          z2(m)=z2(m)+3.0d0*z3(m)+6.0d0*z4(m) 

          z3(m)=z3(m)+4.0d0*z4(m) 

 

          vz0(m)=vz0(m)+      vz1(m)+      vz2(m)+      vz3(m)+vz4(m) 

          vz1(m)=vz1(m)+2.0d0*vz2(m)+3.0d0*vz3(m)+4.0d0*vz4(m) 

          vz2(m)=vz2(m)+3.0d0*vz3(m)+6.0d0*vz4(m) 

          vz3(m)=vz3(m)+4.0d0*vz4(m) 

 

          vxytempb = vxytempb + vx0(m)*vx0(m) + vy0(m)*vy0(m) 

          vztempb  = vztempb  + vz0(m)*vz0(m) 

 

        ENDDO 

 

        vx2sum   = vx2sum+vx2sumb*bfam 

        vy2sum   = vy2sum+vy2sumb*bfam 

        vz2sum   = vz2sum+vz2sumb*bfam 

        vxy2sum  = vx2sum+vy2sum 

        v2sum    = vxy2sum+vz2sum 

        v13sum   = v13sum+v13sumb*bfam 

        v23sum   = v23sum+v23sumb*bfam 
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        vxytemp  = vxytemp+vxytempb*bfam 

        vztemp   = vztemp+vztempb*bfam 

 

        etua     = v2sum/(3.0d0*nadmol) ! instantaneous T at t 

        tmolsum  = tmolsum+etua         ! for average T 

        tmol2sum = tmol2sum+etua*etua   ! for T fluctuations 

C       __________________________________________ 

C    

C       Temperature Controls in the parallel (tcl)  

C       and perpendicular (tcz) directions 

C       __________________________________________ 

 

        tcl0=tcl0+      tcl1+      tcl2+      tcl3+tcl4 

        tcl1=tcl1+2.0d0*tcl2+3.0d0*tcl3+4.0d0*tcl4 

        tcl2=tcl2+3.0d0*tcl3+6.0d0*tcl4 

        tcl3=tcl3+4.0d0*tcl4 

 

        tcz0=tcz0+    tcz1+      tcz2+      tcz3+tcz4 

        tcz1=tcz1+2.0d0*tcz2+3.0d0*tcz3+4.0d0*tcz4 

        tcz2=tcz2+3.0d0*tcz3+6.0d0*tcz4 

        tcz3=tcz3+4.0d0*tcz4 

C       _____________________________________ 

C     

C       Adjusting lateral dimensions based on 

C       evolution trajectory/history  

C       _____________________________________ 

 

        bLxold=bLx0 

        bLx0=bLx0+      bLx1+      bLx2+      bLx3+bLx4 

        bLx1=bLx1+2.0d0*bLx2+3.0d0*bLx3+4.0d0*bLx4 

        bLx2=bLx2+3.0d0*bLx3+6.0d0*bLx4 

        bLx3=bLx3+4.0d0*bLx4 

         

   bLyold=bLy0 

        bLy0=bLy0+       bLy1+      bLy2+      bLy3+bLy4 

        bLy1=bLy1+2.0d0*bLy2+3.0d0*bLy3+4.0d0*bLy4 

        bLy2=bLy2+3.0d0*bLy3+6.0d0*bLy4 

        bLy3=bLy3+4.0d0*bLy4 

 

        IF (istart.eq.2) THEN         ! allowing separation to change 

          do i=1,layers 

            rsnew(i)       = rsold(i)        - deltz 

            rsnew(i+layers)= rsold(i+layers) + deltz 

          enddo 

        ELSE                          ! fixed separation 

          do i=1,layers 

            rsnew(i)        = rsold(i) 

            rsnew(i+layers) = rsold(i+layers) 

          enddo 

        ENDIF 

   

        hz0     = rsold(layers+1) - rsold(1)  ! old separation 

        hz1     = rsnew(layers+1) - rsnew(1)  ! new separation 

        sconold = bLxold*bLyold      ! old confining surface area 

        vold    = sconold*hz0        ! old confined volume 

        dvold   = 2.0d0*vold          

        scon    = bLx0*bLy0          ! new confining surface area 
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        dscon   = 2.0d0*scon 

c       __________ 

c 

c       FORCE LOOP  

c       __________ 

 

        CALL accel !! 

 

        totint  = totint+potff  !! fluid-fluid interaction 

        totmol  = totmol+potfs  !! fluid-surface interaction 

 

        skztot  = skztot+skz 

c       ____________________________ 

c 

c       PRESSURE CONTROL COEFFICIENT 

c       ____________________________ 

 

        ptemp = (ptemp+vxytemp) 

 beta  = 4.0*scon*hz1/(2.0*ptemp-deno)   !! This is k|| 

        coe   = (-beta*(dscon*pset*hz1-ptemp))/(dscon*hz1*tp) 

        

        pxy    = (pxy+vxy2sum)/dvold   !! parallel P  

        pxytot = pxytot+pxy 

        pxy2   = pxy2+pxy*pxy 

 

        pz     = (pz+vz2sum)/vold      !! perpendicular P 

        pztot  = pztot+pz 

        pz2    = pz2+pz*pz 

 

        fsol   = pz-pxy                !! solvation force  

        fsoltot= fsoltot+fsol 

        fsol2  = fsol2+fsol*fsol 

 

        ppsfsf    = ppsfsf/dvold        ! solvent-solvent to Pxy 

        ppsfsftot = ppsfsftot + ppsfsf 

        ppsfbf    = ppsfbf/dvold        ! solvent-nanoparticle to Pxy 

        ppsfbftot = ppsfbftot + ppsfbf  

        ppsfsa    = ppsfsa/dvold        ! solvent-surface to Pxy 

        ppsfsatot = ppsfsatot + ppsfsa  

        ppbfbf    = ppbfbf/dvold     ! nanoparticle-nanoparticle to Pxy  

        ppbfbftot = ppbfbftot + ppbfbf  

        ppbfsa    = ppbfsa/dvold        ! nanoparticle-surface to Pxy 

        ppbfsatot = ppbfsatot + ppbfsa 

        pzsfsf    = pzsfsf/vold 

        pzsfsftot = pzsfsftot + pzsfsf  

        pzsfbf    = pzsfbf/vold  

        pzsfbftot = pzsfbftot + pzsfbf 

        pzsfsa    = pzsfsa/vold 

        pzsfsatot = pzsfsatot + pzsfsa 

        pzbfbf    = pzbfbf/vold  

        pzbfbftot = pzbfbftot + pzbfbf 

        pzbfsa    = pzbfsa/vold 

        pzbfsatot = pzbfsatot + pzbfsa 

 

        fzsf    = 0.50d0*fzsf/sconold  ! perpendicular force/A = Pz    

        fzsftot = fzsftot+fzsf 

        fzbf    = 0.50d0*fzbf/sconold 
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        fzbftot = fzbftot+fzbf 

 

        fxxutot = fxxutot+fxxu/sconold ! parallel force/A = drag  

        fxxdtot = fxxdtot+fxxd/sconold  

 

   bLxtot  = bLxtot+bLxold 

   bLxt2   = bLxt2+bLxold*bLxold 

        bLxold2 = bLxold*bLxold  

        bLxt4   = bLxt4+bLxold2*bLxold2  

c       ______________________ 

c 

c       GEAR'S CORRECTOR PHASE 

c       ______________________ 

            

        vcoe = ttnh*(vxytemp/(2.0d0*nadmol*temp)-1.0d0) 

        vcoez= ttnh*(vztemp/(nadmol*temp)-1.0d0) 

 

        tclcor = vcoe*h-tcl1 

        tcl0   = tcl0+tclcor*f01  

        tcl1   = tcl1+tclcor 

        tcl2   = tcl2+tclcor*f21 

        tcl3   = tcl3+tclcor*f31 

        tcl4   = tcl4+tclcor*f41 

        fcoe   = ttnh*tcl0 

 

        tczcor = vcoez*h-tcz1 

        tcz0   = tcz0+tczcor*f01 

        tcz1   = tcz1+tczcor 

        tcz2   = tcz2+tczcor*f21 

        tcz3   = tcz3+tczcor*f31 

        tcz4   = tcz4+tczcor*f41 

        fcoez  = ttnh*tcz0 

 

        bLxcor = coe*bLx0*h-bLx1 

        bLx0   = bLx0+bLxcor*f01 

        bLx1   = bLx1+bLxcor 

        bLx2   = bLx2+bLxcor*f21 

        bLx3   = bLx3+bLxcor*f31 

        bLx4   = bLx4+bLxcor*f41 

 

        schange = schange + bLx0 - bLxold   

        IF((schange*schange).ge.drneig) disptest=.true. 

 

 DO m=1,nadmol 

 

          xcor  = (vx0(m)+coe*x0(m))*h-x1(m) 

          x0(m) = x0(m)+xcor*f01     !! new positions at (t+dt) 

          x1(m) = x1(m)+xcor 

          x2(m) = x2(m)+xcor*f21 

          x3(m) = x3(m)+xcor*f31 

          x4(m) = x4(m)+xcor*f41 

 

          vxcor  = (ax(m)-fcoe*vx0(m))*h-vx1(m) 

          vx0(m) = vx0(m)+vxcor*f01  !! new velocities at (t+dt) 

          vx1(m) = vx1(m)+vxcor 

          vx2(m) = vx2(m)+vxcor*f21 

          vx3(m) = vx3(m)+vxcor*f31 
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          vx4(m) = vx4(m)+vxcor*f41 

          diff(1,m) = diff(1,m)+x0(m)-xold(m) 

 

          ycor  = (vy0(m)+coe*y0(m))*h-y1(m) 

          y0(m) = y0(m)+ycor*f01     !! new positions at (t+dt) 

          y1(m) = y1(m)+ycor 

          y2(m) = y2(m)+ycor*f21 

          y3(m) = y3(m)+ycor*f31 

          y4(m) = y4(m)+ycor*f41 

 

          vycor  = (ay(m)-fcoe*vy0(m))*h-vy1(m) 

          vy0(m) = vy0(m)+vycor*f01  !! new velocities at (t+dt) 

          vy1(m) = vy1(m)+vycor 

          vy2(m) = vy2(m)+vycor*f21 

          vy3(m) = vy3(m)+vycor*f31 

          vy4(m) = vy4(m)+vycor*f41 

          diff(2,m) = diff(2,m)+y0(m)-yold(m) 

 

          zcor  = vz0(m)*h-z1(m) 

          z0(m) = z0(m)+zcor*f01     !! new positions at (t+dt) 

          z1(m) = z1(m)+zcor 

          z2(m) = z2(m)+zcor*f21 

          z3(m) = z3(m)+zcor*f31 

          z4(m) = z4(m)+zcor*f41 

 

          vzcor  = (az(m)-fcoez*vz0(m))*h-vz1(m) 

          vz0(m) = vz0(m)+vzcor*f01  !! new velocities at (t+dt) 

          vz1(m) = vz1(m)+vzcor 

          vz2(m) = vz2(m)+vzcor*f21 

          vz3(m) = vz3(m)+vzcor*f31 

          vz4(m) = vz4(m)+vzcor*f41 

          diff(3,m) = diff(3,m)+z0(m)-zold(m)   

 

          dispvec=0.0d0 

          DO j=1,3 

            dispvec = dispvec+diff(j,m)*diff(j,m) 

          ENDDO 

          IF(dispvec.ge.drneig)THEN 

            disptest =.true.  

          ELSE 

            disp(1,m) = disp(1,m)+x0(m)-xold(m) 

            disp(2,m) = disp(2,m)+y0(m)-yold(m) 

          ENDIF 

c         __________________________________ 

c  

c         Apply periodic boundary conditions 

c         __________________________________ 

           

          nbcx = dnint(x0(m)/bLx0) 

          nbcy = dnint(y0(m)/bLy0) 

 

   if(nbcx.ne.0)then 

c           ------------------------------------------ 

c           Adjustments due to system dimension change 

c           ------------------------------------------ 

            bLx0sq = bLx0*bLx0 

            bLx1sq = bLx1*bLx1 
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            edotx1 = bLx1/bLx0 

            edotx2 = (2.0d0*bLx2*bLx0-bLx1sq)/(bLx0sq) 

            edotx3 = ((6.0d0*(bLx3*bLx0-bLx2*bLx1)*bLx0) 

     &              +(2.0d0*bLx1*bLx1sq))/(bLx0*bLx0sq) 

            edotx4 = ((24.0d0*(bLx4*bLx0sq-bLx3*bLx1*bLx0 

     &              +bLx2*bLx1sq)*bLx0)-12.0d0*bLx2*bLx2*bLx0sq 

     &              -6.0d0*bLx1sq*bLx1sq)/(bLx0sq*bLx0sq) 

 

            corr0 = -bLx0*nbcx 

            corr1 = edotx1*corr0 

            corr2 = (edotx1*corr1+edotx2*corr0)/2.0d0 

            corr3 = (2.0d0*(edotx1*corr2+edotx2*corr1) 

     &             +edotx3*corr0)/6.0d0 

            corr4 = (6.0d0*(edotx1*corr3+edotx2*corr2) 

     &             +3.0d0*edotx3*corr1+edotx4*corr0)/24.0d0 

            x0(m) = x0(m)+corr0 

            x1(m) = x1(m)+corr1 

            x2(m) = x2(m)+corr2 

            x3(m) = x3(m)+corr3 

            x4(m) = x4(m)+corr4 

          endif 

      

          if(nbcy.ne.0)then 

c           ------------------------------------------ 

c           Adjustments due to system dimension change 

c           ------------------------------------------ 

            bLy0sq = bLy0*bLy0 

            bLy1sq = bLy1*bLy1 

            edoty1 = bLy1/bLy0 

            edoty2 = (2.0d0*bLy2*bLy0-bLy1sq)/(bLy0sq) 

            edoty3 = ((6.0d0*(bLy3*bLy0-bLy2*bLy1)*bLy0) 

     &              +(2.0d0*bLy1*bLy1sq))/(bLy0*bLy0sq) 

     

            edoty4 = ((24.0d0*(bLy4*bLy0sq-bLy3*bLy1*bLy0 

     &              +bLy2*bLy1sq)*bLy0)-12.0d0*bLy2*bLy2*bLy0sq 

     &              -6.0d0*bLy1sq*bLy1sq)/(bLy0sq*bLy0sq)    

            corr0 = -bLy0*nbcy 

            corr1 = edoty1*corr0 

            corr2 = (edoty1*corr1+edoty2*corr0)/2.0d0 

            corr3 = (2.0d0*(edoty1*corr2+edoty2*corr1) 

     &             +edoty3*corr0)/6.0d0 

            corr4 = (6.0d0*(edoty1*corr3+edoty2*corr2) 

     &             +3.0d0*edoty3*corr1+edoty4*corr0)/24.0d0 

            y0(m) = y0(m)+corr0 

            y1(m) = y1(m)+corr1 

            y2(m) = y2(m)+corr2 

            y3(m) = y3(m)+corr3 

            y4(m) = y4(m)+corr4 

          endif 

        ENDDO 

c       _______________________________________ 

c  

c       prepare the surfaces for next iteration 

c       _______________________________________ 

 

        do i=1,layers 

          rsold(i)        = rsnew(i) 
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          rsold(i+layers) = rsnew(i+layers) 

        enddo 

c       ____________________________________________ 

c 

c       istart=3: equilibration has been reached 

c       Record displacement every 'isave' time steps 

c       to calculate diffusivity from mean square 

c       displacement 

c       ____________________________________________ 

 

        IF (istart.eq.3) THEN 

 

          icnt = icnt+1 

          IF(icnt.eq.isave)then 

            icnt  = 0 

c           __________________________ 

c 

c           Calculate density profiles 

c           __________________________ 

 

            DO m=1,nsfmol 

              ncom=dnint(z0(m)/dz)+ncen 

              densf(ncom)=densf(ncom)+1 

            ENDDO 

            DO j=1,nbfmol 

              m = nsfmol+j 

              ncom=dnint(z0(m)/dz)+ncen 

              denbf(ncom)=denbf(ncom)+1 

            ENDDO 

 

            index = index+1 

            IF(index.le.itau) THEN 

 

              DO i=1,index-1 

                ndt=index-i 

                DO m = 1,nsfmol 

                  dx = disp(1,m)-rm2(1,m,i) 

                  dy = disp(2,m)-rm2(2,m,i) 

                  drsf(ndt) = drsf(ndt)+dx*dx+dy*dy 

                ENDDO 

                DO m = nsfmol+1,nadmol 

                  dx = disp(1,m)-rm2(1,m,i) 

                  dy = disp(2,m)-rm2(2,m,i) 

                  drbf(ndt) = drbf(ndt)+dx*dx+dy*dy 

                ENDDO 

              ENDDO 

              DO m = 1,nadmol 

                rm2(1,m,index) = disp(1,m) 

                rm2(2,m,index) = disp(2,m) 

              ENDDO 

 

            ELSE 

 

              DO m = 1,nsfmol 

                dx = disp(1,m)-rm2(1,m,1) 

                dy = disp(2,m)-rm2(2,m,1) 

                drsf(itau) = drsf(itau)+dx*dx+dy*dy 
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              ENDDO 

              DO m = nsfmol+1,nadmol 

                dx = disp(1,m)-rm2(1,m,1) 

                dy = disp(2,m)-rm2(2,m,1) 

                drbf(itau) = drbf(itau)+dx*dx+dy*dy 

              ENDDO 

              DO j = 2,itau 

                ndt=(itau+1)-j 

                DO m = 1,nsfmol 

                  dx = disp(1,m)-rm2(1,m,j) 

                  dy = disp(2,m)-rm2(2,m,j) 

                  drsf(ndt) = drsf(ndt)+dx*dx+dy*dy 

                  rm2(1,m,j-1)=rm2(1,m,j) 

                  rm2(2,m,j-1)=rm2(2,m,j) 

                ENDDO 

                DO m = nsfmol+1,nadmol 

                  dx = disp(1,m)-rm2(1,m,j) 

                  dy = disp(2,m)-rm2(2,m,j) 

                  drbf(ndt) = drbf(ndt)+dx*dx+dy*dy 

                  rm2(1,m,j-1)=rm2(1,m,j) 

                  rm2(2,m,j-1)=rm2(2,m,j) 

                ENDDO 

              ENDDO 

              DO m=1,nadmol 

                rm2(1,m,itau)=disp(1,m) 

                rm2(2,m,itau)=disp(2,m) 

              ENDDO 

 

            ENDIF  !itau 

 

          ENDIF  !isave 

         

        ENDIF 

c       ____________________ 

c 

c       INTERMEDIATE RESULTS 

c       ____________________ 

 

        IF (icntpt.eq.iprint) then 

 

          icntpt  = 0 

 

          tempmol = tmolsum/iprint 

          stdtmol = sqrt(tmol2sum/iprint-tempmol*tempmol)*epsi/R 

          tempmol = tempmol*epsi/R 

          avb     = bLxtot/iprint 

          ava     = bLxt2/iprint 

          avpxy   = pxytot/iprint 

          stdpxy  = sqrt(pxy2/iprint-avpxy*avpxy) 

          avpz    = pztot/iprint 

          stdpz   = sqrt(pz2/iprint-avpz*avpz) 

          avfsol  = fsoltot/iprint 

          avfzsf  = fzsftot/iprint 

          avfzbf  = fzbftot/iprint 

          avfxxd  = fxxdtot/iprint 

          avfxxu  = fxxutot/iprint 

          avint   = totint/iprint 
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          avmol   = totmol/iprint 

          avskz   = skztot/iprint 

 

          avppsfsf = ppsfsftot/iprint  

          avppsfbf = ppsfbftot/iprint 

          avppsfsa = ppsfsatot/iprint 

          avppbfbf = ppbfbftot/iprint 

          avppbfsa = ppbfsatot/iprint 

          avpzsfsf = pzsfsftot/iprint 

          avpzsfbf = pzsfbftot/iprint 

          avpzsfsa = pzsfsatot/iprint 

          avpzbfbf = pzbfbftot/iprint 

          avpzbfsa = pzbfsatot/iprint 

 

          tmolsum = 0.0d0    

          tmol2sum= 0.0d0 

          bLxtot  = 0.0d0 

          bLxt2   = 0.0d0 

          pxytot  = 0.0d0 

          pxy2    = 0.0d0 

          pztot   = 0.0d0 

          pz2     = 0.0d0 

          fsoltot = 0.0d0 

          fzsftot = 0.0d0 

          fzbftot = 0.0d0 

          fxxdtot = 0.0d0 

          fxxutot = 0.0d0 

          totint  = 0.0d0 

          totmol  = 0.0d0 

          skztot  = 0.0d0 

 

          ppsfsftot = 0.0d0 

          ppsfbftot = 0.0d0 

          ppsfsatot = 0.0d0 

          ppbfbftot = 0.0d0 

          ppbfsatot = 0.0d0 

          pzsfsftot = 0.0d0 

          pzsfbftot = 0.0d0 

          pzsfsatot = 0.0d0 

          pzbfbftot = 0.0d0 

          pzbfsatot = 0.0d0 

 

c         write(*,*)nstp,hz0,bLx0,pxy,pz,potff,potfs,skz 

 

          write(*,900)nstp,dxtot,tempmol,stdtmol,avb,ava,avint,avmol, 

     &    avpxy,stdpxy,avppsfsf,avppsfbf,avppsfsa,avppbfbf,avppbfsa, 

     &    avpz,stdpz,avpzsfsf,avpzsfbf,avpzsfsa,avpzbfbf,avpzbfsa, 

     &    avfsol,avfzsf,avfzbf,avfxxd,avfxxu,avskz 

 

          IF (istart.eq.2) THEN 

 

            if(nstp.eq.25000)then 

 

c             DO m=1,nadmol 

c               write(2,999)x0(m),y0(m),z0(m),vx0(m),vy0(m),vz0(m) 

c             ENDDO 

c             write(2,*)bLx0,bLy0,hz1 
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              istart = istart + 1  

               

              write(*,*)'_________Shearing Begins___________' 

              GO TO 200 

           

            endif 

 

          ELSE 

 

            if (mod(nstp,50000).eq.0) then 

 

              DO m=1,nadmol 

                write(2,999)x0(m),y0(m),z0(m),vx0(m),vy0(m),vz0(m) 

              ENDDO 

              write(2,*)bLx0,bLy0,hz1 

              write(2,*)'XXX' 

            endif 

 

 900        format(I7,32(1x,E11.5)) 

  

          ENDIF 

 

        ENDIF 

        

      ENDDO         !! end of main loop 

 

      DO m=1,nadmol 

        write(2,999)x0(m),y0(m),z0(m),vx0(m),vy0(m),vz0(m) 

      ENDDO 

      write(2,*)bLx0,bLy0,hz1 

      write(2,*)nstp,nbfmol,h*sigma/dsqrt(epsi/unitm) 

  

      do i=1,99 

        densf(i) = densf(i)/kmax/(dz*ava) 

        denbf(i) = denbf(i)/kmax/(dz*ava) 

        write(3,999)(i-ncen)*dz,densf(i),denbf(i) 

      enddo 

 

      DO i=1,kmax  !! length of record 

        DO j=i,min0(kmax,itau+i) 

          ndt = j - i 

          ncnt1(ndt) = ncnt1(ndt) + 1 

        ENDDO 

      ENDDO 

      drsf(0) = 0.0d0 

      drbf(0) = 0.0d0 

      do i=0,itau 

        drsf(i) = drsf(i)/ncnt1(i)/nsfmol 

        if (nbfmol.gt.0) drbf(i) = drbf(i)/ncnt1(i)/nbfmol 

      enddo 

 

c     ______________________________________________ 

c 

c     Fitting least-square line to get limiting slope 

c     _______________________________________________ 
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      sumx  = 0.0d0 

      sumx2 = 0.0d0 

      sumxy = 0.0d0 

      sumy  = 0.0d0 

      sumy2 = 0.0d0 

      num   = 3*(itau+1)/4  ! using the last 1/4 section 

      DO i=num,itau 

        rsqt  = drsf(i) 

        xt    = i*isave*h 

        sumy  = sumy  + rsqt 

        sumy2 = sumy2 + rsqt*rsqt 

        sumx  = sumx  + xt 

        sumx2 = sumx2 + xt*xt 

        sumxy = sumxy + xt*rsqt 

      ENDDO 

      diff_coef = (sumy*sumx-num*sumxy) 

     &            /(sumx*sumx-num*sumx2)/4.0 

 

      write(3,*)'Dsf_rm2=',diff_coef 

 

      sumx  = 0.0d0 

      sumx2 = 0.0d0 

      sumxy = 0.0d0 

      sumy  = 0.0d0 

      sumy2 = 0.0d0 

      DO i=num,itau 

        rsqt  = drbf(i) 

        xt    = i*isave*h 

        sumy  = sumy  + rsqt 

        sumy2 = sumy2 + rsqt*rsqt 

        sumx  = sumx  + xt 

        sumx2 = sumx2 + xt*xt 

        sumxy = sumxy + xt*rsqt 

      ENDDO 

      diff_coef = (sumy*sumx-num*sumxy) 

     &            /(sumx*sumx-num*sumx2)/4.0 

 

      write(3,*)'Dbf_rm2=',diff_coef 

 

      DO i=0,itau,4 

        write(3,999)i*isave*h,drsf(i),drbf(i) 

      ENDDO 

 

 999  format(20(1x,e11.5)) 

 

      stop 

      END 

 

 

      SUBROUTINE setup_sa_position 

      IMPLICIT real*8 (a-h,o-z),integer*4 (i-n) 

      include 'ljmix' 

c     _______________________________________________ 

c 

c     This SUBROUTINE sets up the surface atoms in a 

c     surface unit cell for both confining substrates 

c     _______________________________________________ 
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      sx(1,1) = 0.0d0 

      sy(1,1) = 0.0d0 

      sx(2,1) = sx(1,1)-0.50d0*x_L 

      sy(2,1) = sy(1,1)-0.50d0*y_L 

 

      sx(1,2) = sx(1,1) 

      sy(1,2) = sy(1,1)-y_L/3.0d0 

      sx(2,2) = sx(1,1)-0.50d0*x_L 

      sy(2,2) = sy(1,1)+y_L/6.0d0 

 

      sx(1,3) = sx(1,1) 

      sy(1,3) = sy(1,1)-y_L/3.0d0 

      sx(2,3) = sx(1,1)-0.50d0*x_L 

      sy(2,3) = sy(1,1)+y_L/6.0d0 

 

      sx(1,4) = sx(1,1)-0.50d0*x_L 

      sy(1,4) = sy(1,1)-y_L/6.0d0 

      sx(2,4) = sx(1,1) 

      sy(2,4) = sy(1,1)+y_L/3.0d0 

 

      sx(1,5) = sx(1,1)-0.50d0*x_L 

      sy(1,5) = sy(1,1)-y_L/6.0d0 

      sx(2,5) = sx(1,1) 

      sy(2,5) = sy(1,1)+y_L/3.0d0 

      sx(1,6) = sx(1,1) 

      sy(1,6) = sy(1,1) 

      sx(2,6) = sx(2,1) 

      sy(2,6) = sy(2,1) 

 

      sx(1,7) = sx(1,1) 

      sy(1,7) = sy(1,1) 

      sx(2,7) = sx(2,1) 

      sy(2,7) = sy(2,1) 

 

      sx(1,8) = sx(1,2) 

      sy(1,8) = sy(1,2) 

      sx(2,8) = sx(2,2) 

      sy(2,8) = sy(2,2) 

 

      do i=1,layers 

        sx(1,i+layers) = sx(1,i) 

        sy(1,i+layers) = sy(1,i) 

        sx(2,i+layers) = sx(2,i) 

        sy(2,i+layers) = sy(2,i) 

      enddo 

 

      RETURN 

      END 

 

 

 

      SUBROUTINE gauss(vx,vy,vz,tempe) 

      IMPLICIT real*8 (a-h,o-z),integer*4 (i-n) 

      include 'ljmix' 

  

c     Generate a gaussian random velocity 
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      CALL SRAND(ISEED) 

 

      vxpick = 0.0d0 

      vypick = 0.0d0 

      vzpick = 0.0d0 

      DO k=1,12 

        ran1   = rand() 

        ran2   = rand() 

        ran3   = rand() 

        vxpick = vxpick+ran1 

        vypick = vypick+ran2 

        vzpick = vzpick+ran3 

      ENDDO 

      vx = (vxpick-6.0d0)*dsqrt(tempe) 

      vy = (vypick-6.0d0)*dsqrt(tempe) 

      vz = (vzpick-6.0d0)*dsqrt(tempe) 

 

      RETURN 

      END 

 

     

 

      SUBROUTINE fluid_neighbor_list 

      IMPLICIT real*8 (a-h,o-z),integer*4 (i-n) 

      include 'ljmix' 

c     ____________________________________________________ 

c 

c     Construct neighbor lists of other UA's for molecules 

c     ____________________________________________________ 

 

C     ------------------------ 

C     Like pair of smaller-smaller fluid atoms 

C     ------------------------ 

 

      DO m=1,nsfmol+1 

        inblss(m) = 0 

        inblsb(m) = 0 

      ENDDO 

      DO m=1,nnblss 

        inblstss(m) = 0 

      ENDDO 

      DO m=1,nnblsb 

        inblstsb(m) = 0 

      ENDDO 

 

      DO m=1,nbfmol+1 

        inblbb(m) = 0 

      ENDDO 

      DO m=1,nnblbb 

        inblstbb(m) = 0 

      ENDDO 

 

      nlistss = 0 

      nlistsb = 0 

      DO m=1,nsfmol 
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C       --------------------- 

C       solvent-solvent pairs 

C       --------------------- 

        inblss(m) = nlistss+1 

        DO i=m+1,nsfmol 

          xij  = x0(m)-x0(i) 

          yij  = y0(m)-y0(i) 

          zij  = z0(m)-z0(i) 

          xij = xij-bLx0*dnint(xij/bLx0) 

          yij = yij-bLy0*dnint(yij/bLy0) 

          rij2=xij*xij+yij*yij+zij*zij 

          IF (rij2.le.rnbl2sfsf) then 

            nlistss=nlistss+1 

            inblstss(nlistss)=i    !! molecule 

          ENDIF 

        ENDDO 

 

C       -------------------------- 

C       solvent-nanoparticle pairs 

C       -------------------------- 

        inblsb(m) = nlistsb+1 

        DO i=nsfmol+1,nadmol   

          xij  = x0(m)-x0(i) 

          yij  = y0(m)-y0(i) 

          zij  = z0(m)-z0(i) 

          xij = xij-bLx0*dnint(xij/bLx0) 

          yij = yij-bLy0*dnint(yij/bLy0) 

          rij2=xij*xij+yij*yij+zij*zij 

          IF (rij2.le.rnbl2sfbf) then 

            nlistsb=nlistsb+1 

            inblstsb(nlistsb)=i    !! molecule 

          ENDIF 

 

        ENDDO 

 

      ENDDO 

 

      nlistbb = 0 

      DO j=1,nbfmol 

        m = j + nsfmol 

C       ------------------------------- 

C       nanoparticle-nanoparticle pairs 

C       ------------------------------- 

        inblbb(j) = nlistbb+1 

        DO i=m+1,nadmol 

          xij  = x0(m)-x0(i) 

          yij  = y0(m)-y0(i) 

          zij  = z0(m)-z0(i) 

          xij = xij-bLx0*dnint(xij/bLx0) 

          yij = yij-bLy0*dnint(yij/bLy0) 

          rij2=xij*xij+yij*yij+zij*zij 

          IF (rij2.le.rnbl2bfbf) then 

            nlistbb=nlistbb+1 

            inblstbb(nlistbb)=i    !! molecule 

          ENDIF 

        ENDDO 
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      ENDDO 

 

      IF(nlistss.gt.nnblss) then 

        print *,'make nnblss > ',nlistss+1 

        stop 

      ENDIF 

      IF(nlistsb.gt.nnblsb) then 

        print *,'make nnblsb > ',nlistsb+1 

        stop 

      ENDIF 

      IF(nlistbb.gt.nnblbb) then 

        print *,'make nnblbb > ',nlistbb+1 

        stop 

      ENDIF 

 

      RETURN 

      END 

 

 

 

      SUBROUTINE accel 

      IMPLICIT real*8 (a-h,o-z),integer*4 (i-n) 

      include 'ljmix' 

 

      DO m=1,nadmol 

        ax(m) = 0.0d0 

        ay(m) = 0.0d0 

        az(m) = 0.0d0 

      ENDDO 

 

      ppsfsf = 0.0d0 

      ppsfbf = 0.0d0 

      ppsfsa = 0.0d0 

      ppbfbf = 0.0d0 

      ppbfsa = 0.0d0 

      pzsfsf = 0.0d0 

      pzsfbf = 0.0d0 

      pzsfsa = 0.0d0 

      pzbfbf = 0.0d0 

      pzbfsa = 0.0d0 

 

      fzsf = 0.0d0 

      fzbf = 0.0d0 

      fxxd = 0.0d0 

      fxxu = 0.0d0 

 

      potsfsf = 0.0d0 

      potbfbf = 0.0d0  

      potsfsa = 0.0d0 

      potbfsa = 0.0d0 

      ptemp = 0.0d0 

      deno  = 0.0d0 

 

      skzc  = 0.0d0 

      skzs  = 0.0d0 
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C     --------------------------------------------------------- 

C     dxtot: displacement of the upper surface 

C            for continuous shearing (stationary lower surface) 

C     --------------------------------------------------------- 

      dxtot = dxtot + deltx 

C     _____________________________ 

C 

C     INTERACTIONS BASED ON SOLVENT 

C     _____________________________ 

 

      DO m=1,nsfmol  

 

        xorig = xold(m) 

        yorig = yold(m) 

        zorig = zold(m) 

         

        rkz  = (zorig-rsold(1))*zk 

        skzc = skzc+cos(rkz) 

        skzs = skzs+sin(rkz) 

 

        xpred = x0(m) 

        ypred = y0(m) 

        zpred = z0(m) 

        aclx  = ax(m) 

        acly  = ay(m) 

        aclz  = az(m) 

C       _________________________________ 

C       

C       solvent-solvent pair interactions 

C       _________________________________ 

  

        ibegss = inblss(m) 

        iendss = inblss(m+1)-1 

 

        DO ilist=ibegss,iendss   ! No. of interacting pairs 

          i=inblstss(ilist)      ! identity of interacting partner 

C         ------------------------------------------- 

C         Use old coordinates to calculate properties 

C         ------------------------------------------- 

          Xij  = xorig - xold(i)  !! old positions 

          Yij  = yorig - yold(i) 

          Zij  = zorig - zold(i) 

          xpbc = -bLxold*dnint(Xij/bLxold) 

          ypbc = -bLyold*dnint(Yij/bLyold) 

          Xij  = Xij+xpbc                      

          Yij  = Yij+ypbc                            

          xij2 = Xij*Xij 

          yij2 = Yij*Yij 

          rxy2 = xij2 + yij2 

          zij2 = Zij*Zij 

          rij2 = rxy2 + zij2  

          IF (rij2.le.rcut2sfsf) then 

            rho2  = sig2sfsf/rij2 

            rho6  = rho2*rho2*rho2 

            rho12 = rho6*rho6 

            rij   = dsqrt(rij2) 

            Fij   = eps24sfsf*((2.0d0*rho12-rho6)/rij2 -fcsfsf/rij) 
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            ppsfsf = ppsfsf + Fij*rxy2 

            pzsfsf = pzsfsf + Fij*zij2 

 

            potsfsf = potsfsf+(rho12-rho6)-vcsfsf+fcvsfsf*rij 

          ENDIF  

C         ------------------------------------------------ 

C         Use predicted coordinates to estimate properties 

C         ------------------------------------------------ 

          x0ij  = xpred - x0(i)  !! predicted positions for calculating 

          y0ij  = ypred - y0(i)  !! accelerations and coefficients 

          z0ij  = zpred - z0(i) 

          x0ij  = x0ij + xpbc 

          y0ij  = y0ij + ypbc 

          r0xy2 = x0ij*x0ij + y0ij*y0ij 

          z0ij2 = z0ij*z0ij 

          r0ij2 = r0xy2 + z0ij2 

          IF (r0ij2.le.rcut2sfsf) then 

     r0ij4 = r0ij2*r0ij2 

     r0xy4 = r0xy2*r0xy2 

            rho2  = sig2sfsf/r0ij2 

            rho6  = rho2*rho2*rho2 

            rho12 = rho6*rho6 

            r0ij  = dsqrt(r0ij2) 

            F0ij  = eps24sfsf*((2.0d0*rho12-rho6)-fcsfsf*r0ij)/r0ij2 

            x0ff_r4 = epssfsf*(-672.0d0*rho12+192.0d0*rho6 

     &               +24.0d0*r0ij*fcsfsf)/r0ij4  

    

            ptemp = ptemp+F0ij*r0xy2 

            deno  = deno+r0xy4*x0ff_r4+2.0*F0ij*r0xy2 

 

            fx0lj = F0ij*(X0ij) !! Fij=(-dv/dr)/r 

            fy0lj = F0ij*(Y0ij) 

            fz0lj = F0ij*(Z0ij) 

            aclx  = aclx + fx0lj 

            acly  = acly + fy0lj 

            aclz  = aclz + fz0lj 

            ax(i) = ax(i) - fx0lj 

            ay(i) = ay(i) - fy0lj 

            az(i) = az(i) - fz0lj 

   ENDIF 

 

        ENDDO 

C       ______________________________________ 

C       

C       solvent-nanoparticle pair interactions  

C       ______________________________________ 

  

        ibegsb = inblsb(m) 

        iendsb = inblsb(m+1)-1 

 

        DO ilist=ibegsb,iendsb  ! No. of interacting nanoparticles 

          j=inblstsb(ilist)     ! identity of interacting nanoparticles 

C         ------------------------------------------- 

C         Use old coordinates to calculate properties 

C         ------------------------------------------- 

          Xij  = xorig - xold(j)  !! old positions 
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          Yij  = yorig - yold(j) 

          Zij  = zorig - zold(j) 

          xpbc = -bLxold*dnint(Xij/bLxold) 

          ypbc = -bLyold*dnint(Yij/bLyold) 

          Xij  = Xij+xpbc 

          Yij  = Yij+ypbc 

 

          xij2 = Xij*Xij 

          yij2 = Yij*Yij 

          rxy2 = xij2 + yij2 

          zij2 = Zij*Zij 

          rij2 = rxy2 + zij2  

          IF (rij2.le.rcut2sfbf) then 

            rho2  = sig2sfbf/rij2 

            rho6  = rho2*rho2*rho2 

            rho12 = rho6*rho6 

            rij   = dsqrt(rij2) 

            Fij   = eps24sfbf*((2.0d0*rho12-rho6)/rij2 -fcsfbf/rij) 

 

            ppsfbf = ppsfbf + Fij*rxy2 

            pzsfbf = pzsfbf + Fij*zij2 

 

            potsfbf = potsfbf+(rho12-rho6)-vcsfbf+fcvsfbf*rij 

          ENDIF  

C         ------------------------------------------------ 

C         Use predicted coordinates to estimate properties 

C         ------------------------------------------------ 

          x0ij  = xpred - x0(j)  !! predicted positions for calculating 

          y0ij  = ypred - y0(j)  !! accelerations and coefficients 

          z0ij  = zpred - z0(j) 

          x0ij  = x0ij + xpbc 

          y0ij  = y0ij + ypbc 

          r0xy2 = x0ij*x0ij + y0ij*y0ij 

          z0ij2 = z0ij*z0ij 

          r0ij2 = r0xy2 + z0ij2 

          IF (r0ij2.le.rcut2sfbf) then 

     r0ij4 = r0ij2*r0ij2 

     r0xy4 = r0xy2*r0xy2 

            rho2  = sig2sfbf/r0ij2 

            rho6  = rho2*rho2*rho2 

            rho12 = rho6*rho6 

            r0ij  = dsqrt(r0ij2) 

            F0ij  = eps24sfbf*((2.0d0*rho12-rho6)-fcsfbf*r0ij)/r0ij2 

            x0ff_r4 = epssfbf*(-672.0d0*rho12+192.0d0*rho6 

     &               +24.0d0*r0ij*fcsfsf)/r0ij4 

    

            ptemp = ptemp+F0ij*r0xy2 

            deno  = deno+r0xy4*x0ff_r4+2.0*F0ij*r0xy2 

 

            fx0lj = F0ij*(X0ij) !! Fij=(-dv/dr)/r 

            fy0lj = F0ij*(Y0ij) 

            fz0lj = F0ij*(Z0ij) 

            aclx  = aclx + fx0lj 

            acly  = acly + fy0lj 

            aclz  = aclz + fz0lj 

            ax(j) = ax(j) - fx0lj 

            ay(j) = ay(j) - fy0lj 
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            az(j) = az(j) - fz0lj 

   ENDIF 

 

        ENDDO 

C       ____________________________ 

C        

C       solvent-surface interactions 

C       ____________________________ 

 

C       -------------------------- 

C       stationary (lower) surface 

C       -------------------------- 

        nyo    = dnint(yorig/y_L) 

        yshfto = yorig - nyo*y_L 

        nyp    = dnint(ypred/y_L) 

        yshftp = ypred - nyp*y_L 

 

        nxo    = dnint(xorig/x_L) 

        xshfto = xorig - nxo*x_L 

        nxp    = dnint(xpred/x_L) 

        xshftp = xpred - nxp*x_L 

 

        DO k=1,layers           !stationary surface 

          zij  = zorig - rsold(k) 

          zij2 = zij*zij 

          IF (zij2.le.rcut2sfsa) THEN 

 

            DO k1=1,2 

              DO i=-3,3 

                syad = i*y_L 

                rsy  = sy(k1,k) + syad 

                DO j=-4,4 

                  sxad = j*x_L 

                  rsx  = sx(k1,k) + sxad  

                  Xij  = xshfto - rsx 

                  Yij  = yshfto - rsy 

                  xij2 = Xij*Xij 

                  yij2 = Yij*Yij 

                  rxy2 = xij2 + yij2 

                  rij2 = rxy2 + zij2 

                  IF (rij2.le.rcut2sfsa) then 

                    rij  = dsqrt(rij2)  

                    rho2 = sig2sfsa/rij2 

                    rho6 = rho2*rho2*rho2 

                    rho12= rho6*rho6 

                   Fij = eps24sfsa*((2.0d0*rho12-rho6)-fcsfsa*rij)/rij2 

                    potsfsa = potsfsa+((rho12-rho6)-vcsfsa+fcvsfsa*rij) 

                    fzsf   = fzsf + Fij*abs(zij) 

                    ppsfsa = ppsfsa + Fij*rxy2 

                    fxxd   = fxxd + Fij*Xij 

                    dis    = zorig + (hz0/2.0) 

                    pzsfsa = pzsfsa + Fij*zij*dis 

                  ENDIF 

                   

                  Xij = xshftp - rsx 

                  Yij = yshftp - rsy 

                  Zij = zpred - rsnew(k) 
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                  rxy2 = Xij*Xij + Yij*Yij 

                  zij2 = Zij*Zij 

                  rij2 = rxy2 + zij2 

                  IF (rij2.le.rcut2sfsa) then                

                    rxy4 = rxy2*rxy2 

                    rij4 = rij2*rij2 

                    rho2 = sig2sfsa/rij2 

                    rho6 = rho2*rho2*rho2 

                    rho12= rho6*rho6 

                    rij  = dsqrt(rij2)  

                   Fij = eps24sfsa*((2.0d0*rho12-rho6)/rij2-fcsfsa/rij) 

                    xwf_r4 = epssfsa*(-672.0d0*rho12+192.0d0*rho6 

     &                      +24.0d0*rij*fcsfsa)/rij4 

                    rxys  = Xij*xpred+Yij*ypred 

              ptemp = ptemp+Fij*rxy2 

                    deno  = deno+rxy2*rxys*xwf_r4ws+2.0*Fij*rxys 

 

                    fxlj = Fij*(Xij) !! Fij=(-dv/dr)/r 

                    fylj = Fij*(Yij) 

                    fzlj = Fij*(Zij) 

                    aclx = aclx + fxlj 

                    acly = acly + fylj 

                    aclz = aclz + fzlj 

                  ENDIF 

         

                enddo  ! do nx 

              enddo    ! do ny 

            enddo      ! do k1 

 

          endif 

        enddo !!k 

 

C       ------------------------------- 

C       moving/shearing (upper) surface 

C       ------------------------------- 

        xshfto = xorig - dxtot 

        nxo    = dnint(xshfto/x_L) 

        xshfto = xshfto - nxo*x_L 

        xshftp = xpred - dxtot 

        nxp    = dnint(xshftp/x_L) 

        xshftp = xshftp - nxp*x_L 

 

        DO k=layers+1,2*layers   ! moving/searing surface  

          zij  = zorig - rsold(k) 

          zij2 = zij*zij 

          IF (zij2.le.rcut2sfsa) THEN 

 

            DO k1=1,2 

              DO i=-3,3 

                syad = i*y_L 

                rsy  = sy(k1,k) + syad 

                DO j=-4,4 

                  sxad = j*x_L 

                  rsx  = sx(k1,k) + sxad 

                  Xij  = xshfto - rsx 

                  Yij  = yshfto - rsy 

                  xij2 = Xij*Xij 
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                  yij2 = Yij*Yij 

                  rxy2 = xij2 + yij2 

                  rij2 = rxy2 + zij2 

                  IF (rij2.le.rcut2sfsa) then 

                    rij  = dsqrt(rij2) 

                    rho2 = sig2sfsa/rij2 

                    rho6 = rho2*rho2*rho2 

                    rho12= rho6*rho6 

                   Fij = eps24sfsa*((2.0d0*rho12-rho6)-fcsfsa*rij)/rij2 

                    potsfsa = potsfsa+((rho12-rho6)-vcsfsa+fcvsfsa*rij) 

                    fzsf   = fzsf + Fij*abs(zij) 

                    ppsfsa = ppsfsa + Fij*rxy2 

                    fxxu   = fxxu + Fij*Xij 

                    dis    = zorig - (hz0/2.0) 

                    pzsfsa = pzsfsa + Fij*zij*dis 

                  ENDIF 

 

                  Xij = xshftp - rsx 

                  Yij = yshftp - rsy 

                  Zij = zpred - rsnew(k) 

                  rxy2 = Xij*Xij + Yij*Yij 

                  zij2 = Zij*Zij 

                  rij2 = rxy2 + zij2 

                  IF (rij2.le.rcut2sfsa) then 

                    rxy4 = rxy2*rxy2 

                    rij4 = rij2*rij2 

                    rho2 = sig2sfsa/rij2 

                    rho6 = rho2*rho2*rho2 

                    rho12= rho6*rho6 

                    rij  = dsqrt(rij2) 

                   Fij = eps24sfsa*((2.0d0*rho12-rho6)/rij2-fcsfsa/rij) 

                    xwf_r4 = epssfsa*(-672.0d0*rho12+192.0d0*rho6 

     &                  +24.0d0*rij*fcsfsa)/rij4!! added truncated term 

                    rxys  = Xij*xpred+Yij*ypred 

                    ptemp = ptemp+Fij*rxy2 

                    deno  = deno+rxy2*rxys*xwf_r4ws+2.0*Fij*rxys 

 

                    fxlj = Fij*(Xij) !! Fij=(-dv/dr)/r 

                    fylj = Fij*(Yij) 

                    fzlj = Fij*(Zij) 

                    aclx = aclx + fxlj 

                    acly = acly + fylj 

                    aclz = aclz + fzlj 

                  ENDIF 

 

                enddo  ! do nx 

              enddo    ! do ny 

            enddo      ! do k1 

 

          endif 

        enddo !!k 

 

        ax(m) = aclx/sfam 

        ay(m) = acly/sfam 

        az(m) = aclz/sfam 

 

      ENDDO 
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C     __________________________________ 

C 

C     INTERACTIONS BASED ON NANOPARTICLE 

C     __________________________________ 

  

      DO jj=1,nbfmol 

        m = jj+nsfmol 

 

        xorig = xold(m) 

        yorig = yold(m) 

        zorig = zold(m) 

         

        xpred = x0(m) 

        ypred = y0(m) 

        zpred = z0(m) 

        aclx  = ax(m) 

        acly  = ay(m) 

        aclz  = az(m) 

C       ___________________________________________ 

C       

C       nanoparticle-nanoparticle pair interactions 

C       ___________________________________________ 

  

        ibegbb = inblbb(jj) 

        iendbb = inblbb(jj+1)-1 

 

        DO ilist=ibegbb,iendbb  

          k=inblstbb(ilist)  

C         ------------------------------------------- 

C         Use old coordinates to calculate properties 

C         ------------------------------------------- 

          Xij  = xorig - xold(k)  !! old positions 

          Yij  = yorig - yold(k) 

          Zij  = zorig - zold(k) 

          xpbc = -bLxold*dnint(Xij/bLxold) 

          ypbc = -bLyold*dnint(Yij/bLyold) 

          Xij  = Xij+xpbc 

          Yij  = Yij+ypbc 

          xij2 = Xij*Xij 

          yij2 = Yij*Yij 

          rxy2 = xij2 + yij2 

          zij2 = Zij*Zij 

          rij2 = rxy2 + zij2  

          IF (rij2.le.rcut2bfbf) then 

            rho2  = sig2bfbf/rij2 

            rho6  = rho2*rho2*rho2 

            rho12 = rho6*rho6 

            rij   = dsqrt(rij2) 

            Fij   = eps24bfbf*((2.0d0*rho12-rho6)/rij2 -fcbfbf/rij) 

 

            ppbfbf = ppbfbf + Fij*rxy2 

            pzbfbf = pzbfbf + Fij*zij2 

 

            potbfbf = potbfbf+(rho12-rho6)-vcbfbf+fcvbfbf*rij 

          ENDIF 
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C         ------------------------------------------------ 

C         Use predicted coordinates to estimate properties 

C         ------------------------------------------------ 

          x0ij  = xpred - x0(k)  !! predicted positions for calculating 

          y0ij  = ypred - y0(k)  !! accelerations and coefficients 

          z0ij  = zpred - z0(k) 

          x0ij  = x0ij-bLx0*dnint(x0ij/bLx0) 

          y0ij  = y0ij-bLy0*dnint(y0ij/bLy0) 

          r0xy2 = x0ij*x0ij + y0ij*y0ij 

          z0ij2 = z0ij*z0ij 

          r0ij2 = r0xy2 + z0ij2 

          IF (r0ij2.le.rcut2bfbf) then 

     r0ij4 = r0ij2*r0ij2 

     r0xy4 = r0xy2*r0xy2 

            rho2  = sig2bfbf/r0ij2 

            rho6  = rho2*rho2*rho2 

            rho12 = rho6*rho6 

            r0ij  = dsqrt(r0ij2) 

            F0ij  = eps24bfbf*((2.0d0*rho12-rho6)-fcbfbf*r0ij)/r0ij2 

            x0ff_r4=epsbfbf*(-672.0d0*rho12+192.0d0*rho6 

     &              +24.0d0*r0ij*fcbfbf)/r0ij4  !! added truncated term 

    

            ptemp = ptemp+F0ij*r0xy2 

            deno  = deno+r0xy4*x0ff_r4+2.0*F0ij*r0xy2 

 

            fx0lj = F0ij*(X0ij) !! Fij=(-dv/dr)/r 

            fy0lj = F0ij*(Y0ij) 

            fz0lj = F0ij*(Z0ij) 

            aclx  = aclx + fx0lj 

            acly  = acly + fy0lj 

            aclz  = aclz + fz0lj 

            ax(k) = ax(k) - fx0lj 

            ay(k) = ay(k) - fy0lj 

            az(k) = az(k) - fz0lj 

   ENDIF 

 

        ENDDO 

C       ______________________________________ 

C        

C       nanoparticle-surface pair interactions 

C       ______________________________________ 

 

C       -------------------------- 

C       stationary (lower) surface 

C       -------------------------- 

        nyo    = dnint(yorig/y_L) 

        yshfto = yorig - nyo*y_L 

        nyp    = dnint(ypred/y_L) 

        yshftp = ypred - nyp*y_L 

 

        nxo    = dnint(xorig/x_L) 

        xshfto = xorig - nxo*x_L 

        nxp    = dnint(xpred/x_L) 

        xshftp = xpred - nxp*x_L 

        DO k=1,layers 

          zij  = zorig - rsold(k) 

          zij2 = zij*zij 
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          IF (zij2.le.rcut2bfsa) THEN 

 

            DO k1=1,2 

              DO i=-4,4 

                syad = i*y_L 

                rsy  = sy(k1,k) + syad 

                DO j=-6,6 

                  sxad = j*x_L 

                  rsx  = sx(k1,k) + sxad 

                  Xij  = xshfto - rsx 

                  Yij  = yshfto - rsy 

                  xij2 = Xij*Xij 

                  yij2 = Yij*Yij 

                  rxy2 = xij2 + yij2 

                  rij2 = rxy2 + zij2 

                  IF (rij2.le.rcut2bfsa) then 

                    rij  = dsqrt(rij2)  

                    rho2 = sig2bfsa/rij2 

                    rho6 = rho2*rho2*rho2 

                    rho12= rho6*rho6 

                   Fij = eps24bfsa*((2.0d0*rho12-rho6)-fcbfsa*rij)/rij2 

 

                    potbfsa = potbfsa+((rho12-rho6)-vcbfsa+fcvbfsa*rij) 

                    fzbf = fzbf + Fij*abs(zij) 

                    ppbfsa = ppbfsa + Fij*rxy2 

                    fxxd   = fxxd   + Fij*Xij 

                    dis    = zorig  +(hz0/2.0) 

                    pzbfsa = pzbfsa + Fij*zij*dis 

                  ENDIF 

                     

                  Xij = xshftp - rsx 

                  Yij = yshftp - rsy 

                  Zij = zpred  - rsnew(k) 

                  rxy2 = Xij*Xij + Yij*Yij 

                  zij2 = Zij*Zij 

                  rij2 = rxy2 + zij2 

                  IF (rij2.le.rcut2bfsa) then                

                    rxy4 = rxy2*rxy2 

                    rij4 = rij2*rij2 

                    rho2 = sig2bfsa/rij2 

                    rho6 = rho2*rho2*rho2 

                    rho12= rho6*rho6 

                    rij  = dsqrt(rij2)  

                   Fij = eps24bfsa*((2.0d0*rho12-rho6)/rij2-fcbfsa/rij) 

                    xwf_r4 = epsbfsa*(-672.0d0*rho12+192.0d0*rho6 

     &                +24.0d0*rij*fcbfsa)/rij4  !! added truncated term 

                    rxys  = Xij*xpred+Yij*ypred 

                    ptemp = ptemp+Fij*rxy2 

                    deno  = deno+rxy2*rxys*xwf_r4+2.0*Fij*rxys 

 

                    fxlj = Fij*(Xij) !! Fij=(-dv/dr)/r 

                    fylj = Fij*(Yij) 

                    fzlj = Fij*(Zij) 

                    aclx = aclx + fxlj 

                    acly = acly + fylj 

                    aclz = aclz + fzlj 

                  ENDIF 
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                enddo  ! do nx 

              enddo    ! do ny 

            enddo      ! do k1 

 

          endif  

 enddo !!kk 

 

C       ------------------------------- 

C       moving/shearing (upper) surface 

C       ------------------------------- 

        xshfto = xorig - dxtot 

        nxo    = dnint(xshfto/x_L) 

        xshfto = xshfto - nxo*x_L 

        xshftp = xpred - dxtot 

        nxp    = dnint(xshftp/x_L) 

        xshftp = xshftp - nxp*x_L 

        DO k=layers+1,2*layers !moving 

          zij  = zorig - rsold(k) 

          zij2 = zij*zij 

          IF (zij2.le.rcut2bfsa) THEN 

 

            DO k1=1,2 

              DO i=-4,4 

                syad = i*y_L 

                rsy  = sy(k1,k) + syad 

                DO j=-6,6 

                  sxad = j*x_L 

                  rsx  = sx(k1,k) + sxad 

                  Xij  = xshfto - rsx 

                  Yij  = yshfto - rsy 

                  xij2 = Xij*Xij 

                  yij2 = Yij*Yij 

                  rxy2 = xij2 + yij2 

                  rij2 = rxy2 + zij2 

                  IF (rij2.le.rcut2bfsa) then 

                    rij  = dsqrt(rij2) 

                    rho2 = sig2bfsa/rij2 

                    rho6 = rho2*rho2*rho2 

                    rho12= rho6*rho6 

                   Fij = eps24bfsa*((2.0d0*rho12-rho6)-fcbfsa*rij)/rij2 

                    potbfsa = potbfsa+((rho12-rho6)-vcbfsa+fcvbfsa*rij) 

                    fzbf = fzbf + Fij*abs(zij) 

                    ppbfsa = ppbfsa + Fij*rxy2 

                    fxxu   = fxxu + Fij*Xij 

                    dis    = zorig - (hz0/2.0) 

                    pzbfsa = pzbfsa + Fij*zij*dis 

                  ENDIF 

 

                  Xij = xshftp - rsx 

                  Yij = yshftp - rsy 

                  Zij = zpred  - rsnew(k) 

                  rxy2 = Xij*Xij + Yij*Yij 

                  zij2 = Zij*Zij 

                  rij2 = rxy2 + zij2 

                  IF (rij2.le.rcut2bfsa) then 

                    rxy4 = rxy2*rxy2 
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                    rij4 = rij2*rij2 

                    rho2 = sig2bfsa/rij2 

                    rho6 = rho2*rho2*rho2 

                    rho12= rho6*rho6 

                    rij  = dsqrt(rij2) 

                   Fij = eps24bfsa*((2.0d0*rho12-rho6)/rij2-fcbfsa/rij) 

 

                    xwf_r4 = epsbfsa*(-672.0d0*rho12+192.0d0*rho6 

     &                +24.0d0*rij*fcbfsa)/rij4  !! added truncated term 

                    rxys  = Xij*xpred+Yij*ypred 

                    ptemp = ptemp+Fij*rxy2 

                    deno  = deno+rxy2*rxys*xwf_r4+2.0*Fij*rxys 

 

                    fxlj = Fij*(Xij) !! Fij=(-dv/dr)/r 

                    fylj = Fij*(Yij) 

                    fzlj = Fij*(Zij) 

                    aclx = aclx + fxlj 

                    acly = acly + fylj 

                    aclz = aclz + fzlj 

                  ENDIF 

 

                enddo  ! do nx 

              enddo    ! do ny 

            enddo      ! do k1 

 

          endif 

 

        enddo !!k 

 

        ax(m) = aclx/bfam 

        ay(m) = acly/bfam 

        az(m) = aclz/bfam 

 

      ENDDO 

 

      pxy   = ppsfsf + ppsfbf + ppbfbf + ppsfsa + ppbfsa 

      pz    = pzsfsf + pzsfbf + pzbfbf + pzsfsa + pzbfsa 

      potff = eps4sfsf*potsfsf+eps4sfbf*potsfbf+eps4bfbf*potbfbf 

      potfs = eps4sfsa*potsfsa+eps4bfsa*potbfsa 

 

      skzc = skzc/nsfmol 

      skzs = skzs/nsfmol 

      skz  = dsqrt(skzc*skzc+skzs*skzs) 

 

      RETURN 

      END 
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      PARAMETER (layers=8)             ! no. of layers per surface 

      PARAMETER (nbfmol=5)             ! no. of nanoparticles 

      PARAMETER (nadmol=1600)          ! total no. of particles 

      PARAMETER (nsfmol=nadmol-nbfmol)  

      PARAMETER (nnblss=nsfmol*150) 

      PARAMETER (nnblsb=nsfmol*10) 

      PARAMETER (nnblbb=nbfmol*6+200) 

      PARAMETER (tset=300)             ! system temperature in K 

      PARAMETER (ppara=1.00)           ! parallel pressure in atm. 

      PARAMETER (unorm=0.00)           ! compressing velocity m/s 

      PARAMETER (upara=0.00)           ! shearing velocity m/s 

      PARAMETER (nsimut=400000)        ! total no. of time steps 

      PARAMETER (R=8.314d0)            ! gas constant in SI unit 

      PARAMETER (iseed=45)             ! seed number 

      PARAMETER (nbin=99)              ! no. of bins 

      PARAMETER (iprint=1000) 

      PARAMETER (isave=25) 

      PARAMETER (kmax=nsimut/isave) 

      PARAMETER (itau=4095) 

 

      COMMON /systemvar/h,temp,al,x_L,y_L,z_L,boxx,boxy,pi, 

     &       scon,sconold,bLx0,bLy0,hz0,dhz0,hz,hz0old,xk,yk,zk, 

     &       sk,skdb,skz,bLxold,bLyold,sk1,sfam,bfam,drneig, 

     &       pconv,uconv,pset,deltx,deltz,dxtot 

 

      COMMON /intvar/nstp,ncnt1(0:itau) 

 

      COMMON /potenvar/epsi,sigma,unitm,epssfsf,eps4sfsf,eps24sfsf, 

     &       sigsfsf,sig2sfsf,rcut2sfsf,rnbl2sfsf,vcsfsf,fcsfsf, 

     &       fcvsfsf,epssfbf,eps4sfbf,eps24sfbf,sigsfbf,sig2sfbf, 

     &       rcut2sfbf,rnbl2sfbf,vcsfbf,fcsfbf,fcvsfbf,epssfsa, 

     &       eps4sfsa,eps24sfsa,sigsfsa,sig2sfsa,rcut2sfsa,rnbl2sfsa, 

     &       vcsfsa,fcsfsa,fcvsfsa,epsbfbf,eps4bfbf,eps24bfbf, 

     &       sigbfbf,sig2bfbf,rcut2bfbf,rnbl2bfbf,vcbfbf,fcbfbf, 

     &       fcvbfbf,epsbfsa,eps4bfsa,eps24bfsa,sigbfsa,sig2bfsa, 

     &       rcut2bfsa,rnbl2bfsa,vcbfsa,fcbfsa,fcvbfsa 

 

      COMMON /gearvar/h0,hold,ptemp,beta,coetop,coebot,deno 

 

      COMMON /particle/x0(nadmol),y0(nadmol),z0(nadmol), 

     &       xold(nadmol),yold(nadmol),zold(nadmol), 

     &       vx0(nadmol),vy0(nadmol),vz0(nadmol), 

     &       ax(nadmol),ay(nadmol),az(nadmol) 

 

      COMMON /surf/rsold(2*layers),rsnew(2*layers), 

     &       sx(2,2*layers),sy(2,2*layers) 

 

      COMMON /adadneig/inblss(nsfmol+1),inblstss(nnblss), 

     &       inblsb(nsfmol+1),inblstsb(nnblsb), 

     &       inblbb(nbfmol+1),inblstbb(nnblbb) 

 

      COMMON /property/ppsfsf,ppsfbf,ppbfbf,ppsfsa,ppbfsa,pzsfsf, 

     &       pzsfbf,pzbfbf,pzsfsa,pzbfsa,pxy,pz,fzsf,fzbf,fxxu,fxxd, 

     &       potff,potfs,potsfsf,potsfbf,potbfbf,potsfsa,potbfsa 

 

      COMMON /transport/drsf(0:itau),drbf(0:itau),rm2(2,nadmol,itau), 

     &       dr(0:itau) 
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