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ABSTRACT

             The challenge of extending Moore’s Law past the physical limits of the present 

semiconductor technology calls for novel innovations. Several novel nanotechnologies 

are being proposed as an alternative to their CMOS counterparts, with nanowire crossbar 

being one of the most promising paradigms. Quite recently, a new promising clock-free 

architecture, called the Asynchronous Crossbar Architecture has been proposed to 

enhance the manufacturability and to improve the robustness of digital circuits by 

removing various timing related failure modes. 

              Even though the proposed clock-free architecture offers several merits, it is not 

free from the high defect rates induced due to nondeterministic nanoscale assembly. In 

this work, a unique Functional Test Algorithm (FTA) has been proposed and validated to 

test for manufacturing defects in this architecture. The proposed Functional Test 

Algorithm is aimed at reducing the testing overhead in terms of the time and space 

complexity associated with the existing sequential test scheme. In addition, it is designed 

to provide high fault coverage and excellent fault-tolerance via post-reconfiguration. This 

test scheme can be effectively used to assure true functionality of any threshold gate 

realized on a given PGMB. The main motivation behind this research is to propose a 

comprehensive test scheme which can achieve sufficiently high test coverage with 

acceptable test overhead. This test algorithm is a significant effort towards viable 

nanoscale computation.

            This work has been organized into three papers, explaining the proposed 

algorithm, demonstrating its working, describing the achievable replacement schemes 

using the proposed tool and providing a performance evaluation metric specifically 

proposed to evaluate the functional test algorithm.
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INTRODUCTION

            The future electronic systems face a challenge to adopt to novel nanoelectronic 

solutions in order to ensure that Moore's Law successfully extends past the physical 

barriers of the present semiconductor technology. A clockless nanowire structure, called 

the asynchronous crossbar architecture has been quite recently proposed as an 

improvement over its clocked counterparts. However, in order to be a viable 

technological paradigm, several intrinsic issues associated with nanowire crossbar 

architecture such as imperfect nanoscale fabrication needs to be addressed.

            This thesis spotlights the dawn of a new test algorithm, called the Functional Test 

Algorithm. It is an extremely significant improvement over the previously existing raw 

testing scheme. The proposed algorithm uses input test tuple set unique to the function 

being realized. The algorithm identifies unique crosspoint locations specific to each 

threshold gate. Not only does the proposed algorithm provide complete test coverage, but 

it also manages to provide excellent fault-tolerance. 

            The proposed Functional Test Algorithm has been explained in this work in the 

form of three articles. The test algorithm has been clearly explained with several suitable 

examples. The usefulness of this algorithm in achieving perfect realization of any 

threshold gate on a programmable gate macro block (PGMB) has been demonstrated. In 

addition, a performance evaluation metric has been designed to evaluate the effectiveness 

of this scheme. This test algorithm can be used in future as a viable diagnostic tool to 

identify fabrication defects induced due to imperfect assembly. Parametric simulation 

using MATLAB have been done to validate the results.
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I. FUNCTIONAL TESTING OF ASYNCHRONOUS NANOWIRE CROSSBAR 
ARCHITECTURE

Sriram Venkateswaran and Minsu Choi

Dept of ECE, Missouri University of Science and Technology

Rolla, MO, USA

{svf44, choim}@mst.edu

ABSTRACT

Of late, several novel nanotechnologies are being proposed as an alternative to 

their CMOS counterparts, with nanowire crossbar being one of the most promising 

paradigms. Quite recently, a new promising architecture, called the Asynchronous 

Crossbar Architecture has been proposed. This proposed asynchronous nanowire clock-

free crossbar architecture is envisioned to enhance the manufacturability and to improve 

the robustness of digital circuits by removing various timing- related failure modes. 

Inspite of being advantageous over the clocked architectures, the asynchronous crossbar 

architectures are still not free from high defect rates induced by nondeterministic 

nanoscale assembly. In order to address this problem, there is a burning need to develop 

an effective test mechanism. In this paper, a novel Functional Test Algorithm has been 

proposed to achieve effective mapping of threshold gates onto a given Programmable 

Gate Macro Block (PGMB). The proposed algorithm tests only the relevant crosspoints 

programmed as ON using input patterns unique to the given threshold gate macro. This 

test scheme can be used to assure true functionality of any threshold gate realized on a 

given PGMB. In addition, this test scheme also provides excellent fault-tolerance and 
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fault-coverage. Parametric simulation results using MATLAB have been used to show 

the performance of this testing scheme.

Index Terms-Asynchronous nanowire crossbar system; Functional test algorithm; 

Programmable Gate Macro Block (PGMB); Defect and fault-tolerance; Parametric 

simulation.

1.         INTRODUCTION

Future electronic systems face a challenge to adopt to novel nanoelectronic 

solutions in order to ensure that Moore's Law successfully extends past the physical 

barriers of the present semiconductor technology. Most of the new nanoelectronic 

technologies present excellent potential for unexampled levels of device density, low 

power computing and high operating speeds. One of the most common paradigms for 

nanoelectronics is a crossbar based architecture [1], a two dimensional array formed by 

intersection of two orthogonal sets of parallel and uniformly spaced nanometer-sized 

wires. The crossing over of these nanowires forms programmable junctions called 

crosspoints [2, 3, 4, 5]. Experiments have shown that such wires can be aligned to 

construct an array with nanometer-scale spacing using a form of directed self-assembly.

This set of crosspoints of nanoscale wires can be used as programmable diodes, memory 

cells or FETs (Field-Effect Transistors); thus making it possible to realize nanoscale logic 

devices [6].

In order to be a viable nanotechnology, nanowire based systems should be:

1. Structurally simple and scalable enough to be fabricated by bottom-up 

     manufacturing technique. 
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2. Robust enough to tolerate extreme parametric variations. 

3. Defect and fault-tolerant enough to overcome defect densities, aging factors and 

     transient faults. 

4. Able to support at-speed verification and reconfiguration. 

Recently, an asynchronous nanowire crossbar architecture based on delay-

insensitive data encoding and self timed logic encoding scheme has been proposed [6]. 

This proposed architecture being totally clock-free, no clock distribution network is 

needed.

The biggest challenge however, lies in making these nanoscale structures simple 

enough to be manufactured and reliable enough to be used in computing applications. 

Since the nanoscale structures are assembled in a bottom-up manner, they are likely to 

have much higher fabrication defect densities and parametric variations [7, 8]. The clock-

free asynchronous nanowire crossbar architectures have several merits over their clocked 

counterparts; they are still not free from high defect rates induced due to nondeterministic 

assembly [9]. The primitive form of testing these defects is to check each location 

individually for defect.

With an aim to address this issue, a unique testing algorithm has been proposed in 

this paper. The proposed Functional Test Algorithm (FTA) can be used to test 

asynchronous nanowire crossbar structures for defect. In this paper, the functional test 

algorithm has been proposed. The features and advantages of using this algorithm have 

been discussed and analyzed using numerous examples in the proceeding sections of the 

paper. Section 4 explains the FTA thoroughly. Section 5 expands on this and explains 
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how the proposed algorithm can be used to achieve fault-tolerance. Section 6 provides a 

performance analysis model and also defines a set of performance analyzers to quantify 

the effectiveness of the functional test algorithm.

2.         PRELIMINARIES AND REVIEW

2.1       NULL CONVENTIONAL LOGIC

Traditional Boolean circuits exhibit time dependent relationships as well as 

symbolic- value-dependent relationships [4]. Time dependent relationships depend upon 

propagation delay times required to express validity of data values. Symbolic-value-

dependent relationships depend upon interconnection of logic gates and their truth tables. 

Most traditional boolean circuits are clock driven. These circuits are symbolically 

incomplete in terms of evaluating expressions as they are dependent on the clock.

NULL Convention Logic (NCL) [10, 11, 12] is complete in terms of theory and is 

also feasible in terms of implementation and economics as compared to delay insensitive 

circuits. NCL logic makes use of two signals, DATA and NULL. DATA signal 

represents the data signal used by the combinational circuit. NULL represents 

synchronization and I/O control. It is used to reset the gates in the combinational circuit. 

These circuits use dual-rail or quad-rail logic to achieve delay insensitivity.

Figure 1 shows the framework for NCL systems. In the DATA evaluation period, 

the combinational circuitry processes the data passed on by the register. The results are 

stored in the successive register. The successive register generates the Request for NULL 

signal in the DATA completion Acknowledgement period and propagates the signal to 

the previous register. The previous register transfers a NULL to the combinational 
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circuitry evaluated during the NULL combinational evaluation period. The evaluated 

result is passed to the successive register which generates a Request for DATA signal. 

The DATA to DATA timing diagram is shown in figure 2.

Figure 1 Pipelined NCL

  Ko and Ki signals are connected between the registers to synchronize the 

operation of the cumulative circuit. If the output of a particular gate is NULL, it does not 

change until and unless all the inputs to the gate are DATA. The dual rail- encoding 

scheme used in NCL architecture is described effectively in table 1.

Table 1  Dual Rail Encoding Scheme

Dual Rail Encoding Scheme

Rail 1 Rail 0 Represented State DATA Value

  0   0 NULL     --

  0   1 DATA     0

  1   0 DATA     1

  1   1 UNDEFINED     --
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       When all the inputs receive DATA then the output changes to data and remains 

asserted as long as all the inputs do not change to NULL. This attribute of the threshold 

gates helps in achieving the completeness feature enabling the circuits to function without 

the clock [11]. To achieve this property, a dual rail encoding scheme is used, as shown in 

table 1. NCL uses symbolic completeness [12] of expression to achieve self-timed 

behavior.

Figure 2  Timing Diagram

The main advantages of using NCL are as follows [10]:

Ease of Design: 

NCL circuits are self completed circuits in that their operation does not involve any clock 

signals for synchronization. They do not use any external trigger, clock or controller to 

accept data values or express readiness of circuit. NCL circuits can be fully expressed in 

high level languages. In addition, since the system is independent of clocks, the logic can 
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be designed in parts which can be directly composed later. The issues associated with 

global synchronization are totally eliminated.

Lower Power Consumption: 

The NCL systems operate in terms of synchronized wave fronts of monotonic level 

transitions. There are no pulses or edge triggering involved in the circuit behavior. The 

NULL state used here is an idle power state. The cumulative power consumption is 

significantly lower than that of clock driven circuits [10].

Convenient Technology Migration: 

NCL is insensitive to the behavioral properties of the physical implementation. The NCL 

circuits are insensitive to implementation technology, scale changes and propagation 

delay changes due to aging [10].

Adaptability to Physical Properties: 

Since NCL is delay insensitive, the delays due to changes in physical parameters like 

temperature, manufacturing variations, voltage do not have an effect on these circuits. 

These circuits continue to operate correctly under these variations.

Operation Speed:

Although NCL cycles require two propagation cycles per unit of processing, there are no 

delay margins added to account for the propagation delay as in case of clocked circuits. 

Integration of the registration in logic gates allows more finely grained pipelining and 

consequently higher throughput rates than conventional clocked techniques [10].
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A total of 27 Threshold gates are implemented in NCL [11]. The importance of 

the 27 threshold gates is that any possible expression having a maximum of four variables 

can be implemented using these functions. Inversion can be implemented by 

interchanging the rail 1 and rail 0 in case of a dual rail encoding scheme. The basic 

PGMB block is shown in figure 3.

Figure 3 Programmable Gate Macro Block

2.2       ASYNCHRONOUS CROSSBAR ARCHITECTURE

The normal crossbar architecture will be similar to the conventional clocked 

circuits. Synchronization in this conventional crossbar architecture will be provided by 

the clock which circulates throughout the circuit and helps decide when to receive and 

release data. Compared to the clocked counterparts, the asynchronous crossbar
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architecture was proposed to be data driven [6]. This architecture employs threshold gates 

[11] that recognize only certain simultaneous combinations of values unique to each gate. 

List of all threshold gates is provided in table 2. A total of 27 threshold gates are listed in 

table 2.

Table 2 List of all Threshold gates with their functional expressions

NCL Macros

NCL Macros Boolean Function

TH12 A + B

TH22 AB

TH13 A + B + C

TH23 AB + AC + BC

TH33 ABC

TH23w2 A + BC

TH33w2 AB + AC

TH14 A + B + C + D

TH24 AB + AC + AD + BC + BD + CD

TH34 ABC + ABD + ACD + BCD

TH44 ABCD

TH24w2 A + BC + BD + CD

TH34w2 AB + AC + AD + BCD

TH44w2 ABC + ABD + ACD
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Table 2 List of all Threshold gates with their functional expressions (cont’d)

TH34w3 A + BCD

TH44w3 AB + AC + AD

TH24w22 A + B + CD

TH34w22 AB + AC + AD + BC + BD

TH44w22 AB + ACD + BCD

TH54w22 ABC + ABD

TH34w32 A + BC + BD

TH54w32 AB + ACD

TH44w322 AB + AC + AD + BC

TH54w322 AB + BC + BCD

THxor0 AB + CD

THand0 AB + BC + AD

TH24comp    AC + BC +  AD + BD

NCL circuit being data driven, each of these gates acts as a "synchronization 

node" and makes the circuit symbolically complete. This completeness is achieved as 

follows: The DATA state follows the Null state and is processed by the gates and output 

is passed on to a register. The register contains completion circuitry that enables 

synchronization and checks the state of the output and generates an appropriate signal 

indicating the previous register to send the complementary state i.e. if the circuit is 

processing a Null state then the register on arrival of the output will send a request for 

data signal requesting for data to the previous register. The notable advantages of this 

architecture are [6]:

1. Manufacturability: Absence of clock would mean all clock related circuits can be 

removed from the design. This would make the overall hardware design easier and 
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less complex. As compared to their clocked counterparts, these circuits would be easy 

to manufacture.

2. Scalability: Since timing information is integrated with data in encoding, the 

timing complexity remains the same irrespective of the size of the circuit.

3. Robustness: Due to non-determinism of the directed self-assembly paradigm, 

      nanowire crossbar circuits are anticipated to exhibit large variations in physical 

      parameters. Since any physical variation in an electrical parameter may have its 

      own negative effect on the timing behavior of the circuit, being able to design 

      delay- insensitive circuits (i.e., correct operation of the circuit is independent of 

      the timing) is a significant capability and it would greatly increase the robustness 

      of the circuit to design parameter variations. As explained in Null Conventional 

logic subsection, there is no delay in processing data due to clock cycles as in clocked 

synchronous circuits. Instead data would be processed as and when it is available. 

4. Defect and Fault Tolerance: As NCL circuits have a definite flow pattern i.e. 

     DATA or NULL and vice versa the output can be checked if it is a data or null. 

     In addition to the complete removal of all timing-related failure modes, testing 

     complexity is reduced in that stuck-at-1 faults simply halt the circuit, since the 

     NCL circuit cannot make a transition from DATA to NULL. Also, in case of 

     dual-rail encoding, 11 is considered an invalid code. So, any permanent or 

     transient fault that results in this invalid codeword can be eventually detected. 

     Only stuck-at-0 faults and some other transient faults need to be exercised with 

     applied patterns. Design time and risk as well as circuit testing requirements are 

     expected to decrease because of elimination of the clock and its critical timing 

     issues. 
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The basic unit of the asynchronous nanowire crossbar architecture is the 

programmable gate macro block (PGMB). A typical PGMB is as shown in figure 3. The 

PGMB has AND and OR crossplanes formed by diode crossbars. The dimensions of the 

PGMB can be adjusted according to the efficiency of programming and manufacturing 

defect rate. The vertical wires with pull up resistors form the product terms and the 

horizontal wires with pull down resistors form the OR logic. There is also a feedback 

logic incorporated. It has been demonstrated that each of the threshold gates can be 

realized on a defect free PGMB having 6 rows and 10 columns [6, 13].

NCL (Null Conventional Logic) a delay insensitive paradigm, which helps in 

eliminating the clock from the circuit, can be implemented on nanowire crossbar 

architecture to realize asynchronous crossbar architecture. Table 3 gives the truth table 

for few THmn gates. With a total of n inputs atleast m out of n are needed for assertion.  

All signals deasserted is the reset condition. In case the weights of inputs are not 

specified, the default value is 1. With TH33w2 gate, the weight of the higher order bit 

input bit (i.e. bit A in ABC input pattern) is 2 and that of B and C is 1 respectively. Each 

gate has a boolean expression that gives its functionality. In case of TH24 gate, the 

functionality expression is F = AB + BC + AC + AD + BD + CD +F’ (A + B + C + D) 

where F’ represents the output feedback. The terms F'(A + B + C + D) account for the 

hysteresis behavior. Once the output is asserted, the only way to get it back to zero is to 

reset all primary inputs.
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Table 3 Truth Table for THmn gates

Truth Table for TH gates (F' represents previously asserted output)

ABCD TH23 TH24 TH34 TH33w2 TH44w3

0 0 0 0 0 0 0 0 0

1 0 0 0 F' F' F' F' F'

0 1 0 0 F' F' F' F' F'

1 1 0 0 1 1 F' F' F'

0 0 1 0 F' F' F' F' F'

1 0 1 0 1 1 F' 1 F'

0 1 1 0 1 1 F' 1 F'

1 1 1 0 1 1 1 1 1

0 0 0 1 - F' F' - F'

1 0 0 1 - 1 F' - 1

0 1 0 1 - 1 F' - 1

1 1 0 1 - 1 1 - 1

0 0 1 1 - 1 F' - 1

1 0 1 1 - 1 1 - 1

0 1 1 1 - 1 1 - 1

1 1 1 1 - 1 1 - 1

3.         PROBLEM DESCRIPTION AND PROPOSED SOLUTION

The nanoscale structures are assembled in a bottom-up manner and are hence 

likely to have much higher fabrication defect densities and parametric variations [7, 8] as 

compared to those which use a top-down fabrication approach. Unfortunately, the current 

fabrication methods have not been able to manufacture a defect-free nanowire crossbar 

matrix. According to researchers, current fabrication processes have defect rates of about 
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10% [14, 15] in a nanowire crossbar. Scientists are yet to discover a standard fabrication 

technique which would have a consistent defect rate. Each threshold gate that is 

programmed on a PGMB has a predefined pattern of crosspoint placement. This mapping 

pattern gives the corresponding functionality of the threshold gate. The crosspoint 

placement locations are unique for each threshold gate. Due to manufacturing defects, 

some of these ON programmable crosspoints may not be programmable. Such a 

manufacturing defect may result in a stuck- at-OFF fault at a programmable location. A

crosspoint location having a stuck-at-OFF fault cannot be programmed as ON. In a 6x10 

grid used to implement TH23 gate, 18 out of the total available 60 potentially 

programmable crosspoints are used to implement the TH23 gate macro. In figure 4, a 

defect at the leftmost crosspoint in the first row results in a faulty function F¤ = B + BC + 

AC + AF0 + BF0 + CF0. One or more of such faults can completely alter the functionality 

of the THmn gate being realized. This results in a need for functionally testing the 

programmable PGMB after gate mapping.

The most primitive form of testing PGMBs is the raw testing scheme. In this test 

scheme, each and every crosspoint is tested for ON and OFF state separately. This is an 

extremely laborious method and introduces a great amount of overhead [1]. In case a 6 x 

10 grid has to be tested, each of the 60 crosspoints will have to be individually tested. 

Another drawback of this scheme is that although a crosspoint is tested for ON/OFF state, 

there is still no guarantee that it is completely programmable.
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Figure 4 TH23 gate implemented on a PGMB

The raw testing scheme cannot provide complete assurance that the threshold gate 

is functionally correct. In addition to these reasons, the testing overheads introduced in 

terms of time and space complexities call for a more reliable and practical form of testing 

the PGMBs. The prime motivation behind proposing the Functional Test Algorithm is to

propose a test scheme which will address the issues associated with raw testing of 

PGMBs. By addressing the stuck-at-0 faults using applied input patterns, this novel test 

scheme provides a realistic solution to solve the current problem. The features and 

advantages of using the proposed functional test algorithm are discussed and illustrated 

with numerous examples in the proceeding sections of the paper.

4.         FUNCTIONAL TEST ALGORITHM

The proposed functional test algorithm is a post configuration test scheme [16] 

that makes use of the boolean function of the threshold gate being implemented to test the 

programmable ON crosspoint locations on the PGMB. Each THmn gate has its own 

unique and distinctive ON programmable co-ordinate locations. The proposed test 
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scheme aims to test only those programmable ON crosspoints in the given programmable 

PGMB. This algorithm uses the functional expression that is unique to each THmn gate. 

As shown in figure 4 there are 18 programmable locations in the 6 x 10 grid. The 

functional test scheme uses "test tuples" for the purpose of testing the programmable 

crosspoints. Test tuples are joint combinations of input bit patterns and previously 

asserted output. Table 4 can be used to clearly understand this. Consider the 

implementation of TH23 gate. Assume there is a fault at the coordinate location (1, 3). 

The fault at this ON point gives a faulty output F*=1 when input 001 is used. The desired 

output in case there is no fault at any crosspoint is F=F'(the previously asserted output). 

In case the previously asserted output is set to 0 and then followed with an input pattern 

001, an erroneous output of 1 will be obtained. By using a combination of F' and input 

bits, faults at the ON programmable crosspoints can be detected. The set of inputs used to 

detect the faulty crosspoints are called "test tuples". On close examination of table 4, it

can be noticed that a single test tuple can be used to determine correctness or fault at 

multiple locations. In other words, certain test patterns have one-to-many correspondence 

with programmable ON crosspoint locations. Input bits 001 with F'=0 can be used to test 

crosspoints having coordinates (1, 3), (2, 2), (5, 5). Input bits 010 with F'=0 can be used 

to test ON crosspoints having co-ordinate locations (1, 1), (3, 2), (5, 5). A total of 10 test 

tuples are needed to test all the 18 programmable ON crosspoints of TH23 gate macro.
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Table 4 Truth Table for TH23 gate and all faulty functions that can be resulted 
from single crosspoint defect (F’ is previously asserted output and (i, j) are defective 
crosspoint coordinates). Faulty outputs that can be used to test are highlighted.

ABC F

F*

(1,1)

F*

(1,3)

F*

(1,4)

F*

(2,1)

F*

(2,2)

F*

(2,5)

F*

(3,2)

F*

(3,3)

F*

(3,6)

0 0 0 0 0 0 F'=1 0 0 F'=1 0 0 F'=1

0 0 1 F' F' 1 F' F' 1 F' F' F' F'

0 1 0 F' 1 F' F' F' F' F' 1 F' F'

0 1 1 1 1 1 1 1 1 1 1 1 1

1 0 0 F' F' F' F' 1 F' F' F' 1 F'

1 0 1 1 1 1 1 1 1 1 1 1 1

1 1 0 1 1 1 1 1 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

ABC F

F*

(5,4)

F*

(5,5)

F*

(5,6)

F*

(6,1)

F*

(6,2)

F*

(6,3)

F*

(6,4)

F*

(6,5)

F*

(6,6)

0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 1 F' F' F’ 1 F' F' F' F' F' 0

0 1 0 F' F' 1 F' F' F' F' F' 0 F'

0 1 1 1 1 1 1 1 F'=0 1 1 1 1

1 0 0 F' 1 F' F' F' F' F' 0 F' F'

1 0 1 1 1 1 1 1 1  F'=0 1 1 1

1 1 0 1 1 1 1 F'=0 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1 1 1 1

Based on the number of points tested by each tuple, they can be prioritized as higher and 

lower order test tuples. Test tuples having one to one correspondence with the 

programmable crosspoints are called lower order test tuples. Higher order test tuples can 

test for defects at more than a single crosspoint location simultaneously. Table 5 shows 

the number of crosspoints tested by using test tuples for a set of THmn gates. The TH23 

gate has only two priority levels as shown in figure 5.
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Table 5 Table giving tested crosspoint coverage with respect to total Non 
crosspoints.

Prioritized Test Tuple ( TT ) Count

Gate Non 3 TTs 4 TTs 5 TTs 6 TTs 7 TTs

TH23 18 50% 66.67% 72.22% 77.8% 83.3%

TH24 30 40% 53.33% 66.67% 70.0% 73.3%

TH34 28 28.57% 35.71% 42,86% 50.0% 57.17%

TH33w2 15 53.3% 66.67% 73.3% 80.0% 86.67%

TH44w3 21 47.6% 57.14% 66.67% 71.42% 76.19%

The first set of 4 test tuples each cover 3 crosspoints.  The total coverage provided

by the first set is 12 crosspoints. The remaining 6 test tuples each cover only 1 crosspoint 

and are placed in the lowest level of priority. TH23 has 2 priority levels. TH34, on the 

other hand, has 3 input priority levels with the first tuple testing 4 ON-crosspoints, the 

second set testing 2 points each (test tuple number 2, 3, and 4 test 3 crosspoints each) and 

finally the lowest level providing direct correspondence.

Figure 5  Testable crosspoints with each input for THmn Gates

The proposed functional test scheme applies input tuples in the order of their 

priority level and validates outputs from those input tuples. For TH23 gate, the first set of 

4 Test Tuples test 12 out of the 18 possible programmable ON locations. In case of the 
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TH23 gate, using the first 3 most highly ranked test tuples cover 50% of the total test 

space. Using another input increases this to 66.67%. This rate rises to 72.2, 77.8 and 

83.3% respectively with each additional input. To achieve total testability for TH23 gate, 

10 test tuples need to be applied. In similar fashion, a total of 15 test tuples need to be 

applied to achieve total testability for TH24 gate.

Pseudo Code for the functional test algorithm is described in figure 6. The 

following illustrative examples will help understand the working of functional test 

protocol.

Figure 6 Pseudo Code for Functional Test Algorithm



21

Case 1:

Consider figure 7. The smaller dots represent programmable locations for TH23 

gate. The bold circles represent the randomly present defective crosspoints on the PGMB.

The defect rate considered here is 10%. The locations of these defects are not known 

prior to mapping of the TH23 gate. They have been shown in the figure for easy 

understanding of the concept.

The functional test algorithm works as follows: 

1. The TH23 gate is mapped on to the given PGMB.

2. The set of prioritized test tuples are generated for TH23 gate.

3. Check co-ordinate locations (1, 1), (3, 2) and (5, 5) for defect using the first test 

    tuple (000, 010).

4. As no faulty outputs are generated, all 3 points are cleared of having any defect 

    and are tested good.

5. The next test tuple (000, 001) tests locations (1, 3), (2, 2) and (5, 6). No faulty 

    output is observed.

6. Steps 4 and 5 are repeated till all the 18 locations have been tested.

7. Since no undesirable outputs are observed, the TH23 gate has been perfectly 

    realized.

In this case, the TH23 gate is 100 % programmable since none of the defective 

locations coincide with the programmable locations. FTA looks for defects only at 

programmable locations. Defects can co-exist at non programmable locations without 

being located and identified. This allowance can be provided since the defective locations 

do not alter the functionality being realized. 
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Figure 7  TH23 gate realized on a PGMB having 10% defect rate

Case 2:

Consider figure 8 which shows TH34w2 gate mapped onto a defective PGMB. 

The defect rate considered is 10 % for the worst case scenario. The circles indicate the 

programmable locations for the THmn gate which must be programmed as ON. The stars 

denote programmable ON crosspoint locations overlapping the defective crosspoint 

locations. The other points marked as X in the figure show defective crosspoint locations 

which will not be programmed for realizing TH34w2 gate. These locations will not alter 

the functional behavior since they do not overlap with the ON programmable crosspoint 

locations. The proposed functional test algorithm will work as follows in this case:
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Figure 8  TH34w2 gate implemented on a PGMB having 10% defect rate

1. TH34w2 is mapped on to the given PGMB. 

2. The set of prioritized inputs are generated. 

3. The first set of prioritized test tuple (0000, 0100) tests for locations (2, 1), (3, 2), 

     (4, 3) and (5, 5). The first part in the tuple set 0000 is used to prepare the PGMB 

     for testing and 0100 is the input pattern used to test the crosspoint location. 

4. The second prioritized test tuple (1111, 0000) tests (1, 5), (2, 6), (3, 7) and (4, 8).  

    This time, the observed output is different from the desired one. This implies 

     there is a fault at either one or more crosspoints from the set of 4 locations tested.

5. The third set (0000, 0010) is then used to test two locations, (1, 2) and (5, 7). No 

     fault is observed. 

6. The forth (0000, 0001) and fifth (0000, 0100) set also give desired results. 

7. The next sets of input tuples give one to one correspondence. The next test tuple 

     (0000, 0011) tests the crosspoint location (2, 4) which is a defective location. 
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     With one-to- one mapping present in this case, the faulty crosspoint can be 

     directly isolated. 

8. Similarly, two more input tuples (0000, 0101) and (0000, 0110) are applied and 

     all AND programmable locations are tested. 

9. Once the product term locations are tested, the OR programmable plane is 

     considered. All the OR programmable points give one-to-one mapping. Locations 

     (6, 1), (6, 5) and (6, 8) can be successfully tested for fault. 

10. Summary of Test: Out of the 5 potentially defective programmable crosspoints, 

      4 have been isolated successfully. These locations are (2, 4), (6, 1), (6, 5), (6, 8). 

      There is a defect at potentially one or more locations from the following set: 

      (1, 5), (2, 6), (3, 7), (4, 8). 

5.         FAULT-TOLERANT PLACEMENT SCHEMES USING THE    
PROPOSED FUNCTIONAL TEST ALGORITHM

Table 6 gives the number of OR locations utilized to implement few of the THmn 

gates. Having studied the mapping patterns of THmn gates and defect distributions, it has 

been noticed that the OR plane is vulnerable to have a physical defect overlap with a 

programmable ON location. Since a majority of programmable ON crosspoints fall on a 

single OR plane, it is essential to ensure OR plane redundancy. With the inclusion of a 

redundant OR wire, the reliability of the OR plane can be enhanced. With a redundant 

OR wire, in case an OR point is defective, the OR connection can be moved to the 

redundant wire without re-programming other crosspoints in the column which contribute 

to the product term. Another advantage is that since the OR planes are ORed together, the 

AND plane realization is not altered in any manner. This reduces the number of 
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crosspoints being retested and reprogrammed in case of using alternate placement 

schemes. As far as testing overheads are concerned, with the addition of a redundant row, 

only single additional input test tuple needs to be used to test the single OR location. 

Consider the scenario where a redundant OR row is not introduced and there is a defect at 

OR crosspoint location. In this case, the entire column will have to be moved to another 

location and all the corresponding crosspoint locations will have to be tested using 

additional test tuples. Not only will the number of programmable locations increase with 

this approach, but the testing space will also increase drastically. In case of some of the 

THmn gates such as TH12, TH23w2 where no more than 50% of the potentially 

programmable OR locations are used, it would be possible to rearrange the columns 

instead of using a redundant OR row. It is hence imperative to use suitable modeling and 

placement schemes to address these mapping issues.

Consider the following example where a redundant OR plane and column shift are 

used to realize TH34w2 gate on a defective PGMB having a 10% defect rate. Consider 

TH34w2 gate shown in figure 8. The functional test algorithm predicted a fault at one or 

more locations from the set (1, 5), (2, 6), (3, 7), (4, 8). Incase column 5 is moved to a 

parallel location and functionally tested; the observed output does not match with the 

desired one. This implies the fault location has not been detected. With (4, 8) moved to 

(4, 9) and tested, the input tuple generates desired output. The entire column (column 8) 

is moved to column 9 and tested functionally. Column 4 is moved to column 10 and 

results are validated using additional test tuples. The remaining 2 OR defective 

crosspoints with initial locations (6, 1) and (6, 5) are moved to (7, 1) and (7, 5) 

respectively. The reconfigured PGMB looks as shown in figure 9.
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 Figure 10 shows TH23 gate implemented on a defective PGMB. Location (6, 1) is a 

programmed ON location having a coinciding defect. This defect can be functionally 

tested using OR crosspoint input test tuple. One possible solution to work around this 

defect can be to use the inherently available locations. By using this approach, column 1 

can be moved to column 7. In doing so, all the three ON crosspoints in column 1 are 

relocated to column 7. Another approach would be to introduce a redundant OR plane. In 

this case, location (6, 1) can be moved to location (7, 1). The input test tuple can then be 

used to validate the result. With the second approach, only the OR location would have to 

be relocated. Figure 11 shows TH23 gate realized successfully using a redundant OR 

plane row and Functional Test Algorithm. The following realization assumes there is no 

defect in the redundant OR plane. There exists a probability of defect locations present in 

the redundant plane. However, since defect rates are not seen to be greater than 10 

percent, the probability of both OR locations in the same column being defective 

simultaneously are very low. Hence, for simplicity purposes a defect free assumption is 

made here. In case a defect at both OR locations in the same column are observed, the 

either column has to be shifted or the PGMB has to be discarded all together.

Table 6 Table giving number of programmable OR locations for THmn gates

                  Number of Programmable OR crosspoints

TH12 TH23 TH24 TH23w2 TH34 TH33w2 TH34w2 TH44w3

4 6 10 5 8 5 8 7
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            Replacement and remodeling schemes result in an increase in number of 

programmable crosspoint locations tested. This increased test overhead can be 

mathematically calculated as follows:

Figure 9  TH34w2 realized successfully using a redundant OR plane row and 
Functional Test Algorithm

 The total minimum number of programmable crosspoints = N

 The minimum number of test tuples applied to test 'N' programmable crosspoints 

= T

 Number of new programmable locations tested for true realization of 

function = n

 Number of additional test tuples used to test these locations = t

 Percentage increase in additional crosspoints = n / N

 Percentage increase in additional test tuples used for realization of function = t / T
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Figure 10  TH23 gate implemented on a defective PGMB

Using the above formulae, the test overhead introduced in realizing TH34w2 and 

TH23 gates over the PGMB can be obtained from table 7. The table shows the 

comparison between introducing a redundant OR row and using the available free 

columns in the original 6x10 grid.

Table 7 Table giving overhead estimates

Overhead Table

Description                                    

TH34w2 TH23                  

 (7x10)

TH23

(6x10)

Total minimum programmable crosspoints 25 18 18

Minimum no. of test tuples required 14 10 10

No. of new programmable locations tested 9 1 3

No. of additional test tuples used 9 1 3

Percentage increase in additional 

crosspoints 36% 5.55% 16.67%

Percentage increase in additional test tuples 64.28% 10% 30%
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Figure 11  TH23 realized successfully using a redundant OR plane row and 
Functional Test Algorithm

6.         PERFORMANCE EVALUATION MODEL

  A performance evaluation model, as represented in figure 12 has been presented 

for understanding the performance of functional test scheme. This node model gives a 

diagrammatic representation of all possible categories the tested PGMBs can fall under. 

Each circle or node has a mathematical probability of being true which can be expressed 

in terms of three main parameters: 

1. Defect rate varying from 0 to 10 percent. 

2. Non: the total number of programmable ON-input crosspoints for a given   

      THmn gate. For TH33w2 gate, Non is 15, whereas for TH23 the count is 

      18 and 30 for TH24. 
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Figure 12  Performance Evaluation Model for Functional Test Approach

3.  Ntest: the number of programmable ON-input crosspoints being tested.

Ntest is typically a subset of Non. It represents the number of programmable 

ON-input crosspoints being tested. With every test tuple applied, this count 

increases. With all test tuples applied, Ntest = Non. Range of Ntest can be 

confined as follows:  0 < Ntest ≤ Non. 

    Let p be the defect rate induced during PGMB manufacture. The probability of 

an error free crosspoint can be represented as 1 - p. With defect rates expected to vary 

anywhere from 0% to 10%, the fraction of good and defective PGMBs can be expressed 

using the following probability expressions.

 Fraction of PGMBs tested-as-good :  (1 - p)Ntest

 Fraction of PGMBs tested-as-bad :  1 - (1 - p)Ntest

 Fraction of correctly programmed PGMBs :  (1 - p)Non

 Fraction of incorrectly programmed PGMBs:  1 - (1 - p)Non

 Fraction of indeed good PGMBs :  (1 - p)Non

 Fraction of indeed bad PGMBs :  1 - (1 - p)Non
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            Tested-as-good represents those PGMBs which have been cleared to be good after 

testing only Ntest number of ON programmable crosspoints. Tested-as-bad PGMBs are 

those which had a coinciding defect at atleast one programmable ON location from the 

set of Ntest locations. Fractions of indeed good PGMBs are nothing but the fraction of 

correctly programmed PGMBs. This fraction represents "True positives", as shown in 

figure 12. Correctly programmed, also called indeed good PGMBs do not have a 

coinciding defective location on a programmable ON location. An indeed good PGMB is 

one which has been cleared of any defect after testing all Non ON programmable 

locations.

The performance model has been designed to analyze the quality metrics 

associated with the functional test scheme. This model has been developed to setup 

performance indicators for THmn gates. Performance indicators explained below can be 

used to quantify the performance of the proposed functional test algorithm.

6.1       ACCURACY

           Accuracy of the functional test scheme can be defined as the ratio of number of 

tested as bad PGMBs over indeed bad PGMBs. Figure 13 and figure 14 shows the 

accuracy plot for TH23 gate obtained from both simulation and mathematical models. 

The results based on mathematical model and simulations bare a close resemblance. The 

mathematical plots are generated using the mathematical formulas explained above. It is 

evident from the results that accuracy ratio increases with increase in the number of test 

tuples covered. For Ntest = 0, no bad PGMBs are observed and this ratio cannot be 

defined. As Ntest approaches Non, more ON locations are covered, increasing the accuracy 

factor. 
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            For Ntest = Non, accuracy is 1 since all ON programmable locations have been 

tested for defect. Figure 15 and figure 16 show accuracy plots for TH33w2 gate based on 

simulation and mathematical results. In order to test 10 ON crosspoint locations, 4 test 

tuples have been used and 9 in total to test all 15 ON crosspoint locations.

Figure 13 Simulation based accuracy plot for TH23 gate

Figure 14  Mathematical formula based accuracy plot for TH23 gate



33

Figure 15  Accuracy plot for TH33w2 gate based on simulation results

Figure 16  Accuracy plot for TH33w2 gate based on mathematical formula
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6.2       ESCAPE FACTOR

            Escape factor is another “Figure of Merit” parameter, which is complementary to 

Accuracy.  Escape Factor = 1 - Accuracy.

Escape factor relates to the fraction of bad PGMBs that have escaped the scan due to 

reduced set of test tuples. The escaped PGMBs are anticipated to have atleast one 

defective location coinciding with ON programmable location.

6.3       ESCAPE TOLERANCE

        Escape tolerance is another “Figure of Merit” that has been derived from the node 

model. The ratio of indeed good PGMBs over the tested as good ones is the escape 

tolerance for a THmn gate. 100 % escape tolerance implies that all the indeed good 

PGMBs have been covered in the set of tested as good. Higher the value better is the 

performance. Referring to figure 19 it can be seen that escape tolerance falls from 1 for 0 

% defect rate to 0.38 for 10 % defect rate with three test tuples. Three test tuples cover 

nine out of 18 crosspoints, which signifies an ON crosspoint coverage of 50 %. 

Increasing defect rate will increase the probability of defective crosspoints which will 

bring down the fraction of indeed good PGMBs. This justifies why escape tolerance ratio 

falls with increasing defect rate. It can be observed from figure 17 that escape tolerance 

with 1% defect rate and Ntest = 10, 11 12, 13, 14 and 15 is greater than 0.95. However, 

the same values fall to as low as 0.70 with Ntest= 10 for 10% defect rate. With increased 

defect rates, number of defective location in a PGMB will increase. With this, the 

chances of an overlap between ON crosspoint and a defective location increase, thus 

reducing the total number of good PGMBs. As Ntest approaches Non, the escape 

tolerance increases. 
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Figure 17  Escape Tolerance for TH33w2 gate based on simulations

Figure 18  Escape Tolerance for TH33w2 gate based on mathematical model



36

Figure 19  Escape Tolerance for TH23 gate based on mathematical formula

    Figure 21 shows the accuracy plots for TH23 gate with test tuples applied in 

reverse order of priority. By using test tuples in reverse order of priority, the OR plane 

ON crosspoints are tested first, followed by AND plane. It can be observed that accuracy 

is very low and increases gradually with each test tuple. For test tuples applied in order of 

decreasing priority, higher accuracy can be using comparatively lesser number of test 

tuples applied. Consider figure 21 shown below. In case an accuracy factor of 0.9 with a 

defect rate of 10% is aimed, with test tuples applied in reverse order, atleast 15 

programmable locations will have to be tested. To test these 15 ON crosspoint locations, 

9 out of the 10 test tuples will have to be applied. For achieving the same accuracy factor 

of 0.9 with higher order test tuples applied first, only 6 out of 10 test tuples will have to 

be used.
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Figure 20  Escape Tolerance plot for TH23 gate using reverse order of priority 
inputs

Figure 21  Accuracy plot for TH23 gate using reverse order of priority inputs

7.         CONCLUSION

            The proposed post configuration testing scheme is aimed to identity all Stuck-at-0 

faults that overlap with programmable ON crosspoint locations. The testing scheme uses 

unique input test tuple set and identifies unique crosspoint locations specific for each 
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threshold gate. Not only does the proposed algorithm provide complete test coverage, but 

it also manages to provide excellent fault-tolerance. The proposed algorithm also 

manages to reduce the testing overhead significantly, as compared to the raw testing 

scheme. Performance analyzers like accuracy and escape tolerance further validate the 

effectiveness of the proposed test scheme. 

            Using the results of the Functional Test Algorithm, defective ON crosspoint 

locations can be shifted to alternate defect-free locations. Using a redundant OR plane the 

defective OR crosspoint locations can be moved to the corresponding redundant location 

without disturbing the AND plane ON crosspoints. Another approach can be to shift an 

entire column to an alternate available non-programmed defect-free column. A 

combination of the two above approaches can also be considered based on the threshold 

gate being realized. These approaches can help in correct realization of the threshold gate 

inspite of inherent defects.
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ABSTRACT

Asynchronous nanowire crossbar architecture has been recently proposed to 

eliminate the clock distribution network from conventional clocked counterpart. The 

proposed clock-free architecture is envisioned to enhance the manufacturability with 

simpler periodic structure and to improve the robustness by removing various timing-

related failure modes. Even though the proposed clock-free architecture has numerous 

merits over its clocked counterpart, it is still not free from high defect rates induced by 

nondeterministic nanoscale assembly. In order to address this issue, our research team has 

been working on developing test schemes for effective mapping of threshold gates onto 

Programmable Gate Macro Blocks (PGMB). We have come up with a novel functional 

test approach which uses prioritized input tuples to effectively stimulate coinciding 

defects in configured PGMB. Numerous preliminary plots and results obtained till date 

prove that this scheme can be used to achieve high test efficiency for any threshold gate. 

The main motivation behind this research is to propose a comprehensive test scheme 

which can achieve high enough test coverage with acceptable test overhead. Parametric 

simulation results using MATLAB have been used to show potential performance of this 

testing scheme.
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1.         INTRODUCTION

The recently proposed asynchronous nanowire crossbar architecture is based on 

the delay insensitive data encoding and self timed logic - therefore it is totally clock-free 

[1]. This helps eliminate all the failure nodes related to timing. The other potential 

benefits of using this architecture include enhanced manufacturability, scalability, 

robustness and defect and fault tolerance [2]. The proposed asynchronous nanowire 

crossbar architecture is based on a delay-insensitive logic paradigm known as Null 

Conventional Logic (NCL) [3]. NCL logic can be realized using 27 threshold gates [3]. 

These gates can be used to implement any expression involving upto four variables.

In the proposed architecture, every threshold gate macro that can be programmed 

on to a PGMB has a certain predefined pattern of crosspoint placement that would give 

the corresponding functionality of the gate. A TH23 gate on a PGMB is shown in figure 

1. For instance, a TH23 gate can be expressed as F = AB+BC +AC +AF 0+BF 0+CF 0, 

where A, B, C are the primary inputs and F’ is the output feedback. The first three 

product terms in this Boolean equation are for the threshold behavior of the gate since the 

quorum of this gate is 2. Also, the last three product terms (which is also equivalent to (A

+ B + C) F 0) are for the hysteresis behavior. Once the output F is asserted, the only way 

to make it back to zero is reset all primary inputs. 
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Figure 1  TH23 gate configured on a PGMB

Defect rates arising due to fabrication vary on an average from 0% to 10% [4]. 

Researchers are still not able to accurately predict the defect rate in these PGMBs. The 

effect of these defects on the logical operation of the circuit needs to be scrutinized. 

These defects have to be tolerated to maintain proper functionality of the circuit.

2.         FUNCTIONAL TEST APPROACH

The most primitive way of testing a nanowire crossbar is to test individual 

crosspoints one by one by sequentially scanning through them and generate a defect map. 

This is not only a very laborious scheme, but also introduces a considerable amount of 

testing overhead in time/space complexity [2]. The functional test scheme proposed in 

our paper is designed to test maximum number of programmable crosspoints using the 

minimal number of test inputs. The test inputs are nothing but logical inputs based on the 
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logical expression realized by any THmn gate. As shown in the algorithm, the first step is 

to map the THmn gate onto the PGMB following which the truth table for the specific 

gate is generated. A list of prioritized inputs is generated for testing the ON crosspoints. 

In case our objective is to scan the PGMS for defects, then inputs are applied in order of 

decreasing priority. In this manner, the entire ON programmable space is successfully 

scanned. In case locating the defect is essential, then partial isolation and location can be 

achieved. This is however confined only to the OR plane crosspoints. The reason being 

they have direct correspondence with the test tuples. The fault count thus generated from 

either of the approaches specifies the number of defective crosspoints generated. Another 

feature of our approach is that the functional test scheme being proposed in this work 

avoids the issues associated with this raw crossbar testing. The crosspoints under test are 

limited by the number of ON-inputs (i.e., crosspoints that should be programmed as ON) 

of the given threshold gate macro. Minimizing the test space helps reduce the test time. In 

addition, since Boolean inputs are used to check for defects, these programmable inputs 

can be prioritized according to the number of ON-inputs they can cover. The other 

advantage of this approach is the minimal number of test inputs it takes to cover the test 

space. On close comparison of desired functional output due to defect free mapping and 

one generated due to defective crosspoints at programmable locations, prioritized input 

tuple levels have been set for each threshold gate. These prioritized test tuples can be 

applied sequentially to validate the programmed gate function. Table 1 shows the 

prioritized test tuples for TH23 gate. Table 2 shows the percentage coverage attained by 

each test tuple for a set of threshold gates.
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Table 1 Test Tuples and their corresponding number of testpoints for TH23 gate

Test Tuple Number of programmable locations tested

1 3 crosspoints

2 6 crosspoints

3 9 crosspoints

4                 12              crosspoints

   5                 13              crosspoints

6                14               crosspoints

7                15               crosspoints

8               16               crosspoints

9               17               crosspoints

  10              18               crosspoints

Table 2 Total crosspoints tested vs prioritized test tuple count

Prioritized Test Tuple Count

Gate Non 3 4 5 6 7

TH23 18 50% 66.67% 72.22% 77.8% 83.3%

TH24 30 40% 53.33% 66.67% 70.0% 73.3%

TH34 28 28.57% 35.71% 42,86% 50.0% 57.17%

TH33w2 15 53.3% 66.67% 73.3% 80.0% 86.67%

TH44w3 21 47.6% 57.14% 66.67% 71.42% 76.19%

Let’s consider TH23 gate. The three primary inputs will generate 8 input bit 

patterns ranging from 000 to 111. Figure 1 shows a TH23 gate configured on a PGMB. 

We can see that there are 18 ON-inputs represented by highlighted dots. Imperfect 

assembly may cause any one or more of these points to be OFF. For example, a defect at 

the left-most crosspoint in the first row results in a faulty function of F¤ = B + BC + AC +

AF0 + BF0 + CF0. Notably, one or more test input tuples can be found by comparing 
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output columns of F and F ¤ in their truth table. The proposed functional test scheme also 

applies input tuples in the order of their priority level and validates outputs from those 

input tuples. As the number of applied test tuples increases, the total number of testable 

ON-input crosspoints increases. Table 1 shows the number of testable ON input 

crosspoints as a function of test tuple count. The first sets of 4 inputs test 12 out of the 18 

possible programmable locations for defects. In case a particular test input results in an 

undesired output, then the ON-crosspoints under test are tested as bad. In case of the 

TH23 gate, using the first 3 most highly ranked input tuples cover 50% of the total test 

space. Using another input increases this to 66.67%. This rate rises to 72.2, 77.8, and 

83.3% respectively with each additional input. Table 2 shows the coverage values for all 

5 gates under consideration. This is a very important point especially when we have a 

large input sample space.  For example, in order to test 75% of ON- crosspoints, 6 input 

tuples should be applied. With this set level, we can achieve a relative testability (i.e., 

number of total tested- good crosspoints / number of total crosspoints tested) of greater 

than 90% on average.

Figure 2  Relative Testability of THmn gates
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    Figure 2 shows a plot of relative testability for 5 different threshold gates. These 

5 threshold gates have been considered in the following plots because they cover the 

maximum possible input combinations and can be considered as representatives of the 

several other types of gates. The TH23 gate has only two priority levels as shown in 

figure 3. TH34, on the other hand, has 3 input priority levels with the first tuple testing 4 

ON-crosspoints, the second highest set testing 2 points each and finally the lowest level 

providing one to one correspondence.

Figure 3 Testable crosspoints with each input for THmn gates

Consider figure 2 which gives the tested good over the tested bad PGMB ratio. 

This plot helps us understand the relative distribution of the two types of PGMB in the 

sample. The nature of the plots show that as the defect rate decreases and as the number 

of crosspoints under test increases, the ratio of tested good over tested bad falls 

considerably. This count is of extreme significance especially when we require the 

distribution of bad crosspoints for the purpose of repair. In case of repair being the 
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priority, the inputs are applied in the order of increasing priority. This will enable 

maximum one to one correspondence to be achieved. In the set of programmable 

crosspoints, the OR plane has highest priority. In order to account for any potential 

failure in any programmable OR crosspoint, we have proposed a unique solution. Our 

solution suggests implementing OR plane redundancy. A parallel OR plane can be 

introduced. Figure 4 represents the distribution of bad PGMBs due to at least one defect 

in any of the programmable OR crosspoint locations. TH24 gate has the highest number 

of defective PGMBs since it uses all the 10 programmable crosspoints. TH33w2 on the 

other hand has only 5 out of the available 10 which are programmed. This concentration 

of defects over a single OR plane especially for higher defect rates suggests the need to 

focus on the OR plane. For minimizing the defective PGMBs due to defective OR plane, 

we need to test this plane by using low priority inputs. This can help locate the defects 

which can be repaired or corrected accordingly in future.

Figure 4  Distribution of defective PGMBs due to defective OR plane crosspoints
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Consider a 6x10 grid and a TH24 gate is to be implemented on this. We have 10 

programmable OR locations in this gate. By introducing a redundant wire we increase the 

PGMB dimensions to 7x10. In case the OR crosspoint of the jth row is defective; we can 

program the crosspoint on the j-1 th row and corresponding to the same column number. 

Only if both the points are defective simultaneously will there be a manipulation in the 

desired output. In case one of them is defective, we can still achieve efficient 

programmability with this approach. The plots and results have been obtained 

considering the defect rate of 10%, which is the worst case under the current prediction.

Accuracy is a figure of merit which has been used to quantify our test approach. 

Accuracy of the functional test scheme can be defined as the ratio of number of tested as 

bad PGMBs over the total number of bad PGMBs. It is evident that the accuracy ratio 

increases with increase in defect rate and the number of test tuples covered. For lower 

defect rates and lesser number of test tuples, the numbers of bad crosspoints are few. Of 

the two dependent parameters, only the number of test tuples can be varied.

Figure 5 Tested good over tested bad PGMB ratio for varying defect rates and 
variation in number of crosspoints
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Hence, test tuple count should be suitably selected with due consideration to required 

accuracy. In figure 6 and figure 7, accuracy plots for TH23 gate with varying number of 

test tuples and increasing defect rates have been generated. It is interesting to note that in 

both the plots, the accuracy rates increase with defect rate. This is due to the increase in 

total number of bad PGMBs with increase in defect rate. When the prioritized inputs are 

applied in reverse order, the accuracy is very low and increases slowly with each test 

tuple. For test tuples applied in order of decreasing priority, we can achieve higher 

accuracy for comparatively lesser number of tuples applied. Having said that, if location 

of defect is essential, then a compromise needs to be made on the accuracy front.

Figure 6 Accuracy plot for TH23 gate

This is a necessary tradeoff. Another complementary factor that can be generated is 

escape factor. It is the ratio of actually bad PGMBs over total identified bad PGMBs. 

Actual bad ones are those which have been subject to all the test tuples possible to cover 

the entire programmable space. Total identified bad PGMBs are those which have been 

identified as bad when a reduced set of test tuples have been applied. This reduced set, 
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called as Ntest is a subset of the total test points, denoted by Non. It is clear from definition 

that accuracy and escape factor are complementary to each other. Escape factor is greater 

when lesser number of test tuples is applied. For increasingly larger number of test tuples, 

the number of indeed bad PGMBs is lesser, bringing down the escape factor. A low value 

for escape factor means lesser the chances of an indeed bad PGMB escaping as a tested 

good one.

Figure 7 Accuracy plot for TH23 with test tuples applied in order of increasing 
priority

3.         CONCLUSION AND FUTURE WORK

The complete sequential scan testing of nanowire crossbar guarantees the perfect 

test coverage. However, this scheme is rather laborious in terms of time/space 

complexity. Thus, we have proposed a novel test approach for the recently proposed 

asynchronous nanowire crossbar architecture. The proposed testing scheme is to 

functionally test ON-crosspoints solely by applying a number of input tuples. Notably, 

some of the input tuples may be used to cover more than one ON- crosspoint. Thus, it is 
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possible to prioritize them to achieve the desired combination of test coverage and 

overhead. The trade-off between the performance (i.e., test coverage) and the overhead 

(i.e., number of total input tuples applied) is shown in preliminary simulation results in 

this paper. Having said that, in case of locating defects being our priority, we lose one-

to-one correspondence with the input tuples with increasing priority. We will hence no 

longer be able to directly isolate AND plane defects. We will have to use combination of 

inputs to locate faults. In future, we plan to extend our functional test algorithm to 

accommodate this. All these approaches are aimed at maximizing the utility of PGMBs in 

spite of the inherent fabrication defects.
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ABSTRACT

            The recently proposed asynchronous nanowire clock-free crossbar architecture is 

envisioned to enhance the manufacturability and to improve the robustness of digital 

circuits by removing various timing- related failure modes. Even though the proposed 

clock-free architecture has numerous merits over its clocked counterpart, it is still not free 

from high defect rates inherently induced by nondeterministic nanoscale assembly. In 

order to address this issue, a novel functional test scheme for validating threshold gates 

on Programmable Gate Macro Blocks (PGMB) has been proposed. The proposed 

approach tests only the crosspoints programmed as ON state using input patterns unique 

to the given threshold gate macro. The proposed scheme helps achieve correct 

programmability with minimal test over- head. This test scheme can be used to assure the 

true functionality of any threshold gate on a given PGMB. Parametric simulation results 

using MATLAB have been used to show the potential performance of this testing 

scheme.

Index Terms - Asynchronous nanowire crossbar system; Functional testing; Defect and 

fault-tolerance; Parametric simulation.
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1.         INTRODUCTION

Many of the nanowire crossbar architectures are envisioned to be clocked. They 

should have the clock being propagated throughout the circuit for synchronizing the 

functional blocks. The recently proposed asynchronous crossbar architectures however 

manages to eliminate the need for clock and clock distribution network. The 

asynchronous nanowire architecture is based on a delay-insensitive data encoding and 

self timed logic. Since no clock distribution network is needed in this architecture, all 

failure modes related to timing are eliminated. Potential advantages from the proposed 

architecture include enhanced manufacturability, scalability, robustness and defect and 

fault-tolerance [2]. The asynchronous crossbar architecture uses Null Convention Logic 

(NCL) [3, 4, 5]. Null Conventional Logic integrates data and control into a single signal. 

The two states, DATA and NULL are used by this technology for achieving 

synchronization and I/O control. The DATA wave front contains data to be processed by 

the combinational circuit and the NULL wave front is a non-data value used to reset the 

logic gates in the circuit. They are used to separate two consecutive DATA wavefronts 

[3]. The main reasons why NCL is suitable is because these circuits are less complex, 

insensitive to delay and are more reliable since they do not experience problems such as 

clock skew and race conditions [2].

The basic unit of crossbar architecture is the programmable gate macro block 

(PGMB) [2]. The PGMB has AND and OR crossplanes formed by nanowire diode 

crossbars. The vertical wires with pull-up resistors form the AND terms and the 

horizontal wires with the pull-down resistors form the OR logic. This is a two level logic 

consisting of the input and the feedback logic. The feedback logic is implemented by 
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using the feedback loop which drives the previous output back to the input wire. The 

asynchronous cross- bar architecture uses NCL (Null Conventional Logic) [2], a delay 

insensitive paradigm, which helps eliminate clock distribution network from the circuit. 

There are a total of 27 threshold gate macros [4] that can be implemented in NCL.

            A discrete threshold gate [4], represented as THmn has atleast m signals asserted 

for its set condition. All signals de-asserted is the reset condition. With a total of n inputs 

atleast m out of n are needed for assertion. In case the weights of inputs are not specified, 

the default value is 1. For e.g., with TH33w2 gate, the weight of the higher order bit in-

put bit (i.e. bit A in ABC input pattern) is 2 and that of B and C is 1 respectively. Each 

NCL macro has a boolean function that describes its functionality. The boolean 

expression has two parts - the set and the hold expression. For e.g., in case of TH24 gate, 

the output expression is F = AB + BC + AC + AD + BD + CD + F0 (A + B + C + D) where 

AB +BC + AC + AD + BD + CD represents the set equation. The hold equation in this 

case is A + B + C + D. The term F'(A + B + C + D) determines the reset condition for the 

threshold gate [1] and account for the hysteresis behavior.

2.         PROBLEM DESCRIPTION AND PROPOSED SOLUTION

            Unfortunately, current fabrication methods have not been able to manufacture a 

defect free nanowire crossbar matrix. According to researchers, current fabrication 

processes have defect rates of about 10% [6] in nanowire crossbar. Scientists are yet to 

discover a standard fabrication technique which would have a consistent defect rate. Due 

to manufacturing defects, some of these ON programmable crosspoints may not be 
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programmable. Such a manufacturing defect may result in a stuck-at-OFF fault at a 

programmable location. In a 6x10 grid used to implement TH23 gate, 18 out of the total 

60 potentially programmable crosspoints are used to implement the TH23 gate macro. In 

figure 1, a defect at the leftmost crosspoint in the first row results in a faulty function F¤

= B +BC +AC +AF0 +BF0 +CF0. One or more of such faults can completely alter the 

functionality of the THmn gate being realized. This results in a need for functionally 

testing the programmable PGMB after gate mapping. The most primitive form of testing 

is the raw testing scheme. In this scheme, each and every point is tested for ON and OFF 

state separately. This is an extremely laborious method and introduces a great amount of 

overhead [1]. In case a 6 x 10 grid has to be tested, each of the 60 crosspoints will have to 

be tested ON and OFF. Another drawback of this scheme is that although a point is tested 

for ON/OFF state, there is still no guarantee that it is completely programmable. The raw 

testing scheme cannot provide complete assurance that the TH gate is functionally 

correct. In addition to these reasons, the testing overheads introduced in terms of time and 

space complexities call for a more reliable and practical form of testing the PGMBs. The 

prime motivation behind proposing the Functional Test Algorithm is to address these 

issues associated with raw testing of PGMBs. The features and advantages of using the 

functional test approach are discussed and illustrated with numerous examples in the 

proceeding sections of the paper.
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Figure 1 TH23 gate implemented on a PGMB

3.         FUNCTIONAL TEST ALGORITHM

            The proposed functional test algorithm is a post configuration test scheme [7] 

which makes use of the boolean function of the threshold gate being implemented to test 

the programmable crosspoint locations on the PGMB. Each THmn gate has its own 

distinctive programmable co-ordinate locations. The proposed test scheme aims to test 

only those programmable ON crosspoints in the given programmable PGMB. This 

algorithm uses the functional expression that is unique to each THmn gate. In figure 1 

there are 18 programmable locations on the 6 x 10 PGMB. The functional test scheme 

uses "test tuples" for the purpose of testing the programmable crosspoints. Test tuples are 

joint combinations of input bit patterns and previously asserted output. Table 1 can be 

used to clearly understand this concept. Consider the implementation of TH23 gate. 
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Assume there is a fault at the coordinate location (1, 3). The fault at this ON point gives a 

faulty output F*=1 when input 001 is used. The desired output in case there is no fault at 

any crosspoint is F=F' (the previously asserted output). In case the previously asserted 

output is set to 0 and followed up with input pattern 001, it will be possible to stimulate 

the fault. The testable crosspoint coverage for each THmn gate is given in figure 2.

Table 1 Truth Table for TH23 gate and all faulty functions that can be resulted 

from single crosspoint defect.

ABC F F*(1,1) F*(1,3) F*(1,4) F*(2,1) F*(2,2) F*(2,5)

0 0 0 0 0 0 F'=1 0 0 F'=1

0 0 1 F' F' 1 F' F' 1 F'

0 1 0 F' 1 F' F' F'   F' F'

0 1 1 1 1 1 1 1 1 1

1 0 0 F' F' F' F' 1   F' F'

1 0 1 1 1 1 1 1 1 1

1 1 0 1 1 1 1 1 1 1

  1 1 1 1 1 1 1 1 1 1

  ABC F F*(3,2) F*(3,3) F*(3,6) F*(5,4) F*(5,5) F*(5,6)

  0 0 0 0 0 0 F'=1 0 0 0

  0 0 1 F' F' F' F' F' F' 1

  0 1 0 F' 1 F' F' F' 1 F'

  0 1 1 1 1 1 1 1 1 1

  1 0 0 F' F' 1 F' 1 F' F'

  1 0 1 1 1 1 1 1 1 1

  1 1 0 1 1 1 1 1 1 1

  1 1 1 1 1 1 1 1 1 1      
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Table 1 Truth Table for TH23 gate and all faulty functions that can be resulted 

from single crosspoint defect (cont’d)

ABC F F*(6,1) F*(6,2) F*(6,3) F*(6,4) F*(6,5) F*(6,6)

0 0 0 0 0 0 0 0 0 0

0 0 1 F' F' F' F' F'   F' 0

0 1 0 F' F' F' F' F' 0 F'

0 1 1 1 1 F'=0 1 1 1 1

1 0 0 F' F' F' F' 0             F' F'

1 0 1 1 1 1 F'=0 1 1 1

1 1 0 1 F'=0 1 1 1 1 1

1 1 1 1 1 1 1 1 1 1

Figure 2 Testable crosspoints with each input for THmn gates

at the programmable location since the erroneous output of 1 is observed. By using a 

combination of F' and input bits, we can detect faults in the programmable crosspoints. 
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These sets of inputs used to detect the faulty crosspoint locations are called "test tuples". 

Test tuples having one to one correspondence with the programmable cross- points are 

called lower order test tuples. Higher order test tuples can test for defects in more than a 

single crosspoint simultaneously. The first set of 4 test tuples as shown in figure 2 each 

covers 3 crosspoints. The total coverage provided by the first set is 12 crosspoints. The 

remaining 6 test tuples each cover only 1 crosspoint and are placed in the lowest level of 

priority. TH23 has 2 priority levels. TH34, on the other hand, has 3 input priority levels 

with the first tuple testing 4 ON-crosspoints, the second set testing 2 points each (test 

tuple number 2, 3, and 4 test 3 crosspoints each) and finally the lowest level providing 

one-to-one correspondence. A pseudo code for the functional test algorithm is described 

in figure 3.

Figure 3 Pseudo code describing the Functional Test Algorithm



63

Consider figure 4 which shows TH34w2 gate mapped onto a defective PGMB. 

The defect rate considered is 10 % for the worst case scenario. The circles indicate the 

programmable locations for the TH gate which must be programmed as ON. The stars 

denote programmable ON crosspoint locations overlapping the defective crosspoint 

locations.

Figure 4 TH34w2 gate on a defective PGMB

            The other points marked as X in figure 4 show defective crosspoint locations 

which will not be programmed for realizing TH34w2 gate. These locations will not alter 

the functional behavior since they do not overlap with the ON programmable crosspoint 

locations. The proposed functional test algorithm will work as follows in this case:

1. TH34w2 is mapped on to the given PGMB. 

2. The set of prioritized inputs are generated. 

3. The first set of prioritized test tuple (0000, 0100) tests for locations (2,1), (3,2), 
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    (4, 3) and (5, 5). The first part in the tuple set 0000 is used to prepare the PGMB 

     for testing and 0100 is the input pattern used to test the cross- point location. 

4. The second prioritized test tuple (1111, 0000) tests (1, 5), (2, 6), (3, 7) and (4, 8). 

     This time, the observed output is different from the desired one. This implies 

     there is a fault at either one or more crosspoints from the set of 4 locations tested. 

5. The third set (0000, 0010) is then used to test two locations, (1, 2) and (5, 7). No 

      fault is observed. 

6. The forth (0000, 0001) and fifth (0000, 0100) set also give desired results. 

7. The next sets of input tuples give one to one correspondence. The next test tuple 

    (0000, 0011) tests the crosspoint location (2, 4) which is a defective location. 

     With one-to-one mapping present in this case, the faulty cross- point can be 

     directly isolated. 

8. Similarly, two more input tuples (0000, 0101) and (0000, 0110) are applied and 

     all AND programmable locations are tested. 

9. Once the product term locations are tested, the OR programmable plane is 

     considered. All the OR programmable points give one-to-one mapping. Locations 

     (6, 1), (6, 5) and (6, 8) can be successfully tested for fault. 

10. Summary of Test: Out of the 5 potentially defective programmable crosspoints, 

       4 have been isolated successfully. These locations are (2, 4), (6, 1), (6, 5), (6, 8). 

       There is a defect at potentially one or more locations from the following set:

       (1, 5), (2, 6), (3, 7), (4, 8). 



65

4.         FAULT-TOLERANT PLACEMENT SCHEMES USING THE         
PROPOSED FUNCTIONAL TEST ALGORITHM

            Table 2 gives the number of OR locations utilized to implement few of the 

commonly and importantly used THmn gates.

Table 2 Table giving number of programmable OR locations for THmn gates

Number of Programmable OR Crosspoints

TH12 TH23 TH24 TH34 TH33w2 TH34w2 TH44w3

    4    6    10     8       5       8       7

            Having studied the mapping patterns of THmn gates and defect distributions, it 

has been noticed that the OR plane is vulnerable to have a physical defect overlap with a 

programmable ON location of any threshold gate macro. Since a majority of 

programmable ON crosspoints fall on a single OR plane, it is essential to ensure OR 

plane reliability. With the inclusion of a redundant OR wire, the reliability of the OR 

plane can be enhanced. With the inclusion of a redundant OR wire, in case an OR point is 

defective, the connection can be moved to the redundant wire without programming other 

crosspoints in the column which contribute to the product term. Another advantage of 

introducing the OR plane is that since the OR planes are ORed together, the realization is 

not altered in any manner. As far as testing overheads are concerned, with the addition of 

a redundant row, only single additional input test tuple needs to be used to test the single 

OR location. If redundant OR row is not introduced, in case of a defect at OR location, 

the entire column will have to be moved to another location and all the corresponding 

crosspoint locations will have to be tested using additional test tuples for defects. Not 

only will the number of programmable locations increase with this approach, but the 

testing space will also increase drastically. In case of some of the THmn gates such as 

TH12, TH23w2 where no more than 50% of the programmable OR locations are used, it 
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would be better to rearrange the columns instead of using a redundant OR row. In this 

section, different modeling and placement schemes that could be used to address these 

mapping issues are presented. Figure 5 shows the reconfigured PGMB realized on the 

same TH34w2 gate on the defective PGMB shown in figure 4.

Figure 5 TH34w2 realized successfully using a redundant OR plane row and 
Functional Test Algorithm

Consider TH34w2 gate shown in figure 4. The functional test algorithm predicted a fault 

at one or more locations from the set (1, 5), (2, 6), (3, 7) and (4, 8). Incase column 5 is 

moved to a parallel location and functionally tested; the observed output does not match 

with the desired one. This implies the fault location has not been detected. With (4, 8) 

moved to (4, 9) and tested, the input tuple generates desired output. The entire column is 

moved to column 9 and tested functionally. Column 4 is moved to column 10 and results 

are validated using additional test tuples. The remaining 2 OR defective crosspoints with 

initial locations (6, 1) and (6, 5) are moved to (7, 1) and (7, 5) respectively. The 
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reconfigured PGMB looks as shown in figure 5. Different realizations of THmn gates 

over PGMBs having variable defect rates ranging from 1% to 10% have been analyzed

using the functional test approach proposed in this paper. 

5.          PERFORMANCE ANALYSIS OF THE FUNCTIONAL TEST                    
             ALGORITHM

            In this section, some figure of merits to analyze the proposed functional test 

algorithm will be presented. In cases where partial testing is needed, such performance 

measurements can help quantify the fault-coverage and fault-tolerance achieved. 

Accuracy is a figure of merit which has been used to quantify our test approach. 

Accuracy of the functional test scheme can be defined as the ratio of number of tested as 

bad PGMBs over the total number of actually bad PGMBs. It is evident that the accuracy 

ratio increases with increase in defect rate and the number of test tuples used. Consider 

the figure6 which gives the accuracy plot for TH23 gate. With a partial scan approach, if 

the accuracy is expected to be greater than 60% with a defect rate of close to 5%, this can 

be achieved by testing a minimum of 9 programmable ON locations. In figure 6, accuracy 

plots for TH23 gate with varying number of test tuples and increasing defect rates have 

been generated. When the prioritized test inputs are applied in reverse order with OR 

planes tested first, the accuracy is very low and increases slowly with each test tuple. For 

test tuples applied in order of decreasing priority, we can achieve higher accuracy for 

comparatively lesser number of tuples applied. Having said that, if location of defect is 

essential, then a compromise needs to be made with respect to accuracy. This is a 

necessary tradeoff. Another complementary factor that can be used as a performance 

indicator is the escape factor. Escape factor is the ratio of actually bad PGMBs over total 
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identified bad PGMBs. Actual bad ones are those which have been subject to all the test 

tuples possible to cover the entire programmable space. Total identified bad PGMBs are 

those which have been identified as bad when a reduced set of test tuples have been 

applied. This reduced set, called as Ntest is a subset of the total test points, denoted by Non,

where Non is the number of ON crosspoints.

           Accuracy and escape factor are complementary to each other. Escape factor is 

greater when lesser number of test tuples is applied. For increasingly larger number of 

test tuples, the numbers of indeed bad PGMBs are lesser, bringing down the escape 

factor. A low value for escape factor means lesser the chances of an indeed bad PGMB 

escaping as a tested-good one. 

Figure 6 Accuracy plot for TH23 gate with input tuples applied in order of 
increasing priority
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6.         CONCLUSION

            The proposed post configuration functional test algorithm is a definite 

improvement over the raw testing approach. The proposed test algorithm is applied after 

gate mapping is done over the PGMB. Unlike the raw testing scheme, the proposed 

algorithm uses only the ON programmable crosspoint locations for realizing a threshold 

gate. Once the algorithm is applied, alter- native placement and reconfiguration of 

programmable crosspoints can be done using the diagnostic results generated from the 

test scheme. Another merit of the proposed functional test scheme is that it provides fault 

cover- age. When used with alternative remodeling and placement approaches, this 

scheme can also provide fault tolerance. Based on the test results, rearrangement of ON 

crosspoints, addition of a redundant OR row or a combination of both approaches can be 

taken to further enhance fault tolerance.

7.         REFERENCES

[1] Ravi Bonam, Yong-Bin Kim and Minsu Choi "Defect-Tolerant Gate Macro 

     Mapping and Placement in Clock-Free Nanowire Crossbar Architecture", 

     22nd IEEE International Symposium on Defect and Fault-Tolerance in VLSI 

     Systems, 2007. DFT '07. 26-28 Sept. 2007 Page(s):161 - 169 

[2] Ravi Bonam, Shikha Chaudhary, Yadunandana Yellambalase and Minsu 

     Choi, "Clock-Free Nanowire Crossbar Architecture based on Null 

     Convention Logic (NCL)" 7th IEEE International Conference on 

      Nanotechnology (IEEE-Nano), Apr 2007. 



70

[3] Karl M.Fant and Scott A. Brabdt, "NULL Convention Logic System", US 

     patent 5,305,463 April 19, 1994. 

[4] S. C. Smith, R. F. DeMara, J. S. Yuan, D. Ferguson, and D. Lamb, 

           "Optimization of NULL Convention Self-Timed Circuits", Integration, 

           The VLSI Journal, Vol. 37, No. 3, pp. 135-165, 2004. 

[5] S. Smith, R. DeMara, J. Yuan, M. Hagedorn and D. Ferguson, "Delay-

      Insensitive gate-level pipelining", Integration, The VLSI Journal, 

      Vol. 30, pp. 103-131, 2000. 

[6] J.Huang, M.B. Tahoori and F. Lombardi, "On the defect tolerance of Nano-

      Scale Two Dimensional Crossbars" IEEE International Symposium on 

      Defect and Fault Tolerance in VLSI Systems, pp 96-104, Oct 2004. 

[7] Sriram Venkateswaran and Minsu Choi, "Post-Configuration Testing of 

      Asynchronous Nanowire Crossbar Architecture" 8th IEEE International 

      Conference on Nanotechnology (IEEE-Nano), Aug 2008. 



71

VITA

            Sriram Venkateswaran was born on 10th Dec, 1985 in Mumbai, India. After 

completing his primary education from St. Francis D’Assisi High School, Borivali, 

Mumbai, he enrolled at the South Indian Education Society (SIES) Graduate School of 

Technology, University of Mumbai to receive his Bachelor of Engineering (B.E) degree 

with Distinction in Electronics and Telecommunication in July 2007. He enrolled in the 

department of Electrical and Computer Engineering at the Missouri University of Science 

and Technology (formerly known University of Missouri, Rolla) in fall 2007 to pursue 

his masters. During his master’s program, he worked as a graduate research assistant at 

the Micro/Nano Computing Lab (MNCL). He graduated with master’s degree in May 

2009.


	Functional testing of faults in asynchronous crossbar architecture
	Recommended Citation

	Functional testing of faults in asynchronous crossbar architecture Functional testing of asynchronous nanowire crossbar architecture. Post-configuration of asynchronous nanowire crossbar architecture. Novel functional testing technique for asynchronous na

