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ABSTRACT 

Bioglycerol is the by-product which is produced largely from the microbial 

fermentation, hydrogenolysis of glucose in the mixture of polyols, fatty ester, soap 

manufacturing process and fatty acid production. Hydrogenolysis of glycerol is one of the 

most promising ways to convert glycerol and many work has been done towards 1,3-

propanediol, 1,2-propanediol and 1-propanol using various metals and mixed-metal 

oxides such as W, Ru, Rh, Pt, Pd, Cu, Ni and different zeolites have been extensively 

used as the active components. 

It has been well documented that the presence of Bronsted acid sites leads to the 

formation of acrolein, while Lewis acid sites, and even basic catalysts, gives rise to 

hydroxyacetone as the main product. However, there is little research on the use of H-

Beta zeolite as the catalyst and metals support for hydrogenolysis of glycerol. 

The investigations conducted in this study consist of the development of active 

catalysts as well as optimize process conditions, in the dehydration of glycerol to value-

added chemicals. The use of different H2 pressures above 600-1200 psi, reaction 

temperatures 180-220 oC, reaction times (5-10 h), and the optimum catalyst/reactant 

ratios leads to significant impact of the liquid-phase reactions and the formation of 

products. 

Various bi-metallic catalysts based on W, Cu, Ni, Sr, Zr and Zn are studied with 

regard to the dependence of activity and stability in hydrogenolysis of glycerol with H-

Beta zeolite support. All prepared catalysts are characterized using various analysis 

techniques such as N2 sorption, XRD, FTIR, and NH3-TPD and the obtained organic 

products are then further analyzed with the help of GC-FID and GC-MS. 
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1. INTRODUCTION 

1.1. RENEWABLE ENERGY SCENARIO 

The as usual concern of people regarding the energy demand is still persisting as 

the current development of the energy sources is not sufficient to meet the drastically 

growing demand of it. Still thanks to people who are putting their efforts continuously to 

bring out the solution in response of the growing industrial, commercial and residential 

demands. The overuse of the natural resources like fossil fuels has led to the depletion of 

the existing possibilities on which hopes of the people were relying [1]. Many countries, 

including both developed and undeveloped, even after the multifold production of energy 

sources, are not able to indemnify for the gap created between supply and demand [2].  

Other problems include deterioration of the climate due to the excessive use of the fossil 

resources such as coal. These causes to release various gases in the atmosphere such as 

SO2, NOx, CxHx, soot, ash, droplets of tar and other greenhouse gases like CO2 [3]. As 

per the world energy consumption report by Shell, even if it were possible to maintain the 

share of fossil fuels with the growing  demand, the CO2 emission would remain the 

threaten to human well-being.  The concentration of it in long term is expected to go 

beyond 550 ppm which started with 280 ppm in pre-industrial times [4]. If this is not 

controlled in the future then it will surely lead to some major natural issues like floods 

and acid rain [5, 6].  

Also, the limited availability and excessive use of fossil resources has led to the 

drastic decrease in the production oil in last few decades. Again as shown in Figure 1.1, 

as per the report of world energy consumption by Shell, the demand of energy is going to 

be doubled by 2050 [4]. Since, it is now understood that the current situation is becoming 
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alarming so there is urgent need for everyone to rise and work towards the solution. This 

platform calls for all the scientists and researchers around the world to come together and 

work towards the development of clean and alternative sources of energy. 

 

 

Figure 1.1 Energy consumption outlook to 2050 by Shell [4]. 

 

1.2. BIODIESEL PRODUCTION (BIODIESEL MARKET) 

Nowadays, significant work has been done and is still going on to use the 

renewable resources as a feedstock for the productions of chemicals, fuels and various 

other materials which are being used as an alternate for energy. For last many years, 

scientific community has turned preferentially towards the production of energy from the 

biomass by converting it into fuels and chemicals such as biodiesel. Biomass represents 

around 15% of the primary energy of the world by 2050 [4] and where biofuels 

particularly plays a major role in supply of fuels to meet energy demand of people as 

shown in Figure 1.2. The demand of biomass, which is considered as a desirable 
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candidate as an alternative and carbon neutral resource, is following the increasing trend 

[7, 8]. It is one of the carbon neutral source which can be used to convert into various 

kinds of fuels either in the form of solid, liquid or gases through various conversion 

process [9]. The consumption of biomass goes into production of biodiesel and some 

other biomass based products to mitigate the shortage of fossil fuels [1, 10].  Scientists 

claimed and proof that biodiesel is one of the renewable resources which is non-toxic, 

biodegradable and friendly to our environment [11, 12]. It is also termed as the 

“substitute or an additive to diesel fuel that is derived from the oils and fats of plants and 

animals” [13]. As per the report of US department of agriculture, the European market is 

having the largest market of biodiesel with the production of 12.5 million cubic meters in 

2014 [14]. The US, who also plays a major role in the production of biodiesel, holds the 

contribution of 4.8 million cubic meters in 2014 [14]. Researchers also estimated that by 

2016, the overall growth of biodiesel will increase to 37 billion gallons [15]. 

 

 

Figure 1.2 Biofuels consumption outlook to 2050 by Shell [4]. 
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Biodiesel can be produced from lots of feedstock like soybean, mustard seed, 

rapeseed, canola, waste cooking oils, animal fats and also several chemicals has been 

used such as short chain alcohols (methanol or ethanol) [16, 17]. Basically, it is produced 

through the transesterification process in which fatty acids are reacted with alcohols as 

shown in the Equation 1 [18]. The process generally involves high cost due to the 

requirement of these feedstocks. But the processes can be made cost effective if the by-

product of this reaction can be used to make other value added products. 

 

 

 

              (1) 

 

 

1.3. GLYCEROL AS A BY-PRODUCT AND ITS PROPERTIES 

Glycerol (1,2,3-Propanetriol), as a renewable source is entering into the market in 

abundant amount as the side product of the biodiesel manufacturing [19]. Amongst all 

polyols present in biomass, glycerol is the smallest one and it is considered as the 

backbone of the triglycerides [20]. For every 100 kg production of biodiesel, 10.5 kg of 

glycerol is obtained as the by-product at very low price [21]. The US alone is responsible 

for the production of glycerol as the side product  with around 340,000 tons of gallons 

entering into the market every year [22]. This boom in the market of glycerol has led to 

the declination of its price because of its incomplete use irrespective of its supply i.e. 

Vegetable oil/ 

Animal fat 
Alcohol Biodiesel Glycerol 
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excess supply and limited demand. Till now, several works has been reported about the 

conversion of glycerol into value added products and new process is still in developing 

stage which can make the biodiesel industry more economical.   

Glycerol is a highly reactive molecule with 3 hydroxyl groups, two primaries and 

one secondary. Also, physically it is colorless, odorless, soluble and viscous with density 

of 1.261 g/ml [23, 24] as shown in Table 1.1. Chemically, glycerol is non-toxic, non-

flammable and non-volatile and it reacts with most of the alcohol easily under most of the 

operating conditions. Due to all above mentioned properties, glycerol is having hundreds 

of uses and large volume of applications. It is also used in cosmetics, food products, 

antifreeze, solvent, sweetener and many more [23, 24]. Also, lots of work has been 

already done to utilize the glycerol into value added products through various chemical 

processes. 

 

Table 1.1 General properties glycerol. 

Molecular formula C3H8O3 

IUPAC name Propane-1,2,3-triol 

Molecular weight 92.09 g/moll 

Chemical Structure 

 

Density 1.262 g/ml 

Boiling point 290 oC 
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1.4. APPLICATION OF GLYCEROL 

In general, there is not much direct use of glycerol as such other than the cosmetic 

and food industry. Unfortunately, people burns large amount of glycerol directly and one 

of the renewable source is getting wasted [7]. In last few decades, scientists are able to 

utilize this compound in large number of industrial uses. As shown in Figure 1.3, large 

part of its share is involved in pharmaceutical which is 18%. Second largest share goes 

into polyols (14%) because through catalytic process it can be used in production of 

polyester, films and coatings. The remaining major share includes food and others as 

11%, triacetin (10%) and various others [11]. 

 

 

Figure 1.3 Glycerol market (general uses of glycerol). 

 

In recent years, many researchers are mainly focusing on the hydrogenolysis of 

glycerol into 1,2-PDO and 1,3-PDO which is considered as the most promising and 



7 

 

highly effective process to utilize the surplus amount of glycerol into valuable chemicals 

[25]. 1,2-PDO can be used as an ingredient for manufacturing of variety of products like 

paints, antifreeze, pharmaceuticals, detergents, cosmetics, polyester raisins, flavors and 

many more [26]. The other chemical 1,3-PDO, which is considered as even more 

valuable and have much higher economic value than 1,2-PDO is used as an important 

monomer in the synthesis of polyester fibers, films and coatings [26, 27]. Further 

conversion of propanediols into lower alcohols also leads to the production of some 

useful chemicals such as propanol, methanol and ethanol which is also of great interest to 

the researchers from the industrial perspective [22]. The other important use of the 

glycerol is its conversion into one of the most important chemicals which is acrolein. It 

has again having the broad number if uses like feedstock for acrylic acid, used as an 

herbicide for growth of aquatic plants, pharmaceutical and other uses [28]. 

 

1.5. UTILIZATION OF GLYCEROL THROUGH VARIOUS PROCESSES 

The obtained glycerol in the byproduct has too much impurities such as fatty 

acids, oils and other chemicals which cannot be used directly without undergoing any 

purification and filtration process [17]. This scenario calls for the urgent development of 

novel techniques to utilize the renewable glycerol for the sustainable development of 

biodiesel industry [29].  Through intensive research, scientists has developed various 

conversion processes of glycerol like oxidation [30], dehydration [31], hydrogenolysis 

[32], esterification, gasification, carboxylation and fermentation [4, 11-13]. These 

transformation processes gives various valuable products like 1,2-Propanediol (1,2-

PDO), 1,3-Propanediol (1,3-PDO), 1-propanol (1-PO), isopropanol (2-PO), acrolein [33], 



8 

 

lactic acid [28], propylene glycol [34] and ethylene glycol (EG) [35]. Also, glycerol 

hydrogenolysis is one of the most attractive paths because glycerol contains high oxygen 

content and reduction of C-O bond is comparatively favorable. There are number of uses 

obtained from various conversion processes into valuable chemicals as illustrates in 

Figure 1.4. 

There are also some works by the researchers which includes conversion of 

glycerol into hydrogen rich gas using catalytic process [36-38]. In one of the research by 

Thiruchitrambalam et al., the glycerol was converted into H2 rich syn-gas by using the 

pyrolysis process at 800 oC in a fixed bed reactor [39]. In other work, Chaudhari and 

Bakhshi performed the steam gasification of glycerol to produce syn-gas and they 

reported that approximately 80 wt% of glycerol was converted and 92.3 mol% of syn-gas 

was produced. They proposed that the produced syn-gas can further be treated to 

produced hydrogen and also green fuels. But there has not been much work on this 

direction.   

Another way of utilization of glycerol is through bioconversion process which 

provides broad range of methods. Being the carbon and energy source, fermentation is 

one of the bioconversion process of glycerol where microorganism attack takes place to 

convert it into value added products [40]. This conversion process may prove to use 

glycerol as a substitute of sucrose, glucose and starch [41-43].  In spite of having good 

feasibility and mild operating conditions, there are few restrictions in using this process at 

full capacity because of the longer pretreatment process due to impurities present in the 

crude glycerol which further leads to high cost factor [44-46]. 



9 

 

Due to the above mentioned broad uses of these compounds, there has been an 

extensive study in the previous years in hydrogenolysis conversion of glycerol to these 

chemicals. Researchers have studied glycerol hydrogenolysis in both the phases, liquid 

and gas. Being a linear polymer with 3 hydroxyl groups, glycerol reaction into various 

chemicals seems to be very easy. But the selective reaction of glycerol is a tricky process 

which requires selective carbon-carbon or carbon-oxygen bond cleavage and addition of 

hydrogen atom takes place to form molecular fragment [25]. Researchers have 

experimented various mechanism using different heterogeneous and homogeneous 

catalysts like metallic and bi-metallic, zeolites and heteropolyacids. Various metals are 

included in the list like Cu [34, 47, 48], Ni [34, 49], Pd [34, 47], Pt [34, 50], Ru [51] and 

Rh [52] etc. of which Ruthenium has shown the comparatively high activity among these 

metals [19].  

Also researchers concluded that generally glycerol conversion can follow two 

routes [22]. Out of which one is where oxidation or reduction of glycerol takes place into 

hydroxyacetone [53], propylene glycol [34], lactic acid [28] etc. And the other route is 

where reaction takes place between glycerol and the other compounds or molecules into 

some useful chemicals which can be further used as a precursor into some other new 

chemicals or polymer precursor [22]. Though there are too many process mentioned 

above for glycerol conversion but not all the process are feasible in terms of conversion, 

selectivity and yield. The process involves optimum operating parameters and conditions. 

Also, there is a need of right type of catalyst which is generally the driving factor to get 

the particular required products. 
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Figure 1.4 Glycerol conversion products from various mechanisms [26]. 
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2. OBJECTIVE 

The overall objective of this thesis is to convert the glycerol into valuable 

chemicals which are 1,3-propanediol, 1,2-propanediol, and 1-propanol with good 

conversion and selectivity. Also in order to achieve these goals, following steps are 

followed: 

1. Preparation of the heterogeneous catalysts using zeolite beta and mixed metal oxides. 

2. Characterization of the developed catalysts with the various techniques such as X-ray    

    diffraction (XRD), N2 sorption, Fourier Transformed-Infrared spectroscopy (FT-IR)   

    and Ammonia-Temperature Programmed Desorption (NH3-TPD). 

3. Evaluation of all the catalysts by using batch continuous stirred tank (CSTR) reactor at    

    high pressure and temperature. 

4. Analysis of the obtained products by using Gas Chromatography- Flame Ionization   

    Detector (GC-FID) and Gas Chromatography Mass Spectrometry (GC-MS). 

For all the tasks, proper methodology and process development was done and 

applied in the experiment. 
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H2; catalyst 

 

3. LITERATURE REVIEW 

3.1. HYDROGENOLYSIS OF GLYCEROL 

Hydrogenolysis reaction is basically involves the cleavage of C-O bonds and C-C 

bonds in order to produce variety of bulk organic chemicals as shown in the Equation 2. 

The reaction generally occurs in the presence of H2 source and catalysts. Hydrogenolysis 

is one of the most important reactions in the biomass industry to upgrade it into 

hydrocarbons, polyols and other alcohols [47]. Many catalytic hydrogenolysis systems 

under basic operating conditions has been developed by researchers which includes metal 

catalysts like Ru, Pd, Pt, Ni, Cu etc [34, 47, 51, 54, 55].  

  

R – X   R – H + H – X                                      (2) 

 

Hydrogenolysis of glycerol has been studied by many people in the past few 

years. The presence of the highly functionalization group in the molecule, which is 1,2,3-

propanetriol, opens the door to many valuable and useful chemicals [11, 56]. The 

cleavage of the C-O bond of the glycerol molecule becomes an alternative path for 

hydrogenolysis of glycerol into polyols (1,2-PDO, 1,3-PDO, ethylene glycol), alcohols 

(1-propanol) and hydrocarbons (propane, propene) [57].  

Montassier et al. proposed the reaction mechanism which involves the base and 

the metal catalyst to convert the glycerol into diols as shown in Figure 3.1 (a). This 

reaction involves glyceraldehyde as the intermediate [58]. Dasari et al. on the other hand 

proposed the mechanism which involves the formation of acetol in the presence of acid 

and metal catalysts [34] as shown in Figure 3.1 (b). These mechanisms were also 
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(a) (b) 

followed by many other researchers and to obtain the high selectivity many different 

kinds of metal and different operating conditions were implied.  

 

                                                                            

 

Figure 3.1 Glycerol hydrogenolysis into 1,2-PDO (a) Montassier mechanism (b) Dasari   

                  mechanism [34]. 

 

3.2. GLYCEROL CONVERSION TO 1-PROPANOL 

There have been a lots of studies on glycerol hydrogenolysis to 1,2-PDO and 1,3-

PDO but few reports on conversion of glycerol to lower alcohols has also been reported.  

Rabello et al. obtained the high percentage of conversion for glycerol around 89% into n-

propanol and selectivity of around 79.4%. The reaction was done in the presence of noble 
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metals catalysts such as Pd or Pt supported on alumina. The reaction conditions used was 

35 Bar H2 pressure and 240 oC of temperature in the reactor. The reaction was allowed to 

run for 12 h in the batch mode [18]. 

During the hydrogenolysis of glycerol in aqueous phase, a good selectivity of 

42% to 1-propanol and 13% to 2-propanol was reported using various kinds of metal 

catalysts with different supports (Ru, Rh, Pt, Pd on active carbon, SiO2, Al2O3). Glycerol 

conversion of 14.3%  and selectivity of 26% towards 1,2-PDO were also obtained under 

the optimized operating conditions [52]. 

In one of the paper by Tomishige and co-workers, they reported the 

hydrogenolysis of 1,2-PDO to propanols during the reaction done in the batch mode 

using the heterogeneous catalysts. They used the Rh-ReOx/SiO2 which gives the 

conversion of 87% and the selectivity towards 1-propanol and 2-propanol were 745 and 

19% respectively after the reaction of 24 h at 120 oC. They also observed the degradation 

products (ethanol, ethane and methane) which were seen in very less quantity of around 

1%. 

 

3.3. GLYCEROL CONVERSION TO 1,2-PROPANEDIOL 

1,2-propanediol, also named as propylene glycol (CH3CHOHCH2OH) is a three 

carbon diol with a stereogenic center located at the middle carbon atom [28]. Due to its 

number of uses and its wide applications in daily life such as pharmaceutical, cosmetics, 

raw material for polyester resins, paints, antifreeze, flavors etc.,  its annual production in 

the United States is over 1 billion pounds [28, 33, 59].  



15 

 

Till now much study has been done on the production of 1,2-PDO. Previous 

results indicate that scientists have been able to get the high yield and selectivity of it by 

using different types of catalysts. Many processes were developed and first 

commercialized plant has been opened with capacity of 0.1 million tons [40]. 

Hydrogenolysis of glycerol into 1,2-PDO has been reported over several catalysts which 

includes Cu, Rh, Rh, Ni , Pt and Ag [22, 25, 45, 49-51, 60]. In one of the paper by Sun et 

al., they reported the yield of 98.3% for 1,2-PDO over Ag-modified Cu/Al2O3 catalyst in 

vapor phase [46]. Fend et al. did the study of Ru on various support and reported that Ru 

supported on TiO2 showed the highest activity and selectivity of 50% for 1,2-PDO [44].  

The disadvantage of this reaction is that the hydrogenolysis reaction is done under 

high pressure of H2 (5-8MPa), which increases the concern for safety, high reactor 

maintenance demand and also because of the use of H2 it increases the production cost 

[22]. But some researchers claimed to achieve hydrogenolysis 10 1,2-PDO without 

adding H2 through APR technique which gave them the selectivity of 87.5% for 1,2-PDO 

[61]. 

 

3.4. GLYCEROL CONVERSION TO 1,3-PROPANEDIOL 

1,3-propanediol, normally referred as tri-methylene glycol, is a colorless liquid 

with chemical formula (CH2OHCH2CH2OH), molar mass 76.09 g/mol and density of 

1.0597 g/cm3[23]. 1,3-PDO has many valuable properties because of which it is used as a 

monomer in the synthesis of biodegradable polyesters, polyurethanes and polyethers in 

the chemical industry, providing them greater strength. Also as mentioned before, it is 

used in cosmetics, textile and pharmaceutical industries [33]. It is also used to produce 
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the polymer which are used in making of the bullet proof jacket and also used to make 

biocide for example 2-nitro-1,3-PDO [44]. 

The demand for this compound was increased drastically and worldwide 

production of it reached to around 100 million kg [22]. Generally, the conversion of 

glycerol into 1,3-PDO mainly involves two steps: i) dehydration of glycerol to 3-

hydroxypropaldehyde over acidic sites and ii) hydrogenation of 3-hydroxypropaldehyde 

on metal center [47, 62] as shown in Figure 3.2 [25]. It is very vital to have the proper 

combination of the metal catalyst, acidic species and reaction conditions to control the 

proper ratio of 1,2-PDO/1,3-PDO which requires selective cleavage of the C-O bonds 

[21, 63]. Researchers carried out some of the hydrogenolysis reaction successfully and 

figured out some effective catalysts that has shown some selectivity towards 1,3-PDO, 

which includes platinum based catalysts combined with tungstun (Pt/WO3/ZrO2) [64, 65] 

, Pt-H4SiW12O40/SiO2 [25, 66], Rh-ReOx/SiO2 [47], Ir-ReOx/SiO2 [67, 68], Cu-

H4SiW12O40/SiO2 [62], Pd-complex, Ru/C-Amberlyst, Pd and Ru complex catalyst [63]. 

 

 

Figure 3.2 Reaction mechanism for glycerol hydrogenolysis to 1,3-Propanediol [25]. 

  

Kusunoki et al. [69] showed in his paper the activity towards glycerol conversion 

improved to 33.1% by using Ru/C-Amberlyst as the catalyst at 120 oC, 4 MPa H2 as 

compared to the Chaminand et al. [47] who reported the conversion to be 32% using 
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Rh/C and H2WO4 as catalyst. Also author explained in his paper that the conversion of 

glycerol is better if we use catalyst with higher acid strength. Kurosaka et al. obtained the 

glycerol conversion to 1,3-PDO using Pt/WO3/ZrO2 with the yield of 24.2%. Nagawaka 

and his co-workers [35] improved the yield of 1,3-PDO to 38% with selectivity of 68% 

over Ir and ReOx modified catalyst using SiO2 as a support. He carried out the reaction at 

125 oC, 8MPa and for 36 hrs and was able to reach the yield of 38% and selectivity 68%.   

Hydrogenolysis of glycerol involving removal of hydroxyl group from the 

primary carbon atom leads the reaction towards 1,2-PDO. One of the recent studies by 

Zhu et al., towards the selectivity of 1,2-PDO proved to be in high number which is 98% 

by using the Cu/SiO2 catalyst  [70]. Friedrich et al. [71] reported in his study that Ni 

supported Al2O3 and SiO2 can be used for the production of 1-PO from glycerol. The 

selectivity towards 1-PO with these catalysts was 35.3% and 42.8% respectively. It is 

believed that acidic sites are responsible for dehydration step and the metallic sites are 

responsible for hydrogenation/dehydrogenation step. But detailed study of such kind of 

catalysts is still not clear [70]. 

 

3.5. GLYCEROL HYDROGENOLYSIS USING ZEOLITES  

Among the various catalysts used for glycerol dehydration, most of them are solid 

acid catalyst and some of the reactions are done in the vapor phase and some are done in 

liquid phase. However, because of the acidic nature of the catalysts and the reaction harsh 

conditions together it will result into very critical process to work with as it demands high 

equipment investments and maintenance costs. Despite lots of studies done before, there 
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is still a need to develop an eco-friendly catalyst which can be proved to be efficient 

under mild and cheap conditions.  

Zeolites nowadays are the most feasible and promising catalyst used in industries 

like petrochemical and biomass conversions. Zeolites are environmentally harmless, non-

corrosive and it easily gets separate from the reaction solution [72]. Moreover,  zeolites 

are microporous structure with large surface area, good strength, good thermal stability 

and right acid sites density [73]. Researchers have used various zeolites like ZSM-5, Y-

zeolite and zeolites-beta for the glycerol hydrogenolysis but all those reactions results 

into production of either 1-PO, EG or acrolein. In the previous studies, scientists have 

been successfully able to increase the selectivity and activity towards the production of 

acrolein but there is still a large gap present in improving the process to a large scope 

towards the more valuable production 0f 1,3-PDO. Technically, the activity of the 

catalyst depends on the acidic properties and also on the pore size of the material. Small 

pore size catalyst shows lower activity than the mesoporous size catalysts which are 

ranged between 6 and 10 nm [74]. Also the catalyst with good number of Bronsted acidic 

sites and moderate acidic strength results into removal of secondary hydroxyl group of 

glycerol to generate 1,3-PDO. 

One of the main reason for which zeolites are in use as the catalyst is their 

inherent acidity. This can be explained on the basis of the presence of exchangeable 

protons attached to the zeolite framework. In other words, the reason can be explained as 

(i) they are cation exchangers (refers to acidity), (ii) have pore sizes as the same order of 

the dimension of our reactants and products, (iii) their large surface areas. The presence 

of the Al3+ tetrahedral which actually creates the acidic sites gives the zeolites ability for 



19 

 

the catalytic function. The increase in negative charge on the coordinating oxygen ions is 

the result of the extra electron present which is because the aluminum ion carries an 

effective negative charge [18]. 

Zeolite beta which comes under the category of large pore size zeolites consists of 

3-dimensional channel structure consisting of 12 oxygen atoms in its ring. In two 

directions the channels are mainly straight having the cages at their interconnections. 

Also, in the third direction, the channels are twisted and they are not blocked. It’s typical 

unit-cell formula is |H7|[Al7Si57O128]. It has the pore size of 6.6 x 7.7 in the <100> 

direction and 5.6 in the <001> direction [18, 74]. 

 

3.6. GLYCEROL CONVERSION USING MIXED METAL OXIDES  

Much work has been done to convert glycerol using the mixed metal oxide 

catalysts also. Chen et al. studied the deoxygenation of the glycerol into 1,3-PDO and 1-

propanol using the Pt/WO3/ZrO2 catalysts. Their team used the fixed bed reactor under 

the hydrogen pressure of 20-50 Bar and temperature of 110-140 oC. At these conditions, 

the conversion they were able to obtained was 61% and 36% selectivity to 1,3-PDO and 

52% selectivity to 1-propanol [75]. The purpose of using WOx is to regulate the acidity of 

the catalyst by introducing the Bronsted acid sites which plays the key role during 

production of 1,3-propanediol [76]. 

Some workers also investigated the CuO/ZnO catalysts prepared by oxalate gel 

method and reported a very high conversion of 46% than the catalysts prepared by co-

precipitation method which was 17%. The selectivity was observed similar which was 
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around 90%. The reaction was done at the temperature of 180-240 oC and the hydrogen 

pressure was around 20-100 Bar in autoclave [16]. 

In one of the paper by Huang et al., vapour phase hydrogenolysis of glycerol in a 

fixed bed reactor was reported using the catalysts Ni/Al2O3 and Cu/ZnO/Al2O3. They 

observed the Ni/Al2O3 is not an effective catalyst for 1,2-PDO production as its 

selectivity is more towards the CH4 and CO. However, Cu/ZnO/Al2O3 showed much 

impressive conversion of glycerol, which is 93% and 96.2%, into value added products. It 

also showed high selectivity of 92.2% towards 1,2-propanediol at H2 pressure of 6.4 bar. 

The various conversions and selectivity using mixed metal catalyst system in shown in 

the Table 3.1 below. 

 

Table 3.1 Vapor Phase hydrogenolysis of glycerol over mixed metals catalysts [45]. 

Catalysts Conversion 
Selectivity to products (%) 

(%) 

    1,2-

PDO 

EG Acetol 1-PO 2-PO Others 

Ni/Al2O3
a 92.3 43.6 18.6 13.4 3.2 1.5 19.7 

Cu/ZnO/Al2O3
a 93 65.3 2.5 23.5 1.4 0.6 6.7 

Cu/ZnO/Al2O3
b 96.2 92.2 0.7 0.8 2.4 0.7 3.3 

a) Reaction conditions: WHSV=0.18h-1, 60wt% glycerol, 190 oC, 1 Bar H2 

b) 6.4 Bar H2 

*Others=C1 gases(CO and CH4), ethanol, methanol and unknown products 
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4. EXPERIMENTAL SET-UP 

4.1. CHEMICALS 

A commercially available Ammonia zeolite–beta (from Zeolyst international, 

CP814E) with the silica/alumina ratio of 25 is used for the preparation of the catalysts. 

Before proceeding further, the zeolite had been calcine in furnace for 5 hours at 550 oC at 

the rate of 5oC/min and then was cooled down naturally. Various metals, viz. Zirconium 

chloride (Aldrich, >=99.5%), Nickel (II) acetate tetrahydrate (Aldrich, >=99.0%), Zinc 

nitrate hexahydrate (Sigma-Aldrich, 98%), Copper (II) nitrate trihydrate (Sigma-Aldrich, 

98.0-103%), Strontium nitrate (Sigma-Aldrich, >=98%) were purchased and utilized in 

catalysts synthesizes.  

Hydrogen gas cylinder (UHP, 99.9999%) is purchased from the Airgas company 

for the reduction of the catalysts and also in the reaction and Helium gas cylinder (UHP, 

99.9999%) for the GC is also purchased from the Airgas. For catalysts characterization 

like BET, helium gas cylinder (UHP, 99.9999%), Nitrogen gas cylinder (UHP, 

99.9999%) and liquid nitrogen are also purchased from the Airgas. 

 

4.2. CATALYSTS PREPARATION 

Cu-Zr/Zeolite-beta catalyst is prepared by sequential wetness impregnation 

method. The loading amount used is 5 wt% for all the metals involved. The starting 

materials which are copper nitrate trihydrate and Zirconium chloride (ZrCl3) are 

dissolved in deionized water (10 mL) separately in different flasks and then stirred for 3 

hours at room temperature at 500 rpm. After stirring, the solution is then mixed with 

zeolite beta (1g) and then again stirring is continued for 6 h at room temperature to make 
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it a homogeneous solution. The rpm for the stirring is maintained at 500 throughout the 

process. The homogeneous solution is then separated by centrifugation, dried in oven at 

110 oC overnight and then calcined at 500 oC in furnace for 5 hours at the rate of 

5oC/min. The temperature profile of drying and calcination is shown in Figure 4.1 below. 
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Figure 4.1 Temperature profile for catalyst drying and calcination. 

 

The same procedure is followed to prepare the other set of catalysts which are Zn-

Zr/Zeolite-beta, Ni-Zr/Zeolite-beta, and Sr-Zr/Zeolite-beta. The metal loading is kept 5 

wt% for all the catalysts synthesize here. 

Also to know the effect of metal loading, a different set of catalysts were prepared 

using zirconium and zeolite-beta only. The loading of Zr used were 5, 10, 15, 20 wt% and 
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the amount of zeolite-beta used was 1 gm. The procedure for synthesize followed is same 

as the above preparation. 

 

4.3. REACTOR SET-UP AND CATALYST EXPERIMENT 

The process flow diagram of the experimental set-up is shown in Figure 4.2 

below. The reaction of glycerol hydrogenolysis is carried out in a 100 ml stainless steel 

autoclave which is equipped with a magnetic stirrer and thermocouple connected to the 

4848 reactor controller. The rpm and temperature is controlled by the set point of the 

controller. The reactor set-up has two input valves for liquid and gas injection connected 

to the reactor and one output valve for gas releasing. The glycerol reaction is done in the 

two steps. In first step of reaction, catalysts were reduced by H2 at 200 oC for 2 h while 

the second step includes the glycerol feed into the reactor followed by hydrogen gas 

input.  

About 40 ml of glycerol aqueous solution (20 wt% glycerol) were rapidly 

introduced into the autoclave to prevent the reduced catalyst from contacting with air for 

too long. After that, autoclave is sealed and purged with hydrogen to eliminate air, then 

pressurized to the desired hydrogen pressure which is 600 psi. The temperature and rpm 

is set on the controller at 200 oC and 550 respectively. The reaction is then allowed to 

continue for next 10 h at same temperature and rpm. After the reaction the autoclave was 

allowed to cool down to room temperature and the pressure is brought down to ambient 

pressure. The liquid samples were then collected and analyzed using the GC-FID. The 

experimental set-up has been shown in Figure 4.3. 
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Figure 4.2 Process Flow Diagram of reactor set-up: 1, reactor; 2, Gas Cylinder; 3,    

              sample cylinder; 4, Stirrer; 5, pressure gauge; 6,7,10 needle valves; 8,9 ball  

              valves.  
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Figure 4.3 Experimental set-up of reactor. 
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5. CATALYST CHARACTERIZATIONS 

 

5.1. SURFACE AREA, PORE VOLUME AND PORE SIZE 

To determine the BET surface area and pore volumes, nitrogen adsorption was 

employed and then measured by a Micromeritics 3-Flex instrument at liquid nitrogen 

temperature. Before the measurements, all the samples were degassed in separate 

instrument, Smart Vacprep, under vacuum at 250 oC for 12 hours at the rate of 10 oC/min. 

The surface areas were taken from the isotherms in the P/Po relative pressure range of 

0.05-0.3 and the pore volumes were determined at P/Po of 0.1. The pore diameter was 

estimated using the Barret-Joyner-Halenda (BJH) model. High purity grade helium, 

hydrogen and liquid nitrogen were obtained from the Airgas Company. 

 

5.2. POWDER X-RAY DIFFRACTION (XRD) 

 To identify the structures of the catalyst and to evaluate the degree of crystallinity 

X-ray diffraction was used. The measurements were carried out in PANalytical X’Pert 

Materials Research Diffractometer using Cu Kα as the source of radiation. Powdered 

samples of the catalysts are bombarded with x-rays at different angles. Diffraction 

patterns were measured in the range of 5o ≤ 2Ɵ ≤ 50o using the step size of 0.1o.  

 

5.3. AMMONIA-TEMPERATURE PROGRAMMED DESORPTION (NH3-TPD) 

Micromeritics 3-Flex instrument connected with the mass spectrometer was used 

to characterize the amount and strength of the acid sites within the developed catalysts on 

a Micromeritics 3-Flex instrument connected with the mass spectrometer having MS 

detector. In a typical process, a sample of 0.1 g was measured and pretreated at 500 oC 
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for 1 h in flowing He (99.999%). The sample was then cooled down to 100 oC before 

being treated with 5%NH3/He at 100 oC for 1 h.  Again the sample was flushed with He 

for 0.5 h to remove the physically adsorbed NH3. Subsequently, the temperature 

increased from 100 oC to 850 oC at 10 oC/min in the flowing He. The desorbed NH3 was 

then detected using the mass spectrometry with mass measurement number of 17.  

 

5.4. FOURIER TRANSFORM INFRARED SPECTROSCOPY (FTIR) 

FT-IR was carried out using the instrument Nexus 470 FT-IR made by Nicolet, to 

figure out the functional group (qualitative analysis of Bronsted and Lewis acid sites) 

within the catalysts and obtained organic compounds. Highly pure Potassium Bromide 

(KBr) powder was dried at 110 oC overnight to remove the moisture from it and then 

mixed 0.50 mg of solid catalyst to make the pellets. The pellet is then placed on the 

magnetic holder and then set in the FTIR sample chamber to do the rest of the procedure. 

For organic compounds, the sample preparation is done by placing the few drops 

of liquid sample in between the silica discs and the setting the sample holder in the 

chamber as done for solid samples. 

The spectral range was kept from 400-4000 cm-1. The IR spectrum was recorded 

by KBr disc method under ambient conditions. 
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6. RESULTS AND DISCUSSIONS 

 

6.1. CATAYST CHARACTERIZATIONS 

The activated catalysts prepared in Section 4, have been characterized by N2 

sorption, XRD, FT-IR, and NH3-TPD. The results of these characterizations are discussed 

below. 

6.1.1 Surface Area, Pore Volume and Pore Size.  The BET surface area, pore 

volume and pore diameter of the catalysts are listed in the Table 6.1. For pure zeolite H-

Beta, the surface area was 483.61 m2/g, and the pore volume was 0.1535 cm3/g. After 

loading the zeolite Beta with 5 wt%, 10 wt%, 15 wt% and 20 wt%, there is a slight 

decrease in the surface area. The type I isotherm indicates the presence of strong 

micropores which can be confirm from the figure below. The same trend in the surface 

area we can observe in other prepared bi-metallic catalysts which are loaded with metals 

like 5wt% (Cu-Zr), 5wt% (Zn-Zr), 5wt% (Zn-Zr) and 5wt% (Ni-Zr). But all the surface 

areas are above 400 m2/g, which is a good indication that the catalysts is having the 

surface area closer to pure zeolite H-Beta and it is comparatively higher than other metal 

catalysts used by other researchers.  

The zeolite Beta corresponds to the group with high pore volume and pore size. 

That is the reason it has been used in many reactions like alkylation, cracking, 

isomerization, disproportionation and glycerol dehydration. From the Table 6.1, we can 

infer that the pore volume of pure zeolite Beta was 0.1535 cm3/g, which is in accordance 

with the pure commercial zeolite Beta. In addition to that, loading the zeolite beta with 

metal zirconium at different wt% shows slight decrease in pore volume. The largest pore 
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volume was found on 5wt%Zr-zeolite-Beta (0.1510 cm3/g) while the smallest pore 

volume was found on 5wt% (Cu-Zr)/zeolite-Beta (0.1226 cm3/g). The pore diameter is 

almost unaffected which according to the previous studies [74] is favorable condition to 

prevent the catalyst from deactivation from coke but at the same time it is contrary to the 

increase in the steric hindrance. 

 

Table 6.1 Textural properties of developed catalysts. 

Catalysts 
SBET

1 Pore Volume2 DP
3 

(m2/g) (cm3/g) (nm) 

    

Pure Beta 484 0.1535 16.9 

5%Cu-5%Zr-

ZBeta 
477 0.1226 18.9 

5%Ni-5%Zr-

ZBeta 
407 0.1262 18.3 

5%Sr-5%Zr-

ZBeta 
447 0.1479 18.5 

5%Zn-5%Zr-

ZBeta 
420 0.1323 17.8 

5%Zr-ZBeta 445 0.151 18.8 

10%Zr-ZBeta 408 0.1349 18.9 

15%Zr-ZBeta 434 0.142 17.3 

20%Zr-ZBeta 416 0.1356 16.6 

1BET surface area calculated by using BET equation 
2 Pore volume is calculated by using the Langmuir equation 
3 Pore diameter calculated by using the t-plot curves 
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Figure 6.1 N2 adsorption-desorption isotherms of a) pure H-Beta zeolites and modified   

                 H-Beta zeolites with various metals b) H-Beta zeolites with different wt%   

                 loading of Zr metal. 
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6.1.2 Powder X-ray Diffraction (XRD).  Figure 6.2 (a) shows the XRD pattern 

of the pure H-Beta zeolite and also of zeolite beta loaded with metals which are Cu, Ni, 

Sr and Zn. The peaks assigned to the zeolite beta loaded with metals showed the same 

peak as that of pure H-beta zeolite. This similarity in the peaks indicates that the crystal 

structure are maintained even after loading H-Beta zeolite with the different metals or in 

other terms, we can infer from the graph that metal loading does not destroy the zeolites 

structure [56]. This can be also explained as, there was proper dispersion of all the metals 

individually on the H-Beta zeolite. However there is a slight decrease in the intensity of 

the peaks in comparison with pure H-Beta zeolite. This is because of the fact that some 

ions i.e. H+, Al3+ are replaced by the metal species which leads to destruction of the 

zeolites framework to a certain extent [55]. This change in the structure can be seen in the 

peaks of all the prepared catalysts. The Ni loaded zeolite beta has slightly sharp peaks at 

38o and 44.6o which may be due to the reflection of the Ni metal because of the 

agglomeration.  

      XRD patterns for different Zr metal loading of 5, 10, 15 and 20 wt% on H-

Beta zeolite are shown in Figure 6.2 (b). From the below figure, we can clearly see that 

the characteristic peaks of H-Beta zeolite at 25o, 27o, 33oand 44.6o slightly weakened in 

the intensity with the increase of Zr metal loading. This decrease in the intensity of the 

peaks goes in the descending order from 5 wt % to 20 wt % i.e. 20 wt % showed the 

maximum decrease in the intensity of the peaks. However, in this batch of catalysts also 

the number of peaks have the similarity with H-Beta zeolite. This shows the crystal 

structure of the zeolite Beta is preserved. 
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Figure 6.2 XRD patterns of a) pure H-Beta zeolites and modified H-Beta zeolites with   

                  various metals b) H-Beta zeolites with different wt% loading of Zr metal. 

 

6.1.3 Fourier Transform Infrared Spectroscopy (FTIR).  The FT-IR spectra of 

various H-beta supported various metals (5 wt%) are shown in Figure 6.3. The graphs 

(b) 
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mainly consist of 4 bands at 1100 cm-1, 1650 cm-1, 3400 cm-1 and 3700 cm-1. The peaks 

at 3400 cm-1 and 1650 cm-1 corresponds to the stretching and bending vibrations of the –

OH groups. The additional peaks appeared in the region of 1100 cm-1 -1350 cm-1 

represents the presence of physisorbed water. The broad band at 3400 cm-1-3550 cm-1 is 

attributed to the bridging hydroxyl groups (Si-(OH)-Al) and the peak at 3700 cm-1 

corresponds to the hydrogen bonded OH groups. The incorporation of the metal on H-

Beta zeolite also produced a decrease in the intensity of the band at 1650 cm-1.   

6.1.4 Ammonia-Temperature Programmed Desorption (NH3-TPD).  Acidity 

plays one of the major roles in determining the catalytic performance of any catalyst in 

the process of glycerol hydrogenolysis. NH3-TPD is the technique which is used to 

quantify the amount of acid sites present in the catalysts. The Figure 6.4 of zeolite Beta 

impregnated with metals shows the strong peak dominant at the temperature 200oC and 

above, which basically tells the presence of medium acid sites existed on the catalyst 

surface. Also, from the graph of zeolite beta with nickel and zinc, we can observe a small 

peak at about 500 oC and 600 oC respectively, which is assigned to ammonia desorption 

from the strong acid sites related to the framework Al atoms. From the reference graph of 

zeolite beta in Figure 6.4, the peak at about 380 oC is assigned to ammonia desorption 

from strong acid sites. The peaks of strong acid sites shifted towards more high 

temperature which can be due to the addition of metals which are dispersed on the 

surface.  

NH3-TPD patterns for different loadings of zirconium are shown in Figure 6.4. 

The graph shows the peak for all the loadings at about 180 oC which attributes to the  



34 

 

0 500 1000 1500 2000 2500 3000 3500 4000 4500

a
.u

.

wavenumber (cm
-1
)

5%Ni-Zr+Zbeta

5%Sr-Zr+Zbeta

5%Cu-Zr+Zbeta

5%Zn-Zr+Zbeta

Pure Beta

 

 

0 500 1000 1500 2000 2500 3000 3500 4000 4500

 Pure Beta

a.
u.

wavenumber (cm
-1
)

 20r+Zbeta

 15r+Zbeta

 10r+Zbeta

 5r+Zbeta
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weak acid sites which confirms after the comparison with the graph of zeolite beta. But 

all of them also show a weak peak at about 380 oC which belongs to the strong acid sites. 

Overall, we can say that the prepared catalysts are having the moderate combination of 

weak and strong acid sites which make it reasonably appropriate catalyst. 

 

6.2. GAS CHROMATOGRAPHY ANALYSIS 

As mentioned in Section 5, all the catalysts tested at 200 oC and hydrogen 

pressure 600 psi for 10 h, their obtained organic products were collected in the glass vials 

to further do the analysis on Varian-3800 gas chromatography equipped with flame 

ionization detector. DB wax column (30m x 0.25mm x 0.5µm) was used for separation. 

For preparation of the GC samples, a solution of internal standard was prepared 

and used for analysis. The standards of glycerol are prepared at different concentrations 

using methanol (HPLC grade) as solvent. These different concentrations were then run on 

GC-FID to get the calibration curve of the glycerol. The concentrations prepared were 

7500 ppm, 9000 ppm, 12000 ppm and 13500 ppm using the pure methanol in 2 ml vial. 

The oven temperature program consists of: start at 50 oC for 0 min, ramp at 20 oC per min 

to 250 oC. The temperature was then holding at 250 oC for another 7 min. One micro liter 

of the sample was injected into the column. Before and after every run, pure methanol 

was injected to clean the column. The graph is obtained and the retention time of the 

glycerol peak is observed at 12.2 min. The data of the calibration curve is shown in Table 

6.2. The calibration curve is made between the area counts of the glycerol peak on the y-

axis and the concentration of the standards on the x-axis. The trend line is drawn and the  
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                   with various metals b) H-Beta zeolites with different wt% loading of Zr   

                   metal. 

 

(a) 

(b) 



37 

 

equation is calculated. The R-squared value obtained was 0.9831 which is very close to 

the 1. This calculations and R-squared value concludes that the calibration curve for the 

glycerol standards is within the acceptable range. 

 

Table 6.2 Calibration data from the GC-FID for glycerol standards. 

ppm1 gm/ml Area2 R.T.3 

7500 7.5 40066 12.2 

9000 9 182020 12.2 

12000 12 689768 12.2 

13500 13.5 1039287 12.3 
1ppm refers to parts per million 

2Area refers to area counts of the glycerol peak 

3R.T. Refers to retention time of the peak 

 

 The samples (reaction products) for GC injection were prepared by using 60 mg 

of glycerol in 1 ml of methanol mixed together into a 2 ml glass vial. The same amount 

of these samples i.e. one micro liter injected into the column with alternate injection of 

pure methanol. Again, the only purpose of injecting the pure ethanol after every sample 

injection is to keep the column clean. Through the area counts obtained from the GC-FID 

graphs and the calibration curve obtained previously, the concentrations of the samples 

were calculated. After calculating the concentration we can then calculate the amount of 

glycerol actually present in our samples or in other words this calculation will give the 

amount of glycerol remained in the sample after the reaction is over. To do the further 

calculations for conversion and selectivity, the amount of glycerol present in the feed or 

entering the reactor before reaction is calculated. Now knowing the amount of glycerol 
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(3) 

before the reaction and glycerol left after the reaction the conversion was then calculated 

using the equation mentioned below: 

 

Conversion 

(%)= (
Amount of glycerol in feed (mg)- Amount of glycerol in product(mg)

Amount of glycerol in feed (mg)
) x 100 

 

 

After the conversion, the peaks for the products which are 1,3-PDO, 1,2-PDO and 

1-propnaol were obtained. The retention time for these products was observed at 8.9 min, 

7.8 min and 4.0 min respectively. Also, to calculate the selectivity of the desired 

compounds, the total areas of all the peaks are calculated from the obtained GC-FID 

graph. For one particular compound, the selectivity of it is calculated as mentioned in the 

equation below: 

Selectivity (%)=
Area of the desired product

Total area of all the peaks
 x 100 

 

The conversion and selectivity is calculated for all the 8 samples and reported in the 

Table 6.3 below. 

From the data shown in the table we can see that among the mixed metal catalyst, 

conversion for catalyst containing mixture of Cu and Zr with H-Zeolite Beta showed the 

maximum conversion of 73.1% and the catalyst with Ni and Zr showed the minimum 

conversion of 67.1%. Zn metal mixed catalyst showed the small improvement in 

conversion in comparison to the Ni mixed catalyst. The conversion order for these 

catalysts goes in the following way: Cu>Zn>Sr>Ni. The selectivity towards 1,3-PDO was  

(4) 
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Table 6.3 GC-FID results for product conversion and selectivity. 

        Catalysts                      Conversion 

                                                   (%) 
 

Product Selectivity (%) 

1,3-PDO 1,2-PDO 1-propanal 

5 wt%Ni-Zr-ZBeta 67.1 7.9 3.4 88.7 

     5 wt%Sr-Zr-ZBeta 70.0 1.8 0.5 97.7 

     5 wt%Zn-Zr-ZBeta 68.0 4.3 14.2 81.5 

     5 wt%Cu-Zr-ZBeta 73.1 2.7 0.7 96.6 

     5 wt%Zr-ZBeta 70.0 2.4 0.7 96.9 

     10 wt%Zr-ZBeta 69.1 2.2 0.0 97.8 

     15 wt%Zr-ZBeta 69.6 1.8 0.0 98.2 

     20 wt%Zr-ZBeta 69.4 1.5 0.0 98.5 

  

 

shown highest by the Ni mixed catalyst which is 7.9% and minimum was for Sr metal 

which is 1.8%. The selectivity order goes in the following way: Ni>Zn>Cu>Sr. For 1,2-

PDO, Zn metal mixed catalyst showed the maximum selectivity with 14.2 % and other 

catalysts did not show good results. 

Apparently, it was observed that all the prepared catalysts showed very good 

selectivity for 1-propnaol. The selectivity calculated for Sr metal mixed catalyst came out 

to be 97.7 % which was much higher that the results reported by other researchers. 1-

propanol selectivity order goes in the following way: Sr>Cu>Ni>Zn.  

The catalytic performance for the catalyst by increasing the metal loading on the 

catalyst is even worse than the mixed metal catalyst. The conversion of all the different 

metals weight loadings were quite similar with the mixed metals which was mostly 
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around 69%. But the selectivity for 1,3-PDO and 1,2-PDO were less than 3% for all the 

catalyst and no selectivity were shown for 1,2-PDO by any of the catalysts. But from the 

table we can see that selectivity towards 1-propnaol is following the increasing trend as 

the metal wt% loading was increased from 5 wt% Zr to 20 wt% Zr. The selectivity trend 

for 1-propanol using the catalysts with increasing metal loadings followed the trend as: 

20 wt%>15 wt%>10 wt%>5 wt%. 

In comparison with some previous results, one of the studies by Friedrich et al., 

they reported the selectivity towards 1-propanol (1-PO) up to 35.3% using Ni/Al2O3 and 

42.8% using Ni/SiO2. The high selectivity towards 1-PO can be because of hydrogenation 

of the acrolein which was generated when reactant, which is glycerol, reacts with the H-

beta zeolite [71].  

G. Shi et al. in their work prepared the Ni3P catalyst at different annealing 

temperatures to test the conversion of glycerol. They found the best glycerol conversion 

to be 5 % only and the selectivity to be 86.4% for 1,2-PDO and 5.7% for 1,3-PDO [41]. 

In this study, we prepared the catalysts using the H-beta zeolite and the mixed metals 

together.  

Up to date nobody previously used this combination of catalysts for glycerol 

conversion. The results shown in above table, the conversion of glycerol, using the 

catalyst with Ni and Zr metal mixed with H-beta zeolite, is 67.1% which indicates the 

good performance of the prepared catalysts and the selectivity towards 1,3-PDO, 1,2-

PDO and 1-propanol is also better than the results which were reported previously.  

Musolino et al. co-precipitated the Pd with Ni and also with several different metals such 

as PdFe, PdZn to increase the conversion of glycerol and selectivity of 1,2-PDO. PdNi 
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showed the selectivity of 84% and the conversion of more than 90% while for other 

metals selectivities were 71% and 59% respectively [43]. 

Yin et al. reported the conversion of glycerol up to 100% and selectivity towards 

1,2-PDO to 43% but at the same time there was almost no 1,3-PDO was produced in his 

reaction [77].  

Also another reason for high selectivity towards 1-PO is the dehydration of 1,3-

PDO and then the subsequent hydrogenation which then further goes the same reaction 

sequences of dehydrogenation. In one of the work, generation of CO2 and ethane is also 

explained as the further decarboxylation during the reaction. In another work for glycerol 

hydrogenolysis to 1,3-PDO, catalyst used was SiO2 supported Cu and H4SiW12O40. The 

conversion for glycerol was reported to 83.4% and selectivity for 1,3-PDO and 1,2-PDO 

was 32.1% and22.2% [62].  

Dasari et al. in their paper, reported Cu chromite as one of the most effective 

catalyst for glycerol hydrogenolysis. In their paper they used different ranges of hydrogen 

pressure and reported the highest conversion of 65.3% for glycerol and 89.6% selectivity 

for 1,2-PDO at 300 psi H2 pressure and 200 oC [34]. Quite similar results were shown by 

Vasiliadou and Lemonidou, where addition of Ru and Cu increased the conversion but at 

the same time there was decrease of selectivity towards 1,2-PDO which was reported to 

be 85.9% [42]. Liu et al. did the similar work using the CuRu over different supports and 

observed the selectivity to be 90% for 1,2-PDO using ZrO2 as the support and 0% for the 

1,3-PDO [39]. 

Jiang et al. reported that combination of Ru and Cu as mixed metal catalyst gives 

some of the most interesting results under specific reaction conditions. Their group 
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reported the selectivity for 1,2-PDO up to 87% at the reaction condition of 503 K, 100 

bar H2 pressure with 3:1 Ru:Cu ratio [78]. 

There is a very little research on the use of the zeolites till now. Jin et al. did the 

hydrogenolysis of glycerol over HY zeolite having Ru as the support. He proposed that 

HY support could present excellent hydrogenolysis activity because of the acidity and 

porosity property of it. It was found that catalyst with 5%Ru/HY with 1.0 concentration 

of HCl showed the best catalytic activity with 60.1 % glycerol conversion and 81.3% 

selectivity for 1,2-PDO under 435 psi H2 pressure and 220 oC [19]. 

Also, Lin et al. in their study discussed about the combined use of the H-Beta 

zeolite and Ni/Al2O3 as catalysts for the hydrogenolysis of glycerol to achieve high 

selectivity to 1-propanol. During their experiments they reported the maximum 

conversion of glycerol to be 89.9 % and selectivity towards 1,3-PDO and 1,2-PDO were 

2.6 % and 3.7 % respectively. But at the same time they reported very high selectivity for 

1-propanol which was 60.3%. 

Li et al. reported the effect of adding HZSM5 with different SiO2/Al2O3 ratios to 

Ru/Al2O3 and Ru/SiO2. They obtained the maximum glycerol conversion of 60.9 % and 

selectivity of 12.7 % for 1,2-PDO and 0.3% for 1,3-PDO with Si/Al ratio of 25 and using 

Ru with Al2O3 as support. They also reported the glycerol conversion of 38.8% and 

selectivity of 21.6% and 1.0 % towards 1,2-PDO and 1,3-PDO respectively [79]. 

Similarly, there are many reports on the use of zeolites like HZSM5, H-Beta and HY for 

glycerol conversion to acrolein. But there has been very few reports of glycerol 

conversion to 1,3-PDO and 1,2-PDO using these zeolites. In our study, we used the H-

Beta zeolites with mixed metal oxide to know the effect of their combination which was 
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never tried before. As previously reported in the above table, the conversion for all the 

prepared mixed metal catalysts were appreciable and better than the conversion reported 

by other researchers. However, the selectivity towards 1,3-PDO and 1,2-PDO were low. 

Apparently, it was observed that all the catalyst was showing very good selectivity 

towards 1-propanol which is more than 90% for all of them. 
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7. CONCLUSION 

In summary, various mixed bi-metallic catalysts have been synthesized using 

zeolite H-Beta as the catalyst support. The obtained catalyst exhibits the good 

characterization properties and also the conversion of glycerol is obtained in appreciable 

quantity but the reaction could not be able to give the good results for the selectivity of 

1,3-propanediol and 1,2-propanediol. But the lower alcohols which is 1-propanol is 

obtained in good quantity which can be concluded on the basis that the acid sites obtained 

from the developed catalyst were not sufficient to move the reaction towards the 

production of 1,3-PDO and 1,2-PDO. Also we can conclude that as per the reaction 

mechanism, 3-hydroxypropanaldehyde which is thermodynamically unstable 

intermediate formed during the reaction is converting into the 1-propanol. 

To further improve the reaction and selectivity towards the 1,3-PDO and 1,2-PDO 

we can suggest the treatment of transition metal with some acidic media or the other 

metals which comprises of good Bronsted acid characteristics. Further, we can also 

change the reaction conditions which could be by increasing the hydrogen pressure in the 

reactor during the reaction so that we can convert the 3-HPA immediately towards 1,3-

PDO and constraining its conversion into some other products. 
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