
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Spring 2012

Laboratory implementations of PMSM drive in hybrid electric Laboratory implementations of PMSM drive in hybrid electric

vehicles applications vehicles applications

Amir E. Saad

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Electrical and Computer Engineering Commons

Department: Department:

Recommended Citation Recommended Citation
Saad, Amir E., "Laboratory implementations of PMSM drive in hybrid electric vehicles applications" (2012).
Masters Theses. 5136.
https://scholarsmine.mst.edu/masters_theses/5136

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5136&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5136&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/5136?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5136&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

LABORATORY IMPLEMENTATIONS OF PMSM DRIVE

IN HYBRID ELECTRIC VEHICLES APPLICATIONS

by

AMIR E. SAAD

A THESIS

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

2012

Approved by

Jonathan W. Kimball, Advisor

Mehdi Ferdowsi

Keith Corzine

 2012

Amir E. Saad

All Rights Reserved

iii

ABSTRACT

Field Programmable Gate Arrays (FPGAs) are one of the today’s most successful

technologies for developing systems that require real time operation and providing

additional flexibility to the designer. This research is focused on developing a control

board for a permanent magnet synchronous machine (PMSM) using an FPGA module.

The board is configured for individual use of an FPGA, digital signal processor (DSP) or

in combination to control the PMSM by generating the required Pulse Width Modulator

(PWM) to the inverter in order to drive and control the speed of the PMSM. Since, the

exact rotor position and speed are required to control the motor; a useful method is

developed digitally and implemented in the FPGA hardware module. The speed observer

(SO), in which the Hall effect signals were used to calculate the speed and the angle of

the rotor.

In this thesis, three different techniques of PWM generation were developed and

combined with rotor position and speed method. The project is implemented in Altera

FPGA using Quartus II software V11.0 with VHDL as the supporting language. The

design achieved high performance and accuracy of the detection estimation and control

scheme for the Permanent Magnet Synchronous Machine. Error and design analysis has

been done also.

iv

ACKNOWLEDGMENTS

I owe my utmost gratitude to my Advisor Dr. Jonathan Kimball, who has the

attitude and the substance of a genius: his encouragement, guidance and support from the

initial to the final level enabled me to develop and understand the subject, for inspiring

and motivating me to overcome all the obstacles in the completion of this work, and for

providing the financial support to me and my family through this wonderful period.

I would like to thank my committee members; Dr. Mehdi Ferdowsi and Dr. Keith

Corzine, for helping me walk through my academic knowledge and technical

participation at the DOE project, providing me the encouragement to achieve the

maximum success.

I would like to thank my parents, Elshaikh Saad and Asmaa Saad and my brother

Mohamed and also extend my sincere thanks and appreciation to my little family, my

dearest wife Hadeel Abdalla and balsam of my life my daughter Leen Saad for their

support, patience, and encouragement during these years.

I would like to thank my friends, classmates, the faculty staff, and everyone who

helped or encouraged me during my whole life.

Lastly, thank you to the Department of Energy and the Missouri S&T research

board for their financial support. This research was sponsored by the Department of

Energy under grant DE-EE0002012.

v

TABLE OF CONTENTS

Page

ABSTRACT ... iii

ACKNOWLEDGMENTS ... iv

LIST OF ILLUSTRATIONS .. vii

LIST OF TABLES ... ix

NOMENCLATURE ... x

SECTION

1. INTRODUCTION .. 1

1.1. BACKGROUND .. 1

1.2. PROPOSED APPROACH .. 1

1.3. LITERATURE REVIEW ... 4

1.4. THESIS OUTLINE ... 7

2. SIGNAL PROCESSING AND CONTROL BOARD ... 8

2.1. INTRODUCTION .. 8

2.2. SIGNAL CONDITIONING CIRCUIT... 8

2.3. FILTER CIRCUIT .. 10

2.4. LEVEL SHIFTERS .. 11

2.5. ANALOG TO DIGITAL CONVERTERS ... 12

2.6. ISOLATOR CIRCUIT .. 14

2.7. CAN TRANSCEIVER CIRCUIT... 14

2.8. DIFFERENTIAL INPUT CIRCUIT... 15

2.9. DSP CIRCUIT .. 16

2.10. FPGA CIRCUIT ... 17

2.11. POWER SUPPLY BOARD .. 19

2.12. PULL-UP RESISTOR CIRCUIT ... 21

2.13. ERRATA... 22

3. PULSE WIDTH MODULATOR ... 23

3.1. INTRODUCTION .. 23

3.2. DIGITAL PWM GENRATION TYPES .. 23

vi

3.2.1. Up-Mode Counter ... 24

3.2.2. Down-Mode Counter .. 24

3.2.3. Up-Down Mode Counter .. 25

3.2.4. PWM with Dead-Band ... 26

4. PMSM ROTOR POSITION MEASUREMENT ... 30

4.1. INTRODUCTION .. 30

4.1.1. Optical Encoder .. 30

4.1.2. Resolver .. 31

4.1.3. Full Observer .. 31

4.1.4. Hall Effect Sensors ... 32

4.2. HYBRID SPEED OBSERVER .. 33

5. RESULTS AND SYSTEM VALIDATION .. 43

5.1. MODELSIM RESULTS ... 43

5.2. HARDWARE RESULTS ... 46

6. CONCLUSION AND FUTURE SCOPE ... 51

APPENDICES

A. PRINTED CIRCUIT BOARDS DESIGN………………………………………...52

B. VHDL CODES OF THE DESIGN………………………………………………...71

BIBLIOGRAPHY ... 88

VITA .. 91

vii

LIST OF ILLUSTRATIONS

 Page

Figure 1.1. PCB0021 Control Board.. 3

Figure 1.2. The Control Board and the Inverter. .. 3

Figure 2.1. Gains and Offset Circuit. ... 8

Figure 2.2. Generic Sallen Key Filter Topology.. 10

Figure 2.3. CMOS Hex Voltage –Level Shifter. ... 12

Figure 2.4. AD7276 Block Diagram .. 13

Figure 2.5. AD7329 Block Diagram .. 13

Figure 2.6. ADUM1412 Block Diagram ... 14

Figure 2.7. 65HVD251Funcional Diagram ... 15

Figure 2.8. Differential Amplifier Circuit.. 16

Figure 2.9. TMS320F28335. .. 17

Figure 2.10. Structure of the FPGA. .. 18

Figure 2.11. Altera Design Flow Chart .. 19

Figure 2.12. PES and PET Type Connectors ... 20

Figure 2.13. PCB0025.. 20

Figure 2.14. Pull-up Resistor for Open Collector Configuration..................................... 21

Figure 3.1. PWM Block Diagram. ... 23

Figure 3.2. Up Mode Counter. ... 24

Figure 3.3. Down Mode Counter. .. 25

Figure 3.4. Up-Down Mode Counter. .. 25

Figure 3.5. Signals of Interest. ... 26

Figure 3.6. PWM Schematic Diagram. .. 28

Figure 4.1. Optical Encoder ... 30

Figure 4.2. Resolver Schematic ... 31

Figure 4.3. Full Adaptive Observer ... 32

Figure 4.4. Three Hall Effect Sensors and Their Related Signals 33

Figure 4.5. High-Performance BLDC .. 34

Figure 4.6. Hybrid Observer Bounding Functions... 36

viii

Figure 4.7. Hybrid Observer Block Diagram [26]. .. 39

Figure 4.8. Speed Observer Schematic in VHDL. ... 40

Figure 4.9. PCB0006 Experiments Board.. 41

Figure 4.10. The Experiment dc Motor. .. 42

Figure 5.1. The Simulation Results of the Up-Mode Counter. .. 43

Figure 5.2. The Simulation Results of the Down-Mode Counter. 43

Figure 5.3. The Simulation Results of the Up-Down Counter. 44

Figure 5.4. Screen Shot (1) for Parameters Results of the SO. .. 44

Figure 5.5. Screen Shot (2) for Parameters Results of the SO. .. 45

Figure 5.6. Screen Shot (3) for Parameters Results of the SO. .. 45

Figure 5.7. Screen Shot (4) for Parameters Results of the SO. .. 46

Figure 5.8. The Rising-Edge Counter Delay. .. 46

Figure 5.9. The Falling-Edge of the Fed Counter. ... 47

Figure 5.10. Hall Effect Signals. .. 47

Figure 5.11. The SO Output in 59.86 Hz Hall Effect Signals Input. 48

Figure 5.12. The Absolute Error vs. m Bits. .. 49

Figure 5.13. The Total Logic Elements vs. m Bits. ... 49

Figure 5.14. The sin(θrh) Output. ... 50

Figure 5.15. Zoom in Results of sin(θrh). ... 50

ix

LIST OF TABLES

 Page

Table 2.1. Maximum and Minimum Voltage Range. .. 9

Table 2.2. The Resistor Values for Fig. 2.1. .. 9

Table 2.3. Capacitor and Resistor Values. ... 11

Table 2.4. Power Modules and Corresponding Voltages. ... 21

Table 4.1. Bounding Functions vs. Hall States .. 35

Table 4.2. State Transition Points .. 35

Table 4.3. Initial Conditions .. 37

Table 4.4. The Motor Parameters. ... 42

x

NOMENCLATURE

Symbol Description

HEVs Hybrid Electric Vehicles

EMs Electric Motors

CAN Computer Automotive Network

RTDC Resolver-to-Digital Converter

SO Speed Observer

PMSM Permanent Magnet Synchronous Machine

FPGA Field Programmable Gate Array

Q Quality factor

fc Cutoff frequency

î Observed current

v̂ Observed voltage

ha, hb, hc Hall effect sensor signals

rω Rotor angular speed

r̂ Rotor estimated speed

rθ Rotor electrical position

1

1. INTRODUCTION

1.1. BACKGROUND

Electric motors (EMs) and generators are the primary workhorses in hybrid-

electric vehicles (HEVs). The generators convert mechanical power from the engine

electrical power in order to charge the batteries and operate the motors. Then motors

produce the required torque to drive the wheels. There are many types of motors and

generators used in HEVs: induction, switched reluctance, and permanent magnet. Each

type requires the occurrence of a magnetic field. Reluctance and induction motors use an

external source to provide the magnetic field, while the permanent magnet motors use

permanent magnets for this purpose. The critical factors for these components are power,

efficiency, controllability, cost, and durability [1-3].

PMSMs have been generally used in the HEV over the last two decades because

of their high efficiency, high-power density and lack of a dc field winding in the rotor;

however, they are more expensive than alternatives [2]. It is usually accepted that precise

control of a PMSM requires exact rotor position and speed information. The methods to

detect the rotor position are basically divided into two categories. One is the rotor

position detection by a position sensor mounted on the machine rotor, and the other is a

sensor-less method based on indirect rotor position estimation techniques [3].

In this thesis, a control board for a PMSM is constructed with advanced electronic

techniques in order to offer the best type of control for a PMSM in a HEV application.

The board contains many different signal processing circuits in addition to the flexibility

of using microcontroller of FPGA module to apply different control applications. Rotor

speed and position scheme is implemented in the FPGA using VHDL language. The

method used is the Hall effect sensors to estimate the rotor speed and position [4].

1.2. PROPOSED APPROACH

In order to estimate the rotor position and control the PMSM, a signal processing

control board is necessary to study, investigate and apply many different control

techniques. The circuits in the board have been simulated using MATLAB SIMULINK

and SPICE for the sake of accuracy and stability of the system. Then CADSOFT EAGLE

2

PCB design software was used to layout the board. The board uses two different

technologies to control the motor: a digital signal processor (DSP) and a FPGA. The

Altera Cyclone II FPGA module delivers high performance and low power consumption

at a cost that rivals that of ASICs. Altera’s modules are supported by the easy-to-use and

Quartus II licensed or free Edition design software.

The control board has the capability of working in three modes, the DSP only, the

FPGA only, or the DSP-FPGA share mode. In the DSP mode only, all the signals are

forwarded towards the DSP for either generating a special signal such as PWM or reading

an external signal such as dc bus voltage, current sensors, or Hall effect signals to make

other control decisions. The FPGA is being developed to have the same functionality as

the DSP. Furthermore, these two devices can share all the control operation if needed,

due to the high performance of the FPGA which runs at 24 MHz in this particular module

or even up to 400 MHz in some other families.

Signal conditioning circuits are added to the board in order to offer the

compatibility for the DSP to read external signals from the inverter (Semikron Box),

current sensors or the dc bus. Another differential input circuit has been implemented in

case applications require different ground reference. Also, level shifter circuits from +3V

to +15V and +15V to +3V are needed to condition the PWM signals to be compatible

with the Inverter gates threshold or receive fault signals respectively.

Sallen-Key Filters were added to the board for converting signals from digital to

analog for monitoring some interesting parameters. Communication is very important in

this type of applications, thus, Computer Automotive Network (CAN) transceivers were

added to the board. For extra design flexibility, digital Input/Outputs and relay

contractors were added to the board for future uses. External Analog to Digital

Converters (ADCs) were added in case of the DSP ADCs failure and to speed up the

DSP’s processing by passing them through the FPGA. Another 16 channel serial ADC

was added to offer digital signal to the FPGA.

Figures 1.1 and 1.2 illustrate the control board block diagram and the real board

attached to the inverter screen shot.

3

Figure 1.1. PCB0021 Control Board.

Figure 1.2. The Control Board and the Inverter.

4

1.3. LITERATURE REVIEW

The existing literatures on the rotor speed and position estimation are studied in

this section along with literature that focuses in type of observing methods to estimate

these characteristics. A common type of motor that has been used in HEVs is the PMSM

[2]. Therefore, this literature will be around this type of a motor.

A proposal of self-sensing technique is proposed in [4]. The technique functions

in a manner similar to a resolver and resolver-to-digital converter (RTDC) sensing

system, in this technique the motor acts as the electromagnetic resolver and the power

converter applies carrier-frequency voltages to the stator which produce high-frequency

currents that proportional with position. The sensed currents are processed with a

heterodyning technique that provides a signal that is nearly proportional to the difference

between the actual rotor position and an estimated rotor position.

Another proposal of a self-sensing technique and high-frequency injection in [5]

is based on tracking observer to correct the limitation in [4]. This method uses a rotating

vector, a carrier signal, and a tracking observer. In this method, high-frequency injection

makes low and zero speed detection possible.

The authors in [6] proposed a FPGA based scheme in which the rotor position can

be estimated by using three symmetrical locked Hall effect position sensors. This scheme

is implemented using the Altera FPGA, by assuming the time interval between adjacent

changes Hall effect sensor signal is t and calculating the average electric angular

velocity rω is,

 / (3Δ)rω π t (1)

The estimated dynamic error is

 2 2a

2 2 p

Dmax 2 2 2 2

π p aπ
δθ ω ω ω ω

a p
 (2)

5

Where a is the motor’s acceleration, p is the number of pole pair, and 2ω is the

angular velocity that corresponds to the switching point of the Hall interval.

A scheme of modeling and cosimulation of the PMSM control system using an

FPGA is proposed in [7], This method uses the Space Vector Pulse Width Modulator

(SVPWM), D-Q transformation and PI controller as a control scheme. During the design,

the cosimulation between the function model and the VHDL model has been

implemented. The cosimulation between the function model and VHDL model realizes

the timing and control simulation by using Link-for Modelsim
®
 in MATLAB.

The high frequency signal injection method proposed in [8] to improve the

detection accuracy. A DSP (TMS320F2812) is used to implement this method and 4-pole

PMSM is selected as experiment subject. The position detection scheme shows high

accuracy and reduces the error.

 Mathematical modeling of a PMSM and the flux-linkage observer is proposed in

[9]. The mathematical model is used to approximate the nonlinear system of PMSM. Due

to the present modification scheme with error-correction, the rotor position and machine

speed can be estimated; even in the transient state the system has the capability of the

smooth starting and reversing. In addition, the system with the flux-linkage is very robust

and can tolerate variations in PMSM parameters.

The Hall effect method proposed in [10]; uses a simple algorithm that combines

the measurements of a Hall effect sensor with a “sensorless” method. In this method, the

Hall effect position sensor is used instead of a resolver as the mechanical sensor, to allow

vector control of a PMSM with a sinusoidal back-EMF. As a Hall effect sensor provides

only six measurements per electrical turn, the position error between the actual rotor

position and the measured position can potentially reach 30° electrically. This error

affects the control performances and causes significant torque oscillations and over

currents, which are not suitable in transportation systems applications. This method is

easy to implement, but it can not offer continuous precise information of the rotor

position.

A Flux linkage method is proposed in [11] and uses the flux linkage signals to

calculate the rotor position based on trigonometric approximations. The flux linkage

signals can be measured by accessing the neutral point of the PMSM. Regarding the

6

software implementation, the PMSM is modeled in Maxwell, where the nonlinear

magnetic flux density B and the magnetic flux intensity curves are also considered.

Multiple geometric and saturation induced saliencies based on a stator-oriented

magnetic circuit approach is introduced in [12], it introduces a new modeling approach of

a nonlinear machine model. The advantage of this method is that all kinds of saliencies

that occur in the electrical machine can be considered simultaneously. Moreover,

modeling in the stator coordinates leads to a physically motivated explanation when the

cross saturation effect can occur in a PMSM.

The vector-tracking position observer is proposed [13], it is an improved approach

for estimating the rotor positions in PMSM drives with low-resolution Hall effect

sensors. A vector-tracking position observer in conjunction with a discrete Hall effect

sensor’s output signal has been proposed, which is similar to a phase-locked loop

structure. It consists of a position error detector, based on the vector cross product of the

unit back-electromotive-force vectors obtained from a stator electrical model, and a

proportional–integral type controller, to make the position error rapidly converge to zero.

This structure does not only compensate the misalignment effect of the Hall effect

sensors, but also enhance their transient operating capability. This structure allows the

proposed approach to provide useful position information even at and around zero speeds

where the vector-tracking correction loop cannot correctly operate. Above zero speeds,

the proposed approach provides the high-resolution position information, where the

position estimation error rapidly converges to zero regardless of the misalignment of

Hall's sensors and the excessive average-speed error, particularly speed transient

operation. Through the experiments during the steady-state, start-up, speed transient, and

load transient operations, the effectiveness and the dynamic performance of the proposed

approach have been evaluated and verified.

Most of the literature focuses on how to implement different techniques using

mathematical modeling through MATLAB SIMULINK and implement it into a

microcontroller. However, a few authors had tried to implement the algorithms in an

FPGA. Moreover, all the previous studies did not discuss the error analysis of the hybrid

speed observer in which the rotor speed and positions can be determine from the Hall

effect sensors' signals.

7

1.4. THESIS OUTLINE

This section deals with general introduction for the HEV and the importance of

the PMSM in the implementation also brief detail of the existing observation and

estimation of the rotor speed and angle and how these techniques can help on the control

of the motor.

Section 2 describes the control board implementation and the electronic related

circuits design configurations and calculations.

Section 3 provides an introduction to the Pulse Width Modulator and different

approaches of PWM signal generation by using the FPGA or Microcontroller.

Section 4 describes the Hybrid Speed Observer technique for detecting the rotor

speed and position using the Hall effect signals and the physical implementation in the

FPGA using the Quartus II software and the error analysis.

Section 5 presents the system validations after the implementation in the FPGA

and connecting the board to the PMSM. The results are presented in this section to show

the possibility of substituting the Microcontroller with an FPGA or sharing the

operations.

Section 6 presents the conclusions. Design problems and recommendations for

future research are also discussed in this chapter.

8

2. SIGNAL PROCESSING AND CONTROL BOARD

2.1. INTRODUCTION

The control board consists of 15 different circuit blocks. Each bock has been

developed and simulated using SIMULINK or PLECS before the physical

implementation to ensure desired results. Numerical calculations were used to determine

the right values for the components. All components were chosen based on cost,

efficiency, and minimum losses. This section of the thesis will explain the purpose of

each circuit associated with a step by step design calculation and circuit configuration.

2.2. SIGNAL CONDITIONING CIRCUIT

Most of the digital devices are compatible with an interface of 0-3V as standard

I/O. Both the DSP and the FPGA in this design are compatible with 0V as the OFF state

and +3.3V as the ON state. On the other hand, analog signals that need to be processed

can be at any range. In this specific design, the analog signal from current sensors (LA

100-p) is ±10V. An operational amplifier (Op-Amp) TLE-2082 from Texas Instruments

(TI) will be used to offer the desired gain and offset. The signals are scaled from ±10V to

0-3V in order to be compatible with DSP and The FPGA. Figure 2.1 illustrates the circuit

diagram of non-inverting gain offset amplifier. The value of the resistors R1, R2, and R3

can be determined by the following equations [14], and Table 2.1 illustrates the amplifier

desired parameter to achieve the targeted voltage scale while Table 2.2 showing the

selected value of these resistors.

R3

R1

R2

+

-

Vref

Vin

Vout

+15V

-15V

Figure 2.1. Gains and Offset Circuit.

9

Table 2.1. Maximum and Minimum Voltage Range.

Vout,min 0V

Vout,max 3V

Vin,min -10V

Vin,max +10V

Vref +10V

m 0.15

b 1.5

 out inV m V b (3)

 1

1 2 3

1

R
m

1 1 1

R R R

 (4)

 3
ref

1 2 3

1

R
b V

1 1 1

R R R

 (5)

Table 2.2. The Resistor Values for Fig. 2.1.

R1 49.9 kΩ

R2 10.7 kΩ

R3 49.9 kΩ

10

2.3. FILTER CIRCUIT

Filter circuits usually are crucial and require precision. The Sallen Key filter is

very popular active filter topology. It is used to implement second order filters or higher

with different gain factor, high-quality factor, and simple configuration for the second-

order type and can be constructed with following equations from [15, 16]. Figure 2.2 [16]

illustrates the generic Sallen Key filter configuration.

+15V

-15V

+

-

C1

R1 R2

C2 Vout

Vin

Figure 2.2. Generic Sallen Key Filter Topology.

The cutoff frequency fc and the quality factor Q are

 c

1 1 2 2

1
f

2 R C R C

 (6)

1 2 1 2

2 1 2

R R C C
Q

C (R R)

 (7)

For simplicity of the design, a good assumption is to equalize all the resistors.

 1 2R R R (8)

11

This assumption simplifies the equations of the quality factor and the cutoff

frequency as follows.

1 2 1

2 2

C C C1
Q

2C 2 C
 (9)

c

1 2

1
f

2 R C C

 (10)

1

o

2Q
C

R

 (11)

2

o

1
C

2RQ

 (12)

In this design, the desired cutoff frequency is fc = 3 KHz and quality factor is Q =

0.6 for a better response. After using equations (9), (10), (11), and (12) the values of the

design are shown in Table 2.3.

Table 2.3. Capacitor and Resistor Values.

C1 142pF

C2 100pF

R 2.2kΩ

2.4. LEVEL SHIFTERS

The microcontroller and FPGA outputs are limited to +3.3V logic signal while the

inverter module needs about +15V to turn the gate of the insolated gate bipolar transistors

12

(IGBTs) on and also the fault signals that need to be interfaced to the DSP or FPGA are

+15V. A logic level shifting circuit is needed therefore; the CD4504B voltage level-

shifter from Texas Instruments consists of six circuits, which shift the input signals from

the VCC logic level to the VDD logic level. For example, to shift from TTL logic signals to

CMOS logic scale, the SELECT pin-13 input is at the VCC high logic state. And when the

SELECT pin is at low logic state “GND”, each circuit translates the signals from one

CMOS to another [17]. Figure 2.3 [17] illustrates the internal block diagram and the pin

out for CD4504B.

OUTLEVEL SHIFTER

TTL/CMOS

MODE SELECT

Vcc

IN

SELECT

Pin(3,5,7,9,11,14)

13

Vdd

Pin(2,4,6,10,12,15)

Vcc = Pin 1

Vdd= Pin 16

Vss= Pin 8

Figure 2.3. CMOS Hex Voltage –Level Shifter.

2.5. ANALOG TO DIGITAL CONVERTERS

The outputs of the current, voltage, and temperature sensors are analog. In order

to process these signals by using DSP, analog to digital converters are needed. Eight

AD7276 12-bit, high speed, and low power ADCs from Analog Devices are used to

convert the sensors' analog signals to digital signals in order to interface it to the DSP or

the FPGA [19]. Figure 2.4 [18] shows the block diagram of AD7276. Another serial

analog to digital converter AD7329 has been added to the design because of extra

13

flexibility to process ±10V analog signals without any signal conditioning. Figure 2.5

[19] shows the block diagram of the 8-channel AD7329 serial ADC.

Figure 2.4. AD7276 Block Diagram [18].

Figure 2.5. AD7329 Block Diagram [19].

14

2.6. ISOLATOR CIRCUIT

Isolator circuits are usually used when a certain signal needs to be transferred

from one circuit to another without any direct coupling, because these circuits may

operate at different voltage levels. This technique is used to decouple the board and the

Computer Automotive Network (CAN) a bus signal, ADUM1412 quad-channel digital

isolator from Analog Devices is used for this purpose. Figure 2.6 displays the block

diagram and the pin out of the ADUM1412.

Figure 2.6. ADUM1412 Block Diagram [20].

2.7. CAN TRANSCEIVER CIRCUIT

A controller area network (CAN) transceiver circuit is used to communicate

between the board and the CAN controller through a CAN bus. It is useful to send or

receive CAN messages to the control board such as the dc bus voltage, the current at any

phase, or any other signal condition. Figure 2.7 [21] illustrates the pin out and the

functional diagram of 65HVD251 CAN transceiver from TI.

15

Figure 2.7. 65HVD251Funcional Diagram [21].

2.8. DIFFERENTIAL INPUT CIRCUIT

A differential amplifier amplifies the difference between two voltages and rejects

the average or common mode value of these voltages. Figure 2.8 shows the differential

amplifier configuration. The equation for this type of amplifier is presented in [22].

 3 1 4 3
out 2 1

4 2 1 1

(R R)R R
V V V

(R R)R R

 (13)

If R1=R2 and R3=R4 then

 3
out 2 1

1

R
V V V

R

 (14)

The simple case is used to obtain a unity gain, when

 1 2 3 4R R R R 10K (15)

16

Then,

 out 2 1V V V (16)

R1

R2

R3

R4 0V

Vout
V1

V2

Figure 2.8. Differential Amplifier Circuit.

2.9. DSP CIRCUIT

The Digital Signal Processor is chosen to be TI (TMS320F28335) [23],

recommended by TI for motor control applications. The computing unit of this DSP

consists of a 32-bit CPU and a single precision 32-bit floating-point unit (FPU), which

enables the floating-point operations to be accomplished in hardware. The CPU has 8-

channels, which allows the CPU to execute 8 different instructions simultaneously in one

clock cycle. The DSP has a system clock of 150MHz generated by an on-chip oscillator

and Phase Locked Loop (PLL). The oscillator generates only 50MHz clock that is tripled

by the PLL to achieve 150MHz. The DSP also has a physical memory of 34K x 16

single-access random-access memory (SARAM), 8K x 16 read-only memory (ROM), a

1K x 16 one-time programmable memory (OTP) and registers. The DSP has a capability

of five types of an interface: serial communication interface (SCI), controller area

17

network (CAN), inter-integrated circuit (I2C), serial peripheral interface (SPI), and

multichannel buffered serial port (McBSP). This allows flexibility in the interfacing

between the DSP to any other devices such as motors or communication peripherals. The

DSP board also allows for JTAG interface to program the DSP chip.

Figure 2.9 shows, the TMS320F28335 DSP and its control dock. TI offers a

friendly user interface Code Composer V4.0 (CCV4.0) to program this type of the

microcontroller.

Figure 2.9. TMS320F28335.

2.10. FPGA CIRCUIT

The FPGA is an integrated circuit that contains many duplicate logic cells that can

be seen as standard components. Each logic cell can individually take on any one of a

limited set of personalities. The individual cells are interrelated by a matrix of wires and

programmable switches as it shown in Figure 2.10.

18

Figure 2.10. Structure of the FPGA.

A user's design can be implemented by specifying the simple logic function for

each cell and selectively closing the switches in the interconnection matrix. The array of

logic cells and interconnects form a fabric of basic building blocks for logic circuits.

Complex designs are created by combining these basic. The FPGA's functions are

defined by a user's program rather than by the manufacturer of the device.

A typical integrated circuit performs a particular function defined at the time of

manufacture. In contrast, the FPGA's function is defined by a program written by

someone other than the device manufacturer. Depending on the particular device, the

program is either burned in permanently or semi-permanently as part of a board assembly

process, or is loaded from an external memory each time the device is powered up.

19

Figure 2.11 illustrates a typical flow chart for Altera’s FPGA design process,

which has been used in this design.

Figure 2.11. Altera Design Flow Chart [24].

This programmability gives the user access to complex integrated designs without

the high engineering costs associated with application specific integrated circuits.

2.11. POWER SUPPLY BOARD

The power supply is designed in a different printed board (PCB0025) and

attached to the main board through male and female six position power terminals (PES

type and PET type) from SAMTEC Inc. as shown in Figure 2.12 [25], respectively.

20

Figure 2.12. PES and PET Type Connectors [25].

Power modules are used in order to generate seven different voltages as in Table

2.4. Figure 2.13 shows PCB0025 and the next table shows the voltages and the

corresponding parts. The board layout and schematic are attached in appendix A.

Figure 2.13. PCB0025.

21

Table 2.4. Power Modules and Corresponding Voltages.

Voltage Power Module

+1.2V PTH04000W

+3.3V PTH04000W

+3.3V ANA TPS79333DBV

+5.0V PTN78060W

+5.0V ISO. TMH2405S

+15.0V PTN78060H

-15.0V PTN78000A

2.12. PULL-UP RESISTOR CIRCUIT

Pull-up resistors are used for the open collector encoder in order to read the Hall

effect signals. The configuration of this circuit is shown in Figure 2.14.

3.3V

R =1KΩ
PU

Open collector switch

Figure 2.14. Pull-up Resistor for Open Collector Configuration.

22

2.13. ERRATA

After testing the board, there were some errors, defects, and considerations for

new version of the board.

 The gate signal socket package was inverted in eagle. It has been corrected

in the Lib_DOE_transportation_electrification.lbr in the server.

 The DSP package needs to be implemented in the Board as one unit to

minimize the electromagnetic interference (EMI).

 R25 has been changed to 2.2kΩ.

 R65 and R66 values need to be swapped.

 U36 pin 2 and 3 need to be swapped.

 U41 pin 1 should be connected to +5V (board defect). Pull-up resistors of

1kΩ need to be added to the Hall effect signals input terminal J21.

 Ground terminal needs to be added to J21.

 GPIO34 and GPIO 28 need to be swapped.

 In PCB0025, pin 1 at U1 and U4 needs to be connected to the ground.

23

3. PULSE WIDTH MODULATOR

3.1. INTRODUCTION

Pulse Width Modulation (PWM) is a technique for controlling analog devices

with digital signal format. This signal can be generated using a simple analog circuit or a

Microcontroller Unit (MCU). This technique is widely used in communication and power

electronics circuits for control purposes such as controlling the motor speed, by

increasing or decreasing the duty cycle of this digital signal. The traditional way to

generate a PWM signal is to compare an analog or dc signal as reference to a carrier

signal. Usually, the carrier signal is a triangular or a sawtooth signal. Figure 3.1 illustrates

the PWM block diagram.

carrier

+Signal

- PWM signal

High

Low
Comparator

Figure 3.1. PWM Block Diagram.

3.2. DIGITAL PWM GENRATION TYPES

The PWM signals can be generated digitally inside the MCU or FPGA by

substituting the carrier signal with a counter. The counter determines when to turn the

24

PWM signal ON or OFF based on a certain value or reference signal. The counter can be

used at any of the following modes:

 Up Mode Counter.

 Down Mode Counter.

 Up/Down Mode Counter. This results in center-aligned PWM.

3.2.1. Up-Mode Counter. In this mode, the counter starts from zero and

increments until it reach the desired final value. When the counts reach the maximum, the

program will reset the counter to zero and repeat the same procedure again. Figure 3.2

illustrates the up mode counter.

0

1

2

3

4
5

0

1

2

3

4

0

1

2

3

4

T

5 5

Figure 3.2. Up Mode Counter.

3.2.2. Down-Mode Counter. In this mode, the counter will start to count from

the maximum value and decrements until it reaches zero. When it reaches the zero, the

counter will be reset to the maximum value and repeats the pattern. Figure 3.3 illustrates

the down mode counter.

25

T

5
4

3

2

1

0

5
4

3

2

1

0

5
4

3

2

1

0

Figure 3.3. Down Mode Counter.

3.2.3. Up-Down Mode Counter. In this mode, the counter will start counting

from zero and increments until it reaches the maximum value, then it will start to

decrements until it reaches the zero value and keeps repeating the pattern. Figure 3.4

illustrate the Up-Down counter.

0

1

2

3

4
5

4

3

2

1

0

1

2

3

4
5

4

3

2

1

0

T

Figure 3.4. Up-Down Mode Counter.

26

3.2.4. PWM with Dead-Band. In power control applications, it is necessary to

have complementary PWM signals with a dead time between them in order to control

individual power switches such as MOSFETs or IGBTs or modules like Inverters. Two

extra counters are used to create the dead-band. The first counter is the Rising Edge

counter (Red_ Count), and the second counter is the Falling Edge counter (Fed_Count).

These counters create the signal delay in both edges of the PWM signal. Figure 3.5 shows

the main Up/Down mode counter and other two up counters representing the Rising and

the Falling edges counters. RED and FED are the reference values for rising edge counter

and falling edge counter respectively, and they determine the time delays in both edges.

The desired duty ratio (D) is used to set and reset the Up-Down mode counter and

produce the ON time of the PWM signal.

0

1

2

3

4
5

4

3

2

1

0

1

2

3

4
5

4

3

2

1

0

T

D

ON OFF

RED

Red_Counter

FED

Fed_Counter

Original PWM

Q1

Q2

Q3

Q4

Q

Figure 3.5. Signals of Interest.

27

Figure 3.6 illustrates the schematic diagram of the up-down counter PWM that

has been implemented using Altera’s Quartus II software. The block diagram composed

of five main blocks and an OR gate.

The first block is the phase locked loop (PLL). The PLL has one input pin

(CLKIN) and two output pins: clock out and LOCKED, a flag indicating that the PLL has

locked to the input. The clock pin is used as clock reference to all blocks while the locked

pin is used to synchronize all blocks in the design. This block is triggered by an external

crystal oscillator (24 MHz) on the module and connected to PLL through pin A12. This

PLL can either increase the frequency in this module up to 48 MHz or decrease it down

to 2.4 MHz in this particular module, in this experiment the clock is chosen to be 24

MHz.

The second block is the PWM constants. This block has no inputs and provides

five constants with different word lengths. The constants are iRed (3 bits), iFed,

iPulseWidth (3 bits), iD (12 bits), and iClkdiv (3 bits). The iRed and iFed is used to

configure the delay in the rising edge and the falling edge respectively. The iPulseWidth

is used to configure the start pulse width in the next block. The iD can be connected to

the PWM block as known data for testing purposes while iClkdiv is connected to ADC

block as clock divider signal in order to slow down the clock inside the block.

The third block generates a start pulse. This block has three inputs and only one

output. The inputs are the clock and locked signals from PLL in block one and the

iPulseWidth signal from the second block. The output is a single pulse used to trigger the

ADC block for the first time through an OR gate. The iPulseWidth signal determines the

length of the start pulse.

The fourth block is the ADC block. This block has five inputs and four outputs.

The inputs are iClk, iStart, iClkdiv, iReset, and iSDO (12 bits). The block starts running

as soon as it receives the iStart pulse from the previous block. This block is a software

written in VHDL for AD7276 [18] to read the serial digital data output through the iSDO

input from the external chip and process it and generate the four output signals which are

the output value (oValOut, 12 bits), serial clock (oSCK), chip select (oLD), and the done

pulse (oDone).

28

Figure 3.6. PWM Schematic Diagram.

29

The last one is the main block which the PWM block. This block has six inputs

which are iStart, iD, iReset, iRed, and iFed. Also, it has thirteen outputs: oQ through

oQ4, oQ_inv through oQ4_inv, oDone, oDone_red, and oDone_fed. The oQx signals are

as shown in Figure 3.5 (with or without inversion). The oDone signals indicate that the

cycle is complete and the next cycle can begin.

The signal flow through these blocks starts with the clock generated from the PLL

to start pulse. The start pulse block generate a single pulse to trigger the ADC block at

(iStart) input to start read the input digital signal oSDO from the real chip. When this

block finishes its process, it generates the serial clock (oSCK), chip select (oLD), output

value (oValOut), and (oDone) which is used to trigger the next block (PWM) at the

(iStart) input to receive the (oValOut) from the ADC through (iD) serial input data

terminal. The PWM block process that data and generate the desired duty ratio. Also, it

uses the constants (iRed) and (iFed) to determine the delay in the rising and falling edges.

After the block finishes the process the generated done pulse is rerouted to the OR gate so

that the process runs continuously.

30

4. PMSM ROTOR POSITION MEASUREMENT

4.1. INTRODUCTION

PMSM control requires the continuous sensing of the rotor position and speed in

order to apply the control algorithms. There are four common methods for measuring the

PMSM rotor position [26].

4.1.1. Optical Encoder. It is the most popular type, which consists of a rotating

disk, a light source, and a photo detector. The disk, which mounted on the drive shaft of

the motor, has coded patterns of opaque and transparent sectors. When the shaft is

rotated, eventually it will rotate the disk and these patterns will interrupt the light emitted

onto the photo-detector and generating a pulse signal output that can determine the rotor

position and the speed. Figure 4.1 [20] displays the optical encoder.

Figure 4.1. Optical Encoder [20].

31

4.1.2. Resolver. The common type is the Transmitter Resolver; it looks like

a small electric motor with a stator and a rotor. The stator consists of three winding

configurations: an exciter and a two two-phase winding (X and Y), in which there is 90°

phase shift. The output of the Resolver is sine and cosine of an angle θ that corresponds

to the shaft position and direction [27]. Figure 4.2 [28] shows the resolver schematic.

Figure 4.2. Resolver Schematic [28].

4.1.3. Full Observer. The Full Observer uses the characteristics of the Back

Electromotive Force and the voltage generated on the windings due to the BEMF. The

polarity of the current induced in the winding due to the BEMF is determined by the

motor rotating direction. The amplitude of the induced current is proportional to the

speed of the rotors. Many manufacturers have implemented this type of observer into

electronic chips.

Figure 4.3 illustrates a diagram of a commonly used Full Observer that uses the

current i, and voltage v, as references through a Proportional Integral (PI) controller

32

associated with State Space Matrix analysis in order produce an observed current î and

voltage v̂ to detect the error [29, 30].

Adaptive

Scheme
LPF

1B̂

0

1

s

ˆ

ˆ

i

 I 0

 0 I 1tan 11 12

22

ˆ ˆ

ˆ

A A

0 A

1
ˆK sgn(i - i)

z rê

̂

i

î

î - i

re

v

rê

i

Figure 4.3. Full Adaptive Observer [29].

4.1.4. Hall Effect Sensors. The theory behind this type of sensors is that when a

conductor that carrying current is placed into a magnetic field, a voltage will be generated

due to the effect of the magnetic field and the direction of that voltage is perpendicular to

the current [31]. These sensors are inexpensive, small, and have low resolution. Figure

33

4.4 shows 2-pole 3-phase PMSM and three Hall effect sensors accompanied by their 120°

shifted signals.

Figure 4.4. Three Hall Effect Sensors and Their Related Signals [26].

4.2. HYBRID SPEED OBSERVER

It is very common in the Brushless dc motor (BLDC) does not have a resolver or

optical encoder for couple reasons. One reason is to minimize the motor price and size.

Another reason is to offer the flexibility of coupling. The PMSM has different parameters

and characteristics and to control two motors will require some sort of harmony. Thus, it

will be easier to eliminate the mechanical detection parts.

The Hall effect sensors discussed in section 4.1.4 are a successful solution for

sensorless problem due to their low-cost and light weight. Hybrid Observer [32], uses the

Hall effect sensors to estimate the rotor position and speed, with accuracy and low cost.

The setup in Figure 4.5 illustrates an example of a high-performance BLDC. The system

also includes the inverter, observer, speed control and delta-modulated current control

[32].

34

Figure 4.5. High-Performance BLDC [32].

The hybrid observer can be represented by the following differential equation.

rh rhr

rrh rh

cos() cos()0

0sin() sin()

d

dt
 (17)

If the initial position and the electrical speed are known and equation (17) has a

solution with no error, the sine and cosine of the rotor relevant to the Hall effect sponsors,

then rhsin(θ) and rhcos(θ) could be determined using trigonometric identities. Table 4.1

and Figure 5.2 shows the bounding which are maximum and minimum values of rhsin(θ)

and rhcos(θ) for the current Hall effect sensor states (ha, hb, hc).

35

Table 4.1. Bounding Functions vs. Hall States [32].

Hall State Bounding Functions

ha hb hc maxsin(θh) minsin(θh) maxcos(θh) mincos(θh)

0 0 1 -1/2 -1 0 3 / 2

0 1 0 1 1/2 0 3 / 2

0 1 1 1/2 -1/2 3 / 2 -1

1 0 0 1/2 -1/2 1 3 / 2

1 0 1 -1/2 -1 3 / 2 0

1 1 0 1 1/2 3 / 2 0

The values rhsin(θ) and rhcos(θ) can found based on the state transition points.

Table 4.2 shows these values based on the signal states.

Table 4.2. State Transition Points [32].

Sensor Transition ha hb hc rhsin(θ) rhcos(θ)

ha x 0 1 -1 0

ha x 1 0 1 0

hb 0 x 1 -1/2 3 / 2

hb 1 x 0 1/2 3 / 2

hc 0 1 x 1/2 3 / 2

hc 1 0 x -1/2

x= don’t care

36

Figure 4.6 illustrates how the sine and cosine the angle could be estimated based

on known initial conditions and the bounding conditions of that angle. It also shows the

three different three Hall effect signals are shifted by 120°. At any transition point, the

rotor speed can be estimated based on the time between the transition occurrences,

 rh
r

ˆ
t

 (18)

The final calculations to implement the hybrid observer to determine the sine and

cosine of the electrical rotor position are

 r rh h (19)

Figure 4.6. Hybrid Observer Bounding Functions [26].

37

 r rh h rh hsin() sin()cos() cos()sin() (20)

 r rh h rh hcos() cos()cos() sin()sin() (21)

The estimated values of rhsin() and rhcos() are

 r h h h hsin() s cos() c sin() (22)

 r h h h hcos() c cos() s sin() (23)

To determine the initial condition for the rotor, the speed is assumed to be zero.

Then hs and hc can be determined from the initial readings of the Hall effect sensor.

Table 4.3 gives these initial conditions. Figure 4.7 illustrates the block diagram of the

hybrid observer.

Table 4.3. Initial Conditions [32].

Initial Hall State Initial Conditions

ha hc hc θh sθh cθh

0 0 1 4π/3 3 / 2 -1/2

0 1 0 2π/3 3 / 2 -1/2

0 1 1 π 0 -1

1 0 0 0 0 1

1 0 1 5π/3 3 / 2 1/2

1 1 0 π/3 3 / 2 1/2

38

All the above equations, initial conditions table, and the transitional table have

been converted into VHDL language in appendix B to estimate the rotor speed and

position. Some of these parameters are treated as signals type while the other signals

treated as variables. A fixed point package [33] is used to add more precision to the

inputs and the estimated outputs. The integration operations are replaced by accumulated

addition operations to estimate the sine and cosine of the electrical angle. The Hall effect

signals have six possible transitions per period. Each transition is used to trigger a

counter to start counting at each transition state and reset itself at the next transition state.

The local estimated rotor speed (lWr) is equal to the length of the period (2π/6) divided

by the time between any two (T1, T2, T3) transitions which is equal to the counter value

(lCount) multiplied by the sampling frequency (Ts) in 34 bits precision. The final value of

the rotor speed has only 12 bit precision due to the lack of precision on the digital to

analog converter (DAC). The error that occurs due to the change of the precision on the

fraction part of the (lWr) is reported and analyzed in chapter five.

Also, the program can estimate the rotor position at any time based on the initial

and the bounding conditions that has been translated into VHDL statements. When the

program starts it looks at initial conditions first and estimates the sine and cosine of θr

and store those values. The sine and cosine θr can be calculated from equations (20) and

(21) respectively.

The new sine and cosine values can be estimated by integrating the equations.

This integration can be replaced by accumulated addition operation as follows,

r,new r,int r r,int SSin() Cos() Sin() T (24)

r,new r,int r r,int SCos() Sin() Cos() T (25)

On the next clock cycle the program will load the new Hall effect states and the

new values of sine and cosine θr will become initial values for the next clock cycle. The

39

program will also check the bounding conditions in Table 4.1 in order not to exceed the

maximum or goes below the maximum and minimum bounding conditions.

Figure 4.7. Hybrid Observer Block Diagram [26].

This speed observer is built in Quartus II software and VHDL language then

simulated at ModelSim, and also implemented and tested in Altera FPGA cyclone II;

appendix B shows the program structure. Figure 4.8 shows the schematic view of the

hybrid speed observer. Figure 4.9 displays the FPGA experiments board PCB0006 that

has been used for the implementation of the hybrid speed observer for testing purposes.

40

Figure 4.8. Speed Observer Schematic in VHDL.

41

The signal flow in 4.8 uses the same start procedure in the PWM program in

section 3.2.4. Then a single start pulse is used to trigger the speed observer VHDL

program in appendix B. The program will start to execute as soon as it receives the start

pulse and will provide the results. After the program is finished, it will generate a done

pulse that is connected to an OR gate with the start pulse to keep the program

continuously working. The Hall effect signals are connected to pins Y22, Y21, and V22.

A 24 MHz clock is used to run this experiment.

Figure 4.9. PCB0006 Experiments Board.

Figure 4.10 shows the dc motor and the Hall effect sensors encoder type

24A0FEPM from Bodine electric motors that have been involved in this experiment.

42

Figure 4.10. The Experiment dc Motor.

Table 4.4 illustrates the dc motor parameters and characteristics.

Table 4.4. The Motor Parameters.

Serial number 4440MYEAZ0001

Type 24A0FEPM

Volts 24VDC

F.F 1.0

Amperes 1.2

HP 1/50

INS B8

RPM 2500

43

5. RESULTS AND SYSTEM VALIDATION

5.1. MODELSIM RESULTS

The model of the PWM generator has been tested and developed in ModelSim.

The next figures show the simulation results for three different techniques. Figure 5.1

illustrates the simulation results of up-mode counter.

Figure 5.1. The Simulation Results of the Up-Mode Counter.

Figure 5.2 illustrates the ModelSim simulation results of down-mode counter.

Figure 5.2. The Simulation Results of the Down-Mode Counter.

44

The simulation test is also applied to the Up-Down mode counter and Figure 5.3

displays the simulation results of this type of counter.

Figure 5.3. The Simulation Results of the Up-Down Counter.

Figures 5.4, 5.5, 5.6, 5.7 illustrate the simulation results of the hybrid speed

observer in ModelSim and its related parameters.

Figure 5.4. Screen Shot (1) for Parameters Results of the SO.

45

Figure 5.5. Screen Shot (2) for Parameters Results of the SO.

Figure 5.6. Screen Shot (3) for Parameters Results of the SO.

46

Figure 5.7. Screen Shot (4) for Parameters Results of the SO.

5.2. HARDWARE RESULTS

The PWMs programs are implemented in the FPGA and have been tested to drive

synchronous buck converter. The required dead time is about 180 nanosecond which is

about 4 clock cycles delay. Figures 5.8 and 5.9 display screen shots for the rising and

falling edge of the up-down counter PWM.

Figure 5.8. The Rising-Edge Counter Delay.

47

Figure 5.9. The Falling-Edge of the Fed Counter.

Figure 5.10 shows the Hall effect signals from the dc motor in section 5.2.

Figure 5.10. Hall Effect Signals.

48

Figure 5.11 illustrates the output of an experiment that has been prepared for Hall

effect signals of 59.86 Hz. The result of ωr shown in 12 bit binary bus which included 2

bit of fraction that makes it equivalent to 376 in decimals which is.

 r 376
59.84

2 2
f

 Hz (26)

Figure 5.11. The SO Output in 59.86 Hz Hall Effect Signals Input.

The setup has been tested under many different rotating speeds and it always

gives excellent results with negligible error due to the approximation of the program and

the number of bits m that has been used to calculate ωr. This error has been detected and

analyzed in average form due to the unstable Hall effect signal from the dc motor in

addition to the inaccuracy of the scope. The next chart in Figure 5.12 illustrates the

absolute average error versus the m bits. Figure 5.13 also illustrates the number of the

total logic elements used versus m.

49

Figure 5.12. The Absolute Error vs. m Bits.

Figure 5.13. The Total Logic Elements vs. m Bits.

Figures 5.14 and 5.15 illustrate the sin(θrh) output signal from the SO program.

50

Figure 5.14. The sin(θrh) Output.

Figure 5.15. Zoom in Results of sin(θrh).

51

6. CONCLUSION AND FUTURE SCOPE

A signal processing board has been designed to control the PMSM and monitor

the external parameters. This thesis developed the FPGA to generate special signals and

techniques the same as the TI320F28335 does. The PWM signals were tested under

different topologies and conditions. These signals include the dead time capability in

order to be used in synchronous switching devices that require delay time between the

rising and falling edges such as synchronous buck, boost, or buck-boost converters or the

modules like a three phase inverters. The hybrid speed observer method is chosen as the

rotor position and speed detection technique to control the PMSM. This program has

been successfully developed and implemented inside the FPGA and all results are

documented and compared to the microcontroller results. The FPGA implementation

gives high accuracy and better flexibility in the mathematical operations. Also the

resulting error has been analyzed. The system is scalable, so it can control more than one

motor due to the better flexibility of FPGA implementation. The future work would be

applying some other control methods such as all digital phase lock loop (ADPLL), which

is composed of phase and frequency detector, low pass filter (LPF), digital controlled

oscillator (DCO), and a divider. Then a useful comparison can be done to illustrate the

pros and cons of each method.

52

APPENDIX A.

PRINTED CIRCUIT BOARDS DESIGN

53

This appendix includes the signal processing and power supply boards schematics

and layouts of the printed circuit boards discussed in Section 2.1 and 2.11 respectively.

The board schematic layout for the signal processing is shown in Figure A.1 through

A.15 and the schematic and layout of the power supply board is shown in Figure A.16

through A.17.

54

Figure A.1. The CAN Transceiver Circuit.

55

Figure A.2. Digital Output Contactors.

56

Figure A.3. The 8-channel AD7329 Serial ADC Circuit.

57

Figure A.4. The ADC AD7276 Circuit.

58

Figure A.5. Level Shifters Circuit.

59

Figure A.6. The FPGA Pin Out.

60

Figure A.7. 0-3V Gain-Offset Circuit.

61

Figure A.8. Differential Input Gain-Offset Circuit.

62

Figure A.9. Digital Inputs Circuit.

63

Figure A.10. Differential Amplifiers Circuit.

64

Figure A.11. The DSP Pin Out.

65

Figure A.12. The Sallen Key LPF.

66

Figure A.13. The Connectors Pin Out.

67

Figure A.14. The Hall effect Signals Level Shitter Sircuit.

68

Figure A.15. The Signal Processing Board Top Layer.

69

Figure A.16. The Power Supply Schematic.

70

Figure A.17. The Power Supply Board Top Layer.

71

APPENDIX B.

VHDL CODES OF THE DESIGN

72

This appendix contains the VHDL programs of the up mode, down mode, and up-

down mode PWMs, also it includes the speed observer program. The comments are

denoted by text that starts with double hyphen (--) and green font.

73

 This is a program for up mode counter PWM.

--
--This program has been written in VHDL for PWM using up mode counter. The program has been developed by Amir Saad at -
- Missouri University of Science and Technology in Aug. 2011 . Copy right (c) For Amir Saad. All rights reserved 2011.
--
Library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.std_logic_arith.all;

ENTITY aes_pwm_up is
 generic (n: natural := 12);-- n can be changed as needed
 port(
 --input signales
 iStart : in std_logic; -- pulse at start
 iD : in std_logic_vector(n-1 downto 0); --used for 12 bit input data value
 iClk : in std_logic;
 iReset : in std_logic;
 iRed : in std_logic_vector (3 downto 0); -- rising edge counter input data
 iFed : in std_logic_vector (3 downto 0); -- falling edge counter output data
 --Output signals
 oQ : out std_logic;
 oQ1 : out std_logic;
 oQ2 : out std_logic;
 oQ3 : out std_logic;
 oQ4 : out std_logic;
 oQ_inv : out std_logic;
 oQ1_inv : out std_logic;
 oQ2_inv : out std_logic;
 oQ3_inv : out std_logic;
 oQ4_inv : out std_logic;
 oDone : out std_logic;
 oDone_fed : out std_logic;
 oDone_red : out std_logic);
 Constant C_min : std_logic_vector(n-1 downto 0):=(others=>'0');
 Constant C_max : std_logic_vector(n-1 downto 0):=(others=>'1');
end aes_pwm_up ;

Architecture Behavioral of aes_pwm_up is
 signal lDreg : std_logic_vector(n-1 downto 0); -- register output
 signal lCount : std_logic_vector(n-1 downto 0); -- counter output
 signal lFed : std_logic_vector(3 downto 0); -- falling edge register output
 signal lRed : std_logic_vector(3 downto 0); -- rising edge register output
 signal lCount_red : std_logic_vector(3 downto 0); -- rising edge counter output
 signal lCount_fed : std_logic_vector(3 downto 0); -- falling edge counter output
 signal lQint : std_logic;
 signal lPreQint : std_logic;
 signal lQ1 : std_logic;
 signal lQ2 : std_logic;
 signal lQ3 : std_logic;
 signal lQ4 : std_logic;
 signal lRedEn : std_logic;
 signal lFedEn : std_logic;

Begin
process (iClk,iReset,iStart,lQint,lDreg,lCount,lCount_fed,lCount_red,lQ1,lQ2,lQ3,lQ4,lFed,lRed,lRedEn,lFedEn,lPreQint)
Begin
-- Initializations
 if (iReset = '0') then
 lCount <= C_min;
 lDreg <= C_min;
 lFed <= "0000";
 lRed <= "0000";
 lQint <='0';
 lQ1 <='0';
 lQ2 <='0';
 lQ3 <='0';
 lQ4 <='0';
 lRedEn <='0';
 lFedEn <='0';

74

 lCount_red<="0000";
 lCount_fed<="0000";

 elsif (rising_edge(iClk)) then

 if (lCount=C_max) then
 oDone <= '1';
 lCount<= C_min;
 Else
 lCount<=lCount+1;
 oDone <= '0';
 End if ;
 --
 --rising edge counter
 if (lRedEn='1') then
 lCount_red<=lCount_red +1;
 oDone_red<='0';
 Else
 lRedEn<='0';
 oDone_red<='1';
 End if;
 --
 --falling edge counter
 if (lFedEn='1') then
 lCount_fed<=lCount_fed +1;
 oDone_fed<='0';
 Else
 lFedEn<='0';
 oDone_fed<='1';

 End if;

 --
 if (lQint='1' and lPreQint='0') then
 lRedEn <='1';
 lFedEn <='0';
 lCount_red<="0000";
 lCount_fed<="0000";
 Else
 if (lCount_red>=lRed) then
 lRedEn <='0';
 lCount_red<=lCount_red;
 End if;
 End if;
 --
 if (lQint='0' and lPreQint='1') then
 lFedEn <='1';
 lRedEn <='0';
 lCount_fed<="0000";
 lCount_red<="0000";
 Else
 if (lCount_fed>=lFed) then
 lFedEn <='0';

 End if;
 End if;

 if (lCount >= lDreg) then
 lQint<='1';

 Else
 lQint <='0';
 End if;

 --
 if (lCount >=lDreg or lCount_fed<= lFed) then
 lQ1 <= '1';
 Else
 lQ1 <='0';

75

 End if;
 --
 if (lCount_red >= lRed) then
 lQ2 <= '1';
 Else
 lQ2 <='0';
 End if;
 --

 lQ3 <= lQ1 and lQ2;
 --
 if (lCount_fed >= lFed) then
 lQ4 <= '1';
 Else
 lQ4 <='0';
 End if;
 --
 if (iStart ='1') then
 lDreg <= iD;
 lFed <= iFed;
 lRed <= iRed;
 End if;
End if;
--

End process ;
oQ <= lQint;
oQ1 <= lQ1;
oQ2 <= lQ2;
oQ3 <= lQ3;
oQ4 <= lQ4;
oQ_inv <= not (lQint);
oQ1_inv <= not (lQ1);
oQ2_inv <= not (lQ2);
oQ3_inv <= not (lQ3);
oQ4_inv <= not (lQ4);

End Behavioral ;
--
--

76

This is a program for down mode counter PWM.

This program has been written in VHDL for PWM using down mode counter. The program has

been developed by Amir

Saad at Missouri University of Science and Technology in Aug. 2011. Copy right (c) For

Amir Saad. All rights reserved 2011.

 --

--

Library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.std_logic_arith.all;

ENTITY aes_pwm_dn is

 generic (n: natural := 12);-- n can be changed as needed

 port(

 --input signales

 iStart : in std_logic; -- pulse at start

 iD : in std_logic_vector(n-1 downto 0); --used for 12 bit input

data value

 iClk : in std_logic;

 iReset : in std_logic;

 iRed : in std_logic_vector (3 downto 0); -- rising edge counter

input data

 iFed : in std_logic_vector (3 downto 0); -- falling edge

counter output data

 --Output signals

 oQ : out std_logic;

 oQ1 : out std_logic;

 oQ2 : out std_logic;

 oQ3 : out std_logic;

 oQ4 : out std_logic;

 oQ_inv : out std_logic;

 oQ1_inv : out std_logic;

 oQ2_inv : out std_logic;

 oQ3_inv : out std_logic;

 oQ4_inv : out std_logic;

 oDone : out std_logic;

 oDone_fed : out std_logic;

 oDone_red : out std_logic);

 Constant C_min : std_logic_vector(n-1 downto

0):=(others=>'0');

 Constant C_max : std_logic_vector(n-1 downto

0):=(others=>'1');

end aes_pwm_dn ;

Architecture Behavioral of aes_pwm_dn is

 signal lDreg : std_logic_vector(n-1 downto 0); -- register output

 signal lCount : std_logic_vector(n-1 downto 0); -- counter output

 signal lFed : std_logic_vector(3 downto 0); -- falling edge register

output

 signal lRed : std_logic_vector(3 downto 0); -- rising edge register output

 signal lCount_red : std_logic_vector(3 downto 0); -- rising edge counter

output

 signal lCount_fed : std_logic_vector(3 downto 0); -- falling edge counter

output

 signal lQint : std_logic;

 signal lPreQint : std_logic;

 signal lQ1 : std_logic;

 signal lQ2 : std_logic;

 signal lQ3 : std_logic;

 signal lQ4 : std_logic;

 signal lRedEn : std_logic;

 signal lFedEn : std_logic;

Begin

77

process

(iClk,iReset,iStart,lQint,lDreg,lCount,lCount_fed,lCount_red,lQ1,lQ2,lQ3,lQ4,lFed,lRed,lR

edEn,lFedEn,lPreQint)

Begin

-- Initializations

 if (iReset = '0') then

 lCount <= C_max;

 lDreg <= C_min;

 lQint <='0';

 elsif (rising_edge(iClk)) then

 if (lCount=C_min) then

 oDone <= '1';

 lCount<= C_max;

 Else

 lCount<=lCount-1;

 oDone <= '0';

 End if ;

--

 --rising edge counter

 if (lRedEn='1') then

 lCount_red<=lCount_red +1;

 oDone_red<='0';

 Else

 lRedEn<='0';

 oDone_red<='1';

 End if;

--

 --falling edge counter

 if (lFedEn='1') then

 lCount_fed<=lCount_fed +1;

 oDone_fed<='0';

 Else

 lFedEn<='0';

 oDone_fed<='1';

 End if;

--

 if (lQint='1' and lPreQint='0') then

 lRedEn <='1';

 lFedEn <='0';

 lCount_red <="0000";

 lCount_fed <="0000";

 Else

 if (lCount_red>=lRed) then

 lRedEn <='0';

 lCount_red <=lCount_red;

 End if;

 End if;

--

 if (lQint='0' and lPreQint='1') then

 lFedEn <='1';

 lRedEn <='0';

 lCount_fed <="0000";

 lCount_red <="0000";

 Else

 if (lCount_fed>=lFed) then

 lFedEn <='0';

 End if;

 End if;

 if (lCount >= lDreg) then

 lQint<='1';

 Else

 lQint <='0';

 End if;

--

 if (lCount >=lDreg or lCount_fed<= lFed) then

 lQ1 <= '1';

 Else

78

 lQ1 <='0';

 End if;

--

 if (lCount_red >= lRed) then

 lQ2 <= '1';

 Else

 lQ2 <='0';

 End if;

--

 lQ3 <= lQ1 and lQ2;

--

 if (lCount_fed >= lFed) then

 lQ4 <= '1';

 Else

 lQ4 <='0';

 End if;

--

 if (iStart ='1') then

 lDreg <= iD;

 lFed <= iFed;

 lRed <= iRed;

 End if;

End if;

--

End process ;

oQ <= lQint;

oQ1 <= lQ1;

oQ2 <= lQ2;

oQ3 <= lQ3;

oQ4 <= lQ4;

oQ_inv <= not (lQint);

oQ1_inv <= not (lQ1);

oQ2_inv <= not (lQ2);

oQ3_inv <= not (lQ3);

oQ4_inv <= not (lQ4);

End Behavioral ;

79

This is a program for up/down mode counter PWM.

-- This program has been written in VHDL for PWM using up/dn mode counter. The program

has been developed by Amir

-- Saad at Missouri University of Science and Technology in Aug. 2011. Copy right (c) For

Amir Saad. All rights reserved 2011.

Library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.std_logic_arith.all;

ENTITY aes_pwm_updn is

 generic (n: natural :=12);-- n can be changed as needed

 port(

 --input signales

 iStart : in std_logic; -- pulse at start

 iD : in std_logic_vector(n-1 downto 0); --used for 12 bit

input data value

 iClk : in std_logic;

 iReset : in std_logic;

 iRed : in std_logic_vector (3 downto 0); -- rising edge counter

input data

 iFed : in std_logic_vector (3 downto 0); -- falling edge

counter output data

 iClkDiv : in std_logic_vector(7 downto 0); -- clock divider for PWM

 --Output signals

 oQ : out std_logic;

 oQ1 : out std_logic;

 oQ2 : out std_logic;

 oQ3 : out std_logic;

 oQ4 : out std_logic;

 oQ_inv : out std_logic;

 oQ1_inv : out std_logic;

 oQ2_inv : out std_logic;

 oQ3_inv : out std_logic;

 oQ4_inv : out std_logic;

 oDone : out std_logic;

 oDone_fed : out std_logic;

 oDone_red : out std_logic);

 Constant C_min : std_logic_vector(n-1 downto

0):=(others=>'0');

 Constant C_max : std_logic_vector(n-1 downto

0):=(others=>'1');

end aes_pwm_updn;

Architecture Behavioral of aes_pwm_updn is

 signal lDIR : std_logic; --Direction of the of the PWM

 signal lDreg : std_logic_vector(n-1 downto 0); -- register output

 signal lCount : std_logic_vector(n-1 downto 0); -- counter output

 signal lFed : std_logic_vector(3 downto 0); -- falling edge register

output

 signal lRed : std_logic_vector(3 downto 0); -- rising edge register output

 signal lCount_red : std_logic_vector(3 downto 0); -- rising edge counter

output

 signal lCount_fed : std_logic_vector(3 downto 0); -- falling edge counter

output

 signal lCount_div : std_logic_vector(7 downto 0); -- counter for clock

divider

 signal lQint : std_logic;

 signal lPreQint : std_logic;

 signal lQ1 : std_logic;

 signal lQ2 : std_logic;

 signal lQ3 : std_logic;

 signal lQ4 : std_logic;

 signal lRedEn : std_logic;

 signal lFedEn : std_logic;

80

Begin

process

(iClk,iReset,iStart,lDIR,lQint,lDreg,lCount,lCount_fed,lCount_red,lQ1,lQ2,lQ3,lQ4,lFed,lR

ed,lRedEn,lFedEn,lPreQint)

Begin

-- Initializations

 if (iReset = '0') then

 lCount <= C_min;

 lDIR <= '0';

 lDreg <= C_min;

 lFed <= "0000";

 lRed <= "0000";

 lQint <='0';

 lQ1 <='0';

 lQ2 <='0';

 lQ3 <='0';

 lQ4 <='0';

 lRedEn <='0';

 lFedEn <='0';

 lCount_red <="0000";

 lCount_fed <="0000";

 lCount_div <= "00000000";

 elsif (rising_edge(iClk)) then

 if (lCount_div = iClkDiv) then

 lCount_div <= "00000000";

 if (lDIR = '1') then

 if (lCount= C_max) then

 lDIR <= '0';

 oDone<= '0';

 lCount<=lCount-1;

 Else

 lCount<=lCount+1;

 oDone<= '0';

 End if;

 Else

 if (lCount= C_min) then

 lDIR<='1';

 oDone<= '1';

 lCount<=lCount + 1;

 Else

 oDone<= '0';

 lCount<=lCount - 1;

 End if ;

 End if ;

 Else

 lCount_div <= lCount_div + 1;

 end if;

 lPreQint<=lQint;

--

 --rising edge counter

 if (lRedEn='1') then

 lCount_red<=lCount_red +1;

 oDone_red<='0';

 Else

 lRedEn<='0';

 oDone_red<='1';

 End if;

--

 --falling edge counter

 if (lFedEn='1') then

 lCount_fed<=lCount_fed +1;

 oDone_fed<='0';

 Else

 lFedEn<='0';

 oDone_fed<='1';

 End if;

--

81

 if (lQint='1' and lPreQint='0') then

 lRedEn <='1';

 lFedEn <='0';

 lCount_red <="0000";

 lCount_fed <="0000";

 Else

 if (lCount_red>=lRed) then

 lRedEn <='0';

 lCount_red <=lCount_red;

 End if;

 End if;

--

 if (lQint='0' and lPreQint='1') then

 lFedEn <='1';

 lRedEn <='0';

 lCount_fed <="0000";

 lCount_red <="0000";

 Else

 if (lCount_fed>=lFed) then

 lFedEn <='0';

 End if;

 End if;

 if (lCount >= lDreg) then

 lQint<='1';

 Else

 lQint <='0';

 End if;

--

 if (lCount >=lDreg or lCount_fed<= lFed) then

 lQ1 <= '1';

 Else

 lQ1 <='0';

 End if;

--

 if (lCount_red >= lRed) then

 lQ2 <= '1';

 Else

 lQ2 <='0';

 End if;

--

 lQ3 <= lQ1 and lQ2;

--

 if (lCount_fed >= lFed) then

 lQ4 <= '1';

 Else

 lQ4 <='0';

 End if;

--

 if (iStart ='1') then

 lDreg <= iD;

 lFed <= iFed;

 lRed <= iRed;

 End if;

End if;

--

End process ;

oQ <= lQint;

oQ1 <= lQ1;

oQ2 <= lQ2;

oQ3 <= lQ3;

oQ4 <= lQ4;

oQ_inv <= not (lQint);

oQ1_inv <= not (lQ1);

oQ2_inv <= not (lQ2);

82

oQ3_inv <= not (lQ3);

oQ4_inv <= not (lQ4);

End Behavioral ;

83

This is a program for speed observer.

-- This program has been written in VHDL for hybrid speed observer to estimate the rotor

positions on continuous basis using the -- information available through the Hall-

effect sensors. The program has been developed by Amir Saad at Missouri University of

-- Science and Technology in Aug. 2011. Copy right (c) For Amir Saad. All rights reserved

2011. --

Library ieee;

use ieee.std_logic_1164.all;

use ieee.std_logic_unsigned.all;

use ieee.std_logic_arith.all;

library floatfixlib;

use floatfixlib.fixed_pkg.all;

use floatfixlib.float_pkg.all;

ENTITY aes_speed_observer is

 generic (n: natural := 24;-- n&m can be change depending on the precision of

the angles

 m: natural := 24;-- the fraction part of Wr

 r: natural := 52;-- the precision of Cos phi

 s: natural := 5;-- the integer part of the time

 x: natural := 32;-- the integer part of Wr

 F: natural := 12;

 y: natural := 24;-- the number of the bits in the counter

 a: real := 0.898794;

 b: real := 0.438371;

 c: real := 0.0000000417;

 d: real := 1.0472;

 e: real := 0.1591549431;

 z: natural :=8;

 q : natural := 12);

 port(--input signals

 iStart : in std_logic; -- pulse at start

 iHa : in std_logic; -- Hall effect sensor signal

 iHb : in std_logic; -- Hall effect sensor signal

 iHc : in std_logic; -- Hall effect sensor signal

 iClk : in std_logic; -- the clock signal

 iReset : in std_logic; -- reset signal

 --Output signals

 oDone : out std_logic;

 oT1 : out std_logic;

 oT2 : out std_logic;

 oT3 : out std_logic;

 oWr : out sfixed(F-1 downto 0); -- pulse done when end

the operation

 oSin_th_r : out sfixed(F-1 downto 0); --

 oCos_th_r : out sfixed(F-1 downto 0);

 oFreq : out sfixed(F-1 downto 0)

);

 Constant C_min : std_logic_vector(y-1 downto

0):=(others=>'0');

 Constant C_max : std_logic_vector(y-1 downto

0):=(others=>'1');

 end aes_speed_observer;

Architecture Behavioral of aes_speed_observer is

 signal lCount : std_logic_vector(y-1 downto 0); -- counter output

 signal lCount_div : std_logic_vector(7 downto 0); -- counter for

clock divider

 signal lSin_th_r_temp : sfixed (0 downto-11);

84

 signal lCos_th_r_temp : sfixed (0 downto-11);

 signal lWr_temp : sfixed (9 downto -2);

 signal lFreq_temp : sfixed (9 downto -2);

 signal Cos_phi : sfixed (0 downto -n);

 signal Sin_phi : sfixed (0 downto -n);

 signal lDone : std_logic;

 signal T : sfixed (s downto -x);--Time between the two

transitions

 signal Ts : sfixed (0 downto -x);--sampling time

 signal fs : sfixed (26 downto 0);--sampling frequency

 signal lT1_temp : std_logic;-- transition in Ha

 signal lT2_temp : std_logic;-- transition in Hb

 signal lT3_temp : std_logic;-- transition in Hc

 signal tCount : sfixed (y-1 downto 0);

Begin

 process

(iClk,iReset,iStart,lCount,lDone,lSin_th_r_temp,lCos_th_r_temp,lFreq_temp,lT1_temp,lT2_te

mp,lT3_temp)

 variable lFreq : sfixed (q-1 downto -m);

 variable lSin_th_r_int : sfixed (0 downto -n);

 variable lCos_th_r_int : sfixed (0 downto -n);

 variable lSin_th_r_new : sfixed (0 downto -n);

 variable lCos_th_r_new : sfixed (0 downto -n);

 variable lSin_th_r : sfixed (0 downto -n);

 variable lCos_th_r : sfixed (0 downto -n);

 variable lMaxSin : sfixed (0 downto -n);

 variable lMinSin : sfixed (0 downto -n);

 variable lMaxCos : sfixed (0 downto -n);

 variable lMinCos : sfixed (0 downto -n);

 variable lT1 : std_logic; -- variable transition in Ha

 variable lT2 : std_logic; -- variable transition in Hb

 variable lT3 : std_logic; -- variable transition in Hc

 variable lWr : sfixed (10 downto -m);

 variable lHa_reg : std_logic; -- variable register A

output

 variable lHb_reg : std_logic; -- variable register

B output

 variable lHc_reg : std_logic; -- variable register C

output

 variable lPre_Ha_reg : std_logic; -- variable register A pre-

output

 variable lPre_Hb_reg : std_logic; -- variable register B pre-

output

 variable lPre_Hc_reg : std_logic; -- variable register C pre-

output

 Begin

-- Initializations ,

if (iReset = '0') then

lWr := to_sfixed(0,lWr'high,lWr'low);

 lFreq := to_sfixed(0,lFreq'high,lFreq'low);

 lCount <= C_min;

 lHa_reg :='0';

 lHb_reg :='0';

 lHc_reg :='0';

 lDone <='0';

 -- intitial conditions

 If (lHa_reg='0' and lHb_reg='0' and lHc_reg='1') then

 lSin_th_r_int := to_sfixed(-

0.8660254,lSin_th_r_int'high,lSin_th_r_int'low);

 lCos_th_r_int := to_sfixed(-0.5,lCos_th_r_int'high,lCos_th_r_int'low);

 Elsif (lHa_reg='0' and lHb_reg='1' and lHc_reg='0') then

 lSin_th_r_int :=

to_sfixed(0.8660254,lSin_th_r_int'high,lSin_th_r_int'low);

 lCos_th_r_int := to_sfixed(-0.5,lCos_th_r_int'high,lCos_th_r_int'low);

 Elsif (lHa_reg='0' and lHb_reg='1' and lHc_reg='1') then

 lSin_th_r_int := to_sfixed(0,lSin_th_r_int'high,lSin_th_r_int'low);

 lCos_th_r_int := to_sfixed(-1,lCos_th_r_int'high,lCos_th_r_int'low);

85

 Elsif (lHa_reg='1' and lHb_reg='0' and lHc_reg='0') then

 lSin_th_r_int := to_sfixed(0,lSin_th_r_int'high,lSin_th_r_int'low);

 lCos_th_r_int := to_sfixed(1,lCos_th_r_int'high,lCos_th_r_int'low);

 Elsif (lHa_reg='1' and lHb_reg='0' and lHc_reg='1') then

 lSin_th_r_int := to_sfixed(-

0.8660254,lSin_th_r_int'high,lSin_th_r_int'low);

 lCos_th_r_int := to_sfixed(0.5,lCos_th_r_int'high,lCos_th_r_int'low);

 Elsif (lHa_reg='1' and lHb_reg='1' and lHc_reg='0') then

 lSin_th_r_int :=

to_sfixed(0.8660254,lSin_th_r_int'high,lSin_th_r_int'low);

 lCos_th_r_int := to_sfixed(0.5,lCos_th_r_int'high,lCos_th_r_int'low);

Elsif(lHa_reg='1' and lHb_reg='1' and lHc_reg='1') then

 lSin_th_r_int := to_sfixed(0,lSin_th_r_int'high,lSin_th_r_int'low);

 lCos_th_r_int := to_sfixed(0,lCos_th_r_int'high,lCos_th_r_int'low);

 End if;

 if (lHa_reg='0' and lHb_reg='0' and lHc_reg='1') then

 lMaxSin := to_sfixed(-0.5,lMaxSin'high,lMaxSin'low);

 lMinSin := to_sfixed(-1,lMaxSin'high,lMaxSin'low);

 lMaxCos := to_sfixed(0,lMaxCos'high,lMaxCos'low);

 lMinCos := to_sfixed(-0.8660254,lMaxCos'high,lMaxCos'low);

 Elsif (lHa_reg='0' and lHb_reg='1' and lHc_reg='0') then

 lMaxSin := to_sfixed(1,lMaxSin'high,lMaxSin'low);

 lMinSin := to_sfixed(0.5,lMaxSin'high,lMaxSin'low);

 lMaxCos := to_sfixed(0,lMaxCos'high,lMaxCos'low);

 lMinCos := to_sfixed(-0.8660254,lMaxCos'high,lMaxCos'low);

 Elsif (lHa_reg='0' and lHb_reg='1' and lHc_reg='1') then

 lMaxSin := to_sfixed(-0.5,lMaxSin'high,lMaxSin'low);

 lMaxCos := to_sfixed(-0.8660254,lMaxCos'high,lMaxCos'low);

 lMinCos := to_sfixed(-1,lMaxCos'high,lMaxCos'low);

 Elsif (lHa_reg='1' and lHb_reg='0' and lHc_reg='0') then

 lMaxSin := to_sfixed(0.5,lMaxSin'high,lMaxSin'low);

 lMinSin := to_sfixed(-0.5,lMaxSin'high,lMaxSin'low);

 lMaxCos := to_sfixed(1,lMaxCos'high,lMaxCos'low);

 lMinCos := to_sfixed(0.8660254,lMaxCos'high,lMaxCos'low);

Elsif (lHa_reg='1' and lHb_reg='0' and lHc_reg='1') then

 lMaxSin := to_sfixed(-0.5,lMaxSin'high,lMaxSin'low);

 lMinSin := to_sfixed(-1,lMaxSin'high,lMaxSin'low);

 lMaxCos := to_sfixed(0.8660254,lMaxCos'high,lMaxCos'low);

 lMinCos := to_sfixed(0,lMaxCos'high,lMaxCos'low);

 Elsif (lHa_reg='1' and lHb_reg='1' and lHc_reg='0') then

 lMaxSin := to_sfixed(1,lMaxSin'high,lMaxSin'low);

 lMinSin := to_sfixed(0.5,lMaxSin'high,lMaxSin'low);

 lMaxCos := to_sfixed(0.8660254,lMaxCos'high,lMaxCos'low);

 lMinCos := to_sfixed(0,lMaxCos'high,lMaxCos'low);

 End if;

 -- Now we can calculate sine and cosine theata_r in the initial conditions mode

 Cos_phi <= to_sfixed(a,Cos_phi'High,Cos_phi'Low); -- in this case phi

tken as 26 degrees

 Sin_phi <= to_sfixed(b,Sin_phi'High,Sin_phi'Low); -- in this case phi

tken as 26 degrees

 Ts <= to_sfixed(c,Ts'High,Ts'Low); -- Sampling time

 fs <= to_sfixed(24000000,fs'High,fs'Low); -- Sampling frequency

 lSin_th_r :=

resize((lSin_th_r_int*Cos_phi)+(lCos_th_r_int*Sin_phi),lSin_th_r'High,lSin_th_r'Low);

 lCos_th_r := resize((lCos_th_r_int*Cos_phi)-

(lSin_th_r_int*Sin_phi),lCos_th_r'High,lCos_th_r'Low);

 -- Bounding conditions

elsif (rising_edge(iClk)) then

 Cos_phi <= to_sfixed(a,Cos_phi'High,Cos_phi'Low); -- in this case phi

tken as 26 degrees

 Sin_phi <= to_sfixed(b,Sin_phi'High,Sin_phi'Low); -- in this

case phi tken as 26 degrees

 Ts <= to_sfixed(c,Ts'High,Ts'Low); -- Sampling time

 fs <= to_sfixed(24000000,fs'High,fs'Low); -- Sampling frequency

 lHa_reg := iHa;

 lHb_reg := iHb;

86

 lHc_reg := iHc;

 lT1 := (lPre_Ha_reg xor lHa_reg);

 lT2 := (lPre_Hb_reg xor lHb_reg);

 lT3 := (lPre_Hc_reg xor lHc_reg);

 -- Counter to count the time between the transitions

 if (lCount= C_max) then

 lCount<= C_min;

 oDone <= '0';

 Else

 lCount<=lCount+1;

 End if ;

 --

If (lT1 ='1' or lT2 ='1' or lT3 ='1') then

 lCount <= C_min;

 lDone <='1';

 tCount <= to_sfixed(lCount,tCount'High,tCount'low);

 lWr := resize((to_sfixed(1.0472,1,-6)*fs/tCount),lWr'High,lWr'Low);--T is the

time beteen tow transition = lCount*sampling time(Ts)

 lCount <= C_min;

 lFreq := resize(to_sfixed(e,0,-24)*lWr,lFreq'High,lFreq'Low);-- this is

temparary value for lFreq

Else

 lDone <= '0';

End if;

if (lT1 ='1' and lHb_reg='1') then

lSin_th_r_int := to_sfixed(1,lSin_th_r_int'high,lSin_th_r_int'low);

 lCos_th_r_int := to_sfixed(0,lCos_th_r_int'high,lCos_th_r_int'low);

Elsif (lT1 ='1' and lHc_reg='1') then

 lSin_th_r_int := to_sfixed(-1,lSin_th_r_int'high,lSin_th_r_int'low);

lCos_th_r_int := to_sfixed(0,lCos_th_r_int'high,lCos_th_r_int'low);

Elsif (lT2 ='1' and lHa_reg='1') then

lSin_th_r_int := to_sfixed(0.5,lSin_th_r_int'high,lSin_th_r_int'low);

 lCos_th_r_int := to_sfixed(0.8660254,lCos_th_r_int'high,lCos_th_r_int'low);

Elsif (lT2 ='1' and lHc_reg='1') then

lSin_th_r_int := to_sfixed(-0.5,lSin_th_r_int'high,lSin_th_r_int'low);

 lCos_th_r_int := to_sfixed(-0.8660254,lCos_th_r_int'high,lCos_th_r_int'low);

Elsif (lT3 ='1' and lHa_reg='1') then

 lSin_th_r_int := to_sfixed(-0.5,lSin_th_r_int'high,lSin_th_r_int'low);

 lCos_th_r_int := to_sfixed(0.8660254,lCos_th_r_int'high,lCos_th_r_int'low);

Elsif (lT3 ='1' and lHb_reg='1') then

 lSin_th_r_int := to_sfixed(0.5,lSin_th_r_int'high,lSin_th_r_int'low);

 lCos_th_r_int := to_sfixed(-0.8660254,lCos_th_r_int'high,lCos_th_r_int'low);

End if;

if (lHa_reg='0' and lHb_reg='0' and lHc_reg='1') then

 lMaxSin := to_sfixed(-0.5,lMaxSin'high,lMaxSin'low);

 lMinSin := to_sfixed(-1,lMaxSin'high,lMaxSin'low);

 lMaxCos := to_sfixed(0,lMaxCos'high,lMaxCos'low);

 lMinCos := to_sfixed(-0.8660254,lMaxCos'high,lMaxCos'low);

Elsif (lHa_reg='0' and lHb_reg='1' and lHc_reg='0') then

 lMaxSin := to_sfixed(1,lMaxSin'high,lMaxSin'low);

 lMinSin := to_sfixed(0.5,lMaxSin'high,lMaxSin'low);

 lMaxCos := to_sfixed(0,lMaxCos'high,lMaxCos'low);

 lMinCos := to_sfixed(-0.8660254,lMaxCos'high,lMaxCos'low);

Elsif (lHa_reg='0' and lHb_reg='1' and lHc_reg='1') then

 lMaxSin := to_sfixed(-0.5,lMaxSin'high,lMaxSin'low);

 lMaxCos := to_sfixed(-0.8660254,lMaxCos'high,lMaxCos'low);

 lMinCos := to_sfixed(-1,lMaxCos'high,lMaxCos'low);

Elsif (lHa_reg='1' and lHb_reg='0' and lHc_reg='0') then

 lMaxSin := to_sfixed(0.5,lMaxSin'high,lMaxSin'low);

 lMinSin := to_sfixed(-0.5,lMaxSin'high,lMaxSin'low);

 lMaxCos := to_sfixed(1,lMaxCos'high,lMaxCos'low);

87

 lMinCos := to_sfixed(0.8660254,lMaxCos'high,lMaxCos'low);

Elsif (lHa_reg='1' and lHb_reg='0' and lHc_reg='1') then

 lMaxSin := to_sfixed(-0.5,lMaxSin'high,lMaxSin'low);

 lMinSin := to_sfixed(-1,lMaxSin'high,lMaxSin'low);

 lMaxCos := to_sfixed(0.8660254,lMaxCos'high,lMaxCos'low);

 lMinCos := to_sfixed(0,lMaxCos'high,lMaxCos'low);

Elsif (lHa_reg='1' and lHb_reg='1' and lHc_reg='0') then

lMaxSin := to_sfixed(1,lMaxSin'high,lMaxSin'low);

lMinSin := to_sfixed(0.5,lMaxSin'high,lMaxSin'low);

 lMaxCos := to_sfixed(0.8660254,lMaxCos'high,lMaxCos'low);

 lMinCos := to_sfixed(0,lMaxCos'high,lMaxCos'low);

End if;

lCos_th_r_new := resize(lCos_th_r_int -

(lWr*lSin_th_r_int)*Ts,lCos_th_r'High,lCos_th_r'Low); --intigration

lSin_th_r_new := resize(lSin_th_r_int +

(lWr*lCos_th_r_int)*Ts,lSin_th_r'High,lSin_th_r'Low); --intigration

lT1_temp <= lT1;

lT2_temp <= lT2;

lT3_temp <= lT3;

-- integral limitations

if (lSin_th_r_new >= lMaxSin) then

 lSin_th_r_new := lMaxSin;

Elsif (lSin_th_r_new <= lMinSin) then

 lSin_th_r_new := lMinSin;

End if;

If (lCos_th_r_new >= lMaxCos) then

 lCos_th_r_new := lMaxCos;

Elsif (lCos_th_r_new <= lMinCos) then

 lCos_th_r_new := lMinCos;

End if;

-- calculating the sine theata_r and cosine theata_r for the starting mode

lSin_th_r :=

resize((lSin_th_r_new*Cos_phi)+(lCos_th_r_new*Sin_phi),lSin_th_r'High,lSin_th_r'Low);

lCos_th_r := resize((lCos_th_r_new*Cos_phi)-

(lSin_th_r_new*Sin_phi),lCos_th_r'High,lCos_th_r'Low);

 lSin_th_r_int := lSin_th_r_new;

lCos_th_r_int := lCos_th_r_new;

 lPre_Ha_reg := lHa_reg;

 lPre_Hb_reg := lHb_reg;

 lPre_Hc_reg := lHc_reg;

-- Because Quartus II don't recognize the fraction part we need to change them to real

part

lFreq_temp <= resize(lFreq ,lFreq_temp'high,lFreq_temp'low);

lWr_temp <= resize(lWr ,lWr_temp'high ,lWr_temp'low);

lFreq_temp <= resize(lFreq ,lFreq_temp'high,lFreq_temp'low);

lSin_th_r_temp <=

resize(lSin_th_r,lSin_th_r_temp'high,lSin_th_r_temp'low);

lCos_th_r_temp <=

resize(lCos_th_r,lCos_th_r_temp'high,lCos_th_r_temp'low);

End if;

oDone <= lDone;

End process ;

oSin_th_r <= lSin_th_r_temp;

oCos_th_r <= lCos_th_r_temp;

oWr <= lWr_temp;

oFreq <= lFreq_temp;

oT1 <= lT1_temp;

oT2 <= lT2_temp;

oT3 <= lT3_temp;

End Behavioral;

88

BIBLIOGRAPHY

[1] A. Raskin and S. Shah, "The Emergence of Hybrid Vehicles," AllianceBernstein.

[2] M. Umeda, H. Itoh, S. Hashimoto, M. Hirata, J. Tsujimura, and S. Kato,

"Permanent magnet motor for EV," in Proc. Power Electronics and Drive

Systems, 1995., Proceedings of 1995 International Conference on, 1995, pp. 792-

796 vol.2.

[3] M. Mekhiche, S. Nichols, J. L. Kirtley, J. Young, D. Boudreau, and R. Jodoin,

"High-speed, high-power density PMSM drive for fuel cell powered HEV

application," in Proc. Electric Machines and Drives Conference, 2001. IEMDC

2001. IEEE International, 2001, pp. 658-663.

[4] M. J. Corley and R. D. Lorenz, "Rotor position and velocity estimation for a

salient-pole permanent magnet synchronous machine at standstill and high

speeds," Industry Applications, IEEE Transactions on, vol. 34, pp. 784-789.

[5] W. Limei and R. D. Lorenz, "Rotor position estimation for permanent magnet

synchronous motor using saliency-tracking self-sensing method," in Proc.

Industry Applications Conference, 2000. Conference Record of the 2000 IEEE,

2000, vol. 1, pp. 445-450 vol.1.

[6] Z.-y. Zhou, Z. Xu, and T.-c. Li, "FPGA implementation of a new hybrid rotor

position estimation scheme based on three symmetrical locked Hall effect position

sensors," in Proc. Power Electronics and Motion Control Conference, 2004.

IPEMC 2004. The 4th International, 2004, vol. 3, pp. 1592-1596 Vol.3.

[7] S. Jiang, J. Liang, Y. Liu, K. Yamazaki, and M. Fujishima, "Modeling and

cosimulation of FPGA-based SVPWM control for PMSM," in Proc. Industrial

Electronics Society, 2005. IECON 2005. 31st Annual Conference of IEEE, 2005,

pp. 6 pp.

[8] X. Z. Qi, Xiaomin; Wang, Changsong; Wang, Xu; and Zhou, Ke, "Rotor position

estimation for a sensorless PMSM using high-frequency signal injection method,"

in Proc. Information, Computing and Telecommunication, 2009. YC-ICT '09.

IEEE Youth Conference on, 2009, pp. 54-57.

[9] B. Zheng, L. Wu, A. Lin, F. Li, C. Yuan, and J. Dang, "Study of a new detection

technology for sensorless PMSM drive with flux linkage observer," in Proc.

Consumer Electronics, Communications and Networks (CECNet), 2011

International Conference on, 2011, pp. 1691-1694.

89

[10] S. Zaim, J. P. Martin, B. Nahid-Mobarakeh, and F. Meibody-Tabar, "High

performance low cost control of a permanent magnet wheel motor using a hall

effect position sensor," in Proc. Vehicle Power and Propulsion Conference

(VPPC), 2011 IEEE, 2011, pp. 1-6.

[11] P. Thiemann, C. Mantala, J. Hordler, et al., "PMSM sensorless rotor position

detection for all speeds by Direct Flux Control," in Proc. Industrial Electronics

(ISIE), 2011 IEEE International Symposium on, 2011, pp. 673-678.

[12] M. a. P. Seilmeier, B., "Modeling of PMSM with multiple saliencies using a

stator-oriented magnetic circuit approach," in Proc. Electric Machines & Drives

Conference (IEMDC), 2011 IEEE International, 2011, pp. 131-136.

[13] K. C. Sam-Young, Choi; Kyeongjin, Lee; and Wootaik, Lee, "An Improved Rotor

Position Estimation With Vector-Tracking Observer in PMSM Drives With Low-

Resolution Hall-Effect Sensors," Industrial Electronics, IEEE Transactions on,

vol. 58, pp. 4078-4086.

[14] Texas Instruments, "Non-Inverting Attenuation with Positive Offset " accessed

on, http://www-k.ext.ti.com/srvs/cgi-bin/webcgi.exe?Company={5761bcd8-11f5-

4e08-84e0-8167176a4ed9},kb=analog,case=obj%2835457%29,new.

[15] D. L. Terrell, OP AMPS Design, Application, and Troubleshooting, Second ed,

1996.

[16] Texas Instruments, "FilterPro™ User's Guide," accessed on,

www.ti.com/lit/an/sbfa001c/sbfa001c.pdf.

[17] Texas Instruments "CMOS Hex Voltage-Level shifter for TTL-to-CMOS or

CMOS-to-TTL Operation," accessed on,

http://www.ti.com/lit/ds/symlink/cd4504b-mil.pdf.

[18] Analog Devices, "AD 7276 8-Bit ADCs in 6-Lead TSOT," accessed on,

http://www.analog.com/static/imported-

files/data_sheets/AD7276_7277_7278.pdf.

[19] Analog Devices, Inc, "Quad-Channel Digital Isolators," accessed on,

http://www.analog.com/static/imported-

files/data_sheets/ADUM1410_1411_1412.pdf.

[20] National Instruments, "Optical Encoder Fundamentals," accessed on,

http://zone.ni.com/devzone/cda/tut/p/id/4672.

[21] TI, "INDUSTRIAL CAN TRANSCEIVER," accessed on,

http://www.ti.com/lit/ds/symlink/sn65hvd251.pdf.

http://www-k.ext.ti.com/srvs/cgi-bin/webcgi.exe?Company=%7b5761bcd8-11f5-4e08-84e0-8167176a4ed9%7d,kb=analog,case=obj%2835457%29,new
http://www-k.ext.ti.com/srvs/cgi-bin/webcgi.exe?Company=%7b5761bcd8-11f5-4e08-84e0-8167176a4ed9%7d,kb=analog,case=obj%2835457%29,new
http://www.ti.com/lit/an/sbfa001c/sbfa001c.pdf
http://www.ti.com/lit/ds/symlink/cd4504b-mil.pdf
http://www.analog.com/static/imported-files/data_sheets/AD7276_7277_7278.pdf
http://www.analog.com/static/imported-files/data_sheets/AD7276_7277_7278.pdf
http://www.analog.com/static/imported-files/data_sheets/ADUM1410_1411_1412.pdf
http://www.analog.com/static/imported-files/data_sheets/ADUM1410_1411_1412.pdf
http://zone.ni.com/devzone/cda/tut/p/id/4672
http://www.ti.com/lit/ds/symlink/sn65hvd251.pdf

90

[22] Basic Electronics Tutorials "Differential Amplifier," accessed on,

http://www.electronics-tutorials.ws/opamp/opamp_5.html.

[23] TI, "Digital Signal Controllers (DSCs)," accessed on,

http://www.ti.com/lit/ds/symlink/tms320f28335.pdf.

[24] Altera corporation, "FPGA and CPLD Design Flow," accessed on,

http://www.altera.com/products/software/flows/fpga/flo-fpga.html.

[25] Samtec Inc., accessed on,

http://www.samtec.com/ProductInformation/TechnicalSpecifications/Overview.as

px?series=PES.

[26] K. Corzine, "Rotor Position Measurement, EE305," Missouri S&T.

[27] Control Science Inc., "Resolvers as Velocity and Position Encoding Devices,"

accessed on, http://www.controlsciences.com/resolver_application_data.shtml.

[28] Advanced Micro Controls, Inc., "What is the Resolver," accessed on,

http://www.amci.com/tutorials/tutorials-what-is-resolver.asp.

[29] Z. Chen, M. Tomita, S. Doki, and S. Okuma, "New adaptive sliding observers for

position- and velocity-sensorless controls of brushless DC motors," Industrial

Electronics, IEEE Transactions on, vol. 47, pp. 582-591.

[30] T. Furuhashi, S. Sangwongwanich, and S. Okuma, "A position and velocity

sensorless control of brushless DC motors using an adaptive sliding observer," in

Proc. Industrial Electronics Society, 1990. IECON '90., 16th Annual Conference

of IEEE, 1990, pp. 1188-1192 vol.2.

[31] E. Ramsden, Hall-Effect Sensors Theory and Applications: Elsevier Inc.,

Copyright © 2006.

[32] K. A. Corzine and S. D. Sudhoff, "A hybrid observer for high performance

brushless DC motor drives," Energy Conversion, IEEE Transactions on, vol. 11,

pp. 318-323.

[33] vhdl.org, "Fixed point package user’s guide," accessed on,

http://www.eda.org/fphdl/Fixed_ug.pdf.

http://www.electronics-tutorials.ws/opamp/opamp_5.html
http://www.ti.com/lit/ds/symlink/tms320f28335.pdf
http://www.altera.com/products/software/flows/fpga/flo-fpga.html
http://www.samtec.com/ProductInformation/TechnicalSpecifications/Overview.aspx?series=PES
http://www.samtec.com/ProductInformation/TechnicalSpecifications/Overview.aspx?series=PES
http://www.controlsciences.com/resolver_application_data.shtml
http://www.amci.com/tutorials/tutorials-what-is-resolver.asp
http://www.eda.org/fphdl/Fixed_ug.pdf

91

VITA

Amir Saad was born in Omdurman, Sudan. He completed his Bachelor of Science

(B.S.) in Electronic Engineering Technology specialized in Medical Electronics

Engineering from University of Gezira, Wad Medani, Sudan in DEC 1998. He joined his

Master of Science program in Electrical Engineering at Missouri University of Science

and Technology in January 2010 and will receive his Master’s degree in Electrical

Engineering from Missouri University of Science and Technology in May 2012. He has

worked at different companies before making his way back for a higher degree and after

graduation will join Caterpillar Inc. at Advance Components Group.

