Library and
Learning Resources

The assessment of winding forces due to inrush current in large transformers with heavily saturated cores

Richard Howard Palmer

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses
Part of the Electrical and Computer Engineering Commons
Department:

Recommended Citation

Palmer, Richard Howard, "The assessment of winding forces due to inrush current in large transformers with heavily saturated cores" (2009). Masters Theses. 6889.
https://scholarsmine.mst.edu/masters_theses/6889

This thesis is brought to you by Scholars' Mine, a service of the Missouri S\&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.
other; thus the fields are non-uniform. Therefore the high voltage and tap winding coil objects were divided into symmetrical compartments to allow for an average resultant flux magnitude and direction to be determined based on the current flowing through each compartment object.

Figure 3.3. Example FEA model object flux line plot (Transformer Tx_{A} illustrated)

Figure 4.1. Transformer $\mathrm{Tx}_{\mathrm{A}(\text { Additive): }}$: High voltage winding forces

The lower tap winding (TC 1) inrush $\left(\mathrm{I}_{\mathrm{R}}\right)$ current-produced peak axial ($\mathrm{F}_{\mathrm{P} \text {-ax }}$) and resultant axial $\left(\mathrm{F}_{\mathrm{R}}\right)$ forces exceeded those due to short-circuit (I_{Sc}) current when I_{IR} currents were greater than 80% of the $I_{S C}$ current. At I_{IR} equal to I_{SC} the F_{R} and $\mathrm{F}_{\mathrm{P}-\mathrm{ax}}$ forces were 2 times the $\mathrm{I}_{\mathrm{SC}} \mathrm{F}_{\mathrm{R}}$ and $\mathrm{FP}_{\mathrm{P}-\mathrm{ax}}$ forces. Results are illustrated in Figure 4.2 and presented in Appendix D.

The tap windings TC 1 and TC 2 inrush current-produced peak radial ($\mathrm{F}_{\mathrm{P} \text {-rad }}$) forces exceeded those due to short-circuit (I_{SC}) current. At I_{IR} equal to I_{SC} the $\mathrm{TC} 1 \mathrm{~F}_{\mathrm{P} \text {-rad }}$ force was nearly 14 times the $\mathrm{I}_{\mathrm{SC}} \mathrm{F}_{\mathrm{P} \text {-rad }}$ force and the TC2 $\mathrm{F}_{\mathrm{P} \text {-rad }}$ force was greater than 34 times the $\mathrm{I}_{\mathrm{SC}} . \mathrm{F}_{\mathrm{P}-\mathrm{rad}}$ force. Results are illustrated in Figure 4.3 and presented in Appendix D.

Figure 4.2. Transformer $\mathrm{Tx}_{\text {A(Additive): }}$: Tap winding axial forces

```
245MVA Tap Winding Coils TC1 & TC2
    Fp-Radial: Peak Radial Force
    (Additive Type NLT)
        No Load Tap-Position #3
```


Figure 4.3. Transformer $\mathrm{T}_{\mathrm{A} \text { (Additive): }}$ Tap winding radial forces
forces were 1.1 times the $\mathrm{I}_{\mathrm{SC}} \mathrm{F}_{\mathrm{R}}$ and $\mathrm{F}_{\mathrm{P} \text {-ax }}$ forces. Results are illustrated in Figure 4.5 and presented in Appendix D.

```
245MVA High Voltage Winding Coils HV1 & HV2 Fp-Axial: Peak Axial Force Fr: Resultant Axial Force Fp-Radial: Peak Radial Force (Subtractive Type NLT) No Load Tap-Position \#3
```


Figure 4.4. Transformer $\mathrm{Tx}_{\text {A(Subractive) }}$: High voltage winding forces

The tap windings TC1 and TC2 inrush current-produced peak radial ($\mathrm{F}_{\mathrm{P} \text {-rad }}$) forces exceeded those due to short-circuit current. At I_{IR} equal to I_{SC} the $\mathrm{TCI} \mathrm{F}_{\mathrm{P} \text {-rad }}$ force was nearly 12 times the $\mathrm{I}_{\mathrm{SC}} \mathrm{F}_{\mathrm{P} \text {-rad }}$ force and the TC 2 F P-rad force was greater than 8 times the short-circuit $\mathrm{FP}_{\mathrm{P} \text {-rad }}$ force. Results are illustrated in Figure 4.6 and presented in Appendix D.

245MVA Tap Winding Coils TC1 \& TC2
Fp-Axial: Peak Axial Force Fr: Resultant Axial Force
(Subtractive Type NLT) No Load Tap-Position \#3

Figure 4.5. Transformer $\mathrm{Tx}_{\mathrm{A}(\text { Subtractive) }}$: Tap winding axial forces

245MVA Tap Winding Coils TC1 \& TC2
Fp-Radial: Peak Radial Force
(Subtractive Type NLT)
No Load Tap-Position \#3

Figure 4.6. Transformer $\mathrm{Tx}_{\text {A(Subractive) }}$: Tap winding radial $\mathrm{f}_{\text {Orces }}$

The lower high voltage winding (HV1) inrush (I_{IR}) current-produced peak axial ($\mathrm{F}_{\mathrm{P}-\mathrm{ax}}$) and resultant axial $\left(\mathrm{F}_{\mathrm{R}}\right)$ forces exceeded those due to short-circuit $\left(\mathrm{I}_{\mathrm{SC}}\right)$ current when I_{IR} currents were near or 50% of the I_{SC} current. At I_{IR} equal to I_{SC} the $\mathrm{F}_{\mathrm{P}-\mathrm{ax}}$ and F_{R} forces were near or greater than 4 times the $\mathrm{I}_{\mathrm{SC}} \mathrm{F}_{\mathrm{P}-\mathrm{ax}}$ and F_{R} forces. The inrush current peak radial $\left(\mathrm{F}_{\mathrm{P} \text {-rad }}\right)$ forces were at or less than 27% of the short-circuit $\mathrm{F}_{\mathrm{P} \text {-rad }}$ forces. Results are illustrated in Figure 4.8 and presented in Appendix D.

Figure 4.7. Transformer $\mathrm{Tx}_{\mathrm{B} \text { (Additive) }}$ (Center Entry): High voltage winding forces

230MVA High Voltage Winding Force Relationships
Yoke Entry Connections
Fp-Axial: Peak Axial Force $\mathrm{Fr}=$ Resultant Axial Force
Fp-Radial: Peak Radial Force
No Load Tap-Position \#3

Figure 4.8. Transformer $\mathrm{T}_{\mathrm{B} \text { (Additive) }}$ (Yoke Entry): High voltage winding forces

Figure A.1. 245MVA $\left(\mathrm{Tx}_{\mathrm{A}}\right)$ transformer general physical layout.

Figure B.1. 230MVA $\left(\mathrm{Tx}_{\mathrm{B}}\right)$ transformer general physical layout.

Figure C.4. Transformer $\mathrm{Tx}_{\text {A(Additive): }}$ Air gap, high voltage (compartment HV10) winding, and upper tap (compartment TC24) winding flux line plots during short circuit conditions.

Figure C.5. Transformer $\mathrm{Tx}_{\mathrm{A} \text { (Additive): }}$ High voltage (compartment HV10) winding flux line plots during short circuit conditions.

Figure C.6. Transformer $\mathrm{Tx}_{\mathrm{A} \text { (Additive): }}$ Upper tap (compartment TC24) winding flux line plots during short circuit conditions.

Figure C.7. Transformer $\mathrm{Tx}_{\text {A(Additive) }}$: Air gap, high voltage (compartment HV10) winding, and upper tap (compartment TC24) winding flux Line plots during inrush current conditions (Inrush current equals 70% of short circuit).

Figure C.8. Transformer $\mathrm{Tx}_{\mathrm{A}(\text { Additive): }}$: High voltage (compartment HV10) winding flux line plots during inrush current conditions (Inrush current equals 70% of short circuit).

Figure C.9. Transformer $\mathrm{Tx}_{\text {A(Additive): }}$ Upper tap (compartment TC24) winding flux line plots during inrush current conditions (Inrush current equals 70% of short circuit).

Figure C.10. Transformer $\mathrm{Tx}_{\text {A(Subractive): }}$ Air gap, high voltage (compartment HV10) winding, and upper tap (compartment TC24) winding flux line plots during short circuit conditions.

Figure C.11. Transformer $\mathrm{Tx}_{\mathrm{A} \text { (Subtractive): High voltage (compartment HV10) winding flux }}$ line plots during short circuit conditions.

Figure C.12. Transformer $\mathrm{Tx}_{\mathrm{A}(\text { Subtractive): }}$ Upper tap (compartment TC24) winding flux line plots during short circuit conditions.

Figure C.13. Transformer $\mathrm{Tx}_{\text {A(Subtractive) }}$: Air gap, high voltage (compartment HV10) winding, and upper tap (compartment TC24) winding flux line plots during inrush current conditions (Inrush current equals 70\% of short circuit).

Figure C.14. Transformer $\mathrm{Tx}_{\text {A(Subtractive) }}$: High voltage (compartment HV10) winding flux line plots during inrush current conditions (Inrush current equals 70% of short circuit).

Figure C.15. Transformer $\mathrm{Tx}_{\mathrm{A} \text { (Subtractive): }}$ Upper tap (compartment TC24) winding flux line plots during inrush current conditions (Inrush current equals 70% of short circuit).

Figure C.17. Transformer Tx_{B} (Center Entry): Air gap, high voltage (compartment HV28) winding, and tap (compartment 2T3) winding flux line plots during short circuit conditions.

Figure C.18. Transformer Tx_{B} (Center Entry): High voltage (compartment HV28) winding flux line plots during short circuit conditions.

Figure C.19. Transformer Tx_{B} (Center Entry): High voltage tap (compartment 2T3) winding flux line plots during short circuit conditions.

Figure C.20. Transformer Tx_{B} (Center Entry): Air gap, high voltage (compartment HV28) winding, and tap (compartment 2T3) winding flux line plots during inrush current conditions (Inrush current equals 70\% of short circuit).

Figure C.21. Transformer Tx x_{B} (Center Entry): High voltage (compartment HV28) winding flux line plots during inrush current conditions (Inrush current equals 70% of short circuit).

Figure C.22. Transformer Tx_{B} (Center Entry): High voltage tap (compartment 2T3) winding flux line plots during short circuit conditions.

| AirFlux $[\mathrm{Wb} / \mathrm{m}]$ |
| ---: | ---: |
| $3.0349 \mathrm{e}-001$ |
| $2.3683-001$ |
| $1.7017 \mathrm{e}-001$ |
| $1.0351 \mathrm{e}-001$ |
| $3.6852 \mathrm{e}-002$ |
| $-2.9807 \mathrm{e}-002$ |
| $-9.6466 \mathrm{e}-002$ |
| $-1.6312 \mathrm{e}-001$ |
| $-2.297 \mathrm{e}-001$ |
| $-2.9644 \mathrm{e}-001$ |
| $-3.6310 \mathrm{e}-001$ |
| $-4.2976 \mathrm{e}-001$ |
| $-4.9642 \mathrm{e}-001$ |
| $-5.6308 \mathrm{e}-001$ |

Figure C.23. Transformer Tx x_{B} (Yoke Entry): Air gap, high voltage (compartment HV28) winding, and tap (compartment 2T3) winding flux line plots during short circuit conditions.

Figure C.24. Transformer Tx_{B} (Yoke Entry): High voltage (compartment HV28) winding flux line plots during short circuit conditions.

Figure C.25. Transformer Tx_{B} (Yoke Entry): High voltage tap (compartment 2T3) winding flux line plots during short circuit conditions.

Figure C.26. Transformer Tx_{B} (Yoke Entry): Air gap, high voltage (compartment HV28) winding, and tap (compartment 2T3) winding flux line plots during inrush current conditions (Inrush current equals 70\% of short circuit).

Figure C.27. Transformer Tx_{B} (Yoke Entry): High voltage (compartment HV28) winding flux line plots during inrush current conditions (Inrush current equals 70\% of short circuit).

Figure C.28. Transformer Tx_{B} (Yoke Entry): High voltage tap (compartment 2T3)
winding flux line plots during inrush current conditions (Inrush current equals 70% of short circuit).

Force Relationships-245MVA Model

Axial Force Distribution High Voltage Winding

Force Relationships-245MVA Model Radial Force
Lower Tap Winding (TC1)
\times Short Circuit
Lower Tap Winding (TC1)
No Load Tap-Position \#3
$\rightarrow-\mathbb{R}=1.0 \mathrm{SC}$
No Load Tap-Position \#3
$+\quad \mathbb{R}=4 S C$
$\cdots \Delta \cdots 1 \mathrm{R}=.7 \mathrm{SC}$

Force Relationships-245MVA Model

Axial Force Distribution

Force Relationships-245MVA Model
 Radial Forces
 Upper Tap Winding (TC2)

No Load Tap-Position \#3

\times Short Craut	
\rightarrow	- IR=1.0SC
+	- $1 \mathrm{R}=$ ASC
\cdots	$\cdot \mathrm{IR}=.7 \mathrm{SC}$

Force Relationships-245MVA Model
Radial Force
Lower Tap Winding (TC1)
No Load Tap-Position \#3
(Subtractive type NLT)
\times Short Circuit
\ldots - $\mathbb{R}=1.0 \mathrm{SC}$
$+\mathbb{R}=4 \mathrm{SC}$
$\therefore-\cdots \operatorname{R}=7 \mathrm{SC}$

Force Relationships-245MVA Model
Axial Force Distribution

\times	Short Circuit
\rightarrow	$\mathbb{R}=1,0 \mathrm{SC}$
+	$\mathbb{R}=.4 \mathrm{SC}$
$\therefore \diamond$	$\cdots \mathbb{R}=.7 \mathrm{SC}$

| Force Relationships-245MVA Model |
| :---: | :---: |
| Radial Force |$\quad \times$ Short Circuit

Force Relationships-230MVA
Axial Force Distribution
High Voltage Coil
No Load Tap-Position \#3

Force Relationships-230MVA
Radial Force
No Load Tap-Position \#3

orce Relationships-230MVA
Axial Force Distribution
High Voltage Coil (Yoke Entry Connection) No Load Tap-Position \#3

Force Relationships-230MVA
Radial Force (Yoke Entry Connection)
No Load Tap-Position \#3

