
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Spring 2013

Parallel-connected solar arrays Parallel-connected solar arrays

Majed Meshal Alabbass

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Electrical and Computer Engineering Commons

Department: Department:

Recommended Citation Recommended Citation
Alabbass, Majed Meshal, "Parallel-connected solar arrays" (2013). Masters Theses. 5369.
https://scholarsmine.mst.edu/masters_theses/5369

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5369&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5369&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/5369?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F5369&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

PARALLEL-CONNECTED SOLAR ARRAYS

by

MAJED MESHAL ALABBASS

A THESIS

Presented to the Faculty of the Graduate School of the

MISSOURI UNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

2013

Approved by

Dr. J. W. Kimball, Advisor

Dr. M. Ferdowsi

Dr. S. Baur

 2013

MAJED MESHAL ALABBASS

All Rights Reserved

iii

ABSTRACT

The purpose of this thesis is to investigate the advantages of having various

series-parallel configurations of solar arrays and make a comparison between them. The

objective is to determine the best PV system configuration and thus improve the overall

efficiency of a solar array. The primary focus of this thesis is to study the parallel

connection of PV panels for achieving maximum efficiency while extracting maximum

energy from the solar radiation. A comparison between a series connected and a parallel

connected solar PV array justifies the need for installing a parallel configured solar PV

array to achieve optimum performance. The DC-DC converter plays an important role in

delivering maximum power to the load. A solar sensor array was used to monitor the

solar radiation under various climatic conditions. Data saved using these sensors was then

analyzed using software developed with MATLAB’s Graphical User Interface (GUI)

platform. The PV-cell equations cannot be solved with the ordinary numerical method

due to both the complexity and their non-linearity. These calculation were simplified

through using the Newton-Raphson (NR) method along with other numerical

approximation approaches. The software package is capable of displaying a number of

curves including the I-V characteristic, the output power, and the output energy of the

PV-panels for different configurations. Various scenarios were simulated and compared

under different climatic conditions. The proposed method for parallel configured PV

panel was found to be an alternative to existing methods.

iv

ACKNOWLEDGEMENTS

First and foremost, it is with immense gratitude that I acknowledge the support

and help of my research advisor, Dr. Kimball. Dr. Kimball continually conveyed a spirit

of adventure with regard to both my research and motivation. He inspired and encouraged

me to my work on this project. His guidance has helped me throughout this project. I

would not have been able to complete this project successfully without his support.

 Besides my advisor, I sincerely thank the members of the supervisory committee,

Dr. Baur and Dr. Ferdowsi, for their encouragement and insightful comments. They gave

me the moral support and the freedom I needed to move on.

 Moreover, I am deeply grateful to the Saudi Arabian Cultural Mission (SACM)

for the research assistantship they provided. I must also thank the National Science

Foundation for supporting this work under award ECCS-0900940. Finally, I want to

express my sincerest and deepest gratitude to AL Jouf University for awarding me with a

full scholarship to pursue my degree.

Last but not the least, I would like to thank my family and friends. Special thanks

to the spirit of my precious mother and to my father for his countless efforts, support,

guidance, motivation, and inspiration. His patient love and encouragement enabled me to

complete this project. His unconditional support, both financially and emotionally,

throughout my degree has been greatly appreciated.

v

TABLE OF CONTENTS

 Page

ABSTRACT ... iii

ACKNOWLEDGEMENTS ... iv

LIST OF ILUSTRATIONS .. vii

LIST OF TABLES ... ix

SECTION

1. INTRODUCTION ... 1

1.1. LITERATURE REVIEW ... 2

1.1.1 PV Model ... 2

1.1.2 The Effect of Changing the PV Model Parameters 5

1.1.3 Maximum Power Point Tracking (MPPT) ... 9

2. EXPERIMENTAL METHODOLOGY .. 13

3. SOFTWARE DEVELOPMENT ... 16

3.1. SOFTWARE THEORY OF OPERATION ... 20

3.1.1. Input ... 20

3.1.2 Analysis .. 20

3.1.3 Case Study .. 21

4. CALCULATED PERFORMANCE .. 28

4.1. SCENARIO 1 ... 28

4.2. SCENARIO 2 ... 35

vi

4.3. SCENARIO 3 ... 42

4.4. SCENARIO 4 ... 49

5. CONCLUSIONS ... 57

APPENDIX ... 59

REFERENCES ... 95

VITA ... 98

vii

LIST OF ILUSTRATIONS

 Page

Figure 1.1 Equivalent Circuit of a PV Cell ... 3

Figure 1.2 Effects of Solar Radiation Variation ... 6

Figure 1.3 Effects of Shunt Resistance Variation ... 7

Figure 1.4 Effects of Series Resistance Variation .. 8

Figure 1.5 DC-DC Converters Across Each PV Panel [18] ... 11

Figure 1.6 Micro-inverter Across Each PV Panel [18] ... 11

Figure 1.7 Parallel Connected with DC-DC Converters across Each PV Panel 12

Figure 2.1 Solid Line Represents the Schematic Diagram of the Sensor Circuit Board

and the Dash Line Represents the Actual Size of Kyocera Modules 13

Figure 2.2 Schematic Diagram of the Sensor Circuit Board .. 14

Figure 3.1 Main Menu .. 17

Figure 3.2 Insolation Menu ... 18

Figure 3.3 Editor for Entry.. 18

Figure 3.4 Main Menu .. 21

Figure 3.5 PV Module Selection Pop-up Menu .. 22

Figure 3.6 Parameter Entry Interface .. 23

Figure 3.7 Insolation Menu ... 24

Figure 3.8 Random Generation ... 25

Figure 3.9 Manual Insolation Input .. 25

Figure 3.10 Random Sun Radiation Value ... 26

Figure 3.11 Editor for Entry.. 26

Figure 3.12 I-V Characteristic Curves .. 26

Figure 3.13 Power versus Voltage Curve ... 27

Figure 3.14 Power versus Current Curve .. 27

Figure 4.1 The Insolation Data as a Function of time... 29

Figure 4.2 Array Characteristics of (2S4P) Without IPC ... 30

Figure 4.3 Array Characteristics of (1S8P) ... 31

Figure 4.4 Array Characteristics of (4S2P) ... 32

Figure 4.5 Array Characteristics of (8S1P) ... 34

viii

Figure 4.6 %Theoretical vs. Resistance .. 35

Figure 4.7 The Insolation Data as a Function of Time ... 36

Figure 4.8 Array Characteristics of (2S4P) Without IPC ... 37

Figure 4.9 Array Characteristics of (1S8P) ... 38

Figure 4.10 Array Characteristics of (4S2P)... 39

Figure 4.11 Array Characteristics of (8S1P)... 41

Figure 4.12 %Theoretical vs. Resistance .. 42

Figure 4.13 The Insolation Data as a Function of Time ... 43

Figure 4.14 Array Characteristics of (2S4P) Without IPC ... 44

Figure 4.15 Array Characteristics of (1S8P)... 45

Figure 4.16 Array Characteristics of (4S2P)... 46

Figure 4.17 Array Characteristics of (8S1P)... 48

Figure 4.18 %Theoretical vs. Resistance .. 49

Figure 4.19 The Insolation Data as a Function of Time ... 50

Figure 4.20 Array Characteristics of (2S4P) Without IPC ... 51

Figure 4.21 Array Characteristics of (1S8P)... 52

Figure 4.22 Array Characteristics of (4S2P)... 53

Figure 4.23 Array Characteristics of (8S1P)... 55

Figure 4.24 %Theoretical vs. Resistance .. 56

ix

LIST OF TABLES

 Page

Table 3.1 The Panels Saved in the Software ... 23

Table 4.1 The Difference in the Output Energy (2S4P and 1S8P) 30

Table 4.2 The Difference in the Output Energy (4S2P and 1S8P) 32

Table 4.3 The Difference in the Output Energy (8S1P and 1S8P) 33

Table 4.4 The Difference in the Output Energy (2S4P and 1S8P) 37

Table 4.5 The Difference in the Output Energy (4S2P and 1S8P) 39

Table 4.6 The Difference in the Output Energy (8S1P and 1S8P) 40

Table 4.7 The Difference in the Output Energy (2S4P and 1S8P) 44

Table 4.8 The Difference in the Output Energy (4S2P and 1S8P) 46

Table 4.9 The Difference in the Output Energy (8S1P and 1S8P) 47

Table 4.10 The Difference in the Output Energy (2S4P and 1S8P) 51

Table 4.11 The Difference in the Output Energy (4S2P and 1S8P) 53

Table 4.12 The Difference in the Output Energy (8S1P and 1S8P) 54

1. INTRODUCTION

Nature possesses several renewable energy resources. Of these renewable

resources, solar energy is considered to be the most pure form of energy, as it can be

utilized without producing any hazardous waste. The amount of solar energy available is

highly dependent on the geographic locations. Some regions receive high solar radiation

while others receive only partial radiation. Solar energy however has now been used

everywhere to meet both industrial and domestic needs. The amount of solar radiation

per unit area of earth is approximately 1000 2/W m [1]. This amount of energy is quite

high. Thus, many researchers are working diligently to find the most efficient method

possible to utilize this clean energy source.

Statistics [2] show that due to an increased interest in solar energy, by many

developed countries, the number of installed solar facilities has increased over the last

five years. Germany, Spain, Japan, and the United States are all producing a large amount

of energy from solar resources. Germany is producing 9783 MW from solar resources

followed by Spain and Japan which are producing 3386MW and 2633 MW respectively.

United States is producing around 1650 MW utilizing solar radiations.

In 2011, the renewable power consumption grew to 17.7% worldwide. This

energy produced approximately 3.9% of the world’s electricity. The production of solar

power grew 73% in 2011, more than 10 times that of the previous five years combined

[3]. Through various foreign investments, Saudi Arabia is currently working to increase

2

its solar power through various projects in the desert areas where there is no shortfall of

sunshine.

Between 1990 and 2009, the number of solar manufacturers increased rapidly in

the United States; the number of solar panels shipped grew from 3645 to 10,511 [2].

These statistics indicate how quickly the world is shifting from fossil fuels to renewable

energy, especially solar energy. The mobilization of solar power has increased rapidly as

well. International manufactures that were supplying solar panels are decreasing as the

number of locally manufactured solar panels is increasing.

Though renewable energy is developed rapidly, it still needs to be further

researched and developed. When compared to conventional methods, solar power still

lacks both reliability and efficiency. This work studied several PV configurations to

determine the best PV system configuration and thus improve the efficiency of solar

arrays. Different PV configurations were simulated using MATLAB. The data used was

measured with sensors and saved in an Excel file.

1.1. LITERATURE REVIEW

1.1.1 PV Model. The solar cell is based on various semiconductor materials.

These materials convert solar energy into electricity, also known as the photovoltaic

effect. A 10 × 10 cm silicon solar cell under sunlight will produce approximately 0.5V.

Multiple solar cells are connected in a series to form a PV module, thus increase this

voltage output [4]. Multiple PV modules are connected together to build both PV panels

3

and PV arrays (a connection of multiple panels). These arrays can be placed on rooftops

for power generation.

 Various studies have been conducted to identify the best PV cell model available

[5-7]. According to previous scholarly work, the most common models used are the

single diode and the double diode [5]. The single diode contains a current source in

parallel to a diode. Both series and shunt resistance were added to model the loss

mechanism inside the PV cell. The equivalent circuit is illustrated in Figure 1.1.

Figure 1.1 Equivalent Circuit of a PV Cell

This equivalent circuit depends on five main parameters:
phI , oI , sR , SHR , and A ,

where
phI is the photo generated current, oI is the dark saturation current, sR is the panel

series resistance, SHR is the panel parallel (shunt) resistance, and A is the diode quality

(ideality) factor.

The single exponential model based current-voltage characteristic of a PV panel is

 (1)

s

s t

v iR

n V s
ph o

sh

v iR
i I I e

R

 (1)

4

where STC
t

AkT
V

q
 is the junction thermal voltage, k is Boltzmann’s constant, q is the

electron charge, and
sn is the number of cells in the panel connected in a series.

Five equations must be solved to determine the five unknown parameters.

When SCi I and 0v ,

sc s

s t

I R

n v sc s
SC ph o

sh

I R
I I I e

R
 (2)

When maxi I and
mppv V ,

mpp mpp s

mpp ss t

V I R

mpp I Rn v

mpp ph o

sh

v
I I I e

R

 (3)

When ocv V and 0i ,

 0

oc

s t

v

n v oc
oc ph o

sh

V
I I I e

R
 (4)

The derivative of power with voltage equal to zero at MPP when
mppi I and

mppv V
,

 0
dP

dV
 (5)

The derivative of the current with voltage (when SCi I) can be calculated using shunt

resistance ShR :

1

Sh

dI

dV R
 (6)

5

Five PV parameters can be determined by solving the above five equations, i.e.,

equations (2-6). Equation (1) must be solved to find the PV characteristic curves. This

equation is non-linear and hence complex to solve using ordinary numerical method. As a

result, the Newton-Raphson algorithm is proposed to find the PV characteristic curves.

Many researchers have explained the effect of shading in a PV system [8, 9]. Gao

and Dougal [8] explained the parallel-connected PV-system under a shadow condition.

The output of an entire string within a conventional series configuration will be affected

by shading one module. If no bypass diodes exist, the output from the entire series-

connected panel will be reduced. If the bypass diodes are connected, the output of the

shaded module will be lost. Reducing the output energy in one string will cause difficulty

while tracking the Maximum Power Point (MPP) due to the existence of multiple local

MPP.

1.1.2 The Effect of Changing the PV Model Parameters. The existing literature

discusses the effect of changing the PV cell parameters and checks the output of PV cell

in different insolation levels [7] as below:

 According to above equation (1), when the photo-generated current

decreases (which depends on the solar radiation), the output current will

also decrease.

 Figure 1.2 illustrates that the PV system is strongly dependent on solar

radiation.

 Figure 1.3 illustrates that the shunt resistor (ShR) needs to be large for

more output power.

6

 Figure 1.4 illustrates the effects of the series resistance (SR) variation.

This resistance needs to be low for a higher output to be produced.

(a) Current-Voltage Curves

 (b) Power-Voltage Curves

Figure 1.2 Effects of Solar Radiation Variation

7

(a) Current-Voltage Curves

(b) Power-Voltage Curves

Figure 1.3 Effects of Shunt Resistance Variation

8

(a) Current-Voltage Curves

(b) Power-Voltage Curves

Figure 1.4 Effects of Series Resistance Variation

9

1.1.3 Maximum Power Point Tracking (MPPT). Numerous MPPT approaches

have been implemented and discussed in the literature. It is difficult to over emphasize

the importance of MPPT in a PV system. The basic concept of the MPPT is to operate at

both
MPPI and

MPPV to obtain the most output power from a PV system at MPP. Esram and

Chapman [10] summarized and classified various methods in 2007 referring to 90

journal/conference papers. Several others papers have been published since then.

Choosing the most appropriate MPPT technique depends on the application, budget, and

the user’s knowledge. Some methods require a background in programming. Others

require extensive knowledge in analog circuitry. For example, the performance and

efficiency of an orbital space station are far more important than complexity and cost.

Tracking the MPP under a shading condition is complex; more than one MPP

exists in the characteristic curves of the PV array. Tracking the real MPP when multiple

local maxima exist is difficult with conventional methods. References [11-13] have

discussed tracking an MPP in a PV array under the shading condition when several local

maxima appear. These complex methods could be replaced by more efficient methods

(discussed later in this thesis). One method suggests applying an individual MPPT across

each PV panel to remove multiple local maxima problems. The other method is the

parallel PV configuration with just one real MPP.

 Perturbation and Observation is one of the most known commonly used MPPT

methods [10, 14]. This method is preferred because it offers easy implementation. This

method also has the ability of tracking the maximum power point of solar arrays under a

large variation of atmospheric conditions such as array temperature or solar radiation.

The P-V curve illustrates that, if either the voltage or the current is increasing, the output

10

power of the PV panel will increase as well until it reaches the MPP. After reaching the

MPP, further increase in either the voltage or the current will decrease the output power.

The concept here is to periodically add a perturbation (either an increase or a decrease) to

the array terminal voltage (or current) and observe the output power in response to that

perturbation. If the output power increases, a perturbation in the same direction will be

added. If the output power decreases, a perturbation in the opposite direction will be

added. This algorithm is repeated until the MPP is reached.

Connecting either the DC-DC converters or the micro-inverters across each PV

panel would allow the array to operate in its MPP under shading conditions [15-17]. Petit

and Aillerie [15], discussed the connection of DC-DC converters individually across each

PV panel as illustrated in Figure 1.5. The purpose of this converter is to generate the

optimum DC voltage of each PV panel, thereby adapting the rated voltage of the DC-AC

inverter of the entire array. Petrone and has team [17], depicted the micro-inverter

method as illustrated in Figure 1.6 that is, primarily, dedicated to a grid connected to a

PV system. In this case, the micro-inverter is connected to each PV panel in the charge of

boosting the low DC voltage of the panel to peak value of the AC grid.

11

Central
Inverter Grid

DC/
DC

DC/
DC

DC/
DC

DC/
DC

DC/
DC

DC/
DC

DC/
DC

DC/
DC

DC/
DC

Figure 1.5 DC-DC Converters Across Each PV Panel [18]

Figure 1.6 Micro-inverter Across Each PV Panel [18]

12

In this thesis a different method was suggested which allows the array to operate

in its MPP under shading condition and improves the efficiency. The proposed method

suggests connecting panels in parallel with DC-DC converters across each PV panel as

illustrated in Figure 1.7. A comparison between this method and the conventional series

configured PV panel is studied in this thesis. The comparison helps to find the advantage

of this method to validate our assumption and identify the effectiveness of this method.

Figure 1.7 Parallel Connected with DC-DC Converters across Each PV Panel

13

2. EXPERIMENTAL METHODOLOGY

This section focuses on the structure of the sensor array used to capture solar

radiation. This work was done by Faris Alfaris [19] and Beth Yount [20]. The sensor

array used for this project was designed to be the same physical size as the 24 Kyocera

KD135GX 125W panels setup in a traditional series parallel configuration. The array was

constructed with both hinges and adjustable legs to collect the data at 0
o

and 26
o
, ending

up being pitch of a typical household roof. The array was 17.5 ft. x 10 ft. 24 sensors

were spread over the array and arranged in three rows: A, B, and C as shown in Figure

2.1

3.25 ft

5
 f

t

4
.9

 f
t

1
0
 f

tA
N

EM
O

M
ETER

C
A

M
ER

A

SEN
SO

R
 B

O
X

ES

H
IN

G
E

D
A
G
’S

G
R

O
U

N
D

IN
G

R
O

D

H
IN

G
E

Figure 2.1 Solid Line Represents the Schematic Diagram of the Sensor Circuit Board and

the Dash Line Represents the Actual Size of Kyocera Modules

14

Each sensor consisted of a solar cell, a circuit board, a 9V dry battery, and a

CAT5e cable. All solar cells were typical and made by Solar Made [21] with 0.5V and

100mA rated voltage and current, respectively. Each solar cell was 2.5 cm. x 2 cm. The

circuit board was designed to read four main quantities: short circuit current, open circuit

voltage, load current, and weather temperature. These four values were transmitted to

DAQs (Data Acquisition Systems) through a CAT5e cable to be recorded in a compact

flash memory every other second. The schematic diagram of the circuit board is

illustrated in Figure 2.2.

Figure 2.2 Schematic Diagram of the Sensor Circuit Board

All sensors were placed in a plastic box with a clear cover to allow maximum

radiation. This box also protected sensors from the weather. The DAQs used were R-

Engine-A programmable controller and produced by Tern Inc. [22]. The collected data

15

was saved in compact flash cards in Microsoft Excel spreadsheet format as a .csv

extension. Stored files were analyzed in detail using MATLAB. Both current and voltage

were transmitted (a short circuit current, a load current, open circuit voltage and

temperature).

16

3. SOFTWARE DEVELOPMENT

Software was developed to process the data that is obtained from experiments.

This software was developed using MATLAB with a GUI (graphical user interface). A

GUI allows users to perform tasks interactively through controls, such as buttons and

sliders. When used with MATLAB, a GUI allows the user to perform a number of

operations on the plotted diagrams such as creating, designing, editing and enlarging the

plots. This GUI also allows other operations such as curves, surfaces fitting and the

analyzing and filtering the signals. As the phrase “user interface” indicates, the GUIs can

be used within MATLAB or they can be run and operated separately outside the

MATLAB [23]. However, the software only uses the GUI inside MATLAB.

The equations of photovoltaic (PV) currents, voltages and other parameters are

cumbersome and time consuming when evaluated by ordinary numerical methods. The

computation of these methods is made easy and less time consuming with the help of the

designed software. This software is capable of taking sun radiation data as its input and

produces an output that defines and describes the electrical characteristics curves of the

entire panels.

Earlier work from Nisha Nagarajan [24] was analyzed and after careful

considerations, the following solution is suggested that is thoroughly complete, has

reduced time complexity and increased user-friendliness. The project includes 13

MATLAB scripts, each capable of calling the other. The function of each script is

described below in detail:

17

1 Main Menu: The first file must be run to input some necessary information. This

information should be defined before all of the files are run. User uses this menu

to input the critical data that will be used in later modules. The common decisions

made in this menu are:

a. Type of panel to simulate,

b. Number of panels are in series

c. Number of strings are in parallel

d. Use of a converter

e. The resistance and the gain of the converter incase if user chooses to work with

the converter.(This kind of converter is a good model of the switched capacitor

converter [25].)

Figure 3.1 Main Menu

18

2. Insolation Menu: After the type and the configuration of the panel are chosen,

the user is taken to insolation menu. The insolation menu provides following

choices to input the sun radiations data: a) random, b) manual c) read from a

file.

Figure 3.2 Insolation Menu

3. InputMatrix: The interface below will appear, if the user chooses to input the data

manually.

Figure 3.3 Editor for Entry

19

4. Random: If the user wants to run the software with random data, he/she needs to

choose the maximum and minimum values of the insolation (scaled from 0 to 1,

representing 0 to 1000 W/m
2
). The software will generate random insolation in

display.

5. Ifcustom: If the user does not choose one of the panels saved in the software,

he/she must both define and input the required parameters he/she wants to

simulate.

6. Irradiation: This file performs further operations, according to the choice taken in

the ‘Insolation Menu’. In case user chooses to access the data from Excel file, the

Excel file must be saved with .csv (comma-separated values) extension.

7. Power Calculations: The main file is capable of taking all of the input data from

the previous files. This file calls the rest of the files to makes the necessary

calculations for the power and display the result.

8. Set Parameters: All of the input parameters that have been read before (e.g.

resistance, gain, numPanels, sun radiation, Isc, Voc, numCells, A, Rs and Rsh)

work as an input to this file. These parameters are then arranged in a Matrix form.

9. Series Calculation: The series calculation file calculates both the current and the

voltage for series-connected PV panels.

10. Newton PV: The Newton PV file will be called by a Series Calculation to solve

the equation using Newton’s method.

20

11. Current Calculation: The current calculation solves the PV equations using the

‘fzero’ function.

12. Auxiliary: The auxiliary file is used to arrange the equations within a current’s

function to solve it using a Current Calculation.

13. Differential Calculation: A differential calculation file is used to input values to

the Jacobian matrix necessary for calculations.

3.1. SOFTWARE THEORY OF OPERATION

3.1.1. Input. ‘Main Menu’ is the first file that needs to be run. The outputs from

the ‘Main Menu’ are the type of the panel, the number of the panel in a series, and the

strings in parallel. At the end of the ‘Main Menu’, the ‘Insolation Menu’ file will be

called. The function of ‘Insolation Menu’ is to choose from where the data needs to be

read (Excel file, random generated, manually entered). The ‘Insolation Menu’ file will

call the main file, called ‘Power Calculations’. The software will take all of the input data

and call the Irradiation file. The software will then either execute function ‘Rand (Max,

Min)’ or Read the data from Excel file, or read the data from the input matrix.

 3.1.2 Analysis. Suppose the software is still running in ‘Power Calculations’.

‘Power Calculations’ read the data from the previous files and then do the analyses. The

term ‘ti’ is the number of samples that are read from the excel file. Analysis for every

sample is accomplished before the maximum value is taken. The current-voltage

calculation is done for every ‘ti’. A separate file called ‘Set Parameter’ is also called to

arrange all of the parameters in to a matrix form. Once complete, the ‘Series Calculation’

will be called to calculate both the current and the voltage for all of the panels within the

21

series. Both the output current and the voltage (for the entire panels) will be calculated

after the series connection is calculated.

3.1.3 Case Study. For the clarification of the description above, case study is now

presented below. When the software is run, Main Menu appears as shown in Figure 3.4.

The user enters parameters in to the input boxes before pressing the OK button. The type

of panel can also be selected by the user at this menu.

Figure 3.4 Main Menu

This software can offer five standard photovoltaic modules, as shown in Figure

3.5. The selection button is offers the user five pre-defined panels. The last selection is a

22

custom module representing an undefined panel. If the user prefers to choose custom

module, Parameter entry interface appears as shown in Figure 3.6. The parameters for

defined panels are given in Table3.1.

Figure 3.5 PV Module Selection Pop-up Menu

23

Figure 3.6 Parameter Entry Interface

Table 3.1 The Panels Saved in the Software

 SCI
 mppV

 mppI
 ocV

No of

Cells

Rated

Power

Uni-Solar 68

5.1 16.5 4.1 23.1 11 68

BP Solar 75

4.7 17.3 4.3 21.8 36 75

Sun Electronics 120

7.62 17.27 6.95 21.34 45 120

SunPower 215

5.8 39.8 5.4 48.3 72 215

Kyocera 215 8.78 26.6 8.09 33.2 54 215

Custom User can define parameters of any panel

24

The Uni-Solar 68 panel was selected as the sample for this case study to perform

the simulation process without making use of any inverter. At the beginning, both the

configuration and panel type are selected by the user. Next, Insolation menu appears as

shown in Figure 3.7. Where the following options are available: 1) take data from the file,

2) generate random insolation using a MATLAB built-in function, and 3) define

manually.

In the first simulation, Insolation data was generated randomly; the user had to

enter data in the range of 0 to 1 which represent 0 to 1000 W/ solar radiation. In the

second simulation data was entered manually.

 Figure 3.7 Insolation Menu

In Figure 3.8, the user asked the software to generate insolation randomly. In

Figure 3.9, the user entered the insolation data manually.

25

Figure 3.8 Random Generation

Figure 3.9 Manual Insolation Input

Random Insolation generated was between 800W/m
2
 and 1000W/m

2
, as defined

by the user. The value selected by the software was 855.6996W (see Figure 3.10). The

editor can also enter the sun radiations value manually (see Figure 3.11).

26

Figure 3.10 Random Sun Radiation Value

Figure 3.11 Editor for Entry

 After having the PV configuration and the data, the software will present user

with the output as in Figures 3.12-3.15.

Figure 3.12 I-V Characteristic Curves

27

Figure 3.13 Power versus Voltage Curve

Figure 3.14 Power versus Current Curve

28

4. CALCULATED PERFORMANCE

The goal of this work was to determine the best possible solar panel

configuration. Various scenarios were studied to accomplish this task. Each scenario was

based on a different climatic condition. Outputs from each scenario were formulated in

tables. These tables illustrate the percentage difference of the output energy, in various

configurations, of a solar array (series-parallel and parallel-connection with an IPC). This

difference was calculated using

where Es is the output energy for 2S4P, 4S2P, and 8S1P. Ep is the output energy of 1S8P

connected to an IPC. “2S4P” is 2 series panels per string on 4 parallel strings.

4.1. SCENARIO 1

The data taken from the sensor array on June 3, 2012 is analyzed in Scenario 1.

Figure 4.1 illustrates the radiation measured from the sensors used in the analysis. Panel

Uni-Solar 68 was used in the simulation. A total of 532 samples from the sensors were

used. Each sample was picked in every 2 minutes.

29

Figure 4.1 The Insolation Data as a Function of time

Case 1: The first case in Scenario 1 compared the 2S4P configuration without an

IPC connection to 1S8P configuration with each panel connected to an IPC. The

difference in output energy can be seen in Table 4.1. The output energy for 1S8P with an

IPC is 3.436% (with the 0.8736Ω resistor) more than 2S4P without an IPC. The

characteristic curves of PV panels 2S4P and 1S8P are given in Figure 4.2 and 4.3

respectively.

30

Table 4.1 The Difference in the Output Energy (2S4P and 1S8P)

Number

of Panels

in Series

Number of

Strings in

parallel

Gain Resistance
The

Energy

%

difference

No IPC 2 4 N/A N/A 9064200 N/A

With

IPC
N/A 8 10

40 8894640 -1.870

30 9008880 -0.610

16 9183840 1.319

8.736 9276000 2.336

4 9336240 3.001

2 9361560 3.280

0.8736 9375720 3.436

0.6 9379080 3.473

0.5 9380400 3.488

0.25 9383520 3.522

0.1 9385440 3.544

(a)

(b)

(c)

(d)

Figure 4.2 Array Characteristics of (2S4P) Without IPC

31

(a)

(b)

 (c)

(d)

Figure 4.3 Array Characteristics of (1S8P)

Case 2: The second case in Scenario 1 shows the difference between the

configuration of a 4S2P without an IPC and a 1S8P with an IPC. The output energy of a

4S2P is less than 2S4P. So, there is more percentage difference in energy between 4S2P

and 1S8P compared to 2S4P and 1S8P as shown in Table 4.2. In this scenario 4S2P and

1S8P will result 1.5~3.7% energy difference while 2S4P and 1S8P will result 1.3~3.5%

energy difference. The characteristic curves of the PV panel 2S4P can be seen in Figure

4.4.

32

Table 4.2 The Difference in the Output Energy (4S2P and 1S8P)

Number

of Panels

in Series

Number

of Strings

in parallel

Gain Resistance
The

Energy

%

difference

No IPC 4 2 N/A N/A 9043440 N/A

With

IPC
N/A 8 10

40 8894640 -1.645

30 9008880 -0.382

16 9183840 1.552

8.736 9276000 2.571

4 9336240 3.237

2 9361560 3.517

0.8736 9375720 3.674

0.6 9379080 3.711

0.5 9380400 3.726

0.25 9383520 3.760

0.1 9385440 3.781

(a)

(b)

(c)

(d)

Figure 4.4 Array Characteristics of (4S2P)

33

Case 3: The third case in Scenario 1 illustrates the difference between the

configuration of an 8S1P without an IPC and a 1S8P with an IPC. The output energy of

a 1S8P is less than that of a 4S2P. So, there is more percentage difference in energy

between 8S1P and 1S8P compared to 4S2P and 1S8P as shown in Table 4.3. In this

scenario 4S2P and 1S8P will result 1.3~3.5% energy difference while 8S1P and 1S8P

will result 1.684~3.916% energy difference. The characteristic curves of the PV panel

2S4P can be seen in Figure 4.5.

Table 4.3 The Difference in the Output Energy (8S1P and 1S8P)

Number

of Panels

in Series

Number

of Strings

in parallel

Gain Resistance
The

Energy

%

difference

No IPC 8 1 N/A N/A 9031680 N/A

With

IPC
N/A 8 10

40 8894640 -1.517

30 9008880 -0.252

16 9183840 1.684

8.736 9276000 2.705

4 9336240 3.372

2 9361560 3.652

0.8736 9375720 3.809

0.6 9379080 3.846

0.5 9380400 3.861

0.25 9383520 3.895

0.1 9385440 3.916

34

(a)

(b)

 (c)

(d)

Figure 4.5 Array Characteristics of (8S1P)

The theoretical energy from eight individual panels (if individually connected to

MPPTs) was calculated to be 9,403,764 J. Figure 4.6 represents the output energy of the

entire configurations: 2S4P, 4S2P, 8S1P and 1S8P divided by the theoretical value. The

output energy of a 1S8P is seen decreasing as the resistance of the IPC increases.

35

Figure 4.6 %Theoretical vs. Resistance

4.2. SCENARIO 2

The data taken from the sensor array on June 15, 2012 is analyzed in Scenario 2.

Figure 4.7 illustrates the radiation measured from the sensors used in the analysis.

Panel Uni-Solar 68 was used in the simulation. A total of 532 samples from the

sensors were used. Each sample was picked in every 2 minutes.

36

Figure 4.7 The Insolation Data as a Function of Time

Case 1: The first case in Scenario 2 compared the 2S4P configuration without an

IPC connection to 1S8P configuration with each panel connected to an IPC. The

difference in output energy can be seen in Table 4.4. The output energy for 1S8P with an

IPC is 1.264% (with the 0.8736Ω resistor) more than 2S4P without an IPC. The

characteristic curves of PV panels 2S4P and 1S8P are given in Figure 4.8 and 4.9

respectively.

37

Table 4.4 The Difference in the Output Energy (2S4P and 1S8P)

Number

of Panels

in Series

Number

of Strings

in parallel

Gain Resistance
The

Energy

%

differenc

e

No

IPC
2 4 N/A N/A 9422640 N/A

With

IPC
N/A 8 10

40 9034320 -4.121

30 9155760 -2.832

16 9340320 -0.873

8.736 9437640 0.159

4 9500760 0.829

2 9527040 1.107

0.8736 9541800 1.264

0.6 9545400 1.302

0.5 9546720 1.316

0.25 9549960 1.351

0.1 9552000 1.372

(a)

(b)

 (c)

(d)

Figure 4.8 Array Characteristics of (2S4P) Without IPC

38

(a)

(b)

 (c)

(d)

Figure 4.9 Array Characteristics of (1S8P)

Case 2: The second case in Scenario 2 shows the difference between the

configuration of a 4S2P without an IPC and a 1S8P with an IPC. The output energy of a

4S2P is less than 2S4P. So, there is more percentage difference in energy between 4S2P

and 1S8P compared to 2S4P and 1S8P as shown in Table 4.5. In this scenario 4S2P and

1S8P will result 0.617~1.837% energy difference while 2S4P and 1S8P will result

0.159~1.372% energy difference. The characteristic curves of the PV panel 2S4P can be

seen in Figure 4.10.

39

Table 4.5 The Difference in the Output Energy (4S2P and 1S8P)

Number

of Panels

in Series

Number

of Strings

in parallel

Gain Resistance
The

Energy

%

difference

No IPC 4 2 N/A N/A 9379680 N/A

With

IPC
N/A 8 10

40 9034320 -3.682

30 9155760 -2.387

16 9340320 -0.419

8.736 9437640 0.617

4 9500760 1.290

2 9527040 1.571

0.8736 9541800 1.728

0.6 9545400 1.766

0.5 9546720 1.780

0.25 9549960 1.815

0.1 9552000 1.837

(a)

(b)

(c)

(d)

Figure 4.10 Array Characteristics of (4S2P)

40

Case 3: The third case in Scenario 2 illustrates the difference between the

configuration of an 8S1P without an IPC and a 1S8P with an IPC. The output energy of a

1S8P is less than that of a 4S2P. So, there is more percentage difference in energy

between 8S1P and 1S8P compared to 4S2P and 1S8P as shown in Table 4.6. In this

scenario 4S2P and 1S8P will result 0.159~1.372% energy difference while 8S1P and

1S8P will result 0.843~2.065% energy difference. The characteristic curves of the PV

panel 2S4P can be seen in Figure 4.11.

Table 4.6 The Difference in the Output Energy (8S1P and 1S8P)

Number

of Panels

in Series

Number

of Strings

in

parallel

Gain Resistance
The

Energy

%

difference

No IPC 8 1 N/A N/A 9358680 N/A

With

IPC
N/A 8 10

40 9034320 -3.465

30 9155760 -2.168

16 9340320 -0.196

8.736 9437640 0.843

4 9500760 1.518

2 9527040 1.798

0.8736 9541800 1.956

0.6 9545400 1.995

0.5 9546720 2.009

0.25 9549960 2.043

0.1 9552000 2.065

41

(a)

(b)

 (c)

(d)

Figure 4.11 Array Characteristics of (8S1P)

The theoretical energy from eight individual panels (if individually connected to

MPPTs) was calculated to be 9,564,108 J. Figure 4.12 represents the output energy of the

entire configurations: 2S4P, 4S2P, 8S1P and 1S8P divided by the theoretical value. The

output energy of a 1S8P is seen decreasing as the resistance of the IPC increases.

42

Figure 4.12 %Theoretical vs. Resistance

4.3. SCENARIO 3

The data taken from the sensor array on September 16, 2012 is analyzed in

Scenario 3. Figure 4.13 illustrates the radiation measured from the sensors used in the

analysis. Panel Uni-Solar 68 was used in the simulation. A total of 532 samples from

the sensors were used. Each sample was picked in every 2 minutes.

43

Figure 4.13 The Insolation Data as a Function of Time

Case 1: The first case in Scenario 3 compared the 2S4P configuration without an

IPC connection to 1S8P configuration with each panel connected to an IPC. The

difference in output energy can be seen in Table 4.7. The output energy for 1S8P with an

IPC is 0.28% (with the 0.8736Ω resistor) more than 2S4P without an IPC. The

characteristic curves of PV panels 2S4P and 1S8P are given in Figure 4.14 and 4.15

respectively.

44

Table 4.7 The Difference in the Output Energy (2S4P and 1S8P)

Number

of Panels

in Series

Number of

Strings in

parallel

Gain Resistance
The

Energy

%

difference

No IPC 2 4 N/A N/A 4446360 N/A

With

IPC
N/A 8 10

40 4314960 -2.955

30 4351800 -2.126

16 4403280 -0.968

8.736 4430040 -0.367

4 4447440 0.024

2 4454760 0.188

0.8736 4458840 0.280

0.6 4459800 0.302

0.5 4460160 0.310

0.25 4461120 0.331

0.1 4461600 0.342

(a)

(b)

 (c)

(d)

Figure 4.14 Array Characteristics of (2S4P) Without IPC

45

(a)

(b)

 (c)

(d)

Figure 4.15 Array Characteristics of (1S8P)

Case 2: The second case in Scenario 3 shows the difference between the

configuration of a 4S2P without an IPC and a 1S8P with an IPC. The output energy of a

4S2P is less than 2S4P. So, there is more percentage difference in energy between 4S2P

and 1S8P compared to 2S4P and 1S8P as shown in Table 4.8. In this scenario 4S2P and

1S8P will result 0.221~0.540% energy difference while 2S4P and 1S8P will result

0.024~0.342% energy difference. The characteristic curves of the PV panel 2S4P can be

seen in Figure 4.16.

46

Table 4.8 The Difference in the Output Energy (4S2P and 1S8P)

Number

of Panels

in Series

Number of

Strings in

parallel

Gain Resistance
The

Energy

%

difference

No IPC 4 2 N/A N/A 4437600 N/A

With

IPC
N/A 8 10

40 4314960 -2.763

30 4351800 -1.933

16 4403280 -0.773

8.736 4430040 -0.170

4 4447440 0.221

2 4454760 0.386

0.8736 4458840 0.478

0.6 4459800 0.500

0.5 4460160 0.508

0.25 4461120 0.530

0.1 4461600 0.540

(a)

(b)

(c)

(d)

Figure 4.16 Array Characteristics of (4S2P)

47

Case 3: The third case in Scenario 3 illustrates the difference between the

configuration of an 8S1P without an IPC and a1S8P with an IPC. The output energy of a

1S8P is less than that of a 4S2P. So, there is more percentage difference in energy

between 8S1P and 1S8P compared to 4S2P and 1S8P as shown in Table 4.9. In this

scenario 4S2P and 1S8P will result 0.159~1.372% energy difference while 8S1P and

1S8P will result 0.843~2.065% energy difference. The characteristic curves of the PV

panel 2S4P can be seen in Figure 4.17.

Table 4.9 The Difference in the Output Energy (8S1P and 1S8P)

Number

of Panels

in Series

Number of

Strings in

parallel

Gain Resistance
The

Energy

%

difference

No IPC 8 1 N/A N/A 4434480 N/A

With

IPC
N/A 8 10

40 4314960 -2.695

30 4351800 -1.864

16 4403280 -0.703

8.736 4430040 -0.100

4 4447440 0.292

2 4454760 0.457

0.8736 4458840 0.549

0.6 4459800 0.570

0.5 4460160 0.579

0.25 4461120 0.600

0.1 4461600 0.611

48

(a)

(b)

 (c)

(d)

Figure 4.17 Array Characteristics of (8S1P)

The theoretical energy from eight individual panels (if individually connected to

MPPTs) was calculated to be 6,446,652 J. Figure 4.18 represents the output energy of the

entire configurations: 2S4P, 4S2P, 8S1P and 1S8P divided by the theoretical value. The

output energy of a 1S8P is seen decreasing as the resistance of the IPC increases.

49

Figure 4.18 %Theoretical vs. Resistance

4.4. SCENARIO 4

The data taken from the sensor array on September 25, 2012 is analyzed in

Scenario 4. Figure 4.19 illustrates the radiation measured from the sensors used in the

analysis. Panel Uni-Solar 68 was used in the simulation. 532 samples from the

sensors were used. Each sample was picked in every 2 minutes.

50

Figure 4.19 The Insolation Data as a Function of Time

Case 1: The first case in Scenario 4 compared the 2S4P configuration without an IPC

connection to 1S8P configuration with each panel connected to an IPC. The difference in

output energy can be seen in Table 4.10. The output energy for 1S8P with an IPC is

0.296% (with the 0.8736Ω resistor) more than 2S4P without an IPC. The characteristic

curves of PV panels 2S4P and 1S8P are given in Figure 4.20 and 4.21 respectively.

51

Table 4.10 The Difference in the Output Energy (2S4P and 1S8P)

Number

of Panels

in Series

Number

of Strings

in parallel

Gain Resistance
The

Energy

%

differen

ce

No

IPC
2 4 N/A N/A 7012560 N/A

With

IPC
N/A 8 10

40 6732720 -3.990

30 6808320 -2.912

16 6913200 -1.416

8.736 6970200 -0.604

4 7008240 -0.061

2 7024320 0.167

0.8736 7033320 0.296

0.6 7035480 0.326

0.5 7036320 0.338

0.25 7038360 0.367

0.1 7039560 0.385

(a)

(b)

 (c)

(d)

Figure 4.20 Array Characteristics of (2S4P) Without IPC

52

(a)

(b)

 (c)

(d)

Figure 4.21 Array Characteristics of (1S8P)

Case 2: The second case in Scenario 4 shows the difference between the

configuration of a 4S2P without an IPC and a 1S8P with an IPC. The output energy of a

4S2P is less than 2S4P. So, there is more percentage difference in energy between 4S2P

and 1S8P compared to 2S4P and 1S8P as shown in Table 4.11. In this scenario 4S2P and

1S8P will result 0.205~0.653% energy difference while 2S4P and 1S8P will result

0.167~0.385% energy difference. The characteristic curves of the PV panel 2S4P can be

seen in Figure 4.22.

53

Table 4.11 The Difference in the Output Energy (4S2P and 1S8P)

Number

of Panels

in Series

Number

of Strings

in parallel

Gain Resistance
The

Energy

%

difference

No

IPC
4 2 N/A N/A 6993840 N/A

With

IPC
N/A 8 10

40 6732720 -3.733

30 6808320 -2.652

16 6913200 -1.153

8.736 6970200 -0.338

4 7008240 0.205

2 7024320 0.435

0.8736 7033320 0.564

0.6 7035480 0.595

0.5 7036320 0.607

0.25 7038360 0.636

0.1 7039560 0.653

(a)

(b)

(c)

(d)

Figure 4.22 Array Characteristics of (4S2P)

54

Case 3: The third case in Scenario 4 illustrates the difference between the

configuration of an 8S1P without an IPC and a 1S8P with an IPC. The output energy of a

1S8P is less than that of a 4S2P. So, there is more percentage difference in energy

between 8S1P and 1S8P compared to 4S2P and 1S8P as shown in Table 4.12. In this

scenario 4S2P and 1S8P will result 0.205~0.653% energy difference while 8S1P and

1S8P will result 0.393~0.842% energy difference. The characteristic curves of the PV

panel 2S4P can be seen in Figure 4.23.

Table 4.12 The Difference in the Output Energy (8S1P and 1S8P)

Number

of Panels

in Series

Number

of Strings

in parallel

Gain Resistance
The

Energy

%

difference

No

IPC
8 1 N/A N/A 6980760 N/A

With

IPC
N/A 8 10

40 6732720 -3.553

30 6808320 -2.470

16 6913200 -0.967

8.736 6970200 -0.151

4 7008240 0.393

2 7024320 0.624

0.8736 7033320 0.752

0.6 7035480 0.783

0.5 7036320 0.795

0.25 7038360 0.825

0.1 7039560 0.842

55

(a)

(b)

 (c)

(d)

Figure 4.23 Array Characteristics of (8S1P)

The theoretical energy from eight individual panels (if individually connected to

MPPTs) was calculated to be 7,042,224 J. Figure 4.24 represents the output energy of the

entire configurations: 2S4P, 4S2P, 8S1P and 1S8P divided by the theoretical value. The

output energy of a 1S8P is seen decreasing as the resistance of the IPC increases.

56

Figure 4.24 %Theoretical vs. Resistance

57

5. CONCLUSIONS

A comparison between the parallel configured PV array and the conventional

series configured PV array is studied in this thesis. The effectiveness of the parallel

configuration in terms of the output power obtained was evaluated using software

computations. A software package was developed to investigate the advantages of this

newly emerging technology over conventional series technology. This software is able to

simulate the real system based on the desired configuration.

Simulation results prove that this parallel technique reduced the problem of the

existence of multiple MPP in the system, and makes the MPP tracking easier. Using a

DC-DC converter with the parallel configuration increases the output voltage of the PV

panel and decreases the current which in turn help to reduce the wiring cost. The most

important advantage of having such a configuration is that all of the strings share the

same voltage that could be easily measured and controlled in order to track the MPP with

maximum accuracy. Different shading scenarios have also been analyzed in this thesis to

study the shading effect. It was found that in all four scenarios, the parallel configuration

worked better under certain shading conditions. Scenario 1 and 2 demonstrated that the

parallel configuration resulted 1 to 4% and 0.1 to 2% of increased power output

respectively when compared with that of the series configuration. Even when the worst

case shading effect scenarios (scenario 3 and 4) are concerned the parallel configuration

provided 0.1 to 0.6% and 0.1 to 0.8% more output respectively when compared with that

of the series configuration. Also scenario 1 produced 30% more energy than scenario 2.

Scenarios 1 and 2 were considered when some of the sensors were shaded and some are

58

not. Scenarios 3 and 4 consider that all of the sensors were shaded. Thus, the parallel

configuration was more effective in the first two scenarios. The typical Energy vs.

Resistance performance curves illustrated that the resistance needs to be less than some

particular value to provide advantages for parallel connected PV panels. The values

found in scenarios 1 and 2 were 25 and 10 , respectively; the value in scenarios 3 and

4 was 4 . Although the effects of temperature and the tracking process have some

impact on output energy, these effects were not taken into account in this software as the

temperature data was unavailable.

The use of either the conventional series configuration or the parallel

configuration is highly dependent on both the application type and the climatic

conditions. There are many researches going on in this area in order to determine the best

configuration according to the location, the size of the PV system, and the application

types which is beyond the scope of this thesis. A software package such as this can be

used as a planning tool for the researchers and the students for understanding different

PV array configurations. This tool is useful for training or teaching purpose also.

59

APPENDIX

MATLAB CODE FOR DEVELOPED SOFTWARE

60

Main Menu

function varargout = MainMenu(varargin)
% MAINMENU MATLAB code for MainMenu.fig
% MAINMENU, by itself, creates a new MAINMENU or raises the

existing
% singleton*.
%
% H = MAINMENU returns the handle to a new MAINMENU or the handle

to
% the existing singleton*.
%
% MAINMENU('CALLBACK',hObject,eventData,handles,...) calls the

local
% function named CALLBACK in MAINMENU.M with the given input

arguments.
%
% MAINMENU('Property','Value',...) creates a new MAINMENU or

raises the
% existing singleton*. Starting from the left, property value

pairs are
% applied to the GUI before MainMenu_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property

application
% stop. All inputs are passed to MainMenu_OpeningFcn via

varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only

one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help MainMenu

% Last Modified by GUIDE v2.5 13-May-2012 11:54:06

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @MainMenu_OpeningFcn, ...
 'gui_OutputFcn', @MainMenu_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin[18])
 gui_State.gui_Callback = str2func(varargin[18]);
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT
% --- Executes just before MainMenu is made visible.

61

function MainMenu_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to MainMenu (see VARARGIN)

% Choose default command line output for MainMenu
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes MainMenu wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = MainMenu_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

% --- Executes on button press in sccOn.
function sccOn_Callback(hObject, eventdata, handles)
% hObject handle to sccOn (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: get(hObject,'Value') returns toggle state of sccOn

% --- Executes on selection change in listbox1.
function listbox1_Callback(hObject, eventdata, handles)
% hObject handle to listbox1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = cellstr(get(hObject,'String')) returns listbox1

contents as cell array
% contents{get(hObject,'Value')} returns selected item from

listbox1

% --- Executes during object creation, after setting all properties.
function listbox1_CreateFcn(hObject, eventdata, handles)
% hObject handle to listbox1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

62

% handles empty - handles not created until after all CreateFcns

called

% Hint: listbox controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on selection change in module.
function module_Callback(hObject, eventdata, handles)
% hObject handle to module (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = cellstr(get(hObject,'String')) returns module

contents as cell array
% contents{get(hObject,'Value')} returns selected item from

module

% --- Executes during object creation, after setting all properties.
function module_CreateFcn(hObject, eventdata, handles)
% hObject handle to module (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

called

% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function latitude_Callback(hObject, eventdata, handles)
% hObject handle to latitude (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of latitude as text
% str2double(get(hObject,'String')) returns contents of latitude

as a double

% --- Executes during object creation, after setting all properties.
function latitude_CreateFcn(hObject, eventdata, handles)
% hObject handle to latitude (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

called

63

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function numSeries_Callback(hObject, eventdata, handles)
% hObject handle to numSeries (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of numSeries as text
% str2double(get(hObject,'String')) returns contents of

numSeries as a double

% --- Executes during object creation, after setting all properties.
function numSeries_CreateFcn(hObject, eventdata, handles)
% hObject handle to numSeries (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function numParallel_Callback(hObject, eventdata, handles)
% hObject handle to numParallel (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of numParallel as text
% str2double(get(hObject,'String')) returns contents of

numParallel as a double

% --- Executes during object creation, after setting all properties.
function numParallel_CreateFcn(hObject, eventdata, handles)
% hObject handle to numParallel (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.

64

if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function gain_Callback(hObject, eventdata, handles)
% hObject handle to gain (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of gain as text
% str2double(get(hObject,'String')) returns contents of gain as

a double

% --- Executes during object creation, after setting all properties.
function gain_CreateFcn(hObject, eventdata, handles)
% hObject handle to gain (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function resistance_Callback(hObject, eventdata, handles)
% hObject handle to resistance (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of resistance as text
% str2double(get(hObject,'String')) returns contents of

resistance as a double

% --- Executes during object creation, after setting all properties.
function resistance_CreateFcn(hObject, eventdata, handles)
% hObject handle to resistance (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');

65

end

% --- Executes on selection change in day.
function day_Callback(hObject, eventdata, handles)
% hObject handle to day (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = cellstr(get(hObject,'String')) returns day contents

as cell array
% contents{get(hObject,'Value')} returns selected item from day

% --- Executes during object creation, after setting all properties.
function day_CreateFcn(hObject, eventdata, handles)
% hObject handle to day (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

called

% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function year_Callback(hObject, eventdata, handles)
% hObject handle to year (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of year as text
% str2double(get(hObject,'String')) returns contents of year as

a double

% --- Executes during object creation, after setting all properties.
function year_CreateFcn(hObject, eventdata, handles)
% hObject handle to year (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

66

% --- Executes on selection change in month.

function month_Callback(hObject, eventdata, handles)
% hObject handle to month (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = cellstr(get(hObject,'String')) returns month

contents as cell array
% contents{get(hObject,'Value')} returns selected item from

month

% --- Executes during object creation, after setting all properties.
function month_CreateFcn(hObject, eventdata, handles)
% hObject handle to month (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

called

% Hint: popupmenu controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

% --- Executes on button press in buttonOK.
function buttonOK_Callback(hObject, eventdata, handles)
% hObject handle to buttonOK (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

InsolationMenu();

% --- Executes when selected object is changed in sccSelect.
function sccSelect_SelectionChangeFcn(hObject, eventdata, handles)
% hObject handle to the selected object in sccSelect
% eventdata structure with the following fields (see UIBUTTONGROUP)
% EventName: string 'SelectionChanged' (read only)
% OldValue: handle of the previously selected object or empty if none

was selected
% NewValue: handle of the currently selected object
% handles structure with handles and user data (see GUIDATA)
handles = guidata(hObject);

switch get(eventdata.NewValue,'Tag') % Get Tag of selected object

 case 'sccOn'
 set(handles.numSeries, 'Enable', 'off');
 set(handles.gain, 'Enable', 'on');
 set(handles.resistance, 'Enable', 'on')

67

 case 'sccOff'
 set(handles.numSeries, 'Enable', 'on');
 set(handles.gain, 'Enable', 'off');
 set(handles.gain, 'String', 1);
 set(handles.resistance, 'Enable', 'off');
 set(handles.resistance, 'String', 0);

 otherwise

 % Code for when there is no match.

end
%updates the handles structure
guidata(hObject, handles);

% --- Executes during object creation, after setting all properties.
function sccSelect_CreateFcn(hObject, eventdata, handles)
% hObject handle to sccSelect (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

called

Insolation Menu

function varargout = InsolationMenu(varargin)
% INSOLATIONMENU MATLAB code for InsolationMenu.fig
% INSOLATIONMENU, by itself, creates a new INSOLATIONMENU or

raises the existing
% singleton*.
%
% H = INSOLATIONMENU returns the handle to a new INSOLATIONMENU or

the handle to
% the existing singleton*.
%
% INSOLATIONMENU('CALLBACK',hObject,eventData,handles,...) calls

the local
% function named CALLBACK in INSOLATIONMENU.M with the given input

arguments.
%
% INSOLATIONMENU('Property','Value',...) creates a new

INSOLATIONMENU or raises the
% existing singleton*. Starting from the left, property value

pairs are
% applied to the GUI before InsolationMenu_OpeningFcn gets called.

An
% unrecognized property name or invalid value makes property

application
% stop. All inputs are passed to InsolationMenu_OpeningFcn via

varargin.
%

68

% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only

one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help InsolationMenu

% Last Modified by GUIDE v2.5 11-May-2012 15:13:57

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @InsolationMenu_OpeningFcn, ...
 'gui_OutputFcn', @InsolationMenu_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before InsolationMenu is made visible.
function InsolationMenu_OpeningFcn(hObject, eventdata, handles,

varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to InsolationMenu (see VARARGIN)

% Choose default command line output for InsolationMenu
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes InsolationMenu wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = InsolationMenu_OutputFcn(hObject, eventdata,

handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB

69

% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

function boxMin_Callback(hObject, eventdata, handles)
% hObject handle to boxMin (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of boxMin as text
% str2double(get(hObject,'String')) returns contents of boxMin

as a double

% --- Executes during object creation, after setting all properties.
function boxMin_CreateFcn(hObject, eventdata, handles)
% hObject handle to boxMin (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function boxMax_Callback(hObject, eventdata, handles)
% hObject handle to boxMax (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of boxMax as text
% str2double(get(hObject,'String')) returns contents of boxMax

as a double

% --- Executes during object creation, after setting all properties.
function boxMax_CreateFcn(hObject, eventdata, handles)
% hObject handle to boxMax (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

70

% --- Executes on button press in buttonBrowse.
function buttonBrowse_Callback(hObject, eventdata, handles)
% hObject handle to buttonBrowse (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

%gets input file(s) from user
[input_file,pathname] = uigetfile(...
 {'*.csv', 'CSV (*.csv)'; ...
 '*.xls', 'Excel (*.xls)';...
 '*.*', 'All Files (*.*)'}, ...
 'Select files', ...
 'MultiSelect', 'on');

%if file selection is cancelled, pathname should be zero
%and nothing should happen
if pathname == 0
 return
end

%gets the current data file names inside the listbox
inputFileNames = get(handles.boxPath,'String');

%if they only select one file, then the data will not be a cell
%if more than one file selected at once,
%then the data is stored inside a cell
if iscell(input_file) == 0

 %add the most recent data file selected to the cell containing
 %all the data file names
 inputFileNames{end+1} = fullfile(pathname,input_file);

%else, data will be in cell format
else
 %stores full file path into inputFileNames
 for n = 1:length(input_file)
 %notice the use of {}, because we are dealing with a cell here!
 inputFileNames{end+1} = fullfile(pathname,input_file{n});
 end
end

%updates the gui to display all filenames in the listbox
set(handles.boxPath,'String',inputFileNames);

%make sure first file is always selected so it doesn't go out of range
%the GUI will break if this value is out of range
set(handles.boxPath,'Value',1);
% Update handles structure
guidata(hObject, handles);

% --- Executes on button press in buttonOK.
function buttonOK_Callback(hObject, eventdata, handles)
% hObject handle to buttonOK (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

71

% handles structure with handles and user data (see GUIDATA)

dataSource=get(handles.choice,'Value');

if(get(handles.choice, 'Value') == 0)
 path=get(handles.boxPath,'String');
elseif(get(handles.choice, 'Value') == 1)
 min=get(handles.boxMin,'String');
 max=get(handles.boxMax,'String');
elseif(get(handles.choice, 'Value') == 2)
 ManualData();
end

PowerCalculations();

% --- Executes when selected object is changed in dataSourceSelect.
function dataSourceSelect_SelectionChangeFcn(hObject, eventdata,

handles)
handles = guidata(hObject);

switch get(eventdata.NewValue,'Tag') % Get Tag of selected object

 case 'dataFile'
 set(handles.choice, 'String', '0');
 set(handles.buttonBrowse,'Visible', 'on');
 set(handles.textMax, 'Visible', 'off');
 set(handles.textMin, 'Visible', 'off');
 set(handles.textFile,'Visible','on');
 set(handles.textRandom,'Visible','off');
 set(handles.boxMax,'Visible','off');
 set(handles.boxMin,'Visible','off');
 set(handles.boxPath,'Visible','on');
 set(handles.buttonBrowse,'Enable', 'on');
 set(handles.boxPath,'Enable', 'on');
 set(handles.boxMin,'Enable', 'off');
 set(handles.boxMax,'Enable', 'off');

 case 'dataRandom'
 set(handles.choice, 'String', '1');
 set(handles.buttonBrowse,'Visible', 'off');
 set(handles.textMax, 'Visible', 'on');
 set(handles.textMin, 'Visible', 'on');
 set(handles.textFile,'Visible','off');
 set(handles.textRandom,'Visible','on');
 set(handles.boxMax,'Visible','on');
 set(handles.boxMin,'Visible','on');
 set(handles.boxPath,'Visible','off');
 set(handles.buttonBrowse, 'Enable', 'off');
 set(handles.boxPath,'Enable', 'off');
 set(handles.boxMin,'Enable', 'on');
 set(handles.boxMax,'Enable', 'on');

 case 'dataManual'
 set(handles.choice, 'String', '2');

72

 set(handles.buttonBrowse,'Visible', 'off');
 set(handles.textMax, 'Visible', 'off');
 set(handles.textMin, 'Visible', 'off');
 set(handles.textFile,'Visible','off');
 set(handles.textRandom,'Visible','off');
 set(handles.boxMax,'Visible','off');
 set(handles.boxMin,'Visible','off');
 set(handles.boxPath,'Visible','off');
 set(handles.buttonBrowse,'Enable', 'off');
 set(handles.boxPath,'Enable', 'off');
 set(handles.boxMin,'Enable', 'off');
 set(handles.boxMax,'Enable', 'off');

 otherwise
 set(handles.choice, 'String', '0');

end

guidata(hObject, handles);

InputMatrix
function varargout = InputMatrix(varargin)
% INPUTMATRIX M-file for InputMatrix.fig
% INPUTMATRIX, by itself, creates a new INPUTMATRIX or raises the

existing
% singleton*.
%
% H = INPUTMATRIX returns the handle to a new INPUTMATRIX or the

handle to
% the existing singleton*.
%
% INPUTMATRIX('CALLBACK',hObject,eventData,handles,...) calls the

local
% function named CALLBACK in INPUTMATRIX.M with the given input

arguments.
%
% INPUTMATRIX('Property','Value',...) creates a new INPUTMATRIX or

raises the
% existing singleton*. Starting from the left, property value

pairs are
% applied to the GUI before InputMatrix_OpeningFcn gets called.

An
% unrecognized property name or invalid value makes property

application
% stop. All inputs are passed to InputMatrix_OpeningFcn via

varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only

one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help InputMatrix

73

% Last Modified by GUIDE v2.5 13-May-2012 18:37:48

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @InputMatrix_OpeningFcn, ...
 'gui_OutputFcn', @InputMatrix_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before InputMatrix is made visible.
function InputMatrix_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to InputMatrix (see VARARGIN)

% Choose default command line output for InputMatrix
handles.output = hObject;

set(handles.data, 'data',varargin{1});

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes InputMatrix wait for user response (see UIRESUME)
uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = InputMatrix_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = get(handles.data,'data');
% The figure can be deleted now

74

delete(handles.figure1);

% --- Executes when user attempts to close figure1.
function figure1_CloseRequestFcn(hObject, eventdata, handles)
% hObject handle to figure1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: delete(hObject) closes the figure
if isequal(get(hObject, 'waitstatus'), 'waiting')
 % The GUI is still in UIWAIT, us UIRESUME
 uiresume(hObject);
else
 % The GUI is no longer waiting, just close it
 delete(hObject);
end

% --- Executes on button press in ok.
function ok_Callback(hObject, eventdata, handles)
% hObject handle to ok (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
close(handles.figure1);

Random
function varargout = random(varargin)
% RANDOM M-file for random.fig
% RANDOM, by itself, creates a new RANDOM or raises the existing
% singleton*.
%
% H = RANDOM returns the handle to a new RANDOM or the handle to
% the existing singleton*.
%
% RANDOM('CALLBACK',hObject,eventData,handles,...) calls the local
% function named CALLBACK in RANDOM.M with the given input

arguments.
%
% RANDOM('Property','Value',...) creates a new RANDOM or raises

the
% existing singleton*. Starting from the left, property value

pairs are
% applied to the GUI before random_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property

application
% stop. All inputs are passed to random_OpeningFcn via varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only

one
% instance to run (singleton)".
%

75

% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help random

% Last Modified by GUIDE v2.5 28-Dec-2010 10:38:26

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @random_OpeningFcn, ...
 'gui_OutputFcn', @random_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before random is made visible.
function random_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to random (see VARARGIN)

% Choose default command line output for random
handles.output = hObject;

% Update handles structure
guidata(hObject, handles);

% UIWAIT makes random wait for user response (see UIRESUME)
% uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = random_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
varargout{1} = handles.output;

76

% --- Executes on slider movement.
function slider1_Callback(hObject, eventdata, handles)
% hObject handle to slider1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'Value') returns position of slider
% get(hObject,'Min') and get(hObject,'Max') to determine range

of slider

% --- Executes during object creation, after setting all properties.

% --- Executes on selection change in listbox.
function listbox_Callback(hObject, eventdata, handles)
% hObject handle to listbox (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: contents = cellstr(get(hObject,'String')) returns listbox

contents as cell array
% contents{get(hObject,'Value')} returns selected item from

listbox

% --- Executes during object creation, after setting all properties.
function listbox_CreateFcn(hObject, eventdata, handles)
% hObject handle to listbox (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

called

% Hint: listbox controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

Ifcustom
function varargout = ifcustom(varargin)
% IFCUSTOM M-file for ifcustom.fig
% IFCUSTOM, by itself, creates a new IFCUSTOM or raises the

existing
% singleton*.
%
% H = IFCUSTOM returns the handle to a new IFCUSTOM or the handle

to
% the existing singleton*.
%
% IFCUSTOM('CALLBACK',hObject,eventData,handles,...) calls the

local

77

% function named CALLBACK in IFCUSTOM.M with the given input

arguments.
%
% IFCUSTOM('Property','Value',...) creates a new IFCUSTOM or

raises the
% existing singleton*. Starting from the left, property value

pairs are
% applied to the GUI before ifcustom_OpeningFcn gets called. An
% unrecognized property name or invalid value makes property

application
% stop. All inputs are passed to ifcustom_OpeningFcn via

varargin.
%
% *See GUI Options on GUIDE's Tools menu. Choose "GUI allows only

one
% instance to run (singleton)".
%
% See also: GUIDE, GUIDATA, GUIHANDLES

% Edit the above text to modify the response to help ifcustom

% Last Modified by GUIDE v2.5 13-May-2012 13:52:57

% Begin initialization code - DO NOT EDIT
gui_Singleton = 1;
gui_State = struct('gui_Name', mfilename, ...
 'gui_Singleton', gui_Singleton, ...
 'gui_OpeningFcn', @ifcustom_OpeningFcn, ...
 'gui_OutputFcn', @ifcustom_OutputFcn, ...
 'gui_LayoutFcn', [] , ...
 'gui_Callback', []);
if nargin && ischar(varargin{1})
 gui_State.gui_Callback = str2func(varargin{1});
end

if nargout
 [varargout{1:nargout}] = gui_mainfcn(gui_State, varargin{:});
else
 gui_mainfcn(gui_State, varargin{:});
end
% End initialization code - DO NOT EDIT

% --- Executes just before ifcustom is made visible.
function ifcustom_OpeningFcn(hObject, eventdata, handles, varargin)
% This function has no output args, see OutputFcn.
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
% varargin command line arguments to ifcustom (see VARARGIN)

% Choose default command line output for ifcustom
handles.output = hObject;

% Update handles structure

78

guidata(hObject, handles);

% UIWAIT makes ifcustom wait for user response (see UIRESUME)
uiwait(handles.figure1);

% --- Outputs from this function are returned to the command line.
function varargout = ifcustom_OutputFcn(hObject, eventdata, handles)
% varargout cell array for returning output args (see VARARGOUT);
% hObject handle to figure
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Get default command line output from handles structure
temporary = zeros(1,6);
temporary(1) = str2double(get(handles.Isc, 'String'));
temporary(2) = str2double(get(handles.Vmax, 'String'));
temporary(3) = str2double(get(handles.Imax, 'String'));
temporary(4) = str2double(get(handles.Voc, 'String'));
temporary(5) = str2double(get(handles.numCells, 'String'));
temporary(6) = str2double(get(handles.ratedPower, 'String'));
varargout{1} = temporary;
% The figure can be deleted now
delete(handles.figure1);

% --- Executes when user attempts to close figure1.
function figure1_CloseRequestFcn(hObject, eventdata, handles)
% hObject handle to figure1 (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hint: delete(hObject) closes the figure
if isequal(get(hObject, 'waitstatus'), 'waiting')
 % The GUI is still in UIWAIT, us UIRESUME
 uiresume(hObject);
else
 % The GUI is no longer waiting, just close it
 delete(hObject);
end

% --- Executes on button press in ok.
function ok_Callback(hObject, eventdata, handles)
% hObject handle to ok (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)
close(handles.figure1);

function moduleName_Callback(hObject, eventdata, handles)

79

% hObject handle to moduleName (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of moduleName as text
% str2double(get(hObject,'String')) returns contents of

moduleName as a double

% --- Executes during object creation, after setting all properties.
function moduleName_CreateFcn(hObject, eventdata, handles)
% hObject handle to moduleName (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function Isc_Callback(hObject, eventdata, handles)
% hObject handle to Isc (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of Isc as text
% str2double(get(hObject,'String')) returns contents of Isc as a

double

% --- Executes during object creation, after setting all properties.
function Isc_CreateFcn(hObject, eventdata, handles)
% hObject handle to Isc (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function Vmax_Callback(hObject, eventdata, handles)
% hObject handle to Vmax (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB

80

% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of Vmax as text
% str2double(get(hObject,'String')) returns contents of Vmax as

a double

% --- Executes during object creation, after setting all properties.
function Vmax_CreateFcn(hObject, eventdata, handles)
% hObject handle to Vmax (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function Imax_Callback(hObject, eventdata, handles)
% hObject handle to ratedPower (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of ratedPower as text
% str2double(get(hObject,'String')) returns contents of

ratedPower as a double

% --- Executes during object creation, after setting all properties.
function Imax_CreateFcn(hObject, eventdata, handles)
% hObject handle to ratedPower (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function Voc_Callback(hObject, eventdata, handles)
% hObject handle to ratedPower (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

81

% Hints: get(hObject,'String') returns contents of ratedPower as text
% str2double(get(hObject,'String')) returns contents of

ratedPower as a double

% --- Executes during object creation, after setting all properties.
function Voc_CreateFcn(hObject, eventdata, handles)
% hObject handle to ratedPower (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function numCells_Callback(hObject, eventdata, handles)
% hObject handle to Voc (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of Voc as text
% str2double(get(hObject,'String')) returns contents of Voc as a

double

% --- Executes during object creation, after setting all properties.
function numCells_CreateFcn(hObject, eventdata, handles)
% hObject handle to Voc (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

function ratedPower_Callback(hObject, eventdata, handles)
% hObject handle to numCells (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles structure with handles and user data (see GUIDATA)

% Hints: get(hObject,'String') returns contents of numCells as text

82

% str2double(get(hObject,'String')) returns contents of numCells

as a double

% --- Executes during object creation, after setting all properties.
function ratedPower_CreateFcn(hObject, eventdata, handles)
% hObject handle to numCells (see GCBO)
% eventdata reserved - to be defined in a future version of MATLAB
% handles empty - handles not created until after all CreateFcns

called

% Hint: edit controls usually have a white background on Windows.
% See ISPC and COMPUTER.
if ispc && isequal(get(hObject,'BackgroundColor'),

get(0,'defaultUicontrolBackgroundColor'))
 set(hObject,'BackgroundColor','white');
end

Irradiation
function [irradiationIscSystem Temperature] = Irradiation(dataSource,

ns , np, filePath, ti , minRange, maxRange)

numPanels = ns * np;
% ti = Number of datapoints to use per module.
% n = Number of datapoints neglected per module.

irradiationIscSystem = zeros(ti,numPanels);
Temperature = 25 * ones(1,numPanels);

if(dataSource == 0)
 R = 2; %2 Row to begin reading file
 C = 1; % Column to begin reading file
 n=60; % Number of datapoints neglected per module

 figure
 All_irradiationIscSystem = zeros(n*ti,numPanels);

 for x = 1:length(filePath)
 filePath[14];
 end

 for j=1:numPanels
 irradiation=csvread(filePath[14],R,C,[R C (ti*n)+2 C]);
 % Need to implement correct scale factor
 % irradiationIsc=irradiation/(0.1(Rsensor*(1+R2/R1)))
 % Rsensor= 1.2, R1=392, R2=6.8 K
 irradiationIsc=irradiation/2.201632653061224;

 irradiationIscMax=max(irradiationIsc);
 irradiationScaled=irradiationIsc/irradiationIscMax*1000;

 C=C+1;

 for p=1:(ti*n)

83

 All_irradiationIscSystem(p,j)=irradiationIsc(p); % need to

implement correct scale factor

 end
 % Plots the insolation for each panel as a function of Isc
 k=1:length(irradiationScaled);
 plot(k,irradiationScaled);
 hold on
 set(gcf,'Position',[100 100 500 300])
 title('Irradiation as a function of time for the panels')
 ylabel('Irradiation scaled as a function of Isc')
 xlabel('Time')
 end

 irradiationIscSystem=All_irradiationIscSystem(1:n:end,:)

elseif(dataSource == 1)

 matrix = minRange + (maxRange-minRange).*rand(ns,np);

 %display in random figure file
 randomfigurehandle=random;
 random_data=guidata(randomfigurehandle);
 insol_str=num2str(matrix*1000);
 set(random_data.listbox, 'String', insol_str);

 w=1;
 for j=1:1:ns
 for k=1:1:np
 irradiationIscSystem(w) = matrix(j,k);
 w = w+1;
 end
 end

elseif(dataSource == 2)
 matrix = InputMatrix(zeros(ns, np));

 w=1;
 for j=1:1:ns
 for k=1:1:np
 irradiationIscSystem(w) = matrix(j,k);
 w = w+1;
 end
 end

end

Power Calculations
%% Import data and close GUI files

MainMenufigurehandle = MainMenu;
MainMenu_data = guidata(MainMenufigurehandle);
 sccOn = get(MainMenu_data.sccOn, 'value');
 numSeriesStr = get(MainMenu_data.numSeries, 'string');

84

 if(isempty(numSeriesStr) == 1)
 numSeries = 1;
 else
 numSeries = str2double(numSeriesStr);
 end
 numParallelStr = get(MainMenu_data.numParallel, 'string');
 numParallel = str2double(numParallelStr);
 gainStr = get(MainMenu_data.gain, 'string');
 if(isempty(gainStr) == 1)
 gain = 1;
 else
 gain = str2double(gainStr);
 end
 resistanceStr = get(MainMenu_data.resistance, 'string');
 if(isempty(resistanceStr) == 1)
 resistance = 0;
 else
 resistance = str2double(resistanceStr);
 end
 latitudeStr = get(MainMenu_data.latitude, 'string');
 latitude = str2double(latitudeStr);
 day = get(MainMenu_data.day, 'value');
 month = get(MainMenu_data.month, 'value');
 yearStr = get(MainMenu_data.year, 'string');
 year = str2double(yearStr);

 switch get(MainMenu_data.module, 'value')
 case 1 % UniSolar 68
 moduleName = 'UniSolar 68';
 Isc = 5.1;
 Vmax = 16.5;
 Imax = 4.1;
 Voc = 23.1;
 numCells = 11;
 ratedPower = 68;

 A = 9.5913;
 Rs = 0.1115;
 Rsh = 4.9975e+03;

 case 2 % BP Solar 75
 moduleName = 'BP Solar 75';
 Isc = 4.7;
 Vmax = 17.3;
 Imax = 4.3;
 Voc = 21.8;
 numCells = 36;
 ratedPower = 75;

 A = 0.9173;
 Rs =0.3643;
 Rsh = 1.5382e+03;

 case 3 % Sun Electronics 120;
 moduleName = 'Sun Electronics 120';

85

 Isc = 7.62;
 Vmax = 17.27;
 Imax = 6.95;
 Voc = 21.34;
 numCells = 45;
 ratedPower = 120;

 A = 0.6154;
 Rs = 0.2390;
 Rsh =3.4310e+03;

 case 4 % SunPower 215
 moduleName = 'SunPower 215';
 Isc = 5.8;
 Vmax = 39.8;
 Imax = 5.4;
 Voc = 48.3;
 numCells = 72;
 ratedPower = 215;

 A = 0.9700;
 Rs =0.3298;
 Rsh = 4.1929e+03;

 case 5 % Kyocera 215
 moduleName = 'Kyocera 21';
 Isc = 8.78;
 Vmax = 26.6;
 Imax = 8.09;
 Voc = 33.2;
 numCells = 54;
 ratedPower = 215;

 A = 0.8121;
 Rs = 0.3221;
 Rsh =4.0084e+03;

 case 6 %call custom screen
 %This is if the user wants to enter his own
 %paramters from a datasheet. this calls the 'Ifcustom' GUI

where
 %the user can enter the values
 %[Isc , Vmax , Voc , numCells , ratedPower] = ifcustom();
 constants = ifcustom();
 Isc = constants(1);
 Vmax = constants(2);
 Imax = constants(3);
 Voc = constants(4);
 numCells = constants(5);
 ratedPower = constants(6);

 A = 1.0801;
 Rs = 1.1314;

86

 Rsh = 15.3896;

%%%%%%NEEDS TO BE

ADDED%%
 end
close(MainMenu);

minRange = 0;
maxRange = 0;
ti = 0;
InsolationMenufigurehandle = InsolationMenu;
InsolationMenu_data = guidata(InsolationMenufigurehandle);
 dataSource = 0;
 dataFileSelection = get(InsolationMenu_data.dataFile, 'value');
 filePath = 'none';
 if(dataFileSelection == 1)
 dataSource = 0;
 ti = 532; % Number of datapoints to use per module
 filePath = get(InsolationMenu_data.boxPath, 'string');
 else
 dataRandomSelection = get(InsolationMenu_data.dataRandom,

'value');
 if(dataRandomSelection == 1)
 dataSource = 1;
 ti = 1;
 minRangeStr = get(InsolationMenu_data.boxMin, 'string');
 maxRangeStr = get(InsolationMenu_data.boxMax, 'string');
 minRange = str2double(minRangeStr);
 maxRange = str2double(maxRangeStr);
 else
 dataManualSelection = get(InsolationMenu_data.dataManual,

'value');
 if(dataManualSelection == 1)
 dataSource = 2;
 ti = 1;
 end
 end
 end
close(InsolationMenu);

%% Get irradiation data
numPanels = numParallel*numSeries; % Number of panels

[sysIrrad, Temperature] = Irradiation(dataSource, numSeries,

numParallel, filePath, ti, minRange, maxRange);

%%
%!!

!!!!
VocTempCo = 0;
IscTempCo = 0;
vStringTotal = 0;
TBD=0;

%!!

!!!!

87

%% Calculate current and power
panel = 1;
np = 1;
ns = 1;
while panel <= numPanels

 for voltage = 1:1:round(Voc)
 PmaxTotal = zeros(1:length(voltage));
 while np <= numParallel

 for current = 1:.1:(round(Isc * 10)) / 10
 stringPower = zeros(length(current));
 while ns <= numSeries
 realVoc = Voc - (VocTempCo * (25 -

Temperature(panel)));

 realIscTemp = Isc * (1 + IscTempCo);
 realIsc = realIscTemp * (sysIrrad(panel) / 1000);

 Pmax = Vmax * Imax;
 realPmaxTemp = Pmax * (1-.005 * (25 -

Temperature(panel)));

 if vStringTotal > (voltage + 1) || vStringTotal <

(voltage - 1)
 stringPower(current) = TBD;
 else
 stringPower(current) = 0;
 end
 ns = ns + 1;
 panel = panel + 1;
 end
 %add module powers here
 end

 PmaxTotal(voltage) = Pmax;
 np = np + 1;
 end
 panel = panel + 1;
 end

end

%%
v_size = floor(Voc*numSeries);
one_row_sysIrrad = zeros(1,v_size);
i = zeros(ti, v_size);
p = zeros(ti, v_size);
one_column_i = zeros(1,ti);
one_column_p = zeros(1,ti);
i_max = zeros(1,v_size);
p_max = zeros(1,v_size);
max_p_in_row = zeros(1,ti);

88

global rows_index;

for rows_index=1:ti

 disp(['processing row ' num2str(rows_index)]);

 for index=1:1:numPanels
 one_row_sysIrrad(index)=sysIrrad(rows_index,index);
 end

 % should use the constances after the correction !!!
 parameters = SetParameters (resistance, gain, numPanels,

one_row_sysIrrad, Isc, Voc, numCells, A, Rs, Rsh);

 v = 1:1:Voc*numSeries;
 one_row_i = zeros(size(v));
 size_v_temp=size(v);
 size_v=size_v_temp(:,2);
 for k=1:length(v)
 vex = v(k); % external voltage
 %%%%vpanel = vex / ns; % initial cell voltage
 temp = 0;
 % find current
 for j = 1:numParallel
 params_used = parameters((j-1)*numSeries + 1 : (j-

1)*numSeries+numSeries,:);
 current = SeriesCalculations(vex, numSeries, params_used

);
 if current >0
 temp = temp + current;
 end
 end
 one_row_i(k) = temp;
 end
 one_row_p = one_row_i.*v;

 max_p_in_row(rows_index) = max(one_row_p);

 for g=1:size_v
 i(rows_index,g)=one_row_i(g);
 p(rows_index,g)=one_row_p(g);
 end

 end

%%
% agrugate the values

for j=1:size_v
 for k=1:ti
 one_column_i(k)=i(k,j);

89

 one_column_p(k)=p(k,j);
 end
 i_max(j)=max(one_column_i);
 p_max(j)=max(one_column_p);
end

%%
% ploting

v=v*gain;
i_max=i_max/gain;

figure
hold on
plot(v, i_max, 'k-')
grid on
set(gcf,'Position',[100 100 300 192])
set(gca,'FontName','Times')
set(gca,'FontSize',9)
title('IV characteristic');
xlabel('Total Voltage')
ylabel('Total Current')

figure
hold on
plot(v, p_max, 'k-')
grid on
set(gcf,'Position',[500 100 300 192])
set(gca,'FontName','Times')
set(gca,'FontSize',9)
xlabel('Total Voltage')
ylabel('Total Power')
title('Power vs Voltage')

figure
hold on
plot(i_max, p_max, 'k-')
grid on
set(gcf,'Position',[900 100 300 192])
set(gca,'FontName','Times')
set(gca,'FontSize',9)
xlabel('Total Current')
ylabel('Total Power')
title('Power vs Current')

if ti > 1

90

figure
hold on
plot(1:1:ti, max_p_in_row, 'k-')
grid on
set(gcf,'Position',[500 500 300 192])
set(gca,'FontName','Times')
set(gca,'FontSize',9)
title('Max Power vs Time');
xlabel('Time')
ylabel('Max Power')

energy = trapz(1:1:ti,max_p_in_row)
end

Set Parameters
function [parameters] = SetParameters...
 (resistance, gain, numPanels, sysInsol, Isc, Voc, numCells, A, Rs,

Rsh)

T = 273 + 25;
Vth = T*1.38e-23/1.6e-19;

%modification for Rs
Rs=Rs+(resistance/(gain^2));

Is1 = 0; %0.5*Isc/(exp((Voc/ncells)/Vth)-1);
Is2 = Isc/(exp((Voc/numCells)/(A*Vth))-1); % there is no 0.5 here

parameters = zeros(numPanels, 8);

for j = 1:numPanels
 parameters(j, 1) = sysInsol(j)* Isc;
end

parameters(:, 2) = Is1;% [A], I_0 is both Is1 and Is2
parameters(:, 3) = Is2;% [A],
parameters(:, 4) = A;% (normally 2), Ideality factor
parameters(:, 5) = Rs;% [ohms] => use in HQ's code
parameters(:, 6) = Rsh;% [ohms]
parameters(:, 7) = T;% [K]
parameters(:, 8) = numCells;

Series Calculation
function [current] = SeriesCalculations(vExt, numSeries, parameters)
% Series connection of identical panels, different insolation
% Using Newton-Raphson method taking Rs into account

numPVUsed = numSeries; % intially, all panels are used
parametersUsed = parameters;
[current, voltage] = NewtonPV(vExt, numPVUsed, parametersUsed);

91

% examine voltage for negative values
while min(voltage) < 0
 k = zeros(1, numPVUsed);
 ctr = 1;

 for j = 1:numPVUsed
 if voltage(j) < 0
 k(ctr) = j;
 ctr = ctr + 1;
 end
 end

 for j = numPVUsed:-1:1
 if k(j) > 0
 parametersUsed(k(j),:) = [];
 numPVUsed = numPVUsed-1;

 % if all the PVUsed has either negtive or NaN result so

they
 % all ignored return to the invoking function -1 to react
 if numPVUsed <= 0
 current = -1;
 return;
 end
 end
 end

 [current, voltage] = NewtonPV(vExt, numPVUsed, parametersUsed);
end

Newton PV
function [current, voltage] = NewtonPV(Vout, numPanels, parameters)
% Find current and voltage for series connected PV panels
% in a partially shaded PV array
% Use Newton-Raphon method
% by HQ, 05-01-2010
% Use new J matrix
% reduce size from 2n*2n to n*n
% for smaller size and fast matrix inverse
% by HQ, 06-07-2010
% THE PROBLEM IS: it converge very slow.
% Parameters
% Vout - external voltage at the termial of a PV array
% numPanels - # of panels
% HACK!!! only count those panels NOT being bypassed
% params - parameter sets
% HACK!!! only count those panels NOT being bypassed

global rows_index;

v = Vout / numPanels* ones(1, numPanels); % initial guess of cell

voltage
i = zeros(1, numPanels);

92

%dv = zeros(1, numPanels);
x = [v i];
% x contains solutions, in [v1, v2, ..., i1, i2, ...] format,
% NOTE, cells are in series connection

error = ones(size(v)); % errors
tol = 1e-3; % error tolerance

while max(abs(error)) > tol
 J = zeros(2 * numPanels, 2 * numPanels); % clear J at the beginning

 %%%%% forward path
 % find current
 for j = 1:numPanels

 % try to find the current if the initial guess of the search is
 % undefined just put a nigitive value so it will be ignored
 try
 x(j + numPanels) = CurrentCalculation(x(j),

parameters(j,:));
 if(~isfinite(x(j + numPanels)) || ~isreal(x(j +

numPanels)))
 x(j) = -1;
 voltage = x(1:numPanels);
 i = x(numPanels + 1:2 * numPanels);
 current = i(numPanels);

 return;
 end
 catch error
 if(strcmp(error.identifier,

'MATLAB:fzero:ValueAtInitGuessComplexOrNotFinite'))
 x(j) = -1;
 voltage = x(1:numPanels);
 i = x(numPanels + 1:2 * numPanels);
 current = i(numPanels);

 return;
 end
 end
 end

 % forward path, find error
 % error(1) - error(ncells) are error of PV cells
 for j = 1:numPanels
 error(j) = Auxiliary(x(j+numPanels), parameters(j,:), x(j));
 end
 % error(ncells+1) - error(2*ncell-1) are error of series current
 for j = numPanels + 1:1:2 * numPanels - 1
 error(j) = x(j) - x(j + 1);
 end
 % voltage error
 %for j = ncells+2:2:2*ncells
 error(2 * numPanels) = sum(x(1:numPanels)) - Vout;
 %end

93

 %%%%% feedback path
 % calculate df/di and df/dv
 for j = 1:numPanels
 [J(j, j), J(j, j + numPanels)] = DifferentialCalculations...
 (x(j + numPanels), parameters(j,:), x(j));
 end
 % current-related J
 for j = 1:numPanels-1
 J(j + numPanels, j + numPanels) = 1;
 J(j + numPanels, j + 1 + numPanels) = -1;
 end
 J(2 * numPanels,1:numPanels) = 1;
 %J
 % fixed x
 %x = x - (inv(J) * error')';
 %if(rows_index > 130)

 %end
 x = x - (pinv(J)*(error'))';
 % if(rows_index > 130)
 % x
 % end
end

voltage = x(1:numPanels);
i = x(numPanels + 1:2 * numPanels);
current = i(numPanels);

Current Calculation

function current = CurrentCalculation(voltage, parameters)
current = fzero(@(x) Auxiliary(x, parameters, voltage) , voltage);

Auxiliary
function f = Auxiliary(iTerminal, parameters, vTerminal)
% i is terminal current, now consider Rs
% vterminal is after series resistance,also PV cell voltage

Iph = parameters(1);
Is1 = parameters(2);
Is2 = parameters(3);
A = parameters(4);
Rs = parameters(5);
Rsh = parameters(6);
T = parameters(7);
ncells = parameters(8);

Vth = T*1.38e-23/1.6e-19; % Vth = T*K/q
vper = vTerminal + Rs*iTerminal; % PV cell voltage
% i1 = Is1*(exp(vper/(ncells*Vth))-1)
i1=0; %change 12/29

i2 = Is2*(exp(vper/(ncells*A*Vth))-1);

94

% end

i3 = vper/(ncells*Rsh);
% i3 = vper/(Rsh) nisha

current = Iph - (i1+i2+i3);

%current = photovoltaic(v, parameters);
f = current - iTerminal;

Differential Calculation

function [dv di] = DifferentialCalculations(i, params, vterminal)
% i is terminal current, now consider Rs
% vterminal is after series resistance, also PV cell voltage

%Iph = params(1);
Is1 = params(2);
Is2 = params(3);
A = params(4);
Rs = params(5);
Rsh = params(6);
T = params(7);
ncells = params(8);

Vth = T*1.38e-23/1.6e-19; % Vth = T*K/q
vper = (vterminal + Rs*i)/ncells; % PV cell voltage
e1 = exp(vper/(Vth));
e2 = exp(vper/(A*Vth));

di = -Is1*Rs/Vth * e1 - Is2*Rs/(A*Vth) * e2 - Rs/Rsh - 1;
dv = -Is1/Vth * e1 - Is2/(A*Vth) * e2 - 1/Rsh;

end

95

REFERENCES

[1] R. A. Messenger and J. Ventre, Photovoltaic Systems Engineering, 3 ed.: CRC

Press, 2010.

[2] (2012, Solar Energy Statistics. Available: http://www.statisticbrain.com/solar-

energy-statistics/ (accessed on 03/19/2013)

[3] Renewable energy. Available:

http://www.bp.com/subsection.do?categoryId=9037155&contentId=7068627

(accessed on 03/19/2013)

[4] M. H. Rashid, Power electronics handbook devices circuits and applications:

Elsevier, 2011.

[5] D. Sera, R. Teodorescu, and P. Rodriguez, "PV panel model based on datasheet

values " presented at the Industrial Electronics, 2007. ISIE 2007. IEEE

International Symposium on, June 2007.

[6] A. Jenifer, N. R. Newlin, G. Rohini, and V. Jamuna, "Development of Matlab

Simulink model for photovoltaic arrays " presented at the Computing, Electronics

and Electrical Technologies (ICCEET), 2012 International Conference on, March

2012.

[7] T. Salmi, M. Bouzguenda, A. Gastli, and A. Masmoudi, "MATLAB/Simulink

Based Modelling of Solar Photovoltaic Cell," INTERNATIONAL JOURNAL of

RENEWABLE ENERGY RESEARCH, vol. 2, 2012.

[8] L. Gao, R. A. Dougal, L. Shengy, and A. P. Iotova, "Parallel-Connected Solar PV

System to Address Partial and Rapidly Fluctuating Shadow Conditions "

Industrial Electronics, IEEE Transactions on, vol. 56, pp. 1548 - 1556 2009.

[9] P. Roopa, S. E. Rajan, and R. P. Vengatesh, "Performance analysis of PV module

connected in various configurations under uniform and non-uniform solar

radiation conditions ", 2011.

[10] T. Esram and P. L. Chapman, "Comparison of Photovoltaic Array Maximum

Power Point Tracking Techniques " Energy Conversion, IEEE Transactions on,

vol. 22, pp. 439 - 449 2007.

[11] J. Young-Hyok, J. Doo-Yong, K. Jun-Gu, K. Jae-Hyung, L. Tae-Won, and W.

Chung-Yuen, "A Real Maximum Power Point Tracking Method for Mismatching

Compensation in PV Array under Partially Shaded Conditions," Power

Electronics, IEEE Transactions on, vol. 26, pp. 1001 - 1009 2011

http://www.statisticbrain.com/solar-energy-statistics/
http://www.statisticbrain.com/solar-energy-statistics/
http://www.bp.com/subsection.do?categoryId=9037155&contentId=7068627

96

[12] M. Miyatake, M. Veerachary, F. Toriumi, N.Fujii, and H. Ko, "Maximum Power

Point Tracking of Multiple Photovoltaic Arrays: A PSO Approach," Aerospace

and Electronic Systems, IEEE Transactions on, vol. 47, pp. 367 - 380 2011.

[13] K. Kobayashi, I. Takano, and Y. Sawada, "A Study on a Two Stage Maximum

Power Point Tracking Control of a Photovoltaic System under Partially Shaded

Insolation Conditions," presented at the Power Engineering Society General

Meeting, 2003, IEEE, July 2003.

[14] N. xiaohua. (2012, A New Improved Perturbation and Observation MPPT Control

Algorithm in Photovoltaic System. 877-883.

[15] P. Petit and M. Aillerie, "Integration of individual DC/DC converters in a

renewable energy distributed architecture " presented at the Industrial Technology

(ICIT), 2012 IEEE International Conference on, March 2012.

[16] S. V. Dhople, R. Bell, J. Ehlmann, A. Davoudi, and P. L. Chapman, "A global

maximum power point tracking method for PV module integrated converters "

presented at the Energy Conversion Congress and Exposition (ECCE), 2012

IEEE, Sept. 2012.

[17] G. Petrone, G. Spagnuolo, and M. Vitelli. Distributed Maximum Power Point

Tracking: Challenges and Commercial Solutions.

[18] P. L. Chapman. (2012, Embedded Electronics for the Solar Power Industry.

[19] F. Alfaris, "STOCHASTIC MODEL FOR SOLAR SENSOR ARRAY DATA,"

Master of Science, Electrical Engineering, Missour University of Science and

Technology, 2012.

[20] B. A. Yount, "MANAGING A SOLAR SENSOR ARRAY PROJECT:

ANALYZING INSOLATION & MOTIVATION," Master of Science,

Engineering Managment, Missour University of Science and Technology, 2011.

[21] SolarMade Company. Available: http://www.solarmade.com/. (accessed on

03/19/2013)

[22] Tern Inc. Available: http://www.tern.com/portal/(accessed on 03/19/2013)

[23] MATLAB GUI. Available: http://www.mathworks.com/discovery/matlab-

gui.html(accessed on 03/19/2013)

[24] N. Nagrajan, "Development of a graphical user interface for the study of parallel-

connected solar array," Master of Science, Electrical Engineering, Missour

University of Science and Technology, 2011.

http://www.solarmade.com/
http://www.tern.com/portal/
http://www.mathworks.com/discovery/matlab-gui.html
http://www.mathworks.com/discovery/matlab-gui.html

97

[25] M. Jordan and J. Kimball, "Practical Performance Analysis of Complex Switched-

Capacitor Converters " Power Electronics, IEEE Transactions on, vol. 26, pp.

127 - 136 2011.

98

VITA

Majed Meshal Al Abbass was born on October 25, 1986 in Kuwait. He completed

his schooling in Asharq private school, Al Khafji, Saudi Arabia. Majed received his

Bachelor of Engineering (B.E.) degree in Electrical and Control from the King Saud

University, Riyadh, Saudi Arabia in May 2009. Later, he started working in Al Jouf

University, Al Jouf, Saudi Arabia as a teaching assistant. He started his Master of Science

program in Electrical Engineering at Missouri University of Science and Technology in

August 2011. He received his Master degree in May 2013.

99

