
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Fall 2008

A coarse-grain molecular dynamics study of the nanotribological A coarse-grain molecular dynamics study of the nanotribological

properties of nanoparticle solutions properties of nanoparticle solutions

Ramesh Chembeti

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Chemical Engineering Commons

Department: Department:

Recommended Citation Recommended Citation
Chembeti, Ramesh, "A coarse-grain molecular dynamics study of the nanotribological properties of
nanoparticle solutions" (2008). Masters Theses. 4629.
https://scholarsmine.mst.edu/masters_theses/4629

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4629&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/240?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4629&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/4629?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4629&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

ii

A COARSE-GRAIN MOLECULAR DYNAMICS STUDY

OF

THE NANOTRIBOLOGICAL PROPERTIES OF NANOPARTICLE SOLUTIONS

by

RAMESH CHEMBETI

A THESIS

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN CHEMICAL ENGINEERING

2008

Approved by

Dr. Jee-Ching Wang, Advisor

Dr. Parthasakha Neogi

Dr. Louis Ge

iii

 2008

RAMESH CHEMBETI

All Rights Reserved

iv

ABSTRACT

In this study, solutions of alkanethiol-capped nanoparticles in alkane are

examined using molecular dynamics simulations for their nanotribological potential

based on the hypothesis that fluid molecules of very different sizes may interrupt each

other’s layering tendency to result in less layered or non-layered configurations and

provide better lubrication for nanodevices. An effective nanoparticle-nanoparticle pair

potential based on previous atomistic approach is used and the temperature and parallel

pressure are controlled in place of chemical potential for defining thermodynamic state.

When compressed, the confined nanoparticle-containing alkane films generate reduced

oscillations in perpendicular forces and smoother expansion in lateral dimensions,

indicating lesser extent of layering due to the presence of much bigger nanoparticles.

The nanoparticles are found to be well dispersed by the alkane solvent throughout all

separations, meaning no or little tendency to form clusters or aggregate towards the

confining surfaces, which is important for the stability and quality of the nanoparticle

solutions as nanotribological lubricant. When sheared by a sliding surface, the confined

fluids tend to move in the same parallel direction so that their density profiles remain

practically unchanged. The shear stress resulting from the sliding surface has been

calculated and found to increase with faster sliding speed but not proportionally. More

importantly, the presence of the nanoparticles in the lubricant films reduces the shear

stress noticeably and thereby reducing the apparent viscosity and frictional force. This

effect is particularly evident under relatively large sliding speed and large surface

separations. Regarding mobility, the nanoparticles exhibit lower diffusivity in

nanoconfinement than typical fluids and their diffusivity can be enhanced by shearing.

v

ACKNOWLEDGMENTS

I would like to express my sincere gratitude to my advisor Dr. Jee-Ching Wang

for being very patient and helpful throughout the course of my thesis. I would like to

thank Dr. Parthasakha Neogi and Dr. Louis Ge for spending their valuable time as

committee members. Financial support from Missouri Research Board and National

Science Foundation is greatly acknowledged. My heartfelt thanks to my parents, my

sister and all my friends for being there for me all the time.

.

vi

TABLE OF CONTENTS

 Page

ABSTRACT ... iii

ACKNOWLEDGMENTS ... iv

LIST OF ILLUSTRATIONS ... vi

LIST OF TABLES ... vii

SECTION

1. INTRODUCTION ...1

1.1. NANOTRIBOLOGY ...1

1.2. NANOCONFINED FLUIDS..2

1.3. SOLUTIONS OF ALKANETHIOL-CAPPED NANOPARTICLES IN

ALKANE ..5

1.4. PROPOSED RESEARCH METHODOLOGY ...7

2. SIMULATION METHODOLOGY ...9

2.1. MOLECULAR DYNAMICS COMPUTER SIMULATION TECHNIQUE9

2.2. SIMULATION APPROACH AND MODELS ... 10

2.3. SIMULATION DETAILS .. 16

3. RESULTS AND DISCUSSIONS .. 18

3.1. PC-BASED MOLECULAR SIMULATIONS …………… ………………….18

3.2. CONTINUOUS COMPRESSION …………………… 20

3.3. NANOCONFINED NANOPARTICLE SOLUTIONS UNDER SHEAR…....23

3.4. CONCLUSIONS………………………………………………30

APPENDIX……………………………………………………………………………

....32

BIBLIOGRAPHY ... 68

VITA………….. ... 72

vii

LIST OF ILLUSTRATIONS

Figure Page

1.1. Schematics of (a) a nanoconfined fluid, surface force, fs, and frictional

force, ff, (b) solvation/surface force profiles for confined fluids with

layered or non-layered configurations, and (c) stick-slip motion of

confined fluids with layered configurations ...4

1.2. Ball model and a coarse-grained representation of an alkanethiol-capped

nanoparticle ..7

2.1. Ball models of (a) silicon diamond structure, (b) a side view of the Si(111)

surface, (c) a top-down view of the Si(111) surface with depth fading

indicated by different colors, and (d) a top-down view of the Si(111)

surface with pink balls and the rectangle showing one surface unit cell. a1

and a2 are the dimensions of a surface unit cell and equal to 3.84 Å and

6.65 Å, respectively .. 12

3.1. Instantaneous (a) parallel pressure, (b) lateral dimension, and (c)

perpendicular pressure as a function surface separation during continuous

compression .. 19

3.2. Instantaneous (a) lateral dimension and (b) perpendicular pressure as a

function surface separation during continuous compression for different

solutions.. 20

3.3. (a) Side and top-down views of the nanoconfined cyclohexane (green

beads) solution containing 10 nanoparticles (red beads) at h = 31.25 Å, (b)

side view of confined cyclohexane at h = 31.25 Å, and (c) side and top-

down views of the nanoconfined cyclohexane solution containing 10

nanoparticles at h = 93.75 Å ... 22

3.4. Profiles of cyclohexane number density where (a)~(c) at h = 93.75 Å,

(d)~(f) at h = 56.25, and (h)~(j) at h = 31.25 Å; and (a), (d), (h): 0

nanoparticle, (b), (e), (i): 5 nanoparticles, and (c), (f), (j): 10 nanoparticles............. 24

3.5. Shear stress on the confined fluid having 10 nanoparticles at h = 56.25 Å

caused by different sliding speeds ... 26

3.6. A plot of mean square displacement where the fitted dashed line is used to

determine the diffusivity ... 28

viii

 LIST OF TABLES

Table Page

2.1 Lennard-Jones 12-6 potential parameters ………………………….…….………….11

3.1 Apparent shear viscosity of nanoparticle-cyclohexane solutions under different

surface separation and sliding speeds ………………………………………………26

3.2 Diffusion coefficients ……………………………………………………………….29

 1. INTRODUCTION

1.1 NANOTRIBOLOGY

A nanometer (nm) is 10
-9

 of a meter and equivalent to 10 angstrom (Å). It is roughly

4-5 times the size of a typical atom. Recently a scientific and technological revolution

has begun to systematically study, manipulate, and devise matter on the nanometer length

scale. The terms “nanoscience” and “nanotechnology” have generally been used to

represent such efforts. As nicely explained by Eric Drexler in his book “Engines of

Creation” [1] and by Richard Feynman in his lecture “There’s plenty of room at the

bottom” [2], atoms are the root cause for everything and the ability to deal with

individual atoms and molecules is the basis for nanotechnology. While nanoscale devices

based on moving atomic/molecular components have the potential to drastically alter and

improve technologies for energy transfer, data storage, drug delivery, computing,

chemical manufacture, and so on, they can unfortunately be very vulnerable to friction

and wear due to their extremely small sizes. From a fundamental point of view, friction

originates from atomic interactions/forces between moving parts, which resist the motion

and jiggle the atoms to generate heat and cause structural deformation (wear). While

friction and wear may be as simple an issue as added material and energy costs to

conventional macroscale devices and structures, they could turn envisioned

nanotechnologies into unrealizable dreams or substantially reduce the working life of

nanodevices and nanostructures because the resultant stress per unit volume can be too

much to bear. Nanoelectromechanical systems (NEMS) and microelectromechanical

systems (MEMS) are good examples.

2

The term “tribology” is derived from the Greek words “tribo” meaning rubbing and

“logy” meaning knowledge. Its original application by the Greeks was to understand the

motion of large stones sliding across the earth's surface. Today tribology has grown into a

field that deals with all issues involving friction, wear, and lubrication. Lubricants are

substances interposed between two surfaces in relative motion for the purpose of

reducing the friction and/or the wear between them. In decreasing order of lubricant film

thickness, lubrication has traditionally been divided into three regimes [3]: hydrodynamic

or bulk, mixed or intermediate, and boundary. The past few decades have seen increasing

miniaturization of device components, the advent of modern surface proximity probes,

and extension of boundary lubrication into nanometer scales. All these developments are

pertinent to the chemical and mechanical stability of the moving nanostructures and have

inspired the birth of a new field, namely nanotribology [4] or molecular tribology.

1.2 NANOCONFINED FLUIDS

It is easy to see that in nanotribology the lubricant films are confined to highly

restricted geometries whose dimensions are nanoscale and comparable to a few molecular

diameters. It should not be difficult to perceive that such molecularly thin films could

have drastically different behavior than the same materials in the unconstrained bulk

phase. Recent experimental studies using surface force apparatus (SFA) [5-9], atomic

force microscopy (AFM) [10-12], friction force microscopy (FFM) [13,14], and quartz

crystal microbalance (QCM) [15-17] have confirmed the significant effects of the

confining surfaces on the properties of nanoscopically confined fluid films and further

suggested that nanoscale confinement can induce fluid molecules to form layered

3

configurations, causing nanoconfined fluids to have very different properties than those

of bulk fluids, where molecules possess no preferred orientation. Explicit evidences at

the molecular level have come from computer molecular simulation studies using Monte

Carlo (MC) [18-23] and molecular dynamics (MD) [24-30] techniques. Other theoretical

approaches such as density functional theory [31,32] and integral equation theory [33,34]

have also been extended to analyze nanoconfined fluids and confirm the formation of

fluid layers under confinement.

It has now been well established that when the separation/spacing between the

confining surfaces is larger than about 10 molecular diameters, confined fluids behave

much the same as bulk fluids in many aspects. As the separation decreases, molecular

orientation and fluid configuration undergo changes and, more interestingly and

importantly, the isotropy between the perpendicular and parallel directions breaks down.

From thermodynamic point of view, such configurational changes are entropy changes,

which, according to (∂S/∂V)U,N = P/T, cause the pressure of a nanoconfined fluid to not

only change but also become different in the perpendicular and parallel directions. The

difference between the perpendicular pressure (P) and parallel pressure (||P) has been

measured as solvation force (sf) by the surface force apparatus (SFA) [5-9], where the

confined fluid is open to the bulk reservoir under isothermal-isobaric condition and the

parallel pressure as a result is taken to be the same as the bulk pressure. Interestingly,

when symmetric molecules are confined under a constant bulk/parallel pressure,

solvation/surface force oscillates as a function of surface separation with a periodicity

that is equivalent to the mean molecular diameter [cf. Fig. 1(b)]. This behavior is not in

accord with the expectations from conventional continuum theories such as lubrication

4

theory [35,36] and DLVO theory [37,38], but signifies the importance of the discrete

excluded volume of the fluid molecules at small separations. Specifically, nanoscale

confinement and exclude volume can work together to pack symmetric fluid molecules

into layers parallel to the confining surfaces and one oscillation in the surface/solvation

force corresponds to an increase or decrease of one molecular layer in the confined fluid

film. As the surface separation becomes smaller, the layering phenomenon and the force

oscillation become stronger.

Figure 1.1. Schematics of (a) a nanoconfined fluid, surface force, fs, and frictional force,

ff, (b) solvation/surface force profiles for confined fluids with layered or non-layered

configurations, and (c) stick-slip motion of confined fluids with layered configurations.

Linear alkanes

Branched alkanes

Surface separation

S
ol

va
tio

n
fo

rc
e

Layered
configurations

Non-layered
configurations

spacing

p
er

p
en

d
ic

u
la

r
su

rf
ac

e
fo

rc
e

la
te

ra
l

 f
ri

ct
io

n
al

 f
o

rc
e

la
te

ra
l

 d
is

p
la

ce
m

en
t

time

Linear alkanes

Branched alkanes

Surface separation

S
ol

va
tio

n
fo

rc
e

Layered
configurations

Non-layered
configurations

spacing

p
er

p
en

d
ic

u
la

r
su

rf
ac

e
fo

rc
e

Linear alkanes

Branched alkanes

Surface separation

S
ol

va
tio

n
fo

rc
e

Layered
configurations

Non-layered
configurations

spacing

p
er

p
en

d
ic

u
la

r
su

rf
ac

e
fo

rc
e

la
te

ra
l

 f
ri

ct
io

n
al

 f
o

rc
e

la
te

ra
l

 d
is

p
la

ce
m

en
t

time

la
te

ra
l

 f
ri

ct
io

n
al

 f
o

rc
e

la
te

ra
l

 d
is

p
la

ce
m

en
t

time

fs = (P – P||)
ff

fs = (P – P||)fs = (P – P||)
ff

DLVO interaction

(b)

(a)

(c)

5

In relation to nanotribology, when a strongly layered confined fluid is sheared,

instead of lubricated smooth motion, it exhibits yield stress, stick-slip motion [cf. Fig.

1(c)], and apparent shear viscosity that could be orders of magnitude higher than bulk

values [39,40]. It should be emphasized that the stick-slip motion is not caused by

surface asperities as would be explained by the traditional “rough surface” model. These

solid-like responses reflect the solid-like nature of the layered configurations, which

could be linked to the peaked, repulsive surface forces [cp. Fig. 1(a)]. It is important to

emphasize here that the layered configurations of nanoconfined lubricant films can cause

undesirably large friction and wear and consequently significant material and energy

costs. On the other hand, between two peaked surface forces and during the slip phase,

nanoconfined fluids undergo configurational changes to become less layered, thereby

exhibiting lubricated smooth motion and reduced friction and wear.

1.3 SOLUTIONS OF ALKANETHIOL-CAPPED NANOPARTICLES IN ALKANE

The above observations and discussion suggest that more desirable nanotribological

properties can be obtained from lubricants that would be more resistant to being layered

in nanoconfinement. One source of such resistance can come from structural asymmetry.

Indeed, branched alkanes have been shown to exhibit reduced or even no oscillation in

their solvation/surface forces measured by SFA [6,23], which is understood to be because

of the side branches that disrupt the formation of layered configurations. More generally,

it can be reasoned that the proper lubricants for nanotribology should be those that have

strong intrinsic means to resist the layering tendency under nanoconfinement. This

research considers one such possibility, namely the hypothesis that molecules of

6

sufficiently different sizes, when mixed together, could disrupt each other’s layering

tendency in nanoconfined space to result in less layered or even non-layered

configurations to satisfy nanotribological needs. One necessary condition worth

mentioning is that there should be good solubility between the molecules in order to not

have phase separation in nanoconfinement. In this research work, we propose to examine

the solution of alkanethiol-capped nanoparticles in alkane.

 Liquid alkanes (CnH2n+2) are oils and very commonly used lubricants. They were

also one of the first nanoconfined systems to be studied by SFA, but the results suggested

that liquid alkanes alone may not be good lubricants for moving nanodevices and

nanostructures. Here we hypothesize that their nanotribological properties could be

improved by adding alkanethiol (CnH2n+1SH)-capped nanoparticles whose sizes are

several times larger than alkane molecules. These nanoparticles represent a recent

breakthrough and have been touted as one the most important ingredients for

nanotechnologies [41-43]. As depicted in Figure 2, they are charge-neutral composites

with an inorganic crystalline core capped in a dense shell of alkanethiol molecules. The

capping molecules have been called surfactants because they have a polar head group

(e.g. S) that strongly bonds to the core and nonpolar alkyl chains that disperse the

nanoparticles in nonpolar alkane solutions. Today, it has become virtually a routine to

synthesize such nanoparticles. As mentioned earlier, the good solubility and the

significant size mismatch could impede the formation of layered configurations, thereby

making the solutions of alkanethiol-capped nanoparticles in alkane promising viable

lubricants for nano- and micro-scale systems.

7

Figure 1.2. Ball model and a coarse-grained representation of an alkanethiol-capped

nanoparticle.

1.4 PROPOSED RESEARCH METHODOLOGY

Despite fast progress, modern experimental techniques still have limited resolutions

and difficulties in accessing the physics of confined complex fluids at the nanoscale to

evaluate their nanotribological potential. Theoretical studies of nanoconfined fluids using

density functional theory [31,32], integral equation theory [33,34], Enskog theory

[44],

and functional perturbation theory [45] have advanced our understanding, but their

current status is still limited to simple atomic or highly idealized fluids. For complex

nanoconfined fluid systems, computer molecular simulation has become a major and

sometimes preferred research method [13-30]. In this project, MD simulation technique

[46, 47] is adopted for its better handling of dynamic properties and complex simulation

models. A number of important variables are investigated including nanoparticle

loading, surface separation, and shear rate. For computational efficiency and as a first

 Nanocrystal core

alkanethiol

surfacta

nts

 Coarse-grained

spherical particle

8

attempt, coarse grained simulation models are considered. Details of the employed

methodology are provided in the next section.

It is worth noting that the future of scientific computing and molecular simulation

has shifted from expensive supercomputers to PC-based systems for their superior

performance/cost ratio, much increased speed and stability, and excellent expandability.

This trend is moving fast in both academia and industries. As an added value, this project

runs the same simulation codes on both PC and more conventional IBM workstation in

order to make comparison and pave the way for future work.

.

9

2. SIMULATION METHODOLOGY

2.1 MOLECULAR DYNAMICS COMPUTER SIMULATION TECHNIQUE

Molecular dynamics (MD) simulation is a technique for computing equilibrium and

transport properties for classical many-body systems. The word classical means that the

motion of the constituent particles (e.g. atoms or pseudo-atoms) obeys the laws of

classical mechanics (e.g. , i i i ir v r a ). This is a reasonable and often excellent

approximation for a wide range of systems and properties. In this context, every

phenomenon and every property can be traced back to the coordinates and momenta of

the constituent particles. The essence of the MD method is to numerically integrate the

equation of motion of classical mechanics for every particle in the model system and the

direct simulation results are the coordinates and momenta of all moving particles at

different time instants. This is equivalent to generating many microstates in the same

ensemble (controlled macroscopic conditions) and permits the use of statistical

mechanically derived equations to complete property calculation. In general, MD can be

applied to identify molecular origins, test hypotheses, estimate missing or unreliable data,

and characterize the relative importance of different parameters and variables. MD thus

bridges between and complements both theoretical and experimental approaches. It is of

particular value for systems that are too complicated to be studied by first principles or

too difficult to experimental studies.

In general, the equation of motion of classical mechanics for a specific particle i can

be expressed as a second-order differential equation,

 i i i imr f g , (2.1)

10

where mi and ir are the mass and acceleration of the particle i. fi and gi denote the total

force on particle i from other particles and the extra force(s) due to external constraint(s)

imposed on the system. Equivalently, Eq. (2.1) can be converted into two first-order

differential equations,

1
 (2.2)

1

 (2.3)

r
r i i i i

i i i i i i

p
pi i i i

i i i i

i

m m

m

r v g r
r p g r

p f g p
v a g p




 

Here
r
ig and

p
ig are the corresponding constraint forces acting on the coordinate (ir) and

momentum (ir). fi is derived from the total potential energy U(r) of the system,

 ()
ii Urf r , (2.4)

where U(r) is generally constructed by pair-wise additions of two types of contributions,

 U(r) =U inter(r) + U intra(r) , (2.5)

where U
inter

(r) is the sum over all interactions between atoms in different molecules and

U
intra

(r) is the sum over interactions between atoms within the same molecule. The

nanoconfined fluids considered in this project are consisted of Lennard-Jones (LJ)

particles whose U
intra

(r) = 0 and U
extra

(r) will be discussed in detail below.

2.2 SIMULATION APPROACH AND MODELS

In this project, we consider hexanethiol-capped gold nanoparticle (cf. Figure 1.2),

Au140(SC6H13)62, to be the model nanoparticle. This nanoparticle has recently been

11

simulated with atomistic models in our group [48] and its size and interaction

characteristics have been studied and formulated into a Lennard-Jones 12-6 potential

12 6

L-J 4U
r r

 , (2.6)

For computational consistency and efficiency, we also opted for an alkane as the solvent

that can be approximated as a spherical particle and has been modeled as a LJ particle.

Cyclohexane is chosen for this purpose and its LJ parameters are adopted from the

literature [49] and tabulated in Table 2.1 together with those for nanoparticles.

The main role of the confining surfaces is to create nanoscale confinement for

lubricant films. In principle, as long as the fluid molecules can be layered, the layering

phenomenon, surface force oscillations, and other relevant issues persist regardless of the

confining surfaces being structured or structure less [50-52] and having attractive or

repulsive interaction [52,53-55] with the confined fluid. Since a relatively large portion

of the envisioned nanotechnologies involve silicon (Si), this project considers the Si(111)

surface as the confining surfaces. Silicon has the diamond structure with a lattice

constant equal to 5.43 Å. Figure 2.1 shows the ball models of different views of silicon.

Table 2.1. Lennard-Jones 12-6 potential parameters.

Particles (J/mol) (Å)

Au140(SC6H13)62
 10827.08×R 29.000

Cyclohexane

 484.00×R 5.466

Si 202.45×R 3.826

12

Figure 2.1. Ball models of (a) silicon diamond structure, (b) a side view of the Si(111)

surface, (c) a top-down view of the Si(111) surface with depth fading indicated by

different colors, and (d) a top-down view of the Si(111) surface with pink balls and the

rectangle showing one surface unit cell. a1 and a2 are the dimensions of a surface unit

cell and equal to 3.84 Å and 6.65 Å, respectively.

To systematically simulate nanoconfined nanoparticle-alkane solutions under

different conditions while allowing meaningful comparison, the thermodynamic state of

the confined fluids should be defined and controlled in our simulation studies. Since the

confined fluids in SFA are open to and in equilibrium with the bulk reservoir,

temperature (T) and chemical potential () are thus the most natural thermodynamic

(a) (b)

(d)

a1

a2

(c)

a1

a2

13

variables for this purpose. However, evaluating and controlling chemical potential is

extremely difficult for MD simulations, especially when complex systems and conditions

are considered. Alternative approaches to overcome this difficulty have been developed

recently and termed the NAPT [56,57] and NhPT methods [30]. The essence of these two

methods is to constrain the temperature (T) and the pressure (or stress) parallel to the

confining surfaces (P||) to prespecified values to offer a virtual isothermal-isobaric

reservoir for confined fluids to reach equilibrium with. In classical statistical mechanics

and molecular simulation, T and P can be expressed as follows as function of particle

coordinates and momenta,

2
2 2

B

B1

1 1 3

2 2 2 3

N
i i

i

m
p mv k T T

m Nk

v
 , (2.7)

||

,

1

2
i i i ij ij is is

x y i i j i i s

P m
Ah

v v f r f r , (2.8)

1

2

z z z z z z

i i i ij ij is i

i i j i i s

h
P m

Ah
v v f r f r , (2.9)

where iv is the velocity of a fluid particle and fij, fis are the interaction forces between a

pair of particles separated by rij = ri rj and ris = ri rs. Here rs represents the coordinate

of a Si atom and -h/2 is for the upper confining substrate located at z = h/2 and +h/2 is for

the lower one at z = -h/2. Both methods are 2D extensions of the original 3D NPT

simulation method and constrain the total number of particles (N) and temperature (T).

However, P|| is controlled in the NhPT method [30] by adjusting the lateral dimensions

(i.e. surface area A) of the confined space and the lateral (x,y) coordinates of the fluid

14

particles, and in the NAPT method [56,57] by adjusting the separation (h) and the

perpendicular (z) coordinates of the fluid particles. It should be noted that these two

methods are equivalent to each other under the same conditions when time/ensemble

averaged properties are compared. In the project, the NhPT method is employed because

we are interested in studying the responses of confined nanoparticle-alkane solutions to

continuous compression at constant speeds.

Since the parallel pressure constraint is imposed in the x and y directions, the

equations of motion in the two lateral directions take on the NPT form [30,46,56,57],

λ λ λ

i i i i= /m + ,r p r p r , (2.10)

λ λ λ λ

i i i i= , ξ ,p f r p p r p p
|| , (2.11)

,λ λS = Sr p , (2.12)

where λS denotes the lateral dimensions of a simulation box and ,r p is a dilation

coefficient evaluated instantaneously to adjust λS or equivalently surface area A to

achieve constant P||. In the perpendicular z direction, the equations of motion assume the

NVT form,

z z

i i i= /mr p , (2.13)

z z z

i i i= ξ ,p f r p p . (2.14)

andξ , ξ ,r p r p|| are friction coefficients for temperature control and evaluated

instantaneously using the Nose-Hoover method [46,58]. Proper evaluation of is more

15

difficult and has been accomplished via the loose coupling method of Berendsen et al.

[46,59],

|| ||,set ||

2 P

P P

t
 , (2.15)

4

4

()1 1 2

4

() 2

ij

|| ij ij ij ij

i j i|| ij ij

is
is is is i

i s is is

X r dU
P

Ah r r dr

X r dU

r r dr

r r r r

r r r r

 , (2.16)

where tP is the so-called pressure coupling/relaxation time and set to be 250 t in this

project.

As usual, periodic boundary conditions are applied in the x and y directions to make

the simulation systems infinite in the lateral directions. To allow P|| to be controlled

instantaneously, the lateral dimensions and coordinates need to be adjusted differentially.

In this regard, varying the inter-row spacing between surface atoms or changing the

number of rows of surface atoms both have significant shortcomings because the former

undesirably alters the crystalline structure of the surfaces and the latter represents finite,

not differential, dimension changes. To resolve this difficulty, the periodic boundary

conditions are applied only to the confined fluids and the infinite confining surfaces are

constructed using a special approach. Specifically, based on the repetitive nature of the

crystalline structure possess, surface unit cells can be identified and replicated laterally to

form an infinite surface. The smallest unit cell for this purpose is shown in Figure 2.1,

where each layer of the Si(111) surface is represented by two Si atoms. Each fluid

16

particle can now be attributed to a particular surface unit cell characterized by (,)n m1 2a a ,

where n, m are integers and a1, a2 are the 2D vectors defining the shape and lateral

dimensions of a unit cell (cf. Figure 2.1). By varying n and m from their central values, a

block of surface unit cells centering around a fluid particle can be generated to effectively

represent an infinite surface. An additional computational advantage from the method is

the neighbor lists for fluid-surface interaction no longer required.

2.3. SIMULATION DETAILS

Throughout the whole project, the total number of confined fluid particles is fixed at

1600, while the number of bigger particles representing Au140(SC6H13)62 nanoparticles

changes from 0, 1, 3, 5, to 10 in order to investigate the effects of nanoparticle

loading/volume fraction. The LJ interaction potential between the solvent cyclohexane

particles is truncated and corrected at a center-of-mass cut-off distance of rc = 3 cyclohexane ,

or equivalently across a cut-off spacing of 2 cyclohexane . For simplicity, the same cut-off

spacing of 2 cyclohexane was also used for all the other pair interactions including

Au140(SC6H13)62−Au140(SC6H13)62, Au140(SC6H13)62−cyclohexane, Au140(SC6H13)62−Si,

and cyclohexane-Si. For unlike-pair interactions, the Lorentz-Berthelot mixing rules are

used, that is
12 1 2

 and 12 1 2 / 2 .

The integrator for the equations of motion is the fourth-order Gear predictor-

corrector algorithm along with a time step of 5 fs. The temperature is set at 300 K and the

parallel pressure at 1 atm (0.1 MPa). All confined nanoparticle solutions are first

equilibrated to the set temperature and pressure at a separation of 10 nm (100 Å) between

17

the confining Si (111) surfaces as initial conditions and starting points for continuous

compression at a moderate speed of 5 m/s. Practically, to implement continuous

compressions at this speed, the surface separation (h) is manually decreased by 0.00025

Å at every time step (t = 5 fs). For precaution, additional 25000 t’s were spent to re-

equilibrate the simulation systems before compression and every production run in this

project.

18

 3. RESULTS AND DISCUSSION

3.1 PC-BASED MOLECULAR SIMULATIONS

The same simulation code and initial conditions were used to run simulations of

continuous compression of confined nanoparticle-alkane solutions having 0, 1, 3, 5, and

10 nanoparticles were run on IBM RISC/6000 workstations and on a dual-core Dell XPS

computer installed with Linux. As demonstrated in Figure 3.1 where the case with 5

nanoparticles is shown, the simulation results from the two systems are not identical but

statistically and physically equivalent. This was expected because after a large number of

iterations, the differences in computer architecture, operation system, and compiler will

cause numerical calculations to deviate on different computer systems. Nevertheless, the

physics and the simulated properties are not altered, which is of critical importance. It

should be emphasized here that with a relatively finite number of fluid particles (e.g.

1600), the pressure of a MD simulation cannot be precisely controlled to any specific

value, which is very unlike temperature control. In fact, it is natural for MD simulations

to have pressure fluctuations whose magnitudes are on the order of several tens to several

hundreds atm. From this point of view, the method of parallel pressure (P||) control

explained in the previous section works very well and the calculated perpendicular

pressures (P) from the two computer systems also agree well.

 It should be mentioned that with multiple cores and free parallel computing software

such as Open MPI, the new generation of PC’s are readily capable of parallel computing.

We have tested serial and parallel MD simulations on the Dell XPS computer and

19

interestingly found the results to be similar to what are demonstrated here, numerically

not identical but statistically and physically equivalent.

Figure 3.1. Instantaneous (a) parallel pressure, (b) lateral dimension, and (c)

perpendicular pressure as a function surface separation during continuous compression.

4000

3000

2000

1000

0

100806040200

 IBM RISC/6000

 Dell XPS-Linux

140

120

100

80

60

 IBM RISC/6000

 Dell XPS-Linux

(c)

200

100

0

-100

 IBM RISC/6000

 Dell XPS-Linux

P

(a

tm
)

(b)

L
a

te
ra

l
d
im

e
n
s
io

n

(Å

)
P

||

(a

tm
)

Surface separation h (Å)

(a)

20

3.2 CONTINUOUS COMPRESSION

Figure 3.2 shows the simulation results from continuous compression of different

nanoparticles solutions. The data are instantaneous properties calculated and recorded

Figure 3.2. Instantaneous (a) lateral dimension and (b) perpendicular pressure as a

function surface separation during continuous compression for different solutions.

10000

8000

6000

4000

2000

0

-2000

100806040200

 10 nanoparticles
 5 nanoparticles
 3 nanoparticles
 1nanoparticles
 pure cyclohexane

240

220

200

180

160

140

120

100

80

60

 10 nanoparticles
 5 nanoparticles
 3 nanoparticles
 1 nanoparticles
 pure cyclohexane

P

(a

tm
)

(a)

L
a

te
ra

l
d

im
e

n
s
io

n

(Å

)

Surface separation h (Å)

(b)

21

every 1000 t’s. Exhibiting the strongest force oscillations [cf. Fig. 3.2(b)] is the pure

cyclohexane fluid in nanoconfinement that can be understood to be most layered among

all solutions studied. A closer examination of the force oscillations reveals that the

periodicity is about the same as the cyclohexane molecular diameter, 5.466 Å. The

connection between the surface force and the fluid configuration can be analyzed by

comparing Figures 3.2 (a) and (b) together. It can be easily seen that the lateral

dimension of the confined cyclohexane under continuous compression undergoes step-

like expansion and the width of the steps is the same as the periodicity of the force

oscillations. More specifically, minimum surface forces occur at separations that

correspond to completion of step-like expansion and more disordered, less layered

configurations. When compression continues, the less layered confined fluid are

squeezed to become more layered and the surface force builds up again until the confined

fluid could not sustain the strong pressure any more and sudden expansion occurs in the

lateral directions.

When nanoparticles are added to the confined alkane fluid, they significantly reduce

the magnitudes of the step-like expansion and force oscillations. In addition, the bigger

nanoparticles can now resist compression and strong perpendicular pressure at larger

separations that are about the same as the size of the nanoparticles [cf. Fig. 3.2(a)]. These

behaviors signify better nanotribological properties that could be provided by the

presence of alkanethiol-capped nanoparticles in alkane/oil solutions.

Since the nanoparticles have much bigger size and stronger interaction, there may

exist a possibility that they could aggregate together in the solutions and this possibility

could get enhanced by the nanoscale confinement. In order to obtain an answer and more

22

insight, we examine the top-down views and side views of the confined nanoparticle

solutions. Shown in Figure 3.3 are the representative case that has 10 nanoparticles and

pure cyclohexane for comparison. It can be clearly seen that at large separations [cf. Fig.

3.3 (c)], nanoparticles are well dispersed in the confined fluid without either forming

clusters or aggregating towards the confining surfaces and they remain well dispersed as

the confined fluid film becomes thinner and thinner. Even when the nanoparticles are the

confined fluid film becomes thinner and thinner. Even when the nanoparticles are

encapsulated and touch both confining surfaces, they are still surrounded by solvent

Figure 3.3. (a) Side and top-down views of the nanoconfined cyclohexane (green beads)

solution containing 10 nanoparticles (red beads) at h = 31.25 Å, (b) side view of confined

cyclohexane at h = 31.25 Å, and (c) side and top-down views of the nanoconfined

cyclohexane solution containing 10 nanoparticles at h = 93.75 Å.

(c)

(b)

(a)

23

molecules [cf. Fig. 3.3(a)]. These observations indicate a proper affinity between the

nanoparticles and the solvent. As can bee seen in Figure 3.3, solvent molecules within

certain distance from the nanoparticles are under the influence of nanoparticle

interactions which lessens the layering effect of nanoconfinement. However, outside this

influence range, solvent molecules are still largely layered.

3.3 NANOCONFINED NANOPARTICLE SOLUTIONS UNDER SHEAR

Form the results presented and discussed above, adding nanoparticles appears to be

able to improve the nanotribological properties of alkane-type lubricants. To further

validate this point, the nanoparticle solutions are sheared by sliding the upper confining

surface in the +x direction at a speed of
xv 0 m/s, 1 m/s, or 10 m/s while keeping the

lower surface stationary at three selected separations h = 31.25 Å, 56.25 Å, and 93.75 Å.

The resultant nonzero shear rates, /xv h , depend on both the sliding speed and surface

separation and range from 8 11.07 10 sec to 9 13.2 10 sec . The stationary confined

systems with zero shear rate are simulated for comparison purposes.

We first examine the density profiles of cyclohexane solvent molecules under various

conditions. As shown in Figure 3.4, the density profile depends quite strongly on the

number of nanoparticles. Without the presence of nanoparticles, the symmetric

cyclohexane molecules can form well-layered configurations in nanoconfinement, which

can be disrupted to become less layered when nanoparticles are present. On the other

hand, the density profile is a very weak function of shear rate and exhibits only very

insignificant changes within the explored shear rate range.

24

8 7 6 5 4 3 2 1 0

-5
0

-4
0

-3
0

-2
0

-1
0

0
1

0
2

0
3

0
4

0
5

0

 V
s
h

e
a

r=
0
 m

/s

 V
s
h

e
a

r=
1
 m

/s

 V
s
h

e
a

r=
1
0

 m
/s

8 7 6 5 4 3 2 1 0

 V
s
h

e
a

r=
0
 m

/s

 V
s
h

e
a

r=
1
 m

/s

 V
s
h

e
a

r=
1
0

 m
/s

(c
)

8 7 6 5 4 3 2 1 0

 V
s
h

e
a

r=
0
 m

/s

 V
s
h

e
a

r=
1
 m

/s

 V
s
h

e
a

r=
1
0

 m
/s

(b
)

z
 (

Å
)

(a
)

8 7 6 5 4 3 2 1 0

-5
0

-4
0

-3
0

-2
0

-1
0

0
1
0

2
0

3
0

4
0

5
0

 V
s
h

e
a

r=
0
 m

/s

 V
s
h

e
a

r=
1
 m

/s

 V
s
h

e
a

r=
1
0
 m

/s

8 7 6 5 4 3 2 1 0

 V
s
h

e
a

r=
0

 m
/s

 V
s
h

e
a

r=
1

 m
/s

 V
s
h

e
a

r=
1

0
 m

/s

(f
)

8 7 6 5 4 3 2 1 0

 V
s
h

e
a

r=
0

 m
/s

 V
s
h

e
a

r=
1

 m
/s

 V
s
h

e
a

r=
1

0
 m

/s

(e
)

z
 (

Å
)

(d
)

(f
)

8 7 6 5 4 3 2 1 0

-5
0

-4
0

-3
0

-2
0

-1
0

0
1

0
2

0
3

0
4

0
5

0

 V
s
h

e
a

r=
0

 m
/s

 V
s
h

e
a

r=
1

 m
/s

 V
s
h

e
a

r=
1

0
 m

/s

8 7 6 5 4 3 2 1 0

 V
s
h

e
a

r=
0

 m
/s

 V
s
h

e
a

r=
1

 m
/s

 V
s
h

e
a

r=
1

0
 m

/s

(j
)

8 7 6 5 4 3 2 1 0

 V
s
h

e
a

r=
0

 m
/s

 V
s
h

e
a

r=
1

 m
/s

 V
s
h

e
a

r=
1

0
 m

/s

(i
)

z
 (

Å
)

(h
)

F
ig

u
re

 3
.4

.
 P

ro
fi

le
s

o
f

cy
cl

o
h

ex
an

e
n

u
m

b
er

 d
en

si
ty

 w
h

er
e

(a
)~

(c
)

at
 h

=
 9

3
.7

5
 Å

,
(d

)~
(f

)
at

 h
=

 5
6

.2
5

,
an

d
 (

h
)~

(j
)

at
 h

=
 3

1
.2

5
 Å

;

an
d

 (
a)

,
(d

),
 (

h
):

 0
 n

an
o

p
ar

ti
c
le

,
(b

),
 (

e)
,

(i
):

 5
 n

an
o

p
ar

ti
c
le

s,
 a

n
d

(c

),
 (

f)
,

(j
):

 1
0

 n
an

o
p

ar
ti

cl
es

.

25

Shear stress could be imparted into the nanoconfined fluids in different manners.

Another major method is to apply a constant shear force to a confining surfacewhich is

assigned a proper artificial mass so that it has its own equations of motion to determine

its displacement and sliding velocity. While this method allows a constant shear stress,

the shear rate is variable. In contrast, the method adopted in this work can maintain a

constant shear rate but the shear stress becomes variable. Nevertheless, these two

methods can be made equivalent by taking time averages of shear stress and shear rate.

In our simulations, the applied shear generates a nonzero drag force on the confined fluid

in the x direction, fx, which would become noisy fluctuations around zero under no shear

condition. Shear stress can be calculated by dividing the drag force fx by surface area of

the confining surface. Figure 3.5 shows the calculated shear stress for the confined fluid

film with 10 nanoparticles at h = 56.25 Å. The time averaged shear stress is 3.71 MPa for

10 m/sxv corresponding to 9 11.78 10 sec and 0.87 MPa for 1 m/sxv

corresponding to 8 11.78 10 sec . As a result, the apparent viscosity is 0.021 Pa·s and

0.0049 Pa·s, respectively. We have performed such calculations for different cases

considered in this project and summarized the results in Table 3.1. The calculated

viscosities appear to be in good agreement with those from similar simulation studies

[60]. Most importantly, at both sliding speeds and all three separations, the presence of

nanoparticles in the confined thin films does help reduce noticeably the viscosity or

equivalently shear stress and frictional force. We can thus conclude that nanoparticle-

containing solutions have great potential to be good lubricants for nanotribology.

26

20

10

0

-10

10008006004002000

 Vshear = 10 m/s

 Vshear = 1 m/s

 Vshear = 0 m/s

S
h
e

a
r

s
tr

e
s
s

(M

P
a
)

Time (ps)

Figure 3.5. Shear stress on the confined fluid having 10 nanoparticles at h = 56.25 Å

caused by different sliding speeds.

Table 3.1. Apparent shear viscosity of nanoparticle-cyclohexane solutions under different

surface separation and sliding speeds.

 h = 93.75 Å h = 65.25 Å h = 31.25 Å

 vx = 1 m/s 10 m/s 1 m/s 10 m/s 1 m/s 10 m/s

 0 0.0385 0.0444 0.00866 0.0255 0.00716 0.0234

 5 0.00368 0.0136 0.00726 0.00973 0.00384 0.00276

 10 0.000677 0.000671 0.00491 0.0209 0.00472 0.00675

 No. of

nanoparticles

27

Despite their sizes, alkanethiol-capped nanoparticles have been shown by simulation

studies to have fluid-like diffusivity [48]. Since the potential models used in this work

are atomistically based, it would be of relevance and value to compute both the

nanoparticles and cyclohexane diffusivities. To this end, the following Einstein relation

is used,

2
() (0)

lim
4t

t
D

t

|| ||

||

r r
 , (3.1)

where
2

() (0)t|| ||r r is the ensemble-averaged mean-square displacement in the lateral

x and y directions. It should be self-evident that a confined fluid has zero net

displacement/diffusivity in the z direction. By calculating and plotting the mean-square

displacement using the x and y components, the limiting slope after sufficiently long

times is equal to 4D|| . Shown in Figure 3.6 is a plot of the nanoparticles mean square

displacement for the 10-nanoparticle confined film at h = 93.75 Å with zero shear. All

the calculated diffusivities are collected in Table 3.2. In general, nanoparticles in

nanoconfinement have diffusivity noticeably lower than that of typical liquids. In

particular at small separation when nanoparticles directly touch both confining surfaces,

their mobility is virtually zero. Also, as can be expected, sliding speed shears the

confined fluid components and increases their mobility.

28

14.0

12.0

10.0

8.0

6.0

4.0

2.0

0.0

10008006004002000

M
e
a
n

 s
q
u

a
re

 d
is

p
la

c
e
m

e
n

t
(Å

2
)

Time (ps)

Figure 3.6. A plot of mean square displacement where the fitted dashed line is used to

determine the diffusivity.

29

Table 3.2. Diffusion coefficients D×10
10

 m
2
/s.

 h = 93.75 Å

 vx = 0 m/s vx = 1 m/s vx = 10 m/s

 cycloC6 nanoparticle cycloC6 nanoparticle cycloC6 nanoparticle

 0 0.27 1.08 25.72

 5 11.14 0.48 15.21 3.41 62.47 64.02

 10 15.23 0.54 14.87 0.63 21.51 7.74

 h = 65.25Å

 vx = 0 m/s vx = 1 m/s vx = 10 m/s

 cycloC6 nanoparticle cycloC6 nanoparticle cycloC6 nanoparticle

 0 0.12 2.24 10.96

 5 2.09 0.02 2.51 0.15 76.18 73.85

 10 6.27 0.42 7.02 0.75 79.86 79.35

 h = 31.25Å

 vx = 0 m/s vx = 1 m/s vx = 10 m/s

 cycloC6 nanoparticle cycloC6 nanoparticle cycloC6 nanoparticle

 0 0.12 1.34 50.19

 5 0.84 0.06 1.97 1.17 56.17 55.87

 10 1.22 0.02 2.48 1.43 32.95 32.18

 No. of

nanoparticles

 No. of

nanoparticles

 No. of

nanoparticles

30

4. CONCLUSIONS

Current advances in micro and nano-electromechanical devices (MEMS and

NEMS), micro and nanofluidic systems, and other nanotechnology areas constantly

involve the tribological issues of friction, wear, and lubrication at the nanometer i.e.

molecular scale. Despite recent progresses, major challenges still loom over nanometer-

thin lubricant films, partly due to the unusual and undesirable tribological properties of

typical lubricant molecules forming layered configurations in nanoconfinement and

partly due to the limitation of experimental techniques and conventional theories. In this

study, solutions of alkanethiol-capped nanoparticles in alkane are examined using

molecular dynamics simulations for their nanotribological potential based on the

hypothesis that fluid molecules of very different sizes may interrupt each other’s layering

tendency to result in less or non-layered configurations and provide better lubrication for

nanodevices. An effective nanoparticle-nanoparticle pair potential based on previous

atomistic approach is used and the temperature and parallel pressure are controlled in

place of chemical potential for defining thermodynamic state. When compressed, the

confined nanoparticle-containing alkane films generate reduced oscillations in

perpendicular forces and smoother expansion in lateral dimensions. This indicate lesser

extent of layering due to the presence of much bigger nanoparticles, which was

confirmed by the density profiles obtained in his study. Further examination reveal that

the nanoparticles are well dispersed by the cyclohexane solvent molecules throughout all

separations. This means that the nanoparticles will not tend to form clusters or aggregate

towards the confining surfaces, which is important for the stability of the nanoparticle

solutions as nanotribological lubricant. When sheared by a sliding surface, the confined

31

fluids tend to move in the same parallel manner so that their density profiles remain

virtually unchanged. The shear stress imposed by the sliding surface has also been

calculated and then used to estimate the apparent viscosity. It is found that greater shear

stress does result from faster sliding but not proportionally. More importantly, the

presence of nanoparticles in the lubricant films reduces the shear stress and thereby

apparent viscosity noticeably. This effect is particularly evident under relatively large

sliding speed and large surface separations. In addition, the nanoparticles exhibit lower

diffusivity in nanoconfinement than typical fluids and their mobility can be enhanced by

shearing. In summary, this study has demonstrated the great potential of nanoparticle-

containing solutions as an improved lubricant for moving nanodevices and

nanostructures.

Additionally, simulations have been run on regular PC’s and physically and

statistically equivalent results have been obtained. This points out a future direction for

similar simulation studies, that is, using multi-core PC’s and freely available compilers

and parallel computing software is the most efficient and most cost-effective way. With

parallel computing, much larger simulation system can be employed and semi-continuous

variation of nanoparticles loading/volume fractions and more systematic knowledge can

be achieved in simulations.

32

APPENDIX

FORTRAN77 code for the Molecular Dynamics Simulation.

c PROGRAM real

c

 IMPLICIT real*8 (a-h,o-z),integer*4 (i-n)

 include 'ljmix'

C POTENTIAL PARAMETERS

C ___

C

C Three basic quantities for non-dimensionalization

C based on parameters for cyclohexane(l) as solvent

C J. Mol. Liq. 120, 63 (2005)

C ___

 sigma = 5.4660d-10 ! meter

 epsi = 484.00d0*R ! J/mol

 unitm = 0.084160d0 ! kg/mol

C ____________________

C

C System parameters

C Note that

C 1 fs = 0.00020002

C 1 m/s = 0.00457325

C 1 Pa = 2.444e-8

C ____________________

 dt = 5.00d-15 ! time step: second

 h = dt*dsqrt(epsi/unitm)/sigma ! non-dimensionalized dt

 temp = tset*R/epsi

 uconv = dsqrt(unitm/epsi) ! u*=u*uconv

 pconv = sigma*sigma*sigma*6.0220d23/epsi !0.244396E-07

 pset = (ppara*101325)*pconv

 pi = dacos(-1.0d0)

C ___

C

C Lennard-Jones interaction parameters and long-range corrections

C sa: sa-sa (surface atom-surface atom)

C gsgs: solvent-solvent (smaller fluid particles)

C gssa: solvent-surface

c gbgb: nanoparticle-nanoparticle (bigger fluid particles)

c gbsa: nanoparticle-surface

C lrc: long-range corrections

C ___

C --------------------------------

C Stationary confining Si surfaces

C --------------------------------

 al = 5.43d-10/sigma ! Si diamond structure lattice const.

 x_L = al*sqrt(2.0)/2.0d0 ! 3.84A

 y_L = x_L*sqrt(3.0) ! 6.65A

33

 z_L = (al/2.0d0)*sqrt(3.0)/2.0d0 ! Si-Si bond length,2.35A

 sa_sig = 3.8260000d-10 ! sa-sa

 sa_eps = 202.450d0*R ! sa-sa

 sam = 0.0280855d0 ! kg/mol

 sam = sam/unitm

 epssa = sa_eps/epsi

 eps4sa = 4.00d0*epssa

 eps24sa = 24.0d0*epssa

 sigsa = sa_sig/sigma

 sig2sa = sigsa*sigsa

 zk = pi/(sqrt(2.0d0/3.0d0)*1.09d0)

C --------------------------------------

C Like pair of smaller solvent particles

C --------------------------------------

 gsgs_sig = 5.4660000d-10 ! sfa-sfa

 gsgs_eps = 484.00d0*R ! sfa-sfa

 sfam = 0.084160d0 ! kg/mol

 sfam = sfam/unitm

 epssfsf = gsgs_eps/epsi

 eps4sfsf = 4.00d0*epssfsf

 eps24sfsf = 24.0d0*epssfsf

 sigsfsf = gsgs_sig/sigma

 sig2sfsf = sigsfsf*sigsfsf

 rcutsfsf = sigsfsf+2.0d0*sigsfsf ! potential cut-off distance

 rcut2sfsf = rcutsfsf*rcutsfsf

 drneig = 0.30d0 ! neighbor list buffer

 rnbl2sfsf = (rcutsfsf+2.0d0*drneig)**2 ! distance for neighbor

C !list

 rlrc2 = sig2sfsf/rcut2sfsf

 rlrc6 = rlrc2*rlrc2*rlrc2

 rlrc12 = rlrc6*rlrc6

 vcsfsf = (13.0d0*rlrc12 - 7.0d0*rlrc6)

 fcsfsf = (2.0d0*rlrc12 - rlrc6)/rcutsfsf

 fcvsfsf = 6.0d0*fcsfsf

C -------------------------------------

C Like pair of bigger nanoparticles

C resembling Au140(SC6H13)62

C -------------------------------------

 gbgb_sig = 29.000000d-10 ! bfa-bfa

 gbgb_eps = 22.37*gsgs_eps ! bfa-bfa

 bfam = 34.844000d0 ! kg/mol

 bfam = bfam/unitm

 epsbfbf = gbgb_eps/epsi

 eps4bfbf = 4.00d0*epsbfbf

 eps24bfbf = 24.0d0*epsbfbf

 sigbfbf = gbgb_sig/sigma

 sig2bfbf = sigbfbf*sigbfbf

 rcutbfbf = sigbfbf+2.0d0*sigsfsf ! potential cut-off distance

 rcut2bfbf = rcutbfbf*rcutbfbf

 drnblbfbf = 0.30d0 ! neighbor list buffer

 rnbl2bfbf = (rcutbfbf+2.0d0*drnblbfbf)**2 ! distance for

 rlrc2 = sig2bfbf/rcut2bfbf ! neighbor list

 rlrc6 = rlrc2*rlrc2*rlrc2

 rlrc12 = rlrc6*rlrc6

 vcbfbf = (13.0d0*rlrc12 - 7.0d0*rlrc6)

34

 fcbfbf = (2.0d0*rlrc12 - rlrc6)/rcutbfbf

 fcvbfbf = 6.0d0*fcbfbf

C -------------------------------------

C unlike pair of solvent-nanoparticle

C -------------------------------------

 epssfbf = dsqrt(epsbfbf*epssfsf)

 eps4sfbf = 4.00d0*epssfbf

 eps24sfbf = 24.0d0*epssfbf

 sigsfbf = 0.50d0*(sigbfbf+sigsfsf)

 sig2sfbf = sigsfbf*sigsfbf

 rcutsfbf = sigsfbf+2.0d0*sigsfsf ! potential cut-off distance

 rcut2sfbf = rcutsfbf*rcutsfbf

 drnblsfbf = 0.30d0 ! neighbor list buffer

 rnbl2sfbf = (rcutsfbf+2.0d0*drnblsfbf)**2 ! distance for

 rlrc2 = sig2sfbf/rcut2sfbf ! neighbor list

 rlrc6 = rlrc2*rlrc2*rlrc2

 rlrc12 = rlrc6*rlrc6

 vcsfbf = (13.0d0*rlrc12 - 7.0d0*rlrc6)

 fcsfbf = (2.0d0*rlrc12 - rlrc6)/rcutsfbf

 fcvsfbf = 6.0d0*fcsfbf

C -------------------------------------

C unlike pair of solvent-surface

C -------------------------------------

 epssfsa = dsqrt(epssfsf*epssa)

 eps4sfsa = 4.00d0*epssfsa

 eps24sfsa = 24.0d0*epssfsa

 sigsfsa = 0.50d0*(sigsfsf+sigsa)

 sig2sfsa = sigsfsa*sigsfsa

 rcutsfsa = sigsfsa+2.0d0*sigsfsf ! potential cut-off distance

 rcut2sfsa = rcutsfsa*rcutsfsa

 drnblsfsa = 0.30d0 ! neighbor list buffer

 rnbl2sfsa = (rcutsfsa+2.0d0*drnblsfsa)**2 ! distance for

 rlrc2 = sig2sfsa/rcut2sfsa ! neighbor list

 rlrc6 = rlrc2*rlrc2*rlrc2

 rlrc12 = rlrc6*rlrc6

 vcsfsa = (13.0d0*rlrc12 - 7.0d0*rlrc6)

 fcsfsa = (2.0d0*rlrc12 - rlrc6)/rcutsfsa

 fcvsfsa = 6.0d0*fcsfsa

C -------------------------------------

C unlike pair of Rnanoparticle-surface

C -------------------------------------

 epsbfsa = dsqrt(epsbfbf*epssa)

 eps4bfsa = 4.00d0*epsbfsa

 eps24bfsa = 24.0d0*epsbfsa

 sigbfsa = 0.50d0*(sigbfbf+sigsa)

 sig2bfsa = sigbfsa*sigbfsa

 rcutbfsa = sigbfsa+2.0d0*sigsfsf ! potential cut-off distance

 rcut2bfsa = rcutbfsa*rcutbfsa

 drnblbfsa = 0.30d0 ! neighbor list buffer

 rnbl2bfsa = (rcutbfsa+2.0d0*drnblbfsa)**2 ! distance for

 rlrc2 = sig2bfsa/rcut2bfsa ! neighbor list

 rlrc6 = rlrc2*rlrc2*rlrc2

 rlrc12 = rlrc6*rlrc6

 vcbfsa = (13.0d0*rlrc12 - 7.0d0*rlrc6)

 fcbfsa = (2.0d0*rlrc12 - rlrc6)/rcutbfsa

 fcvbfsa = 6.0d0*fcbfsa

35

c ____________

C

C MAIN PROGRAM

C ____________

 CALL simulation

 STOP

 END

 SUBROUTINE simulation

 IMPLICIT real*8 (a-h,o-z),integer*4 (i-n)

 include 'ljmix'

 DIMENSION diff(3,nadmol),disp(2,nadmol)

 DIMENSION z1(nadmol),z2(nadmol),z3(nadmol),z4(nadmol)

 DIMENSION vz1(nadmol),vz2(nadmol),vz3(nadmol),vz4(nadmol)

 DIMENSION x1(nadmol),x2(nadmol),x3(nadmol),x4(nadmol)

 DIMENSION vx1(nadmol),vx2(nadmol),vx3(nadmol),vx4(nadmol)

 DIMENSION y1(nadmol),y2(nadmol),y3(nadmol),y4(nadmol)

 DIMENSION vy1(nadmol),vy2(nadmol),vy3(nadmol),vy4(nadmol)

 DIMENSION densf(nbin),denbf(nbin),adist(nbin),bdist(nbin)

 LOGICAL disptest

 OPEN(1,file='5np.sh_m',status='unknown',form='formatted')

 OPEN(2,file='5np.dat_m0',status='unknown',form='formatted')

 OPEN(3,file='5np.rec_m0',status='unknown',form='formatted')

 vcmx = 0.0d0

 vcmy = 0.0d0

 vcmz = 0.0d0

 systemas = 0.0d0

 DO m=1,nsfmol

 read(1,100)x0(m),y0(m),z0(m),vx0(m),vy0(m),vz0(m)

 systemas = systemas + sfam

C ------------------------------

C Call gauss to generate initial

C velocities if needed

C ------------------------------

c Call gauss(v1,v2,v3,temp)

c vx0(m) = v1

c vy0(m) = v2

c vz0(m) = v3

 vcmx = vcmx + vx0(m)*sfam

 vcmy = vcmy + vy0(m)*sfam

 vcmz = vcmz + vz0(m)*sfam

 ENDDO

 DO m=nsfmol+1,nadmol

 read(1,100)x0(m),y0(m),z0(m),vx0(m),vy0(m),vz0(m)

 systemas = systemas + bfam

 vcmx = vcmx + vx0(m)*bfam

 vcmy = vcmy + vy0(m)*bfam

 vcmz = vcmz + vz0(m)*bfam

 ENDDO

 read(1,*)bLx0,bLy0,hz0

36

 vcmx = vcmx/systemas

 vcmy = vcmy/systemas

 vcmz = vcmz/systemas

 vsumx = 0.0d0

 vsumy = 0.0d0

 vsumz = 0.0d0

 DO m=1,nsfmol

 vx0(m) = vx0(m) - vcmx

 vy0(m) = vy0(m) - vcmy

 vz0(m) = vz0(m) - vcmz

 vsumx = vsumx + vx0(m)*vx0(m)*sfam

 vsumy = vsumy + vy0(m)*vy0(m)*sfam

 vsumz = vsumz + vz0(m)*vz0(m)*sfam

 ENDDO

 DO m=nsfmol+1,nadmol

 vx0(m) = vx0(m) - vcmx

 vy0(m) = vy0(m) - vcmy

 vz0(m) = vz0(m) - vcmz

 vsumx = vsumx + vx0(m)*vx0(m)*bfam

 vsumy = vsumy + vy0(m)*vy0(m)*bfam

 vsumz = vsumz + vz0(m)*vz0(m)*bfam

 ENDDO

 etuax = vsumx/nadmol

 etuay = vsumy/nadmol

 etuaz = vsumz/nadmol

 tratx = sqrt(temp/etuax)

 traty = sqrt(temp/etuay)

 tratz = sqrt(temp/etuaz)

 do m=1,nadmol

 vx0(m) = vx0(m)*tratx

 vy0(m) = vy0(m)*traty

 vz0(m) = vz0(m)*tratz

 enddo

 100 format(6(1x,e11.5))

C --

C Determine (x,y,z) coordnates for surface atoms

C --

 rsold(1) = -0.50d0*hz0 !! lower surface z position

 rsold(2) = rsold(1) - z_L/3.0d0

 rsold(3) = rsold(2) - z_L

 rsold(4) = rsold(3) - z_L/3.0d0

 rsold(5) = rsold(4) - z_L

 rsold(6) = rsold(5) - z_L/3.0d0

 rsold(7) = rsold(6) - z_L

 rsold(8) = rsold(7) - z_L/3.0d0

 DO i=1,layers

 rsold(i+layers)=-rsold(i)

 ENDDO

C --

C Generate (x,y) coordnates for surface atoms

C that represent the Si_diamond(111) surface.

C --

 Call setup_sa_position

C ---

37

C Options: istart=1: separation fixed at the input value

C istart=2: separation adjustment is activated

C istart=3: production run at a fixed separation

C ---

 istart = 2

C --

C hzi: initial separation (to be adjusted)

C hzf: final separation (after certain no. of steps)

C --

 hzi = hz0

 hzf = 10.0d0/5.4660d0 ! use desired value

C ---

C deltz: displacement of the surfaces per time step due to

C continuous compression.

C deltx: displacement of the upper surface per time step

C for continuous shearing (stationary lower surface)

C ---

c deltz = 0.50d0*(hzf - hzi)/nsimut

 deltz = -0.50d0*(unorm*uconv)*h

 deltx = (upara*uconv)*h

 dxtot = 0.0d0

C ---

C Gear predictor-corrector integration coefficients

C ---

 f01 = 251.0d0/720.0d0

 f21 = 11.0d0/12.0d0

 f31 = 1.0d0/3.0d0

 f41 = 1.0d0/24.0d0

C --

C Pressure and thermal bath coupling constants

C Thermal bath: Nose-Hoover thermostat

c Pressure bath: Berendsen's loose coupling

C --

 tp = 250*h

 ttnh = 45.0d0

C ---

C Bin sizes for analyzing various distributions

C ---

 ncen = (nbin+1)/2

 dz = hz0/(nbin+1)

 200 nstp = 0

 icntpt = 0

 icnt = 0

 index = 0

 totint = 0.0d0

 totmol = 0.0d0

 tmolsum = 0.0d0

 tmol2sum = 0.0d0

 bLxtot = 0.0d0

 bLxt2 = 0.0d0

 bLxt4 = 0.0d0

 skztot = 0.0d0

 schange = 0.0d0

38

 ppsfsftot = 0.0d0

 ppsfbftot = 0.0d0

 ppsfsatot = 0.0d0

 ppbfbftot = 0.0d0

 ppbfsatot = 0.0d0

 pzsfsftot = 0.0d0

 pzsfbftot = 0.0d0

 pzsfsatot = 0.0d0

 pzbfbftot = 0.0d0

 pzbfsatot = 0.0d0

 pxytot = 0.0d0

 pxy2 = 0.0d0

 pztot = 0.0d0

 pz2 = 0.0d0

 fsoltot = 0.0d0

 fsol2 = 0.0d0

 fzsftot = 0.0d0

 fzbftot = 0.0d0

 fxxdtot = 0.0d0

 fxxutot = 0.0d0

 DO m=1,nadmol

 x1(m) = 0.0d0

 x2(m) = 0.0d0

 x3(m) = 0.0d0

 x4(m) = 0.0d0

 vx1(m) = 0.0d0

 vx2(m) = 0.0d0

 vx3(m) = 0.0d0

 vx4(m) = 0.0d0

 y1(m) = 0.0d0

 y2(m) = 0.0d0

 y3(m) = 0.0d0

 y4(m) = 0.0d0

 vy1(m) = 0.0d0

 vy2(m) = 0.0d0

 vy3(m) = 0.0d0

 vy4(m) = 0.0d0

 z1(m) = 0.0d0

 z2(m) = 0.0d0

 z3(m) = 0.0d0

 z4(m) = 0.0d0

 vz1(m) = 0.0d0

 vz2(m) = 0.0d0

 vz3(m) = 0.0d0

 vz4(m) = 0.0d0

 DO i=1,3

 diff(i,m) = 0.0d0

 ENDDO

 DO i=1,2

 disp(i,m) = 0.0d0

 ENDDO

 DO k=1,itau

 rm2(1,m,k) = 0.0d0

39

 rm2(2,m,k) = 0.0d0

 ENDDO

 ENDDO

 DO n=1,nbin

 densf(n) = 0.0d0

 denbf(n) = 0.0d0

 ENDDO

c _____________________________________

c

c INITIATE NEIGHBOR LISTS and use

c disptest=.true. Update neighbor lists

c _____________________________________

 CALL fluid_neighbor_list

 disptest=.false.

c _______________________________

c

c MAIN LOOP over nsimut tme steps

c _______________________________

 DO while (nstp.le.nsimut)

 nstp = nstp+1

 icntpt = icntpt+1

 IF (disptest.eqv..true.) then !! update neighbor lists

c write(*,*)'nstp=',nstp,'--- update neighbor lists ---'

 CALL fluid_neighbor_list

 disptest=.false.

 DO m=1,nadmol

 diff(1,m)=0.0d0

 diff(2,m)=0.0d0

 diff(3,m)=0.0d0

 ENDDO

 schange=0.0d0

 ENDIF

c ___

c

c GEAR'S PREDICTOR PHASE : truncated power series

C to predict coordinates and velocities

c ___

 vx2sum = 0.0d0

 vy2sum = 0.0d0

 vz2sum = 0.0d0

 v13sum = 0.0d0

 v23sum = 0.0d0

 vxytemp= 0.0d0

 vztemp = 0.0d0

 DO m=1,nsfmol

 vxsq = vx0(m)*vx0(m)

 vysq = vy0(m)*vy0(m)

 vzsq = vz0(m)*vz0(m)

 vx2sum = vx2sum+vxsq

40

 vy2sum = vy2sum+vysq

 vz2sum = vz2sum+vzsq

 v13sum = v13sum+vx0(m)*vz0(m)

 v23sum = v23sum+vy0(m)*vz0(m)

 xold(m)=x0(m)

 x0(m)=x0(m)+ x1(m)+ x2(m)+ x3(m)+x4(m)

 x1(m)=x1(m)+2.0d0*x2(m)+3.0d0*x3(m)+4.0d0*x4(m)

 x2(m)=x2(m)+3.0d0*x3(m)+6.0d0*x4(m)

 x3(m)=x3(m)+4.0d0*x4(m)

 vx0(m)=vx0(m)+ vx1(m)+ vx2(m)+ vx3(m)+vx4(m)

 vx1(m)=vx1(m)+2.0d0*vx2(m)+3.0d0*vx3(m)+4.0d0*vx4(m)

 vx2(m)=vx2(m)+3.0d0*vx3(m)+6.0d0*vx4(m)

 vx3(m)=vx3(m)+4.0d0*vx4(m)

 yold(m)=y0(m)

 y0(m)=y0(m)+ y1(m)+ y2(m)+ y3(m)+y4(m)

 y1(m)=y1(m)+2.0d0*y2(m)+3.0d0*y3(m)+4.0d0*y4(m)

 y2(m)=y2(m)+3.0d0*y3(m)+6.0d0*y4(m)

 y3(m)=y3(m)+4.0d0*y4(m)

 vy0(m)=vy0(m)+ vy1(m)+ vy2(m)+ vy3(m)+vy4(m)

 vy1(m)=vy1(m)+2.0d0*vy2(m)+3.0d0*vy3(m)+4.0d0*vy4(m)

 vy2(m)=vy2(m)+3.0d0*vy3(m)+6.0d0*vy4(m)

 vy3(m)=vy3(m)+4.0d0*vy4(m)

 zold(m)=z0(m)

 z0(m)=z0(m)+ z1(m)+ z2(m)+ z3(m)+z4(m)

 z1(m)=z1(m)+2.0d0*z2(m)+3.0d0*z3(m)+4.0d0*z4(m)

 z2(m)=z2(m)+3.0d0*z3(m)+6.0d0*z4(m)

 z3(m)=z3(m)+4.0d0*z4(m)

 vz0(m)=vz0(m)+ vz1(m)+ vz2(m)+ vz3(m)+vz4(m)

 vz1(m)=vz1(m)+2.0d0*vz2(m)+3.0d0*vz3(m)+4.0d0*vz4(m)

 vz2(m)=vz2(m)+3.0d0*vz3(m)+6.0d0*vz4(m)

 vz3(m)=vz3(m)+4.0d0*vz4(m)

 vxytemp = vxytemp + vx0(m)*vx0(m) + vy0(m)*vy0(m)

 vztemp = vztemp + vz0(m)*vz0(m)

 ENDDO

 vx2sum = vx2sum*sfam

 vy2sum = vy2sum*sfam

 vz2sum = vz2sum*sfam

 v13sum = v13sum*sfam

 v23sum = v23sum*sfam

 vxytemp = vxytemp*sfam

 vztemp = vztemp*sfam

 vx2sumb = 0.0d0

 vy2sumb = 0.0d0

 vz2sumb = 0.0d0

 v13sumb = 0.0d0

 v23sumb = 0.0d0

 vxytempb= 0.0d0

41

 vztempb = 0.0d0

 DO m=nsfmol+1,nadmol

 vxsq = vx0(m)*vx0(m)

 vysq = vy0(m)*vy0(m)

 vzsq = vz0(m)*vz0(m)

 vx2sumb = vx2sumb+vxsq

 vy2sumb = vy2sumb+vysq

 vz2sumb = vz2sumb+vzsq

 v13sumb = v13sumb+vx0(m)*vz0(m)

 v23sumb = v23sumb+vy0(m)*vz0(m)

 xold(m)=x0(m)

 x0(m)=x0(m)+ x1(m)+ x2(m)+ x3(m)+x4(m)

 x1(m)=x1(m)+2.0d0*x2(m)+3.0d0*x3(m)+4.0d0*x4(m)

 x2(m)=x2(m)+3.0d0*x3(m)+6.0d0*x4(m)

 x3(m)=x3(m)+4.0d0*x4(m)

 vx0(m)=vx0(m)+ vx1(m)+ vx2(m)+ vx3(m)+vx4(m)

 vx1(m)=vx1(m)+2.0d0*vx2(m)+3.0d0*vx3(m)+4.0d0*vx4(m)

 vx2(m)=vx2(m)+3.0d0*vx3(m)+6.0d0*vx4(m)

 vx3(m)=vx3(m)+4.0d0*vx4(m)

 yold(m)=y0(m)

 y0(m)=y0(m)+ y1(m)+ y2(m)+ y3(m)+y4(m)

 y1(m)=y1(m)+2.0d0*y2(m)+3.0d0*y3(m)+4.0d0*y4(m)

 y2(m)=y2(m)+3.0d0*y3(m)+6.0d0*y4(m)

 y3(m)=y3(m)+4.0d0*y4(m)

 vy0(m)=vy0(m)+ vy1(m)+ vy2(m)+ vy3(m)+vy4(m)

 vy1(m)=vy1(m)+2.0d0*vy2(m)+3.0d0*vy3(m)+4.0d0*vy4(m)

 vy2(m)=vy2(m)+3.0d0*vy3(m)+6.0d0*vy4(m)

 vy3(m)=vy3(m)+4.0d0*vy4(m)

 zold(m)=z0(m)

 z0(m)=z0(m)+ z1(m)+ z2(m)+ z3(m)+z4(m)

 z1(m)=z1(m)+2.0d0*z2(m)+3.0d0*z3(m)+4.0d0*z4(m)

 z2(m)=z2(m)+3.0d0*z3(m)+6.0d0*z4(m)

 z3(m)=z3(m)+4.0d0*z4(m)

 vz0(m)=vz0(m)+ vz1(m)+ vz2(m)+ vz3(m)+vz4(m)

 vz1(m)=vz1(m)+2.0d0*vz2(m)+3.0d0*vz3(m)+4.0d0*vz4(m)

 vz2(m)=vz2(m)+3.0d0*vz3(m)+6.0d0*vz4(m)

 vz3(m)=vz3(m)+4.0d0*vz4(m)

 vxytempb = vxytempb + vx0(m)*vx0(m) + vy0(m)*vy0(m)

 vztempb = vztempb + vz0(m)*vz0(m)

 ENDDO

 vx2sum = vx2sum+vx2sumb*bfam

 vy2sum = vy2sum+vy2sumb*bfam

 vz2sum = vz2sum+vz2sumb*bfam

 vxy2sum = vx2sum+vy2sum

 v2sum = vxy2sum+vz2sum

 v13sum = v13sum+v13sumb*bfam

 v23sum = v23sum+v23sumb*bfam

42

 vxytemp = vxytemp+vxytempb*bfam

 vztemp = vztemp+vztempb*bfam

 etua = v2sum/(3.0d0*nadmol) ! instantaneous T at t

 tmolsum = tmolsum+etua ! for average T

 tmol2sum = tmol2sum+etua*etua ! for T fluctuations

C __

C

C Temperature Controls in the parallel (tcl)

C and perpendicular (tcz) directions

C __

 tcl0=tcl0+ tcl1+ tcl2+ tcl3+tcl4

 tcl1=tcl1+2.0d0*tcl2+3.0d0*tcl3+4.0d0*tcl4

 tcl2=tcl2+3.0d0*tcl3+6.0d0*tcl4

 tcl3=tcl3+4.0d0*tcl4

 tcz0=tcz0+ tcz1+ tcz2+ tcz3+tcz4

 tcz1=tcz1+2.0d0*tcz2+3.0d0*tcz3+4.0d0*tcz4

 tcz2=tcz2+3.0d0*tcz3+6.0d0*tcz4

 tcz3=tcz3+4.0d0*tcz4

C _____________________________________

C

C Adjusting lateral dimensions based on

C evolution trajectory/history

C _____________________________________

 bLxold=bLx0

 bLx0=bLx0+ bLx1+ bLx2+ bLx3+bLx4

 bLx1=bLx1+2.0d0*bLx2+3.0d0*bLx3+4.0d0*bLx4

 bLx2=bLx2+3.0d0*bLx3+6.0d0*bLx4

 bLx3=bLx3+4.0d0*bLx4

 bLyold=bLy0

 bLy0=bLy0+ bLy1+ bLy2+ bLy3+bLy4

 bLy1=bLy1+2.0d0*bLy2+3.0d0*bLy3+4.0d0*bLy4

 bLy2=bLy2+3.0d0*bLy3+6.0d0*bLy4

 bLy3=bLy3+4.0d0*bLy4

 IF (istart.eq.2) THEN ! allowing separation to change

 do i=1,layers

 rsnew(i) = rsold(i) - deltz

 rsnew(i+layers)= rsold(i+layers) + deltz

 enddo

 ELSE ! fixed separation

 do i=1,layers

 rsnew(i) = rsold(i)

 rsnew(i+layers) = rsold(i+layers)

 enddo

 ENDIF

 hz0 = rsold(layers+1) - rsold(1) ! old separation

 hz1 = rsnew(layers+1) - rsnew(1) ! new separation

 sconold = bLxold*bLyold ! old confining surface area

 vold = sconold*hz0 ! old confined volume

 dvold = 2.0d0*vold

 scon = bLx0*bLy0 ! new confining surface area

43

 dscon = 2.0d0*scon

c __________

c

c FORCE LOOP

c __________

 CALL accel !!

 totint = totint+potff !! fluid-fluid interaction

 totmol = totmol+potfs !! fluid-surface interaction

 skztot = skztot+skz

c ____________________________

c

c PRESSURE CONTROL COEFFICIENT

c ____________________________

 ptemp = (ptemp+vxytemp)

 beta = 4.0*scon*hz1/(2.0*ptemp-deno) !! This is k||

 coe = (-beta*(dscon*pset*hz1-ptemp))/(dscon*hz1*tp)

 pxy = (pxy+vxy2sum)/dvold !! parallel P

 pxytot = pxytot+pxy

 pxy2 = pxy2+pxy*pxy

 pz = (pz+vz2sum)/vold !! perpendicular P

 pztot = pztot+pz

 pz2 = pz2+pz*pz

 fsol = pz-pxy !! solvation force

 fsoltot= fsoltot+fsol

 fsol2 = fsol2+fsol*fsol

 ppsfsf = ppsfsf/dvold ! solvent-solvent to Pxy

 ppsfsftot = ppsfsftot + ppsfsf

 ppsfbf = ppsfbf/dvold ! solvent-nanoparticle to Pxy

 ppsfbftot = ppsfbftot + ppsfbf

 ppsfsa = ppsfsa/dvold ! solvent-surface to Pxy

 ppsfsatot = ppsfsatot + ppsfsa

 ppbfbf = ppbfbf/dvold ! nanoparticle-nanoparticle to Pxy

 ppbfbftot = ppbfbftot + ppbfbf

 ppbfsa = ppbfsa/dvold ! nanoparticle-surface to Pxy

 ppbfsatot = ppbfsatot + ppbfsa

 pzsfsf = pzsfsf/vold

 pzsfsftot = pzsfsftot + pzsfsf

 pzsfbf = pzsfbf/vold

 pzsfbftot = pzsfbftot + pzsfbf

 pzsfsa = pzsfsa/vold

 pzsfsatot = pzsfsatot + pzsfsa

 pzbfbf = pzbfbf/vold

 pzbfbftot = pzbfbftot + pzbfbf

 pzbfsa = pzbfsa/vold

 pzbfsatot = pzbfsatot + pzbfsa

 fzsf = 0.50d0*fzsf/sconold ! perpendicular force/A = Pz

 fzsftot = fzsftot+fzsf

 fzbf = 0.50d0*fzbf/sconold

44

 fzbftot = fzbftot+fzbf

 fxxutot = fxxutot+fxxu/sconold ! parallel force/A = drag

 fxxdtot = fxxdtot+fxxd/sconold

 bLxtot = bLxtot+bLxold

 bLxt2 = bLxt2+bLxold*bLxold

 bLxold2 = bLxold*bLxold

 bLxt4 = bLxt4+bLxold2*bLxold2

c ______________________

c

c GEAR'S CORRECTOR PHASE

c ______________________

 vcoe = ttnh*(vxytemp/(2.0d0*nadmol*temp)-1.0d0)

 vcoez= ttnh*(vztemp/(nadmol*temp)-1.0d0)

 tclcor = vcoe*h-tcl1

 tcl0 = tcl0+tclcor*f01

 tcl1 = tcl1+tclcor

 tcl2 = tcl2+tclcor*f21

 tcl3 = tcl3+tclcor*f31

 tcl4 = tcl4+tclcor*f41

 fcoe = ttnh*tcl0

 tczcor = vcoez*h-tcz1

 tcz0 = tcz0+tczcor*f01

 tcz1 = tcz1+tczcor

 tcz2 = tcz2+tczcor*f21

 tcz3 = tcz3+tczcor*f31

 tcz4 = tcz4+tczcor*f41

 fcoez = ttnh*tcz0

 bLxcor = coe*bLx0*h-bLx1

 bLx0 = bLx0+bLxcor*f01

 bLx1 = bLx1+bLxcor

 bLx2 = bLx2+bLxcor*f21

 bLx3 = bLx3+bLxcor*f31

 bLx4 = bLx4+bLxcor*f41

 schange = schange + bLx0 - bLxold

 IF((schange*schange).ge.drneig) disptest=.true.

 DO m=1,nadmol

 xcor = (vx0(m)+coe*x0(m))*h-x1(m)

 x0(m) = x0(m)+xcor*f01 !! new positions at (t+dt)

 x1(m) = x1(m)+xcor

 x2(m) = x2(m)+xcor*f21

 x3(m) = x3(m)+xcor*f31

 x4(m) = x4(m)+xcor*f41

 vxcor = (ax(m)-fcoe*vx0(m))*h-vx1(m)

 vx0(m) = vx0(m)+vxcor*f01 !! new velocities at (t+dt)

 vx1(m) = vx1(m)+vxcor

 vx2(m) = vx2(m)+vxcor*f21

 vx3(m) = vx3(m)+vxcor*f31

45

 vx4(m) = vx4(m)+vxcor*f41

 diff(1,m) = diff(1,m)+x0(m)-xold(m)

 ycor = (vy0(m)+coe*y0(m))*h-y1(m)

 y0(m) = y0(m)+ycor*f01 !! new positions at (t+dt)

 y1(m) = y1(m)+ycor

 y2(m) = y2(m)+ycor*f21

 y3(m) = y3(m)+ycor*f31

 y4(m) = y4(m)+ycor*f41

 vycor = (ay(m)-fcoe*vy0(m))*h-vy1(m)

 vy0(m) = vy0(m)+vycor*f01 !! new velocities at (t+dt)

 vy1(m) = vy1(m)+vycor

 vy2(m) = vy2(m)+vycor*f21

 vy3(m) = vy3(m)+vycor*f31

 vy4(m) = vy4(m)+vycor*f41

 diff(2,m) = diff(2,m)+y0(m)-yold(m)

 zcor = vz0(m)*h-z1(m)

 z0(m) = z0(m)+zcor*f01 !! new positions at (t+dt)

 z1(m) = z1(m)+zcor

 z2(m) = z2(m)+zcor*f21

 z3(m) = z3(m)+zcor*f31

 z4(m) = z4(m)+zcor*f41

 vzcor = (az(m)-fcoez*vz0(m))*h-vz1(m)

 vz0(m) = vz0(m)+vzcor*f01 !! new velocities at (t+dt)

 vz1(m) = vz1(m)+vzcor

 vz2(m) = vz2(m)+vzcor*f21

 vz3(m) = vz3(m)+vzcor*f31

 vz4(m) = vz4(m)+vzcor*f41

 diff(3,m) = diff(3,m)+z0(m)-zold(m)

 dispvec=0.0d0

 DO j=1,3

 dispvec = dispvec+diff(j,m)*diff(j,m)

 ENDDO

 IF(dispvec.ge.drneig)THEN

 disptest =.true.

 ELSE

 disp(1,m) = disp(1,m)+x0(m)-xold(m)

 disp(2,m) = disp(2,m)+y0(m)-yold(m)

 ENDIF

c __________________________________

c

c Apply periodic boundary conditions

c __________________________________

 nbcx = dnint(x0(m)/bLx0)

 nbcy = dnint(y0(m)/bLy0)

 if(nbcx.ne.0)then

c --

c Adjustments due to system dimension change

c --

 bLx0sq = bLx0*bLx0

 bLx1sq = bLx1*bLx1

46

 edotx1 = bLx1/bLx0

 edotx2 = (2.0d0*bLx2*bLx0-bLx1sq)/(bLx0sq)

 edotx3 = ((6.0d0*(bLx3*bLx0-bLx2*bLx1)*bLx0)

 & +(2.0d0*bLx1*bLx1sq))/(bLx0*bLx0sq)

 edotx4 = ((24.0d0*(bLx4*bLx0sq-bLx3*bLx1*bLx0

 & +bLx2*bLx1sq)*bLx0)-12.0d0*bLx2*bLx2*bLx0sq

 & -6.0d0*bLx1sq*bLx1sq)/(bLx0sq*bLx0sq)

 corr0 = -bLx0*nbcx

 corr1 = edotx1*corr0

 corr2 = (edotx1*corr1+edotx2*corr0)/2.0d0

 corr3 = (2.0d0*(edotx1*corr2+edotx2*corr1)

 & +edotx3*corr0)/6.0d0

 corr4 = (6.0d0*(edotx1*corr3+edotx2*corr2)

 & +3.0d0*edotx3*corr1+edotx4*corr0)/24.0d0

 x0(m) = x0(m)+corr0

 x1(m) = x1(m)+corr1

 x2(m) = x2(m)+corr2

 x3(m) = x3(m)+corr3

 x4(m) = x4(m)+corr4

 endif

 if(nbcy.ne.0)then

c --

c Adjustments due to system dimension change

c --

 bLy0sq = bLy0*bLy0

 bLy1sq = bLy1*bLy1

 edoty1 = bLy1/bLy0

 edoty2 = (2.0d0*bLy2*bLy0-bLy1sq)/(bLy0sq)

 edoty3 = ((6.0d0*(bLy3*bLy0-bLy2*bLy1)*bLy0)

 & +(2.0d0*bLy1*bLy1sq))/(bLy0*bLy0sq)

 edoty4 = ((24.0d0*(bLy4*bLy0sq-bLy3*bLy1*bLy0

 & +bLy2*bLy1sq)*bLy0)-12.0d0*bLy2*bLy2*bLy0sq

 & -6.0d0*bLy1sq*bLy1sq)/(bLy0sq*bLy0sq)

 corr0 = -bLy0*nbcy

 corr1 = edoty1*corr0

 corr2 = (edoty1*corr1+edoty2*corr0)/2.0d0

 corr3 = (2.0d0*(edoty1*corr2+edoty2*corr1)

 & +edoty3*corr0)/6.0d0

 corr4 = (6.0d0*(edoty1*corr3+edoty2*corr2)

 & +3.0d0*edoty3*corr1+edoty4*corr0)/24.0d0

 y0(m) = y0(m)+corr0

 y1(m) = y1(m)+corr1

 y2(m) = y2(m)+corr2

 y3(m) = y3(m)+corr3

 y4(m) = y4(m)+corr4

 endif

 ENDDO

c _______________________________________

c

c prepare the surfaces for next iteration

c _______________________________________

 do i=1,layers

 rsold(i) = rsnew(i)

47

 rsold(i+layers) = rsnew(i+layers)

 enddo

c __

c

c istart=3: equilibration has been reached

c Record displacement every 'isave' time steps

c to calculate diffusivity from mean square

c displacement

c __

 IF (istart.eq.3) THEN

 icnt = icnt+1

 IF(icnt.eq.isave)then

 icnt = 0

c __________________________

c

c Calculate density profiles

c __________________________

 DO m=1,nsfmol

 ncom=dnint(z0(m)/dz)+ncen

 densf(ncom)=densf(ncom)+1

 ENDDO

 DO j=1,nbfmol

 m = nsfmol+j

 ncom=dnint(z0(m)/dz)+ncen

 denbf(ncom)=denbf(ncom)+1

 ENDDO

 index = index+1

 IF(index.le.itau) THEN

 DO i=1,index-1

 ndt=index-i

 DO m = 1,nsfmol

 dx = disp(1,m)-rm2(1,m,i)

 dy = disp(2,m)-rm2(2,m,i)

 drsf(ndt) = drsf(ndt)+dx*dx+dy*dy

 ENDDO

 DO m = nsfmol+1,nadmol

 dx = disp(1,m)-rm2(1,m,i)

 dy = disp(2,m)-rm2(2,m,i)

 drbf(ndt) = drbf(ndt)+dx*dx+dy*dy

 ENDDO

 ENDDO

 DO m = 1,nadmol

 rm2(1,m,index) = disp(1,m)

 rm2(2,m,index) = disp(2,m)

 ENDDO

 ELSE

 DO m = 1,nsfmol

 dx = disp(1,m)-rm2(1,m,1)

 dy = disp(2,m)-rm2(2,m,1)

 drsf(itau) = drsf(itau)+dx*dx+dy*dy

48

 ENDDO

 DO m = nsfmol+1,nadmol

 dx = disp(1,m)-rm2(1,m,1)

 dy = disp(2,m)-rm2(2,m,1)

 drbf(itau) = drbf(itau)+dx*dx+dy*dy

 ENDDO

 DO j = 2,itau

 ndt=(itau+1)-j

 DO m = 1,nsfmol

 dx = disp(1,m)-rm2(1,m,j)

 dy = disp(2,m)-rm2(2,m,j)

 drsf(ndt) = drsf(ndt)+dx*dx+dy*dy

 rm2(1,m,j-1)=rm2(1,m,j)

 rm2(2,m,j-1)=rm2(2,m,j)

 ENDDO

 DO m = nsfmol+1,nadmol

 dx = disp(1,m)-rm2(1,m,j)

 dy = disp(2,m)-rm2(2,m,j)

 drbf(ndt) = drbf(ndt)+dx*dx+dy*dy

 rm2(1,m,j-1)=rm2(1,m,j)

 rm2(2,m,j-1)=rm2(2,m,j)

 ENDDO

 ENDDO

 DO m=1,nadmol

 rm2(1,m,itau)=disp(1,m)

 rm2(2,m,itau)=disp(2,m)

 ENDDO

 ENDIF !itau

 ENDIF !isave

 ENDIF

c ____________________

c

c INTERMEDIATE RESULTS

c ____________________

 IF (icntpt.eq.iprint) then

 icntpt = 0

 tempmol = tmolsum/iprint

 stdtmol = sqrt(tmol2sum/iprint-tempmol*tempmol)*epsi/R

 tempmol = tempmol*epsi/R

 avb = bLxtot/iprint

 ava = bLxt2/iprint

 avpxy = pxytot/iprint

 stdpxy = sqrt(pxy2/iprint-avpxy*avpxy)

 avpz = pztot/iprint

 stdpz = sqrt(pz2/iprint-avpz*avpz)

 avfsol = fsoltot/iprint

 avfzsf = fzsftot/iprint

 avfzbf = fzbftot/iprint

 avfxxd = fxxdtot/iprint

 avfxxu = fxxutot/iprint

 avint = totint/iprint

49

 avmol = totmol/iprint

 avskz = skztot/iprint

 avppsfsf = ppsfsftot/iprint

 avppsfbf = ppsfbftot/iprint

 avppsfsa = ppsfsatot/iprint

 avppbfbf = ppbfbftot/iprint

 avppbfsa = ppbfsatot/iprint

 avpzsfsf = pzsfsftot/iprint

 avpzsfbf = pzsfbftot/iprint

 avpzsfsa = pzsfsatot/iprint

 avpzbfbf = pzbfbftot/iprint

 avpzbfsa = pzbfsatot/iprint

 tmolsum = 0.0d0

 tmol2sum= 0.0d0

 bLxtot = 0.0d0

 bLxt2 = 0.0d0

 pxytot = 0.0d0

 pxy2 = 0.0d0

 pztot = 0.0d0

 pz2 = 0.0d0

 fsoltot = 0.0d0

 fzsftot = 0.0d0

 fzbftot = 0.0d0

 fxxdtot = 0.0d0

 fxxutot = 0.0d0

 totint = 0.0d0

 totmol = 0.0d0

 skztot = 0.0d0

 ppsfsftot = 0.0d0

 ppsfbftot = 0.0d0

 ppsfsatot = 0.0d0

 ppbfbftot = 0.0d0

 ppbfsatot = 0.0d0

 pzsfsftot = 0.0d0

 pzsfbftot = 0.0d0

 pzsfsatot = 0.0d0

 pzbfbftot = 0.0d0

 pzbfsatot = 0.0d0

c write(*,*)nstp,hz0,bLx0,pxy,pz,potff,potfs,skz

 write(*,900)nstp,dxtot,tempmol,stdtmol,avb,ava,avint,avmol,

 & avpxy,stdpxy,avppsfsf,avppsfbf,avppsfsa,avppbfbf,avppbfsa,

 & avpz,stdpz,avpzsfsf,avpzsfbf,avpzsfsa,avpzbfbf,avpzbfsa,

 & avfsol,avfzsf,avfzbf,avfxxd,avfxxu,avskz

 IF (istart.eq.2) THEN

 if(nstp.eq.25000)then

c DO m=1,nadmol

c write(2,999)x0(m),y0(m),z0(m),vx0(m),vy0(m),vz0(m)

c ENDDO

c write(2,*)bLx0,bLy0,hz1

50

 istart = istart + 1

 write(*,*)'_________Shearing Begins___________'

 GO TO 200

 endif

 ELSE

 if (mod(nstp,50000).eq.0) then

 DO m=1,nadmol

 write(2,999)x0(m),y0(m),z0(m),vx0(m),vy0(m),vz0(m)

 ENDDO

 write(2,*)bLx0,bLy0,hz1

 write(2,*)'XXX'

 endif

 900 format(I7,32(1x,E11.5))

 ENDIF

 ENDIF

 ENDDO !! end of main loop

 DO m=1,nadmol

 write(2,999)x0(m),y0(m),z0(m),vx0(m),vy0(m),vz0(m)

 ENDDO

 write(2,*)bLx0,bLy0,hz1

 write(2,*)nstp,nbfmol,h*sigma/dsqrt(epsi/unitm)

 do i=1,99

 densf(i) = densf(i)/kmax/(dz*ava)

 denbf(i) = denbf(i)/kmax/(dz*ava)

 write(3,999)(i-ncen)*dz,densf(i),denbf(i)

 enddo

 DO i=1,kmax !! length of record

 DO j=i,min0(kmax,itau+i)

 ndt = j - i

 ncnt1(ndt) = ncnt1(ndt) + 1

 ENDDO

 ENDDO

 drsf(0) = 0.0d0

 drbf(0) = 0.0d0

 do i=0,itau

 drsf(i) = drsf(i)/ncnt1(i)/nsfmol

 if (nbfmol.gt.0) drbf(i) = drbf(i)/ncnt1(i)/nbfmol

 enddo

c __

c

c Fitting least-square line to get limiting slope

c ___

51

 sumx = 0.0d0

 sumx2 = 0.0d0

 sumxy = 0.0d0

 sumy = 0.0d0

 sumy2 = 0.0d0

 num = 3*(itau+1)/4 ! using the last 1/4 section

 DO i=num,itau

 rsqt = drsf(i)

 xt = i*isave*h

 sumy = sumy + rsqt

 sumy2 = sumy2 + rsqt*rsqt

 sumx = sumx + xt

 sumx2 = sumx2 + xt*xt

 sumxy = sumxy + xt*rsqt

 ENDDO

 diff_coef = (sumy*sumx-num*sumxy)

 & /(sumx*sumx-num*sumx2)/4.0

 write(3,*)'Dsf_rm2=',diff_coef

 sumx = 0.0d0

 sumx2 = 0.0d0

 sumxy = 0.0d0

 sumy = 0.0d0

 sumy2 = 0.0d0

 DO i=num,itau

 rsqt = drbf(i)

 xt = i*isave*h

 sumy = sumy + rsqt

 sumy2 = sumy2 + rsqt*rsqt

 sumx = sumx + xt

 sumx2 = sumx2 + xt*xt

 sumxy = sumxy + xt*rsqt

 ENDDO

 diff_coef = (sumy*sumx-num*sumxy)

 & /(sumx*sumx-num*sumx2)/4.0

 write(3,*)'Dbf_rm2=',diff_coef

 DO i=0,itau,4

 write(3,999)i*isave*h,drsf(i),drbf(i)

 ENDDO

 999 format(20(1x,e11.5))

 stop

 END

 SUBROUTINE setup_sa_position

 IMPLICIT real*8 (a-h,o-z),integer*4 (i-n)

 include 'ljmix'

c ___

c

c This SUBROUTINE sets up the surface atoms in a

c surface unit cell for both confining substrates

c ___

52

 sx(1,1) = 0.0d0

 sy(1,1) = 0.0d0

 sx(2,1) = sx(1,1)-0.50d0*x_L

 sy(2,1) = sy(1,1)-0.50d0*y_L

 sx(1,2) = sx(1,1)

 sy(1,2) = sy(1,1)-y_L/3.0d0

 sx(2,2) = sx(1,1)-0.50d0*x_L

 sy(2,2) = sy(1,1)+y_L/6.0d0

 sx(1,3) = sx(1,1)

 sy(1,3) = sy(1,1)-y_L/3.0d0

 sx(2,3) = sx(1,1)-0.50d0*x_L

 sy(2,3) = sy(1,1)+y_L/6.0d0

 sx(1,4) = sx(1,1)-0.50d0*x_L

 sy(1,4) = sy(1,1)-y_L/6.0d0

 sx(2,4) = sx(1,1)

 sy(2,4) = sy(1,1)+y_L/3.0d0

 sx(1,5) = sx(1,1)-0.50d0*x_L

 sy(1,5) = sy(1,1)-y_L/6.0d0

 sx(2,5) = sx(1,1)

 sy(2,5) = sy(1,1)+y_L/3.0d0

 sx(1,6) = sx(1,1)

 sy(1,6) = sy(1,1)

 sx(2,6) = sx(2,1)

 sy(2,6) = sy(2,1)

 sx(1,7) = sx(1,1)

 sy(1,7) = sy(1,1)

 sx(2,7) = sx(2,1)

 sy(2,7) = sy(2,1)

 sx(1,8) = sx(1,2)

 sy(1,8) = sy(1,2)

 sx(2,8) = sx(2,2)

 sy(2,8) = sy(2,2)

 do i=1,layers

 sx(1,i+layers) = sx(1,i)

 sy(1,i+layers) = sy(1,i)

 sx(2,i+layers) = sx(2,i)

 sy(2,i+layers) = sy(2,i)

 enddo

 RETURN

 END

 SUBROUTINE gauss(vx,vy,vz,tempe)

 IMPLICIT real*8 (a-h,o-z),integer*4 (i-n)

 include 'ljmix'

c Generate a gaussian random velocity

53

 CALL SRAND(ISEED)

 vxpick = 0.0d0

 vypick = 0.0d0

 vzpick = 0.0d0

 DO k=1,12

 ran1 = rand()

 ran2 = rand()

 ran3 = rand()

 vxpick = vxpick+ran1

 vypick = vypick+ran2

 vzpick = vzpick+ran3

 ENDDO

 vx = (vxpick-6.0d0)*dsqrt(tempe)

 vy = (vypick-6.0d0)*dsqrt(tempe)

 vz = (vzpick-6.0d0)*dsqrt(tempe)

 RETURN

 END

 SUBROUTINE fluid_neighbor_list

 IMPLICIT real*8 (a-h,o-z),integer*4 (i-n)

 include 'ljmix'

c __

c

c Construct neighbor lists of other UA's for molecules

c __

C ------------------------

C Like pair of smaller-smaller fluid atoms

C ------------------------

 DO m=1,nsfmol+1

 inblss(m) = 0

 inblsb(m) = 0

 ENDDO

 DO m=1,nnblss

 inblstss(m) = 0

 ENDDO

 DO m=1,nnblsb

 inblstsb(m) = 0

 ENDDO

 DO m=1,nbfmol+1

 inblbb(m) = 0

 ENDDO

 DO m=1,nnblbb

 inblstbb(m) = 0

 ENDDO

 nlistss = 0

 nlistsb = 0

 DO m=1,nsfmol

54

C ---------------------

C solvent-solvent pairs

C ---------------------

 inblss(m) = nlistss+1

 DO i=m+1,nsfmol

 xij = x0(m)-x0(i)

 yij = y0(m)-y0(i)

 zij = z0(m)-z0(i)

 xij = xij-bLx0*dnint(xij/bLx0)

 yij = yij-bLy0*dnint(yij/bLy0)

 rij2=xij*xij+yij*yij+zij*zij

 IF (rij2.le.rnbl2sfsf) then

 nlistss=nlistss+1

 inblstss(nlistss)=i !! molecule

 ENDIF

 ENDDO

C --------------------------

C solvent-nanoparticle pairs

C --------------------------

 inblsb(m) = nlistsb+1

 DO i=nsfmol+1,nadmol

 xij = x0(m)-x0(i)

 yij = y0(m)-y0(i)

 zij = z0(m)-z0(i)

 xij = xij-bLx0*dnint(xij/bLx0)

 yij = yij-bLy0*dnint(yij/bLy0)

 rij2=xij*xij+yij*yij+zij*zij

 IF (rij2.le.rnbl2sfbf) then

 nlistsb=nlistsb+1

 inblstsb(nlistsb)=i !! molecule

 ENDIF

 ENDDO

 ENDDO

 nlistbb = 0

 DO j=1,nbfmol

 m = j + nsfmol

C -------------------------------

C nanoparticle-nanoparticle pairs

C -------------------------------

 inblbb(j) = nlistbb+1

 DO i=m+1,nadmol

 xij = x0(m)-x0(i)

 yij = y0(m)-y0(i)

 zij = z0(m)-z0(i)

 xij = xij-bLx0*dnint(xij/bLx0)

 yij = yij-bLy0*dnint(yij/bLy0)

 rij2=xij*xij+yij*yij+zij*zij

 IF (rij2.le.rnbl2bfbf) then

 nlistbb=nlistbb+1

 inblstbb(nlistbb)=i !! molecule

 ENDIF

 ENDDO

55

 ENDDO

 IF(nlistss.gt.nnblss) then

 print *,'make nnblss > ',nlistss+1

 stop

 ENDIF

 IF(nlistsb.gt.nnblsb) then

 print *,'make nnblsb > ',nlistsb+1

 stop

 ENDIF

 IF(nlistbb.gt.nnblbb) then

 print *,'make nnblbb > ',nlistbb+1

 stop

 ENDIF

 RETURN

 END

 SUBROUTINE accel

 IMPLICIT real*8 (a-h,o-z),integer*4 (i-n)

 include 'ljmix'

 DO m=1,nadmol

 ax(m) = 0.0d0

 ay(m) = 0.0d0

 az(m) = 0.0d0

 ENDDO

 ppsfsf = 0.0d0

 ppsfbf = 0.0d0

 ppsfsa = 0.0d0

 ppbfbf = 0.0d0

 ppbfsa = 0.0d0

 pzsfsf = 0.0d0

 pzsfbf = 0.0d0

 pzsfsa = 0.0d0

 pzbfbf = 0.0d0

 pzbfsa = 0.0d0

 fzsf = 0.0d0

 fzbf = 0.0d0

 fxxd = 0.0d0

 fxxu = 0.0d0

 potsfsf = 0.0d0

 potbfbf = 0.0d0

 potsfsa = 0.0d0

 potbfsa = 0.0d0

 ptemp = 0.0d0

 deno = 0.0d0

 skzc = 0.0d0

 skzs = 0.0d0

56

C ---

C dxtot: displacement of the upper surface

C for continuous shearing (stationary lower surface)

C ---

 dxtot = dxtot + deltx

C _____________________________

C

C INTERACTIONS BASED ON SOLVENT

C _____________________________

 DO m=1,nsfmol

 xorig = xold(m)

 yorig = yold(m)

 zorig = zold(m)

 rkz = (zorig-rsold(1))*zk

 skzc = skzc+cos(rkz)

 skzs = skzs+sin(rkz)

 xpred = x0(m)

 ypred = y0(m)

 zpred = z0(m)

 aclx = ax(m)

 acly = ay(m)

 aclz = az(m)

C _________________________________

C

C solvent-solvent pair interactions

C _________________________________

 ibegss = inblss(m)

 iendss = inblss(m+1)-1

 DO ilist=ibegss,iendss ! No. of interacting pairs

 i=inblstss(ilist) ! identity of interacting partner

C ---

C Use old coordinates to calculate properties

C ---

 Xij = xorig - xold(i) !! old positions

 Yij = yorig - yold(i)

 Zij = zorig - zold(i)

 xpbc = -bLxold*dnint(Xij/bLxold)

 ypbc = -bLyold*dnint(Yij/bLyold)

 Xij = Xij+xpbc

 Yij = Yij+ypbc

 xij2 = Xij*Xij

 yij2 = Yij*Yij

 rxy2 = xij2 + yij2

 zij2 = Zij*Zij

 rij2 = rxy2 + zij2

 IF (rij2.le.rcut2sfsf) then

 rho2 = sig2sfsf/rij2

 rho6 = rho2*rho2*rho2

 rho12 = rho6*rho6

 rij = dsqrt(rij2)

 Fij = eps24sfsf*((2.0d0*rho12-rho6)/rij2 -fcsfsf/rij)

57

 ppsfsf = ppsfsf + Fij*rxy2

 pzsfsf = pzsfsf + Fij*zij2

 potsfsf = potsfsf+(rho12-rho6)-vcsfsf+fcvsfsf*rij

 ENDIF

C --

C Use predicted coordinates to estimate properties

C --

 x0ij = xpred - x0(i) !! predicted positions for calculating

 y0ij = ypred - y0(i) !! accelerations and coefficients

 z0ij = zpred - z0(i)

 x0ij = x0ij + xpbc

 y0ij = y0ij + ypbc

 r0xy2 = x0ij*x0ij + y0ij*y0ij

 z0ij2 = z0ij*z0ij

 r0ij2 = r0xy2 + z0ij2

 IF (r0ij2.le.rcut2sfsf) then

 r0ij4 = r0ij2*r0ij2

 r0xy4 = r0xy2*r0xy2

 rho2 = sig2sfsf/r0ij2

 rho6 = rho2*rho2*rho2

 rho12 = rho6*rho6

 r0ij = dsqrt(r0ij2)

 F0ij = eps24sfsf*((2.0d0*rho12-rho6)-fcsfsf*r0ij)/r0ij2

 x0ff_r4 = epssfsf*(-672.0d0*rho12+192.0d0*rho6

 & +24.0d0*r0ij*fcsfsf)/r0ij4

 ptemp = ptemp+F0ij*r0xy2

 deno = deno+r0xy4*x0ff_r4+2.0*F0ij*r0xy2

 fx0lj = F0ij*(X0ij) !! Fij=(-dv/dr)/r

 fy0lj = F0ij*(Y0ij)

 fz0lj = F0ij*(Z0ij)

 aclx = aclx + fx0lj

 acly = acly + fy0lj

 aclz = aclz + fz0lj

 ax(i) = ax(i) - fx0lj

 ay(i) = ay(i) - fy0lj

 az(i) = az(i) - fz0lj

 ENDIF

 ENDDO

C ______________________________________

C

C solvent-nanoparticle pair interactions

C ______________________________________

 ibegsb = inblsb(m)

 iendsb = inblsb(m+1)-1

 DO ilist=ibegsb,iendsb ! No. of interacting nanoparticles

 j=inblstsb(ilist) ! identity of interacting nanoparticles

C ---

C Use old coordinates to calculate properties

C ---

 Xij = xorig - xold(j) !! old positions

58

 Yij = yorig - yold(j)

 Zij = zorig - zold(j)

 xpbc = -bLxold*dnint(Xij/bLxold)

 ypbc = -bLyold*dnint(Yij/bLyold)

 Xij = Xij+xpbc

 Yij = Yij+ypbc

 xij2 = Xij*Xij

 yij2 = Yij*Yij

 rxy2 = xij2 + yij2

 zij2 = Zij*Zij

 rij2 = rxy2 + zij2

 IF (rij2.le.rcut2sfbf) then

 rho2 = sig2sfbf/rij2

 rho6 = rho2*rho2*rho2

 rho12 = rho6*rho6

 rij = dsqrt(rij2)

 Fij = eps24sfbf*((2.0d0*rho12-rho6)/rij2 -fcsfbf/rij)

 ppsfbf = ppsfbf + Fij*rxy2

 pzsfbf = pzsfbf + Fij*zij2

 potsfbf = potsfbf+(rho12-rho6)-vcsfbf+fcvsfbf*rij

 ENDIF

C --

C Use predicted coordinates to estimate properties

C --

 x0ij = xpred - x0(j) !! predicted positions for calculating

 y0ij = ypred - y0(j) !! accelerations and coefficients

 z0ij = zpred - z0(j)

 x0ij = x0ij + xpbc

 y0ij = y0ij + ypbc

 r0xy2 = x0ij*x0ij + y0ij*y0ij

 z0ij2 = z0ij*z0ij

 r0ij2 = r0xy2 + z0ij2

 IF (r0ij2.le.rcut2sfbf) then

 r0ij4 = r0ij2*r0ij2

 r0xy4 = r0xy2*r0xy2

 rho2 = sig2sfbf/r0ij2

 rho6 = rho2*rho2*rho2

 rho12 = rho6*rho6

 r0ij = dsqrt(r0ij2)

 F0ij = eps24sfbf*((2.0d0*rho12-rho6)-fcsfbf*r0ij)/r0ij2

 x0ff_r4 = epssfbf*(-672.0d0*rho12+192.0d0*rho6

 & +24.0d0*r0ij*fcsfsf)/r0ij4

 ptemp = ptemp+F0ij*r0xy2

 deno = deno+r0xy4*x0ff_r4+2.0*F0ij*r0xy2

 fx0lj = F0ij*(X0ij) !! Fij=(-dv/dr)/r

 fy0lj = F0ij*(Y0ij)

 fz0lj = F0ij*(Z0ij)

 aclx = aclx + fx0lj

 acly = acly + fy0lj

 aclz = aclz + fz0lj

 ax(j) = ax(j) - fx0lj

 ay(j) = ay(j) - fy0lj

59

 az(j) = az(j) - fz0lj

 ENDIF

 ENDDO

C ____________________________

C

C solvent-surface interactions

C ____________________________

C --------------------------

C stationary (lower) surface

C --------------------------

 nyo = dnint(yorig/y_L)

 yshfto = yorig - nyo*y_L

 nyp = dnint(ypred/y_L)

 yshftp = ypred - nyp*y_L

 nxo = dnint(xorig/x_L)

 xshfto = xorig - nxo*x_L

 nxp = dnint(xpred/x_L)

 xshftp = xpred - nxp*x_L

 DO k=1,layers !stationary surface

 zij = zorig - rsold(k)

 zij2 = zij*zij

 IF (zij2.le.rcut2sfsa) THEN

 DO k1=1,2

 DO i=-3,3

 syad = i*y_L

 rsy = sy(k1,k) + syad

 DO j=-4,4

 sxad = j*x_L

 rsx = sx(k1,k) + sxad

 Xij = xshfto - rsx

 Yij = yshfto - rsy

 xij2 = Xij*Xij

 yij2 = Yij*Yij

 rxy2 = xij2 + yij2

 rij2 = rxy2 + zij2

 IF (rij2.le.rcut2sfsa) then

 rij = dsqrt(rij2)

 rho2 = sig2sfsa/rij2

 rho6 = rho2*rho2*rho2

 rho12= rho6*rho6

 Fij = eps24sfsa*((2.0d0*rho12-rho6)-fcsfsa*rij)/rij2

 potsfsa = potsfsa+((rho12-rho6)-vcsfsa+fcvsfsa*rij)

 fzsf = fzsf + Fij*abs(zij)

 ppsfsa = ppsfsa + Fij*rxy2

 fxxd = fxxd + Fij*Xij

 dis = zorig + (hz0/2.0)

 pzsfsa = pzsfsa + Fij*zij*dis

 ENDIF

 Xij = xshftp - rsx

 Yij = yshftp - rsy

 Zij = zpred - rsnew(k)

60

 rxy2 = Xij*Xij + Yij*Yij

 zij2 = Zij*Zij

 rij2 = rxy2 + zij2

 IF (rij2.le.rcut2sfsa) then

 rxy4 = rxy2*rxy2

 rij4 = rij2*rij2

 rho2 = sig2sfsa/rij2

 rho6 = rho2*rho2*rho2

 rho12= rho6*rho6

 rij = dsqrt(rij2)

 Fij = eps24sfsa*((2.0d0*rho12-rho6)/rij2-fcsfsa/rij)

 xwf_r4 = epssfsa*(-672.0d0*rho12+192.0d0*rho6

 & +24.0d0*rij*fcsfsa)/rij4

 rxys = Xij*xpred+Yij*ypred

 ptemp = ptemp+Fij*rxy2

 deno = deno+rxy2*rxys*xwf_r4ws+2.0*Fij*rxys

 fxlj = Fij*(Xij) !! Fij=(-dv/dr)/r

 fylj = Fij*(Yij)

 fzlj = Fij*(Zij)

 aclx = aclx + fxlj

 acly = acly + fylj

 aclz = aclz + fzlj

 ENDIF

 enddo ! do nx

 enddo ! do ny

 enddo ! do k1

 endif

 enddo !!k

C -------------------------------

C moving/shearing (upper) surface

C -------------------------------

 xshfto = xorig - dxtot

 nxo = dnint(xshfto/x_L)

 xshfto = xshfto - nxo*x_L

 xshftp = xpred - dxtot

 nxp = dnint(xshftp/x_L)

 xshftp = xshftp - nxp*x_L

 DO k=layers+1,2*layers ! moving/searing surface

 zij = zorig - rsold(k)

 zij2 = zij*zij

 IF (zij2.le.rcut2sfsa) THEN

 DO k1=1,2

 DO i=-3,3

 syad = i*y_L

 rsy = sy(k1,k) + syad

 DO j=-4,4

 sxad = j*x_L

 rsx = sx(k1,k) + sxad

 Xij = xshfto - rsx

 Yij = yshfto - rsy

 xij2 = Xij*Xij

61

 yij2 = Yij*Yij

 rxy2 = xij2 + yij2

 rij2 = rxy2 + zij2

 IF (rij2.le.rcut2sfsa) then

 rij = dsqrt(rij2)

 rho2 = sig2sfsa/rij2

 rho6 = rho2*rho2*rho2

 rho12= rho6*rho6

 Fij = eps24sfsa*((2.0d0*rho12-rho6)-fcsfsa*rij)/rij2

 potsfsa = potsfsa+((rho12-rho6)-vcsfsa+fcvsfsa*rij)

 fzsf = fzsf + Fij*abs(zij)

 ppsfsa = ppsfsa + Fij*rxy2

 fxxu = fxxu + Fij*Xij

 dis = zorig - (hz0/2.0)

 pzsfsa = pzsfsa + Fij*zij*dis

 ENDIF

 Xij = xshftp - rsx

 Yij = yshftp - rsy

 Zij = zpred - rsnew(k)

 rxy2 = Xij*Xij + Yij*Yij

 zij2 = Zij*Zij

 rij2 = rxy2 + zij2

 IF (rij2.le.rcut2sfsa) then

 rxy4 = rxy2*rxy2

 rij4 = rij2*rij2

 rho2 = sig2sfsa/rij2

 rho6 = rho2*rho2*rho2

 rho12= rho6*rho6

 rij = dsqrt(rij2)

 Fij = eps24sfsa*((2.0d0*rho12-rho6)/rij2-fcsfsa/rij)

 xwf_r4 = epssfsa*(-672.0d0*rho12+192.0d0*rho6

 & +24.0d0*rij*fcsfsa)/rij4!! added truncated term

 rxys = Xij*xpred+Yij*ypred

 ptemp = ptemp+Fij*rxy2

 deno = deno+rxy2*rxys*xwf_r4ws+2.0*Fij*rxys

 fxlj = Fij*(Xij) !! Fij=(-dv/dr)/r

 fylj = Fij*(Yij)

 fzlj = Fij*(Zij)

 aclx = aclx + fxlj

 acly = acly + fylj

 aclz = aclz + fzlj

 ENDIF

 enddo ! do nx

 enddo ! do ny

 enddo ! do k1

 endif

 enddo !!k

 ax(m) = aclx/sfam

 ay(m) = acly/sfam

 az(m) = aclz/sfam

 ENDDO

62

C __________________________________

C

C INTERACTIONS BASED ON NANOPARTICLE

C __________________________________

 DO jj=1,nbfmol

 m = jj+nsfmol

 xorig = xold(m)

 yorig = yold(m)

 zorig = zold(m)

 xpred = x0(m)

 ypred = y0(m)

 zpred = z0(m)

 aclx = ax(m)

 acly = ay(m)

 aclz = az(m)

C ___

C

C nanoparticle-nanoparticle pair interactions

C ___

 ibegbb = inblbb(jj)

 iendbb = inblbb(jj+1)-1

 DO ilist=ibegbb,iendbb

 k=inblstbb(ilist)

C ---

C Use old coordinates to calculate properties

C ---

 Xij = xorig - xold(k) !! old positions

 Yij = yorig - yold(k)

 Zij = zorig - zold(k)

 xpbc = -bLxold*dnint(Xij/bLxold)

 ypbc = -bLyold*dnint(Yij/bLyold)

 Xij = Xij+xpbc

 Yij = Yij+ypbc

 xij2 = Xij*Xij

 yij2 = Yij*Yij

 rxy2 = xij2 + yij2

 zij2 = Zij*Zij

 rij2 = rxy2 + zij2

 IF (rij2.le.rcut2bfbf) then

 rho2 = sig2bfbf/rij2

 rho6 = rho2*rho2*rho2

 rho12 = rho6*rho6

 rij = dsqrt(rij2)

 Fij = eps24bfbf*((2.0d0*rho12-rho6)/rij2 -fcbfbf/rij)

 ppbfbf = ppbfbf + Fij*rxy2

 pzbfbf = pzbfbf + Fij*zij2

 potbfbf = potbfbf+(rho12-rho6)-vcbfbf+fcvbfbf*rij

 ENDIF

63

C --

C Use predicted coordinates to estimate properties

C --

 x0ij = xpred - x0(k) !! predicted positions for calculating

 y0ij = ypred - y0(k) !! accelerations and coefficients

 z0ij = zpred - z0(k)

 x0ij = x0ij-bLx0*dnint(x0ij/bLx0)

 y0ij = y0ij-bLy0*dnint(y0ij/bLy0)

 r0xy2 = x0ij*x0ij + y0ij*y0ij

 z0ij2 = z0ij*z0ij

 r0ij2 = r0xy2 + z0ij2

 IF (r0ij2.le.rcut2bfbf) then

 r0ij4 = r0ij2*r0ij2

 r0xy4 = r0xy2*r0xy2

 rho2 = sig2bfbf/r0ij2

 rho6 = rho2*rho2*rho2

 rho12 = rho6*rho6

 r0ij = dsqrt(r0ij2)

 F0ij = eps24bfbf*((2.0d0*rho12-rho6)-fcbfbf*r0ij)/r0ij2

 x0ff_r4=epsbfbf*(-672.0d0*rho12+192.0d0*rho6

 & +24.0d0*r0ij*fcbfbf)/r0ij4 !! added truncated term

 ptemp = ptemp+F0ij*r0xy2

 deno = deno+r0xy4*x0ff_r4+2.0*F0ij*r0xy2

 fx0lj = F0ij*(X0ij) !! Fij=(-dv/dr)/r

 fy0lj = F0ij*(Y0ij)

 fz0lj = F0ij*(Z0ij)

 aclx = aclx + fx0lj

 acly = acly + fy0lj

 aclz = aclz + fz0lj

 ax(k) = ax(k) - fx0lj

 ay(k) = ay(k) - fy0lj

 az(k) = az(k) - fz0lj

 ENDIF

 ENDDO

C ______________________________________

C

C nanoparticle-surface pair interactions

C ______________________________________

C --------------------------

C stationary (lower) surface

C --------------------------

 nyo = dnint(yorig/y_L)

 yshfto = yorig - nyo*y_L

 nyp = dnint(ypred/y_L)

 yshftp = ypred - nyp*y_L

 nxo = dnint(xorig/x_L)

 xshfto = xorig - nxo*x_L

 nxp = dnint(xpred/x_L)

 xshftp = xpred - nxp*x_L

 DO k=1,layers

 zij = zorig - rsold(k)

 zij2 = zij*zij

64

 IF (zij2.le.rcut2bfsa) THEN

 DO k1=1,2

 DO i=-4,4

 syad = i*y_L

 rsy = sy(k1,k) + syad

 DO j=-6,6

 sxad = j*x_L

 rsx = sx(k1,k) + sxad

 Xij = xshfto - rsx

 Yij = yshfto - rsy

 xij2 = Xij*Xij

 yij2 = Yij*Yij

 rxy2 = xij2 + yij2

 rij2 = rxy2 + zij2

 IF (rij2.le.rcut2bfsa) then

 rij = dsqrt(rij2)

 rho2 = sig2bfsa/rij2

 rho6 = rho2*rho2*rho2

 rho12= rho6*rho6

 Fij = eps24bfsa*((2.0d0*rho12-rho6)-fcbfsa*rij)/rij2

 potbfsa = potbfsa+((rho12-rho6)-vcbfsa+fcvbfsa*rij)

 fzbf = fzbf + Fij*abs(zij)

 ppbfsa = ppbfsa + Fij*rxy2

 fxxd = fxxd + Fij*Xij

 dis = zorig +(hz0/2.0)

 pzbfsa = pzbfsa + Fij*zij*dis

 ENDIF

 Xij = xshftp - rsx

 Yij = yshftp - rsy

 Zij = zpred - rsnew(k)

 rxy2 = Xij*Xij + Yij*Yij

 zij2 = Zij*Zij

 rij2 = rxy2 + zij2

 IF (rij2.le.rcut2bfsa) then

 rxy4 = rxy2*rxy2

 rij4 = rij2*rij2

 rho2 = sig2bfsa/rij2

 rho6 = rho2*rho2*rho2

 rho12= rho6*rho6

 rij = dsqrt(rij2)

 Fij = eps24bfsa*((2.0d0*rho12-rho6)/rij2-fcbfsa/rij)

 xwf_r4 = epsbfsa*(-672.0d0*rho12+192.0d0*rho6

 & +24.0d0*rij*fcbfsa)/rij4 !! added truncated term

 rxys = Xij*xpred+Yij*ypred

 ptemp = ptemp+Fij*rxy2

 deno = deno+rxy2*rxys*xwf_r4+2.0*Fij*rxys

 fxlj = Fij*(Xij) !! Fij=(-dv/dr)/r

 fylj = Fij*(Yij)

 fzlj = Fij*(Zij)

 aclx = aclx + fxlj

 acly = acly + fylj

 aclz = aclz + fzlj

 ENDIF

65

 enddo ! do nx

 enddo ! do ny

 enddo ! do k1

 endif

 enddo !!kk

C -------------------------------

C moving/shearing (upper) surface

C -------------------------------

 xshfto = xorig - dxtot

 nxo = dnint(xshfto/x_L)

 xshfto = xshfto - nxo*x_L

 xshftp = xpred - dxtot

 nxp = dnint(xshftp/x_L)

 xshftp = xshftp - nxp*x_L

 DO k=layers+1,2*layers !moving

 zij = zorig - rsold(k)

 zij2 = zij*zij

 IF (zij2.le.rcut2bfsa) THEN

 DO k1=1,2

 DO i=-4,4

 syad = i*y_L

 rsy = sy(k1,k) + syad

 DO j=-6,6

 sxad = j*x_L

 rsx = sx(k1,k) + sxad

 Xij = xshfto - rsx

 Yij = yshfto - rsy

 xij2 = Xij*Xij

 yij2 = Yij*Yij

 rxy2 = xij2 + yij2

 rij2 = rxy2 + zij2

 IF (rij2.le.rcut2bfsa) then

 rij = dsqrt(rij2)

 rho2 = sig2bfsa/rij2

 rho6 = rho2*rho2*rho2

 rho12= rho6*rho6

 Fij = eps24bfsa*((2.0d0*rho12-rho6)-fcbfsa*rij)/rij2

 potbfsa = potbfsa+((rho12-rho6)-vcbfsa+fcvbfsa*rij)

 fzbf = fzbf + Fij*abs(zij)

 ppbfsa = ppbfsa + Fij*rxy2

 fxxu = fxxu + Fij*Xij

 dis = zorig - (hz0/2.0)

 pzbfsa = pzbfsa + Fij*zij*dis

 ENDIF

 Xij = xshftp - rsx

 Yij = yshftp - rsy

 Zij = zpred - rsnew(k)

 rxy2 = Xij*Xij + Yij*Yij

 zij2 = Zij*Zij

 rij2 = rxy2 + zij2

 IF (rij2.le.rcut2bfsa) then

 rxy4 = rxy2*rxy2

66

 rij4 = rij2*rij2

 rho2 = sig2bfsa/rij2

 rho6 = rho2*rho2*rho2

 rho12= rho6*rho6

 rij = dsqrt(rij2)

 Fij = eps24bfsa*((2.0d0*rho12-rho6)/rij2-fcbfsa/rij)

 xwf_r4 = epsbfsa*(-672.0d0*rho12+192.0d0*rho6

 & +24.0d0*rij*fcbfsa)/rij4 !! added truncated term

 rxys = Xij*xpred+Yij*ypred

 ptemp = ptemp+Fij*rxy2

 deno = deno+rxy2*rxys*xwf_r4+2.0*Fij*rxys

 fxlj = Fij*(Xij) !! Fij=(-dv/dr)/r

 fylj = Fij*(Yij)

 fzlj = Fij*(Zij)

 aclx = aclx + fxlj

 acly = acly + fylj

 aclz = aclz + fzlj

 ENDIF

 enddo ! do nx

 enddo ! do ny

 enddo ! do k1

 endif

 enddo !!k

 ax(m) = aclx/bfam

 ay(m) = acly/bfam

 az(m) = aclz/bfam

 ENDDO

 pxy = ppsfsf + ppsfbf + ppbfbf + ppsfsa + ppbfsa

 pz = pzsfsf + pzsfbf + pzbfbf + pzsfsa + pzbfsa

 potff = eps4sfsf*potsfsf+eps4sfbf*potsfbf+eps4bfbf*potbfbf

 potfs = eps4sfsa*potsfsa+eps4bfsa*potbfsa

 skzc = skzc/nsfmol

 skzs = skzs/nsfmol

 skz = dsqrt(skzc*skzc+skzs*skzs)

 RETURN

 END

67

 PARAMETER (layers=8) ! no. of layers per surface

 PARAMETER (nbfmol=5) ! no. of nanoparticles

 PARAMETER (nadmol=1600) ! total no. of particles

 PARAMETER (nsfmol=nadmol-nbfmol)

 PARAMETER (nnblss=nsfmol*150)

 PARAMETER (nnblsb=nsfmol*10)

 PARAMETER (nnblbb=nbfmol*6+200)

 PARAMETER (tset=300) ! system temperature in K

 PARAMETER (ppara=1.00) ! parallel pressure in atm.

 PARAMETER (unorm=0.00) ! compressing velocity m/s

 PARAMETER (upara=0.00) ! shearing velocity m/s

 PARAMETER (nsimut=400000) ! total no. of time steps

 PARAMETER (R=8.314d0) ! gas constant in SI unit

 PARAMETER (iseed=45) ! seed number

 PARAMETER (nbin=99) ! no. of bins

 PARAMETER (iprint=1000)

 PARAMETER (isave=25)

 PARAMETER (kmax=nsimut/isave)

 PARAMETER (itau=4095)

 COMMON /systemvar/h,temp,al,x_L,y_L,z_L,boxx,boxy,pi,

 & scon,sconold,bLx0,bLy0,hz0,dhz0,hz,hz0old,xk,yk,zk,

 & sk,skdb,skz,bLxold,bLyold,sk1,sfam,bfam,drneig,

 & pconv,uconv,pset,deltx,deltz,dxtot

 COMMON /intvar/nstp,ncnt1(0:itau)

 COMMON /potenvar/epsi,sigma,unitm,epssfsf,eps4sfsf,eps24sfsf,

 & sigsfsf,sig2sfsf,rcut2sfsf,rnbl2sfsf,vcsfsf,fcsfsf,

 & fcvsfsf,epssfbf,eps4sfbf,eps24sfbf,sigsfbf,sig2sfbf,

 & rcut2sfbf,rnbl2sfbf,vcsfbf,fcsfbf,fcvsfbf,epssfsa,

 & eps4sfsa,eps24sfsa,sigsfsa,sig2sfsa,rcut2sfsa,rnbl2sfsa,

 & vcsfsa,fcsfsa,fcvsfsa,epsbfbf,eps4bfbf,eps24bfbf,

 & sigbfbf,sig2bfbf,rcut2bfbf,rnbl2bfbf,vcbfbf,fcbfbf,

 & fcvbfbf,epsbfsa,eps4bfsa,eps24bfsa,sigbfsa,sig2bfsa,

 & rcut2bfsa,rnbl2bfsa,vcbfsa,fcbfsa,fcvbfsa

 COMMON /gearvar/h0,hold,ptemp,beta,coetop,coebot,deno

 COMMON /particle/x0(nadmol),y0(nadmol),z0(nadmol),

 & xold(nadmol),yold(nadmol),zold(nadmol),

 & vx0(nadmol),vy0(nadmol),vz0(nadmol),

 & ax(nadmol),ay(nadmol),az(nadmol)

 COMMON /surf/rsold(2*layers),rsnew(2*layers),

 & sx(2,2*layers),sy(2,2*layers)

 COMMON /adadneig/inblss(nsfmol+1),inblstss(nnblss),

 & inblsb(nsfmol+1),inblstsb(nnblsb),

 & inblbb(nbfmol+1),inblstbb(nnblbb)

 COMMON /property/ppsfsf,ppsfbf,ppbfbf,ppsfsa,ppbfsa,pzsfsf,

 & pzsfbf,pzbfbf,pzsfsa,pzbfsa,pxy,pz,fzsf,fzbf,fxxu,fxxd,

 & potff,potfs,potsfsf,potsfbf,potbfbf,potsfsa,potbfsa

 COMMON /transport/drsf(0:itau),drbf(0:itau),rm2(2,nadmol,itau),

 & dr(0:itau)

68

BIBLOGRAPHY

[1] K. Eric Drexler, Engines of Creation: The Coming Era of Nanotechnology, Anchor

books, New York (1986).

[2] Richard Feynman, Eng. Sci. 23, 22 (1960).

[3] H. Yoshizawa and J. N. Israelachivili, J. Phys. Chem. 75, 1400 (1981).

[4] B. Bhushan (ed.), Handbook of Micro/Nanotribology, CRC Press, Boca Raton, FL,

(1998).

[5] R. G. Horn and J. N. Israelachvili, J. Chem. Phys. 75, 1400 (1981).

[6] H. K. Christenson, J. Chem. Phys. 78, 6906 (1983).

[7] M. L. Gee, P. M. McGuiggan, J. N. Israelachvili, and A. M. Homola, J. Chem.

Phys. 93, 1895 (1990).

[8] A. L. Demirel and S. Granick, Phy. Rev. Lett. 77, 2261 (1996).

[9] J. Klein and E. Kumacheva, J. Chem. Phys. 108, 6996 (1998).

[10] C. M. Mate, G. C. McClelland, R. Erlandsson, and S. Chiang, Phy. Rev. Lett. 59,

1942 (1987).

[11] R. Erlandsson, G. Hadziioannou, C. M. Mate, G. C. McClelland, and S. Chiang, J.

Chem. Phys. 89, 5190 (1988).

[12] C. M. Mate, Phy. Rev. Lett. 68, 3323 (1992).

[13] R. Overney, E. Meyer, J. Frommer, D. Brodbeck, R. Luthi, L. Howald, H.-J.

Guntherodt, M. Fujihira, H. Takano, and Y. Gotoh, Nature 359, 133 (1992).

[14] R. Overney and E. Meyer, MRS Bulletin 18, 26 (1993).

[15] J. Krim and A. Wisdom, Phy. Rev. B 38, 12184 (1988).

[16] E. T. Watts, J. Krim and A. Wisdom, Phy. Rev. B 41, 3466 (1990).

[17] J. Krim, D. H. Solina, and R. Chiarello, Phy. Rev. Lett. 66, 181 (1991).

[18] I. K. Snook and W. van Megan, J. Chem. Phys. 72, 2907 (1980).

[19] C. L. Rhykerd Jr., M. Schoen, and D. J. Diestler, Nature 330, 461 (1987).

69

[20] M. Schoen, D. J. Diestler, and J. H. Cushman, J. Chem. Phys. 87, 5464 (1987).

[21] S. A. Somers and H. T. Davis, J. Chem. Phys. 96, 5389 (1992).

[22] M. Miyahara and K. E. Gubbins, J. Chem. Phys. 106, 2865 (1997).

[23] M. Dijkstra, J. Chem Phys. 107, 3277 (1997).

[24] S. Toxvaerd, J. Chem. Phys. 74, 1998 (1981).

[25] J. J. Magda, M. Tirrell, and H. T. Davis, J. Chem. Phys. 83, 1888 (1985).

[26] Y. Wang, K. Hill, and J. G. Harris, J. Chem. Phys. 100, 3276 (1994).

[27] J. Gao, W. D. Luedtke, and U. Landman, Phys. Rev. Lett. 79, 705 (1997).

[28] J. Gao, W. D. Luedtke, and U. Landman, J. Phys. Chem. B 101, 4013 (1997).

[29] J.-C. Wang and K. A. Fichthorn, J. Chem. Phys. 112, 8252 (2000).

[30] S. Saroja and J.-C. Wang, Mol. Simul. 29, 495 (1993).

[31] T. K. Vanderlick, L. E. Scriven, and H. T. Davis, J. Chem. Phys. 90, 2422 (1989).

[32] C. Lastoskie, K. E. Gubbins, and N. Quirke, Langmuir 9, 2693 (1993).

[33] S. Sarman, J. Chem. Phys. 92, 4447 (1990).

[34] Y. Duda, D. Henderson, A. Trokhymchuk, and D. Wasan, J. Phys. Chem. B 103,

7495 (1999).

[35] O. Reynolds, Phil. Trans. Roy. Soc. (Lond.) 177, 157 (1886).

[36] A. V. Nguyen, J. Colloid Interface Sci. 231, 195 (2000).

[37] H. K. Christenson, J. Chem. Soc., Faraday Trans. 1 80, 1933 (1984).

[38] J. N. Israelachvili, Intermolecular and Surface Forces, 2nd ed. Academic Press,

San Diego (1992).

[39] H. Yoshizawa and J. N. Israelachvili, J. Phys. Chem. 97, 11300 (1993).

[40] H.-W. Hu, G. A. Carson, and S. Granick, Phys. Rev. Lett. 66, 2758 (1991).

70

[41] M. Brust, M. Walker, D. Bethell, D. J. Schiffrin, and R. Whyman, J. Chem. Soc.,

Chem. Commun. 801 (1994).

[42] C. P. Collier, T. Vossmeyer, and J. R. Heath, Annu. Rev. Phys. Chem. 49, 371

(1998).

[43] H. S. Nalwa, Handbook of Nanostructured Materials and Nanotechnology,

Academic Press, San Diego, CA, (2000).

[44] I. Bitsanis, T. K. Vanderlick, M. Tirrel, and H. T. Davis, J. Chem. Phys. 89, 3152

(1988).

[45] L. A. Pozhar and K. E. Gubbins, J. Chem. Phys. 99, 8970 (1993).

[46] M. P. Allen and D. J. Tildesley, Computer Simulation of Liquids, Clarendon Press,

Oxford (1989).

[47] D. Frenkel and B. Smit, Understanding Molecular Simulation: From Algorithms to

Applications, Academic Press, San Diego (1996).

[48] X. Bi, Molecular Dynamics Study of Nanoparticle Self-Assembly, PhD dissertation,

University of Missouri-Rolla (2006).

[49] I. I. Adamenko, A. N. Grigoriev, and Yu. I. Kuzovkov, J. Mol. Liq. 120, 63 (2005).

[50] M. Schoen, D. J. Diestler, and J. H. Cushman, J. Chem. Phys. 87, 5464 (1987).

[51] M. Schoen, J. H. Cushman, D. J. Diestler, and C. L. Rhykerd, Jr., J. Chem. Phys.

88, 1394 (1988).

[52] T. Matsuda, G. D. Smith, R. G. Winkler, and D. Y. Yoon, Macromolecules 28, 165

(1995).

[53] S. K. Kumar, M. Vacatello, and D. Y. Yoon, J. Chem. Phys. 89, 5206 (1988).

[54] I. A. Bitsanis and G. Hadziioannou, J. Chem. Phys. 92, 3827 (1990).

[55] I. A. Bitsanis and C. Pan, J. Chem. Phys. 99, 5520 (1993).

[56] J.-C. Wang and K. A. Fichthorn, , J. Chem. Phys. 112, 8252 (2000).

[57] J.-C. Wang and K. A. Fichthorn, J. Chem. Phys. 116, 410 (2002).

[58] W. G. Hoover, Phys. Rev. A 31, 1695 (1985).

71

[59] H. J. C. Berendsen, J. P. M. Postma, W. F. van Gunsteren, A. DiNola, and J. R.

Haak, J. Chem. Phys. 81, 3684 (1984).

[60] H.-W. Hu, G. A. Carson, and S. Granick, Phys. Rev. Lett. 66, 2758 (1991).

72

VITA

Ramesh Chembeti was born on March 16, 1983 in Pallamala, Chittoor (District),

Andhra Pradesh, India. He received his primary, secondary and intermediate education in

Tirupathi, India. He earned a Bachelor of Technology degree in Chemical Engineering

from Jawaharlal Nehru Technological University, Hyderabad, India in April 2004.

He enrolled into Master’s program at the University of Missouri-Rolla (currently

Missouri University of Science and Technology), Rolla in the Spring of 2006 in the

department of Chemical Engineering and held a Graduate Research Assistantship

throughout the Master’s program. He obtained his Master’s degree in Chemical

Engineering in August 2008.

	A coarse-grain molecular dynamics study of the nanotribological properties of nanoparticle solutions
	Recommended Citation

	A coarse-grain molecular dynamics study of the nanotribological properties of nanoparticle solutions Coarse grain molecular dynamics study of the nanotribological properties of nanoparticle solutions

