
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Fall 2012

3D spatio-temporal analysis for compressive sensing in magnetic 3D spatio-temporal analysis for compressive sensing in magnetic

resonance imaging of the murine cardiac cycle resonance imaging of the murine cardiac cycle

Brice Aaron Hirst

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Electrical and Computer Engineering Commons

Department: Department:

Recommended Citation Recommended Citation
Hirst, Brice Aaron, "3D spatio-temporal analysis for compressive sensing in magnetic resonance imaging
of the murine cardiac cycle" (2012). Masters Theses. 5299.
https://scholarsmine.mst.edu/masters_theses/5299

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5299&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5299&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/5299?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5299&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

3D SPATIO-TEMPORAL ANALYSIS FOR COMPRESSIVE SENSING IN

MAGNETIC RESONANCE IMAGING OF THE MURINE CARDIAC CYCLE

by

BRICE AARON HIRST

A THESIS

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

2012

Approved by

Yahong Rosa Zheng, Advisor

Kurt Kosbar

Randy H. Moss

iii

PUBLICATION THESIS OPTION

The papers presented in this thesis have been prepared in the styles utilized by the

SPIE 2013 Medical Imaging Conference and the ASEE 2013 Annual Conference. Pages

3-22 will be submitted for publication in the former conference; pages 23-44 will be

submitted for publication in the latter. Appendices A and B have been added for

purposes normal to thesis/dissertation writing, and contain material prepared in the

original style of the instructional purpose for which it was meant.

iv

ABSTRACT

This thesis consists of two major contributions, each of which has been prepared

in a conference paper. These papers will be submitted for publication in the SPIE 2013

Medical Imaging Conference and the ASEE 2013 Annual Conference.

The first paper explores a three-dimensional compressive sensing (CS) technique

for reducing measurement time in MR imaging of the murine (mouse) cardiac cycle. By

randomly undersampling a single 2D slice of a mouse heart at regular time intervals as it

expands and contracts through the stages of a heartbeat, a CS reconstruction algorithm

can be made to exploit transform sparsity in time as well as space. For the purposes of

measuring the left ventricular volume in the mouse heart, this 3D approach offers

significant advantages against classical 2D spatial compressive sensing

The second paper describes the modification and testing of a set of laboratory

exercises for developing an undergraduate level understanding of Simulink. An existing

partial set of lab exercises for Simulink was obtained and improved considerably in

pedagogical utility, and then the completed set of pilot exercises was taught as a part of a

communications course at the Missouri University of Science and Technology in order to

gauge student responses and learning experiences. In this paper, the content of the

laboratory exercises with corresponding educational approaches are discussed, along with

student feedback and future improvements.

v

ACKNOWLEDGMENTS

Special thanks are due to Dr. Yahong Rosa Zheng, who has guided me through

the entire process of conducting research and writing papers, and has also served as the

chair of my thesis defense committee. Also due thanks are Dr. Kurt Kosbar and Dr.

Randy Moss, who have not only taught me in several courses at this university, but have

also served as members of my thesis defense committee.

Acknowledgements for the MRI compressive sensing research go out to Dr. Lixin

Ma and Mr. Ming Yang, who provided all of the raw MRI test data used in the study as

well as general guidance on MRI physics and terminology. Information about

compressive sensing algorithms and concepts was provided by Mr. Zengli Yang and Mr.

Hamed Kajbaf, and Mr. Saurav Subedi was very helpful in facilitating the Spring 2012

test of the Simulink labs on a class of undergraduate students.

The research on compressive sensing for MRI was supported by the University of

Missouri Research Board fund, and the Simulink project design was supported by Dr.

Zheng’s NSF Career award #ECCS-0846486.

vi

TABLE OF CONTENTS

Page

PUBLICATION THESIS OPTION ... iii

ABSTRACT ... iv

ACKNOWLEDGMENTS .. v

LIST OF ILLUSTRATIONS ... ix

LIST OF TABLES .. x

ABBREVIATIONS ... xi

SECTION

1. INTRODUCTION .. 1

1.1. OVERVIEW OF RESEARCH WORK ... 1

1.2. 3D COMPRESSIVE SENSING FOR MR IMAGING OF MOUSE

HEARTS .. 1

1.3. SIMULINK LAB DESIGN ... 2

PAPER

I. 3D spatio-temporal analysis for compressive sensing in magnetic resonance imaging

of the murine cardiac cycle ... 3

ABSTRACT .. 3

1. INTRODUCTION .. 4

2. THE COMPRESSIVE SENSING METHOD .. 5

2.1. Compressive Sensing Background .. 5

2.2. 2D Application of CS for MRI .. 8

2.3. 3D Extension to CS for MRI ... 9

3. THE EXPERIMENT .. 11

vii

3.1. Equipment and Imaging Procedure .. 11

3.2. 2D and 3D Sparsifying Transforms ... 14

3.3. Analysis Method .. 16

3.4. Performance Metrics and Image Examples 17

3.5. PSNR Results for 2D and 3D Compressive Sensing on Mouse

Hearts ... 19

4. CONCLUSIONS... 21

ACKNOWLEDGMENTS .. 21

REFERENCES ... 21

II. Utilization of MATLAB Simulink Exercises for an Undergraduate Communications

Course .. 23

Abstract.. ... 23

Background ... 24

Pilot Test of the Original Labs .. 26

Redesign of the Laboratory Exercises .. 29

Overview of the Newly Designed Lab Exercises ... 30

Utilization of the Newly Designed Labs in Classroom Teaching......................... 36

Results and Student Feedback from Laboratory Sessions 38

Conclusions ... 43

Acknowledgements ... 44

References ... 44

SECTION

2. CONCLUSIONS... 45

2.1. CONCLUSIONS FOR 3D COMPRESSIVE SENSING IN MRI 45

viii

2.2. CONCLUSIONS FOR SIMULINK LABORATORY EXERCISES 45

APPENDICES

A. SOFTWARE FOR MRI COMPRESSIVE SENSING .. 46

B. SIMULINK LAB MANUALS... 56

VITA ... 110

ix

LIST OF ILLUSTRATIONS

Paper I

1. Sample cardiac cycle for a mouse heart ... 5

2. Example of image formation for non-CS mouse heart imaging 9

3. Contrasting 2D and 3D approaches to compressive sensing 10

4. Picture of anesthetized mouse taped in cradle with sensors attached 12

5. Picture of cradle being inserted into RF coil ... 12

6. Example of full MRI system used in experiments. .. 13

7. Example sampling method for acquiring a full video of a mouse heartbeat consisting

of 4 frames.. 14

8. Example of a composite 3D sparsifying transform.. 16

9. Gaussian PDF with σ = 16 pixels for random undersampling of a 128 line k-space

grid. .. 17

10. Examples of PSNR ratings for various 2D CS reconstructions 19

Paper II

1. Example of Simulink program interface .. 25

2. Example screenshots from Simulink projects .. 32

3. Example screenshots from Simulink projects .. 33

4. Example screenshots from Simulink projects .. 34

x

LIST OF TABLES

Paper I

1. Common 2D sparsifying transforms .. 15

2. PSNR results for each sparsifying transform over all images for 30%, 35%, and 40%

undersampling. ... 20

Paper II

1. Simulink Laboratory Projects covering theory in combination with Simulink skills .. 26

xi

ABBREVIATIONS

Abbreviation Description

ADM Alternating Direction Method

AM Amplitude Modulation

AMI Alternating Mark Inversion

ASEE American Society for Engineering Education

AWGN Additive White Gaussian Noise

CCD Charge-Coupled Device

CS Compressive Sensing

CT Continuous Time

DC Direct Current (also an alias for the first output term in a DFT)

DCT Discrete Cosine Transform

DFT Discrete Fourier Transform

DSB-AM Double Sideband Amplitude Modulation

DSP Digital Signal Processing

DT Discrete Time

DWT Discrete Wavelet Transform

ECG Electrocardiogram

FD Finite Differences

FIR Finite Impulse Response

FFT Fast Fourier Transform

FM Frequency Modulation

IEEE Institute of Electrical and Electronics Engineers

xii

ISI Intersymbol Interference

MEX MATLAB Executable

MRI Magnetic Resonance Imaging

NRZ Non-Return to Zero

NRZI Non-Return to Zero Inverted

ODE Ordinary Differential Equation

PDF Probability Density Function

PLL Phase Locked Loop

PM Phase Modulation

PSD Power Spectral Density

PSF Point Spread Function

PSNR Peak Signal-to-Noise Ratio

RF Radio Frequency

RZ Return to Zero

SNR Signal-to-Noise Ratio

SPIE Society of Photo-Optical Instrumentation Engineers

TV Total Variation

VCO Voltage-Controlled Oscillator

ZF Zero-Forcing

ZP Zero Padding

1

1. INTRODUCTION

1.1. OVERVIEW OF RESEARCH WORK

The research work conducted for this thesis consists principally of two parts: the

formation of a 3D compressive sensing method specifically designed for MR imaging of

beating mouse hearts (Paper I), and the design and implementation of a set of laboratory

exercises for teaching Simulink to undergraduates (Paper II). These topics are only

marginally related; the only real connection between them is that MATLAB was used for

both. Nonetheless, both topics are important in their own rights, and have important

implications in their relevant fields.

1.2. 3D COMPRESSIVE SENSING FOR MR IMAGING OF MOUSE HEARTS

Compressive sensing, in general, refers to the exploitation of randomness and

transform sparsity to construct an approximation to an image using sub-Nyquist random

sampling. The basic concept was described by Donoho in 2006 [6]; since that time, it has

been seen as a promising method to reduce the burden of measurement in imaging

methods that are slow and/or expensive in their acquisition of data. The field of MRI is

one of the imaging methods where CS shows the most potential, mainly because the

measuring process is slow, and because all conventional methods for speeding up data

acquisition have serious negative consequences for either the physics of the machine or

the health of the patient inside.

The main breakthrough paper for CS as applied to MRI was published by Lustig

et. al. in 2007 [4]. In that paper, a CS method for undersampling k-space (which is

essentially the frequency domain, and the native measurement domain of MRI) and

2

reconstructing accurate approximations to many static images was described. Since then,

others have applied CS to different subsets of MR imaging. The application of CS to

mouse heart imaging in particular was explored by Wech et al. in 2011 [2], but only in

the 2D sense; transform sparsity in the time domain was not considered.

In collaboration with the University of Missouri VA Hospital, a method was

developed in Paper I of this thesis to expand the compressive sensing reconstruction for

time-varying MR imaging to all 3 dimensions: 2 spatial and 1 temporal. While it was

mainly applied to mouse cardiac imaging, there is no reason why this method would not

see success with any other time-varying image sequences acquired by MRI. An overview

of the MATLAB software used in this research is presented in Appendix A.

1.3. SIMULINK LAB DESIGN

In our university as well as many others, MATLAB is the standard simulation tool

that is taught in laboratory courses alongside lecture topics such as discrete linear systems

and communications. In 2011, Chaitri Aroskar created a set of Simulink exercises with

the aim to replace MATLAB as the simulation exercises in communications [12]. As an

undergraduate, the author of this thesis attempted these labs only to run into several

difficulties. Paper II describes the process of improving the educational value of these

labs, as well as the results of testing them on a class of undergraduates taking

communications. These exercises were generally received well by the students, and in the

future they may be used by other universities attempting to teach Simulink. The full set of

lab manuals used in this experiment is presented in Appendix B.

3

PAPER

I. 3D spatio-temporal analysis for compressive

sensing in magnetic resonance imaging of the

murine cardiac cycle

Brice Hirsta, Yahong Rosa Zhenga, Ming Yangb, and Lixin Mab

aMissouri University of Science and Technology, Department of Electrical and

Computer Engineering;

bUniversity of Missouri, Department of Radiology, Nuclear Science and Engineering

Institute, and Harry S. Truman Memorial Veteran’s Hospital.

ABSTRACT

This paper explores a three-dimensional compressive sensing (CS) technique for reducing

measurement time in magnetic resonance imaging (MRI) of the murine (mouse) cardiac

cycle. By randomly undersampling a single 2D slice of a mouse heart at regular time

intervals as it expands and contracts through the stages of a heartbeat, a CS reconstruction

algorithm can be made to exploit transform sparsity in time as well as space. For the

purposes of measuring the left ventricular volume in the mouse heart, this 3D approach

offers significant advantages against classical 2D spatial compressive sensing.

Keywords: Compressive sensing, MRI, three-dimensional, random sampling, mouse heart

Further author information

Brice Hirst - E-mail: bahrkb@mst.edu, Telephone: 1-573-368-9504

Dr. Zheng - E-mail: zhengyr@mst.edu, Telephone: 1-573-341-6632

Ming Yang - E-mail: my5f2@mail.missouri.edu, Telephone: 1-573-814-6000

Dr. Ma - E-mail: mal@health.missouri.edu, Telephone: 1-573-814-6000

4

1. INTRODUCTION

For many imaging methods (such as video recording), data acquisition is fast enough and

cheap enough that acquiring fully (i.e. Nyquist rate or greater) sampled sets of data is

not a problem. However, taking full sets of measurements with other imaging methods can

be costly in several ways. For example, a camera CCD sensor array may be very cheap

to produce, but microwave imaging requires expensive sensors which generally take a long

period of time to acquire data.1 In magnetic resonance imaging, an image is created by using

radio-frequency (RF) pulses to spin the protons in living tissue at different frequencies and

phases, then reading the total RF emissions from all of them combined, creating a frequency-

based measurement domain known as “k-space”. A full set of data can take a long time to

acquire, which can cause unacceptable motion artifacts in cases such as real-time imaging

of the mouse cardiac cycle. By reducing the number of measurements, compressive sensing

can reduce either the amount of imaging time or the number of sensors, or both, depending

on the imaging method. For preclinical MRI, the prospect of reduced measurement time is

of great interest to the field of medicine because:

1. An MRI procedure is expensive. Less measurement time = less money spent.

2. Fast-moving targets (such as mouse hearts) exhibit less severe motion artifacts when

measurement times are shorter.

3. A shorter measurement time means less exposure to magnetic & RF energy for the

animal under test.

4. Preclinical research can be completed faster when more scans can be made in the

same period of time.

An example of a complete cardiac cycle for a mouse is shown in Figure 1, with the

important stages labeled. The primary diagnostic goal of these images is to estimate the

volume of the left ventricular cavity (the prominent white region in each frame of Figure

1) as the heart beats.2 A notable feature of this sort of measurement is that the areas of

5

Figure 1. Sample cardiac cycle for a mouse heart. (Frames 1-6) The heart contracts in the systolic
phase until it reaches end-of-systolic (minimum) volume. (Frames 7-12) The heart expands in the
diastolic phase until the end-of-diastolic (maximum) volume is reached again. The horizontal line
of interference near the top of each image was caused by RF noise entering the MRI machine.

the heart surrounding this cavity do not change much with time; hence, they will be sparse

in any time-based transform domain that can exploit this, such as the discrete Fourier

transform (DFT) domain. By applying a classical 2D sparsifying transform such as the

discrete cosine transform (DCT) or discrete wavelet transform (DWT) in the x-y domain,

and subsequently applying a DFT in the time domain, the performance over the entire

“video” will be improved after a 3D CS reconstruction is applied as compared to the case

when a 2D CS reconstruction is applied to each frame individually.

2. THE COMPRESSIVE SENSING METHOD

The concept of compressive sensing is heavily rooted in information theory. The important

“information” in an image can be condensed into fewer samples after a transformation is

applied; CS is a method that exploits this “transform sparsity” to capture most of this

condensed information directly by sub-Nyquist sampling. Randomness and sparsity play

heavy roles in the quality of image reconstruction from this undersampled data in both 2D

and 3D methods.

2.1 Compressive Sensing Background

The premise of compressive sensing centers highly upon the concept of sparsity. Consider a

signal x ∈ Cn, where n is the full number of samples in the signal. A signal is considered to

be S-sparse if only S of the samples are significant (i.e. above the noise floor of the image).

6

In general, the lower the ratio S/n, the more compressible a signal is and hence the better

quality the reconstruction will be when CS is applied. Now, many signals are not very

sparse in their original form, so image reconstruction in CS can make use of a sparsifying

transform. A sparsifying transform can be defined as an orthogonal basis Ψn∗n such that:

s = Ψx , (1)

where s ∈ Cn is the transformed signal. If the basis Ψ is chosen correctly, the resulting

signal s will be much sparser than the original signal x. The best sparsifying transform

Ψ for these purposes is highly dependent on the data; for instance, the JPEG compression

scheme uses a block-based discrete cosine transform to sparsify data because its target,

photographic images, is well suited to compressibility with this transform.

In standard notation, Ψ is defined as a matrix which, if all of the pixels in the 2D

image are arranged into a single dimension to form x, can be multiplied by x to find the

sparse result s. Indeed, all sparsifying transforms can be expressed this way in matrix form

if desired, but this is not advised; the main reason is because most common sparsifying

transforms are computationally reducible (i.e. they can be computed a special way that

takes much less time than a straight matrix multiplication). In this case, matrix multipli-

cations for large values of n are unwieldy and unnecessary; for example, if the DFT is the

sparsifying basis, a straight DFT matrix multiplication has a computational complexity of

O(n2), whereas the fast Fourier transform (FFT) method can do it with a complexity of

O(n log n).3 Computational advantages apply to all of the transforms used in this paper;

henceforth, Ψ will instead be defined as a function of x for all subsequent purposes.

Using only a small subset of the k-space data points, it is our goal to approximate

the fully sampled MRI image as accurately as possible. Let x ∈ Cn represent the full

reconstructed image (in the pixel domain), where the visual representation of the image is

contained in the magnitude data |x|. Let y ∈ Cm represent the randomly undersampled

k-space points. In standard MRI, m = n, and so the process of moving from k-space to

7

the image domain is a simple matter of a 2D Fourier Transform on each individual video

frame in question. However, when m � n, the reconstruction necessitates the solution

of an underdetermined system for x. A naive approach would involve simply filling in all

of the unsampled k-space points with zeroes to create a full n-dimensional k-space, then

performing the Fourier Transform as before. The problem with this is that zero-filling in

this manner tends to create coherent aliasing, or noise that looks like multiple periodic

superimposed copies of the image.4 Using the concept of transform sparsity, we can create

a much more accurate image reconstruction using the same points in k-space, provided we

know of a transform domain where the image would be relatively sparse. In order to take

advantage of this sparsity, we would like to minimize the following equation:

min f(Ψx) subject to Ax = y, (2)

where Am∗n is an undersampled inverse Fourier Transform matrix, and f(Ψx) is a

function that calculates a specific sparsity measure from the sparse representation of x.

The standard sparsity measure used in compressive sensing is the L1 norm, defined as:

||s||1 =
n∑
i=1

|si| for all s ∈ Cn (3)

This sparsity measure, while not as ideal other measures such as the Gini index,5 is a

good candidate for CS because its minimization is well-defined as a convex optimization

problem.6 The final equation, then, is:

min ||Ψx||1 subject to Ax = y (4)

This is a standard basis pursuit problem which is solvable with minimal computational

complexity.7 However, it does not always result in an optimal reconstruction when noise is

involved. Another, more flexible minimization is the constrained L1/L2 problem, which is:

8

min ||Ψx||1 subject to ||Ax− y||2 ≤ δ (5)

Here, the parameter δ can be adjusted to change the trade-off between transform sparsity

and the noise floor of the reconstruction. Our experiments indicate that this problem takes

longer to solve, but produces more accurate results. With computation power being so

cheap (compared to MR imaging time), it is arguably the best choice for this application.

It is also possible to include a TV (total variation) penalty if desired, but this will increase

computation time. In the experiments performed in this paper, the YALL1 v1.4 ADM

minimization algorithm8 was used with δ = 5× 10−4 and a stopping tolerance of 1× 10−4.

2.2 2D Application of CS for MRI

Since only a small subset of the measurements are to be taken, proper selection of the sam-

ples to measure is of paramount importance. In general, the more “random” the sampling

pattern, the more incoherent the undersampling noise will appear, and hence the better

the resulting reconstruction will be.4 However, when the sampling is done in the frequency

domain (as MRI is), there is an additional consideration. It is well known that most natural

2D images have most of the “information” concentrated near the origin in the frequency

domain, and MRI images are no exception.9 Thus, a balanced approach to undersampling

would use a frequency distribution that is more likely to pick points closer to the origin than

further away; the Gaussian distribution is often used to this effect.2 Also, it is important

to note that, due to the nature of MRI data acquisition patterns, only sampling in com-

plete lines can provide practical savings in scan time. Though research on new MRI pulse

sequences is in progress, the available pulse sequences at the time of this writing cannot

sample single points individually. Thus, this paper will only concern itself with line-based

k-space sampling.

The process of image formation for ordinary time-varying applications of MRI is shown

in Figure 2. A fully-sampled set of k-space data points is acquired at each of several time

instances, much like a video camera captures full “frames” of image data at evenly spaced

9

Figure 2. Example of image formation for non-CS mouse heart imaging. An entire set of k-space
points is measured for each time period of interest, then a 2D FFT is applied to each frame to
recover the image sequence.

points in time. However, since k-space cannot be sampled fast enough to keep up with a

mouse’s rapid heartbeat (300-500 beats per minute), an assumption of periodicity in the

cardiac cycle is made (more details in Section 3.1). After all k-space points are measured,

a 2D FFT is applied to each frame individually to create the final image sequence.

In classical 2D compressive sensing, each k-space image is treated as a separate recon-

struction. As shown in Figure 3, a single set of k-space points is randomly undersampled,

then an L1 minimization is applied using an appropriate 2D sparsifying transform (such as

the 2D DCT). This approach is optimal for static images, but for time-varying sequences

of images such as those obtained during mouse cardiac imaging, time-domain sparsity can

be considered as well, resulting in better overall reconstruction quality for the entire image

sequence.

2.3 3D Extension to CS for MRI

In contrast to the 2D approach, our 3D approach treats an entire sequence of k-space images

as a single problem, using a 3D sparsifying transform that can take advantage of sparsity

in time. By treating the entire “video” as a single optimization problem, the computation

time will be increased in comparison to a 2D approach, but the reconstructions will be of

far better quality. Figure 3 shows the contrast between 2D and 3D methods; the 3D case

10

Figure 3. Contrasting 2D and 3D approaches to compressive sensing. The 2D method only performs
minimizations on a single frame at a time; hence, it only exploits transform sparsity in space. The
3D method performs a minimization over the entire image sequence at once, so sparsity in time can
be exploited as well. In both cases, the random undersampling patterns are shown using black-and-
white masks where white pixels indicate k-space points that are sampled and black pixels indicate
ones that are not.

considers the entire image sequence as a single L1 minimization. Treating the entire set of

images as a single minimization problem will increase total reconstruction time due to the

fact that computation time increases more than linearly with problem size (especially when

3D sparsifying transforms are considered), but this is an acceptable trade-off for achieving

better image quality.

In our experiment, sets of k-space data consisting of 12 frames of 128x128 pixels were

used. Traditional 2D CS would dictate 12 separate reconstructions of size n = 16834. We

can find the required number of samples m to acquire under line-based random sampling

using:

m = ceil(
rn

128
) x 128 (6)

where r is the approximate undersampling ratio (i.e. r = 0.3 for 30% undersampling)

and ceil() is the operation of rounding up to the nearest integer. In 3D CS, both n and m are

11

simply multiplied by 12, resulting in a problem size of n = 196608 and 59904 ≤ m ≤ 79872

for sampling rates between 30% and 40%. Using MATLAB with YALL1 v1.4 on a computer

with an Intel Core2 Quad Q9550 CPU and 8GB of RAM, 3D CS reconstructions for L1/L2

constrained problems of this size using the parameters listed in Section 2.1 take between 11

and 120 seconds each depending on the sparsifying function Ψ, the sampled MRI data, and

the undersampling percentage. Further improvement on these times is possible via code

optimization of the various 3D sparsifying functions, and also possibly with a massively-

parallel GPU implementation.10

3. THE EXPERIMENT

The main goal of the proposed experiment is to compare the image quality obtained by 3-

dimensional time-space CS reconstructions with that of the classical 2-dimensional approach

in the mouse cardiac cycle. To do this, a set of seven image sequences was obtained from

the University of Missouri VA Hospital, each of which contains 12 frames that form a single

complete murine cardiac cycle (example in Figure 1).

3.1 Equipment and Imaging Procedure

During the MRI scans, the animals were anesthetized with around 2% isoflurane in oxygen

and their heart rates were maintained around 360 beats per minute. The animals were

positioned supine in a cradle, where ECG electrodes were inserted into the right forepaw

and left rear paw and a respiration sensor was taped on the chest as shown in Figure

4. The cradle was inserted into a 300 MHz quadrature driven birdcage RF coil with an

inner diameter of 38 mm (shown in Figure 5), which was then placed into the center of

a Varian Unity Inova 7 Tesla 210 mm horizontal bore MRI system equipped with a 400

mT/m gradient system (example shown in Figure 6). The ECG was used to trigger the MR

scan at a particular point in the cardiac cycle (for example. immediately after the R-wave).

The animals’ body temperature was supported by warm air circulated through the MRI

bore, and the ECG and respiratory monitoring/gating as well as the body temperature

maintenance were done using a small animal physiological monitoring system.

12

Figure 4. Picture of anesthetized mouse taped in cradle with sensors attached.

Figure 5. Picture of cradle being inserted into RF coil.

13

Figure 6. Example of full MRI system used in experiments.

Scout images at axial, coronal and sagittal planes were obtained at the very beginning of

the procedure to localize the animal. Three images were acquired at each plane to confirm

the correct positioning of the animal. After that, we applied a multi-slice gradient echo

pulse sequence to obtain three sagittal images across the heart location based on the scout

images. These sagittal images were used for determining the long-axis (coronal) plane of

the left ventricle by positioning the slice across from the aortic valve to the apex. The

short-axis plane was located by positioning the slice perpendicular to the long-axis plane.

Finally, a typical steady state free precession (SSFP) sequence was applied to collect the

first read-out line in k-space from each of the 12 frames in one cardiac cycle; this was then

repeated for each subsequent line until the full set of measurements was acquired. The TR

(repetition time) was calculated in real-time as the RR-delay (the time between R waves in

the ECG) divided by 12, and the TE (echo time) was 1.57ms.

Since even a sedated mouse has a heart rate of over 300 beats per minute, there is

14

Figure 7. Example sampling method for acquiring a full video of a mouse heartbeat consisting of 4
frames. Starting with the leftmost line of k-space, the same line is measured 4 times in succession
as the heart cycle progresses in time. After one full period T (i.e. one full heartbeat), the machine
begins measuring the second k-space line as the heart goes through another full cycle. At the end,
128 lines will have been measured each of 4 times, taking a total of 128 full heartbeats to complete.
Note that our experimental procedure divides the heart cycle into 12 frames instead of the 4 shown
here.

obviously not enough time to sample anywhere close to a full set of k-space data before the

heart moves to the next stage in the cycle. Because of this, the sampling scheme shown

in Figure 7 was used to collect fully-sampled sets of k-space data for each of 12 stages in

the cardiac cycle that are equally-spaced in time. The reason this works is because of the

periodicity of the cycle. Each full heartbeat can be assumed to be identical (or mostly

identical) to every other one; in this way, we can collect enough data for a full video in

roughly 128 sequential heartbeats from the mouse. True undersampling performed in the

pulse sequence can cut this down to 40 or less, resulting in fewer image artifacts due to the

fact that not all heartbeats will look exactly identical.

3.2 2D and 3D Sparsifying Transforms

In CS, common 2D sparsifying transforms include the identity transform, the DFT, the

DCT, and the DWT. The definitions of these are detailed in Table 1. For simplicity of

analysis, the wavelet transform variants use periodic extension (i.e. the filters use circular

convolution) to keep the size of the image unchanged upon transformation. The width and

height of the image are specified by m and n, respectively. Also worthy of mention is that,

15

Table 1. Common 2D sparsifying transforms. In all cases, the transformed image s ∈ Rmxn is a
function Ψ of the input image x ∈ Rmxn, and j is the imaginary unit. The primary goal of these
transforms is to increase the sparsity of s relative to x.

Transform Description

Identity The identity transform

s = x

DFT2 2D Discrete Fourier Transform

su,v =
m−1∑
i=0

n−1∑
k=0

xi,k e
−j2π(iu

m
+ kv

n
) for 0 ≤ u ≤ m− 1, 0 ≤ v ≤ n− 1

DCT2 2D Discrete Cosine Transform

su,v =
m−1∑
i=0

n−1∑
k=0

xi,k cos[πm(i+ 0.5)u] cos[πn(k + 0.5)v] same u,v as above

DWT2 2D Discrete Wavelet Transform

Let gL be a wavelet low-pass filter and gH be a wavelet high-pass filter

Filter x by gL in both the x-direction and y-direction, then

downsample by a factor of 2 in both dimensions to get section LL

Use gL in the x-direction and gH in the y-direction to get LH

Use gH in the x-direction and gL in the y-direction to get HL

Use gH in both the x-direction and y-direction to get HH

for the DCT, it is common to break the image up into a number of identically sized blocks

before applying a 2D DCT to each block individually. For the DWT, it is common to

repeatedly take the upper-left section and decompose it further and further. In this paper,

an 8x8 pixel block DCT is used, and each DWT decomposition is performed to as many

levels as MATLAB will allow.

In order to extend our analysis to three dimensions, it is necessary to apply a sparsifying

transform that also extends to the time domain. The FFT was chosen as the most suitable

16

Figure 8. Example of a composite 3D sparsifying transform. First, a 2D DCT is applied on every
individual 8x8 block of pixels in each frame of the video. Second, an FFT is applied along the time
dimension to condense information into the first frame, which now contains all of the time-based
DC terms.

transform for this purpose because of its computational simplicity in MATLAB as well as

its propensity to condense the information from unchanging pixels into just one significant

coefficient (the DC term). The full composite transform, then, consists of applying one of

the 2D transforms from Table 1 on each frame of the video individually, then applying a

1D FFT along every pixel in the video as it changes with time. This process is shown in

Figure 8 using the 8x8 pixel block DCT as an example of a 2D transform.

3.3 Analysis Method

The analysis method can be represented in pseudo-code as follows:

For undersampling percentages of x = 30%, 35%, and 40%, do these steps:

For each of the 7 videos of interest , do these steps:

Find visual reconstructions for the fully sampled k-space data

For each of 3 random trials , do these steps:

Use Gaussian random undersampling to pick x% of the k-space lines

For each of 10 sparsifying transforms , do these steps:

Perform constrained L1/L2 minimization with YALL1

Calculate PSNR error metric of undersampled reconstruction

The 10 sparsifying transforms applied in the x-y dimensions include:

Identity transform

2D DFT

Full 2D DCT

8x8 pixel block 2D DCT

2D DWT with Haar wavelet

2D DWT with Daubechies wavelet of order 10

2D DWT with Symlet wavelet of order 2

2D DWT with Symlet wavelet of order 5

2D DWT with Coiflet wavelet of order 2

2D DWT with Coiflet wavelet of order 5.

The DFT is always the transform applied in the time dimension

when 3D reconstruction is attempted.

Because of variance in the random sampling patterns, it is necessary to repeat each

reconstruction for a total of 3 random trials, each time picking a different sampling mask.

17

Figure 9. Gaussian PDF with σ = 16 pixels for random undersampling of a 128 line k-space grid.
The mean of the distribution corresponds to line 65, and this line is always sampled even if the
random sampling process does not select it (which is rare). Lines will be sampled from this curve
until the required percentage of coefficients is reached. This process is repeated independently for
every frame of 2D k-space data to form the final 3D sampling pattern.

The line-based sampling mask was drawn from a Gaussian probability distribution with a

standard deviation of 16 pixels. The center line in k-space is the mean of the distribution,

and it is always chosen for sampling no matter what. If a random result ends up choosing a

line that either has already been chosen or is located past the image boundary, that result

is discarded and a new line is chosen to replace it. Figure 9 demonstrates the probability

of any given line being chosen at a point during random sampling.

One more consideration to note is that randomly chosen sampling masks may still not

perform well, because it is very much possible to “randomly” generate a mask that happens

to have a measure of coherence by chance. In order to insure the most incoherent sampling

mask possible, we can generate several masks and choose the one with the least interference

in the point spread function (PSF) as proposed by Lustig et al.4 In our experiment, 100

different masks were generated each time a new sampling pattern was called for, and the

one with the lowest peak PSF out of those was chosen for use.

3.4 Performance Metrics and Image Examples

In order to judge the success of our proposed CS method, and also to discern the best 2D

sparsifying transform, it is necessary to use a performance metric. In theory, the transform

18

that results in the sparsest representation of the signal will create the highest quality image

upon reconstruction, so a sparsity measure such as the Gini Index could be used. However,

since all of the fully-sampled images are at our disposal, a more practical approach is to

simply take the error of the undersampled reconstructions when they are compared to the

fully sampled ones. The peak signal-to-noise ratio (PSNR) is a fairly standard measure of

image quality that takes into account the average error, or “noise”, of every pixel in the

image; it is defined as:

PSNR = 10log10

 nmax(x)2

n−1∑
i=0

(xi − x̂i)2

 for all x, x̂ ∈ Rn, (7)

where max(x) is the maximum possible intensity of any single point in the image, x is

the original image, and x̂ is the “estimate” of that image; in our case, it is the reconstruction.

This metric can be easily applied in our case, and since it is so widely used as a measure

of image quality, it also provides a way to compare our results to those of other MRI CS

studies. For this reason, and others discussed by Huynh-Thu and Ghanbari,11 the PSNR

was chosen as the main performance metric for this study.

Figure 10 provides a demonstration of the various PSNR levels for CS reconstructions

with different transforms. These images were generated by performing 2D reconstructions

and adjusting the undersampling rate for each transform until the desired PSNR level was

reached. The left side of the figure contains the fully sampled image for reference, and the

right side shows the artifacts of CS undersampling on the left ventricle (of which estimating

the volume is the main objective for this type of imaging) as the PSNR drops. The identity

transform tends to cause moderate-to-severe aliasing artifacts as the sampling rate goes

down, whereas the 8x8 pixel block DCT presents the classic “block artifact” seen in heavy

JPEG compression. On the other hand, when certain wavelet transforms are used, they

tend to exhibit noise that is less disruptive in nature, and as a result tend to require fewer

samples to achieve the same subjective image quality as other transforms.

19

Figure 10. Examples of PSNR ratings for various 2D CS reconstructions. Sparsifying transforms
include the identity transform, the 2D DCT performed upon each 8x8 pixel block, the 2D DWT
with the Haar wavelet, and the 2D DWT with the third-order coiflet wavelet. The full k-space data
set from which samples are drawn is the same for all reconstructions. Images with PSNR below 25
dB are mostly too distorted to be useful, so they are not shown.

3.5 PSNR Results for 2D and 3D Compressive Sensing on Mouse Hearts

To obtain a good idea of the significance of 3D reconstruction, it is necessary to compare

it to the 2D case. Upon running the analysis detailed in Section 3.3 and obtaining the

PSNR metrics, we can deduce the general performance for a particular undersampling rate

by averaging the obtained PSNR over all images for each transform in turn. This analysis

was performed for the following two cases:

1. All 84 frames (12 frames in each of 7 videos) were considered as independent images,

and classical 2D CS reconstruction was performed on all of them using each of 10

different 2D sparsifying transforms.

2. Each of the 7 videos was considered as a single 3D CS reconstruction. The same

2D transforms as the first step were applied to each image frame, but an FFT was

20

Table 2. PSNR results for each sparsifying transform over all images for 30%, 35%, and 40% un-
dersampling. The best-performing transform for each case is highlighted in red. The 3D method
significantly increases image quality compared to the 2D method even at lower sampling rates.

performed in the time direction as well before performing an L1 minimization on the

whole video at once.

The final results for 2D and 3D CS at undersampling rates of 30%, 35%, and 40% are

shown in Table 2. Under 2D reconstruction, the images exhibit a best-case PSNR of between

24 and 29 dB depending on the chosen transform and the number of k-space lines sampled.

Referring back to Figure 10, the area of the image corresponding to the left ventricle is still

somewhat distorted in this range, though it is still possible to roughly estimate the volume.

In order to obtain a more acceptable PSNR, higher undersampling percentages would be

required under 2D compressive sensing. However, the 3D reconstructions offer an average

PSNR of over 32 dB when the best transform is used, even with only 30% undersampling.

The PSNR for 30% undersampling (which is a standard target undersampling rate in MRI

CS) experiences an average increase of around 6 dB, which is a major improvement.

In terms of PSNR, the best performing 2D transforms were the higher-order wavelets,

but wavelet transforms also offer another advantage over the DCT block transforms that is

not reflected in the PSNR. As Figure 10 shows, the block artifacts in the DCT distort the

shape and size of the left ventricular cavity more than the time-frequency artifacts in the

21

wavelet transforms, and so the volume measurement will be impacted negatively. Clearly,

the high-order symlet and coiflet wavelets should be used whenever it is computationally

feasible in order to obtain the best image quality.

4. CONCLUSIONS

The analyses performed in this paper demonstrate that exploiting time sparsity in murine

cardiac MRI with compressive sensing offers a significant improvement to image quality.

Furthermore, since the reduced measurement time will reduce motion artifacts from the

heartbeat, the results in practice should be even more impressive than those predicted by

the experiment performed here, given that we simply discarded points from sets of fully

(and thus slowly) sampled data.

Warranting future exploration is the use of sparsifying transforms other than the FFT

in the time domain for better sparsification. Expanding the dictionary of 2D transforms

(adding more high order wavelets in particular) would also allow the algorithm to explore

more possibilities for 2D transform sparsity, further improving performance. Finally, as

proposed by Zonoobi et al.,5 using a stochastic algorithm to minimize the Gini index rather

than the L1 norm could provide even greater reconstruction accuracy, as the Gini index is

usually a much better measure of sparsity than the L1 norm.

ACKNOWLEDGMENTS

Special thanks are due to Ming Yang and Dr. Lixin Ma at the Veteran Affairs Hospital

and the University of Missouri - Columbia, who provided all of the raw MRI data for this

study. Also due thanks are Hamed Kajbaf and Zengli Yang, who contributed knowledge of

CS methods as well as pieces of MATLAB code, and Ken Hanson, for providing the LATEX

template for SPIE manuscripts. This work was financially supported by the University of

Missouri Research Board Fund.

REFERENCES

[1] Kajbaf, H., T.Case, J., Zheng, Y. R., Kharkovsky, S., and Zoughi, R., “Quantitative and

Qualitative Comparison of SAR Images from Incomplete Measurements Using Compressed

Sensing and Nonuniform FFT,” RADAR Conference IEEE 2011, 592–596 (2011).

22

[2] Wech, T., Lemke, A., and Medway, D., “Accelerating Cine-MR Imaging in Mouse Hearts Using

Compressed Sensing,” Journal of Magnetic Resonance Imaging 34(5), 1072–1079 (2011).

[3] Cooley, J. W. and Tukey, J. W., “An Algorithm for the Machine Calculation of Complex Fourier

Series,” Mathematics of Computation 19(90), 297–301 (1965).

[4] Lustig, M., Donoho, D. L., and Pauly, J. M., “Sparse MRI: The Application of Compressed

Sensing for Rapid MR Imaging,” Magnetic Resonance in Medicine 58, 1182–1195 (2007).

[5] Zonoobi, D., Kassim, A. A., and Venkatesh, Y. V., “Gini Index as Sparsity Measure for Sig-

nal Reconstruction from Compressive Samples,” IEEE Journal of Selected Topics in Signal

Processing 5(5), 927–932 (2011).

[6] Donoho, D. L., “Compressed Sensing,” IEEE Transactions on Information Theory 52(4), 1289–

1306 (2006).

[7] Chen, S. S., Donoho, D. L., and Saunders, M. A., “Atomic Decomposition by Basis Pursuit,”

SIAM Review 43(1), 129–159 (2001).

[8] Zhang, Y., Yang, J., and Yin, W., Users Guide for YALL1: Your AL-

gorithms for L1 Optimization. http://www.caam.rice.edu/∼optimization/

L1/YALL1/User Guide/YALL1v1.0 User Guide.pdf.

[9] Fuderer, M., “The Information Content of MR Images,” IEEE Transactions on Medical Imag-

ing 7(4), 368–380 (1988).

[10] Andrecut, M., “Fast GPU Implementation of Sparse Signal Recovery from Random Projec-

tions,” Engineering Letters 17(3) (2009).

[11] Huynh-Thu, Q. and Ghanbari, M., “Scope of validity of PSNR in image/video quality assess-

ment,” Electronics Letters 44(13) (2008).

23

II. Utilization of MATLAB Simulink Exercises for an

Undergraduate Communications Course

Brice Hirst, Yahong Rosa Zheng

Abstract

A set of six MATLAB Simulink laboratory exercises was previously designed in

2011 for an undergraduate entry-level communication course. This paper presents our

experience of a pilot test on these exercises, followed by their modification and

enhancement, and concluding with an application of the modified exercises in the Spring

2012 offering of the course. The pilot test by a student in the Spring 2011 class identified

several areas of improvement for the previous design of the lab exercises, including

details of lab instructions, high level of difficulty in the first two labs, and partial

completeness of the last two labs. Significant effort was then put into the modification

and re-design of these labs in Fall 2011, and the enhanced labs were applied in the Spring

2012 semester in a class with an enrollment of nine students. Feedback from students

was solicited after each lab exercise. The results show that the Simulink labs were well

received by students, in comparison with a traditional lecture-only approach or a

MATLAB script programming approach. Some slight changes were also made to address

the minor flaws in these labs. Currently, the Simulink labs are ready to be disseminated to

the public and are available for free download by other universities offering similar

courses.

24

Background

The first communications course at our undergraduate level covers three main topics:

1) Review of linear systems topics such as the Fourier series, the Fourier transform,

power spectral analysis, and impulse/frequency responses.

2) Basic analog modulation and demodulation techniques such as Amplitude

Modulation (AM), Frequency Modulation (FM), and Phase Modulation (PM).

3) Digital baseband transmission concepts such as line coding, pulse shaping, Inter-

Symbol Interference (ISI), and Zero Forcing (ZF) Equalization.

This course is open to students who have taken continuous-time linear systems

but not necessarily discrete-time linear systems. It is meant to provide students with a

theoretical foundation for advanced courses such as Communication Systems II,

Communication Circuits, and Wireless Communications. The course has been

traditionally offered by the lecture-only approach; however, in a couple of semesters, lab

projects using MATLAB scripts offered in the textbook were incorporated into the course

in addition to the lectures. Although the MATLAB projects provide a good aid for

learning the heavy communications theory and are welcome by many of the students,

more than 50% of the enrolled students were not ready for the extensive MATLAB

programming. This is mainly due to their limited training in MATLAB scripting and lack

of the foundation of discrete-time linear systems. Therefore, a set of Simulink projects

was designed in Spring 2011 for this course
12

because Simulink offers easy-to-use block

diagram models that inherently take care of the sampling issues.

25

MATLAB Simulink has been used as an educational tool for teaching block-diagram

based simulations in other institutes and for many courses
13,14,15

. It is also widely used in

industry and research institutes for real-life applications in areas such as control system

design and signal processing.
16,17

 Advantageous for the beginner is that Simulink has an

intuitive point-and-click interface, where circuit blocks can be drag-and-dropped from a

library, then connected with wires. Figure 1 shows a basic illustration of the Simulink

design layout, in this case used to create a graphical representation of a third-order FIR

(finite impulse response) filter.

Figure 1 – Example of Simulink program interface.

Despite its ease-of-use in creating the most basic of block diagrams for

simulation, the Simulink software harbors many unique nuances that must be understood

in order to make good use of the software. The original design of the Simulink lab

26

exercises aimed at teaching the most important skills relevant to Simulink in combination

with teaching concepts from communications theory. The layout of the six lab projects

was well thought out, as shown in Table 1. The original lab manuals were created by

following Gagne’s pedagogical model of nine levels of instruction.
18

Table 1 - Simulink Laboratory Projects covering theory in combination with Simulink skills

Lab Topics covered Simulink skill

I Frequency Domain Analysis Building a Model

II Linear Systems Subsystems & Masks

III Amplitude Modulation Library Building

IV Frequency & Phase Modulation Model Referencing

V Pulse Code Modulation & Line Codes Using Stateflow

VI Zero Forcing Equalizer Interacting with MATLAB

Pilot Test of the Original Labs

A pilot test of these labs was performed by the first author of this paper, who took

the Communications course in Spring 2011 that used the MATLAB scripting approach.

That author then became a master’s student in Fall 2011 and performed the pilot test.

Despite being an outstanding student in the Spring 2011 class and having just learned the

theory thoroughly, the first author had to make a great effort to follow the original lab

instructions and had to spend a large amount of time to perform the tasks required in the

lab manuals. The pilot test identified several areas of improvement for the original design

of the lab exercises. These include:

27

1) Unrealistic assumptions:

The original design required that the students work through a Simulink demo

before performing the lab exercises so that they gain the basic skills of making a model,

using the Simulink help files, and navigating through libraries. The lab exercises were

then designed with expectations and requirements that were far too high for the level of

the course. In practice, it is rare that an undergraduate student in our university would

spend much time on a demo if it is not an assignment that would be graded. It is also

difficult for an average undergraduate to grasp all of the required skills just by working

through a single demo.

2) Lack of details in lab instructions:

Based on the unrealistic assumption that a student would know where to find help

instruction in Simulink, the original lab manuals contain limited instructions on how to

perform the lab exercises. The first author attempted to perform these labs as an

undergraduate, having no prior Simulink experience, and was repeatedly confused by

what was being asked and how to accomplish it. It was simply too difficult to search

through the help manuals trying to figure out how to perform the tasks required by the lab

manual. The frustration was worse during the first two lab exercises because the student

just started to learn the basic of Simulink skills and was overwhelmed by the large size of

the Simulink help system, most of which is designed as a reference rather than a tutorial.

28

3) Inappropriate level of difficulty and unrealistic requirements:

The level of difficulty for all six of the original labs was considered too high for

average undergraduate students at our university, especially for this first communications

course. Some models required advanced knowledge in Digital Signal Processing (DSP)

or Digital Communications that are not prerequisites of this course. The amount of work

required by the original lab manuals was also enormous and unrealistic for the given

length of lab sessions. For example, multiple types of modulators and demodulators were

required in Lab 3 and Lab 4 that could not be done in a two-hour session.

4) Incomplete lab designs:

The original designs of Lab 5 and Lab 6 were partially functional except for a few

example modules. Lab manuals for these two labs were completely missing.

5) Selection of Simulink solvers:

The original design of the labs used a large amount of library blocks that utilize

continuous-time (CT) solvers such as ODE45. The primary reason for selecting the CT

solvers was that the theory in the course is based mainly on CT systems and some

students may not have a discrete-time linear system background yet. However, the

available CT blocks in Simulink are very limited, thus making the tasks difficult to

accomplish. On the other hand, Simulink has a much larger selection of discrete-time

(DT) blocks that not only run much faster than CT blocks, but also provide more

convenient solutions to the tasks required in the labs.

29

In addition, the pilot test found out that the Simulink help manual fails to

explicitly teach/emphasize the difference between the DT and CT solvers. This caused a

significant amount of confusion and grief to both the original and new designers of the

labs. After balancing the pros and cons of the DT and CT solvers, the decision was made

to switch all labs but one to the DT solver. The ODE45 CT solver was kept for Lab 2 to

explicitly teach the difference between the two types of solvers in Simulink. All of the

other five labs now use DT solvers, with the lab manuals instructing the students to set

specified sampling frequencies for signal sources and having all subsequent blocks

inherent this sampling frequency. This approach allows the students to use the DT

models in Simulink without requiring them to understand the Nyquist sampling theorem.

Redesign of the Laboratory Exercises

After the pilot test, significant effort was put into the modification and re-design

of these labs to address the issues that were found. The main considerations in modifying

the labs were reorganization of objectives, addition of informational content, and

adjustment of difficulty. The coverage and layout of the six lab projects were kept the

same as shown in Table 1. Since the labs are meant to be supplemental to a lecture

course, the number of required tasks in each lab was trimmed down to fit into a 2-hour

lab session per project; while the excluded tasks were listed as extra credit for more

capable students. Those extra tasks may be used for a full laboratory course if needed.

The manual instructions were completely rewritten to provide much more detail for each

lab. In particular, the instructions for the first two labs provide the student with step-by-

step procedures to perform each task in order to learn the basics of Simulink without

30

searching the help manual. The instructions to the later labs gradually reduce the amount

of explicit details and instead provide general guidance. All labs except Lab 2 were

redesigned to use Simulink DT blocks rather than CT blocks.

Although the difficulty and scope of the labs were reduced overall to create an

experience that is not overly demanding yet still educationally significant, the amount of

information in the lab manuals pertaining to the remaining material was increased. Also,

explanations for the functioning of certain Simulink features (such as CT vs. DT solvers

and normal vs. accelerated simulation modes) were added; it is always a good idea for

students to understand the “why” for the use of a software feature rather than to be told to

“just do it this way because the lab manual says so.”

Overview of the Newly Designed Lab Exercises

The complete set of exercises presented in this paper consists of six labs designed

to build understanding in the fundamental operations of Simulink as well as provide

experience in applying concepts learned in the communications systems lecture. It is

important to note that, since these exercises were taught as an additional requirement of a

3-credit hour lecture course (class meets 3 hours per week), less material is included than

would be expected for a full laboratory course. However, some extra credit material that

was cut from the original set of exercises could most certainly be added back in to create

a new laboratory course.

The six lab exercises under test were as follows:

31

Lab 1 - Intro to Simulink and Frequency Analysis (shown in Figure 2, left side)

The first exercise covers the most basic of operations in Simulink, which includes

placing blocks from libraries, connecting them together, and using basic signal sources

and scope outputs. Basic FFT operations and Fourier series signal representations are also

covered here. Since the students are assumed to have no prior experience with Simulink

at this point, the lab manual consists of very explicit instructions right down to every

mouse click and keypress. This way, the students are eased into the Simulink program

and can come away from the first lab feeling good about it.

Lab 2 - Hierarchical Design and Linear Systems (shown in Figure 2, right side)

The second exercise steps up the complexity by introducing subsystems and

masks. Students are required to use these tools to implement a switchable source similar

to the built-in Signal Generator block, which is then used in another model. A

demonstration of system linearity is also performed here using transfer function blocks.

This is the only lab out of the six that uses a continuous-time Ordinary Differential

Equation (ODE) solver in Simulink; all other exercises use discrete-time solvers, which

are much more practical and flexible in most cases.

Lab 3 - Simulink Libraries and Amplitude Modulation (shown in Figure 3, left side)

The third exercise requires students to create their own Simulink library with

custom-made amplitude modulator and demodulator blocks. Unlike the previous two

labs, the students are not explicitly told what blocks to use in the AM modulator; they are

required to call upon previously learned knowledge to construct a model that simulates

32

the basic AM equation. Also, the demodulator was designed as a product detector, which

must be implemented by finding and using a low-pass digital filter. Both of these tasks

serve to reinforce previously learned material while expanding upon the knowledge of

how discrete-time sampling works in Simulink.

Figure 2 – Example screenshots from Simulink projects.

 Left: In Lab 1, students construct a square wave from the sum of its Fourier series harmonics.

Right: In Lab 2, students visually observe the property of system linearity.

Lab 4 - Model Referencing and Angle Modulation (shown in Figure 3, right side)

The fourth exercise centers around the creation of PM and FM modulators, this

time using model referencing rather than simple subsystems or libraries. When model

files are referenced in this manner, they can be accelerated by pre-compiling code, which

is one of the important features of Simulink that is worth knowing about. Basic

information about PM and FM is given, but students are still required to seek out and

33

learn about the VCO block as well as external triggering for a sinusoidal source. This lab

is not quite as long as the previous one, so it gives students a slight reprieve before the

fifth one. Also, students are allowed extra credit by building an FM demodulator from

scratch, which is quite difficult for a beginner at Simulink but allows students who might

have missed a lab to catch up.

Figure 3 – Example screenshots from Simulink projects.

Left: In Lab 3, students construct AM library blocks which are used to modulate/demodulate an input.

Right: In Lab 4, students use external model file referencing to create PM and FM modulators.

Lab 5 – Line Coding and Decoding (shown in Figure 4, left side)

Unlike the previous four lab exercises, no new Simulink features are presented in

the fifth one. Instead, students are asked to research various line coding schemes before

coming into class, then implement them in Simulink from scratch using blocks of their

choice. This lab is the turning point where students are freed from detailed instructions

and are expected to experiment and look up blocks that will allow them to accomplish the

task at hand. By requiring students to invent their own solutions, they learn how to

34

complete tasks on their own rather than being led by the hand as was done in previous

labs.

Figure 4 – Example screenshots from Simulink projects.

Left: In Lab 5, students construct subsystems that implement common line coding techniques.

Right: In Lab 6, students observe the effects of a ZF equalizer on a static channel with additive noise.

Lab 6 – Zero-Forcing Equalization (shown in Figure 4, right side)

The final exercise is mainly an observation task where students connect pre-

constructed blocks to create a zero-forcing equalizer that removes ISI from a signal sent

through a static channel with additive white noise. Since most of the model construction

is already provided for the students, the emphasis of this lab is on noting the effects of the

equalizer as various parameters (such as input signal type, static channel response, noise

power, and equalizer length) are adjusted. In research, careful observation and

interpretation of simulation results is just as important as constructing the simulations in

the first place, so this final exercise rounds off the educational experience quite well.

35

Each of the six lab exercises consists of three major tasks. These are:

1. Preliminary – There is a short period of time between the posting of each lab manual

for download and the start of the corresponding in-class lab session, and there is often

some preliminary work that is to be done during this time so that the student can

come to the lab session with all of the knowledge necessary to perform it. The

preliminary work usually consists of some simple calculations or research; examples

include calculating the Fourier series for some simple waveforms before the first

exercise, and researching line coding schemes before the fifth one.

2. Procedure – The actual construction and simulation of models in Simulink is

performed during in-class laboratory sessions where teacher’s assistants are available

in person to ask for help. The simplest lab exercises may only require a single 1-hour

session to complete, whereas more complicated ones (such as the line coding

exercise) may require two or more.

3. Report – After completing a lab exercise, a detailed report on what was done and

what results occurred is due before the next lab session. The content requirements for

the lab report are documented in the syllabus, so there should be little ambiguity over

what material is expected. In each report, a series of post-lab questions pertaining to

theory and/or lab results must also be answered.

36

This three-step approach is designed to obtain retention of material, as well as

reinforcement of previously learned concepts from linear systems and communications.

Since this set of labs is designed to be taught alongside a course in electrical engineering

communications, the material in the labs should be sequenced so that the corresponding

lectures have covered it a week or so in advance. For example, not much will have been

learned during the first few weeks of lecture, so the first two labs only present material

from linear systems, which is a standard prerequisite for communications. The remaining

four labs present material from communications in the order they are usually taught,

starting with AM, then progressing to PM, FM, line coding, and finally equalization.

By lining up the material in this manner, concepts from communications will be subject

to a greater degree of retention.

Utilization of the Newly Designed Labs in Classroom Teaching

The enhanced labs were applied in a communications course in Spring 2012 with

an enrollment of nine students. The lecture portion of the course was conducted in a

normal classroom with three one-hour sessions per week. The lab projects were added in

weekly one-hour sessions as the lecture progressed. The first author served as Teaching

Assistant (TA) for the lab sessions and graded the students’ lab report work. A

preliminary exercise was required before most labs, and the students were required to

conduct the lab exercises in the designated computer learning lab during the allocated lab

sessions. Each student worked individually through the lab exercises. Only five students

conducted the sixth lab because only the best 5 out of 6 lab reports were counted in the

final grade. The full set of labs was worth 20% of the final grade in the course.

37

The final grading scheme for the laboratory reports is as follows. These

descriptions for each required section of the report are taken directly from the syllabus

presented to the students:

Objectives (5%) – Basic objectives of the lab, in your own words.

Procedure (10%) – Brief description of how you did the lab exercise, step-by-step. This

section does not have to be long; it is not necessary to copy the steps from the lab

manual.

Results (30%) – The final results of the lab, including any screenshots and figures

requested in the lab manual. Include any important observations or difficulties you had in

this section.

Conclusions (25%) – Describe any important conclusions you have taken away from the

lab here. Important things to consider for this section are: What have you learned from

this lab? How is the material here important in the real world? Overall, how valuable

was this lab to your learning of the EE243 material in your opinion?

Answers to Post-Lab Questions (10%) – Simply provide the answers to the post-lab

questions here. Nothing fancy needed here; short-answers will be fine.

38

Model Files (20%) – Submit all model files, M-files, and other related files resulting from

your completion of the lab as email attachments with your report.

This format is fairly standard in undergraduate lab reports at our university; since

students were likely already familiar with this arrangement, it was a sensible choice.

Results and Student Feedback from Laboratory Sessions

Feedback from students was solicited after each lab exercise in order to gauge

teaching effectiveness. The results show that the Simulink labs were well received by

students, in comparison with the traditional lecture-only approach and the MATLAB

script programming approach. Ordinarily, the communications course includes

MATLAB-based exercises instead; the students seemed pleased that this was being

replaced with a chance to learn the more visually-oriented Simulink.

Though the labs themselves were received fairly well, there was still a bit of

displeasure among the students due to the fact that they felt this was too much extra work

for a 3 credit-hour lecture course. Nonetheless, when it became well-known that this set

of exercises was the alternative to doing the MATLAB exercises and the total amount of

work would remain the same for the whole semester, the students reverted to a somewhat

neutral stance.

A chronological breakdown of the student experiences for each lab exercise is as follows:

39

Lab 1 - Intro to Simulink and Frequency Analysis

Since the tasks necessary to complete the first lab were outlined very clearly step-

by-step in the lab manual, students had little trouble with it. The main purpose of this lab

was to familiarize students with the most basic operations in Simulink, such as

connecting blocks and running simulations, and in that capacity it accomplished its

purpose. The only difficulty experienced by students was in the preliminary for the lab,

where students were expected to calculate Fourier series coefficients, which would then

be used to construct basic waveforms from a sum of sinusoids. However, many of them

had trouble with this part, even when given the coefficients directly, because of some

oddities in the way Simulink handles sine wave sources. Overall, the smooth conduct of

the first lab raised the students’ interest in Simulink.

Lab 2 - Hierarchical Design and Linear Systems

The second lab was more in-depth than the first, and some students were confused

by the instructions for masking subsystems. Since the author of the lab manual was

present to clarify what needed to be done, the lab was completed by the students

successfully, but since the lab exercises may not always be taught directly by their author,

several clarifications were made in the lab manual itself for use in future classes.

Lab 3 - Simulink Libraries and Amplitude Modulation

The third lab included the first instance where students were told to create a

model to accomplish a task without explicitly being told which blocks to use. Most

students were able to create the AM modulator successfully without hints, but a few did

40

need to be led in the right direction first (i.e. they were told how many gain and sum

blocks they needed, but not the order in which they needed to be arranged). The

demodulator was trickier because it involved a digital filter that is generally learned in a

higher level DSP course, but it was nevertheless essential to create a working product

demodulator. Therefore, the lab manual went into detail on how to make the model

without explaining how the filter works; as a result, most of the students performed this

part very well.

Lab 4 - Model Referencing and Angle Modulation

The fourth lab was initially designed to showcase the performance difference

between normal and accelerated models. However, the lab computers did not have the

necessary MEX compilers to use the accelerator mode, so this part had to be excluded.

The angle modulation part of the lab was completed without much difficulty. The extra

credit demodulation part was not attempted by any of the students despite being worth a

large amount of bonus points; the most likely reason for this is that the students who

might have done this part didn’t need the extra points, and the ones who did need them

didn’t care about their grades enough to do it.

Lab 5 - Line Coding and Decoding

Despite being the first lab where almost no explicit instruction was given,

students performed reasonably well on the fifth lab. This was taken as evidence that the

students were indeed learning the intricacies of Simulink well. A couple students even

found an easier approach to the problem than the instructor’s solution using special

41

blocks. Hints were eventually given to stragglers, but these hints were more along the

lines of a “push” to get them going in the right direction rather than an outright spoiler to

the solution.

Lab 6 - Zero-Forcing Equalization

Because only the best 5 out of 6 labs counted for points, many students who had

already gotten sufficient scores on the previous labs did not attempt the sixth. Roughly

half of the class participated in this lab, but a problem was revealed as the lab session

started: the pre-built models made use of new blocks that were not available on the old

version of Simulink loaded on the computers. To fix this, students were forced to wait 5

minutes while the instructor quickly rebuilt the model using older blocks and re-uploaded

it. To avoid problems like this in the future, all blocks used in example models should be

version-checked before being posted for download by the students. Once the correct

model was uploaded, students had an easy time performing this lab.

The educational impact of these labs was best seen in the performance of the

students on the line coding lab. In that lab, they were required to research four line coding

schemes such as bipolar NRZ and differential Manchester, then implement each one as a

masked subsystem in Simulink using any method of their choice. This served as both a

learning experience and an evaluation of their accumulated Simulink skills. The results of

this evaluation are as follows: around half of the students completed the full exercise with

only a slight amount of guidance (mostly on the transition-based line codes, where a

memory element was required), whereas the other half needed a bit more help to get the

42

lab done. Since student abilities vary, an outcome like this is satisfactory. On average, the

students learned most of the basics of Simulink quite well and the interest on learning the

theory was also increased. With a few simple improvements and the possible addition of

one or two more lab exercises to the six presented in this paper, they could be used to

teach a full undergraduate laboratory course on Simulink.

As this was the first teaching experience for the first author, he learned a great

deal about teaching and working with students. The experience gained through this

teaching may also be helpful to other instructors using this set of lab exercises.

1) It is important to test the lab exercises on the computers that students use; this is true

for any laboratory-based course. Compatibility of software versions, missing software

or hardware components, access rights to drivers, etc. would cause many problems, so

these components must be tested prior to the lab sessions.

2) It is important to clearly state deadlines and consequences of late submission. In our

testing of the lab exercises, a lack of hard deadlines and late-submission

consequences was assumed by many students. Despite repeated reminders, a lot of

students forgot to submit the model files they used in each lab. The eventual solution

was to grade late submissions much more harshly; it is fine if a student needs more

time to complete a report, but the quality of the submission must reflect this extra

time spent.

43

3) It is important to clearly specify expectations in a grading rubric. Since the syllabus

did not clearly specify a grading scheme for writing quality in particular, the average

quality of the lab reports was below acceptable standards. As a trade-off, the decision

was made to remove a great deal of points from unacceptable work, with an offer to

restore them if corrections were made by the student. In this manner, the student is

not penalized for initially expecting low standards, but they must still improve the

quality of their work to acceptable levels if they want to obtain full credit.

The authors also realized the importance of the assessment scheme on the quality

of student learning, and it was noticed that the students’ training on technical writing was

not emphasized enough in the practice of previous lab courses. Many problems existed in

the reports submitted by the students, including deficiencies in basic structure and flow of

English, lack of proper grammar and spelling, etc. This issue was also reported to the

undergraduate curriculum committee of the department.

Conclusions

A set of six MATLAB Simulink laboratory exercises that was previously

designed for an undergraduate communications course has been thoroughly tested by an

undergraduate student in a pilot test. The initial lab designs were then greatly improved

as a result of the knowledge gained during the pilot test. These newly modified labs have

since been utilized in classroom teaching, and some additional minor modifications were

made to the lab manuals based on the observed student feedback and performance. As a

result, the current-form laboratory exercises are ready to be disseminated to the public.

44

Acknowledgements

This work was supported by Dr. Zheng’s NSF Career award #ECCS-0846486.

References

[12] C. Aroskar and Y. R. Zheng, “Design of Simulink Projects for an Undergraduate Communications

Course,” Annual Conference of American Society of Engineering Education (ASEE), pp. 1-9, June 26-

29, 2011.

[13] K. Modi, E. Hong and B. Bhattacharya, “Interactive models for teaching digital signal processing,”

DSP/SPE 2009, pp. 238-243, January 4-7, 2009.

[14] J. Turner and J.P. Hoffbeck, “Putting Theory into Practice with Simulink,” Proceedings 2005 ASEE

Annual Conference & Exposition, June 2005.

[15] M. Rice, “Teaching Digital Communication Theory with Simulink at Brigham Young University,”

MATLAB Digest: Academic Edition, vol. 3, no. 2, April 2009.

[16] J. Eker and A. Cervin, “A MATLAB toolbox for real-time and control systems co-design,” Real-Time

Computing Systems and Applications, pp. 320-327, 1999.

[17] M. Karimi-Ghartemani, H. Mokhtari, M.R. Iravani and M. Sedighy, “A signal Processing system for

extraction of harmonics and reactive current of single-phase systems,” IEEE Transactions on Power

Delivery, vol. 19, pp. 979-986, July 2004.

[18] R.M. Gagne, The Conditions of Learning and Theory of Instruction, Holt, Rinehart and Winston Inc.,

New York, 1985.

45

SECTION

2. CONCLUSIONS

2.1. CONCLUSIONS FOR 3D COMPRESSIVE SENSING IN MRI

The methods for improving image quality in the MR imaging of mouse hearts

using 3D sparsification that were presented in Paper I are very promising, especially for

the current research being conducted at the University of Missouri VA Hospital. Just as

standard video compression schemes exploit the fact that pixels do not change much from

frame to frame, the DFT method presented here for compressing unchanging pixels into a

single DC coefficient causes great improvements over 2D methods which do not exploit

time sparsity. Future research can improve upon this method by finding a transform other

than the DFT which might increase sparsity in the time domain.

2.2. CONCLUSIONS FOR SIMULINK LABORATORY EXERCISES

The new Simulink exercises presented in Paper II are a great improvement over

the originals tested in the previous year. Overall, the students that attempted these

exercises learned the operation of Simulink quite well, with only minimal struggles. The

main place for improvement is in the explicit declarations of expectations with regard to

technical writing standards, as well as adjustment of the grading rubric to match. It is also

advisable to ensure that the lab computers are equipped with all of the necessary

compilers and updated software to make full use of the features described in the

exercises.

46

APPENDIX A.

SOFTWARE FOR MRI COMPRESSIVE SENSING

47

All of the CS results for Paper I were obtained using a special MATLAB software

program that I explicitly designed for those applications. I designed the following two

versions of the software program to use for my research:

1) MRI CS Toolbox V1.0

2) 3D MRI CS Toolbox V0.1

These two software programs are nearly identical in user interface and internal

functionality; the 3D toolbox was essentially a fork from the latest 2D toolbox. Both

programs utilize YALL1 v1.4 to perform L1 minimization, and accept k-space data

stored in MATLAB‟s native .MAT format. The user interfaces for these programs are

shown in Figures A.1 and A.2. In truth, the only differences between the two are that the

3D program loads in full sequences of images instead of single images, and also provides

options to change the 3D sparsifying basis.

 Both of these programs were developed during the process of my research, and

are released under the GNU GPL v3. The help file for the 2D version of the software is

included in this appendix after the figures in order to convey the extent of its

functionality.

48

Figure A.1 – Example of 2D CS toolbox user interface

49

Figure A.2 – Example of 3D CS toolbox user interface

50

MRI CS Toolbox Overview

The MRI CS Toolbox is a convenient program for experimenting with CS

reconstruction by undersampling full sets of k-space data. It has support for many bases

and many sampling methods, and is designed to run unattended with batch processing in

order to analyze a large amount of data and sampling techniques at once.

Opening an Image

The "Add" and "Delete" buttons on the image list will allow you to import one or

more k-space images into the program. Any images imported into the program should be

in the .MAT format, with the variable "d" containing a 2D complex double array that

consists of a full set of k-space data points. If a single image is imported (as opposed to

multiple at once), the full image will be displayed in the output window.

Adding Reconstruction Bases

The "Add" and "Delete" buttons on the basis list will allow you to select which

sparsifying transform bases to use in your experiment. The following bases are

supported:

51

ZP

Zero-padding (all missing k-space points are filled with zeros, no CS is

performed)

Identity Identity basis (the image domain itself)

DFT Fourier basis (the k-space domain itself)

DCT

The block DCT bases (i.e. DCT-8 operates on 8x8 pixel blocks, DCT-Full treats

the whole image as a block)

Wavelet

Various wavelet transforms (see MATLAB "wfilters" documentation for more

info)

FD Finite difference transforms in X or Y direction (number specifies order)

Each wavelet decomposition is performed to the maximum level allowed by

MATLAB. To add all of the bases at once, choose "Select All" at the bottom of the list.

Adjusting CS Parameters

The CS parameters section allows you to adjust which undersampling percentages

to try. For example, if the minimum value is 0.3, the step size is 0.05, and the maximum

value is 0.5, the program will attempt sequential reconstructions using 30%, 35%, 40%,

45%, and 50% of the k-space coefficients. This is a good way to find the best trade-off

between undersampling rate and image quality.

The L1 minimization program used by this toolbox is YALL1. There are four

major minimization models that can be used in this toolbox; these models along with

52

their relevant parameters are available for adjustment by clicking the "YALL1 Settings"

button. See the YALL1 reference manual for more details on what these settings mean.

Program Output Settings

By default, the program will send the fully sampled reconstructions as well as a

.MAT file containing all of the final output values to the "Output" directory located in the

main program folder. However, it is also possible to save each sampling mask,

reconstructed image, and PSNR error graph using the checkboxes in the output section.

Be careful when using these settings, as a massive number of images can be generated in

some cases.

The Density Compensation option adjusts the reconstruction such that the less

likely samples will carry more weight. For example, if a k-space line only has a 30%

chance of being picked, and it gets picked, the pixel values will be divided by 0.3 before

reconstruction. This can help reconstruction in some cases, but is not usually

recommended.

The total trials box indicates the number of times to run the simulation on each

image. This is important because of the random variance in the reconstruction patterns. If

more than 1 trial is performed, the error metric will be calculated based on the average

error over all the trials. Also, the total simulation time will depend on the product of all

the test parameters. For example, if there are 3 images, 4 bases, 5 sampling percentages,

and 5 trials, the simulation will be performing 3*4*5*5=300 reconstructions.

YALL1.PDF

53

Choosing Sampling Patterns

There are several different ways to construct a sampling pattern for the

reconstruction. Which points are picked and which ones are not is dependent on the

different sampling types. The examples below illustrate the different available choices of

sampling pattern. Black pixels represent k-space points that are not used, and white pixels

represent those that are. Each example below uses 30% undersampling.

Nonuniform

Uniform

Incoherent

Coherent

54

Line-based

Point-based

Asymmetric

Symmetric

For most cases, nonuniform, incoherent, asymmetric line-based sampling is

recommended for MRI. The relative sampling density allows you to adjust how dense the

random distribution is around the center of k-space in the case of nonuniform sampling.

A value of 1 means that the edges of the image correspond to 4 standard deviations of the

Gaussian distribution. If it is changed to 1.5, the edges become 6 standard deviations and

the distribution gets narrow. Setting this value too low will just result in near-uniform

55

sampling, while setting it too high will result in a non-random block of the center

coefficients being selected.

The mask trials setting allows you to adjust how many different masks will be

generated before the best one is picked. The "best sampling mask" is considered to be the

one with the minimum peak interference in the point spread function.

Running the Simulation

When you hit "Start", the simulation commences and runs all the way through

until it is finished. Hitting "Stop" will abort the simulation after it finishes the current

reconstruction. Upon completion, the program will print the results for the best basis

(based on the mean PSNR value) in the command window. It will also save the individual

PSNR values as well as some sparsity measures in a .MAT file in the Output directory.

56

APPENDIX B.

SIMULINK LAB MANUALS

57

The following pages are near-verbatim copies of the lab manuals used in the

teaching of Simulink described in Paper II. They have been reformatted to fit the thesis

margin requirements for printing, and the figures have been renumbered so that they can

be listed in the illustrations section.

58

Lab 1: Intro to Simulink and Frequency Analysis

Objectives:

1) To learn how to build a basic model in Simulink.

2) To simulate signals and view their frequency domain representation.

3) To synthesize signals from their Fourier series coefficients.

Introduction:

A signal is ordinarily described as a function of time. This is what we visualize

when we view the waveform on an oscilloscope. However, in communication systems it

is also important that we know the frequency content of a signal. The spectral density of a

signal characterizes the distribution of the signal‟s energy or power in the frequency

domain. This concept is important when considering filtering in communication systems.

The mathematical tool which relates the frequency domain description of the

signal to its time domain description is called the Fourier Transform. The Fourier

Transform of a signal specifies the amplitudes and phases of the frequency content of the

signal given its behavior in the time domain. The inverse Fourier transform can then

recover the original time domain signal given its frequency domain description.

Simulink is a tool that allows us to visually create signal processing systems by

connecting individual “blocks” that describe the actions of the system. After specifying

the blocks that make the system do what we want, we can then pass any signal we want

through it and view the output on a virtual “scope” in either the time or the frequency

domain.

59

Preliminary:

The complex Fourier series coefficients are given by:

1) Find the Fourier series coefficients of a square wave of odd symmetry of amplitude A

and frequency f Hz (assume 50% duty cycle and zero DC).

2) Find the Fourier series coefficients of a sawtooth wave of odd symmetry of amplitude

A and frequency f Hz (assume zero DC).

3) Sketch the amplitude and phase of the Fourier series coefficients obtained in 2 & 3.

Procedure:

Part A – Getting Familiar with Simulink

To open Simulink, type „simulink‟ at the MATLAB command prompt. The

Simulink library browser will open. It consists of various blocksets specific to different

applications such as communications, signal processing, control systems, power systems

etc. It is advisable to explore the various block libraries on your own to get a good feel

for the capabilities of Simulink.

In order to familiarize yourself with Simulink, you will first build a simple system

by following the steps given in this document. To open a new model, go to the File menu

and select New -> Model. A blank model will open. This will serve as your canvas to

build your system model.

60

In the Simulink library browser, go to the Sources option and select a „Sine Wave‟

source block. In order to include this block in your model, click and drag the block onto

your model window. Similarly search for a „Gain‟ block (to amplify the signal) and a

„Scope‟ block (to visualize the signal) in the various Simulink libraries. You should find

the gain block under the Commonly Used Blocks or the Math Operations libraries. You

should find the scope block in the Commonly Used Blocks or Sinks libraries. Include both

in your model window.

For this model, we need two gain blocks. In order to duplicate a block, simply

right click on the block and drag and place this duplicate block in your model window

too. We would also like to have a „Switch‟ block to be able to select from multiple inputs

and a multiplexer block to view multiple signals on the same scope. The multiplexer is

found in the libraries as the „Mux‟ block. Search for these blocks in the basic libraries and

include them in your model.

We also require a „Clock‟ block to use as a decision maker for switching between

two signals using the switch. This block simply outputs the current simulation time. Look

for it in the Sources library and include it in your model window.

(Note: This is not the clock used for synchronization of digital logic systems.)

Your model window should now have all of the blocks shown in Figure B.1.1.

61

Figure B.1.1 - Model window after creating blocks

In order to begin connecting the blocks, click on the sine wave block, then hold

down the CTRL key and click on the first gain block. A connecting line will form

between the two blocks. An alternate way to do this is to place your cursor near the

output port of a block until the cursor changes into a cross-hair, then click and drag a line

to the input port of the block to be connected. The same sine wave input is to be

connected to the second gain block too. In order to draw a second branch, right click on

the original branch and drag a line to the input port of the second gain block. Connect the

chosen blocks in the following manner.

Figure B.1.2 - Model window after connecting blocks

Next, we need to set the parameters for the individual blocks. Double clicking on

the blocks opens the block parameters pane. First, double click on the sine wave source

Switch Sine Wave Scope

1

Gain1

1

Gain Clock

Switch

Sine Wave

Scope

1

Gain1

1

Gain

Clock

62

block. Set the block parameters as given in Figure B.1.3, and click OK to apply the

settings.

Figure B.1.3 - Sine wave source parameters

Open the two gain block settings and set them up for gains of 0.5 and 3

respectively. The switch should have the parameters shown in Figure B.1.4 in order to

change from the second gain block output to the first after a simulation time of 5 seconds.

The mux block will have two inputs by default. The clock and scope block settings need

not be altered.

To add a title to the model, double-click at the location you want to type, then

type “Building a Basic Model in Simulink”. You may use the Format menu to change the

63

font and font size. You may also right-click on the title box and select „Show Drop

Shadow‟ to emphasize the title. The completed model is seen in Figure B.1.5. Include a

screenshot of the model in your lab report.

Set the simulation parameters by selecting Configuration Parameters from the

Simulation menu. Under the Solver tab, set the solver to „discrete‟, the stop time to 10.0,

and the max step size to 0.03. Then click OK. Now the model is ready for simulation.

Go to Simulation > Start to begin simulation. In order to visualize the results,

double click on the scope block. The scope output should be as shown in Figure B.1.6.

Include a screenshot of this result in your lab report.

Figure B.1.4 - Switch block parameters

64

Building a basic model in Simulink

Switch

Sine Wave

Scope

3

Gain1

0.5

Gain

Clock

Figure B.1.5 - Final model

Figure B.1.6 - Scope display

Change the frequency of the sine wave generator to 5*2*pi rad/sec (i.e. 5 Hz) and

change the phase to pi/2 rad to turn it into a cosine wave. Simulate the model and observe

the scope, then include a screenshot of the new scope output in your report. Similarly,

observe the scope for the following variations of the original model and submit the

outputs in your report:

65

1) Change the switch block to a Product block (remove the clock).

2) Change the clock to a cosine of frequency 4 rad/sec, amplitude 10, and bias 5.

3) Change two or more parameters of your choice in the original model.

4) Replace one of the gain blocks with any block of your choice.

Part B - Frequency Domain Analysis

In order to view the properties of a signal in the frequency domain, some different

steps must be taken. Ordinarily, a signal source will generate a single value at each point

in time, which then propagates through the entire system as Simulink processes the

simulation. However, a proper analysis in the frequency domain requires several time-

domain points to be stored up and processed at the same time, generally with an FFT

block.

A handy block used to compute and display the frequency components of a signal

is the Spectrum Scope, found in the Signal Processing Toolbox libraries. To start using it,

create a new model and add a title of “Frequency Domain Analysis of a Signal”. Then

find the spectrum scope block in the library and add it to your new model.

Upon opening the block settings, a number of options will need to be set. To

display a raw magnitude spectrum (as opposed to the PSD), change the units to “dBW”,

and set the display options to one-sided. In order to use the standard signal sources from

the normal toolbox, it is necessary to check the Buffer Input box. When this is selected,

the scope will take time-domain samples from a source and accumulate them in a buffer

until it has enough to calculate the required FFT. Set the buffer size to 512, buffer overlap

66

to 0, and spectral averages to 1. Do not change any other settings from their default

values.

A convenient signal source from the continuous-domain toolbox is the Signal

Generator block. This block can generate a number of different periodic signals given

only an amplitude and a frequency. Find this block and add it to your project, then open

the settings. Leave the signal type at „sine‟ and amplitude at 1, but change the frequency

to 5 Hz.

It turns out that these two blocks cannot be directly connected together due to the

way Simulink processes signals. The signal generator produces continuous-time signals,

which are numerically computed using differential equations. However, the FFT scope

requires a discrete-time signal to function, which is handled in an entirely different way

by Simulink‟s model solvers. In order to convert the continuous signal into a discrete one,

we require the Zero-Order Hold block. Find this block in the library, then place it

between the signal generator and the spectrum scope and connect them together in a line.

Your final model should resemble Figure B.1.7.

Figure B.1.7 – Final model

67

There are still a few more things to do. By opening the zero-order hold settings,

we can choose the sampling period for the discrete signal. Set it to 0.01 (fs = 100 Hz).

Finally, open the simulation configuration settings and use the same settings as the

previous example, but make the max step size 0.001. We are now ready to run the

simulation.

Upon finishing the simulation, the spectrum scope should pop up with the results

of the FFT. For the sine wave, there should be a single peak at 5 Hz and nothing else. It

may also be a good idea to connect a normal scope to the zero-order hold output to view

the signal in the time-domain.

Now we are ready to look at a few more types of signals. Change the signal type

in the generator to „square‟ and rerun the simulation without changing any other settings.

There should be harmonics present this time; if they are not visible, go into the scope

settings and lower the minimum Y-value. Compare the magnitudes of these harmonics to

the results from the preliminary and note your observations in your lab report. Also,

include a screenshot of your magnitude spectrum.

Next, change the generated signal to a sawtooth wave and repeat the above

process, noting your observations on the harmonics and taking a screenshot of the

spectrum. Finally, change the generator to output a random signal and record your

observations on the spectrum produced.

Part C - Signal Synthesis from Fourier Series Coefficients

Given the Fourier coefficients calculated in the preliminary exercise, it is possible

to reconstruct the square wave and sawtooth wave signals using only sine wave sources.

68

To do this, open a new model, then create a sine wave source for the fundamental

frequency of the square wave and one for each harmonic (use as many harmonics as you

feel are necessary to reconstruct the signal accurately). Set the amplitudes, frequencies,

and phases of each according to the Fourier coefficients you calculated previously.

To add all these sine waves together, the Sum block is required. Find this block in

the libraries and add it to your project. Open the settings, and under the list of signs, add

as many plus (or minus) signs as there are signals to add. This will expand the sum block

to accept several inputs. Attach a scope to the input and observe how close the sum of

sinusoids comes to representing the shape of the original signal, then include a screenshot

of the scope output in your lab report. Repeat the above steps to recreate a sawtooth wave

and report your observations.

69

Post-Lab Questions:

Q1. In the demo model built in this lab, we used a mux block to visualize two signals on

a single scope. Is it possible to see two signals on the scope without using a mux block?

If yes, explain how.

Q2. Does changing the max step size in the configuration parameters have any effect on

the way the model runs?

Q3. In part A, does changing the simulation time have any effect on the model output?

Q4. In part B, what is the relation of the sample time to the signal frequency to get a

reasonably good representation of the frequency domain components?

Q5. In part B, what effect does changing the FFT buffer size have on the output

spectrum?

Q6. In part C, change the phase and magnitude of each harmonic. Which is more

important: the phase of a harmonic or the magnitude?

70

Lab 2: Hierarchical Design and Linear Systems

Objectives:

1) To learn how to build and mask subsystems in Simulink.

2) To simulate linear systems and observe their properties.

Introduction:

In circuit modeling, a network of elements such as resistors, capacitors, and

inductors compose a system with the properties of linearity and time-invariance. This lab

is concerned with the property of linearity, which states that a weighted sum of any

number of inputs, when sent through the system, will produce an output exactly the same

as if each individual input was sent through the system one-at-a-time and the outputs

added together with the same weights. In mathematical terms, if input x1(t) results in

output y1(t), and input x2(t) results in output y2(t), the output due to x(t) = a1x1(t)+ a2x2(t)

(where a1 and a2 are scalar constants) will be:

y(t) = a1y1(t)+ a2y2(t)

A key feature of Simulink is that it allows us to make hierarchical designs. This

means that we can compose a complicated system that consists of many individual

“subsystems”, The main reason for doing this is that it encapsulates the underlying details

of each subsystem so that only the top level of the design is visible to the user. In doing

71

this, the model window becomes less cluttered, and the end-user is protected against

accidentally making unwanted changes to the system inside.

Preliminary:

1) Consider the input x1(t) = 2[u(t) - u(t-3)]

Find y1(t) for h1(t) = 3 u(t)

2) Consider the input x2(t) = 4 u(t)

Find y2(t) for h2(t) = 5 u(t) -2 u(t)

(Hint: Use Laplace transforms to convert x(t) and h(t) to the s-domain, then multiply.)

Procedure:

Part A – Designing a Hierarchical System

To begin, download the file “lab2.mdl” from Blackboard and open it. The model

shown in Figure B.2.1 will open:

Building subsystems and masks

Sine Wave Scope

butter

Analog
Filter Design

Figure B.2.1 - Initial model

72

Simulate the given model and observe the output on the scope. It is important to

note that, unlike the previous lab, this lab uses continuous-time solvers. In this mode,

Simulink solves the system by solving a set of differential equations symbolically, as

opposed to approximating the system using discrete methods. This allows us to simulate

analog systems to a high degree of accuracy. Sample times do not exist in this mode, and

any block that requires discrete-time operation will not work properly.

(If you try to connect continuous blocks directly to discrete ones, Simulink will

automatically change the solver and the whole system will become discrete.)

To start, we want to add some more signal sources to the model. Open the

Simulink libraries and search for a Chirp Signal, a Step source, and a Random Number

source, then add all of these to your project. Next, find and insert a Multiport Switch

block and a Constant block into your model. The subsystem will consist of these various

sources as inputs, with the switch and constant for selecting between them. Connect all

inputs to the multiport switch and the constant to the selector input of the switch as

shown in Figure B.2.2. In order to make a subsystem, select all of these blocks (all blocks

except the filter and the scope), then right click and choose Create Subsystem. All

selected blocks will be replaced with a single block containing all the functionality of the

original blocks.

73

Figure B.2.2 - Select the create subsystem option

Rename the resulting subsystem as “Input” by clicking the text box beneath the

block. You can reveal and change the original components of this new block by double-

clicking it. However, it is much more elegant to create a user interface to control the

various settings than to open the block and change the parameters inside every time. For

example, one way to change the selected source is to go into the block and change the

constant C manually, but this can be time-consuming for frequently-used blocks, and it

also brings the hazard of accidentally changing something you didn‟t want to change. The

solution to this problem is called masking the subsystem, which creates a handy user

interface much like the ones you see when you open the pre-made blocks to change the

parameters.

In order to create a mask for the subsystem, right-click on the subsystem block

and select Mask Subsystem. A window will open that will allow you to specify all of the

details necessary to fully define a custom user interface for your new subsystem.

74

1) The first tab in this window defines the behavior of the block icons and the input-

output ports. Under Icon Drawing Commands, we can represent the block

graphically using common MATLAB functions such as disp. Use a simple

command such as:

disp(‘Input Signal’);

to draw the name of the subsystem on the body of the block.

2) The next tab, Parameters, is where we define the parameters of the system that

can be changed dynamically by the user. Obviously, we require an option for the

user to select which of the input sources to use, but we also require many other

parameters related to the source selected. For example, the sine wave requires an

amplitude, frequency, and phase to be defined, whereas the random source

requires a mean and variance. We shall make the mask dynamic such that, for

each source selected, only parameters related to that source will appear to the user

for modification. To accomplish this, first we edit the window to look as given in

Figure B.2.3.

75

Figure B.2.3 - Parameter pane in the mask window.

All parameters except for the input signal are considered “edit boxes”, which

mean that the user simply enters whatever value they want for these variables

when they open the settings panel. For the choice of input source, however, we

want a popup menu that lists the various sources. To enter the possible choices,

type the following lines into the Popups tab under the Input Source parameter:

Sine Wave

Chirp Signal

Step Input

Random Number

76

3) Besides the input signal, each of these parameters relates to only one source. We

do not want parameters to appear that are unrelated to the source that is selected.

For example, if the chirp signal is selected, the user should not be able to see and

modify the mean or variance variables. In order to control which variables are

visible for each source, we require a bit of MATLAB code that will execute

whenever the input source is changed. Highlight the Input Signal parameter, then

under its Dialog callback box, enter the following code:

c=get_param(gcb, 'MaskValues'); % Get mask parameter values

% Check the value selected in the pop-up menu and change visible

parameters

if strcmp(c{1},'Sine Wave')

set_param(gcb,'MaskVisibilities',{'on';'on';'on';'on';'off'

;'off';'off';'off';'off';'off';'off';'off'})

end

if strcmp(c{1},'Chirp Signal')

set_param(gcb,'MaskVisibilities',{'on';'off';'off';'off';'o

n';'on';'on';'off';'off';'off';'off';'off'})

end

if strcmp(c{1},'Step Input')

set_param(gcb,'MaskVisibilities',{'on';'off';'off';'off';'o

ff';'off';'off';'on';'on';'on';'off';'off'})

end

if strcmp(c{1},'Random Number')

77

set_param(gcb,'MaskVisibilities',{'on';'off';'off';'off';'o

ff';'off';'off';'off';'off';'off';'on';'on'})

end

(Note: The names in the code must match the names in the popups tab

EXACTLY)

4) The third tab, Initialization, is where we can define the initial values for any the

parameters in the mask. However, the catch is that this code executes every time

you run the simulation, which means that any values you chose for the parameters

in the dialog box prior to running the model will be overwritten by this code. For

that reason, leave this blank for now.

5) The last tab, Documentation, contains areas to enter helpful information about

your mask for any user who might use it in the future. Since this is a tutorial lab,

you may leave this blank for now. Click OK to save the changes to the mask.

With the mask completely defined, our last step is to make it so that the variables

actually correspond to parameters in the constituent blocks. Right-click on the subsystem

and select Look Under Mask to see the original blocks making it up. Inside each source,

we want to make the value of each parameter dependent on the variables we defined. To

do this, simply replace the value in each parameter with the corresponding variable. For

example, in case of the sine wave you would have replaced the amplitude value with „A‟,

78

the frequency with „f‟ and the phase with „ph‟. The value of the constant that switches

between sources will become „select‟.

To test your subsystem, double click the block and look at the parameters that are

visible to change. Depending on which source you select, the available parameters should

change. Experiment with different sources and different values for the parameters, then

take a screenshot of the scope output for each source (pick any parameters you want) and

include them in your report. Comment on how the low-pass filter affects each type of

source.

Part B – Simulating Linear Systems

Next, we are going to simulate the linear systems given in the preliminary. Start a new,

blank model and find the Signal Builder block. When you add the block and open the

settings panel, a screen will open which will allow you to create a time-domain signal

from points. Use this tool to create the input signal x1(t) from the preliminary. Next, find

the Transfer Fcn block in the libraries and place it. This block is used to filter a system

given its transfer function in the s-domain. During the preliminary, you should have

found the Laplace transforms of h1 and h2. Enter the expression for H1(s) in this block,

and connect it to the input source. Finally, attach a scope to the output. Include a printout

of the scope output in your report, and observe how close the output comes to your

calculated value of y1(t) in the preliminary exercise.

To demonstrate the properties of linearity, we are now going to modify this

model. Replace the signal builder source with the two separate step sources that comprise

it. Duplicate the transfer function block, then connect each step function to a separate

79

instance of H1(s). Subtract the two outputs using a Sum block, then connect the final

result to the scope. If the system is linear, the final result should be exactly the same as

before. Include a printout of the scope output in your report, then observe whether or not

it is identical to the output in the previous step.

Finally, use the knowledge from the previous steps to construct x2(t) and run it

through the system H2(s). Include the final output in your lab report, and observe how

closely it matches the theoretical output for y2(t) you calculated in the preliminary.

For extra credit, you may make a masked subsystem containing x1, x2, h1, and h2,

with the entire block connected to the scope. In the settings for the block, allow the user

to choose between either input, and between either system. The block should output the

result of the chosen input filtered by the chosen system. If you choose to do this, include

printouts of the final model, the contents of the subsystem, and the mask parameters

window in your lab report.

Post-Lab Questions:

Q1. What happens if the given code for the popup dialog is not entered at all?

Q2. What problems will occur if the signal names in the popup dialog do not match those

defined in the callback code?

Q3. What happens if the order of the parameters is changed to be different from Figure 3?

(You may test this by using the “move up” and “move down” options).

Q4. Define a possible function for h(t) that would NOT be linear.

80

Lab 3: Simulink Libraries and Amplitude Modulation

Objectives:

1) To learn to build libraries in Simulink.

2) To simulate Double Sideband Amplitude Modulation (DSB-AM).

3) To simulate demodulation of the signals that were modulated as above.

Introduction:

A useful feature in Simulink is the ability to create user-made libraries. For

example, if you implement a certain modulation scheme using various blocks and wish to

use this scheme in several different models down the road, you can create a library with

all of the blocks you need, then open it later and pull out the blocks you need just as you

do with the built-in Simulink libraries.

Modulation, by definition, is a process by which a certain characteristic of a fixed

carrier wave is varied in accordance with an information-bearing signal. The primary

motivation for modulation is to facilitate transmission of the information-bearing signal

over a communication channel with a specific frequency range. For example, a human

voice may have frequencies between 100 and 3000 Hz, but if this signal were to be

transmitted via RF directly at those frequencies, only one voice could be transmitted at a

time without interference (and it would require an antenna the length of the United

States). By modulating and transmitting the signal at a much higher frequency, we can

communicate over a much wider variety of channels, and also share these channels with

other signals.

81

Amplitude modulation refers to the manipulation of the amplitude of a carrier

wave in some manner to transmit the required information. In the simplest case, the

information signal is multiplied by the carrier wave, creating a new signal that has

frequencies above and below the carrier wave, but none at the original frequencies of the

message signal. This is very useful for a wide array of applications, since we can

effectively choose which frequency range our message gets transmitted over.

Preliminary: None

Procedure:

Part A – Designing a Simulink Library

To begin, open a new library by choosing New -> Library from the File menu.

This top-level window is the area where our final user-made blocks will reside, ready to

be taken and used in another program. The basic principle is that, just as we did in Lab 2,

we will build a system out of the default blocks and then enclose it all in a subsystem to

create a user-made block. The main difference is that, in a library, it is only a collection

of these blocks. You cannot simulate anything within a library file; you must take the

blocks out and place them into a model file if you wish to simulate anything.

For this lab, we will be constructing a block that performs DSB-AM modulation

on a given signal. The defining equation for AM modulation in this manner is:

82

where A is the amplitude of the carrier, fc is the frequency of the carrier, α is the

modulation index, and m(t) is the normalized message signal (i.e. it is modified to occupy

the range between -1 and +1). This subsystem will consist of one input, one output, and

three user-changeable parameters. In order to create this input and output, search for the

blocks In1 and Out1 in the Library browser and add them to your library. You may

rename these components m(t) and x(t), respectively, for clarity.

The first part to build in this model is the normalizer, which takes the input

message signal m(t) and constrains it to fall between -1 and 1. Ordinarily, normalization

would entail dividing every sample of the signal by the absolute maximum value the

signal would take. However, this is somewhat tricky to implement in Simulink, and it

runs into trouble where noisy signals are concerned. For the purposes of this lab, we will

instead clip the signal so that, if it falls outside the range of -1 to +1, it will be forced to

one of those values. This can be accomplished with the Saturation block in the library.

Add this block to your model and set its limits accordingly.

After clipping, you must implement the above equation using blocks from

Simulink. You should have the necessary knowledge to build a system that computes this

equation. When defining the parameters for the blocks, there are three of them that we

may wish the user to change: the amplitude A, the carrier frequency fc, and the

modulation index alpha. Make sure to define these parameters as variable names rather

than constants. When you are finished, create a subsystem out of these blocks and define

a mask that will allow the user to change the three parameters that were defined by

variables. Your finished block should appear like Figure B.3.1.

83

Figure B.3.1 – Finished AM modulator block

Part B – Using a Simulink Library

After creating the above block, save the library as “am_lib.mdl”. Now, open a

new model file, set the solver to discrete time, and save it as “am_sim.mdl”. This model

file will be where we test the modulator built in the previous step. Drag the modulator

block you just designed into the new model. In this way, user-made libraries are much

like the ones that are built into Simulink; you just drag them into model files as needed.

To test this model, create a sine wave block and connect it to the input of the

modulator. Set its amplitude to 1 and its frequency to 1 Hz. Now, in the modulator

parameters, set the carrier amplitude to 1 and the modulation index to 0.5. Set the

carrier‟s frequency to around 20 times the frequency you set for the source sine wave.

Connect a scope to the output, then set it to accept two inputs so that you can view the

original source sine wave on it at the same time. Set the max step size to 0.001 and the

simulation run time to 2 seconds, then run it. After autoscaling the axes, you should get

an output that looks like Figure B.3.2.

84

Save a screenshot of this scope output, then change the modulation index to 0.8

and run it again. Also save screenshots of the scope outputs for modulation indices of 1

and 1.5. Comment on the effects the modulation index has on the modulated signal.

Finally, set the modulation index back to 1, but set your sine wave source amplitude to 2.

You should notice the clipping effect on the final output.

For extra credit, you may connect an FFT block to the output of the modulator

and observe the resulting spectrum. There should be a large impulse at the carrier

frequency, along with two smaller ones on either side which correspond to the message

signal.

Figure B.3.2 – Output of AM modulator with α=0.5

Part C – AM Demodulation

Return to the library file you created in part A. We are now going to create a

demodulator block and keep it in the same library file. It is important to note that, if you

closed the library and then reopened it, it is now locked, meaning it won‟t let you make

85

changes to it. In order to change it again, you must choose Edit –> Unlock Library from

the top menu.

An AM demodulator can be constructed by multiplying the output of the

modulator by another cosine wave equal to the frequency of the original carrier, then

low-pass filtering the result. This is known as a product detector. To begin, place the

blocks seen in Figure B.3.3 in your library window, then configure the parameters as

shown and create a subsystem out of them.

After doing this, create a mask for the subsystem. There will be three user-

modifiable parameters: the carrier frequency fc, the filter sampling frequency Fs, and the

filter order n. Set these parameters as shown in Figure B.3.4, then save the mask. You

now have a fully-functional AM demodulator block. Save the library, and then reopen

your simulation model file.

(Note: the filter coefficients are designed at runtime. Make sure this line of code is

entered properly, or the filter will not work.)

firpm(n,[0 (1/2*fc)/(Fs/2) fc/(Fs/2) 1],[1 1 0 0])

86

Figure B.3.3 – AM demodulator model with block parameters

Figure B.3.4 – Mask parameters for AM demodulator

87

Essentially, this block multiplies the modulated signal by a cosine wave at the

carrier frequency, then prepares to filter the result by sampling at regular intervals

specified by Fs by using a zero-order hold block. A digital low-pass filter is created using

the MATLAB function “firpm”, which takes a given set of specifications (in our case, the

cutoff frequencies) and attempts to create an optimal FIR filter of the given order. Just as

Simulink can evaluate block parameters that include variables (such as 1/Fs), it can also

evaluate functions whenever the model is simulated for the first time. In our case, it was

not possible to use the analog Butterworth design block because our model is being

executed in discrete time.

After designing the block, drag it into your main model file and connect it to the

output of your modulator. Add another input to the scope, then connect it and run the

simulation. Using a sampling frequency of 500 Hz and a filter order of 100, you should

get results that look similar to Figure B.3.5.

Figure B.3.5 – Final results for AM modulation

88

The output from the demodulator is going to be distorted at the beginning and

slightly delayed when compared to the original input. The reason for this is that an FIR

filter consists of a series of shift registers (in our case, 100 of them) that all begin at 0. It

takes some time for these registers to be filled, so the filter output will not be correct until

a certain amount of time has passed. The higher the filter order, the longer this will take.

After completing the above steps, save your model files and scope outputs and

submit them in your report. For extra credit, use the blocks From Wave File and To Wave

File to run a sound file (use “nineoneone.wav” from Blackboard) through your system

and record the output. The final output should sound similar to the original input.

Post-Lab Questions:

Q1. In part B, change the carrier signal to a square wave. How does the modulated output

change?

Q2. In part B, what are the consequences of setting the modulation index above 1? Will

this signal be demodulated properly, or will there be problems?

Q3. What will happen if the modulation index is set too low? How will this affect the

transmission efficiency in a real system?

Q4. In this lab, we defined the carrier frequency to be around 20 times the message

frequency. What will happen if the carrier frequency is not that much higher than the

message? Will this cause problems in demodulation?

Q5. Adjust the FIR filter order in part C to different values. What happens to the output if

the filter order is set very low? What if it is set very high?

89

Lab 4: Model Referencing and Angle Modulation

Objectives:

1) To learn to use model referencing in Simulink.

2) To simulate Frequency Modulation (FM).

3) To simulate Phase Modulation (PM).

Introduction:

Along with subsystems and libraries, model referencing is another way to

implement hierarchical design. Compared to libraries, the main advantage in using model

references is that they can be accelerated, meaning that the referenced model itself can be

pre-compiled in order to create a performance increase. In this lab, model referencing

will be used in the implementation of FM and PM modulation.

Angle modulation is a process in which the angle of the carrier wave is varied

according to the message waveform. In this modulation technique, amplitude of the

carrier wave is maintained constant, which makes the transmission power constant.

However, this benefit is achieved at the cost of increased transmission bandwidth.

The two primary methods of achieving angle modulation are phase modulation

(PM), in which the instantaneous angle is varied linearly with the message signal, and

frequency modulation (FM), in which the instantaneous frequency is varied linearly with

the message signal. Both techniques will be explored in this lab.

Preliminary: None

90

Procedure:

Part A – Designing a Simulink Submodel

The model reference feature is provided by the Model block in the Ports &

Subsystems library in the Simulink library browser. The instance of a Model block which

represents another model is called a referenced model or submodel. The model that

contains a referenced model is called its parent model. In order to demonstrate these

features, we will create a model file that performs PM modulation, then use that model as

a reference in another model.

To start, create a new blank model and save it as “pm_mod.mdl”. Next, go into

the configuration options and change the solver to discrete time. In order for this model to

function as a reference within another model, there is one more configuration option that

must be set. On the side bar of the configuration panel, go to Optimization -> Signals and

Parameters and check the box labeled “Inline parameters”. If this box is not checked, the

model will generate errors when you try to run it as a reference within a parent model.

Next, we will create the model itself. In PM modulation, the phase of the carrier is

varied according to the amplitude of the message signal. There are a number of different

ways to do this in Simulink, but perhaps the easiest is to manipulate the time variable of

the carrier wave directly. Create a sine wave generator in the new model, then open the

parameters and set Use External Signal for the time variable. This will essentially create

a block that will output sin(ωt), where t is a signal that you feed into the block.

In order to make the output of this block vary according to the current simulation

time, we need to create a Digital Clock block which will supply the base value for t. By

91

connecting one of these blocks directly into the sine wave generator, it will generate an

ordinary sine wave which only varies with the simulation time, which works exactly like

sine wave blocks that don‟t use an external signal for time. However, we also want this t

variable to be influenced by the input signal, in order that we might change the current

phase of the carrier. To do this, we add a Sum and Gain block, which has the net effect of

adding or subtracting from the time that the sine wave generator sees, thus altering its

phase. The complete system, along with all relevant parameters, is shown in Figure B.4.1.

Note that the gain block, as configured below, will vary the phase of the carrier between

–π and π so long as the message signal goes between -1 and 1. If the message exceeds

these limits, the modulation will make some message signal levels indistinguishable from

others as the phase wraps around. Make sure that any input to this model is limited

between -1 and 1 for this reason.

92

Figure B.4.1 – Finished PM modulator model

Using these parameters, the sampling frequency is 1000 Hz and the carrier

frequency is 10 Hz. Make sure that any input signal you use in the parent model is much

less than 10 Hz, or else the modulator will distort the output. Increasing the sampling

93

frequency and carrier frequency is also a solution, if you wish to modulate a signal with

higher frequencies.

Part B – Designing a Simulink Parent Model

Now that we have a working modulator, it is time to put it to use. Create a new

model file and save it as “lab4.mdl”. Make sure that the same configuration parameters

are set for this new model as were set for the previous one; the solvers must be consistent

across all models when referencing is used. However, it is not necessary to set Inline

parameters for the top-level model.

In order to use the modulator we just built in this model, we must first create an

empty submodel block. Find the Model block in the Simulink library and place it.

Initially, it starts out red and empty, because no model has yet been placed in it. Now,

open the parameters window and browse for the model file you created the PM modulator

in. Make sure that the simulation mode is set to Normal. The Accelerated mode is useful

for speeding up models, but it requires a MATLAB compiler to create machine-level

code to do this. Many machines do not have the appropriate compilers installed, so we

will not experiment with this feature in this lab.

We need to create an FM modulator next. FM modulation is remarkably easy in

Simulink, as the only block it requires is a VCO, or voltage-controlled oscillator. Open a

new model file and add the Discrete-Time VCO block, along with one input and one

output port. Set the quiescent (or center) frequency to the carrier frequency, and the input

sensitivity to approximately half the carrier frequency. Perform the same steps as in Part

94

A to create a valid submodel, then save it as “fm_mod.mdl”. Then add this model to

your parent model as a reference as before.

Now that we have referenced these models, we will create a message signal, send

it through the modulators, then look at them on the scope. When this is done, you should

get a result that looks like that of Figure B.4.2. In this example, the carrier frequency for

both modulators was 10 Hz, and the message signal was a sine wave of 1 Hz. Save a

screenshot of the scope result, then comment on why the output waveforms look like they

do. Next, change the message signal from a sine wave to a square wave and repeat this

simulation.

For extra credit, you may implement a demodulator for the FM modulation

scheme above. Do not use the built-in demodulator blocks from the Communications

Toolbox; you must create your own model, block-by-block. Common FM demodulators

include the quadrature detector and the PLL. A properly working demodulator may be

worth up to 50% extra credit. Make sure to submit both the demodulator model files and

the scope output for the demodulated signal.

(Note: In order for FM demodulation to be accurate, the frequency deviation should be

orders of magnitude lower than the carrier frequency. Leaving the carrier at 10 Hz and

the deviation at 5 Hz will make any attempt at demodulation very problematic.)

95

Figure B.4.2 – Finished parent model and scope results

Post-Lab Questions:

Q1. In what ways is a referenced model block different from a subsystem block?

Q2. In accelerated mode, the runtime speed of a referenced model is greatly increased,

with the tradeoff of spending a large amount of time initially to compile it. In what

situations would it NOT be a good idea to use this mode?

Q3. In Part B, look at the modulated signal for both PM and FM. If you know the input

signal is a sine wave, and you are given the modulated output without any other

information, is it possible to tell for certain whether the modulation was FM or PM? Why

or why not?

Q4. Is it possible to tell the modulation type for certain if you know that the input signal

is a square wave instead? Assume that the fundamental frequency of the square wave is

many times lower than the carrier frequency.

96

Q5. In both types of angle modulation, the transmission power is kept constant no matter

what the message signal is. Why is this advantageous over AM, especially for

transmission of music?

97

Lab 5: Line Coding and Decoding

Objectives:

1) To implement 4 different types of line coding in Simulink and apply them to random

data

2) To achieve more autonomy in creating Simulink models

Introduction:

In order to transmit data across any sort of channel, it is necessary to encode the

information bits into some electrical waveform. The relation of this waveform to the

input bits is called line coding, and the choice of this waveform can have a substantial

impact on the performance of the system. For example, the simplest line coding is called

unipolar NRZ, which creates a waveform that goes to 0V when the input is 0, and some

positive voltage when the input is 1.

Simple forms of line coding such as NRZ are sufficient for some applications, but

they can cause problems in others. For instance, suppose your data includes a very long

run of 0‟s or 1‟s. With no transitions of the voltage level, the receiver may lose sync with

the data when it attempts to sample it, and this will cause unnecessary errors. More

advanced line codes can embed the clock signal within the data, ensuring that enough

transitions occur to maintain sync. Differential line codes will encode the data in

transitions rather than levels, which helps in some applications involving phase

modulation.

98

Unlike the previous labs, this lab will expect you to figure out how to construct

most of the models on your own. Most of the line codes can be implemented using basic

blocks such as gains, sums, and constants, but a couple of them require delay blocks,

which will be explained.

Preliminary:

Research the following types of line coding, and think about how they might be

implemented in Simulink using the blocks you already know about:

Bipolar NRZ NRZI

Bipolar RZ (without AMI) Differential Manchester

Procedure:

Part A – Implementing Bipolar NRZ Coding

In order to begin constructing line coding models, we must have a source of data.

An ideal source would be one that returns 0‟s and 1‟s with equal probability one sample

at a time. The best choice of block to do this is the Bernoulli Binary Generator. Add this

block to your model and set it up to spit out a new bit every second (sample time = 1).

Make sure to remember to set the simulation to use the discrete solver. Also, add a scope

to visualize the results.

Between the generator and the scope, we need to create a system that takes in a

single bit, either 0 or 1, and outputs a waveform that goes between -1 and 1 for bipolar

99

NRZ. This can be done solely by using basic math blocks such as sums, gains, and

constants. Once this system is finished, package it up into a submodel so that the top-

level model looks clean. The data source and the scope will be shared by all line

encoders, so do not include those in the submodel.

Part B – Implementing NRZI Coding

NRZI line coding is a bit trickier, as the current output will depend on what the

output was in the previous sample. Basically, if the current data bit is 0, the output

voltage level remains constant, but if it is 1, the voltage level transitions to its opposite

state. Of course, in order to keep the voltage level the same (or change it), the model must

know what value it had to begin with. The block that will accomplish this is called the

unit delay. The output of this block is simply whatever the input to it was in the previous

sample. This creates a sort of memory in the system, which is necessary because it must

“remember” what the last voltage level was in order to be able to keep it the same or

change it.

To use this block effectively, its input must be the final output of the line encoder.

That way, when the simulation advances by a sample, the previous output level of the

line encoder will have shifted to the output of the unit delay block. By using this value

along with the value of the current bit, math functions can be used to create the

appropriate waveform.

An example of this sort of “feedback loop” is shown in Figure B.5.1. Note that

this is not the solution to the line coder; it is merely an example of how the blocks should

be arranged. The example arrangement as it is shown is simply an integrator; the real

100

solution will involve a subtraction rather than an addition, as well as other math blocks.

When you finish this system, package it into a submodel as well.

Figure B.5.1 – Example arrangement for use of unit delay block

Part C – Implementing Bipolar RZ Coding

For bipolar RZ line coding, a clock is required in addition to the data source. This clock

will have the same period as the data rate, and its transitions are added to the line encoder

output. To create this clock, add a Pulse Generator block. Set it to be sample based with

sample time 0.5, period 2, and pulse width 1. This will make a clock that will alternate

between 0 and 1 one time each for every data bit.

Using this clock as well as the data source, standard bipolar RZ line coding (not

AMI) can be implemented using simple math blocks (no delays are required). You may

implement the AMI version if you wish, but this will require a delay block to track the

previous output polarity.

Part D – Implementing Differential Manchester Coding

The most difficult line code to implement is the Differential Manchester code. In

ordinary Manchester code, for every data bit, the line encoder will use the clock to output

101

a high-to-low transition on an input of 1 and a low-to-high transition on an input of 0.

When this is made differential, the type of transition stays the same on a 0 and switches

on a 1. You may refer to Figure B.5.3 for a pictorial example of this.

When all encoders are completed and simulated, you should get a top-level model

similar to Figure B.5.2 and scope results similar to Figure B.5.3. After confirming that

the line codes are correct for different sequences of input bits, take a screenshot of your

top-level model as well as the inside of every submodel and include them in your report.

Include the scope output as well, and discuss in your report how these results compare to

the theoretical results.

Figure B.5.2 – Example of final top-level model

102

Figure B.5.3 – Example of scope results for all line codes

For extra credit (10 points each), you may design decoders for any of the line

encoders created above. The output of any line decoder should give back the original bit

sequence. Include scope results for these if you do them, and remember to submit all

model files with the report.

Post-Lab Questions:

Q1. For the bipolar NRZ line code, what is an advantage of using bipolarity as opposed to

unipolarity? Why could it be better to have a negative voltage level as opposed to 0 volts?

103

Q2. NRZI uses differential coding to encode the data in transitions. When the receiver is

first turned on, having no previous information, can it immediately decipher the first bit

received?

Q3. Bipolar RZ can be combined with AMI (alternate mark inversion), which leaves the

voltage level at zero on a “0” bit and alternates between positive and negative voltages

for successive “1” bits. What is a possible advantage or disadvantage of doing this?

Q4. Differential Manchester combines most of the advantages of the above line codes at

the cost of high complexity and low bit rate. To what applications might this line code be

best suited?

104

Lab 6: Zero-Forcing Equalization

Objectives:

1) To implement a simple zero-forcing equalization system in MATLAB

2) To observe the conditions under which zero-forcing equalization is effective

Introduction:

In most communications systems, the channel over which signals are sent is not

ideal in any sense. Echoes, reflections, and time delays can cause a signal to be split into

multiple copies which arrive at the receiver at different times. In many wired systems,

these imperfections can be modeled by a static impulse response h(t). When this impulse

response is convolved with an incoming signal, it basically has the effect of blurring

adjacent symbols together, which is known as inter-symbol interference, or ISI. We wish

to construct a matching filter on the receiving system that can undo the effects of ISI

given the approximate channel response. These filters are known as equalizers, of which

many types exist for different types of channels.

The zero-forcing equalizer is arguably the simplest of these. The basic idea of the

ZF equalizer uses the fact that the channel impulse response h(t) can be transformed into

a frequency response H(f). By constructing another filter on the receiver that has the

inverse response H
-1

(f), we can undo the effects of the original channel, since H(f)H
-1

(f) =

1. The main problem with this is that we are limited to a finite number of equalizer

coefficients in a real system, and to get this inverse perfectly, we would need an infinite

number of coefficients. Fortunately, we can still get an approximation to this inverse by

105

truncating the response to a finite number of terms. The other major problem, most

prevalent in wireless communications, is that the ZF equalizer amplifies noise in any case

where H(f) has a significant drop-off. If H(f) is close to zero at some frequency, the

inverse will have a very large gain at that frequency, and any noise in this region will be

amplified excessively. For this reason, it is mostly useful in systems that have a very high

SNR.

Preliminary: Read the zero-forcing equalization section in your textbook.

Procedure:

Part A – Creating the Basic Model

First, download the library file for this lab from Blackboard. There should be four

blocks inside:

1. Channel Response (generates the channel response h(t) and the equalizer response

hZF(t))

2. Channel (filters the input signal according to the coefficients set in #1)

3. ZF Equalizer (filters the received signal according to the equalizer coefficients set in

#1)

4. AWGN (generates additive white Gaussian noise with a certain power in dB)

106

The first block is the heart of the operation: it takes in a given impulse response

and equalizer length and uses the standard ZF matrix equation to generate the appropriate

coefficients for the equalizer. It also provides two delays as outputs that will line up the

input and channel output with the equalizer output on the scope. The second and third

blocks are functionally identical; they are FIR filters that use the coefficients provided

from the first blocks. The fourth block is a simple noise generator that is used to simulate

the effects of random Gaussian noise on the equalizer‟s output.

For the first part of this experiment, construct the model shown in Figure B.6.1.

Set the solver to discrete-time and the total simulation time to 100. For the random source

block, use a Gaussian distribution with the mean at 0, variance at 1, and sample time at 1.

When finished, run the model to ensure that everything is working properly.

Figure B.6.1 – System setup for ZF equalizer simulation

107

Part B – Equalizer Simulation

For the first test of the channel equalizer, we would like to simulate a static channel with:

 h(t) = [10 2 0 4 1]

This is a simple example of a channel with a decaying response and a single echo.

When the input signal is run through this channel, the echoes of past symbols will

interfere with the present ones. The first simulation will be noise-free, so temporarily

disconnect the AWGN source. In order to separate these out, we would like to run it

through a ZF equalizer with L = 31 taps. Simulate this for 100 symbols and compare the

equalized signal to the original source signal. Also, look at the signal before equalization

to see how the previous and current symbols interact. You should get a scope output that

resembles Figure B.6.2. Save this scope output and discuss your observations in your

report.

For the second test, we would like to reduce the length of the equalizer and see

how that affects the final results. Set the equalizer length to L = 9 and run the simulation

again, then save the scope output and note any differences in the equalized signal in your

report. Repeat for L = 101 taps. Is there any noticeable difference between L = 31 and L

= 101 taps?

108

Figure B.6.2 – Example scope output

Part C – Equalizer Simulation with Noise

The main fault in the ZF equalizer lies in its poor handling of noise under certain

channel responses. For this simulation, we would like the channel to be:

h(t) = [10 6 3 1 0 10 3 1]

This particular channel has a frequency response with large drop-outs, meaning

that the equalizer response will have large peaks. Reconnect the AWGN block and set the

noise power to -80 dB, and set the equalizer length to L = 101, then simulate the channel.

Since this is a very high SNR, the equalizer output should still be fairly accurate. Save

your scope output and note any differences between the equalized output and the original

signal.

109

To see the equalizer‟s downfalls, we must simulate the model with much larger

quantities of noise, similar to those found in wireless communications. Repeat the above

simulation for noise powers of -40 dB, -30 dB, and finally -20 dB, which will make the

noise just about 1/100 as powerful as the signal itself. At what point does the equalizer

begin to choke and amplify the noise so much that the original signal becomes lost?

Make sure to save the scope outputs and note in your report the noise level at which the

equalizer becomes unreliable.

Post-Lab Questions:

Q1. In part A, what is the relation of the time delay on the output to the length of the

channel impulse response and/or equalizer response?

Q2. An ideal ZF equalizer would require an infinite number of taps to perfectly cancel all

ISI in a channel. Why would it be computationally infeasible to create an equalizer with

an incredibly large number of taps to approximate this?

Q3. Assuming it were possible to create an equalizer with thousands of taps that is

computable in a reasonable amount of time, why might it still not be a good idea to do

this in a real system?

Q4. In wireless communications, the channels are no longer completely static, which

means that h(t) can change with time as the transmitter, receiver, or other objects move

around. What are some possible difficulties with designing an equalizer under these

conditions?

110

VITA

Brice Aaron Hirst was born in the town of St. Louis, Missouri on the date of June

16, 1988. He graduated from Sacred Heart High School in Sedalia, Missouri in the year

2006, and received an Associate of Arts with Highest Honors from State Fair Community

College in Sedalia in 2008. He graduated Summa Cum Laude with a bachelor‟s degree in

Electrical Engineering from the Missouri University of Science & Technology in the year

2011, and was a student member of IEEE as well as a 3-year member of the Phi Kappa

Phi Honor Society. He received his Master‟s degree in Electrical Engineering from the

Missouri University of Science and Technology in December of 2012.

111

