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ABSTRACT 

Field Programmable Gate Arrays (FPGAs) are one of the today’s most successful 

technologies for developing systems that require real time operation and providing 

additional flexibility to the designer. This research is focused on developing a control 

board for a permanent magnet synchronous machine (PMSM) using an FPGA module. 

The board is configured for individual use of an FPGA, digital signal processor (DSP) or 

in combination to control the PMSM by generating the required Pulse Width Modulator 

(PWM) to the inverter in order to drive and control the speed of the PMSM. Since, the 

exact rotor position and speed are required to control the motor; a useful method is 

developed digitally and implemented in the FPGA hardware module. The speed observer 

(SO), in which the Hall effect signals were used to calculate the speed and the angle of 

the rotor.  

In this thesis, three different techniques of PWM generation were developed and 

combined with rotor position and speed method. The project is implemented in Altera 

FPGA using Quartus II software V11.0 with VHDL as the supporting language. The 

design achieved high performance and accuracy of the detection estimation and control 

scheme for the Permanent Magnet Synchronous Machine. Error and design analysis has 

been done also. 
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NOMENCLATURE 

Symbol Description         

HEVs              Hybrid Electric Vehicles 

EMs              Electric Motors 

CAN              Computer Automotive Network 

RTDC             Resolver-to-Digital Converter 

SO                   Speed Observer 

PMSM            Permanent Magnet Synchronous Machine  

FPGA              Field Programmable Gate Array 

Q               Quality factor 

fc                Cutoff frequency 

î                Observed current 

v̂                 Observed voltage 

ha, hb, hc         Hall effect sensor signals  

rω                 Rotor angular speed 

r̂                Rotor estimated speed 

rθ                 Rotor electrical position 
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1. INTRODUCTION 

1.1. BACKGROUND 

Electric motors (EMs) and generators are the primary workhorses in hybrid-

electric vehicles (HEVs). The generators convert mechanical power from the engine 

electrical power in order to charge the batteries and operate the motors. Then motors 

produce the required torque to drive the wheels. There are many types of motors and 

generators used in HEVs: induction, switched reluctance, and permanent magnet. Each 

type requires the occurrence of a magnetic field. Reluctance and induction motors use an 

external source to provide the magnetic field, while the permanent magnet motors use 

permanent magnets for this purpose. The critical factors for these components are power, 

efficiency, controllability, cost, and durability [1-3].  

PMSMs have been generally used in the HEV over the last two decades because 

of their high efficiency, high-power density and lack of a dc field winding in the rotor; 

however, they are more expensive than alternatives [2]. It is usually accepted that precise 

control of a PMSM requires exact rotor position and speed information. The methods to 

detect the rotor position are basically divided into two categories. One is the rotor 

position detection by a position sensor mounted on the machine rotor, and the other is a 

sensor-less method based on indirect rotor position estimation techniques [3]. 

In this thesis, a control board for a PMSM is constructed with advanced electronic 

techniques in order to offer the best type of control for a PMSM in a HEV application. 

The board contains many different signal processing circuits in addition to the flexibility 

of using microcontroller of FPGA module to apply different control applications. Rotor 

speed and position scheme is implemented in the FPGA using VHDL language. The 

method used is the Hall effect sensors to estimate the rotor speed and position [4].  

 

1.2. PROPOSED APPROACH 

In order to estimate the rotor position and control the PMSM, a signal processing 

control board is necessary to study, investigate and apply many different control 

techniques. The circuits in the board have been simulated using MATLAB SIMULINK 

and SPICE for the sake of accuracy and stability of the system. Then CADSOFT EAGLE 
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PCB design software was used to layout the board. The board uses two different 

technologies to control the motor: a digital signal processor (DSP) and a FPGA. The 

Altera Cyclone II FPGA module delivers high performance and low power consumption 

at a cost that rivals that of ASICs. Altera’s modules are supported by the easy-to-use and 

Quartus II licensed or free Edition design software. 

The control board has the capability of working in three modes, the DSP only, the 

FPGA only, or the DSP-FPGA share mode. In the DSP mode only, all the signals are 

forwarded towards the DSP for either generating a special signal such as PWM or reading 

an external signal such as dc bus voltage, current sensors, or Hall effect signals to make 

other control decisions. The FPGA is being developed to have the same functionality as 

the DSP. Furthermore, these two devices can share all the control operation if needed, 

due to the high performance of the FPGA which runs at 24 MHz in this particular module 

or even up to 400 MHz in some other families. 

Signal conditioning circuits are added to the board in order to offer the 

compatibility for the DSP to read external signals from the inverter (Semikron Box), 

current sensors or the dc bus. Another differential input circuit has been implemented in 

case applications require different ground reference. Also, level shifter circuits from +3V 

to +15V and +15V to +3V are needed to condition the PWM signals to be compatible 

with the Inverter gates threshold or receive fault signals respectively. 

Sallen-Key Filters were added to the board for converting signals from digital to 

analog for monitoring some interesting parameters. Communication is very important in 

this type of applications, thus, Computer Automotive Network (CAN) transceivers were 

added to the board. For extra design flexibility, digital Input/Outputs and relay 

contractors were added to the board for future uses. External Analog to Digital 

Converters (ADCs) were added in case of the DSP ADCs failure and to speed up the 

DSP’s processing by passing them through the FPGA. Another 16 channel serial ADC 

was added to offer digital signal to the FPGA.  

Figures 1.1 and 1.2 illustrate the control board block diagram and the real board 

attached to the inverter screen shot. 
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Figure 1.1.  PCB0021 Control Board. 

 

 

 

 

Figure 1.2.  The Control Board and the Inverter. 
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1.3. LITERATURE REVIEW 

The existing literatures on the rotor speed and position estimation are studied in 

this section along with literature that focuses in type of observing methods to estimate 

these characteristics. A common type of motor that has been used in HEVs is the PMSM 

[2]. Therefore, this literature will be around this type of a motor. 

A proposal of self-sensing technique is proposed in [4]. The technique functions 

in a manner similar to a resolver and resolver-to-digital converter (RTDC) sensing 

system, in this technique the motor acts as the electromagnetic resolver and the power 

converter applies carrier-frequency voltages to the stator which produce high-frequency 

currents that proportional with position. The sensed currents are processed with a 

heterodyning technique that provides a signal that is nearly proportional to the difference 

between the actual rotor position and an estimated rotor position. 

Another proposal of a self-sensing technique and high-frequency injection in [5] 

is based on tracking observer to correct the limitation in [4]. This method uses a rotating 

vector, a carrier signal, and a tracking observer. In this method, high-frequency injection 

makes low and zero speed detection possible. 

The authors in [6] proposed a FPGA based scheme in which the rotor position can 

be estimated by using three symmetrical locked Hall effect position sensors. This scheme 

is implemented using the Altera FPGA, by assuming the time interval between adjacent 

changes Hall effect sensor signal is t  and calculating the average electric angular 

velocity rω is, 

 

 

 / (3Δ )rω π t  (1) 

 

The estimated dynamic error is
 

 

 2 2a

2 2 p

  
          

  
Dmax 2 2 2 2

π p aπ
δθ ω ω ω ω

a p
 (2) 
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Where a is the motor’s acceleration, p is the number of pole pair, and 2ω is the 

angular velocity that corresponds to the switching point of the Hall interval. 

A scheme of modeling and cosimulation of the PMSM control system using an 

FPGA is proposed in [7], This method uses the Space Vector Pulse Width Modulator 

(SVPWM), D-Q transformation and PI controller as a control scheme. During the design, 

the cosimulation between the function model and the VHDL model has been 

implemented. The cosimulation between the function model and VHDL model realizes 

the timing and control simulation by using Link-for Modelsim
®
 in MATLAB. 

The high frequency signal injection method proposed in [8] to improve the 

detection accuracy. A DSP (TMS320F2812) is used to implement this method and 4-pole 

PMSM is selected as experiment subject. The position detection scheme shows high 

accuracy and reduces the error. 

 Mathematical modeling of a PMSM and the flux-linkage observer is proposed in 

[9]. The mathematical model is used to approximate the nonlinear system of PMSM. Due 

to the present modification scheme with error-correction, the rotor position and machine 

speed can be estimated; even in the transient state the system has the capability of the 

smooth starting and reversing. In addition, the system with the flux-linkage is very robust 

and can tolerate variations in PMSM parameters. 

The Hall effect method proposed in [10]; uses a simple algorithm that combines 

the measurements of a Hall effect sensor with a “sensorless” method. In this method, the 

Hall effect position sensor is used instead of a resolver as the mechanical sensor, to allow 

vector control of a PMSM with a sinusoidal back-EMF. As a Hall effect sensor provides 

only six measurements per electrical turn, the position error between the actual rotor 

position and the measured position can potentially reach 30° electrically. This error 

affects the control performances and causes significant torque oscillations and over 

currents, which are not suitable in transportation systems applications. This method is 

easy to implement, but it can not offer continuous precise information of the rotor 

position.    

A Flux linkage method is proposed in [11] and uses the flux linkage signals to 

calculate the rotor position based on trigonometric approximations. The flux linkage 

signals can be measured by accessing the neutral point of the PMSM. Regarding the 
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software implementation, the PMSM is modeled in Maxwell, where the nonlinear 

magnetic flux density B and the magnetic flux intensity curves are also considered. 

Multiple geometric and saturation induced saliencies based on a stator-oriented 

magnetic circuit approach is introduced in [12], it introduces a new modeling approach of 

a nonlinear machine model. The advantage of this method is that all kinds of saliencies 

that occur in the electrical machine can be considered simultaneously. Moreover, 

modeling in the stator coordinates leads to a physically motivated explanation when the 

cross saturation effect can occur in a PMSM. 

The vector-tracking position observer is proposed [13], it is an improved approach 

for estimating the rotor positions in PMSM drives with low-resolution Hall effect 

sensors. A vector-tracking position observer in conjunction with a discrete Hall effect 

sensor’s output signal has been proposed, which is similar to a phase-locked loop 

structure. It consists of a position error detector, based on the vector cross product of the 

unit back-electromotive-force vectors obtained from a stator electrical model, and a 

proportional–integral type controller, to make the position error rapidly converge to zero. 

This structure does not only compensate the misalignment effect of the Hall effect 

sensors, but also enhance their transient operating capability. This structure allows the 

proposed approach to provide useful position information even at and around zero speeds 

where the vector-tracking correction loop cannot correctly operate. Above zero speeds, 

the proposed approach provides the high-resolution position information, where the 

position estimation error rapidly converges to zero regardless of the misalignment of 

Hall's sensors and the excessive average-speed error, particularly speed transient 

operation. Through the experiments during the steady-state, start-up, speed transient, and 

load transient operations, the effectiveness and the dynamic performance of the proposed 

approach have been evaluated and verified. 

Most of the literature focuses on how to implement different techniques using 

mathematical modeling through MATLAB SIMULINK and implement it into a 

microcontroller. However, a few authors had tried to implement the algorithms in an 

FPGA. Moreover, all the previous studies did not discuss the error analysis of the hybrid 

speed observer in which the rotor speed and positions can be determine from the Hall 

effect sensors' signals. 
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1.4. THESIS OUTLINE 

This section deals with general introduction for the HEV and the importance of 

the PMSM in the implementation also brief detail of the existing observation and 

estimation of the rotor speed and angle and how these techniques can help on the control 

of the motor. 

Section 2 describes the control board implementation and the electronic related 

circuits design configurations and calculations. 

Section 3 provides an introduction to the Pulse Width Modulator and different 

approaches of PWM signal generation by using the FPGA or Microcontroller. 

Section 4 describes the Hybrid Speed Observer technique for detecting the rotor 

speed and position using the Hall effect signals and the physical implementation in the 

FPGA using the Quartus II software and the error analysis. 

Section 5 presents the system validations after the implementation in the FPGA 

and connecting the board to the PMSM. The results are presented in this section to show 

the possibility of substituting the Microcontroller with an FPGA or sharing the 

operations. 

Section 6 presents the conclusions. Design problems and recommendations for 

future research are also discussed in this chapter. 
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2. SIGNAL PROCESSING AND CONTROL BOARD 

2.1. INTRODUCTION 

The control board consists of 15 different circuit blocks. Each bock has been 

developed and simulated using SIMULINK or PLECS before the physical 

implementation to ensure desired results. Numerical calculations were used to determine 

the right values for the components. All components were chosen based on cost, 

efficiency, and minimum losses. This section of the thesis will explain the purpose of 

each circuit associated with a step by step design calculation and circuit configuration. 

 

2.2. SIGNAL CONDITIONING CIRCUIT 

Most of the digital devices are compatible with an interface of 0-3V as standard 

I/O. Both the DSP and the FPGA in this design are compatible with 0V as the OFF state 

and +3.3V as the ON state. On the other hand, analog signals that need to be processed 

can be at any range. In this specific design, the analog signal from current sensors (LA 

100-p) is ±10V. An operational amplifier (Op-Amp) TLE-2082 from Texas Instruments 

(TI) will be used to offer the desired gain and offset. The signals are scaled from ±10V to 

0-3V in order to be compatible with DSP and The FPGA. Figure 2.1 illustrates the circuit 

diagram of non-inverting gain offset amplifier. The value of the resistors R1, R2, and R3 

can be determined by the following equations [14], and Table 2.1 illustrates the amplifier 

desired parameter to achieve the targeted voltage scale while Table 2.2 showing the 

selected value of these resistors. 

 

 

R3

R1

R2

+

- 

Vref

Vin

Vout

+15V

-15V

 

Figure 2.1.  Gains and Offset Circuit. 



 

 

9 

Table  2.1.  Maximum and Minimum Voltage Range. 

Vout,min 0V 

Vout,max 3V 

Vin,min -10V 

Vin,max +10V 

Vref +10V 

m 0.15 

b 1.5 

 

 

 

 out inV m V b    (3) 

 

 1

1 2 3

1

R
m

1 1 1

R R R



 

 (4) 

 3
ref

1 2 3

1

R
b V

1 1 1

R R R

 

 

 (5) 

 

 

 

Table  2.2.  The Resistor Values for Fig. 2.1. 

R1 49.9 kΩ 

R2 10.7 kΩ 

R3 49.9 kΩ 
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2.3. FILTER CIRCUIT 

Filter circuits usually are crucial and require precision. The Sallen Key filter is 

very popular active filter topology. It is used to implement second order filters or higher 

with different gain factor, high-quality factor, and simple configuration for the second-

order type and can be constructed with following equations from [15, 16]. Figure 2.2 [16] 

illustrates the generic Sallen Key filter configuration. 

 

 

 

+15V

-15V

+

- 

C1

R1 R2

C2 Vout

Vin

 

Figure 2.2.  Generic Sallen Key Filter Topology. 

 

 

 

The cutoff frequency fc and the quality factor Q are 

 

 c

1 1 2 2

1
f

2 R C R C



 (6) 

 

 
1 2 1 2

2 1 2

R R C C
Q

C (R R )



 (7) 

 

For simplicity of the design, a good assumption is to equalize all the resistors. 

 

 1 2R R R   (8) 
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This assumption simplifies the equations of the quality factor and the cutoff 

frequency as follows. 

   

 
1 2 1

2 2

C C C1
Q

2C 2 C
   (9) 

 

 
c

1 2

1
f

2 R C C



 (10) 

 

 
1

o

2Q
C

R



 (11) 

 

 
2

o

1
C

2RQ



 (12) 

 

In this design, the desired cutoff frequency is fc = 3 KHz and quality factor is Q = 

0.6 for a better response. After using equations (9), (10), (11), and (12) the values of the 

design are shown in Table 2.3. 

 

 

 

Table  2.3.  Capacitor and Resistor Values. 

C1 142pF 

C2 100pF 

R 2.2kΩ 

 

 

 

2.4. LEVEL SHIFTERS 

The microcontroller and FPGA outputs are limited to +3.3V logic signal while the 

inverter module needs about +15V to turn the gate of the insolated gate bipolar transistors 
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(IGBTs) on and also the fault signals that need to be interfaced to the DSP or FPGA are 

+15V. A logic level shifting circuit is needed therefore; the CD4504B voltage level-

shifter from Texas Instruments consists of six circuits, which shift the input signals from 

the VCC logic level to the VDD logic level. For example, to shift from TTL logic signals to 

CMOS logic scale, the SELECT pin-13 input is at the VCC high logic state. And when the 

SELECT pin is at low logic state “GND”, each circuit translates the signals from one 

CMOS to another [17]. Figure 2.3 [17] illustrates the internal block diagram and the pin 

out for CD4504B. 

 

 

 

OUTLEVEL SHIFTER

TTL/CMOS 

MODE SELECT

Vcc

IN

SELECT

Pin(3,5,7,9,11,14)

13

Vdd

Pin(2,4,6,10,12,15)

Vcc = Pin 1

Vdd= Pin 16

Vss= Pin 8

 

Figure 2.3.  CMOS Hex Voltage –Level Shifter. 

 

 

 

2.5. ANALOG TO DIGITAL CONVERTERS 

The outputs of the current, voltage, and temperature sensors are analog. In order 

to process these signals by using DSP, analog to digital converters are needed. Eight 

AD7276 12-bit, high speed, and low power ADCs from Analog Devices are used to 

convert the sensors' analog signals to digital signals in order to interface it to the DSP or 

the FPGA [19]. Figure 2.4 [18] shows the block diagram of AD7276. Another serial 

analog to digital converter AD7329 has been added to the design because of extra 
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flexibility to process ±10V analog signals without any signal conditioning. Figure 2.5 

[19] shows the block diagram of the 8-channel AD7329 serial ADC. 

 

 

 

 

Figure 2.4.  AD7276 Block Diagram [18]. 

 

 

 

 

Figure 2.5.  AD7329 Block Diagram [19]. 
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2.6. ISOLATOR CIRCUIT 

Isolator circuits are usually used when a certain signal needs to be transferred 

from one circuit to another without any direct coupling, because these circuits may 

operate at different voltage levels. This technique is used to decouple the board and the 

Computer Automotive Network (CAN) a bus signal, ADUM1412 quad-channel digital 

isolator from Analog Devices is used for this purpose. Figure 2.6 displays the block 

diagram and the pin out of the ADUM1412. 

  

 

 

 

Figure 2.6.  ADUM1412 Block Diagram [20].  

 

 

 

2.7. CAN TRANSCEIVER CIRCUIT 

A controller area network (CAN) transceiver circuit is used to communicate 

between the board and the CAN controller through a CAN bus. It is useful to send or 

receive CAN messages to the control board such as the dc bus voltage, the current at any 

phase, or any other signal condition. Figure 2.7 [21] illustrates the pin out and the 

functional diagram of 65HVD251 CAN transceiver from TI. 
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Figure 2.7.  65HVD251Funcional Diagram [21]. 

 

 

 

2.8. DIFFERENTIAL INPUT CIRCUIT 

A differential amplifier amplifies the difference between two voltages and rejects 

the average or common mode value of these voltages. Figure 2.8 shows the differential 

amplifier configuration. The equation for this type of amplifier is presented in [22]. 

 

 3 1 4 3
out 2 1

4 2 1 1

(R R )R R
V V V

(R R )R R

   
    

   
 (13) 

 

If R1=R2 and R3=R4 then 

 

  3
out 2 1

1

R
V V V

R

 
  
 

 (14) 

 

The simple case is used to obtain a unity gain, when 

 1 2 3 4R R R R 10K      (15) 
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Then, 

 

  out 2 1V V V   (16) 
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R2

R3

R4 0V

Vout
V1

V2

 

Figure 2.8.  Differential Amplifier Circuit. 

 

 

 

2.9. DSP CIRCUIT 

The Digital Signal Processor is chosen to be TI (TMS320F28335) [23], 

recommended by TI for motor control applications. The computing unit of this DSP 

consists of a 32-bit CPU and a single precision 32-bit floating-point unit (FPU), which 

enables the floating-point operations to be accomplished in hardware. The CPU has 8-

channels, which allows the CPU to execute 8 different instructions simultaneously in one 

clock cycle. The DSP has a system clock of 150MHz generated by an on-chip oscillator 

and Phase Locked Loop (PLL). The oscillator generates only 50MHz clock that is tripled 

by the PLL to achieve 150MHz. The DSP also has a physical memory of 34K x 16 

single-access random-access memory (SARAM), 8K x 16 read-only memory (ROM), a 

1K x 16 one-time programmable memory (OTP) and registers. The DSP has a capability 

of five types of an interface: serial communication interface (SCI), controller area 
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network (CAN), inter-integrated circuit (I2C), serial peripheral interface (SPI), and 

multichannel buffered serial port (McBSP). This allows flexibility in the interfacing 

between the DSP to any other devices such as motors or communication peripherals. The 

DSP board also allows for JTAG interface to program the DSP chip.  

Figure 2.9 shows, the TMS320F28335 DSP and its control dock. TI offers a 

friendly user interface Code Composer V4.0 (CCV4.0) to program this type of the 

microcontroller.  

 

 

 

 

Figure 2.9.  TMS320F28335. 

 

 

 

2.10. FPGA CIRCUIT 

The FPGA is an integrated circuit that contains many duplicate logic cells that can 

be seen as standard components. Each logic cell can individually take on any one of a 

limited set of personalities. The individual cells are interrelated by a matrix of wires and 

programmable switches as it shown in Figure 2.10. 
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Figure 2.10.  Structure of the FPGA. 

 

 

 

A user's design can be implemented by specifying the simple logic function for 

each cell and selectively closing the switches in the interconnection matrix. The array of 

logic cells and interconnects form a fabric of basic building blocks for logic circuits. 

Complex designs are created by combining these basic. The FPGA's functions are 

defined by a user's program rather than by the manufacturer of the device.  

A typical integrated circuit performs a particular function defined at the time of 

manufacture. In contrast, the FPGA's function is defined by a program written by 

someone other than the device manufacturer. Depending on the particular device, the 

program is either burned in permanently or semi-permanently as part of a board assembly 

process, or is loaded from an external memory each time the device is powered up. 



 

 

19 

Figure 2.11 illustrates a typical flow chart for Altera’s FPGA design process, 

which has been used in this design. 

 

 

 

 

Figure 2.11.  Altera Design Flow Chart [24]. 

 

 

 

This programmability gives the user access to complex integrated designs without 

the high engineering costs associated with application specific integrated circuits.  

 

2.11. POWER SUPPLY BOARD 

The power supply is designed in a different printed board (PCB0025) and 

attached to the main board through male and female six position power terminals (PES 

type and PET type) from SAMTEC Inc. as shown in Figure 2.12 [25], respectively. 
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Figure 2.12.  PES and PET Type Connectors [25]. 

 

 

 

Power modules are used in order to generate seven different voltages as in Table 

2.4. Figure 2.13 shows PCB0025 and the next table shows the voltages and the 

corresponding parts. The board layout and schematic are attached in appendix A.  

 

 

 

 

Figure 2.13.  PCB0025. 
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Table  2.4.  Power Modules and Corresponding Voltages. 

Voltage Power Module 

+1.2V PTH04000W 

+3.3V PTH04000W 

+3.3V ANA TPS79333DBV 

+5.0V PTN78060W 

+5.0V ISO. TMH2405S 

+15.0V PTN78060H 

-15.0V PTN78000A 

 

 

 

2.12. PULL-UP RESISTOR CIRCUIT 

Pull-up resistors are used for the open collector encoder in order to read the Hall 

effect signals. The configuration of this circuit is shown in Figure 2.14.  

 

 

 

3.3V

R  =1KΩ 
PU

Open collector switch

 

Figure 2.14.  Pull-up Resistor for Open Collector Configuration. 
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2.13. ERRATA  

After testing the board, there were some errors, defects, and considerations for 

new version of the board. 

 The gate signal socket package was inverted in eagle. It has been corrected 

in the Lib_DOE_transportation_electrification.lbr in the server. 

 The DSP package needs to be implemented in the Board as one unit to 

minimize the electromagnetic interference (EMI). 

 R25 has been changed to 2.2kΩ. 

 R65 and R66 values need to be swapped. 

 U36 pin 2 and 3 need to be swapped.  

 U41 pin 1 should be connected to +5V (board defect). Pull-up resistors of 

1kΩ need to be added to the Hall effect signals input terminal J21. 

 Ground terminal needs to be added to J21. 

 GPIO34 and GPIO 28 need to be swapped. 

 In PCB0025, pin 1 at U1 and U4 needs to be connected to the ground.  
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3. PULSE WIDTH MODULATOR 

3.1. INTRODUCTION 

Pulse Width Modulation (PWM) is a technique for controlling analog devices 

with digital signal format. This signal can be generated using a simple analog circuit or a 

Microcontroller Unit (MCU). This technique is widely used in communication and power 

electronics circuits for control purposes such as controlling the motor speed, by 

increasing or decreasing the duty cycle of this digital signal. The traditional way to 

generate a PWM signal is to compare an analog or dc signal as reference to a carrier 

signal. Usually, the carrier signal is a triangular or a sawtooth signal. Figure 3.1 illustrates 

the PWM block diagram. 

 

 

 

carrier

+Signal

- PWM signal

High

Low
Comparator

 

Figure 3.1.  PWM Block Diagram. 

 

 

 

3.2. DIGITAL PWM GENRATION TYPES 

The PWM signals can be generated digitally inside the MCU or FPGA by 

substituting the carrier signal with a counter. The counter determines when to turn the 
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PWM signal ON or OFF based on a certain value or reference signal. The counter can be 

used at any of the following modes: 

 Up Mode Counter. 

 Down Mode Counter. 

 Up/Down Mode Counter. This results in center-aligned PWM. 

3.2.1. Up-Mode Counter.  In   this  mode,   the   counter   starts  from   zero   and  

increments until it reach the desired final value. When the counts reach the maximum, the 

program will reset the counter to zero and repeat the same procedure again. Figure 3.2 

illustrates the up mode counter. 
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Figure 3.2.  Up Mode Counter. 

 

 

 

3.2.2. Down-Mode Counter.  In  this mode,  the counter will start  to count  from 

the maximum value and decrements until it reaches zero. When it reaches the zero, the 

counter will be reset to the maximum value and repeats the pattern. Figure 3.3 illustrates 

the down mode counter. 
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Figure 3.3.  Down Mode Counter. 

 

 

 

3.2.3. Up-Down Mode Counter.  In this mode,  the  counter  will  start   counting 

from zero and increments until it reaches the maximum value, then it will start to 

decrements until it reaches the zero value and keeps repeating the pattern. Figure 3.4 

illustrate the Up-Down counter. 
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Figure 3.4.  Up-Down Mode Counter. 
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3.2.4. PWM with Dead-Band.  In  power control applications,  it is  necessary  to 

have complementary PWM signals with a dead time between them in order to control 

individual power switches such as MOSFETs or IGBTs or modules like Inverters. Two 

extra counters are used to create the dead-band. The first counter is the Rising Edge 

counter (Red_ Count), and the second counter is the Falling Edge counter (Fed_Count). 

These counters create the signal delay in both edges of the PWM signal. Figure 3.5 shows 

the main Up/Down mode counter and other two up counters representing the Rising and 

the Falling edges counters. RED and FED are the reference values for rising edge counter 

and falling edge counter respectively, and they determine the time delays in both edges. 

The desired duty ratio (D) is used to set and reset the Up-Down mode counter and 

produce the ON time of the PWM signal. 
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Figure 3.5.  Signals of Interest. 
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Figure 3.6 illustrates the schematic diagram of the up-down counter PWM that 

has been implemented using Altera’s Quartus II software. The block diagram composed 

of five main blocks and an OR gate.  

The first block is the phase locked loop (PLL). The PLL has one input pin 

(CLKIN) and two output pins: clock out and LOCKED, a flag indicating that the PLL has 

locked to the input. The clock pin is used as clock reference to all blocks while the locked 

pin is used to synchronize all blocks in the design. This block is triggered by an external 

crystal oscillator (24 MHz) on the module and connected to PLL through pin A12. This 

PLL can either increase the frequency in this module up to 48 MHz or decrease it down 

to 2.4 MHz in this particular module, in this experiment the clock is chosen to be 24 

MHz. 

The second block is the PWM constants. This block has no inputs and provides 

five constants with different word lengths. The constants are iRed (3 bits), iFed, 

iPulseWidth (3 bits), iD (12 bits), and iClkdiv (3 bits).  The iRed and iFed is used to 

configure the delay in the rising edge and the falling edge respectively. The iPulseWidth 

is used to configure the start pulse width in the next block. The iD can be connected to 

the PWM block as known data for testing purposes while iClkdiv is connected to ADC 

block as clock divider signal in order to slow down the clock inside the block. 

The third block generates a start pulse. This block has three inputs and only one 

output. The inputs are the clock and locked signals from PLL in block one and the 

iPulseWidth signal from the second block. The output is a single pulse used to trigger the 

ADC block for the first time through an OR gate. The iPulseWidth signal determines the 

length of the start pulse. 

The fourth block is the ADC block. This block has five inputs and four outputs. 

The inputs are iClk, iStart, iClkdiv, iReset, and iSDO (12 bits). The block starts running 

as soon as it receives the iStart pulse from the previous block.  This block is a software 

written in VHDL for AD7276 [18] to read the serial digital data output through the iSDO 

input from the external chip and process it and generate the four output signals which are 

the output value (oValOut, 12 bits), serial clock (oSCK), chip select (oLD), and the done 

pulse (oDone). 
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Figure 3.6.  PWM Schematic Diagram. 
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The last one is the main block which the PWM block. This block has six inputs 

which are iStart, iD,  iReset, iRed, and iFed. Also, it has thirteen outputs: oQ through 

oQ4, oQ_inv through oQ4_inv, oDone, oDone_red, and oDone_fed. The oQx signals are 

as shown in Figure 3.5 (with or without inversion). The oDone signals indicate that the 

cycle is complete and the next cycle can begin. 

The signal flow through these blocks starts with the clock generated from the PLL 

to start pulse. The start pulse block generate a single pulse to trigger the ADC block at 

(iStart) input to start read the input digital signal oSDO from the real chip. When this 

block finishes its process, it generates the serial clock (oSCK), chip select (oLD), output 

value (oValOut), and (oDone) which is used to trigger the next block (PWM) at the 

(iStart) input to receive the (oValOut) from the ADC through (iD) serial input data 

terminal. The PWM block process that data and generate the desired duty ratio. Also, it 

uses the constants (iRed) and (iFed) to determine the delay in the rising and falling edges. 

After the block finishes the process the generated done pulse is rerouted to the OR gate so 

that the process runs continuously. 
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4. PMSM ROTOR POSITION MEASUREMENT 

4.1. INTRODUCTION 

PMSM control requires the continuous sensing of the rotor position and speed in 

order to apply the control algorithms. There are four common methods for measuring the 

PMSM rotor position [26]. 

 

4.1.1. Optical Encoder.  It is the most popular type, which consists of a rotating 

disk, a light source, and a photo detector. The disk, which mounted on the drive shaft of 

the motor, has coded patterns of opaque and transparent sectors. When the shaft is 

rotated, eventually it will rotate the disk and these patterns will interrupt the light emitted 

onto the photo-detector and generating a pulse signal output that can determine the rotor 

position and the speed. Figure 4.1 [20] displays the optical encoder. 

 

 

 

 

Figure 4.1.  Optical Encoder [20]. 
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4.1.2. Resolver.  The  common  type  is  the  Transmitter  Resolver;  it  looks  like 

a small electric motor with a stator and a rotor. The stator consists of three winding 

configurations: an exciter and a two two-phase winding (X and Y), in which there is 90° 

phase shift. The output of the Resolver is sine and cosine of an angle θ that corresponds 

to the shaft position and direction [27]. Figure 4.2 [28] shows the resolver schematic.  

 

 

 

 

Figure 4.2.  Resolver Schematic [28]. 

 

 

 

4.1.3. Full Observer.  The  Full  Observer  uses  the  characteristics  of  the  Back 

Electromotive Force and the voltage generated on the windings due to the BEMF. The 

polarity of the current induced in the winding due to the BEMF is determined by the 

motor rotating direction. The amplitude of the induced current is proportional to the 

speed of the rotors. Many manufacturers have implemented this type of observer into 

electronic chips. 

Figure 4.3 illustrates a diagram of a commonly used Full Observer that uses the 

current i, and voltage v, as references through a Proportional Integral (PI)  controller 
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associated with State Space Matrix analysis in order produce an observed current î  and 

voltage v̂  to detect the error [29, 30].  

 

 

 

Adaptive 

Scheme
LPF

1B̂

0

 
 
 

1

s

ˆ

ˆ

i



 
 
  

  I  0

  0  I 1tan 11 12

22

ˆ ˆ

ˆ

A   A

0    A  

 
 
  

1
ˆK sgn(i - i)

z rê
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rê

i

 

Figure 4.3.  Full Adaptive Observer [29]. 

 

 

 

4.1.4. Hall Effect Sensors.  The theory behind this type of sensors is  that when  a 

conductor that carrying current is placed into a magnetic field, a voltage will be generated 

due to the effect of the magnetic field and the direction of that voltage is perpendicular to 

the current [31]. These sensors are inexpensive, small, and have low resolution. Figure 
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4.4 shows 2-pole 3-phase PMSM and three Hall effect sensors accompanied by their 120° 

shifted signals. 

 

 

 

 

 

Figure 4.4.  Three Hall Effect Sensors and Their Related Signals [26]. 

 

 

 

4.2. HYBRID SPEED OBSERVER 

It is very common in the Brushless dc motor (BLDC) does not have a resolver or 

optical encoder for couple reasons. One reason is to minimize the motor price and size. 

Another reason is to offer the flexibility of coupling. The PMSM has different parameters 

and characteristics and to control two motors will require some sort of harmony. Thus, it 

will be easier to eliminate the mechanical detection parts.  

The Hall effect sensors discussed in section 4.1.4 are a successful solution for 

sensorless problem due to their low-cost and light weight. Hybrid Observer [32], uses the 

Hall effect sensors to estimate the rotor position and speed, with accuracy and low cost. 

The setup in Figure 4.5 illustrates an example of a high-performance BLDC. The system 

also includes the inverter, observer, speed control and delta-modulated current control 

[32]. 
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Figure 4.5.  High-Performance BLDC [32]. 

 

 

 

The hybrid observer can be represented by the following differential equation. 

 

 
rh rhr

rrh rh

cos( ) cos( )0

0sin( ) sin( )

     
    

     

d

dt
 (17) 

 

If the initial position and the electrical speed are known and equation (17) has a 

solution with no error, the sine and cosine of the rotor relevant to the Hall effect sponsors, 

then rhsin(θ )  and rhcos(θ )  could be determined using trigonometric identities. Table 4.1 

and Figure 5.2 shows the bounding which are maximum and minimum values of rhsin(θ )

and rhcos(θ ) for the current Hall effect sensor states (ha, hb, hc). 
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Table  4.1.  Bounding Functions vs. Hall States [32]. 

Hall State Bounding Functions 

ha hb hc maxsin(θh) minsin(θh) maxcos(θh) mincos(θh) 

0 0 1 -1/2 -1 0 3 / 2  

0 1 0 1 1/2 0 3 / 2  

0 1 1 1/2 -1/2 3 / 2  -1 

1 0 0 1/2 -1/2 1 3 / 2  

1 0 1 -1/2 -1 3 / 2  0 

1 1 0 1 1/2 3 / 2  0 

 

 

 

The values rhsin(θ ) and rhcos(θ ) can found based on the state transition points. 

Table 4.2 shows these values based on the signal states. 

 

 

 

Table  4.2.  State Transition Points [32]. 

Sensor Transition ha hb hc rhsin(θ )  rhcos(θ )  

ha x 0 1 -1 0 

ha x 1 0 1 0 

hb 0 x 1 -1/2 3 / 2  

hb 1 x 0 1/2 3 / 2  

hc 0 1 x 1/2 3 / 2  

hc 1 0 x -1/2  

x= don’t care 
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Figure 4.6 illustrates how the sine and cosine the angle could be estimated based 

on known initial conditions and the bounding conditions of that angle. It also shows the 

three different three Hall effect signals are shifted by 120°. At any transition point, the 

rotor speed can be estimated based on the time between the transition occurrences, 

 

 rh
r

ˆ
t


 


 (18) 

 

The final calculations to implement the hybrid observer to determine the sine and 

cosine of the electrical rotor position are 

 

 r rh h     (19) 

 

 

 

 

Figure 4.6.  Hybrid Observer Bounding Functions [26]. 
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 r rh h rh hsin( ) sin( )cos( ) cos( )sin( )        (20) 

 

 r rh h rh hcos( ) cos( )cos( ) sin( )sin( )        (21) 

 

The estimated values of rhsin( ) and rhcos( ) are 

 

 r h h h hsin( ) s cos( ) c sin( )       (22) 

 

 r h h h hcos( ) c cos( ) s sin( )       (23) 

 

To determine the initial condition for the rotor, the speed is assumed to be zero. 

Then hs and hc can be determined from the initial readings of the Hall effect sensor. 

Table 4.3 gives these initial conditions. Figure 4.7 illustrates the block diagram of the 

hybrid observer. 

 

 

 

Table  4.3.  Initial Conditions [32]. 

Initial Hall State Initial Conditions 

ha hc hc θh sθh cθh 

0 0 1 4π/3 3 / 2  -1/2 

0 1 0 2π/3 3 / 2  -1/2 

0 1 1 π 0 -1 

1 0 0 0 0 1 

1 0 1 5π/3 3 / 2  1/2 

1 1 0 π/3 3 / 2  1/2 
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All the above equations, initial conditions table, and the transitional table have 

been converted into VHDL language in appendix B to estimate the rotor speed and 

position. Some of these parameters are treated as signals type while the other signals 

treated as variables. A fixed point package [33] is used to add more precision to the 

inputs and the estimated outputs. The integration operations are replaced by accumulated 

addition operations to estimate the sine and cosine of the electrical angle. The Hall effect 

signals have six possible transitions per period. Each transition is used to trigger a 

counter to start counting at each transition state and reset itself at the next transition state. 

The local estimated rotor speed (lWr) is equal to the length of the period (2π/6) divided 

by the time between any two (T1, T2, T3) transitions which is equal to the counter value 

(lCount) multiplied by the sampling frequency (Ts) in 34 bits precision. The final value of 

the rotor speed has only 12 bit precision due to the lack of precision on the digital to 

analog converter (DAC). The error that occurs due to the change of the precision on the 

fraction part of the (lWr) is reported and analyzed in chapter five. 

Also, the program can estimate the rotor position at any time based on the  initial 

and  the bounding conditions that has been translated into VHDL statements. When the 

program starts it looks at initial conditions first and estimates the sine and cosine of θr 

and store those values. The sine and cosine θr can be calculated from equations (20) and 

(21) respectively. 

The new sine and cosine values can be estimated by integrating the equations. 

This integration can be replaced by accumulated addition operation as follows, 

 

 
r,new r,int r r,int SSin( ) Cos( ) Sin( ) T        (24) 

 

 

 
r,new r,int r r,int SCos( ) Sin( ) Cos( ) T        (25) 

 

On the next clock cycle the program will load the new Hall effect states and the 

new values of sine and cosine θr will become initial values for the next clock cycle. The 
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program will also check the bounding conditions in Table 4.1 in order not to exceed the 

maximum or goes below the maximum and minimum bounding conditions.  

 

 

 

 

Figure 4.7.  Hybrid Observer Block Diagram [26]. 

 

 

 

This speed observer is built in Quartus II software and VHDL language then 

simulated at ModelSim, and also implemented and tested in Altera FPGA cyclone II; 

appendix B shows the program structure. Figure 4.8 shows the schematic view of the 

hybrid speed observer. Figure 4.9 displays the FPGA experiments board PCB0006 that 

has been used for the implementation of the hybrid speed observer for testing purposes.  
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Figure 4.8.  Speed Observer Schematic in VHDL. 
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The signal flow in 4.8 uses the same start procedure in the PWM program in 

section 3.2.4. Then a single start pulse is used to trigger the speed observer VHDL 

program in appendix B. The program will start to execute as soon as it receives the start 

pulse and will provide the results. After the program is finished, it will generate a done 

pulse that is connected to an OR gate with the start pulse to keep the program 

continuously working. The Hall effect signals are connected to pins Y22, Y21, and V22. 

A 24 MHz clock is used to run this experiment.  

 

 

 

 

Figure 4.9.  PCB0006 Experiments Board. 

 

 

 

Figure 4.10 shows the dc motor and the Hall effect sensors encoder type 

24A0FEPM from Bodine electric motors that have been involved in this experiment. 
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Figure 4.10.  The Experiment dc Motor. 

 

 

 

Table 4.4 illustrates the dc motor parameters and characteristics. 

 

 

 

Table  4.4.  The Motor Parameters. 

Serial number 4440MYEAZ0001 

Type 24A0FEPM 

Volts 24VDC 

F.F 1.0 

Amperes 1.2 

HP 1/50 

INS B8 

RPM 2500 
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5. RESULTS AND SYSTEM VALIDATION 

5.1. MODELSIM RESULTS 

The model of the PWM generator has been tested and developed in ModelSim. 

The next figures show the simulation results for three different techniques. Figure 5.1 

illustrates the simulation results of up-mode counter. 

 

 

 

 

Figure 5.1.  The Simulation Results of the Up-Mode Counter. 

 

 

 

Figure 5.2 illustrates the ModelSim simulation results of down-mode counter. 

 

 

 

 

Figure 5.2.  The Simulation Results of the Down-Mode Counter. 
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The simulation test is also applied to the Up-Down mode counter and Figure 5.3 

displays the simulation results of this type of counter. 

 

 

 

 

Figure 5.3.  The Simulation Results of the Up-Down Counter. 

 

 

Figures 5.4, 5.5, 5.6, 5.7 illustrate the simulation results of the hybrid speed 

observer in ModelSim and its related parameters. 

 

 

 

 

Figure 5.4.  Screen Shot (1) for Parameters Results of the SO. 
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Figure 5.5.  Screen Shot (2) for Parameters Results of the SO. 

 

 

 

 

Figure 5.6.  Screen Shot (3) for Parameters Results of the SO. 



 

 

46 

 

Figure 5.7.  Screen Shot (4) for Parameters Results of the SO. 

 

 

 

5.2. HARDWARE RESULTS 

The PWMs programs are implemented in the FPGA and have been tested to drive 

synchronous buck converter. The required dead time is about 180 nanosecond which is 

about 4 clock cycles delay. Figures 5.8 and 5.9 display screen shots for the rising and 

falling edge of the up-down counter PWM. 

 

 

 

 

Figure 5.8.  The Rising-Edge Counter Delay. 
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Figure 5.9.  The Falling-Edge of the Fed Counter. 

 

 

 

Figure 5.10 shows the Hall effect signals from the dc motor in section 5.2. 

 

 

 

 

Figure 5.10.  Hall Effect Signals. 
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Figure 5.11 illustrates the output of an experiment that has been prepared for Hall 

effect signals of 59.86 Hz. The result of ωr shown in 12 bit binary bus which included 2 

bit of fraction that makes it equivalent to 376 in decimals which is. 

 

 r 376
59.84

2 2
f



 
   Hz (26) 

 

 

 

 

Figure 5.11.  The SO Output in 59.86 Hz Hall Effect Signals Input. 

 

 

 

The setup has been tested under many different rotating speeds and it always 

gives excellent results with negligible error due to the approximation of the program and 

the number of bits m that has been used to calculate ωr. This error has been detected and 

analyzed in average form due to the unstable Hall effect signal from the dc motor in 

addition to the inaccuracy of the scope. The next chart in Figure 5.12 illustrates the 

absolute average error versus the m bits. Figure 5.13 also illustrates the number of the 

total logic elements used versus m. 
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Figure 5.12.  The Absolute Error vs. m Bits. 

 

 

 

 

Figure 5.13.  The Total Logic Elements vs. m Bits. 

 

 

 

Figures 5.14 and 5.15 illustrate the sin(θrh) output signal from the SO program. 
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Figure 5.14.  The sin(θrh) Output. 

 

 

 

 

Figure 5.15.  Zoom in Results of sin(θrh). 
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6. CONCLUSION AND FUTURE SCOPE 

A signal processing board has been designed to control the PMSM and monitor 

the external parameters. This thesis developed the FPGA to generate special signals and 

techniques the same as the TI320F28335 does. The PWM signals were tested under 

different topologies and conditions. These signals include the dead time capability in 

order to be used in synchronous switching devices that require delay time between the 

rising and falling edges such as synchronous buck, boost, or buck-boost converters or the 

modules like a three phase inverters. The hybrid speed observer method is chosen as the 

rotor position and speed detection technique to control the PMSM. This program has 

been successfully developed and implemented inside the FPGA and all results are 

documented and compared to the microcontroller results. The FPGA implementation 

gives high accuracy and better flexibility in the mathematical operations. Also the 

resulting error has been analyzed. The system is scalable, so it can control more than one 

motor due to the better flexibility of FPGA implementation. The future work would be 

applying some other control methods such as all digital phase lock loop (ADPLL), which 

is composed of phase and frequency detector, low pass filter (LPF), digital controlled 

oscillator (DCO), and a divider. Then a useful comparison can be done to illustrate the 

pros and cons of each method. 
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APPENDIX A. 

PRINTED CIRCUIT BOARDS DESIGN
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This appendix includes the signal processing and power supply boards schematics 

and layouts of the printed circuit boards discussed in Section 2.1 and 2.11 respectively. 

The board schematic layout for the signal processing is shown in Figure A.1 through 

A.15 and the schematic and layout of the power supply board is shown in Figure A.16 

through A.17.  
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Figure A.1.  The CAN Transceiver Circuit. 
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Figure A.2.  Digital Output Contactors. 
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Figure A.3.  The 8-channel AD7329 Serial ADC Circuit. 
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Figure A.4.  The ADC AD7276 Circuit. 
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Figure A.5.  Level Shifters Circuit. 
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Figure A.6.  The FPGA Pin Out.  
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Figure A.7.  0-3V Gain-Offset Circuit. 
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Figure A.8.  Differential Input Gain-Offset Circuit.  
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Figure A.9.  Digital Inputs Circuit. 
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Figure A.10.  Differential Amplifiers Circuit. 
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Figure A.11.  The DSP Pin Out. 
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Figure A.12.  The Sallen Key LPF. 
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Figure A.13.  The Connectors Pin Out. 
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Figure A.14.  The Hall effect Signals Level Shitter Sircuit. 
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Figure A.15.  The Signal Processing Board Top Layer.  
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Figure A.16.  The Power Supply Schematic. 
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Figure A.17.  The Power Supply Board Top Layer.
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APPENDIX B. 

VHDL CODES OF THE DESIGN
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This appendix contains the VHDL programs of the up mode, down mode, and up-

down mode PWMs, also it includes the speed observer program. The comments are 

denoted by text that starts with double hyphen (--) and green font.  
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 This is a program for up mode counter PWM. 

------------------------------------------------------------------------------------------------------------------------------------------------------------------ 
--This program has been written in VHDL for PWM using up mode counter. The program has been developed by Amir Saad at          -
- Missouri University of Science and Technology in Aug. 2011 . Copy right (c) For Amir Saad. All rights reserved 2011. 
------------------------------------------------------------------------------------------------------------------------------------------------------------------ 
Library ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_unsigned.all; 
use ieee.std_logic_arith.all; 
 
ENTITY aes_pwm_up is 
 generic ( n: natural := 12);-- n can be changed as needed  
 port( 
   --input signales 
   iStart : in std_logic;    -- pulse at start 
   iD    : in std_logic_vector(n-1 downto 0 ); --used for 12 bit input data value 
   iClk   : in std_logic;  
   iReset : in std_logic; 
   iRed  : in std_logic_vector (3 downto 0); -- rising edge counter input data 
   iFed  : in std_logic_vector (3 downto 0); -- falling edge counter output data 
   --Output signals 
   oQ  : out std_logic; 
   oQ1  : out std_logic; 
   oQ2  : out std_logic; 
   oQ3  : out std_logic; 
   oQ4  : out std_logic; 
   oQ_inv   : out std_logic; 
   oQ1_inv   : out std_logic; 
   oQ2_inv   : out std_logic; 
   oQ3_inv   : out std_logic; 
   oQ4_inv   : out std_logic; 
   oDone  : out std_logic; 
   oDone_fed  : out std_logic; 
   oDone_red  : out std_logic); 
   Constant C_min : std_logic_vector(n-1 downto 0):=(others=>'0'); 
   Constant C_max : std_logic_vector(n-1 downto 0):=(others=>'1');   
end aes_pwm_up ; 
     
Architecture Behavioral of aes_pwm_up is 
 signal lDreg : std_logic_vector(n-1 downto 0); --  register output 
 signal lCount : std_logic_vector(n-1 downto 0); --  counter output 
 signal lFed  : std_logic_vector(3 downto 0); --  falling edge register output 
 signal lRed : std_logic_vector(3 downto 0); --  rising edge register output 
 signal lCount_red : std_logic_vector(3 downto 0); --  rising edge counter output 
 signal lCount_fed : std_logic_vector(3 downto 0); --  falling edge counter output 
 signal lQint : std_logic; 
 signal lPreQint : std_logic; 
 signal lQ1   : std_logic; 
 signal lQ2   : std_logic; 
 signal lQ3   : std_logic; 
 signal lQ4   : std_logic; 
 signal lRedEn  : std_logic; 
   signal lFedEn  : std_logic;   
  
Begin  
process (iClk,iReset,iStart,lQint,lDreg,lCount,lCount_fed,lCount_red,lQ1,lQ2,lQ3,lQ4,lFed,lRed,lRedEn,lFedEn,lPreQint) 
Begin 
-- Initializations  
 if (iReset = '0') then   
  lCount <=  C_min; 
  lDreg  <=  C_min; 
  lFed  <=  "0000"; 
  lRed  <=  "0000"; 
  lQint  <='0'; 
  lQ1  <='0'; 
  lQ2  <='0'; 
  lQ3  <='0'; 
  lQ4  <='0'; 
  lRedEn <='0'; 
  lFedEn <='0'; 
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  lCount_red<="0000"; 
  lCount_fed<="0000"; 
   
  elsif ( rising_edge(iClk)) then 
     
   if (lCount=C_max) then  
    oDone  <= '1'; 
    lCount<= C_min; 
    Else  
    lCount<=lCount+1; 
    oDone  <= '0'; 
    End if ; 
 ------------------------------------------------------------------------------------  
  --rising edge counter   
   if (lRedEn='1') then 
    lCount_red<=lCount_red +1; 
    oDone_red<='0'; 
   Else 
    lRedEn<='0'; 
    oDone_red<='1'; 
   End if; 
 ------------------------------------------------------------------------------------ 
   --falling edge counter 
    if (lFedEn='1') then 
     lCount_fed<=lCount_fed +1; 
     oDone_fed<='0'; 
    Else 
     lFedEn<='0'; 
     oDone_fed<='1'; 
      
    End if; 
     
  
  
    
 ------------------------------------------------------------------------------------  
 if (lQint='1' and lPreQint='0') then  
  lRedEn  <='1'; 
  lFedEn  <='0'; 
  lCount_red<="0000";  
  lCount_fed<="0000"; 
 Else 
  if (lCount_red>=lRed) then 
   lRedEn  <='0'; 
   lCount_red<=lCount_red; 
  End if; 
 End if; 
 ------------------------------------------------------------------------------------ 
 if (lQint='0' and lPreQint='1') then  
  lFedEn  <='1'; 
  lRedEn  <='0'; 
  lCount_fed<="0000"; 
  lCount_red<="0000"; 
 Else 
  if (lCount_fed>=lFed) then 
  lFedEn  <='0'; 
    
  End if;   
 End if; 
 ------------------------------------------------------------------------------------- 
  if (lCount >= lDreg) then  
   lQint<='1'; 
     
  Else  
   lQint <='0'; 
  End if;  
  
 ------------------------------------------------------------------------------------ 
 if ( lCount >=lDreg or lCount_fed<= lFed ) then 
    lQ1  <= '1'; 
   Else 
    lQ1  <='0'; 
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 End if; 
 ------------------------------------------------------------------------------------ 
 if (  lCount_red >= lRed ) then 
    lQ2  <= '1'; 
   Else 
    lQ2  <='0'; 
 End if; 
 ------------------------------------------------------------------------------------ 
  
 lQ3  <= lQ1 and lQ2; 
 ------------------------------------------------------------------------------------ 
 if ( lCount_fed >= lFed) then 
  lQ4  <= '1'; 
 Else 
  lQ4  <='0'; 
 End if; 
 ------------------------------------------------------------------------------------ 
 if ( iStart ='1') then  
  lDreg <= iD; 
  lFed  <= iFed; 
  lRed  <= iRed; 
 End if; 
End if;  
------------------------------------------------------------------------------------ 
  
End process ; 
oQ  <= lQint; 
oQ1 <= lQ1; 
oQ2 <= lQ2; 
oQ3 <= lQ3; 
oQ4 <= lQ4; 
oQ_inv  <= not (lQint); 
oQ1_inv <= not (lQ1); 
oQ2_inv <= not (lQ2); 
oQ3_inv <= not (lQ3); 
oQ4_inv <= not (lQ4); 
 
End Behavioral ; 
------------------------------------------------------------------------------------------------------------------------------------------------------------------
---------------------------------------------------------------------------------------------------------------------------------------------------------- 
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This is a program for down mode counter PWM. 

 
-----------------------------------------------------------------------------------------

--------------------------------------------------------------------- 

This program has been written in VHDL for PWM using down mode counter. The program has 

been developed by Amir  

Saad at Missouri University of Science and Technology in Aug. 2011. Copy right (c) For 

Amir Saad. All rights reserved 2011. 

 ----------------------------------------------------------------------------------------

-------------------------------------------------------------------- 

Library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_unsigned.all; 

use ieee.std_logic_arith.all; 

 

ENTITY aes_pwm_dn is 

 generic ( n: natural := 12);-- n can be changed as needed  

 port( 

   --input signales 

   iStart : in std_logic;    -- pulse at start 

   iD    : in std_logic_vector(n-1 downto 0 ); --used for 12 bit input 

data value 

   iClk   : in std_logic;  

   iReset : in std_logic; 

   iRed  : in std_logic_vector (3 downto 0); -- rising edge counter 

input data 

   iFed  : in std_logic_vector (3 downto 0); -- falling edge 

counter output data 

   --Output signals 

   oQ  : out std_logic; 

   oQ1  : out std_logic; 

   oQ2  : out std_logic; 

   oQ3  : out std_logic; 

   oQ4  : out std_logic; 

   oQ_inv   : out std_logic; 

   oQ1_inv   : out std_logic; 

   oQ2_inv   : out std_logic; 

   oQ3_inv   : out std_logic; 

   oQ4_inv   : out std_logic; 

   oDone  : out std_logic; 

   oDone_fed  : out std_logic; 

   oDone_red  : out std_logic); 

   Constant C_min : std_logic_vector(n-1 downto 

0):=(others=>'0'); 

   Constant C_max : std_logic_vector(n-1 downto 

0):=(others=>'1');   

end aes_pwm_dn ; 

     

Architecture Behavioral of aes_pwm_dn is 

 signal lDreg : std_logic_vector(n-1 downto 0); --  register output 

 signal lCount : std_logic_vector(n-1 downto 0); --  counter output 

 signal lFed   : std_logic_vector(3 downto 0); --  falling edge register 

output 

 signal lRed : std_logic_vector(3 downto 0); --  rising edge register output 

 signal lCount_red : std_logic_vector(3 downto 0); --  rising edge counter 

output 

 signal lCount_fed : std_logic_vector(3 downto 0); --  falling edge counter 

output 

 signal lQint : std_logic; 

 signal lPreQint : std_logic; 

 signal lQ1   : std_logic; 

 signal lQ2   : std_logic; 

 signal lQ3   : std_logic; 

 signal lQ4   : std_logic; 

 signal lRedEn  : std_logic; 

   signal lFedEn : std_logic; 

   

  

Begin  
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process 

(iClk,iReset,iStart,lQint,lDreg,lCount,lCount_fed,lCount_red,lQ1,lQ2,lQ3,lQ4,lFed,lRed,lR

edEn,lFedEn,lPreQint) 

Begin 

-- Initializations  

 if (iReset = '0' ) then   

  lCount <= C_max; 

  lDreg <= C_min; 

  lQint <='0'; 

 elsif (rising_edge(iClk)) then 

     

   if (lCount=C_min) then  

    oDone  <= '1'; 

    lCount<= C_max; 

   Else  

    lCount<=lCount-1; 

    oDone  <= '0'; 

   End if ; 

------------------------------------------------------------------------------------  

  --rising edge counter   

   if (lRedEn='1') then 

    lCount_red<=lCount_red +1; 

    oDone_red<='0'; 

   Else 

    lRedEn<='0'; 

    oDone_red<='1'; 

   End if; 

------------------------------------------------------------------------------------ 

  --falling edge counter 

    if (lFedEn='1') then 

     lCount_fed<=lCount_fed +1; 

     oDone_fed<='0'; 

    Else 

     lFedEn<='0'; 

     oDone_fed<='1'; 

      

    End if; 

------------------------------------------------------------------------------------  

 if (lQint='1' and lPreQint='0') then  

  lRedEn  <='1'; 

  lFedEn  <='0'; 

  lCount_red <="0000";  

  lCount_fed <="0000"; 

 Else 

  if (lCount_red>=lRed) then 

   lRedEn  <='0'; 

   lCount_red <=lCount_red; 

  End if; 

 End if; 

------------------------------------------------------------------------------------ 

 if (lQint='0' and lPreQint='1') then  

  lFedEn  <='1'; 

  lRedEn  <='0'; 

  lCount_fed <="0000"; 

  lCount_red <="0000"; 

 Else 

  if (lCount_fed>=lFed) then 

  lFedEn  <='0'; 

    

  End if;   

 End if; 

------------------------------------------------------------------------------------- 

  if (lCount >= lDreg) then  

   lQint<='1'; 

     

  Else  

   lQint <='0'; 

  End if;  

------------------------------------------------------------------------------------ 

 if ( lCount >=lDreg or lCount_fed<= lFed ) then 

    lQ1  <= '1'; 

   Else 
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    lQ1  <='0'; 

 End if; 

------------------------------------------------------------------------------------ 

 if (  lCount_red >= lRed ) then 

    lQ2  <= '1'; 

   Else 

    lQ2  <='0'; 

 End if; 

------------------------------------------------------------------------------------ 

  

 lQ3  <= lQ1 and lQ2; 

------------------------------------------------------------------------------------ 

 if ( lCount_fed >= lFed) then 

  lQ4  <= '1'; 

 Else 

  lQ4  <='0'; 

 End if; 

------------------------------------------------------------------------------------ 

 if ( iStart ='1') then  

  lDreg <= iD; 

  lFed  <= iFed; 

  lRed  <= iRed; 

 End if; 

End if;  

------------------------------------------------------------------------------------ 

End process ; 

 

oQ  <= lQint; 

oQ1 <= lQ1; 

oQ2 <= lQ2; 

oQ3 <= lQ3; 

oQ4 <= lQ4; 

oQ_inv  <= not (lQint); 

oQ1_inv <= not (lQ1); 

oQ2_inv <= not (lQ2); 

oQ3_inv <= not (lQ3); 

oQ4_inv <= not (lQ4); 

 

End Behavioral ; 

----------------------------------------------------------------------------------------- 
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This is a program for up/down mode counter PWM. 

 
-----------------------------------------------------------------------------------------

------------------------------------------------------------------------- 

-- This program has been written in VHDL for PWM using up/dn mode counter. The program 

has been developed by Amir  

-- Saad at Missouri University of Science and Technology in Aug. 2011. Copy right (c) For 

Amir Saad. All rights reserved 2011.  

-----------------------------------------------------------------------------------------

------------------------------------------------------------------------- 

Library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_unsigned.all; 

use ieee.std_logic_arith.all; 

 

ENTITY aes_pwm_updn is 

 generic ( n: natural :=12);-- n can be changed as needed  

 port( 

   --input signales 

   iStart : in std_logic;    -- pulse at start 

   iD     : in std_logic_vector(n-1 downto 0 ); --used for 12 bit 

input data value 

   iClk   : in std_logic;  

   iReset : in std_logic; 

   iRed  : in std_logic_vector (3 downto 0); -- rising edge counter 

input data 

   iFed  : in std_logic_vector (3 downto 0); -- falling edge 

counter output data 

   iClkDiv : in std_logic_vector(7 downto 0); -- clock divider for PWM 

   --Output signals 

   oQ  : out std_logic; 

   oQ1  : out std_logic; 

   oQ2  : out std_logic; 

   oQ3  : out std_logic; 

   oQ4  : out std_logic; 

   oQ_inv   : out std_logic; 

   oQ1_inv   : out std_logic; 

   oQ2_inv   : out std_logic; 

   oQ3_inv   : out std_logic; 

   oQ4_inv   : out std_logic; 

   oDone  : out std_logic; 

   oDone_fed  : out std_logic; 

   oDone_red  : out std_logic); 

   Constant C_min : std_logic_vector(n-1 downto 

0):=(others=>'0'); 

   Constant C_max : std_logic_vector(n-1 downto 

0):=(others=>'1');  

end aes_pwm_updn; 

     

Architecture Behavioral of aes_pwm_updn is 

 signal lDIR   : std_logic; --Direction of the of the PWM 

 signal lDreg : std_logic_vector(n-1 downto 0); --  register output 

 signal lCount : std_logic_vector(n-1 downto 0); --  counter output 

 signal lFed  : std_logic_vector(3 downto 0); --  falling edge register 

output 

 signal lRed : std_logic_vector(3 downto 0); --  rising edge register output 

 signal lCount_red : std_logic_vector(3 downto 0); --  rising edge counter 

output 

 signal lCount_fed : std_logic_vector(3 downto 0); --  falling edge counter 

output 

 signal lCount_div : std_logic_vector(7 downto 0); --  counter for clock 

divider 

 signal lQint : std_logic; 

 signal lPreQint : std_logic; 

 signal lQ1   : std_logic; 

 signal lQ2   : std_logic; 

 signal lQ3   : std_logic; 

 signal lQ4   : std_logic; 

 signal lRedEn  : std_logic; 

   signal lFedEn   : std_logic; 
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Begin  

process 

(iClk,iReset,iStart,lDIR,lQint,lDreg,lCount,lCount_fed,lCount_red,lQ1,lQ2,lQ3,lQ4,lFed,lR

ed,lRedEn,lFedEn,lPreQint) 

Begin 

-- Initializations  

 if (iReset = '0') then   

  lCount <=  C_min; 

  lDIR  <= '0'; 

  lDreg  <=  C_min; 

  lFed  <=  "0000"; 

  lRed  <=  "0000"; 

  lQint  <='0'; 

  lQ1  <='0'; 

  lQ2  <='0'; 

  lQ3  <='0'; 

  lQ4  <='0'; 

  lRedEn <='0'; 

  lFedEn <='0'; 

  lCount_red <="0000"; 

  lCount_fed <="0000"; 

  lCount_div <= "00000000"; 

 elsif ( rising_edge(iClk) ) then 

  if (lCount_div = iClkDiv) then 

   lCount_div <= "00000000"; 

   if (lDIR = '1') then 

    if (lCount= C_max) then 

     lDIR <= '0'; 

     oDone<= '0'; 

     lCount<=lCount-1; 

    Else 

     lCount<=lCount+1; 

     oDone<= '0'; 

    End if; 

   Else  

    if (lCount= C_min) then  

     lDIR<='1'; 

     oDone<= '1'; 

     lCount<=lCount + 1; 

      

    Else  

     oDone<= '0'; 

     lCount<=lCount - 1; 

      

      

    End if ; 

   End if ; 

 Else 

   lCount_div <= lCount_div + 1; 

 end if; 

  lPreQint<=lQint; 

------------------------------------------------------------------------------------  

  --rising edge counter   

   if (lRedEn='1') then 

    lCount_red<=lCount_red +1; 

    oDone_red<='0'; 

   Else 

    lRedEn<='0'; 

    oDone_red<='1'; 

   End if; 

------------------------------------------------------------------------------------ 

   --falling edge counter 

    if (lFedEn='1') then 

     lCount_fed<=lCount_fed +1; 

     oDone_fed<='0'; 

    Else 

     lFedEn<='0'; 

     oDone_fed<='1'; 

      

    End if; 

------------------------------------------------------------------------------------  
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 if (lQint='1' and lPreQint='0') then  

  lRedEn  <='1'; 

  lFedEn  <='0'; 

  lCount_red <="0000";  

  lCount_fed <="0000"; 

 Else 

  if (lCount_red>=lRed) then 

   lRedEn  <='0'; 

   lCount_red <=lCount_red; 

  End if; 

 End if; 

------------------------------------------------------------------------------------ 

 if (lQint='0' and lPreQint='1') then  

  lFedEn  <='1'; 

  lRedEn  <='0'; 

  lCount_fed <="0000"; 

  lCount_red <="0000"; 

 Else 

  if (lCount_fed>=lFed) then 

  lFedEn  <='0'; 

    

  End if;   

 End if; 

------------------------------------------------------------------------------------- 

  

  if (lCount >= lDreg) then  

   lQint<='1'; 

     

  Else  

   lQint <='0'; 

  End if;  

------------------------------------------------------------------------------------ 

 if ( lCount >=lDreg or lCount_fed<= lFed ) then 

    lQ1  <= '1'; 

   Else 

    lQ1  <='0'; 

 End if; 

------------------------------------------------------------------------------------ 

 if (  lCount_red >= lRed ) then 

    lQ2  <= '1'; 

   Else 

    lQ2  <='0'; 

 End if; 

------------------------------------------------------------------------------------ 

  

 lQ3  <= lQ1 and lQ2; 

------------------------------------------------------------------------------------ 

 if ( lCount_fed >= lFed) then 

  lQ4  <= '1'; 

 Else 

  lQ4  <='0'; 

 End if; 

------------------------------------------------------------------------------------ 

  

  

 if ( iStart ='1') then  

  lDreg <= iD; 

  lFed  <= iFed; 

  lRed  <= iRed; 

 End if; 

End if;  

------------------------------------------------------------------------------------ 

  

End process ; 

oQ  <= lQint; 

oQ1 <= lQ1; 

oQ2 <= lQ2; 

oQ3 <= lQ3; 

oQ4 <= lQ4; 

oQ_inv  <= not (lQint); 

oQ1_inv <= not (lQ1); 

oQ2_inv <= not (lQ2); 
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oQ3_inv <= not (lQ3); 

oQ4_inv <= not (lQ4); 

 

End Behavioral ; 
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This is a program for speed observer. 

 
-----------------------------------------------------------------------------------------

------------------------------------------------------------------------- 

-- This program has been written in VHDL for hybrid speed observer to estimate the rotor 

positions on continuous basis using the        -- information available through the Hall-

effect sensors.  The program has been developed by Amir Saad at Missouri University of      

-- Science and Technology in Aug. 2011. Copy right (c) For Amir Saad. All rights reserved 

2011.                    --------------------------------------------------

-----------------------------------------------------------------------------------------

-----------------------  

 

Library ieee; 

use ieee.std_logic_1164.all; 

use ieee.std_logic_unsigned.all; 

use ieee.std_logic_arith.all; 

library floatfixlib; 

use floatfixlib.fixed_pkg.all; 

use floatfixlib.float_pkg.all; 

 

ENTITY aes_speed_observer is 

 generic (   n: natural  := 24;-- n&m can be change depending on the precision of 

the angles 

                 m: natural  := 24;-- the fraction part of Wr 

                   r: natural   := 52;-- the precision of Cos phi 

                   s: natural  := 5;-- the integer part of the time 

  x: natural  := 32;-- the integer part of Wr 

  F: natural    := 12; 

  y: natural  := 24;-- the number of the bits in the counter 

  a: real       := 0.898794; 

   b: real  := 0.438371; 

  c: real  := 0.0000000417; 

  d: real  := 1.0472; 

  e: real      := 0.1591549431; 

   z: natural  :=8; 

  q : natural   := 12 ); 

 

 port(  --input signals 

   iStart  : in std_logic; -- pulse at start 

   iHa     : in std_logic; -- Hall effect sensor signal  

   iHb     : in std_logic; -- Hall effect sensor signal  

   iHc     : in std_logic; -- Hall effect sensor signal  

   iClk    : in std_logic;  -- the clock signal 

   iReset  : in std_logic; -- reset signal 

    

   --Output signals 

    

   oDone : out std_logic; 

   oT1 : out std_logic; 

   oT2 : out std_logic; 

   oT3 : out std_logic; 

   oWr : out sfixed(F-1  downto   0); -- pulse done when end 

the operation 

   oSin_th_r : out sfixed(F-1 downto    0); -- 

   oCos_th_r : out sfixed(F-1 downto    0); 

   oFreq : out sfixed(F-1 downto    0) 

   ); 

    

   Constant C_min  : std_logic_vector(y-1 downto 

0):=(others=>'0'); 

   Constant C_max  : std_logic_vector(y-1 downto 

0):=(others=>'1'); 

    

 end aes_speed_observer; 

 

Architecture Behavioral of aes_speed_observer is 

 signal lCount   : std_logic_vector(y-1 downto 0); --  counter output 

 signal lCount_div    : std_logic_vector(7 downto 0); --  counter for 

clock divider 

 signal lSin_th_r_temp   : sfixed (0   downto-11); 
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 signal lCos_th_r_temp   : sfixed (0   downto-11); 

 signal lWr_temp        : sfixed (9   downto -2); 

 signal lFreq_temp       : sfixed (9   downto -2); 

 signal Cos_phi   : sfixed (0   downto -n); 

 signal Sin_phi   : sfixed (0   downto -n); 

 signal lDone   : std_logic; 

 signal T     : sfixed (s  downto -x);--Time between the two 

transitions 

 signal Ts    : sfixed (0  downto -x);--sampling time 

 signal fs    : sfixed (26  downto 0);--sampling frequency 

 signal lT1_temp   : std_logic;-- transition in Ha 

 signal lT2_temp   : std_logic;-- transition in Hb 

 signal lT3_temp   : std_logic;-- transition in Hc 

 signal tCount  : sfixed (y-1 downto  0); 

Begin  

 process 

(iClk,iReset,iStart,lCount,lDone,lSin_th_r_temp,lCos_th_r_temp,lFreq_temp,lT1_temp,lT2_te

mp,lT3_temp) 

  

 variable lFreq  : sfixed (q-1 downto -m); 

 variable lSin_th_r_int  : sfixed (0   downto -n); 

 variable lCos_th_r_int  : sfixed (0   downto -n); 

 variable lSin_th_r_new : sfixed (0   downto -n); 

 variable lCos_th_r_new : sfixed (0   downto -n); 

 variable lSin_th_r  : sfixed (0   downto -n); 

 variable lCos_th_r  : sfixed (0   downto -n); 

 variable lMaxSin  : sfixed (0   downto -n); 

 variable lMinSin  : sfixed (0   downto -n); 

 variable lMaxCos  : sfixed (0   downto -n); 

 variable lMinCos  : sfixed (0   downto -n); 

 variable lT1  : std_logic;   -- variable transition in Ha 

 variable lT2  : std_logic;   -- variable transition in Hb 

 variable lT3  : std_logic;   -- variable transition in Hc 

 variable lWr  : sfixed (10 downto -m);  

 variable lHa_reg    : std_logic;   --  variable register A 

output 

 variable lHb_reg  : std_logic;    --  variable register 

B output 

 variable lHc_reg   : std_logic;   --  variable register C 

output 

 variable lPre_Ha_reg    : std_logic;   --  variable register A pre-

output 

 variable lPre_Hb_reg    : std_logic;   --  variable register B pre-

output 

 variable lPre_Hc_reg  : std_logic;   --  variable register C pre-

output 

 Begin 

-- Initializations , 

   

if (iReset = '0') then   

 

lWr  := to_sfixed(0,lWr'high,lWr'low); 

 lFreq      := to_sfixed(0,lFreq'high,lFreq'low); 

 lCount <= C_min; 

 lHa_reg    :='0'; 

 lHb_reg    :='0'; 

 lHc_reg   :='0'; 

 lDone <='0'; 

 

 -- intitial conditions  

     

 If (lHa_reg='0' and lHb_reg='0' and lHc_reg='1' ) then  

     lSin_th_r_int := to_sfixed(-

0.8660254,lSin_th_r_int'high,lSin_th_r_int'low); 

     lCos_th_r_int := to_sfixed(-0.5,lCos_th_r_int'high,lCos_th_r_int'low); 

 Elsif (lHa_reg='0' and lHb_reg='1' and lHc_reg='0' ) then 

     lSin_th_r_int := 

to_sfixed(0.8660254,lSin_th_r_int'high,lSin_th_r_int'low); 

    lCos_th_r_int := to_sfixed(-0.5,lCos_th_r_int'high,lCos_th_r_int'low); 

 Elsif (lHa_reg='0' and lHb_reg='1' and lHc_reg='1' ) then 

    lSin_th_r_int := to_sfixed(0,lSin_th_r_int'high,lSin_th_r_int'low); 

    lCos_th_r_int := to_sfixed(-1,lCos_th_r_int'high,lCos_th_r_int'low); 
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 Elsif (lHa_reg='1' and lHb_reg='0' and lHc_reg='0' ) then 

    lSin_th_r_int := to_sfixed(0,lSin_th_r_int'high,lSin_th_r_int'low); 

    lCos_th_r_int := to_sfixed(1,lCos_th_r_int'high,lCos_th_r_int'low); 

 Elsif (lHa_reg='1' and lHb_reg='0' and lHc_reg='1' ) then 

    lSin_th_r_int := to_sfixed(-

0.8660254,lSin_th_r_int'high,lSin_th_r_int'low); 

    lCos_th_r_int := to_sfixed(0.5,lCos_th_r_int'high,lCos_th_r_int'low); 

 Elsif (lHa_reg='1' and lHb_reg='1' and lHc_reg='0' ) then 

    lSin_th_r_int := 

to_sfixed(0.8660254,lSin_th_r_int'high,lSin_th_r_int'low); 

   lCos_th_r_int := to_sfixed(0.5,lCos_th_r_int'high,lCos_th_r_int'low); 

Elsif(lHa_reg='1' and lHb_reg='1' and lHc_reg='1' ) then 

    lSin_th_r_int := to_sfixed(0,lSin_th_r_int'high,lSin_th_r_int'low); 

   lCos_th_r_int := to_sfixed(0,lCos_th_r_int'high,lCos_th_r_int'low); 

 End if;     

 

       

     

 if (lHa_reg='0' and lHb_reg='0' and lHc_reg='1' ) then  

  lMaxSin := to_sfixed(-0.5,lMaxSin'high,lMaxSin'low); 

  lMinSin := to_sfixed(-1,lMaxSin'high,lMaxSin'low); 

  lMaxCos := to_sfixed(0,lMaxCos'high,lMaxCos'low); 

  lMinCos := to_sfixed(-0.8660254,lMaxCos'high,lMaxCos'low); 

 Elsif (lHa_reg='0' and lHb_reg='1' and lHc_reg='0' ) then  

  lMaxSin := to_sfixed(1,lMaxSin'high,lMaxSin'low); 

  lMinSin := to_sfixed(0.5,lMaxSin'high,lMaxSin'low); 

  lMaxCos := to_sfixed(0,lMaxCos'high,lMaxCos'low); 

  lMinCos := to_sfixed(-0.8660254,lMaxCos'high,lMaxCos'low); 

 Elsif (lHa_reg='0' and lHb_reg='1' and lHc_reg='1' ) then  

  lMaxSin := to_sfixed(-0.5,lMaxSin'high,lMaxSin'low); 

  lMaxCos := to_sfixed(-0.8660254,lMaxCos'high,lMaxCos'low); 

  lMinCos := to_sfixed(-1,lMaxCos'high,lMaxCos'low); 

 Elsif (lHa_reg='1' and lHb_reg='0' and lHc_reg='0' ) then  

  lMaxSin := to_sfixed(0.5,lMaxSin'high,lMaxSin'low); 

  lMinSin := to_sfixed(-0.5,lMaxSin'high,lMaxSin'low); 

  lMaxCos := to_sfixed(1,lMaxCos'high,lMaxCos'low); 

  lMinCos := to_sfixed(0.8660254,lMaxCos'high,lMaxCos'low); 

Elsif (lHa_reg='1' and lHb_reg='0' and lHc_reg='1' ) then  

  lMaxSin := to_sfixed(-0.5,lMaxSin'high,lMaxSin'low); 

  lMinSin := to_sfixed(-1,lMaxSin'high,lMaxSin'low); 

  lMaxCos := to_sfixed(0.8660254,lMaxCos'high,lMaxCos'low); 

  lMinCos := to_sfixed(0,lMaxCos'high,lMaxCos'low); 

 Elsif (lHa_reg='1' and lHb_reg='1' and lHc_reg='0' ) then  

  lMaxSin := to_sfixed(1,lMaxSin'high,lMaxSin'low); 

  lMinSin := to_sfixed(0.5,lMaxSin'high,lMaxSin'low); 

  lMaxCos := to_sfixed(0.8660254,lMaxCos'high,lMaxCos'low); 

  lMinCos := to_sfixed(0,lMaxCos'high,lMaxCos'low); 

 End if; 

 -- Now we can calculate sine and cosine theata_r in the initial conditions mode 

    

     

 Cos_phi <= to_sfixed(a,Cos_phi'High,Cos_phi'Low);   -- in this case phi 

tken as 26 degrees 

 Sin_phi <= to_sfixed(b,Sin_phi'High,Sin_phi'Low);  -- in this case phi 

tken as 26 degrees 

 Ts <= to_sfixed(c,Ts'High,Ts'Low);   -- Sampling time 

 fs <= to_sfixed(24000000,fs'High,fs'Low);  -- Sampling frequency 

 lSin_th_r :=  

resize((lSin_th_r_int*Cos_phi)+(lCos_th_r_int*Sin_phi),lSin_th_r'High,lSin_th_r'Low); 

 lCos_th_r :=  resize((lCos_th_r_int*Cos_phi)-

(lSin_th_r_int*Sin_phi),lCos_th_r'High,lCos_th_r'Low); 

     

 -- Bounding conditions 

elsif ( rising_edge(iClk)) then 

 Cos_phi  <=   to_sfixed(a,Cos_phi'High,Cos_phi'Low); -- in this case phi 

tken as 26 degrees 

 Sin_phi  <=    to_sfixed(b,Sin_phi'High,Sin_phi'Low); -- in this 

case phi tken as 26 degrees 

 Ts  <=   to_sfixed(c,Ts'High,Ts'Low); -- Sampling time 

 fs  <=   to_sfixed(24000000,fs'High,fs'Low); -- Sampling frequency 

 lHa_reg   :=  iHa; 

 lHb_reg   :=  iHb; 
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 lHc_reg   :=  iHc; 

     

 lT1  := (lPre_Ha_reg xor lHa_reg); 

 lT2  := (lPre_Hb_reg xor lHb_reg); 

 lT3  := (lPre_Hc_reg xor lHc_reg); 

     

 -- Counter to count the time between the transitions 

      

 if (lCount= C_max) then  

  lCount<= C_min; 

  oDone <= '0'; 

 Else  

  lCount<=lCount+1; 

 End if ; 

 ----------------------------------------------------------------------------------

------------- 

 

If  (lT1 ='1' or lT2 ='1' or lT3 ='1') then 

 lCount <= C_min; 

 lDone <='1';  

 tCount <= to_sfixed(lCount,tCount'High,tCount'low); 

 lWr := resize((to_sfixed(1.0472,1,-6)*fs/tCount),lWr'High,lWr'Low);--T is the 

time beteen tow transition = lCount*sampling time(Ts)  

 lCount <= C_min;  

 lFreq  := resize(to_sfixed(e,0,-24)*lWr,lFreq'High,lFreq'Low);-- this is 

temparary value for lFreq 

              

Else  

 lDone  <= '0'; 

End if;   

       

if  (lT1 ='1' and lHb_reg='1') then  

lSin_th_r_int := to_sfixed(1,lSin_th_r_int'high,lSin_th_r_int'low); 

 lCos_th_r_int := to_sfixed(0,lCos_th_r_int'high,lCos_th_r_int'low); 

Elsif  (lT1 ='1' and lHc_reg='1') then  

 lSin_th_r_int := to_sfixed(-1,lSin_th_r_int'high,lSin_th_r_int'low); 

lCos_th_r_int := to_sfixed(0,lCos_th_r_int'high,lCos_th_r_int'low); 

Elsif  (lT2 ='1' and lHa_reg='1') then  

lSin_th_r_int := to_sfixed(0.5,lSin_th_r_int'high,lSin_th_r_int'low); 

 lCos_th_r_int := to_sfixed(0.8660254,lCos_th_r_int'high,lCos_th_r_int'low); 

Elsif  (lT2 ='1' and lHc_reg='1') then  

lSin_th_r_int := to_sfixed(-0.5,lSin_th_r_int'high,lSin_th_r_int'low); 

 lCos_th_r_int := to_sfixed(-0.8660254,lCos_th_r_int'high,lCos_th_r_int'low); 

Elsif  (lT3 ='1' and lHa_reg='1') then  

 lSin_th_r_int := to_sfixed(-0.5,lSin_th_r_int'high,lSin_th_r_int'low); 

 lCos_th_r_int := to_sfixed(0.8660254,lCos_th_r_int'high,lCos_th_r_int'low); 

Elsif  (lT3 ='1' and lHb_reg='1') then  

 lSin_th_r_int := to_sfixed(0.5,lSin_th_r_int'high,lSin_th_r_int'low); 

 lCos_th_r_int := to_sfixed(-0.8660254,lCos_th_r_int'high,lCos_th_r_int'low); 

End if;       

        

 

     

     

if      (lHa_reg='0' and lHb_reg='0' and lHc_reg='1' ) then  

 lMaxSin := to_sfixed(-0.5,lMaxSin'high,lMaxSin'low); 

 lMinSin := to_sfixed(-1,lMaxSin'high,lMaxSin'low); 

 lMaxCos := to_sfixed(0,lMaxCos'high,lMaxCos'low); 

 lMinCos := to_sfixed(-0.8660254,lMaxCos'high,lMaxCos'low); 

Elsif  (lHa_reg='0' and lHb_reg='1' and lHc_reg='0' ) then  

 lMaxSin := to_sfixed(1,lMaxSin'high,lMaxSin'low); 

 lMinSin := to_sfixed(0.5,lMaxSin'high,lMaxSin'low); 

 lMaxCos := to_sfixed(0,lMaxCos'high,lMaxCos'low); 

 lMinCos := to_sfixed(-0.8660254,lMaxCos'high,lMaxCos'low); 

Elsif  (lHa_reg='0' and lHb_reg='1' and lHc_reg='1' ) then  

 lMaxSin := to_sfixed(-0.5,lMaxSin'high,lMaxSin'low); 

 lMaxCos := to_sfixed(-0.8660254,lMaxCos'high,lMaxCos'low); 

 lMinCos := to_sfixed(-1,lMaxCos'high,lMaxCos'low); 

Elsif  (lHa_reg='1' and lHb_reg='0' and lHc_reg='0' ) then  

 lMaxSin := to_sfixed(0.5,lMaxSin'high,lMaxSin'low); 

 lMinSin := to_sfixed(-0.5,lMaxSin'high,lMaxSin'low); 

 lMaxCos := to_sfixed(1,lMaxCos'high,lMaxCos'low); 
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 lMinCos := to_sfixed(0.8660254,lMaxCos'high,lMaxCos'low); 

Elsif  (lHa_reg='1' and lHb_reg='0' and lHc_reg='1' ) then  

 lMaxSin := to_sfixed(-0.5,lMaxSin'high,lMaxSin'low); 

 lMinSin := to_sfixed(-1,lMaxSin'high,lMaxSin'low); 

 lMaxCos := to_sfixed(0.8660254,lMaxCos'high,lMaxCos'low); 

 lMinCos := to_sfixed(0,lMaxCos'high,lMaxCos'low); 

Elsif  (lHa_reg='1' and lHb_reg='1' and lHc_reg='0' ) then  

lMaxSin := to_sfixed(1,lMaxSin'high,lMaxSin'low); 

lMinSin := to_sfixed(0.5,lMaxSin'high,lMaxSin'low); 

 lMaxCos := to_sfixed(0.8660254,lMaxCos'high,lMaxCos'low); 

 lMinCos := to_sfixed(0,lMaxCos'high,lMaxCos'low); 

End if; 

     

     

lCos_th_r_new := resize(lCos_th_r_int - 

(lWr*lSin_th_r_int)*Ts,lCos_th_r'High,lCos_th_r'Low); --intigration 

lSin_th_r_new := resize(lSin_th_r_int + 

(lWr*lCos_th_r_int)*Ts,lSin_th_r'High,lSin_th_r'Low);  --intigration 

    

lT1_temp <= lT1; 

lT2_temp <= lT2; 

lT3_temp <= lT3; 

 

-- integral limitations 

if         (lSin_th_r_new >= lMaxSin) then 

  lSin_th_r_new := lMaxSin; 

Elsif    (lSin_th_r_new <= lMinSin) then  

  lSin_th_r_new := lMinSin; 

End if; 

     

If       (lCos_th_r_new >= lMaxCos) then 

 lCos_th_r_new := lMaxCos; 

Elsif  (lCos_th_r_new <= lMinCos) then  

  lCos_th_r_new := lMinCos; 

End if; 

      

-- calculating the sine theata_r and cosine theata_r for the starting mode 

lSin_th_r  :=  

resize((lSin_th_r_new*Cos_phi)+(lCos_th_r_new*Sin_phi),lSin_th_r'High,lSin_th_r'Low); 

lCos_th_r  := resize((lCos_th_r_new*Cos_phi)-

(lSin_th_r_new*Sin_phi),lCos_th_r'High,lCos_th_r'Low);  

 lSin_th_r_int := lSin_th_r_new; 

lCos_th_r_int := lCos_th_r_new;  

 lPre_Ha_reg := lHa_reg; 

 lPre_Hb_reg := lHb_reg; 

 lPre_Hc_reg := lHc_reg; 

     

-- Because Quartus II don't recognize the fraction part we need to change them to real 

part 

lFreq_temp  <= resize(lFreq  ,lFreq_temp'high,lFreq_temp'low); 

lWr_temp     <= resize(lWr      ,lWr_temp'high  ,lWr_temp'low  ); 

lFreq_temp  <= resize(lFreq  ,lFreq_temp'high,lFreq_temp'low);  

lSin_th_r_temp  <= 

resize(lSin_th_r,lSin_th_r_temp'high,lSin_th_r_temp'low); 

lCos_th_r_temp  <= 

resize(lCos_th_r,lCos_th_r_temp'high,lCos_th_r_temp'low); 

 

End if; 

oDone <= lDone;  

End process ; 

 

oSin_th_r  <= lSin_th_r_temp; 

oCos_th_r  <= lCos_th_r_temp; 

oWr  <= lWr_temp; 

oFreq  <=  lFreq_temp; 

oT1  <=  lT1_temp; 

oT2  <=  lT2_temp; 

oT3  <=  lT3_temp; 

  

End Behavioral; 
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