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ABSTRACT 

Lubricants are substances used for reducing friction wear tear and energy losses 

between two moving bodies. For space applications, normal lubricants cannot be used as 

they cannot survive the harsh and demanding conditions of space. Multiple Alkylated 

Cyclopentanes (MACs) have been utilized as space lubricants in recent times with 

tremendous results. NASA uses the MACs for their missions in space, in particular 1,3,4-

tri-(2-octyldodecyl) cyclopentane sold by Nye Lubricants under the name of PennzaneTM. 

In this research, an effort has been made to identify appropriate potential models 

for simulating Pennzane molecules and to develop MD simulation codes to construct 

realistic model systems comprising Pennzane thin films sandwiched between two -

alumina surfaces. The results from the MD simulations show that, unlike symmetric 

molecules that can be induced by nanoscopic confinement to form layered configurations, 

the highly branched Pennzane possesses sufficient structural asymmetry and complexity 

to resist the layering tendency. Surface interactions are found to bend segments of the 

proximal branches into non-trans conformations that lie parallel to the surfaces. The 

resultant strong interactions appear to function as an anchor that promotes the branches in 

a crowded environment to stand more straight up.  

The realistic model system of an important liquid lubricant developed in this work 

can serve as a key to open many research directions and possibilities, including the 

effects of inorganic lubricant additives such as graphene and organic lubricant additives 

such as tri-(2-octyldodecyl) phosphate to be investigated by rigorous MD modeling and 

simulation studies.              
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1. INTRODUCTION 

1.1. BACKGROUND 

Historically, space lubricants have not been chosen according to the latest 

technology or the best materials available to scientists because of the limited duration of 

the specific intention of the mission. As time progressed, the length of time and the 

expectation from the spacecraft and the mission increased. The spacecraft needed to be 

more sophisticated and had to stay for a longer time in the harsh conditions outside the 

earth’s atmosphere. This called for the abatement of the mechanical failures caused by 

the parts that had to stay longer in difficult and fluctuating conditions of heat, pressure, 

and space radiation. Fundamental aspects, including rheology of space lubricants, were 

brought into focus and put to the test only when the scientists detected and attempted to 

solve the issue related to mechanical failures. However, since the last three decades, 

space lubricants properties have greatly improved and hence the mission’s chances of 

survival due to reduced mechanical failures.  

The main purpose of applying lubricants is to separate the surfaces in motion with 

respect to each other (relative motion). It creates an environment where there are low 

friction and low shear resistance. Lubricants reduce the cost of operational maintenance 

and material damage. The proper type of lubricants is decided to depend upon the load, 

shear stress, and temperature of a specific job. In general, there are three categories of 

lubricants: solid, liquid, and mixed regime lubricants, and the proper choice is according 

to the job requirements. This research is concerned with the liquid lubricants suitable for 

space engineering applications. 
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In the last 30 years, a lot of different liquid lubricants, including silicones, 

polyphenyl ethers, mineral oils, perfluoro polyether, and esters, have been tested 

extensively to see which one the best of the lot is for space engineering. The most 

effective one appears to have been a recently developed synthetic hydrocarbon called 

PennzaneTM [1-4], which has been replacing conventional choices because of its better 

adaptability in the conditions of the space environment. Pennzane belongs to a class of 

hydrocarbon called MACs (Multiple Alkylated Cyclopentanes) that are synthesized by 

reacting cyclopentadiene in alkaline conditions and then taken through hydrogenation 

process to obtain the ultimate product: a mixture of multiple alkylated cyclopentane 

(dialkylated-, trialkylated-, Pentaalkylated-, etc.). The ratios of the different alkylations 

can be varied by changing the reaction conditions during their formation. NASA has been 

using PennzaneTM sold by Nye Lubricants under the name of SHF-X2000 (marked as 

Nye Lubricant 2001A) [1-4] whose chemical formula is tri-2-octyldodecyl substituted 

cyclopentane. NASA has performed an extensive test for six years to examine and verify 

the results of the lubricant. 

1.2. PROPERTIES OF MULTIPLE ALKYLATED CYCLOPENTANES (MACs) 

A good lubricant must have certain chemical and physical properties to work in a 

proper manner when in mechanical contact with moving parts during operation. In the 

case of space applications, suitable lubricants are particularly evaluated in the following 

aspects:  

1.2.1. Wearability. Lubricants are added between the moving surfaces to prevent 

direct contact between the surfaces. If the moving surfaces come in direct contact, there 
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will be a lot of friction which in turn would create wear and tear as well as huge energy 

losses apart from damage to the devices. As an easy solution to prevent or reduce these 

problems, lubricants ideally provide both a slip condition for the moving surfaces and 

cushioning between the surfaces. Although no lubricant is ideal, MACs stand out by 

possessing a lower friction coefficient factor, assess at 0.12, that makes the surfaces less 

wearable as compared to other traditional lubricants on the moving surfaces. Friction and 

wear properties of MACs have been measured using 4 ball Wear test by Zhang et al. [4] 

Another method to measure the frictional properties is SVG analysis [5] as mentioned by 

Nye Lubricants on their website. Additional relevant properties of MACs are summarized 

in Table 1.1. [1-4] 

Table 1.1. Physical Properties of MACs 

Lubricant Mol. 

Weight 

Kinematic 

Viscosity at 

100℃ (cSt) 

Viscosity 

Index 

Surface 

Tension 

(mN m-1) 

Vapor 

Pressure at 

20℃ (torr) 

MACs 910 9.3 148 24.5 5.6 ×10-6 

 

1.2.2. Stability in the Vacuum.  Although certain mechanical seals (such as 

labyrinth seal) are used in space mechanisms to provide a tortuous path to prevent 

lubricant loss, it is still a potential problem faced by missions that require spacecraft to be 

in space conditions for a long period of time. [2,3,5] Lubricant loss at exit area and at a 

fixed temperature is proportional to the vapor pressure of the lubricant. As compared to 

conventional lubricants, PennzaneTM is a particularly good candidate with a similar range 

of viscosity.  
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1.2.3. Reduced Creeping Tendency. Creeping is a property of a liquid, to 

migrate over the moving mechanical surfaces, which is inversely related to the surface 

tension of the liquid in question. Fluids used as lubricants in recent time like PTFE 

(Polytetrafluoroethylene), MACs, silicones, esters, and hydrocarbons have a lesser 

tendency to creep over the mechanical parts as compared to more traditional lubricant 

fluids. Also, these traditional fluids are inclined to render the barrier films corroded and 

useless after a long period of contact time, hence less effective as lubricant fluids. 

[2,3,5,6] In this respect, PennzaneTM lubricant has been shown to have higher surface 

tension and a lower creeping tendency, thereby a better choice than the traditional 

lubricant fluids.  

1.2.4. Viscosity-Temperature Properties. Occasionally, low temperatures (14°F 

to -4°F) are encountered in space applications where traditional lubricants may become 

undesirable because they become viscous and their pour point increases. [1-6] Lubricants 

such as Pennzane that retain reasonable viscosities at low temperatures are ideal for space 

applications. 

1.2.5. Elastohydrodynamic Properties. The physics behind the lubrication is 

that when a lubricant is passed in between the moving surfaces, it forms a thin layer 

where the moving surfaces get into a slip, at the surface of the thin layer formed. This 

thin layer is called an elastohydrodynamic (EHL) film. Two essential physical properties 

that influence the functions of a thin layer EHL film are pressure-viscosity coefficient 

and viscosity. [1,2,6] While the factors affecting viscosity are chemical structure 

influence and molecular viscosity, the pressure-viscosity coefficient is only related to 

chemical structure, except when the molecular weight of the lubricant is low.  
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1.2.6.  Boundary Lubrication Properties. Boundary lubrication is the 

lubrication regime where the spacing between two solid surfaces becomes too small, and 

the lubricant film in between becomes too thin so that there is a possibility for the two 

opposing solid surfaces, more specifically their asperities, to come in contact with each 

other. This can also exert great stress on the lubricant molecules to cause their molecular 

structures to break. To avoid exactly this contact between the two opposing asperities is 

the most important aspect of boundary lubrication. Understandably, the chemistry of the 

lubricant film, roughness of the solid and the surface separation surfaces determine the 

occurrence and severity of boundary lubrication. It can be considered that when the 

thickness of the protective lubricant film is down to a few nanometers, even nominally 

smooth surfaces may encounter boundary lubrication. [1,2,4,6] PennzaneTM has a very 

stable structure and hence a very slow progression toward failure and a longer lubricated 

lifetime as compared to traditional lubricating fluids.  

Boundary lubrication properties can also be improved by the selection of 

appropriate materials for the balls, in ball bearing and gear teeth, in the gear box. [1-3] 

But, the material selection of the surfaces in contact is beyond this research scope. 

1.3. GRAPHENE ADDITIVE 

Due to our ambitious and curious nature, humanity has been driving to explore 

ways to improve the qualities of lubricants. An important way that has been commonly 

practiced for increasing the wearability and enhancing other tribological properties of 

lubricants is to add additives. Graphene is a 2-D carbon material whose stable structure 

was isolated in the early 2000s. It has pulled a lot of attention in various fields of 
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application. Amongst these fields, the tribological behavior of graphene additive has been 

relatively less studied. [7] It is thus of significant scientific interest and practical 

importance to study the tribological behavior of a Pennzane-graphene composite 

lubricant system. Although the addition of graphene as a lubricant additive is outside of 

the scope of this research, which is focused on developing a realistic model system for 

the molecular dynamics (MD) simulation studies of nanoscopically confined Pennzane 

films, it is considered relevant and beneficial to highlight graphene’s unusual properties, 

in particular those that help reduce wear and friction and lead to an enhanced lubrication 

system applicable in the spacecraft.  

In recent years, graphene has established itself as a valuable asset in the optical, 

mechanical, thermal, and electrical application. [7,8] It has high mechanical strength 

which can be tested using an isolated sheet of graphene and an Atomic Force Microscopy 

(AFM) probe with a diamond tip to analyze the graphene’s breaking strength. The 

Young’s modulus of graphene film was found to be equal to 1 Tera-Pascal.[7,8] Also, it’s 

been proven quite recently that the overall strength is not owed to the grain boundaries, 

even though other kinds of defects, including those caused by oxidation, reduces the 

mechanical properties of graphene (strength and stiffness). [8] Such outstanding strength 

is greatly beneficial to the protection of surfaces from wear and tear as demonstrated by 

the studies of Lee et al. [9] Moreover, graphene has been found to be leakproof to gases 

and other fluids, thereby diminishing the oxidation and corrosion factors that commonly 

cause damage to surface in contact.  

Graphene is a material with extremely low surface energy and with multiple 

smooth layers stacked together via relatively weak physical interactions that allow the 
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graphene layers to slide past each other relatively easily. Its small thickness and size can 

also fit into and fill many corrugations on solid surfaces, hence capable of assisting a 

broad range of contacts to reduce frictional losses and wearability. [10] These properties 

make graphene suitable as a solid lubricant itself as compared to other carefully 

synthesized thin solid lubricant films. They also make graphene very lucrative for ever-

improving mechanical applications to achieve reduced wear and tear systems.  

Graphene can also be used as a colloidal dispersion in oil-based nonpolar liquid 

lubricants. Its unique smooth surface and closely packed structure can impart high 

strength and low shear capabilities into the lubricant in addition to its impressive 

chemical inertness. It is particularly suited for systems like [8,9-11] 

nanoelectromechanical (NEMS) and microelectromechanical systems (MEMS) due to its 

thinness even though multiple layered.  

1.3.1. Manufacturing. Graphene’s property depends upon the diameter of 

individual particles (grains), thickness, pattern, and how crammed up are the defects 

formed during its manufacturing process. The first successful attempt to produce 

graphene on a routine basis was by mechanical exfoliation where sticky tapes were used 

to remove sheets from highly ordered pyrolytic graphite (HOPG), transferred thereafter 

by gluing the sticky-tape onto the final object and then pulling the tape out. [7,9,11] Since 

then a number of methods have been devised to produce graphene, including dry 

mechanical or chemical exfoliation and reverse rolling of carbon nanotubes (CNTs) by 

electrochemical, chemical, or physical means. Additionally, chemical vapor deposition, 

electric breakdown of gases, and reduced graphene oxide have also been employed. For 
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example, graphene of high purity can be made by chemical vapor deposition on surfaces 

of nickel or copper metals, in the presence of hydrocarbon vapors.  

1.3.2. Utility of Graphene. Graphene has shown promising results when used in 

some solid lubricants. [7,9-11] It was demonstrated that when 10% of graphene platelets 

were added as Nano-filters to the solid lubricant, the wearing went down by 10-4. It is 

also widely known in recent times that the addition of graphene even in really small 

amounts to lubrication fluids can drastically lessen friction and wear of steel. Tests were 

carried out on a 4-ball wear apparatus (1200 rpm, 147 N, 75°C) on graphene spread in oil 

by physical means.[7,9,11] The results showed that graphene at 0.075% by weight could 

improve the load-bearing capability of the oil or oil doped with graphene. Furthermore, 

the frictional force was found to decrease when the base oil was improved with graphene. 

[8,9,11,12] In other experimental studies, alkylated graphene with varying alkyl chain 

groups and carboxylic groups were dispersed in various organic solvents. Results from 

tribological tests confirmed that, when hexadecane was introduced with graphene, the 

friction of steel was reduced by 26%. Although such improvements have been attributed 

to the smoothened surfaces and minimized the connection between the provided surfaces 

due to the continuous presence of graphene, the complete physics behind is still not fully 

understood and may include the effects of graphene on the conformations and 

configurations of the lubricant molecules. 

1.4. OBJECTIVES  

The prime objective of the research is: developing a molecular-based physical 

representation of Pennzane thin film in a representative tribological environment and then 
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construct a realistic model system to be employed in MD modeling and simulation 

studies aimed at providing lubrication support for space applications. In order to meet the 

harsh conditions of space engineering, the surfaces are usually hard anodized with 

aluminum or aluminum alloys to reduce [13] the surface wear and tear. The detonation 

sprayed aluminum coatings on an unlubricated sliding have shown a marked reduction in 

wear behavior, with a friction factor of 0.4-0.5. [14] A hard anodized aluminum is 

basically an electrochemical process in which the aluminum is electroplated on a metal 

surface (e.g., steel) where aluminum naturally forms an oxide, that is, alumina.  The hard 

anodized aluminum oxide thus formed is uniform, dense, and harder when compared with 

natural oxidation.  

In addition to improved lubrication, there are other potential benefits from hard 

anodizing. The surfaces are easier to clean and give a better aesthetic appearance and 

better resistance to peeling, flaking or chipping, abrasion, flame, and contamination. In 

this research, the devised model system will comprise a thin Pennzane lubricant film 

confined between two alumina surfaces, on a nanoscopic scale, in order to be more 

related to important engineering applications, including space missions. 
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2. METHODOLOGY 

2.1. MOLECULAR DYNAMIC SIMULATION 

Molecular Dynamics (MD) has been a widely employed and trusted method for 

simulating and studying structural and dynamic properties of various systems at a 

molecular scale that are generally too complicated for first-principle analytical 

approaches or for conventional continuum-based modeling methodologies.[15,16] The 

essence of MD is to numerically solve N-particle equations of Newtonian classical 

mechanics for a model system constructed by the N particles. In general, the equation of 

motion for a given particle i can be expressed as   

mȑ = fi + gi       (2.1) 

where ȑ and m are the instantaneous acceleration and the mass of the particle, whereas fi 

and gi represent the net interaction force and the net constraint force on the particle. For 

clarification, Eq. (2.1) can also be converted into two first-order differential equations as 

follows, 

ṗ = fi + χpi                 (2.2a) 

miṙi = pi                             (2.2b) 

where p is the momentum of particle i, ṗ is the rate of change of momentum, ṙ is the 

velocity, and  is the system-wide coefficients for representing the imposed constraints.  

In this project, the constituent molecules face a geometric constraint that confines the 

molecules to form a nano-thin lubricant film and a thermal constraint that controls the 

system temperature as room temperature at all times.  While the geometric constraint will 



 

 

11 

be represented by explicit atoms, the thermal constraint is represented by a “friction” 

coefficient evaluated instantaneously by the following method,   

    
dT

dt
=

d

dt
(

1

3kBndof

∑
pi

2

mi

N
i=1 ) ∝ ∑ p

i
⋅ṗ

i
N
i=1 =0 ,                   (2.3) 

where kB is the Boltzmann constant and ndof is the total number of degrees of freedom.  

After substituting the equation of motion, Eq. (2.1), into the above Eq. (2.4), the resulting 

expression for the friction coefficient becomes 

χ=-
∑ pifi

N
i=1

∑ |pi
|
2N

i=1

  .                             (2.4) 

Numerically speaking, the MD method as shown by Eqs. (2.1) or (2.2) is an initial-value 

problem. For computational efficiency and for convenient incorporation of temperature 

control, the Leap-frog integration algorithm is adopted in this work, which integrates the 

equation of motion through the following discretization and operation for velocities, 

       v(t+
1

2
Δt) = v(t) + a(t)

1

2
Δt + b(t) (

1

2
Δt)

2

+⋯ 

-   v(t-
1

2
Δt) = v(t) - a(t)

1

2
Δt + b(t) (

1

2
Δt)

2

+⋯ 

⇒  v (t+
1

2
Δt ) = v (t-

1

2
Δt) + a(t) Δt + ϑ ((Δt)

3)                          (2.5)   

and for coordinates,                 

       r(t+Δt)=r(t+
1

2
Δt)+v(t+

1

2
Δt)

1

2
Δt+

1

2
a(t) (

1

2
Δt)

2

+
1

6
b(t) (

1

2
Δt)

3

+⋯ 

-          r(t) =r(t+
1

2
Δt) - v(t+

1

2
Δt)

1

2
Δt + 

1

2
a(t) (

1

2
Δt)

2

 - 
1

6
b(t) (

1

2
Δt)

3

+⋯ 

⇒   r(t+Δt) = r(t) + v(t+
1

2
Δt) + ϑ((Δt)

3)                                         (2.6) 
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where t is a time interval and usually around 1-2 fs (10-15 sec) for simulating complex 

molecules. Notably, the temperature control here, can be conveniently incorporated into 

Eq. (2.6), 

v(t+
1

2
Δt) = v(t-

1

2
Δt) + (

f(t)

m
+χv(t)) Δt                    (2.7) 

and implemented using a procedure devised by Brown and Clarke. [17]  

It can be stated that, while the engine of the MD approach is played by the 

numerical integration algorithm, the all-important fuel is the interaction forces which are 

derivatives of the total interaction potential energy U(rN) with respect to the particle 

coordinate as shown below, 

                       fi=-
∂U(rN)

∂ri
 .                            (2.8) 

When applied to model systems comprising complex molecules and geometries, U(r) 

itself is a complex function of all the particles’ coordinates as well as of the system’s 

geometry.  From the viewpoint of the constituent molecules, U(r) can be expressed as 

follows as a sum of two decoupled contributions,  

    U(r) = Uintra(r) + Uinter(r) ,                     (2.9) 

where Uintra(r) represents the intra-molecular interaction potential energies that are 

needed in order to provide and retain the chemical structure of a model molecule, and 

Uinter(r) denotes the inter-molecular interaction potential energies due to the constituent 

molecules interacting with themselves and with other components in the model system. 

The MD modeling approach is based on a very small number of fundamental 

approximations and assumptions.  Its validity in representing and predicting reality is 

dictated mostly by the potential energy models employed to construct the model system 
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and describe the interactions among the constituent particles. For this purpose, successful 

potential energy models need to consider not only accuracy but also efficiency and 

transferability.  

2.2. MULTIPLE ALKYLATED CYCLOPENTANE STRUCTURE 

The selected lubricant molecule for this project is 1,3,4-tri-(2-octyldodecyl) 

cyclopentane, also known commercially as Pennzane. As shown in Figure 2.1, it is a 

highly branched alkane that has three 2-octyldodecyl branches attached to the 1st, 2nd and 

4th carbon atoms of the core cyclopentane ring. Its chemical formula includes 6 methyl 

(CH3) groups, 6 methine (CH) groups, and 53 methylene (CH2) groups, resulting in a 

molecular mass equivalent to (CH2)65. When compared to its linear isomers, Pennzane 

demonstrates significantly better tribological behavior, which can certainly be attributed 

to its alkyl branches. Generally speaking, branched isomers of alkanes are better 

lubricants and better fuels than linear isomers. From a fundamental point of view, the 

multiple long branches of Pennzane are likely to entangle with one another between 

different molecules, which may be a desirable configuration underpinning excellent 

lubrication behavior.   

Interaction Potential Models for Pennzane. In the field of molecular modeling 

and simulation, alkanes are typically simulated by a united atom (UA) approach where 

each of the methyl, methylene, and methine group is modeled as a pseudo-atom 

equivalent to the H atoms fused into the central C atom. This approach has evolved into a 

small number of variations over the years and a recent development through a series of 
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systematic, rigorous studies is the so-called [18-20] TraPPE (Transferable Potentials for 

Phase Equilibria) family of the force fields.  

 

 

 

 

 

 

 

 

 

 

Figure 2.1. Structure of 1,3,4-tri-(2-octyldodecyl) cyclopentane 

 

The different pseudo-atoms (UA) in Pennzane are all covered in the TraPPE force 

fields, which are thus adopted for this project. The resultant model Pennzane molecule is 

depicted in Figure 2.2 where each green bead represents a UA that is also numerically 

labeled in the MD simulations. In this work, the relatively fast C-C bond stretching is 

frozen by the SHAKE algorithm [15] and constrained to 1.54 Å [18-20] in order to allow 

larger time intervals (t) to be used. Thus, the intramolecular potential energy, Uintra, for 

Pennzane includes contributions from C-C-C-C torsional (dihedral) motions and C-C-C 

bond bending, as well as non-bonded dispersion interactions between UA’s more than 

three bonds apart. Specifically, the bond bending motion is modeled by a harmonic 

potential, 
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Figure 2.2. A Pennzane molecule modeled by a United-Atom Approach. The numbers are 

numerical labels used to identify each UA in the MD simulations. 

 

 

Uintra(r)= ∑ Ub(θi)+ ∑ Ut
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n-4
i=1 (rij)      (2.10) 

Ub(θi) = 
1

2
kθ(θi-θ0)2                     (2.11) 

where i is an instantaneous C-C-C bond angle and 0 is its equilibrium value. The value 

of the force constant, k, [18-20] is fixed at 62500kB for all bond angles in normal, 

branched, and cyclic alkanes. For the torsional motion, the TraPPE force fields provided 

two different fitted potential functions: one for normal and branched alkanes and one for 

cyclic alkanes, but both can be converted into the following form,  
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Ut(ϕ
i
)=a0+a1 cos ϕ

i
+a2 cos(2ϕ

i
) +a3 cos(3ϕ

i
)  .                       (2.12) 

The values of the coefficients in the bending and torsional potential models are summarized 

in Table 2.1. [18-20] 

The last contribution to Uintra is the non-bonded dispersion interactions whose 

main purpose is to prevent unphysical overlaps between pseudo-atoms in the same 

molecule. In this work, Lennard-Jones is depicted in the figure 2.3, and it is treated as 

usual by pair-wise summation via a Lennard-Jones 12-6 potential,  

ULJ=4ε [(
σ

r
)

12

- (
σ

r
)

6

]  .                                 (2.13) 

This treatment is also extended to the non-bonded pair interactions between 

pseudo-atoms (UA’s) from different Pennzane molecules. The TraPPE force fields give 

appropriately different parameter values to the LJ potentials for different pseudo-atoms 

(UA’s). These values are also summarized in Table 2.1. However, the same cutoff 

distance set at 14 Å is applied to all the LJ interaction pairs. [18-20]    

 

 

 

 

 

 

 

 

Figure 2.3. Lennard-Jones interaction potential as a function of inter-atomic distance. 
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Table 2.1.  Values of the parameters in the intramolecular interaction potential models 

Lennard-Jones 

Potential 

group CH3 CH2 CH 

 [Å] 3.75 3.95 4.68 

 [kB] 98 46 10 

Bond 

Bending 

angle CHx-(CH2)-CHy CHx-(CH)-CHy cyclopentane 

0 (deg) 114 112 105.5 

Torsion 

group C-(CH2)-(CH2)-C C-(CH2)-(CH)-C cyclopentane 

a0 1078.16kB 507.09kB 31394kB 

a1 355.03kB 428.73kB 45914kB 

a2 68.19kB 111.85kB 16518kB 

a3 791.32kB 441.27kB 1496kB 

 

2.3. ALUMINA 

Alumina can take on several different crystal structures, but the 

thermodynamically stable alumina phase and the most usual type found in nature is -

Al2O3.  -Al2O3 has a trigonal crystal structure [21] which can be illustrated by either a 

hexagonal or a rhombohedral lattice system. A hpc packing of spheres of oxygen atom is 

formed where alumina atoms account for two-third of the octahedral vacancies. Shown in 

Figure 2.4 is the conventional unit cell (hexagonal axes) of -Al2O3 which contains 12 Al 

atoms and 18 O atoms, [21] corresponding to Al12O18. It should be noted here that Figure 

2.4 includes 10 additional Al atoms (grey beads) and 4 additional O atoms (red beads) 

along the border axes in order to provide a clearer viewing. The unit cell can be 



 

 

18 

duplicated in all three directions to form a bulk phase of -Al2O3. To form confining 

surfaces for the thing Pennzane film, the unit cell is only duplicated in the lateral 

directions in this work. The top-down (xy) and side (xz) views of the resultant -alumina 

surface are shown in Figure 2.5. 

Modeling Alumina Surface. Although a surface of rhombus shape is workable, it 

is computationally more efficient to simulate a model surface or a model system with 

square or rectangular shapes. For this purpose, four-unit cells can be combined together 

to identify a rectangular “computational unit cell”, as indicated by the grey box in Figure 

2.5(a), that contains 48 Al atoms and 72 O atoms, corresponding to Al48O72. This 

computation unit cell is 9.51 Å in length and 8.24 Å in width along the x and y directions, 

respectively, and is ready to be duplicated to construct a model alumina surface of any 

rectangular shape and any size. There has been a small number of MD modeling studies 

that involve the interactions between alkanes and alumina surface modeled [22,23] with 

an atomistic approach or a UA-like approach. In fact, these two approaches produce 

similar overall interactions between a psudo-atom and the Al2O3 surface. Since the UA 

approach has been employed for Pennzane, it is computationally sensible to also adopt 

the UA-like approach for modeling the interactions between Pennzane and the alumina 

surface. In this approach, the UA-O and UA-Al pair interactions are both modeled by the 

following modified LJ potential,  

U = D0 [(
R0

r
)

12

 - 2 (
R0

r
)

6

]  .                               (2.14) 

 

 

 

 



 

 

19 

 

 

 

 

 

 

 

 

 

Figure 2.4. (a) Top-down view and (b) side view of the conventional hexagonal unit cell 

of -Al2O3 where grey beads represent Al atoms while red beads denote O atoms. 

 

 

 

 

 

 

 

 

 

 

Figure 2.5. (a) Top-down (xy) view and (b) side (xz) view of the -Al2O3 surface formed 

from duplicating the unit cell in the lateral directions.  
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The parameter values for different UA-Al(Al2O3) and UA-O(Al2O3) pair 

interactions are summarized in Table 2.2. 

 

Table 2.2. Values of the parameters in the UA-Al(Al2O3) and UA-O(Al2O3) interaction 

potential models 

Pair 
CH3-Al CH3-O CH2-Al CH2-O CH-Al CH-O 

R0 [Å] 
4.286 3.878 4.296 3.880 4.296 3.880 

D0 [J/mol] 
1125.496 348.946 932.614 291.645 932.614 291.645 

 

2.4. INITIAL CONDITION 

The initial coordinates of the pseudo-atoms in a single Pennzane molecule were 

first adopted from the [24] PubChem database. The molecule was then duplicated once 

and carefully placed next to the first one at such a distance that their UA’s have only 

attractive interactions without any repulsion. Afterwards, the same procedure was 

employed to duplicate Pennzane dimer and higher oligomers multiple times to arrive at a 

thin film that contains 30 Pennzane molecules.  This film was then duplicated and 

stacked on one another to achieve an initial condition, as shown in Figure 2.6, that 

contains 60 Pennzane molecules comprising 3900 UA’s.   

To complete the construction of the initial condition for the subsequent MD 

simulations, the computational unit cell discussed above was duplicated 1111 times and 

arranged together to have a model Al2O3 surface whose lateral (xy) dimensions are 

104.65 Å90.63 Å and which contains 5808 Al atoms and 8712 O atoms. This surface 

was then duplicated again and placed together to sandwich the initial Pennzane film 
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obtained above. The initial separation between the two confining alumina surfaces based 

on their topmost Al atoms is set at h = 42.69 Å. This surface separation allows the 

Pennzane molecules to have attractive interactions with the surfaces but without any 

unphysical repulsion. A side view of the completed initial condition is shown in Figure 

2.7. It is worth emphasizing here that periodic boundary conditions [15,16] were always 

applied in the lateral (xy) directions in this work.   

    

 

 

 

 

 

 

 

 

Figure 2.6. (a) Top-down (xy) view and (b) side (xz) view of the initial Pennzane film that 

contains 60 Pennzane molecules (3900 UA’s). 

 

Regardless of how carefully prepared an initial condition was, it is still full of 

artificial information that may significantly and negatively affect the results and analyses 

to be generated from MD simulations.  It is necessary to allow the initial condition to 

evolve toward a thermodynamically consistent state. This equilibration procedure started 

from a very small time interval, t = 0.3 fs, in this work and gradually increased the time 

interval to 1.5 fs over several million time steps totaling more than 3.5 ns (10-9 sec), 

(a) 

(b) 
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during which the system temperature is controlled at 25 ℃ (298.15 K) and the separation 

between the confining alumina surfaces is kept at h = 42.69 Å.  

Although the exact definition of the volume of a nanoscopically confined space is 

lacking, it is reasonable to approximate it as the product of the lateral dimensions and a 

‘free’ separation that is equal to ( )
20,CH -Al2h R− . Based on this approximation, the volume 

space of the initial condition is 3.23410-19 cm3, resulting in a Pennzane film density of 

~0.304 g/cm3. It can be expected that under high load conditions, the film density would 

increase in order to support the applied loads. To study such conditions in MD 

simulations, different equilibrated systems with decreased film thicknesses (surface 

separations) are needed. For this purpose, the initial equilibrated system was subjected to 

a slow, stepwise process to gradually decrease the surface separation over several million 

time steps. The new equilibrated system has a separation of h = 27.45 Å, corresponding to 

an approximate film density of ~0.0.549 g/cm3. 

 

 

h = 

42.69 

Å 

Figure 2.7. Side (xz) view of the initial condition 
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3. RESULTS AND ANALYSIS 

3.1. CONFIGURATIONS OF PENNZANE THIN FILM 

To the best of our knowledge, Pennzane thin film confined between two solid 

surfaces appears to have not received much research effort in terms of theoretical or MD 

modeling studies. To date, we have found only one publication that reported 

complementary experimental and MD studies involving a confined Pennzane thin 

film[26]. However, its focus was to investigate the effects of two lubricant additives and 

very little was reported concerning Pennzane or the details of the simulation potentials. In 

fact, it appeared to involve a very small number of Pennzane molecules in a very finite 

system sandwiched by two simple generic surfaces. From a fundamental and modeling 

perspective, such a model system is likely to be subject to very significant “finite-size” 

effects [15].    

In this work, two equilibrated systems were considered and compared with one 

another. Case A has a larger surface separation (42.69 Å) and hence a lower film density, 

whereas case B has a smaller surface separation (27.45 Å) and hence a higher film 

density.  The simulation results and subsequent analyses were based on production runs 

spanning 300 ps. Shown in Figures 3.1 and 3.2 are the simulation snapshots of the two 

systems before and after the production runs. Compared to symmetric molecules in 

similar nano-scale confinement which tend to form layers parallel to the confining 

surfaces [26-30], thereby exhibiting solid-like yield stress and stick-slip motion instead of 

lubricated smooth motion, Pennzane does not appear to be layered to any significant 

extent, which can be attributed to its highly branched and highly asymmetric structure 
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[28-30]. Moreover, comparison between the simulation snapshots before and after the 

production runs indicates that Pennzane molecules in the confined space still retain 

substantial mobility in both cases as their positional changes are very noticeable during 

the span of 300 ps. Such a high mobility could be related to the non-layered 

configurations and could have very significant implications to the tribological behavior of 

thin Pennzane lubricant film for space and nanotechnological applications. 

It is also apparent from the snapshots that stretched conformations are retained in 

many of the branches of the Pennzane molecules adjacent to the alumina surfaces adopt  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1. Simulation snapshots of Pennzane films in case A before (left panel) and after 

(right panel) the production run. (a) and (c) are side (xz) views, while (b) and (d) are top-

down (xy) views. 

 

(a)                                                                      (c) 

(b)                                                                   (d) 
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stretched conformations and lie parallel to the surfaces. Those branches in direct contact 

with the surfaces appear to have segments lying parallel on the surfaces. These   

conformations and orientation are made possible due to Pennzane’s sufficient structural 

flexibility and natural tendency to maximize interactions with the surfaces.  

3.2. DENSITY DISTRIBUTIONS IN PENNZANE THIN FILM 

The simulation snapshots only provide the configurations and conformations at 

certain time instant. Judging by their significant mobility, Pennzane molecules can be 

expected to exhibit fairly uniform distributions in the lateral directions over a sufficiently 

large time scale.  Shown in Figure 3.3 are the time-averaged lateral distributions of 

Pennzane pseudo-atoms (UA’s) for both cases, which are consistent with expectation. 

In the confining (z) direction, however, non-uniform distributions are expected as 

they were also hinted by the side views in Figures 3.1 and 3.2. For quantitative analysis, 

the time-averaged density distributions of the Pennzane pseudo-atoms and centers of 

mass are computationally determined and plotted in Figures 3.3, 3.4 and 3.5 respectively. 

These density distributions do possess persistent oscillatory patterns, but they are far 

from being layered configurations as those seen in symmetric molecules [28-30]. These 

oscillatory density patterns will not be averaged out even if much longer time periods are 

employed as it is a persistent effect imparted by the nanoscopic confinement [26-30]. 

Notably, the nature of the confining surfaces may affect the magnitude of the oscillations 

but cannot make the oscillations disappear. However, the nature of the confining surfaces 

does affect the density of the adjacent molecules. Since there are attractive interactions 

from the alumina surfaces, the Pennzane molecules exhibit         
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Figure 3.2. Simulation snapshots of Pennzane films in case B before (left panel) and after 

(right panel) the production run. (a) and (c) are side (xz) views, while (b) and (d) are top-

down (xy) views. 

 

enhanced UA and center-of-mass densities adjacent to the surfaces, which were also 

observed in the simulation snapshots presented in Figures 3.1 and 3.2.  

3.3. ALKYL BRANCHES IN PENNZANE THIN FILM 

The long alkyl branches are the predominant structural feature of Pennzane 

molecule and can be understood to be responsible for many interesting and important 

properties possessed by Pennzane. It is of great interest and importance to investigate 

how the long branches are accommodated in the confined space.  

 

(a)                                                                        (c) 

(b)                                                                        (d) 
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Figure 3.3. Time-averaged density distributions of Pennzane pseudo-atoms (UA’s) in a 

lateral direction. 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4. Time-averaged density distributions of Pennzane pseudo-atoms (UA’s) in the 

confined direction. 
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Figure 3.5. Time-averaged density distributions of Pennzane centers of mass in the 

confined direction. 

 

 

Insights in this respect could be revealed by the distributions of branch length and 

branch orientation in the perpendicular z direction. For this purpose, the geometric center 

of the core cyclopentane was taken as the reference and the positions of the six terminal 

UA’s (labeled 9, 27, 28, 46, 47, 65 in Figure 2.2) were used to evaluate branch length and 

branch orientation. In this manner, the C8 and C10 branches in an ideal, fully stretched 

pennzane molecule (e.g., Figure 2.2) are 12.3 Å and 16.5 Å in length, respectively. From 

Figure 3.6 where the branch length was shown as a function of terminal UA’s position in 

the perpendicular z direction, the branch length can be seen to be shorter than 14.4 Å, the 

average length of fully stretched C8 and C10 branches, meaning that the structural 

flexibility has allowed non-trans conformations to take place and to remain. It can also be 

seen from the figure that strong interactions from the surfaces can assist structural 
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flexibility to allow higher degrees of non-trans conformations and shorter branch lengths 

in Pennzane molecules in the immediate proximity of the surfaces. However, there could 

be a number of different ways for this trend to take place.      

     

Figure 3.6. Distribution of branch length as a function of terminal UA’s position in the 

confined direction. 

 

 

Using the same reference, the end-to-center vectors can be determined using the 

six terminal UA’s positions in each Pennzane molecule. These vectors can then be used 

to determine the angles of the branches with respect to the perpendicular (z) direction. 

The results from the MD simulations are presented in Figure 3.7. Interestingly, the 

branches mostly fall within a narrow range of angles around 52° except when they are 

right next to the surfaces where decreased branch angles coincide with decreased branch 

lengths. This means that the alkyl branches in direct interaction contact with the alumina 
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surfaces tend to stand more perpendicularly to the surfaces than those away from. This 

phenomenon is similar to the chain orientations in self-assembled monolayers (SAMs) 

which require strong surface interactions and high chain densities [22].        

 

       

 

Figure 3.7. Distribution of branch angle as a function of terminal UA’s position in the 

confined direction. 

 

3.4. CONCLUSIONS 

Pennzane is a highly branched synthetic hydrocarbon that has been shown to 

outperform many traditional lubricants. It has been increasingly utilized for be in space 

engineering and other emerging applications. However, our recognition of Pennzane 

being an excellent lubricant relies mostly on experimental measurements and indirectly 
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on inference from theoretical studies of other molecules. Fundamental insights and 

understanding are still needed in order to understand the full potential as well as the 

limitation of Pennzane. To this end, molecular dynamics (MD) is a very well-suited 

method but has virtually not been applied to the study of Pennzane to this date. In this 

work, appropriate potential models were identified and utilized for simulating Pennzane 

molecules. The MD simulation codes were successfully developed, and realistic model 

systems were constructed comprising Pennzane thin films sandwiched between two 

confining surfaces. To make the model systems more relevant practically, -alumina 

surfaces were considered and atomistically represented in the MD simulations.   

The results from the MD simulations in this work show that, unlike symmetric 

molecules that can be induced by nanoscopic confinement to form layered configurations, 

the highly branched Pennzane possesses sufficient structural asymmetry and complexity 

to resist the layering tendency, which can be linked to its exceptional tribological 

properties. In addition, confined Pennzane retains high mobility, which is less solid-like 

and hence more likely to provide reduced friction and wear. In addition, Pennzane thin 

films have more uniform density distributions across surface separation, meaning that 

they are more efficient in transferring momentum and possibly heat as well. Detailed 

analyses of the lengths and angles of the Pennzane branches show that, in general, the 

branches are able to maintain similar lengths and angles throughout the confined thin 

films except the regions in direct contact with strongly interacting surfaces. More 

specifically, strong interactions from the surfaces, assisted by the structural flexibility of 

the Pennzane branches, are able to bend segments of the proximal branches into non-trans 

conformations that lie directly on and parallel to the surfaces. The resultant strong 
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interactions appear to function as an anchor that promotes the branches in a crowded 

environment to stand more straight up, a phenomenon similar to self-assembled 

monolayers (SAMs).   

The realistic model system of an important liquid lubricant developed in this work 

can be considered to be equivalent to a key that can open many research directions and 

opportunities. It will enable the effects of inorganic lubricant additives such as graphene 

and organic lubricant additives such as tri-(2-octyldodecyl) phosphate to be studied in the 

near future by MD simulations. It can also be integrated with other components in MD 

simulations to explore nanotechnological applications.              
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