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ABSTRACT 

 

Most solar arrays used today are connected in series and have tremendous power 

losses in partially shaded conditions.  This document explores photovoltaic arrays in a 

parallel connection to reduce the power losses in other solar cell connected applications.  

The two main issues with any photovoltaic arrays are solar modules being shaded and the 

efficiency of the power converters used within the solar array.  This thesis concentrates 

on alleviating these problems with the development of a two phase dc to dc forward 

converter with a snubber circuit as well as connecting a solar array in parallel to increase 

the performance in partially shaded conditions.  This work illustrates a fully functional 

forward converter that boost the input voltage within a solar array.  The experiments 

include efficiency tests at certain voltage within the specifications as well as outdoor 

solar testing in sunny and partially shaded conditions.  These tests illustrate that in a 

parallel connected array, the shaded solar module does not have a dominating effect on 

the overall output power of the combination, but rather the converter’s efficiency is the 

main factor of the performance of the array.   
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NOMENCLATURE 

 

Symbol  Description  

eK                                Electrical coefficient  

gK                               Core geometry  

J                                  Current Density  

ε                                  Skin Depth 

wA                               Bare wire area   

PN                               Primary Number of turns   

PI                                 Primary RMS Current  

wpA                              Primary bare wire Area  

P NS                             Primary Strands used 

pR                               Resistance in primary wire    

PP                                 Copper loss in primary  

SN                                Number of secondary turns  

sI                                  Secondary RMS current  

wsA                              Secondary bare wire area  

sNS                              Secondary Strands used 

sR                                Secondary wire resistance   

SP                                 Copper loss in secondary 

cuP                                Copper loss in primary and secondary  

α                                  Transformer Regulation 

TN    Number of tertiary turns   

TL                                Inductance in tertiary winding   

TI                                 Tertiary winding current  

TrmsI                            Tertiary winding RMS current  



xii 

wA                               Wire area of tertiary winding  

uK                                Window utilization    

feP                                Transformer core loss  

ΣP                                 Total transformer DC loss  

ψ                                  Watts per unit area  

rT                               Calculate Temperature Rise 

PV    Photovoltaic  

D   Duty Ratio 

InV    Input Voltage 

OutV    Output Voltage 

SMaxV    Maximum Switching Voltage 

n   Number of phases 

OutI    Output Current 

InI    Input Current 

LV    Output Inductor Voltage 

CI    Output Capacitor Current 

I    Change in Output Current 

V    Change in Output Voltage 

IPOS   Input Parallel Output Series 

eA    Cross-sectional Area of the Transformer   
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1. INTRODUCTION 

 

1.1 MOTIVATION 

As fossil fuels constantly decrease due to extraction and overuse alternative 

energy sources such as solar power are becoming more important [1, 2].  At the end of 

the year 2000 the total installed capacity of photovoltaic (PV) systems worldwide was 

approximately 1200 MWp and increased to 6500 MWp six years later, which is an 

average annual growth rate of more than 35% [3].  Solar energy is also predicted to have 

a massive impact on supplying electrical power and providing the most electrical power 

of all other renewable energy sources by 2040 due to its limitless energy source [4].   

Although this prediction may be true one of the main hindrances of PV arrays is 

operation during partial shaded conditions [5].  In a series connected array configuration, 

a single cell that is partially shaded will cause a decrease in power among the entire array 

[6] leading to fully functional solar panels operating at a fraction of their optimal 

capability, and reducing the solar-electric conversion efficiency throughout the solar 

array.  To counteract this issue, this thesis presents a parallel-connected array topology,  

where the power loss affects only the shaded module rather than the entire array [6].  This 

is one alternative to increase the efficiency of the overall photovoltaic system. 

Another important element in obtaining an efficient solar array is developing an 

effective power converter to boost each solar panel’s voltage.  In most grid solar 

applications, a simple boost converter is unable to perform at high efficiency due to large 

current ripples in the power devices causing an increase in the device’s conduction losses 

[7].  Also, the voltage stress of the switches and diodes in the boost converter are equal to 
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the output voltage, thus multiplying component cost in the circuit [7].  Therefore, this 

document investigates a new type of forward converter topology that was designed and 

developed by harmonizing different types of strategies for increasing forward converter 

efficiency.  The work presented in this thesis provides a better process of creating a 

higher efficiency photovoltaic array and power converter.  

 

1.2 SOLAR ARRAY OVERVIEW 

  Many applications for solar arrays have been and are being developed to tackle 

the energy issues in today’s society.  A large portion of solar array research deals with the 

use of solar energy for grid type of applications.  In some instances, grid application 

algorithms for maximum power point tracking (MPPT) like the work done in [8] are used 

to facilitate optimal solar array operation.  In others, the goal is to develop a smart grid 

system which enables a customer to manage energy consumption, use plug-and-generate 

and plug-and-store energy devices are areas that systems like the Future Renewable 

Electric Energy Delivery and Management (FREEDM) cover [9].  The FREEDM system 

uses a 400 V DC bus that allows for an alternative interface for PV converters providing 

advantageous results such as the PV converter controller does not need a current 

regulator nor a phase lock loop and the converter can be encompassed of a single power 

stage [9].   

Other types of PV systems are developed as stand-alone system which usually 

consist of a PV module, a system controller, a high step up converter, an active sun 

tracker, an inverter, and an output load [10].   In most cases a stand-alone PV system will 

have a battery pack for energy storage [3, 11] to allow a system to be operational during 
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times of little or no sunlight.  In applications with battery storage the power converter’s 

main focus is to charge the battery(s) but can also be used for MPPT [11].  The plethora 

of solar panel functions demonstrates the importance in on or off the grid applications.  

This allows the ideas researched in both applications to be interchanged to create an 

efficient PV system.    

The two elements of a PV energy system that can cause the most efficiency 

problems are the step up converter and inverter.  A step up converter is needed in a PV 

system because the voltage of a photovoltaic module is relatively low and performance of 

a module can deteriorate easily when the module is inactive [10].  Similar to the step-up 

converter the inverter must be at a high efficiency to allow maximum power gain for the 

PV system.  In most instances, inverters can be purchase with a 95% efficiency rating and 

some companies even promote transformer-less inverters at 98% efficiency [3].  Since 

transformers cause approximately 3%-5% power loss alone in addition to a weight and 

cost increase in an inverter [3], special attention must be given to the power converter to 

ensure an efficient PV array.  

The most common connection for photovoltaic arrays is in a series connection 

also know as a string which can be seen in Figure 1.1 [2]. 
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Figure 1 Figure 1.1 Photovoltaic modules in series strings [6] 

 

 

The strings are used because of the ability to obtain high voltages but the greatest 

drawback of the string is partial shading issues [2, 6].  This shading is especially seen in 

urban areas [7], which would otherwise be excellent places to install solar arrays.  

Another type of connection for the solar modules is to connect the panels in parallel and 

series, seen in Figure 1.2, obtaining a high-power and high-voltage capacity [2]. 
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Figure 2  Figure 1.2 Photovoltaic arrays in parallel and series [6] 

 

 

The downside to this type of connection is low efficiency of PV mutual influences 

and extra diodes in each string, partial shading issues, and high DC voltage cables [2].  

The final type of connection is connecting the modules in parallel which can be found in 

Figure 1.3. 
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Figure 3 Figure 1.3 Photovoltaic arrays in parallel [6] 

 

 

This configuration is the best for shaded conditions among the three described 

because each module is treated as its own unit and shading one particular unit will not 

propagate throughout the entire PV system [6].  However, the use of a highly-complex 

inverter on each panel can lead to high cost and low efficiency. 

  

1.3 FORWARD CONVERTER 

New power converter topologies for solar cell applications are created to enhance 

the efficiency of the solar arrays such as the work done in [1].  Even converters as simple 
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as a boost converter can be applied to solar cell arrays similar to the experiment in [12].  

In particular, the forward converter is a well-known and useful topology that can 

successfully be employed in medium to low power converters.  The forward converter is 

most similar to a buck converter and traditionally has a transformer to step-down the 

voltage in a circuit.  It is an ideal converter for use for multiple outputs for applications 

such as a personal computer [13].  Depending on the transformer ratios, the forward 

converter can also boost the voltage of a circuit while maintaining the simple and 

relatively uncomplicated design.  These qualities of the converter allow vast usage in 

different power boosting or bucking scenarios [14].  Figure 1.4 below illustrates a 

practical forward converter topology with turn ratios. 

 

 

Figure 4 Figure 1.4 Practical forward converter [15] 

 

 

Assuming ideal conditions, in the first mode of the converter the switch S is 

turned on and the primary winding is connected to the input voltage; allowing the 
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simultaneous conducting of the primary and secondary winding.  The current path of the 

first mode provides the diode 1D  on the secondary side with forward bias charging the 

inductor L.  The load voltage is the input voltage multiplied by the transformer ratio.  In 

the second mode of the converter the switch S is turned off causing 1D  to turn off as well.  

When the switch is turned off, a sudden demagnetization of the transformer core would 

occur and cause an infinitely large voltage leading to a devastating outcome.  Therefore, 

the converter is created with a three winding transformer, with the primary and secondary 

windings acting as a normal transformer.  The tertiary winding along with the diode 3D  

are used to recover the magnetization energy creating a current path and clamping any 

destructive voltages from the transformer.  This requires 3D
 
to turn on at the same instant 

the switch S turns off.  Also, the magnetic coupling between the primary and tertiary 

winding must be excellent to guarantee the transfer of flux linking from the primary to 

the tertiary winding.  The inductor L and output capacitor C in the second mode are 

discharging the energy stored from the first mode and the diode 2D  is conducting 

permitting a continuous and consistent voltage flow to the load during the second mode 

[15].  

Forward converters are used in various types of applications with their main 

challenge dealing with techniques to reset the transformer(s) within the circuit [16].  

There are an abundance of methods to reset the transformers which include: an inductor 

and capacitor (LC) snubber, a tertiary winding on the transformer, an active clamp reset, 

using two switches and many more [17, 18].  Each type of reset topology can have a 

different and dominating effect on the forward converter.  A correctly computed LC 

snubber in the converter leads to a higher efficiency for the circuit [18] while using a two 
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switch converter allows for the least amount of  voltage stress on the switches in any 

forward converter topology [18, 19]. 

Another disadvantage of the forward converter is it can only be used for certain 

applications because of its power rating.  To overcome this limitation two or more 

forward converters can be connected in parallel to reduce the current stress and power 

loss in each phase of the converter [20].  Using this method with an active clamp on the 

switches that can absorb stored energy in the leakage inductance of the transformer and 

limit the voltage stress on the switch generates an efficiency of 87.2% in [20].  Similar to 

the ideas discussed in [20], using three switches instead of two produce a simple forward 

converter where the active clamp can be substituted for a clamp diode [21].  This method 

achieves great efficiency, approximately 93%, and is not limited by the 50% duty ratio of 

a two switch forward converter [21].  The main issues with this topology are the 

difficulty in controlling three switches and the complexity in each mode of the power 

stage.     

By using an LC non-dissipative current snubber, two phases (with two 

transformers), and an input parallel output series topology; this paper presents a 

combination of methods to increase the efficiency of a forward converter that are 

combined to obtain a low power loss converter.  Along with an increased efficiency the 

converter still obtains a relatively simple and practical design. 

 

1.4 VOLTAGE MODE CONTROL 

To obtain a closed loop converter that can compensate for minor disruptions on 

the photovoltaic array a control circuit must be implemented.  The two most common 
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forms of control are current and voltage mode control which can best be illustrated in 

block diagrams.  Voltage mode is the simpler of the two types of control and is most 

commonly used in buck converters.  Figure 1.5 illustrates the controller of a buck 

converter. 

 

 

Figure 5 Figure 1.5 Control block diagram for buck converter [22] 

 

 

In Figure 1.5, refV  is the reference value to which the output voltage is compared 

and the resulting error signal is processed to provide a duty ratio command. K is the gain 

in the system with the transfer function given as [22] 

 In
out ref

In

KV
V V

1+ KV

 
  
 

 (1) 

From these basic principles of voltage mode control in buck converters there is a vast 

amount of research to improve this control method.  One of the issues is intermittency, 

which is a phenomenon that causes the system to bifurcate from initial regular operation 

to a destructive higher sub-harmonic operation, and then proceeding back to the original 

operation in the same bifurcation route in reverse [23].  Voltage mode control may also 

be used in z-source converters and the work done in [24] demonstrates voltage mode 

control achieving better performance than current mode programmed control [24].  From 
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the information given, the close knit relationship of the buck and forward converter 

would promote the use of a simple voltage mode circuit to control a forward converter to 

obtain a closed-loop system.  However, the work described in this thesis did not require 

tight voltage regulation, so the converters all operated in open-loop mode. 

  

1.5 STRUCTURE OF THESIS   

This thesis begins with Section 2, the design, development, and computation of 

the forward converter used in the experiment.  Next Section 3 reviews the simulated 

results of the forward converter and is followed by Section 4, which is the conclusion that 

summarizes the results in the experiment and provides extensions for the project.  After 

Section 4, Appendix A is the screenshots of the schematic and board layouts of the 

forward converter.  Appendix B are the tables of the solar data collected in the 

experiment for review or reference.     
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2. FORWARD CONVERTER DESIGN  

 

To enable the solar array to have high efficiency, a reliable yet simple converter 

needed to be developed.  The solar panels used for this experiment had a power rating of 

205 W.  Therefore, a forward converter was selected due to its high performance around 

200 W.  This project encompassed boosting a 24 V solar panel to 240 V that can be used 

on the grid.  The specifications for the forward converter can be found below in Table 2.1 

 

 

Table 1 Table 2.1 Forward converter specifications (nominal) 

 

 

To begin the design for the forward converter equations for the buck converter 

were computed to obtain unknown variables.  First, to determine the output inductance 

and capacitance of the converter the general inductor and capacitor equations 

 
L

di
V = L

dt
  (2) 

and  

Input Voltage  24 V 

Output Voltage  240 V 

Output  Current  0.423 A 

Diode Voltage drop  1 V 

Efficiency Target 99% 

Max Duty Cycle 50% 

Frequency  100 kHz 

Peak Flux Density  0.1 T 

Number of Phases 2 

Output Power  101.475 W 

Input Power  102.5 W 

Current Ripple 10% 

Voltage Ripple 1% 
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C

dv
I = C

dt
  (3) 

 were manipulated to obtain 

 

In out
S

P

N
V - V D

N n
L =

f ΔI

 
  

    (4) 

 
I

C =
8 f

 
V



 
 (5) 

To determine I  for  (5), equation (4) was solved for I  and substituted in (5) to obtain 

 

In ou
S

P

t

N
V - V D

N n
I =

f L

 
  

    (6) 

Equations (4) through (6) are similar to the inductor and capacitor equations of a buck 

converter with the addition of the transformer ratio S

P

N

N
.  The current ripple for equation 

(4) and the voltage ripple for equation (5) were selected to be 10% as listed in Table 2.1.   

To obtain the output and input currents of the circuit, the basic power equation 

was solved for the current to obtain 

 Out
Out

Out

P
I =

V
 (7) 

The input current was computed by plugging the result of (7) into  

 Out S
In

P

I N
I =

1- D N

 
 

 
 (8) 

which is derived from the property of a buck converter with the addition of the 

transformer ratio.  A more in depth discussion on component choices can be found in 

Section 2.2.      
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Next simple equations were used to obtain values from the specifications given.  

Analogous to the inductance and capacitance equations, the forward converter equations 

were similar to a buck converter and can be observed in [25].  Understanding these 

concepts, the equations for the forward converter were computed.  First the relationship 

of the output voltage and duty cycle was derived as 

 Out S

In P

V N
D

V N

 
  
 

 (9) 

 to determined the number of turns on the secondary winding.  The buck converter has 

the same voltage and duty cycle relationship as (9) without the turns ratio.  Next, the 

maximum duty cycle was selected at 50% which is shown above in Table 2.0.  The actual 

duty cycle was calculated from equation (9) by solving for D and by dividing the result 

by two which was the number of phases used in the converter.  This result yielded a 40% 

duty cycle, which was less than the maximum duty cycle and allowed some leeway when 

the MOSFET is “off” to not exceed a 100% duty ratio.  To validate that the converter is 

in continuous conduction mode (CCM), 

 T

P

ND 1 1
N

 
   
 
 

 (10) 

was used to establish boundaries for the values of the duty ratio, primary, and secondary 

number of turns.  Also, 

 
p

p T

N
1

N N



 (11) 

was verified to ensure continuous conduction mode within the forward converter.  Next, 

the voltage stress on the switch must be calculated from 
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P

SMax In

T

N
1V V

N

 
   
 

 (12) 

to compute the maximum voltage the MOSFET must handle during switching.  To make 

certain the SMaxV  value was low for this project, the primary and tertiary windings were 

set equal obtaining a In2 V relationship for the maximum voltage stress.  As alluded to in 

Section 1.3, the use of two switches allows for the maximum stress voltage to equal InV .  

This is helpful because the switches used will probably be cheaper than a switch that can 

handle a higher amount of voltage [26].  The drawback of a two switch converter is that 

the duty cycle cannot exceed 50%.  The inability to exceed a 50% duty ratio can lead to 

the transformer’s failure to properly re-set as well as during wide input variations the 

duty ratio becomes small causing an increase in current on the primary side resulting in 

amplified conduction and switching losses [26].  Satisfying equations (9) through (12) 

yielded the parameters given in Table 2.2. 

 

Table 2 Table 2.2 Forward converter calculated parameters 

 

 

2.1 NEW FORWARD CONVERTER TOPOLOGY 

Similar to the work done in [27], the new forward converter topology that was 

created is an input parallel and output series (IPOS).  The converter is equipped with two 

PN  2 turns 

SN  25 turns 

TN  2 turns 

SMaxV  48 V 

Equation (11) Satisfied .8 < 1  

Equation (12) Satisfied .5 < 1  
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phases to decrease the input current by splitting the current across two transformers. The 

developed forward converter topology can be observed in Figure 2.1. 

 

 

Figure 6 Figure 2.1 Developed forward converter topology 

 

 

The circuit in Figure 2.1 performs similarly to the single phase forward converter 

explained in Section 1.3 with a couple of additions.  On the primary side of the 

converter’s transformers the MOSFETs, Q1 and Q2, switching is complementary with 

Q2 having a phase shift of 50%.  This enables one phase to be “on” at a time delivering 
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half of the desired output voltage, in this case 120 V to the load. Both phases are 

combined on the output to yield 240 V.  The series properties of the output of the circuit 

cause the inductors L1 and L2 to naturally share and interleaving decreases the current 

ripple.   

To increase the efficiency of the converter by counteracting the leakage 

inductance of the transformers a snubber was added to Figure 2.1 across the MOSFETs 

and can be observed in Figure 2.2. 

 

Figure 7 Figure 2.2 Snubber circuit 

 

 

The snubber is activated when Q1/Q2 turns “off” the energy from the switch 

should be stored into the inductor of the snubber for half of the switching cycle.  When 

the MOSFET turns “on”, the energy stored should be released into the MOSFET; thus, 
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allowing the energy from the leakage inductance from the primary to be recycled into the 

converter.   

 

2.2 SELECTED COMPONENTS FOR FORWARD CONVERTER  

To select the components for the forward converter calculations from the 

equations in Section 2 in combination with the simulated results found in Section 3 of 

this document were analyzed.  First the output inductors for the converter were selected 

by computation of equation (4) to gain the value of 11.23μH .  This denotes that the 

output inductor’s calculated value must be greater than or equal to 11.23μH  to remain in 

continuous conduction mode.  Next, values greater than the calculated inductor value 

were placed into the simulation for inductors L1 and L2 maintaining equivalence between 

both inductors.  As the inductor’s value increased, the output voltage became more stable 

and the output current ripple decreased; on the other hand, if the value was too high, the 

simulated response would become very sluggish and the output voltage of 240 V would 

not be achieved.  From this test, it was concluded that roughly 500μH  would permit a 

stable performance, thus the 470μH  Axial Lead Power Chokes-PCH-27 by Coil Craft 

was selected for both inductors on the secondary side of the forward converter.  This 

inductor has a relatively low direct current resistance (DCR) at 1.04 ohms and a 

saturation current of 0.573 A which is greater than the calculated output current of 0.423 

A (found in Table 2.1). 

The next component computed was the value of the output capacitor from 

equations (5) and (6).  From these equations the output capacitor value equaled 1.11ρF ; 

parallel to the output inductor the actual capacitor value selected must be greater than or 
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equal to the calculated output capacitor value to keep the converter in CCM.  The 

capacitor selected was the Nichion VZ Series, an aluminum electrolytic 10μF  capacitor 

that could withstand 315 V with a 0.0212 ohm equivalent series resistance (ESR).  This 

capacitor was used because the voltage rating was greater than 240 V and a low ESR 

decreasing the conduction losses in the circuit.  The input capacitor in the forward 

converter mimicked the output capacitor and performs as a filter to clear any unwanted 

noise on the input voltage. 

The diodes on the primary side of the forward converter were selected to be the 

COMCHIP SB560E-G, 5 A, 60 V diode.  Although the calculated input current is 

approximately 8.89 A the original solar panels for the experiment were set of KYOCERA 

205 W panel, can only achieve a maximum current of 7.71 A for 21000 W / m in ideal test 

conditions.  At 2600 W / m , the most probable operation range of the solar panel, the 

maximum current is about 4.8 A at 25°C .  Also since the forward converter has two 

phases each phase should only endure half of the input current which the simulation does 

not measure the input current after it is divided by two.  The actual set of panels used in 

the outdoor experiment were the SunWize SW-S85P Solar Module panels rated at 85 W, 

16.7 V, and 5.1 A with a maximum system voltage of 600 Vdc.   The diodes will be able 

to operate at this range with no issues, and the diode can withstand a peak forward surge 

of 125 A in case the solar panel has a large current spike.  The diodes D6, D4, and D5 on 

the secondary side of the converter were the MUR840 provided by ON Semiconductor 

with specifications of 8 A and 400 V.  These diodes were selected because their voltage 

and current ratings are greater than 240 V and 0.423 A respectively.  The diode D3 on the 

secondary side of the transformers was selected a C3D10060A–Silicon Carbide Schottky 
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Diode with ratings of 600 V and 10 A.  The MUR840 ultrafast diode is incapable of 

switching fast enough to stop the negative voltage flow from the output causing a large 

negative voltage spike across D3 and a swift decrease in switching voltage in the 

MOSFET, which inevitably causes the destruction of the D3 diode.  The C3D10060A 

Schottky Diode can switch much faster yielding a negative voltage spike and allows the 

converter to perform properly with an added bonus of zero switching losses.       

The MOSFETs in the forward converter were selected as the International 

Rectifier IRLB4030PbF, with 100 V, and 180 A maximum voltage and current 

respectively.  This MOSFET is able to endure the maximum input current and voltage of 

the converter.  It also has an 
DS(on)R  of 3.4mΩ , which keeps the conduction losses to a 

minimum.  To protect the MOSFETs by providing a current path while the 

IRLB4030PbF is switching and clamping the voltage at approximately 56 V, the 

1N4758A, 56 V zener diode was selected with the anode and cathode of the zener 

connected to the source and drain of the MOSFETs respectively.  The diode can also 

withstand a maximum surge current of 80 A for 8.3 ms.   

The gate-to-source voltage rating of the IRLB4030PbF is ±16 V, which is why the 

MIC4424 gate driver by MICREL was chosen.  The MIC4424 has a wide operating range 

of +4.5 to +18 volts, allowing it to drive the IRLB4030PbF easily.  Also the gate driver 

has a peak current of 3 A which will allow the MOSFET to switch at its optimal 

capability. 

 The snubber components were selected using a trial and error method within the 

simulation.  The snubber was constructed many different ways in the simulation and 

finally similar to Figure 2.2 with the snubber inductor and capacitor initially set to  
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500μH  and 10μF , respectively.  From the trial and error process the inductor selected 

for the snubber was the 1.0μH   Power Choke, vertical mount Coilcraft PCV-0-102-25L 

inductor which is rated for an rms current of 21.8 A.  The snubber capacitor was the 

ECWF61136L 0.011μF  Panasonic metalized polypropylene film capacitor.  This 

capacitor can handle a maximum of 630 V with a dissipation factor of less than 0.20% at 

10 kHz. 

              

2.3 TRANSFORMER DESIGN 

To construct the transformers, the core geometry or 
gK  approach obtained was 

used to determine the proper specifications.  The design of the forward converter 

transformer commenced with the assumption that the primary and tertiary number of 

windings were equal and [28] 

ac

dc

R
= 1

R
 

This is important when building the tertiary winding of the transformer because the 

equations in this design are validated from this understanding.   

First, the wire size was calculated for the transformer design, this included the 

skin depth and diameter of the wire which can be determined in 

  
6.62

ε =  
f

cm  (13) 

and 

   wireD = 2 ε cm
,
 (14) 

respectively.  With equations (13) and (14), the bare wire area is  
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2

2Wire
w

π D
A = [cm ]

4


 (15) 

where 
wireD  is the result of  (14).  From (15) the American Wire Gauge (AWG) can now 

be selected and the wire gauge selected is greater than the result of (15), which is a 

common rule of thumb.   

Next the electrical coefficient was calculated 

 2 2 -4

eK = .145 f ΔB 10   (16) 

where, f is the switching frequency and ΔB is the operating flux density (both can be 

found above in Table 2.0).  The result of (16) allows the transformer core geometry (
gK ) 

to be selected with the equation 

 in max
g

e

5(P D )
K =  

α K
[cm ]




 (17) 

Once the 
gK is found from (17) a transformer core was selected from the 

gK
 
calculation.  

As with the wire size selection, the core with a value closest to and greater than the 

calculated 
gK  was chosen.   

The next set of equations deals with the primary windings of the transformers.  

The first step was to find the number of turns on the primary winding using  

  
4

in[min]  max 

P

c

(V D 10 )
N = tur

A
ns 

f ΔB

 


 (18) 

followed by the current density,  

 
 4

in max  2

c a u

2 P D 10
J =  [amps per cm ]

f ΔB A W K

 

 



 
 (19) 
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Then the calculation of the primary RMS current was found using the expected input 

power, minimum input voltage, and the maximum duty ratio in  

 

 

in
P

maxin min

P
I =  [amps] 

V D  
 (20) 

Equation (20) should be divided by the number of phases in the converter to achieve a 

more accurate value of the current entering the primary transformer winding; in this case 

it was divided by two.  The values determined in (19) and (20) enabled the primary bare 

wire area to be computed by 

 2P
wp

I
A = [cm ] 

J
 (21) 

Using (21), the calculation of the number of strands for the primary winding can 

be obtained by   

 
wp

P 

w

A
NS =

A  of #AWG  used
 (22) 

Equation (22) allows for the proper amount of strands of AWG to be selected for the 

primary winding.  When the number of wire strands for the primary winding exceeds 

four, the transformer becomes physically impossible to construct.  To alleviate this issue, 

flat wire was used in place of the traditional AWG wire and the conversion factor for the 

flat wire to AWG is 

 
w

.067741

A  of # AWG used
 (23) 

After obtaining the correct value for the wire strands, the new micro-ohm per centimeter 

must be calculated using 
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P

μΩ

μΩ cmnew =
cm NS

 (24) 

Equation (24) enables the resistance and thus the primary copper loss for the winding to 

be calculated with  

 -6

p P

μΩ
R = MLT N  10 [ ] 

cm

 
   

 
  (25) 

and 

 2

P P PP = I R  [W]
,
 (26) 

respectively.   

The calculations for the secondary winding must be determined and were similar 

to the procedure in the primary winding calculations.  To begin these calculations, the 

secondary number of turns and current were determined with  

 
 

P out d

max in min

S

N V V α
N = 1+ [turns] 

D V 100

   
       

 


 (27) 

and 

 out
s

I
I = [A] 

2
 (28) 

Next the bare wire area and the amount of wire strands for the secondary wire were 

calculated by, 

 2s
ws

I
A = [cm ] 

J
 (29) 

and 

 ws
s

w of # AWG used

A
NS =  

A
 (30) 
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The new micro-ohm per centimeter is computed next by 

  
S

μΩ

μΩ cmnew =
cm NS

 (31) 

This allows the resistance and the copper loss to be calculated by 

 -6

s S

μΩ
R = MLT N 10  [Ω] 

cm

 
  

 
  (32) 

and 

 2

S S SP = I R [W]  (33) 

Equations (26) and (33) are added together to produce 

 
cu p sP = P + P  [W]  (34) 

which was the total primary and secondary copper loss of the transformer and from (34) 

the regulation of the transformer can be calculated as 

 cu

out

P
α = 100[%] 

P
  (35) 

The final set of equations deal with the tertiary winding of the transformer and 

deriving the estimated losses in the transformer.  First the inductance in the tertiary 

winding is calculated in the transformer (keeping in mind that the first and third windings 

are equivalent) using 

 2 -6

T 1000 TL = L N 10  [mH]    (36) 

Next, the time during which the magnetizing current increases was calculated by  

 
max

1
Δt = D  [s]

f
  (37) 

along with the tertiary winding current using 
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 in
T

T

V Δt
I =  [A] 

L


 (38) 

The tertiary RMS wire current is calculated along with the wire area and are viewed, 

respectively, as  

 max
Trms T

D
I = ΔI  [A] 

3
  (39) 

and 

 2Trms
w

I
A =  [cm ]

J
 (40) 

Next, each winding’s number of turns was multiplied by the number of strands and the 

sum of the result of each was taken.  This can be observed via   

 
p P S s T TN = N NS + N NS + N NS    (41) 

which produced the window utilization factor  

 w
u

a 

N A  of #AWG used
K =

W


 (42) 

To obtain the core loss in the transformer first the 
mW

g
 was found using  

 1.51 2.747

ac

mW
= .000318 (f ) (B )

g
   (43) 

and then the power of the core was computed by 

    -3

fe tfe

mW
P = W 10 [W]

g

 
  

 
 (44) 

 The results of equations (34) and (44) allow the total losses of the transformer with 

 Σ cu feP = P + P  [W]  (45) 
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Finally, the watts per unit area and the temperature rise in the transformer were calculated 

by 

 Σ

2

t

P Watts
ψ =   [ ]

A cm
 (46) 

and 

  
.826

rT = 450 ψ [ ]  ℃
,
 (47) 

respectively.  The calculation results of equations (13) through (47) are compiled below 

in Table 2.3 to Table 2.7.  To obtain a simple calculation method each equation was 

inputted into Microsoft Excel.  As the numbers of Table 2.1 and Table 2.3 were entered 

in the excel workbook each equation would update to obtain the correct result.  This 

allowed any minor mistakes to be quickly identified and corrected.  

 

 

Table 3 Table 2.3 Transformer specifications 

 

 

Table 4 Table 2.4 Wire calculations 

OutPut Power 101.475 W 

Input Power 102.500 W 

Electrical Coefficient (calculated) 1450  

Core Geometry (calculated) 0.071 5cm  

Current Density 164.71797 2amps per cm  

Skin depth 0.021 cm   

Wire Diameter 0.042 cm 

Aw 0.001 2cm  

Aw (actual) 0.001 2cm  (AWG #26) 

Cu Resistance  1339 μΩ / cm  
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Table 5 Table 2.5 Primary winding calculations 

 

Table 6 Table 2.6 Secondary winding calculations 

 

Table 7 Table 2.7 Tertiary calculations & losses 

Primary Turns 9.585  

Primary Turns (actual) 2  

Primary RMS Current 3.020 A 

Bare Wire Primary 0.018 2cm  

Primary Stands 14.212  

Primary Stands (actual) 52  

Primary new uohm 25.75 μΩ / cm  

Primary in Resistance 0.0004    

Primary Copper Loss 0.004 W 

Strand Conversion (Flat Wire) 52.512 

Secondary Turns 60.25 

Secondary Turns (actual) 25 

Secondary RMS Current 0.149 A 

Bare Wire Secondary 0.0009 2cm  

Secondary Stands 0.703 

Secondary Stands (actual) 1 

Secondary new uohm 1339 μΩ / cm  

Secondary Resistance 0.278    

Secondary Copper Loss 0.006 W 

Primary & Secondary Cu Loss 0.010 W 

Transformer Regulation  0.010% 

Tertiary Inductance 0.0112 mH  

Time 0.000005 s 

Tertiary Current 0.011 A 

Tertiary RMS Current 0.004 A 

Tertiary Wire Area 2.655E-05 2cm  

Ku (calculated) 0.085  

Milliwatts per gram 3.010 mW / g  

Core Loss 0.181 W 

Total Loss (w/# phases) 0.381 W 

Total Loss (single Transformer) 0.191 W 

Watts Per Unit Area 0.003 2Watts / cm  

Temp (Tr) 3.429 ℃  
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2.4 TRANSFORMER CALCULATED CORE LOSS 

To obtain estimated core losses in the transformers different core materials at 

different frequencies were used with material specification charts to obtain estimated core 

losses in the transformers.  The two types of cores that were used in the experiment were 

the 3C90 and the 3F3 materials for the ETD39 transformer.  To calculate the specific 

power loss the flux density must be calculated by   

P e

Vdt
ΔB =

N A


 (48) 

To obtain the numerator of (48) an estimation was made based on the square waveform 

of the input voltage and can be observed in 

inVdt = V D T   (49) 

To obtain the peak flux density (48) is divided by 2 and a chart for each core to obtain the 

core power loss at different frequencies in Figure 2.3 and 2.4, respectively. 

Once the value of the core loss by volume from Figure 2.3 and 2.4 was 

determined, it was multiplied by the volume of the transformer core to obtain an 

approximate core loss of the transformer for a particular frequency.  A rough estimate 

was used to calculate the power loss at 150 kHz and 250 kHz due to the lack of data for 

those specific frequencies.  Table 2.8 illustrates the estimated calculations below and 

Figure 2.5 conveys a graphical analysis of the core material and frequency by power loss. 
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Figure 8 Figure 2.3 3C90 material specification chart [29] 

 

 

 

          150 kHz 
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Figure 9 Figure 2.4 3F3 material specification chart [30] 

 

 

 

 

 

 

 

 

 

 

          250 kHz 

          150 kHz 

          150 kHz 
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Table 8 Table 2.8 Transformer core loss of 3C90 & 3F3 at different frequencies 

 

 

The results in Table 2.8 and Figure 2.5 allow one to conclude that increasing the 

input voltage has a very large effect on the increase in core losses in each material of the 

transformer.  In general, the 3F3 material has less power losses then the 3C90 material; 

this may be due to the 3F3 material’s ability to perform at frequencies up to 700 kHz and 

the data in Table 2.8 illustrates as the frequency increases in the material, with the 

voltage being constant, the core power loss decreases illustrating the increase in 

frequency yields a decrease in core loss. 

Input 

Voltage 

(V) 

Frequency 

(kHz) 

Core 

Type 

Vdt 

(Vμs)  
Bpk (mT) 

P_core 
3(kW / m )  

P_core 

(W) 

10 100 3C90 40 80 40 0.46 

15 100 3C90 60 120 150 1.73 

24 100 3C90 96 192 450 5.18 

10 150 3C90 26.667 53.333 22 0.25 

15 150 3C90 40 80 73 0.84 

24 150 3C90 64 128 150 1.73 

10 200 3C90 20 40 20 0.23 

15 200 3C90 30 60 60 0.69 

24 200 3C90 48 96 215 2.47 

10 100 3F3 40 80 38 0.44 

15 100 3F3 60 120 130 1.50 

24 100 3F3 96 192 405 4.66 

10 150 3F3 26.667 53.333 21 0.24 

15 150 3F3 40 80 70 0.81 

24 150 3F3 64 128 145 1.67 

10 200 3F3 20 40 18 0.21 

15 200 3F3 30 60 55 0.63 

24 200 3F3 48 96 200 2.30 

10 250 3F3 16 32 15 0.17 

15 250 3F3 24 48 42 0.48 

24 250 3F3 38.4 76.8 143 1.64 
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Figure 10 Figure 2.5 Core material and frequency versus core power loss 

 

 

The increase in frequency does however, have a negative effect on the skin and 

proximity effect of the wire.  This will cause skin losses in the wires of the transformer 

when the frequency is increased, illustrating that the increase in frequency will decrease 

the core losses and simultaneously increase the skin losses of the wire.  Therefore, 

increasing the frequency of the converter can only increase the efficiency of the 

transformer to a certain degree. 

  

2.5 TRANSFORMER CONSTRUCTION 

Based on the MLT of the transformer the flat wire was measured to the proper 

specification.  To construct leads for the primary and tertiary windings an 18 AWG was 

soldered onto the edges of the flat wire.  First a butane torch was used to burn the lacquer 
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from the ends of the 18 gauge wire and a screw driver was used to scrape the lacquer 

ashes from the wire to reveal the copper.   The 18 gauge wire was soldered to the flat 

wire, ensuring that the 18 gauge wire does not overlap the flat wire but is juxtaposed to 

the edge (as close as possible).  To do this a vice grip was used to hold the flat wire into 

place and a large amount of flux was placed around the edge of the flat wire and the 18 

gauge wire. The large amount of flux is needed to make certain the copper to copper 

solder joint is strong and reliable.  The length of the lead created was approximately 6 

inches to guarantee that there was enough wire to solder onto the bobbin of the 

transformer.  A standard soldering iron was used to solder the elements.   

After soldering, yellow polyester film electrical tape by 3M™ was used to cover 

the entire flat wire, the soldered portion of the wire, and a small amount of the leads to 

create an insulator around the flat wire.  The same tape was used to tape the flat wire onto 

the bobbin of the transformer.  This process began with the tape being folded and 

connected to itself to allow the adhesive of the tape to be on all sides.  Then the tape was 

placed on the bobbin first and the flat wire was placed firmly on top of the tape onto the 

bobbin.  In conjunction with this another piece of tape (not folded) covered the bobbin 

and one edge (where the soldered lead is) of the flat wire; this should allow minimal 

movement of the flat wire onto the bobbin.  Also the lead was lined up with the lead on 

the bobbin.  From this point the flat wire was turned as tight as possible onto the bobbin, 

using pliers to obtain a very snug winding (the tape should be strong enough to allow the 

pliers to be used).  The leads of each transformer winding were labeled as primary, 

secondary, and tertiary to avoid confusion.  The primary and tertiary windings must be 

wound on top of the other; the order placement of the windings does not matter.  Then a 
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zip-tie was applied after both flat wires were applied to the bobbin thus keeping a firm fit 

on the windings.  Since the current of the primary winding was greater than the tertiary, a 

thinner flat wire was used for the tertiary, but the same process was followed.   

The secondary wire was a much smaller gauge of wire (26 AWG), which can be 

viewed in Table 2.4.  To wrap the secondary wire very tightly, no measurements were 

taken; instead the wire was kept on the original spindle.  Two turns of the wire were 

wrapped around the bobbin and there was enough excess wire to allow a solder onto the 

lead of the bobbin.  Next the bobbin was turned horizontally and rolled by hand naturally 

creating a taut winding (this is similar to rolling a sleeping bag) around the bobbin.  The 

weight of the spindle allows the wire to hold a tight fit as the spinning occurs and most of 

the rolling pressure should be applied to the bobbin rather than the spindle.  Once the 

amount of turns needed was obtained excess wire was placed onto the bobbin's leads.   

Finally the leads of all three windings were soldered to the bobbin leads.  First, 

the leads were cut to fit onto the transformer leads and then the lacquer was burned and 

scraped away as previously stated.  Each negative and positive lead was kept relatively 

close together; the primary and tertiary were on one side of the bobbin and the secondary 

was on the other side of the bobbin.  For this project the tertiary was placed on the bobbin 

first, then the primary was placed on top of the tertiary, and finally the secondary was 

placed on the upper open part of the bobbin.  The core of the transformer was placed into 

the bobbin and the transformer is completed.  Figures 2.6 through 2.8 illustrate completed 

transformers: 
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Figure 11 Figure 2.6 Transformer picture A 

 

 

Figure 12  Figure 2.7 Transformer picture B 
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Figure 13 Figure 2.8 Transformer picture C 
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3. RESULTS 

 

3.1 SIMULATION PROCEDURE AND RESULTS 

To verify the new forward converter topology presented in Section 2.1, a 

simulation was developed in PLECS
1
, which is a Blockset for MATLAB/Simulink

2
.  

Figure 3.1 below illustrates the simulation model of the forward converter.  The 

components in the simulation were specified to match with the physical components that 

are described in Section 2.2 of this document.  Multiple simulations were conducted with 

the circuit shown in Figure 3.1 to observe the current and voltages of each diode, 

capacitor, MOSFET, and inductor produced by the forward converter topology.  To 

obtain the best simulation results, components such as the duty ratio, output capacitor      

( OutC ), the transformers (T1 and T2), and the output inductors (L1 and L2) were 

modified to observe how the output voltage waveform was affected.  A simple MATLAB 

m-file was used in combination with the simulation to simplify component adjustments.     

 

 

 

 

 

                                                 

1
 PLECS is a registered trademark of Plexim Gmbh 

2
 MATLAB and Simulink are registered trademarks of The Mathworks, Inc.  
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Figure 14 Figure 3.1 Simulation model for new forward converter 
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The first waveform that was observed in the simulation was the output voltage, 

which can be found in Figure 3.2.     

 

 

Figure 15 Figure 3.2 Simulated output voltage 

  

 

Figure 3.2 verifies that the calculations for equations (2) through (11) produce a 

240 V output from the values found in Table 2.1.  The average output voltage was 240.61 

V and the maximum voltage was about 240.62 V.   The voltage ripple exceeds 

expectations by having a ripple that was less than 0.1 V, which was less than the target of 

0.24 V (1% of the output voltage).  This simulated result would suggest that the forward 

converter topology developed was able to be physically achieved.   
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Next Figures 3.3 and 3.4 confirm the inductor currents L1 and L2, respectively.  

The time scale of each graph was the same to enable a comparison of the waveforms 

accordingly.  The average inductor currents were approximately 0.86 A and the 

maximum current was 0.97 A. 

 

 

Figure 16 Figure 3.3 Simulated inductor current (L1) 

 

Figure 17 Figure 3.4 Simulated inductor current (L2) 
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The Figures 3.3 and 3.4 above are exactly the same, demonstrating the current 

sharing expected with an output parallel connected circuit.  This current sharing is 

reflected onto the output current which yields the same waveform as L1 and L2 inductor 

currents.  Since the two inductors naturally share current in this configuration the closed 

loop circuit selection of voltage mode control is a reasonable choice. 

Figure 3.5 shows the input current of the simulated forward converter with an 

average current of approximately 20.25 A, which was very high.  The calculated value 

for the input average current was roughly 9 A causing a huge gap between the two 

current values.  The solar panel is unable to pull 9 A or 20 A of current.  Therefore, one 

can conclude that the input current value was estimated to be closer to the calculated 

result of 9 A.  The error in the simulation may be due to the lack of recognition of the 

both phases in the simulated converter and limitations in the PLECS program.  

 

Figure 18 Figure 3.5 Forward converter input current 
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3.2 EXPERIMENTAL RESULTS 

 To conduct the experiment for the forward converter, which can be viewed in 

Figure 3.6, a test station was developed using four Fluke 8845A Digit Precision 

Multimeters (5), an Agilent N3300A System Electronic Load (6), a BK Precision 

Programmable PFC D.C. Supply (4), and a Tektronix TDS 2024 Four Channel Digital 

Storage Oscilloscope (1).  A Tenma Switching Mode Power Supply (3) and an AFG 

3022B Dual Channel Arbitrary/Function Generator (2) were also used before the 

microcontroller configuration was applied.  Figure 3.7 illustrates the test station area with 

the numbers in red to verify the equipment.  To observe the test station arrangement 

Figure 3.8 shows the schematic of the test station.  Finally the computer program 

LabVIEW was used to compile the data from the testing station; a screenshot of the 

program can be viewed in Figure 3.9. 

 

 

Figure 19 Figure 3.6 Forward converter   
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Figure 20 Figure 3.7 Testing station for forward converter  

 

 

Figure 21 Figure 3.8 Test station schematic 
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Figure 22 Figure 3.9 LabVIEW screenshot 

 

 

The two outputs of the function generator were each set to a 40% duty cycle and a 

frequency of 100 kHz.  The second output was given a 50% delay to ensure the switching 

signals were complimentary.  The BK Precision D.C. Supply was set to the desired 

voltage for a particular test.  The LabVIEW program controlled the Agilent N3300A 

Electronic Load, which was set to constant current mode, the Fluke Multimeters, and 

generated the input/output current and voltage for the forward converter in a Microsoft 

Excel document.  During the testing waveforms for the output voltage, switching voltage, 

and snubber voltage were captured and can be observed in Figures 3.10, 3.11, and 3.12, 

respectively. 
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Figure 23 Figure 3.10 Measured output voltage from test point 15 

 

 Figure 3.10 illustrates the input and output voltage of the forward converter from 

the testing station.  The Tektronix MSO 4034 Mixed Signal Oscilloscope was set at 100 

V per division alone with the listing of the peak-to-peak, minimum, and maximum 

voltage for both waveforms.  The constant current load was set to 0.1 A to obtain a 

reasonable comparison between the input and output voltage.  The peak-to-peak voltage 

of the waveform is 12 V which is large but the voltage ripple does not play a significant 

role in the parameters of this project.  The voltage ratio of input voltage to output voltage 

is approximately 0.01 higher than the selected ratio of the transformer in Table 2.2.  This 

is due to the transformers in the actual circuit being slightly different causing a minute 

variation in the voltage.      
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Figure 24 Figure 3.11 Measured switching voltage from test point 22 & 23  

 

 

In Figure 3.11, the switching voltages of the MOSFETs are shown with phase 1 

and phase 2 as channel 1 and channel 2, respectively.  From the waveform, the 

complementary performance of the two phases in the forward converter can be observed 

along with the mean measurements on the waveform, exemplifying both MOSFETs at 

approximately 48 V which is double the input voltage.  The voltage spike on each switch 

is the clamping of the voltage by the zener diode when the MOSFET is turned “off”.  The 

subtle difference in channels 1 and 2 in Figure 3.11 is due to the minor difference 

between the leakage inductance in the transformers, which were handmade, slightly 
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decreasing their equivalency.  Furthermore, the waveform of the snubber voltage in 

Figures 3.12 and 3.13 coincides with the switching of the MOSFET.   

 

 

Figure 25 Figure 3.12 Phase 1 measured snubber voltage from test point 6  
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Figure 26 Figure 3.13 Phase 2 measured snubber voltage from test point 34   

 

 

The pictures in Figure 3.12 and 3.13 are zoomed in pictures of the spikes of the 

switching voltage of the MOSFET (phase 1 and phase 2 respectively).  The rounded 

nature of the voltage spike is due to the snubber, which should increase the efficiency of 

the converter by absorbing the energy in the leakage inductance of the transformer.  To 

verify that the snubber is functioning properly it was removed from the circuit and the 

resulting MOSFET waveform can be viewed in Figure 3.14.  
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Figure 27 Figure 3.14 Phase 1 MOSFET voltage with snubber removed from test point 6 

 

 

Compared to Figure 3.12, Figure 3.14 has a greater settling time with a large dip 

in the MOSFET voltage that reaches approximately 4 V.  The removal of the snubber 

also results in a decrease in stability, as seen in the increase in ripple that Figure 3.14 

possesses.  These differences in the waveforms in the non-snubber and snubber circuit 

also have an effect on the efficiency which can be viewed below in Figure 3.15 below.  

From the data presented in the test, Figures 3.15, 3.16, 3.17, and 3.18 where Figure 3.18 

is the efficiency with the snubber, the efficiency at each of the three voltage settings is 

greater with the snubber than without the snubber. 
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Figure 28 Figure 3.15 Efficiency of forward converter without snubber (100 kHz 3C90) 

 

 

To obtain a greater understanding of the snubber’s influence on the MOSFET, the 

snubber capacitor was changed from 0 .011μF  to 0 .1μF .  The resulting switching 

waveforms can be viewed below in Figure 3.16.  This figures illustrates a much softer 

spike in the than the waveforms in Figures 3.12 and 3.14.  The increase in the snubber 

capacitor to 0.1μFcapacitor generates little noise in the MOSFET waveform but the 

efficiency is less than the snubber capacitor of 0.011μF .  The efficiency curve with no 

snubber, meaning 0 F  was also compared to the efficiencies of the 0.011μF  and 0 .1μF  

capacitors and the three curves can be found in Figure 3.17.  From this waveform it can 

be viewed that decreasing the capacitance to zero does not offer a better efficiency.  In 

fact, the zero capacitance waveform has a similar efficiency as the 0 .1μF  capacitor.  This 
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demonstrates that there is an optimal capacitance for the snubber to operate most 

effectively. 

  

 

Figure 29 Figure 3.16 Snubber with 0.1μF  snubber capacitor at 10 V 
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Figure 30 Figure 3.17 Efficiency of forward converter at 10 V 0.011μF& 0.1μF(100 kHz 3C90) 

 

 

Next the efficiencies of the forward converter were calculated at different points 

with different elements changed such as frequency and transformer core to obtain the 

most efficient result.  This allowed the forward converter efficiency to be calculated 

quickly for different voltages, in this experiment 10 V, 15 V, and 24 V which can be 

viewed in Figure 3.18 through 3.24. 
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Figure 31 Figure 3.18 Test station efficiency at 100 kHz & 3C90 core    

 

 

Figure 32 Figure 3.19 Test station efficiency at 100 kHz & 3F3 core 
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Figure 33 Figure 3.20 Test station efficiency at 150 kHz & 3C90 core 

 

 

Figure 34 Figure 3.21 Test station efficiency at 150 kHz & 3F3 core 
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Figure 35 Figure 3.22 Test station efficiency at 200 kHz & 3C90 core 

 

 

Figure 36 Figure 3.23 Test station efficiency at 200 kHz & 3F3 core 
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Figure 37 Figure 3.24 Test station efficiency at 250 kHz & 3F3 core 

 

The 24 V measurements for Figures 3.22 through 3.24 were unable to be obtained 

during the testing period.  As the frequency was set to 200 kHz or greater with the input 

voltage at 24 V the input current would increase to currents above 7.5 A which exceeds 

the rating of the solar panels and may destroyed the forward converter thus, the test were 

abandoned.  

The highest efficiency voltage, frequency, and core material combination are 

located in Figure 3.20 at 15 V, 150 kHz, and 3C90 core material at an efficiency of 

84.31%.  From the estimated calculation in Table 2.8 in Section 2.4, the core power loss 

for a single transformer was approximately 0.84 W; comparing this with the calculated 

total transformer loss in Table 2.7, which was 0.191 W, the graphical method of the 

actual core material gave a better estimated power loss of the transformer.  The graphical 
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analysis may be the better method because the analytical approach to obtain the total 

power loss begins with the assumption that 

ac

dc

R
= 1

R
 

In the case of a pair of handmade transformers, this assumption may not be true because 

the error in constructing as well as the difference in make of both transformers changes 

this ratio.  

The losses in the transformers are probably much greater due to a much higher 

leakage inductance than expected.  By comparing Figures 3.15 (no snubber) and 3.18 

(with snubber) the observation can be made that the snubber is able to counteract a small 

amount of the leakage inductance because the converter had a greater efficiency while the 

snubber was intact.   

The next phase of the experiment was using two forward converters in parallel 

with two solar panels.  A picture of the solar array connection with shaded and non-

shaded solar cells is in Figure 3.25 and Figure 3.26, respectively.  Figure 3.27 contains 

the schematic of one solar panel forward converter circuit.  The solar testing was 

performed between 2 p.m. and 3 p.m. on a sunny day (no cloud cover) at a temperature of 

approximately 56 degrees F.  The solar tests were conducted using the LabVIEW 

program, using voltage instead of current like the efficiency test.  The maximum amount 

of voltage was set to 280 V and the minimum was set to 100 V.  The test took 20 steps, 

thus obtain 20 readings for each experiment conducted.  Appendix B has the data collect 

from the LabView program.      
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Figure 38 Figure 3.25 Physical non-shaded solar array with forward converters 

 

 

Figure 39 Figure 3.26 Physical shaded solar array with forward converters 
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Figure 40 Figure 3.27 Solar array with forward converter schematic 

 

Figure 3.26 was similar to Figure 3.8 with the substitution of a solar panel for the 

power supply.  To confirm that the second converter has a similar efficiency as the first 

efficiency tests were performed and results can be found in Figure 3.28, which is similar 

to Figure 3.18.  
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Figure 41 Figure 3.28 Second forward converter efficiency testing at 100 kHz & 3C90 core 

 

 

To simulate shading a sheet of translucent plastic was used to cover a solar panel, 

the phrase “shaded 1 time” refers to 1 sheet of plastic.  The output voltage versus power 

curves for the solar panels in parallel were taken, first with no shading for both panels 

found in Figure 3.29.  Next, solar panel 1 was shaded once, twice, and finally three times 

with panel 2 being non-shaded which can be viewed in Figures 3.30 to 3.32, respectively.  

Figures 3.33 through 3.35 illustrate the same experiment with panel 2 being shaded and 

panel 1 being non-shaded. 
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Figure 42 Figure 3.29 Panels 1 and 2 with no shading in the solar array MPP 

 

 

Figure 3.29 illustrates that panels 1 and 2 were operating at similar conditions 

with panel 2 being approximately 5 W greater than panel 1.  This may be due to the slight 

difference between the forward converters used in the experiment and/or the difference in 

the leakage inductance in the transformers in the converters.  Panels 1 and 2 both have 

their MPP at 162.96 V while the output power peaked at 153.96 V the voltage step before 

panels 1 and 2 illustrates the MPP are almost at the same point.  To calculate the percent 

error of the solar panels the use of 

P -Pmax at maxVout

Pmax
 (50) 
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(50) enables the calculation of the percent error at the output voltage where the output 

power reaches its maximum.  For Figure 3.29 panels 1 and 2 approximately 1.39 % and 

1.08 % , respectively within the maximum output power. 

 

    

Figure 43 Figure 3.30 Panel 1 shaded once in the solar array MPP 

 

 

 In Figure 3.30 the results are very similar to the non-shaded condition in Figure 

3.29 which is expected.  Panel 1 illustrates a decrease in power because of the shading 

but its maximum power point is still congruent with panel 2.  Again the output power 

peaks one step behind the panels and panels 1 and 2 had a 2.47 % and 0.71 % difference 

in power from the maximum.   

 



64 

 

Figure 44 Figure 3.31 Panel 1 shaded twice in the solar array MPP 

 

 

Figure 3.31 illustrates a similar waveform as Figure 3.30 and 3.29.  The decrease 

in power of panel 1 was more evident greater than the waveform in Figure 3.30 which 

was expected.  From the percent error calculation of (50) panel 1 and 2 are 2.69 % and 

0.72 % within the maximum power. 
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Figure 45 Figure 3.32 Panel 1 shaded three times in the solar array MPP 

 

 

Finally, Figure 3.32 illustrates panel 1 with 3 shades and the results are similar to 

the pervious experiments.  Panels 1 and 2 are within the maximum output power by     

2.25 % and 0.38 %. 
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Figure 3.33 begins the experiment with panel 2 being shaded and panel 1 with no 

shade.   By shading panel 2 once, the waveform illustrates panels 1, 2 and the output 

voltage having the same MPP at the same voltage, which was the optimal result of the 

experiment.  This illustrates panel 1 and 2 having a 0 % error for panel 2 shaded one 

time. 

 

  

Figure 46 Figure 3.33 Panel 2 shaded once in the solar array MPP 

 

 

 Figure 3.34 is more like the figures where panel 1 was shaded and does not have 

the excellent results of Figure 3.33.  Panels 1 and 2 are within 1.32 % and 3.47 %, 

respectively, of the maximum output power at the voltage where the output power peaks 
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Figure 47 Figure 3.34 Panel 2 shaded twice in the solar array MPP 

 

 

The final waveform is Figure 3.35 which illustrates panel 2 shaded three times.  In 

this waveform the power of panels 1 and 2 do not follow the trends of the other figures in 

the experiment.  The power of panel 1 seems too high and the power for panel two seems 

too low, this may be due to the sun changing angles since this was the last test of the day.  

This also may occur because this test may have fallen on a different point on the 

efficiency curve then some of the pervious figures.  Panels 1 and 2 were 1.43 % and 2.31 

% within the maximum output power. 
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Figure 48 Figure 3.35 Panel 2 shaded three times in the solar array MPP 

 

 

The data presented in the Figures 3.30 through 3.35 illustrate that the shaded solar 

panel does not dominate the performance of the PV array.  It also can be concluded that 

the forward converter connected to panel 2 performed better then the converter connected 

to panel 1 as seen from Figure 3.29, where panel 2 is operating at a higher power than 

panel 1.  Table 3.1 below summarizes the percent error of the maximum output power 

with the shading of panels 1 and 2. 
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Table 9 Table 3.1 Summary of % error of power at maximum output voltage  

 

 

 

 

 

 

 

 

 

  

    

% Error of Power at Max

OutV  

Shading Panel 

1 

Shading Panel 

2 Panel 1 Panel 2 

none None 1.39% 1.08% 

1 None 2.47% 0.71% 

2 None 2.69% 0.72% 

3 None 2.25% 0.38% 

none 1 0% 0% 

none 2 1.32% 3.47% 

none 3 1.43% 2.31% 
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4. CONCLUSION 

 

4.1 SUMMARY OF RESULTS  

 The work completed in this thesis further examined a new method of connection 

of photovoltaic arrays.  This work illustrated that a parallel connect PV array can be a 

practical approach due to its ability to perform in partially shaded conditions. 

 A simulation was developed for a two phased forward converter topology that 

performs fairly accurately to the physical forward converter.  The simulation also has 

conduction losses in the circuit based on the values of the components.  

 A new type of forward converter was developed within this work by harmonizing 

different efficiency boosting strategies in hopes of increasing the efficiency of the 

forward converter.  Although that did not occur many positive features were realized such 

as the snubber circuit, which is able to absorb some of the energy from the leakage 

inductance of the transformer to increase efficiency.   

The abstraction of solar data as well as efficiency testing was completed in the 

work presented in this document.  From the solar data obtained, it is reinforced that the 

shaded panel does not have a huge negative effect on the solar array.   

         

4.2 EXTENSIONS OF PROJECT  

 The main issue with the work presented is the efficiency of the forward converters 

in the solar array.  Some extensions to boost the efficiency would be to create or purchase 

better transformers, since they are a large chunk of the efficiency loss.  Also exploring 

new types of snubbers and different inductor and capacitor combinations could aid in 
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decreasing the leakage inductance of the transformers.  When collecting solar data, it may 

be more advantageous to increase the step size in LabVIEW to greater than 20 to obtain a 

better resolution of data points in the maximum power point waveforms.  This may lead 

to obtaining more accurate data and yield the output power MPP from being one step 

behind the panel 1 and 2 MPP so consistently.  Finally, the addition of a control circuit 

should be looked into for future work of the project.   
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APPENDIX A. 

PRINTED CIRCUIT BOARD DESIGN 

 

 

 

 

 

 

 

 

 

 

 



73 

 

 

Figure A.1 Sheet 1 forward converter  
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Figure A.2 Sheet 2 gate driver configuration 
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Figure A.3 Sheet 3 microcontroller configuration [31]  
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Figure A.4 Sheet 4 step down circuit to Gate Driver/Microcontroller [31] 
 



77 

 

Figure A.5 Physical board layout 
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APPENDIX B. 

SOLAR RESULTS TABLES 
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Table B.1 Panel 1 non-shaded 

 

 

InI  (A)  InV  (V)   OutI  (A) 
InI  (V) 

0.887389 18.96364 0.002521 279.954 

0.891826 18.9564 0.003929 270.949 

0.886203 18.95555 0.004276 261.946 

0.928057 18.91945 0.0084 252.945 

0.954338 18.89577 0.011143 243.948 

1.12781 18.75531 0.02732 234.954 

1.222024 18.6747 0.03935 225.959 

1.280859 18.62105 0.048193 216.956 

1.317033 18.5881 0.054289 207.956 

1.38482 18.52532 0.063189 198.9534 

1.773945 18.12699 0.101406 189.9495 

2.221937 17.49064 0.145828 180.9541 

2.539051 16.75945 0.178985 171.9577 

2.717333 15.97609 0.199486 162.9598 

2.811025 15.16672 0.212092 153.9619 

2.853373 14.34215 0.21992 144.9644 

2.870926 13.51131 0.224963 135.9585 

2.87457 12.67615 0.22927 126.9574 

2.878393 11.84217 0.233174 117.9545 

2.878322 11.00701 0.23709 108.9628 
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Table B.2 Panel 2 non-shaded 

 

 

InI  (A) (P1) InV  (V) (P1)  OutI  (A) 
InI  (V) 

0.798096 19.66682 0.003175 279.955 

0.793233 19.69832 0.003414 270.949 

0.791499 19.6956 0.003779 261.946 

0.838482 19.65848 0.008328 252.944 

0.84781 19.65099 0.009517 243.948 

1.008641 19.52459 0.023877 234.954 

1.102155 19.44712 0.03473 225.958 

1.151174 19.40542 0.041385 216.956 

1.192628 19.37188 0.047239 207.955 

1.335979 19.24741 0.062213 198.9558 

1.830183 18.73703 0.108944 189.9512 

2.296406 18.06536 0.154182 180.9544 

2.624271 17.30977 0.187492 171.9573 

2.822339 16.50481 0.208642 162.9609 

2.922256 15.67068 0.221647 153.9604 

2.96931 14.79263 0.228883 144.9642 

2.98547 13.96154 0.233842 135.9588 

2.990037 13.09967 0.237483 126.9587 

2.995187 12.2083 0.241369 117.9541 

2.996567 11.37084 0.24486 108.9626 
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Table B.3 Panel 1 and 2 non-shaded solar array 

 

 

InI  (A) (P2) InV  (V) (P2) 
InI  (A) (P1) InV  (V) (P1)  OutI  (A) 

InI  (V) 

0.858384 18.76208 0.749905 19.6952 0.005195 279.955 

0.864316 18.75994 0.747012 19.6709 0.006805 270.949 

0.860657 18.75977 0.746482 19.69757 0.007668 261.945 

0.874096 18.74789 0.794494 19.66048 0.013676 252.946 

0.9181 18.71258 0.805296 19.62246 0.01943 243.95 

1.061888 18.5993 0.96724 19.5238 0.046102 234.956 

1.178045 18.50317 1.064422 19.44695 0.070888 225.958 

1.243569 18.447 1.115095 19.37571 0.087045 216.956 

1.283925 18.41229 1.158669 19.36873 0.099499 207.954 

1.33379 18.3697 1.305173 19.24354 0.121691 198.9547 

1.648474 18.06671 1.80841 18.7365 0.20056 189.9521 

2.122477 17.45865 2.282192 18.06396 0.293195 180.9562 

2.47136 16.74298 2.61634 17.30869 0.3627 171.9574 

2.683972 15.96984 2.816477 16.47642 0.40783 162.9599 

2.795998 15.16515 2.919557 15.67387 0.434198 153.9605 

2.847789 14.34369 2.968966 14.82463 0.451317 144.9637 

2.867991 13.51242 2.988025 13.96569 0.461331 135.9595 

2.876027 12.67819 2.992881 13.1035 0.469706 126.9582 

2.879011 11.84288 2.997125 12.23951 0.477217 117.9556 

2.88219 11.00598 2.999969 11.37334 0.484444 108.9629 
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Table B.4 Panel 1 with one shaded solar array 

 

 

InI  (A) (P2) InV  (V) (P2) 
InI  (A) (P1) InV  (V) (P1)  OutI  (A) 

InI  (V) 

0.853957 18.64998 0.737403 19.20076 0.004408 279.954 

0.859265 18.64552 0.73845 19.19722 0.006322 270.947 

0.858302 18.64806 0.734398 19.20105 0.007153 261.947 

0.865023 18.64192 0.737909 19.19464 0.008793 252.945 

0.915198 18.60319 0.789744 19.14345 0.018628 243.95 

1.031589 18.51437 0.813346 19.11818 0.030581 234.954 

1.163796 18.40801 0.977968 18.94592 0.060825 225.958 

1.232173 18.35077 1.05409 18.86201 0.079917 216.957 

1.275395 18.31331 1.096281 18.81081 0.092638 207.955 

1.318024 18.27219 1.145546 18.74903 0.10581 198.9554 

1.575358 18.02202 1.356871 18.46912 0.152863 189.9497 

2.050338 17.43108 1.714555 17.84058 0.23445 180.9548 

2.418678 16.7271 1.976237 17.0958 0.298414 171.9582 

2.641496 15.95957 2.127877 16.28766 0.340451 162.96 

2.761511 15.15709 2.18832 15.4468 0.363749 153.9605 

2.820545 14.33616 2.193017 14.58761 0.377041 144.9651 

2.843515 13.50514 2.194653 13.7256 0.386261 135.9611 

2.854069 12.6698 2.194421 12.86429 0.39427 126.9603 

2.857068 11.83283 2.196405 12.00117 0.400879 117.9542 

2.859124 10.99592 2.196542 11.135 0.407305 108.9612 
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Table B.5 Panel 1 with two shaded solar array 

 

 

InI  (A) (P2) InV  (V) (P2) 
InI  (A) (P1) InV  (V) (P1)  OutI  (A) 

InI  (V) 

0.827449 18.6925 0.699077 18.86755 0.003951 279.955 

0.834945 18.68979 0.702844 18.83559 0.006154 270.95 

0.834291 18.69207 0.701352 18.86387 0.006996 261.947 

0.84444 18.68283 0.699162 18.86394 0.008401 252.945 

0.892856 18.6467 0.727447 18.83054 0.015797 243.951 

1.020775 18.5463 0.754153 18.79385 0.029492 234.955 

1.149263 18.44372 0.877324 18.63354 0.054549 225.958 

1.217501 18.38529 0.978109 18.48824 0.075301 216.957 

1.260564 18.3488 1.033798 18.40182 0.089108 207.955 

1.307175 18.30779 1.070186 18.34412 0.101251 198.9544 

1.588655 18.03853 1.147393 18.20887 0.138393 189.9515 

2.070615 17.44442 1.395397 17.67229 0.210207 180.9567 

2.434223 16.73577 1.605784 16.94613 0.269347 171.958 

2.658136 15.96667 1.729532 16.14719 0.30875 162.9607 

2.778758 15.16393 1.774956 15.31012 0.330232 153.9599 

2.834609 14.34172 1.785699 14.45713 0.343629 144.9648 

2.854279 13.50896 1.783951 13.59851 0.352378 135.9587 

2.861114 12.67348 1.793823 12.74101 0.359855 126.9578 

2.86818 11.83757 1.785752 11.88085 0.366036 117.9551 

2.866517 10.99845 1.792064 11.01987 0.372348 108.9646 



84 

 

Table B.6 Panel 1 with three shaded solar array 

 

 

InI  (A) (P2) InV  (V) (P2) 
InI  (A) (P1) InV  (V) (P1)  OutI  (A) 

InI  (V) 

0.79357 18.67616 0.664673 18.63197 0.003563 279.954 

0.801076 18.66642 0.669721 18.62463 0.005796 270.948 

0.801595 18.66575 0.671315 18.62166 0.00682 261.946 

0.810465 18.65711 0.668198 18.6247 0.008107 252.945 

0.860668 18.61817 0.676286 18.61246 0.013689 243.95 

0.983337 18.52486 0.724245 18.54415 0.028573 234.955 

1.11641 18.41657 0.781164 18.45724 0.047952 225.958 

1.187356 18.35961 0.910423 18.23833 0.070493 216.957 

1.232411 18.32223 0.977045 18.1105 0.085464 207.955 

1.277974 18.28011 1.016217 18.03088 0.097564 198.9528 

1.548328 18.02394 1.063172 17.9275 0.130745 189.9512 

2.034014 17.43343 1.209827 17.54754 0.193754 180.9567 

2.410358 16.73024 1.392371 16.83687 0.250591 171.958 

2.644935 15.96417 1.503943 16.05111 0.288863 162.9615 

2.774072 15.16272 1.550003 15.22396 0.311761 153.9608 

2.831835 14.34097 1.557386 14.37379 0.324109 144.9647 

2.852162 13.50657 1.556695 13.51865 0.333381 135.9599 

2.858396 12.67091 1.555743 12.66146 0.339712 126.9576 

2.858734 11.83354 1.558619 11.80299 0.346236 117.9543 

2.860499 10.99592 1.558131 10.94369 0.352107 108.9635 
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Table B.7 Panel 2 with one shaded solar array 

 

 

InI  (A) (P2) InV  (V) (P2) 
InI  (A) (P1) InV  (V) (P1)  OutI  (A) 

InI  (V) 

0.791961 18.22942 0.744569 19.52899 0.004373 279.954 

0.793033 18.22686 0.742311 19.52899 0.005316 270.948 

0.801147 18.21644 0.739106 19.52907 0.006892 261.947 

0.797772 18.21872 0.76341 19.50852 0.009492 252.946 

0.830703 18.18659 0.795954 19.48403 0.015864 243.95 

0.863798 18.15227 0.927025 19.37914 0.03051 234.955 

1.020086 17.98064 1.039078 19.28621 0.056569 225.958 

1.117888 17.86668 1.09639 19.23756 0.076093 216.957 

1.178787 17.78896 1.135847 19.20499 0.090226 207.955 

1.21288 17.74056 1.232881 19.11596 0.106686 198.9556 

1.272038 17.66381 1.675306 18.66619 0.156244 189.9503 

1.54896 17.20976 2.149527 18.01502 0.230049 180.9543 

1.821118 16.52333 2.494306 17.26781 0.292929 171.9591 

1.970661 15.75627 2.704167 16.46901 0.332899 162.9596 

1.998806 14.93805 2.81766 15.64018 0.352364 153.961 

2.001467 14.10921 2.870239 14.7636 0.364603 144.9644 

2.006558 13.27918 2.890057 13.93412 0.373473 135.96 

2.008689 12.44656 2.896292 13.07178 0.380396 126.9587 

2.011265 11.61404 2.896021 12.18027 0.387496 117.9562 

2.015343 10.77846 2.896544 11.34259 0.394385 108.9655 
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Table B.8 Panel 2 with two shaded solar array 

 

 

InI  (A) (P2) InV  (V) (P2) 
InI  (A) (P1) InV  (V) (P1)  OutI  (A) 

InI  (V) 

0.741108 17.92104 0.726587 19.55033 0.004272 279.954 

0.741371 17.92047 0.725137 19.55341 0.005039 270.949 

0.748955 17.90899 0.723378 19.55577 0.006291 261.946 

0.752149 17.90688 0.753626 19.53766 0.009889 252.946 

0.7586 17.89811 0.781838 19.48854 0.013507 243.95 

0.809055 17.83326 0.920474 19.409 0.030218 234.953 

0.881059 17.73336 1.030888 19.31725 0.047966 225.956 

1.018211 17.52948 1.087933 19.27032 0.06958 216.955 

1.090406 17.40611 1.128857 19.23678 0.084863 207.956 

1.138165 17.32232 1.235785 19.14578 0.103452 198.9534 

1.170013 17.26201 1.688885 18.67994 0.151435 189.951 

1.275942 17.03099 2.157767 18.02129 0.209241 180.9559 

1.493549 16.37645 2.490774 17.27014 0.264666 171.9573 

1.617504 15.62162 2.694871 16.46955 0.301549 162.9625 

1.646659 14.81293 2.800482 15.63932 0.321068 153.962 

1.648445 13.99532 2.850369 14.7903 0.331798 144.9647 

1.644708 13.16672 2.863906 13.93151 0.339207 135.9593 

1.644723 12.34006 2.867388 13.06745 0.345396 126.9582 

1.644261 11.51075 2.867883 12.20275 0.352365 117.9551 

1.647596 10.68033 2.872444 11.33794 0.358518 108.9634 
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Table B.9 Panel 2 with three shaded solar array 

InI  (A) (P2) InV  (V) (P2) 
InI  (A) (P1) InV  (V) (P1)  OutI  (A) 

InI  (V) 

0.713694 17.60888 0.720745 19.59629 0.004195 279.954 

0.713704 17.60849 0.718684 19.59758 0.004843 270.948 

0.717445 17.60285 0.716824 19.59565 0.005657 261.946 

0.726386 17.58833 0.752552 19.56712 0.010294 252.945 

0.724401 17.59005 0.774953 19.54639 0.012768 243.949 

0.762223 17.53102 0.918817 19.43109 0.028587 234.954 

0.791016 17.48087 1.026651 19.33926 0.042967 225.958 

0.925748 17.23312 1.082397 19.29198 0.062532 216.958 

1.01398 17.03962 1.123717 19.25815 0.079037 207.956 

1.069788 16.90412 1.235258 19.15823 0.099089 198.9535 

1.104009 16.81349 1.694797 18.68191 0.147698 189.9508 

1.141639 16.69953 2.155021 18.01928 0.198263 180.9561 

1.261555 16.24495 2.486228 17.26645 0.245236 171.957 

1.374316 15.50723 2.686814 16.46422 0.280249 162.9598 

1.414845 14.71463 2.790329 15.63245 0.300235 153.9599 

1.411623 13.90233 2.842982 14.78561 0.312019 144.9643 

1.429044 13.08694 2.853384 13.92549 0.319714 135.9579 

1.428572 12.26612 2.857053 13.0633 0.326164 126.9586 

1.433357 11.44305 2.859426 12.19956 0.332507 117.9549 

1.419083 10.61025 2.860806 11.33361 0.337795 108.9643 
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