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ABSTRACT 

 
 Statistical approaches are often used in time series analysis, for example, to 

predict the future trend of a time series. Trend forecasting can be applied in many time 

related parameters such as: solar radiation, generation of electricity and other variables 

related to time series to improve the efficiency and to set the design requirements. Since 

the design of any solar energy system requires knowledge of the availability of solar 

radiation data at the location of interest. Therefore, this research seeks the application of a 

statistical model to fit the solar radiation time series and predict the future values. There 

are various methods used to estimate the hourly global solar radiation on the earth 

surface. However; in this research Meinel and Meinel model was used based on its fit 

accuracy relaying on mean bias error (MBE) and root mean square error (RMSE) tests. 

The study concerns to two main goals: First, predicting the future produced power of a 

given solar panel in a series-parallel configuration based on the present data and weather 

condition in order to improve the performance of the solar panel. Second, there was an 

attempt to relate all 24 sensors that located on a solar panel so that we can estimate the 

sun radiation at each part of a hypothetical solar array using one sensor’s reading only. In 

addition, as the availability of the solar radiation related with the climate conditions, an 

attempt has been made to correct the predicted data under different climate conditions. 

Linear regression method was used for the purpose of fitting the next point in predicting 

of the solar radiation, while the covariance, correlation factors and slopes among all 

sensors are used to relate the whole parts of the panel. The proposed technique yields an 

acceptable result within an average mean squared error (MSE) of 2.6%. 
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1. INTRODUCTION 

 

The solar energy has been used as one of renewable energy sources all over the 

world especially in United States; However, the reliance on the solar energy was not 

much as the relying on fossil fuels and hydro generation due to its high cost and low 

efficiency. Recently, the performance of alternative energy technologies is improving, 

and photovoltaic (PV) systems are no exception. Therefore, on June 26, 1997, the United 

states Million Solar Roofs Initiative (MSRI) was announced at the United Nations 

Special Session on Environment and Development in New York [1]. It was proclaimed 

that “now we will work with business and communities to use the sun’s energy to reduce 

our reliance on fossil fuels by installing solar panels on 1 million more roofs around our 

nation by 2010. Capturing the sun’s warmth can help us to turn down the earth’s 

temperature” [1]. This emphasis on improving the solar panels took a place in many 

researches and studies.  

One of the most popular configurations of the solar array is series-parallel 

configuration. The arrangement of panels in series boosts the voltage of an array, and a 

parallel component increases the current generated by the array [2]. Hence, the needed 

amount of energy for a certain load can be delivered by the solar array. However, the 

weather conditions such as Rainy, cloudy or partly cloudy weather, contribute to 

lowering or increasing the received solar energy. Consequently, the design of any solar 

energy system requires knowledge of the availability of solar radiation data at the 

location of interest to set the inverters and all used controlling and storage elements in 

acceptable rating values. Furthermore, to reserve the surplus produced electrical energy, 
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where the solar panel could produce higher peak KW in partly cloudy day than in a pure 

sunny day. In addition, keeping the electronic devices used behind the solar array from 

the over voltage and current should be taken into account to prevent damages. This can 

be done by predicting the future trend of the sun. Predicting the next points of a time 

series trend needs different models and techniques. In this project, Meinel and Meinel 

model was used to plot the sun radiation envelop during the daytime, while the linear 

regression has been used to calculate the next value in next minute using last 4 readings 

(window size=4). 

As the used panel is in series-parallel configuration, knowing the performance of 

each part of the panel by using one sensor located on the panel contributes in lowering 

the used sensors and data collected and this leads to fasting the processing and lowering 

the network costs.  

  In this project we designed a sensor to read the short circuit current, open circuit 

voltage and load current for a solar cell every two seconds. The panel consists of 24 

sensors distributed in 3 8× array. Furthermore, for the objective of gathering and 

analyzing data, we used Excel program to collect the data that measured by sensors, and 

MATLAB for analyzing and simulating. 

 

1.1. LITERATURE REVIEW 

Numerous studies were conducted during the past few years in an attempt to 

estimate the hourly global solar radiation using several models and made comparisons 

among the different models. In term of choosing the best model, many researches placed 
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much emphasis on some tests such as mean bias error (MBE) and root mean square error 

(RMSE), where both of these indicators evaluate the accuracy of the tested models using 

the measured and estimated data. However, some other studies relied on plotted graphs 

and tables to compare among the actual readings and predicted values and then choosing 

the best model that fits the solar radiation time series accurately. Other studies put more 

emphasis on using the linear regression and least square methods in smoothing and 

estimating the data.  

 

1.1.1. Theoretical Studies. The comparison study in [3] concluded that the 

Collares-Pereira and Rabl model, as modified by Gueymard (CPRG), yields the best 

performance for estimating mean hourly global radiation incident on a horizontal surface. 

The study analyzed seven models (Whillier/Liu and Jordan (WLJ), Collares-Pereira and 

Rabl (CPR), Collares-Pereira and Rabl, Newell, Jain, Baig et al. and and Garg Models). 

Moreover, the study evaluated the ratio of the mean hourly distribution of global 

radiation over the average day of each average month, and then two tests (MBE and 

RMSE) were done to Figure out the best model amongst all models. These tests provide 

information for the models’ performance by allowing a term by term comparison of the 

actual deviation between the calculated value and measured value on short and long term, 

respectively. 

According to the obtained errors, the CPRG model predicts the best result in 

comparison to other models for different climate conditions and it is given as: 

 

                                           ( cos )CPR or a b rω= +
           (1) 
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where a and b are linear function of          

                                                              sin( /3)oω π−            (2) 

and they are given by 

                         0.4090 0.5016sin( 1.047)oa ω= + −             (3)  

        0.6609 0.4767sin( 1.0467)ob ω= − −                                      (4)    

      

In addition to the CPRG model, the CPR and WLJ models yield better performance than 

Newell, Baig and Garg models.   

A study in [4] used a new approach that contains two phases to predict the hourly 

solar radiation series. A new model called novel hybrid was used to combine the 

Autoregressive and Moving Average (ARMA) model to predict the stationary residual 

series and the controversial Time Delay Neural Network (TDNN) to do the prediction. In 

this study, four detrend models were used to detrend the solar radiation (Jain’s, Baig’s, 

Kaplanis’ and Al-Sadah’s model). The study concluded that Al-Sadah’s model, 

Equation(5), yields the best result in fitting accuracy based on two indicators: root mean 

square error (RMSE) and the normalized root mean square error (NRMSE).  

 

                                            
2

1 2 2br a a h a h= + +                 (5) 

  

Consequently, this model was used to detrend the solar radiation series for further 

prediction. However; one drawback has to be considered in applying Al-Sadah’s model 

which is the difficulty of finding the unknown coefficients that are shown in equation (5). 
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For this purpose, actual data and least square method were used in this study in order to 

evaluate the unknown values (a1 and a2). In addition to that, the Augmented Dickey–

Fuller method was applied to test the stationarity of the residual in order to judge the 

goodness of different detrending models. The study results showed that the best order for 

the ARMA model is (1,1) according to the auto correlation and practical correlation. 

Also, the TDNN model found to be much more sensitive than the ARMA model, but not 

as stable. Furthermore, novel hybrid can produce better prediction where it captures both 

advantages of ARMA and TDNN models and gives excellent results.  

A study in [5] was conducted by A. Katiyar and C. Pandey to develop a new 

model to evaluate hourly solar radiation on horizontal surface for different locations 

having different climatic conditions due to the fact that the availability of solar radiation 

for any place depends upon the climatic conditions of the locality, as well as the 

correlation for a place may not be suitable for other places of different climatic 

conditions. The study carried out in five cities in India for five years period (from January 

2001 to December 2005). The study analyzed three detrending models (Liu and Jordan, 

Singh et al. models). In addition to that, a new model called Present model was developed 

to be appropriate for Indian climate in different climate conditions. Present model is 

based on ASHRAE model and is given as: 

 

                                                b dI I I= +                                               (6) 

                                         cosb N zI AI Bθ= +             (7) 
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.exp

cosN
z

D
I C

θ
 

= − 
                         (8)

 

    .d NI E I F= +             (9)  

        

 where Ib, Id and IN are hourly beam, hourly diffuse and hourly beam radiation in direction 

of rays, respectively. The values of A, B, C, D, E and F were calculated using least square 

regression analysis.  

θz is the zenith angle, which depends upon the latitude of the location  

Moreover, the statistical test methods of MBE, RMSE and t-test were used in 

order to indicate the performance of the used models and they are given as: 

 

                                            { }, ,( ) ( ) /i c i mMBE I I p = − ∑           (10) 

                                           
{ }

1/ 22

, ,( ) ( ) /i c i mRMSE I I p = −
 ∑

                    (11)
 

                                      
1/ 22 2 2( 1) /( )t p MBE RMSE MBE = − −                     (12) 

 

where  (I)i,c and  (I)i,m are the ith calculated and measured values, respectively. p is the 

total number of observations. The study results showed that the constants A, B, C, D, E 

and F were varied due to the variation in the Indian climate characteristics and we can 

find them based on current climate situation by comparing between the estimated and 

measured values. In addition to this result, the study investigated that the present 

correlation was more appropriate than the other correlations for all selected locations. 
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And for the same objective, an attempt has been made in [6] to estimate the hourly global 

solar radiation for composite climate. The study was carried out for different climate 

conditions (Clear day, Hazy day, Hazy and cloudy day and cloudy day). Furthermore, a 

coefficient correlation was calculated to correct the estimated values from Liu and 

Jordan, Collares-Pereira an Rabl and Al-Sadah’s models. Equation shows the used 

coefficient correlation.    

 

                        
( ) ( ) ( )

( ) ( ) ( ) ( )
exp exp

2 22 2
exp exp

. .

. .

pre pre

pre pre

N X X X X
r

N X X N X X

−
=

− −

∑ ∑ ∑

∑ ∑ ∑ ∑
                    (13) 

 

The results of the study showed that the estimated and measured values are in 

close, agreement except for low sun angles. In addition, the study concluded that all the 

three models can satisfactorily be employed to estimate the hourly global solar for the 

composite climate within the accuracy limit of 10%. 

Since the temperature is an important factor that should have been taken into 

account in the field of solar cells studies, a study in [7] has been done to show the effect 

of non-uniform temperature and illumination upon PV cells. The study modeled several 

profiles (Gaussian illumination, Gaussian temperature and shade profiles) to Figure out 

the impact of the diversity of the temperature and radiation. The study concluded that 

increasing in temperature leads to get less open circuit voltage (∆Voc = 20 mV for ∆T = 

40K). In addition, open circuit voltage and short circuit current profiles improve left-right 
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as the temperate increases from right to left and the illumination rises from left to right, 

and it achieves maximum output at uniform radiation and temperature.  

 In another study [8] an attempt has been made to use pervious data for prediction. 

Three approaches have been used for this objective (Linear Regression, auto Regression 

and Auto Regression Integrate Moving Average). In addition, the study used other 

approaches to smooth the actual and predicted series such as: Moving averages, Kernel, 

nearest neighbor and the locally weighted regression smoothing method. The results 

showed that 3-point moving average is the best way to smooth the series, based on its low 

average difference, followed by the nearest neighbor with slight increase in average 

difference. Accordingly, 3-point moving average was chosen as the smoothing model. 

Figure 1.1 compares the original series and series smoothed by 3-point moving average 

method. 
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(a) 

 
Time (min.) 

(b) 

Figure 1.1: (a) Actual and Smoothed, (b) 3-Point Moving Average Series 

 

 

Furthermore, the study concluded that Linear Regression has better performance 

than other models such as Auto Regression and Auto Regression Integrate Moving 

Average. However, the Linear Regression method requires a number of previous data for 

prediction. Data simulation has been made to show that a list of 10 to 15 past data values 

yields optimal result.  

 Several empirical models have been used to calculate solar radiation utilizing 

available meteorological, climatological, and geographical parameters such as sunshine 

hours, air temperature, latitude, precipitation, relative humidity, and cloudiness. 

However; the comparison study in [9] used sunshine duration as the main parameter for 

estimating the global solar radiation. This study carried out in Turkey for 18 provinces to 

represent the different weather conditions all over the country. Moreover, seven different 
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empirical equations (Linear, quadratic, linear logarithmic, logarithmic, exponential, linear 

exponential and exponent) were used to estimate the monthly average daily global solar 

radiation on a horizontal surface. The statistical test methods of the mean absolute bias 

error (MABE), mean relative error (MRE), MBE, RMSE and correlation coefficient (r) 

were used in order to indicate the performance of the models.  

The results showed that the models of the linear logarithmic and the linear 

exponential give generally the best results while the logarithmic and exponential models 

exhibit worse performance than the other models.  

In the same context, a study in [10] proposed a practical and reliable approach for 

the prediction of the photovoltaic power generation using solar irradiance as the input. 

Solar irradiance is modeled as the sum of a deterministic component and a Gaussian 

noise signal. The deterministic part of the solar irradiance was estimated by a sinusoidal 

equation as follows: 

 

            
max

.
( ) sin

t
I t I

L
π =  
   

                        (14) 

 

where t is the time based on the sampling period, I is solar irradiance for each sample, 

Imax is the maximum amount of solar irradiance of the previous day and L is the length of 

the day. The shaping filter for the Gaussian noise was calculated using spectral analysis 

and ARMA. The results of the two approaches were compared with the measured 

irradiance. The study concluded that better estimated were obtained using spectral 

analysis than those obtained with the ARMA, particularly for lower sampling rates.  
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As the condition of the weather is playing a significance role in prediction the 

total received energy to a certain solar panel, a study in [11] has been conducted to 

quantify the significance of partly cloudy conditions in rising the received energy where 

the change in weather conditions can have a large effect on the characteristics of the solar 

radiation. The study identified three distinctly different classes of weather: overcast, 

partly cloudy and sunny. The classification was based upon a spectral analysis of the 

wavelet transform which involves two methods to access the fluctuations within the hour. 

These two methods are known as: The clearness index and the distribution of the intra-

hourly values. 

 

    

2

0

1 1
( )

2
( )

T

j

j dtjT
W tψ

°

°

= ∫          (15) 

 

Equation (15) used to calculate the spectral density for different frequency ranges of the 

wavelet transform in order to use it in the classification procedure. To is the interval over  

the wavelet transform and Wj are the detailed coefficients at scale j. For the classification 

the mean spectral density (Ψclass) is calculated by adding up the spectral density Ψ over 

the scales j that correspond to a short time frame and a longer time frame. The probability 

density function of the exponential distribution was given by: 

 

                                                            .( ) xf x e λλ −=                                                     (16) 

 



12 
 

Where λ is the rate parameter and it can be estimated from the sample values as 

following: 

 

                                                              

1

n

i
i

n

x
λ

=

=

∑
         (17) 

 

Therefore, the clearness index was calculated by using the following equation: 

 

                                               
( )

( )
( )

( )cos ( )
i

G t
K t

t tI Eο ο θ
=                                              (18) 

 

Where K(t)is the clearness index signal, G(t) the local solar irradiation [W/m2], Io is the 

solar constant (1367 W/m2), Eo the eccentricity correction factor and θi is the optimal 

angle of incidence. 

The study showed that the sun radiation at cloudy conditions becomes higher at 

the edges of the reflection. This rising is because the clouds are reflecting the light as a 

mirror. This was illustrated in a Figure shows the power time series of a photovoltaic 

(PV) module for a sunny and partly cloudy days. It was showed in the Figure of the partly 

cloudy day, there is a cloudy start of the day, as indicated by the low level of radiation, 

but just after noon the sky becomes partly cloudy and there are fluctuations of up to 0.75 

(which is higher than the peak of clear sky). 

 The paper revealed how much large reserve requirements due to solar power are 

in partly cloudy conditions. In addition, the variations in reserve requirements due to 



13 
 

solar power can vary in a wide range; therefore, a significant decrease in required 

reserves is achieved by the aggregation of multiple sites across the location of interest. 

Also, the study proved that for a single site, the reserves required 99% of the time are on 

average 0.45 p.u. for sunny and overcast days, while for partly cloudy days the Figure 

rises to 0.64 p.u. which we can use it for reserve planning. 

 The authors in [1] defined a new model for the sun spectrum which is called 

Meinel and Meinel. This model uses less number of coefficients. They started by 

calculating the distance between the sun and the earth by using the following equation: 

 

                                     11 360( 93)
1.5 10 1 0.017sin ,

365
n

d m
 − = × +    

                            (19) 

 

where n represents the day of the year. 

Another defined parameter was the declination angle δ, and it was given for any day of 

the year as: 

 

                                                  

360( 80)
23.45 sin

365
nοδ − =                                             (20) 

 

where 23.45° represents the angle of the polar axis of the earth with the sun. The authors 

also proposed a method to calculate the clock time at which solar noon occurs. This clock 

time can be found by: 
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12 60

15
L nt

ϕ φ−
= + ×            (21) 

 

where φL is the latitude where the point of interest is at, фn is the longitude at which the 

solar noon occur relative to the local time zoon and (60 min/15°) is used because the earth 

needs 60 minutes to rotate 15 degrees.    

The book introduced some more angles in order to specify the location of the sun 

at any given time, the altitude angle α which is the angle between the horizon and the 

incident solar beam in a plane determined by the zenith and the sun. Also, the book 

defined the azimuth angle Ψ which measures the sun’s angular position east or west of 

south. Azimuth angle is needed to describe the angular deviation of the sun from directly 

south. In addition, the hour angle ω has been introduced. The hour angle is the angular 

displacement of the sun from solar noon in the plane of apparent travel of the sun, this 

parameter is useful to describe the position of the sun referring to the noon time.  

The hour angle ω can be defined as the difference between noon and desired time 

of day in term of 360° rotation in 24 hours. 

 

          

12
360 15(12 )

24
T

Tω °−
= × ° = −          (22) 

 

where T is the time of the day.  

Two very useful relationships have been discussed; sunrise time ωs and daylight duration   

DH and they were defined as: 
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1cos ( tan tan )sω φ δ−= −         (23) 

                                            
148 cos (tan tan )

360 7.5sDH h
φ δω

−

= =                                     (24) 

 

One important relationship among ф, δ and ω to determine the position of the sun in term 

of α at a given location, date and time was defined as: 

 

                                           sin sin sin cos cos cosα δ φ δ φ ω= +                                     (25) 

 

To find the final form of the sun radiation model, the authors used equation (25) 

to find the air mass coefficient AM to include the length of the path through the 

atmosphere. This path length is generally compared with a vertical path directly to sea 

level. Therefore, the air mass was calculated by using: 

 

                                                              
1

sinAM α=
                                                   

 (26) 

 

Hence, the received energy of the sun radiation at a specific location on a specific day 

and time can be estimated by: 

 

                                                          1367 (0.7)AMI = ×                                                  (27) 

 

  According to the fit accuracy of Meinel model, we have chosen it to model the sun 

radiation in this study. Next section discusses the process of collecting the radiation data. 
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2. EXPERIMENTAL SETUP 

 

2.1. ARRAY IMPLEMENTATION  

In order to collect the data from real solar radiation, a physical sensor array was 

used for this purpose. This chapter describes the implementation of the array, as well as, 

the sensors that used to capture the received power. The project setup and hardware 

preparations have been developed from previous work from another paper done by Beth 

Yount and Nisha Nagarajan [12]-[2].The sensor array used for this paper was designed to 

be the same physical size as 24 Kyocera KD135GX 125W panels set-up in a traditional 

series-parallel configuration and adjustable legs so that it could collect data at 0° and 26°, 

the latter being the pitch of a typical household roof [2]. As illustrated in Figure 2.1, The 

sensor array is in rectangular shape with diminutions of 17.5 ft x 10 ft steel structure. The 

sensor boxes that placed on the steel base are distributed in matrix form starts with A1 

and ends at C8. This way of arrangement was used to ease the defining and access of 

each sensor. The boxes are separated between each other by a column and row in distance 

of 2.5 ft x 5 ft respectively. All solar cells are identical and glued directly to the box lid.  

Note to mention that we have used solar cells inside a small black container, but 

we replaced them by new sensors come alone without edges to prevent their impact on 

the projection of the sun’s light on the cells. The solar cells then were soldered to be 

connected to the sensors via wiring cable. 
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2.2. SOLAR CELLS AND DAQ SYSTEMS 

The used solar cells are supplied by Solar Made company [13] and the rating of 

each sensor was 0.5V 125mA. The area of each cell was approximately 5cm2 (2.5cm x 

2cm) as shown in Figure 2.2 (a).  Furthermore, to keep the sensors and the solar cells 

from damage and dust, we put them in plastic boxes with removable lids. The cells in 

Figure 2.2 (a) were used for previous work. However, all solar cells have been replaced 

by new ones without containers as shown in Figure 2.2 (b). The reason of replacing was 

because the old cells came with black containers with boundary edges, these edges block 

the sun radiation during sunset and sunrise which impact on the accuracy of the sensors 

,as well as, the new solar cells come approximately in identical size more than the old 

ones. Figure 2.3 shows the plastic box contains a solar cell, circuit board of the sensor, 

9V dry battery and a CAT5e cable connection.  

 

 

Figure 2.1: Schematic Diagram of the Sensor Array 
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                                  (a)                                                                            (b) 

Figure 2.2: Solar Cell Sample. (a) New Solar Cell. (b) Old Solar Cell 

 

 

Figure 2.3: Plastic Box to Cover the Sensor and the Solar Cell 
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The CAT5e cable was used to transfer the read data, by the sensor, to the main 

data acquisition systems (DAQs) where the data was stored into a 1GB Compact Memory 

card inserted into each DAQ. Figure 2.4 shows single data acquisition systems with 8 

Inputs. The DAQs were R-Engine-A programmable controllers manufactured by Tern, 

Inc. [14]. Since each DAQ consists of 8 data Ethernet imports, 3 DAQs have been used to 

cover all 24 data sources. 

 

 

 

Figure 2.4: Single Data Acquisition Systems with 8 Inputs 

 

 

The three DAQs then were put inside an enclosed suitcase and keep them running 

to get data (short circuit current, open circuit voltage, load current, time and date) from 

each sensor every other second. In addition, we used a very low watt light bulb to heat 

the DAQs up a little bit during the winter, where they stopped running in temperature 
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below 40F as indicated in their specifications. The stored data in the Compact Memory 

cards was in Microsoft Excel table format and the memories have been replaced by 

empty ones every week to assure that the DAQs are still running and to make some 

analysis on the recorded data. A simple analysis and graphs were then done with 

Microsoft Excel due to its simplicity, however, for more accuracy and higher degree of 

freedom in data manipulating, MATLAB1 software was used to perform the detailed 

analysis and to write the final code to achieve the main objective of this project. 

 

2.3. CIRCUIT BOARDS OF THE SENSOR 

 As mentioned previously, the aim of each sensor is to measure three main 

quantities (short circuit current, open circuit voltage and load current). For this purpose, a 

circuit board has been design to read these three values as voltage signals and then 

transmit the readings to DAQs via CAT5e cable. Figure 2.5 shows the schematic diagram 

of the sensor. The used elements for this circuit are listed in a table at the end of the 

paper. 

 

 

 

 

 

 

 

 ـــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــــ
1 MATLAB is a registered trademark of The MathWorks, Inc. 
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Figure 2.5: Schematic Diagram of the Sensor Circuit Board (Drawn by J. Dickherber) 

 

 

The most important indicator from the sensor circuit is the short circuit current 

measurement, and due to the fact that the short circuit current is directly proportional to 

the instantaneous received power, the short circuit current reading was used to present the 

Energy-Time pattern after multiplying by a proper factor. More details will be showed 

later in this paper. 

2.3.1. Sensor Improvement. It was observed that another problem has appeared 

on the sun radiation reading despite of changing the solar cells. After testing the circuit in 

the laboratory we found out that the circuit gets saturated after reaching a certain current 

value and we could solve this problem by changing the resistor R4 from 10kΩ to 6.8kΩ, 

where the resistor R4 affect the gain of the short circuit current as shown in the formula: 
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( )41 1 2

RGain R R= × +
                                              (28) 

 

So, the total gain has been dropped from 31.81 to 22.01. An actual circuit board is shown 

in Figure 2.6, the circuits making and testing have been done in the laboratory in prior of 

placing them in the panel. 

 

 

 

Figure 2.6: Actual Sensor Circuit Board 

 

 

2.3.2. Sensors Performance Test. Some circuit boards might give wrong data 

due to manufacturing problems, lack in soldering paste or damage in integrated circuits or 

wires. Consequently, a calibration test has been conducted on the whole 24 sensor boards 
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to assure that they read all desired quantities in right way. The procedures of the test were 

taken from Jason Dickherber’s suggestion test.  

Since the calibration of the solar sensor boards is not reliable using PV cells due 

to the variance in power output by the PV cells in different locations and lighting. Power 

supply and test circuits are necessary to emulate the PV cells. The operating points were 

tested: Cell Open Circuit (OC), Short Circuit (SC) and a Load Test (1/R). The sensor 

board is accepted if the difference between the reading from the test circuit and from the 

DAQ is less than 2%. All sensors passed 2% in their reading have been fixed and re-

check again. 
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3. SUN RADIATION MODEL AND LINEAR REGRESSION ANALYSIS 

 

This section describes the model that used to fit the sun radiation versus time 

curve. Also, it touches upon the linear regression method that used in future data 

prediction. In addition, further analysis and work applied on the read data such as: Data 

averaging, data calibration and sensors relating will be introduced.  

 

3.1. SOLAR SPECTRUM MODEL 

As mentioned in the literature review, Meinel and Meinel model is the best fit to 

the sun radiation based on its mean bias error (MBE) and root mean square error (RMSE) 

tests [1]. This model is distinguished by its accuracy and less number of used parameters. 

In addition, this model sets the sunrise and sunset times without using extra equations as 

in other models. The final form of the equation that gives the solar spectrum can be given 

as: 

 

                                                     1367 (0.7)AMI = ×                                                 (29) 

 

where I is the sun radiation energy (kW/m2 ) and AM is the air mass coefficient. In order 

to drive equation (29), reference [1] started by defining the declination δ and it was given 

for any day of the year as: 

 

                                             

360( 80)
23.45 sin

365
nοδ − =                                            (30) 
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Where n represents the day of the year and 23.45° represents the angle of the polar axis of 

the earth with the sun. The reference considered that the angles north of the equator are 

positive, while they are negative when they locate south of the equator. Figure 3.1 shows 

the declination at different times of the year. 

 

 

 

Figure 3.1: The Orbit of the Earth and the Declination at Different Times of the Year 

 

 

The authors also proposed a method to calculate the clock time at which solar noon 

occurs. This clock time can be found by: 

 

                                                     
12 60

15
L nt

ϕ φ−
= + ×            (31) 

 

where φL is the latitude where the point of interest is at, фn is the longitude at which the 

solar noon occur relative to the local time zoon and (60 min/15°) is used because the earth 

needs 60 minutes to rotate 15 degrees. Furthermore, in order to specify the position of the 
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sun, the authors specified two more coordinates besides the distance between the sun and 

the earth which was assumed to be constant. These two coordinates are the solar altitude 

α and the azimuth Ψ.      

The figure below (Figure 3.2) illustrates the angles and the relation among them. 

It demonstrates the altitude angle α as the angle between the horizon and the incident 

solar beam in a plane determined by the zenith and the sun. The azimuth angle Ψ 

measures the sun’s angular position east or west of south. Azimuth angle is needed to 

describe the angular deviation of the sun from directly south. In addition, the Figure 

shows the hour angle ω, which is the angular displacement of the sun from solar noon in 

the plane of apparent travel of the sun. This parameter is useful to describe the position of 

the sun referring to the noon time.  

 

 

 

Figure 3.2: Sun Angles, Showing Altitude, Azimuth and Hour Angle [1] 
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The hour angle ω can be defined as the difference between noon and desired time 

of day in term of 360° rotation in 24 hours. 

 

        

12
360 15(12 )

24
T

Tω °−
= × ° = −      (32) 

 

Where T is the time of the day.  

Figure 3.3 shows the relationship among different sun angles that described above. 

 

 

 

Figure 3.3: Relationship among Zenith Angle, Latitude and Declination at Solar Noon in 

Winter 

 

 

One important relationship among ф, δ and ω to determine the position of the sun in term 

of α at a given location, date and time was defined as: 

 

                                           sin sin sin cos cos cosα δ φ δ φ ω= +                                     (33) 
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To find the final form of the sun radiation model, the authors used equation (33) to find 

the air mass coefficient AM to include the length of the path through the atmosphere. This 

path length is generally compared with a vertical path directly to sea level. Therefore, the 

air mass was calculated by using: 

 

                                                               
1

sinAM α=
                                                  

 (34) 

 

Hence, the received energy of the sun radiation at a specific location on a specific day 

and time can be estimated by equation (29) 

 

                                                          1367 (0.7)AMI = ×                                                  (35) 

 

This equation is, of course, for AM =1. However, according to Meinel and Meinel [1], a 

better fit to the observed data is given by: 

 

                                                          
0.678

1367 (0.7)AMI = ×                                              (36) 

 

The average monthly and cumulative energy for January has been obtained using 

equation (36) as shown in Figure 3.4 
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(a) 

 

        (b) 

Figure 3.4: (a) Average Monthly, (b) Average Cumulative (kWh/m2) for January in 

Rolla, Missouri Using Meinel and Meinel Model 

 

 

The power incident on a PV module depends not only on the power contained in 

the sunlight, but also on the angle between the module and the sun. When the absorbing 
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surface and the sunlight are perpendicular to each other, the power density on the surface 

is equal to that of the sunlight (in other words, the power density will always be at its 

maximum when the PV module is perpendicular to the sun). However, as the angle 

between the sun and a fixed surface is continually changing, the power density on a fixed 

PV module is less than that of the incident sunlight. 

The following figure (Figure 3.5) shows how to calculate the radiation incident on 

a titled surface with a slope (5:12). The sun radiation on the tilted module can be found 

from equation (36) which is used for finding the radiation on a horizontal surface. As the 

array tilting to the south, a new α  must be calculated using the following equation: 

 

                                                               βαα +=2                                                        (37) 

 

α and β are shown in figure 3.5. 

 

 

 

Figure 3.5: The Relationship among the Sun and the Module Angles for Tilted Solar 

Panel with β=22.6°
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Equation (37) shows that we need to add the array angle (β=22.6°) to the original 

α to indicate the tilting of the array toward the south whereas the array itself locates at the 

north hemisphere of the earth and then we substitute the new alpha α2 in equation (33) to 

find the air mass AM.  

 

3.2. LINEAR REGRESSION METHOD 

 In statistics, regression analysis consists of techniques for modeling the 

relationship between a dependent variable (also called response variable) and one or more 

independent variables (also known as explanatory variables or predictors) [15]. 

Furthermore, in linear regression method, the dependent variable is modeled as a linear 

function of independent variable so that the model gives the best fit to the actual data. In 

the same context, for a time series variable, linear regression method often used to 

calculate the next value if the relationship between two sets of data (x and y) is linear. 

Hence, we can apply this method on our sun radiation data with using the sun radiation 

model (Meinel and Meinel model) as a reference. The parameters of the regression model 

can be found by using several techniques. Each technique results in different parameters 

values and thus different estimation. However, the most commonly used criterion is the 

least squares method [15]. In this paper, the simple linear regression was used where the 

system which needs to be modeled has one dependent variable (sun radiation) and one 

independent variable (time). The simple linear regression model can be written as: 

 

                                                 ( 1) , 1, 1k o k k ky xβ β ε+ += + × +                                          (38) 
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Where y is the dependent variable, x is the independent variable, βo and β1 are y- intercept 

and slope, respectively, and ε is a random error. The parameters are estimated based on 

predefined criterion. The most commonly used criterion is the least squares method. The 

principle of the least square method is to find the values of βo and β1 such that the sum of 

the squared distance between actual data and fitted data reaches the minimum among all 

possible choices of regression coefficients βo and β1 [15]. Therefore, based on least 

squares method, the y- intercept and slope parameters can be found using: 

 

                                                   

1 2
2
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                                                  (40) 

 

where i=k-n and k is the number of the current value (i.e. if we reached to the 25th 

reading, the k=25). The coefficient n is the number of past data taken into account to 

calculate the next value. For example, if we used three last readings to predict the next 

reading, the n=3). The parameter n is also called “Window Size”, and for our last 

example, window size=3. Different window sizes affect the accuracy of the estimator 

model. However, in our linear regression model, the window size was chosen to be equal 

4 due to its fit accuracy relying on the Mean Squared Error (MSE). More details in 

different window size sets will be shown in the next section. In addition to the previous 
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parameters and variables, correlation coefficient is needed for further work and it can be 

calculated by: 

 

                                 
( ) ( )2 22 2

( )

( ) ( )

n xy x y
r

n x x n y y

−
=

   − −      

∑ ∑ ∑

∑ ∑ ∑ ∑
                            (41) 

 

One important vector which plays an important role in regression method is regression 

residual ei . Regression residual defined as the difference between the actual response yi  

and the fitted response ˆiy .  

 

                                                               ˆi i ie y y= −                                                         (42) 

 

It should be noted that regression residual is observable, but the error term in the 

regression model ε is unobservable, therefore, in this paper we applied the linear 

regression method on the difference between the actual sun radiation data and the sun 

spectrum model (Meinel and Meinel model), where the random error ε has been 

generated using a special function in MATLAB. 

 

3.3. CORRELATION METHOD AND ARRAY DATA CONSTRUCTION 

 One main aim of the project is to build up the data of the whole array using one 

sensor’s reading. The method that we used to make a relationships among all sensors was 

finding the slope between each neighbor sensors, as well as, the correlation coefficients 

(variance matrix has been tried but it was found to be useless where the values were very 
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close to each other). In order to find the slope between two sensor readings, MATLAB 

has been used to plot each two neighbor sensors and then calculate the slope after 

applying the polynomial fitting to the pattern as shown in Figure 3.6. 

 

 

  

(a) 

Figure 3.6: (a) Ish_5 versus Ish_1, (b) Ish_6 versus Ish_2 to Find the Slopes Between 

each others 
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(b) 

Figure 3.6: (a) Ish_5 versus Ish_1, (b) Ish_6 versus Ish_2 to Find the Slopes Between 

each others (cont.) 

 

 

The correlation coefficients, which obtains how two variables related to each 

other, were found from the covariance matrix and slandered deviation values so that the 

correlation coefficient between sensor1 (x) and sensor2 (y) can be found by: 

 

                                                            
( , )

cov( , )
x y

x y

x y
R

σ σ
=                                                  (43) 

 

Where R(x,y) is the correlation coefficient between x and y, cov(x,y) is the covariance 

matrix, σx and σy are the standard deviation of x and y, respectively. These two values, 
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slope and correlation coefficient, were used in process of building up the whole array 

radiation data from one sensor only by using the following equation: 

 

                                         

( )
( )
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n

x y x y x
x j
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i R slope
i

R slope
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 = +
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 

∑
                                   (44) 

 

where iy is the calculated short circuit current, ix is the current related to iy by slope(y_x) 

and correlation coefficient R(x,y) where x represents the name of each sensor located side-

by-side with iy. ε is the random error from equation (38) and it has been generated using 

(randn(m,n)) function in MATLAB. This function returns an m-by-n matrix containing 

pseudorandom values drawn from the standard normal distribution, and then we 

multiplied these random values by the slandered deviation σ of each sensor’s reading 

separately to get its own reading. Note to mention that using the slope and correlation 

coefficient combined together in equation (44) yields better correlation than using one of 

them alone in process of obtaining the other 23 sensors. The flow chart (Figure3.7) 

explains the processing of constructing the array’s data. First of all, we started with B4 

sensor’s reading to generate the data of sensors (B5, B3, A4 and C4). These five sets of 

data have been used to calculate other four sensor’s data (A3, C3, A5 and C5). Then we 

selected row 5 (A5, B5 and C5) to calculate B6, and row 3 (A3, B3 and C3) to calculate 

B2. After that we repeated the calculation process over the whole array, so we calculated 

A6 from (B5, A5 and B6), C6 from (B5, C5 and B6), A2 from (B3, A3 and B2), C2 from 

(B3, C3 and B2), and again we used rows 6 and 2 to calculate B7 and B1, respectively. 
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Then we applied the same sequence as before, so we calculated A7 from (B6, A6 and 

B7), C7 from (B, C6 and B7), A1 from (B2, A2 and B1), C1 from (B2, C2 and B1). 

Finally, we calculated A8 from (B7, A7 and B8) and C8 from (B7, C7 and B8). All 

calculations of Figure 3.7 have been done using equation (44). Table 3.1 shows the order 

of calculation process of Figure 3.7. 

                                                                                            

 

Figure 3.7: Order of Computation all Sensors Starting from B4 

TABLE 3.1: Order of 

Correlation Process 

Order Arrow 
1  

2  

3  

4  

5  

6  

7  

8  
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4. DATA PROCESSING AND RESULTS 

 

4.1. DATA CALIBRATION AND AVERAGING 

All readings from the 24 sensors have been collected and imported from the DAQ 

system to MATLAB software through USB memory adaptor. The array was located in a 

place open to the sunlight most of the day it was laid flat. Before working on the data, 

two main statistical processing have been applied: Data calibration and averaging. Data 

calibration has been done to assure that all solar cells set to be identical. The calibration 

process was conducted by multiplying all data by such a factor to meet them up at a 

reference sensor reading so that: 

 

                       

( ) ( ).( ) ( ) .( ) ( )
( ) ( ) 2

ref m old m ref n old n
short new short old

i i i i
i i

+
= ×                           (45) 

 

where ishort(new) is the new short circuit current to be calculated, ishort(old) is the old short 

circuit current to be calibrated, iref is the reference current, m and n are two points through 

the day and they were chosen so that the calibration factor will be approximately the 

average amongst all factors throughout the day (one calibration factor has been tested and 

it gives less efficient results than two points calibration). Furthermore, the data have been 

averaged over one minute using MATLAB. Figure 4.1 and Figure 4.2 show the initial 

process (data calibration and averaging) which precedes the main analytical processes.  

 



39 
 

 

(a) 

 

 

(b) 

Figure 4.1: (a) Uncalibrated Sinsors Readings, (b) Calibrated Sinsors Readings (using 

two points calibration way) 
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Figure 4.2: DAQ readings After Averaging Over One Minute 

 

 

4.2. SOLAR RADIATION MODEL AND ACTUAL DATA FITTING 

Figure 4.3 demonstrates the power versus time curve of Meinel and Meinel model 

calculated for April 1st. The time axis scale has been converted to minute scale instead of 

hours to be appropriate to compare with actual data. 
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Figure 4.3: Power-Time Curve of Sun Radiation on April 1st Using Meinel and Meinel 

Model [1] 

 

 

Note to mention that we have manipulated with the main equation of the Meinel and 

Meinel model to convert the y-axis of the sun radiation spectrum from (kW) to (mA) by 

multiplying by such factor. This factor was the maximum reading of the actual data 

divided by maximum value of the model where the relationship between the output 

power and the short circuit current of a solar cell is almost linear [1]. In addition, azimuth 

angle (Ψ=7.0°) has been included to the model calculations. This process has been done 

to match the mathematical model to the actual data, and then to plot it over the actual data 

to be ready for analyzing as shown in Figures 4.4 and 4.5. 
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Figure 4.4: Power-Time Curve of Sun Radiation on April 1st Using Meinel and Meinel 

model (after multiplying by power-to-short circuit current ratio) 

 

 

Figure 4.5: Actual Data and Mathematical Model for April 1st 

 

 

 



43 
 

4.3. EXPECTING THE FUTURE TREND 

As discussed in section 3, the difference between the actual data and the 

mathematical model for sun radiation has been predicted using linear regression method. 

In addition to subtraction way, division has been tried. Figure 4.6 shows the comparison 

between subtracting and division. Relying on Figure 4.6, subtracting the mathematical 

model from the actual data gives less mean squared error than the division way.  

After deciding the difference between the actual data and the mathematical model 

to be predicted, linear regression has been applied on the subtracted data using equation 

(38), and then we added the predicted signal to Meinel and Meinel model for the same 

day to get the predicted sun radiation as shown in Figures 4.7, 4.8, 7.9, 7.10 and 7.11. 

 

 

 

Figure 4.6: Comparison Between Subtracting and Dividing the Mathematical Model with 

Actual Data 
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Figure 4.7: Applying the Linear Regression Method on the Difference Between the 

Actual Data and the Mathematical Model 

 

 

Figure 4.8: Applying the Linear Regression Method on the Difference Between the 

Actual Data and the Mathematical Model (enlarged) 
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Figure 4.9: Adding the Predicted Signal to the Model and Meinel Model and the Actual 

Data for April 1st 

 

 

Figure 4.10: Adding the Predicted Signal to the Model and Meinel Model and the Actual 

Data for April 1st (enlarged) 
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Figure 4.11: MSE Error for the Difference Between the Actual and Expected Data 

      (widow size=3) 

 

 

Further comparison has been made to assure that subtracting is better than 

division, as well as, to select the best window size of the linear regression equations (38), 

(39) and (40). In Figure 4.12 four different values of window size (3, 4, 5 and 6) were 

tested for subtracting and division. Table 4.1 summarizes a comparison between 

subtracting and dividing the mathematical Model with the predicted data after applying 

the linear regression for different window sizes for four days. 
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Figure 4.12: Comparison Between Subtracting and Dividing the Mathematical Model 

with Predicted Data (after applying the linear regression for different window sizes) 
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TABEL 4.1: MSE for Different Window Size and Different Days for Subtracting and 

Division 

Day 
Subtracting 

(Window size) 

Dividing 

(Window size) 
3 4 5 6 3 4 5 6 

April 1st 0.00302 0.0027 0.00294 0.0032 0.00308 0.00288 0.00318 0.00356 

April 2nd 0.00309 0.00211 0.00243 0.0037 0.00289 0.00297 0.00299 0.00307 

April 3rd 0.00292 0.00301 0.00337 0.0039 0.00366 0.00302 0.0032 0.00309 

April 4th 0.00391 0.00238 0.00289 0.0041 0.00376 0.00406 0.0040 0.0038 

Mean 0.00323 0.0025 0.0029 0.0037 0.0033 0.00323 0.0033 0.0033 

 

 

The results from Figure 4.12 and table 4.1 showed that applying linear regression 

for subtracting the mathematical model from the actual data with window size equals 4 

yields better mean squared error. 

 

4.4. DATA FILTERING AND NOISE REJECTION  

 Based on  the fact that the solar radiation during a partly cloudy weather condition 

goes higher than the normal peak at sunny day as explained in [11], the predicting signal 

may exceed the sun light limitation due to the sharp change in the solar radiation. 

Accordingly, high radiation filter (HRF) has been used to reject the unacceptable values. 

In process of designing the HR filter, we assumed that the readings that go higher than 

20% of the values calculated from Meinel and Meinel model to be rejected and reduced 

to 70% of its value. In addition, our sensors give strange readings with lots of noise at 



49 
 

sunrise and sunset times so that we clipped out approximately 100 minutes after sunrise 

and before sunset. Figure 4.13 shows the data that plotted in Figure 4.8 after filtering and 

rejecting the sunrise and sunset noise.  

 

 

 

Figure 4.13: Data After Filtering and Noise Rejection (to be compared with Figure 4.9) 

 

 

4.5. ARRAY DATA CONSTRUCTION 

 Generating all sensors’ readings form only one sensor reduces the costs of control 

circuits and DAQ systems, as well as, it speeds up the data analyzing with a smaller room 

of data storage. As shown in Figure 3.7, all sensors readings can be created from sensor 

B4 (center of the array) using equation (44). Further work has been done to combine the 

previous processes (data prediction and generation) into one step. Figure 4.14 compares 

all array actual data and sensors data after predicting B4 sensor and generate the other 23 
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sensors’ data using linear regression method, slopes among the sensors and correlation 

factors. Figure 4.15 shows the data of Figure 4.14 between 420 and 900 minutes. 

 

 

 
(a) 

 
(b) 

Figure 4.14: (a) Actual Data, (b) Predicted Data for April 3rd 
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(a) 

 

(b) 

Figure 4.15: (a) Actual Data, (b) Predicted Data for April 3rd 

 (enlarged) 
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The final results have been tested by finding MSE individually for each sensor 

and then we calculated the average error among them. The test ended up with 2.6% as the 

average of the MSEs. Figure 4.16 shows the difference between the predicted data and 

actual data and the MSE for sensor A1. 

 

 

 

Figure 4.16: Difference Between the Predicted Data and Actual Data and the MSE for 

Sensor A1. 
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5. CONCLUSIONS 

 

Using of the M and M model along with linear regression method to predict the 

future trend of the solar radiation yields better results with using a window size equals 

four for the regression equations. The results also showed that relating different parts of a 

solar panel is possible. In addition, predicting the next minute reading of each part of a 

solar panel using model fitting and correlation method yields an acceptable result with an 

average (MSE) of 2.6%. This technique can contribute in speeding up the data analyzing 

with a smaller room of data storage, set the ratings of PV system elements and protects 

the electrical converters  (or inverters) from low and over voltage (current), as well as, it 

reduces the costs of control circuits and DAQ system. Furthermore, the study concluded 

that the sun radiation during a cloudy weather may exceed the maximum limit, where it 

reached to 1.07 p.u. (Figure 4.5), and that is due to the reflected radiation by the clouds. 

This habit may lead to a negative effect on the data prediction. Therefore, high radiation 

filter (HRF) has been used to correct the calculated radiation at the peak time. 
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% MAIN CODE 
  
 clear all 
 close all 
 clc 
  
data=csvread('all20sen.csv', 96291, 3, [96291 3 128210 40]); 
sc_current=data(:,5:28); 
t_m=data(:,1)*60+data(:,2); 
T_m=[min(t_m):max(t_m)]; 
t_s=(data(:,1)*60*60)+(data(:,2)*60)+(data(:,3)); 
day=95; % APRIL 3rd 
  
% CALIPRATION PROCESS 
m=length(sc_current); 
  
for i=1:24 
     
aa(i)=sc_current(17704,16)/sc_current(17704,i); 
 
b(i)=sc_current(22899,16)/sc_current(22899,i); 
  
c(i)=(aa(i)+b(i))/2; 
end 
  
for n=1:24 
for i=1:m 
     
    sc_current_cal(i,n)=sc_current(i,n)*c(n); 
     
end 
end 
  
figure(1) 
plot(sc_current_cal) 
set(gcf,'Position',[200 200 4.5*96 3*96]) 
set(gca,'FontName','Times') 
set(gca,'FontSize',[11]) 
xlabel('time(Sec.)') 
ylabel('SC. currents (mA)') 
savemyfig3 
  
figure(2) 
plot(sc_current) 
set(gcf,'Position',[200 200 4.5*96 3*96]) 
set(gca,'FontName','Times') 
set(gca,'FontSize',[11]) 
xlabel('time(Sec.)') 
ylabel('SC. currents (mA)') 
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savemyfig3 
  
%AVERAGING OVER 1 MIN.  
for l=min(t_m):max(t_m) 
     
    meancurrents((l-min(t_m)+1),: 
)=mean(sc_current_cal(t_m==l,1:20),1); 
     
end 
  
figure(3) 
plot(meancurrents) 
set(gcf,'Position',[200 200 4.5*96 3*96]) 
set(gca,'FontName','Times') 
set(gca,'FontSize',[11]) 
xlabel('Time(Min.)') 
ylabel('SC. currents (mA)') 
savemyfig3 
  
% APPLYING Meinel and Meinel MODEL ************ 
[I,Ireal]=model(day); 
  
% CONVERTING FROM POWER TO SHORT CIRCUIT CURRENT 
a=max(meancurrents(:,11)); 
b=max(I(day,:)); 
c=a/b; 
  
I2=I(day,:)*c; 
figure(4) 
plot(T_m,I2) 
set(gcf,'Position',[200 200 4.5*96 3*96]) 
set(gca,'FontName','Times') 
set(gca,'FontSize',[11]) 
xlabel('Time(Min.)') 
ylabel('Solar Radiation (mA)') 
savemyfig3 
  
  
figure(5) 
plot(T_m,Ireal(day,:)) 
set(gcf,'Position',[200 200 4.5*96 3*96]) 
set(gca,'FontName','Times') 
set(gca,'FontSize',[11]) 
xlabel('Time(Min.)') 
ylabel('Solar Radiation (kW/m2)') 
savemyfig3 
  
% COVARIANCE, CORRELATION COEFFICIENTS AND VARIANCE  
COVARIANCE=cov(meancurrents); 
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CORRELATION=corrcoef(meancurrents); 
FF=CORRELATION; 
varia=var(meancurrents); 
  
% Slopes bet. sensors 
[p11_14,p11_8,p11_12,p11_10,p15_14,p15_11,p15_12,p13_10,p13_11,p13_14,p
9_8,p9_11,p9_12,p7_8,p7_10,p7_11,p17_13,p17_14,p17_15,p18_14,p18_15,... 
    
p18_17,p16_13,p16_14,p16_17,p5_7,p5_8,p5_9,p6_5,p6_8,p6_9,p4_5,p4_7,p4_
8,p20_16,p20_17,p20_18,p19_16,p19_17,p19_20,p21_6,p21_17,p21_20,p2_4,p2
_5,p2_6,p3_2,p3_5,p3_6,p1_2,p1_4,p1_5,p23_19,p23_20,p23_21,p22_19,p22_2
0,p22_23,p24_23,p24_20,p24_21]=slopes(meancurrents); 
  
% MEAN AND STANDARD DEVIATION FOR ALL SENSORS 
ave=mean(meancurrents); %mean values 
m=length(meancurrents); %length of the data file 
stan=sqrt(COVARIANCE); %standard deviation 
  
start=375; 
endd=952; % REJECTING THE NOISE 
L=375:952; 
 
% Normally distributed pseudorandom numbers 
E=randn(length(L),24); 
  
% DATA EXPECTING AND CORRELATION 
maximump=max(I2); 
  
for i=start:endd 
                            A=meancurrents(i-4,11)-I2(1,i-4-78); 
                            B=meancurrents(i-3,11)-I2(1,i-3-78); 
                            C=meancurrents(i-2,11)-I2(1,i-2-78); 
                            D=meancurrents(i-1,11)-I2(1,i-1-78); 
  
    expected=LinearRegression(i,A,B,C,D); 
     
    i_expected=expected+I2(i+4-78); 
     
    i11(i)=i_expected; 
    i14(i)=i11(i)*((p11_14(1)+FF(14,11))/2)+(stan(11,14)*E(i-
start+1,14)); 
    i8(i)=i11(i)*((p11_8(1)+FF(8,11))/2)+(stan(11,8)*E(i-start+1,8)); 
    i12(i)=i11(i)*((p11_12(1)+FF(12,11))/2)+(stan(11,12)*E(i-
start+1,12)); 
    i10(i)=i11(i)*((p11_10(1)+FF(10,11))/2)+(stan(11,10)*E(i-
start+1,10)); 
     
    
i15(i)=((i14(i)*(p15_14(1)+FF(14,15))+i11(i)*(p15_11(1)+FF(11,15))+i12(
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i)*(p15_12(1)+FF(12,15)))/(p15_14(1)+FF(14,15)+p15_11(1)+FF(15,11)+p15_
12(1)+FF(15,12)))+(stan(15,14)*E(i-start+1,15)+stan(15,11)*E(i-
start+1,15)+stan(15,12)*E(i-start+1,15)); 
    
i13(i)=((i14(i)*(p13_14(1)+FF(14,13))+i11(i)*(p13_11(1)+FF(11,13))+i10(
i)*(p13_10(1)+FF(10,13)))/(p13_14(1)+FF(13,14)+p13_11(1)+FF(13,11)+p13_
10(1)+FF(13,10)))+(stan(13,14)*E(i-start+1,13)+stan(13,11)*E(i-
start+1,13)+stan(13,10)*E(i-start+1,13)); 
    
i9(i)=((i8(i)*(p9_8(1)+FF(8,9))+i11(i)*(p9_11(1)+FF(11,9))+i12(i)*(p9_1
2(1)+FF(12,9)))/(p9_8(1)+FF(9,8)+p9_11(1)+FF(9,11)+p9_12(1)+FF(9,12)))+
(stan(9,8)*E(i-start+1,9)+stan(9,11)*E(i-start+1,9)+stan(9,12)*E(i-
start+1,9)); 
    
i7(i)=((i8(i)*(p7_8(1)+FF(8,7))+i11(i)*(p7_11(1)+FF(11,7))+i10(i)*(p7_1
0(1)+FF(10,7)))/(p7_8(1)+FF(7,8)+p7_11(1)+FF(7,11)+p7_10(1)+FF(7,10)))+
(stan(7,8)*E(i-start+1,7)+stan(7,11)*E(i-start+1,7)+stan(7,10)*E(i-
start+1,7)); 
     
               
i17(i)=((i14(i)*(p17_14(1)+FF(14,17))+i13(i)*(p17_13(1)+FF(13,17))+i15(
i)*(p17_15(1)+FF(15,17)))/(p17_14(1)+FF(17,14)+p17_13(1)+FF(17,13)+p17_
15(1)+FF(17,15)))+(stan(17,13)*E(i-start+1,17)+stan(17,14)*E(i-
start+1,17)+stan(17,15)*E(i-start+1,17)); 
               
i18(i)=((i17(i)*(p18_17(1)+FF(17,18))+i15(i)*(p18_15(1)+FF(15,18))+i14(
i)*(p18_14(1)+FF(14,18)))/(p18_17(1)+FF(18,17)+p18_15(1)+FF(18,15)+p18_
14(1)+FF(18,14)))+(stan(18,17)*E(i-start+1,18)+stan(18,15)*E(i-
start+1,18)+stan(18,14)*E(i-start+1,18)); 
               
i16(i)=((i14(i)*(p16_14(1)+FF(14,16))+i17(i)*(p16_17(1)+FF(17,16))+i13(
i)*(p16_13(1)+FF(13,16)))/(p16_14(1)+FF(16,14)+p16_13(1)+FF(16,13)+p16_
17(1)+FF(16,17)))+(stan(16,14)*E(i-start+1,16)+stan(16,13)*E(i-
start+1,16)+stan(16,17)*E(i-start+1,16)); 
    
i5(i)=((i9(i)*(p5_9(1)+FF(9,5))+i8(i)*(p5_8(1)+FF(8,5))+i7(i)*(p5_7(1)+
FF(7,5)))/(p5_9(1)+FF(5,9)+p5_8(1)+FF(5,8)+p5_7(1)+FF(5,7)))+(stan(5,9)
*E(i-start+1,5)+stan(5,9)*E(i-start+1,5)+stan(5,7)*E(i-start+1,5)); 
    
i6(i)=((i5(i)*(p6_5(1)+FF(5,6))+i8(i)*(p6_8(1)+FF(8,6))+i9(i)*(p6_9(1)+
FF(9,6)))/(p6_5(1)+FF(6,5)+p6_9(1)+FF(6,9)+p6_8(1)+FF(6,8)))+(stan(6,5)
*E(i-start+1,6)+stan(6,9)*E(i-start+1,6)+stan(6,8)*E(i-start+1,6)); 
    
i4(i)=((i5(i)*(p4_5(1)+FF(5,4))+i7(i)*(p4_7(1)+FF(7,4))+i8(i)*(p4_8(1)+
FF(8,4)))/(p4_5(1)+FF(4,5)+p4_7(1)+FF(4,7)+p4_8(1)+FF(4,8)))+(stan(4,5)
*E(i-start+1,4)+stan(4,7)*E(i-start+1,4)+stan(4,8)*E(i-start+1,4)); 
     
               
i20(i)=((i18(i)*(p20_18(1)+FF(18,20))+i17(i)*(p20_17(1)+FF(17,20))+i16(
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i)*(p20_16(1)+FF(16,20)))/(p20_16(1)+FF(20,16)+p20_17(1)+FF(20,17)+p20_
18(1)+FF(20,18)))+(stan(20,16)*E(i-start+1,20)+stan(20,17)*E(i-
start+1,20)+stan(20,18)*E(i-start+1,20)); 
               
i19(i)=((i16(i)*(p19_16(1)+FF(16,19))+i17(i)*(p19_17(1)+FF(17,19))+i20(
i)*(p19_20(1)+FF(20,19)))/(p19_16(1)+FF(19,16)+p19_17(1)+FF(19,17)+p19_
20(1)+FF(19,20)))+(stan(19,16)*E(i-start+1,19)+stan(19,17)*E(i-
start+1,19)+stan(19,20)*E(i-start+1,19)); 
 
i21(i)=((i18(i)*(p21_18(1)+FF(18,21))+i17(i)*(p21_17(1)+FF(17,21))+i20(
i)*(p21_20(1)+FF(20,21)))/(p21_18(1)+FF(21,18)+p21_17(1)+FF(21,17)+p21_
20(1)+FF(21,20)))+(stan(21,18)*E(i-start+1,21)+stan(21,17)*E(i-
start+1,21)+stan(21,20)*E(i-start+1,21)); 
                
i2(i)=((i4(i)*(p2_4(1)+FF(4,2))+i6(i)*(p2_6(1)+FF(6,2))+i5(i)*(p2_5(1)+
FF(5,2)))/(p2_4(1)+FF(2,4)+p2_5(1)+FF(2,5)+p2_6(1)+FF(2,6)))+(stan(2,4)
*E(i-start+1,2)+stan(2,5)*E(i-start+1,2)+stan(2,6)*E(i-start+1,2)); 
   
i3(i)=((i2(i)*(p3_2(1)+FF(2,3))+i5(i)*(p3_5(1)+FF(5,3))+i6(i)*(p3_6(1)+
FF(6,3)))/(p3_2(1)+FF(3,2)+p3_5(1)+FF(3,5)+p3_6(1)+FF(3,6)))+(stan(3,2)
*E(i-start+1,3)+stan(3,5)*E(i-start+1,3)+stan(3,6)*E(i-start+1,3)); 
   
i1(i)=((i2(i)*(p1_2(1)+FF(2,1))+i4(i)*(p1_4(1)+FF(4,1))+i5(i)*(p1_5(1)+
FF(5,1)))/(p1_2(1)+FF(1,2)+p1_4(1)+FF(1,4)+p1_5(1)+FF(1,5)))+(stan(1,2)
*E(i-start+1,1)+stan(1,4)*E(i-start+1,1)+stan(1,5)*E(i-start+1,1)); 
    
 
i23(i)=((i21(i)*(p23_21(1)+FF(21,23))+i19(i)*(p23_19(1)+FF(19,23))+i20(
i)*(p23_20(1)+FF(20,23)))/(p23_21(1)+FF(23,21)+p23_19(1)+FF(23,19)+p23_
20(1)+FF(23,20)))+(stan(23,21)*E(i-start+1,23)+stan(23,19)*E(i-
start+1,23)+stan(23,20)*E(i-start+1,23)); 
 
i22(i)=((i23(i)*(p22_23(1)+FF(23,22))+i19(i)*(p22_19(1)+FF(19,22))+i20(
i)*(p22_20(1)+FF(20,22)))/(p22_23(1)+FF(22,23)+p22_19(1)+FF(22,19)+p22_
20(1)+FF(22,20)))+(stan(22,23)*E(i-start+1,22)+stan(22,19)*E(i-
start+1,22)+stan(22,20)*E(i-start+1,22)); 
 
i24(i)=((i23(i)*(p24_23(1)+FF(23,24))+i21(i)*(p24_21(1)+FF(21,24))+i20(
i)*(p24_20(1)+FF(20,24)))/(p24_23(1)+FF(24,23)+p24_21(1)+FF(24,21)+p24_
20(1)+FF(24,20)))+(stan(24,23)*E(i-start+1,24)+stan(24,21)*E(i-
start+1,24)+stan(24,20)*E(i-start+1,24)); 
 
    
i1n=i1(i); 
i1_f(i)=Data_Filtering(maximump,i1n); 
  
  
    
end 
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predicted_data=[i1',i2',i3',i4',i5',i6',i7',i8',i9',i10',i11',i12',i13'
,i14',i15',i16',i17',i18',i19',i20',i21',i22',i23',i24']; 
  
% DTAT PLOTTING 
figure(6) 
plot([1+4:1101+4],meancurrents) 
set(gcf,'Position',[200 200 4.5*96 3*96]) 
set(gca,'FontName','Times') 
set(gca,'FontSize',[11]) 
ylabel('SC. Current (mA)') 
xlabel('Time (min.)') 
savemyfig3 
  
figure(7) 
plot(predicted_data) 
set(gcf,'Position',[200 200 4.5*96 3*96]) 
set(gca,'FontName','Times') 
set(gca,'FontSize',[11]) 
ylabel('SC. Current (mA)') 
xlabel('Time (min.)') 
savemyfig3 
  
%-------------------------------------- 
 
figure(8) 
xlim([409 500.01]) 
ylim([0.79 1.201]) 
set(gcf,'Position',[200 200 4.5*96 3*96]) 
set(gca,'FontName','Times') 
set(gca,'FontSize',[11]) 
ylabel('SC. Current (mA)') 
xlabel('Time (min.)') 
savemyfig3 
  
%----------------------------------------------- 
  
figure(9) 
f=plot(i1,'r'); 
hold on 
ff=plot(i1_f,'b'); 
set(gcf,'Position',[200 200 4.5*96 3*96]) 
set(gca,'FontName','Times') 
set(gca,'FontSize',[11]) 
ylabel('SC. Current (mA)') 
xlabel('Time (min.)') 
set(f,'Displayname','Without Filtering') 
set(ff,'Displayname','With Filtering') 
legend('Location','west') 
savemyfig3 
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%----------------------------------------------- 
%----------------------------------------------- 
 
%FUNCTIONS 
 
% (1) MODEL 
 
function [I,Ireal]=model(day) 
  
data=csvread('all20sen.csv', 96291, 3, [96291 3 128210 40]); 
sc_current=data(:,5:28); 
t_m=data(:,1)*60+data(:,2); 
t_s=(data(:,1)*60*60)+(data(:,2)*60)+(data(:,3)); 
T_m=[min(t_m):max(t_m)]; 
  
  
% N = %number of the day 
% T = time in hours 
lat= 37.9; %latitude  
longitude=91.76;  %longitude 
% declination=23.45*sin((360/365)*(N-80)); 
  
    m=length(T_m); 
     
for N=day; 
declination=23.45*sin((360/365)*(N-80)*(pi/180)); 
i=0; 
for mm=1:m 
for T=T_m(mm)/60   % we can use min(T_m)/60:1/60:max(T_m)% 
    w=15*(12-T); 
sin_alpha(N,i+1)=sin(declination*(pi/180))*sin(lat*(pi/180))... 
    +cos(declination*(pi/180))*cos(lat*(pi/180))*cos(w*(pi/180)); 
alpha1(N,i+1)=asin(sin_alpha(N,i+1))*(180/pi)-8.3; 
  
sin_alpha1(N,i+1)=sin(alpha1(N,i+1)*(pi/180)); 
i=i+1; 
end 
end 
end 
  
for N=day 
for i=1:m 
    if sin_alpha1(N,i)<0 
        sin_alpha2(N,i)=0; 
    else 
        sin_alpha2(N,i)=sin_alpha1(N,i); 
    end 
end 
end 
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for N=day 
    for i=1:m 
    am(N,i)=1/sin_alpha2(N,i); 
     
    I(N,i)=(1367*(0.7)^((am(N,i))^(0.678)))*(1.807/949.4); %SHORT 
CIRCUIT CURRENT SCALE 
    end 
end 
Ireal=I/(1.807/949.4); % POWER SCALE  
  
 
 
 % (2) LINEAR REGRESSION 
 
function [expected]=LinearRegression(i,A,B,C,D) 
  
diff1(1)=A; 
diff1(2)=B; 
diff1(3)=C; 
diff1(4)=D; 
  
 
z=i+4; 
     
    slop=(4*((z-1)*diff1(1)+(z-2)*diff1(2)+(z-3)*diff1(3)+(z-
4)*diff1(4))-((z-1)+(z-2)+(z-3)+(z-
4))*(diff1(1)+diff1(2)+diff1(3)+diff1(4)))/(4*((z-1)^2+(z-2)^2+(z-
3)^2+(z-4)^2)-(((z-1)+(z-2)+(z-3)+(z-4))^2)); 
     
    b=((diff1(1)+diff1(2)+diff1(3)+diff1(4))-slop*((z-1)+(z-2)+(z-
3)+(z-4)))/4; 
     
    expected=slop*(z)+b; 
     
  
  
% (3) SLOPES 
 
function 
[p11_14,p11_8,p11_12,p11_10,p15_14,p15_11,p15_12,p13_10,p13_11,p13_14,p
9_8,p9_11,p9_12,p7_8,p7_10,p7_11,p17_13,p17_14,p17_15,p18_14,p18_15,... 
    
p18_17,p16_13,p16_14,p16_17,p5_7,p5_8,p5_9,p6_5,p6_8,p6_9,p4_5,p4_7,p4_
8,p20_16,p20_17,p20_18,p19_16,p19_17,p19_20,p21_6,p21_17,p21_20,p2_4,p2
_5,p2_6,p3_2,p3_5,p3_6,p1_2,p1_4,p1_5,p23_19,p23_20,p23_21,p22_19,p22_2
0,p22_23,p24_23,p24_20,p24_21]=slopes(meancurrents) 
 
% Finding slopes among sensors 
p11_8=polyfit(meancurrents(:,11),meancurrents(:,8),1); 
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p11_12=polyfit(meancurrents(:,11),meancurrents(:,12),1); 
p11_10=polyfit(meancurrents(:,11),meancurrents(:,10),1); 
p11_14=polyfit(meancurrents(:,11),meancurrents(:,14),1); 
  
p15_14=polyfit(meancurrents(:,15),meancurrents(:,14),1); 
p15_11=polyfit(meancurrents(:,15),meancurrents(:,11),1); 
p15_12=polyfit(meancurrents(:,15),meancurrents(:,12),1); 
  
p13_10=polyfit(meancurrents(:,13),meancurrents(:,10),1); 
p13_11=polyfit(meancurrents(:,13),meancurrents(:,11),1); 
p13_14=polyfit(meancurrents(:,13),meancurrents(:,14),1); 
  
p9_8=polyfit(meancurrents(:,9),meancurrents(:,8),1); 
p9_11=polyfit(meancurrents(:,9),meancurrents(:,11),1); 
p9_12=polyfit(meancurrents(:,9),meancurrents(:,12),1); 
  
p7_8=polyfit(meancurrents(:,7),meancurrents(:,8),1); 
p7_10=polyfit(meancurrents(:,7),meancurrents(:,10),1); 
p7_11=polyfit(meancurrents(:,7),meancurrents(:,11),1); 
  
p17_13=polyfit(meancurrents(:,17),meancurrents(:,13),1); 
p17_14=polyfit(meancurrents(:,17),meancurrents(:,14),1); 
p17_15=polyfit(meancurrents(:,17),meancurrents(:,15),1); 
  
p18_14=polyfit(meancurrents(:,18),meancurrents(:,14),1); 
p18_15=polyfit(meancurrents(:,18),meancurrents(:,15),1); 
p18_17=polyfit(meancurrents(:,18),meancurrents(:,17),1); 
  
p16_13=polyfit(meancurrents(:,16),meancurrents(:,13),1); 
p16_14=polyfit(meancurrents(:,16),meancurrents(:,14),1); 
p16_17=polyfit(meancurrents(:,16),meancurrents(:,17),1); 
  
p5_7=polyfit(meancurrents(:,5),meancurrents(:,7),1); 
p5_8=polyfit(meancurrents(:,5),meancurrents(:,8),1); 
p5_9=polyfit(meancurrents(:,5),meancurrents(:,9),1); 
  
p6_5=polyfit(meancurrents(:,6),meancurrents(:,5),1); 
p6_8=polyfit(meancurrents(:,6),meancurrents(:,8),1); 
p6_9=polyfit(meancurrents(:,6),meancurrents(:,9),1); 
  
p4_5=polyfit(meancurrents(:,4),meancurrents(:,5),1); 
p4_7=polyfit(meancurrents(:,4),meancurrents(:,7),1); 
p4_8=polyfit(meancurrents(:,4),meancurrents(:,8),1); 
  
p20_16=polyfit(meancurrents(:,20),meancurrents(:,16),1); 
p20_17=polyfit(meancurrents(:,20),meancurrents(:,17),1); 
p20_18=polyfit(meancurrents(:,20),meancurrents(:,18),1); 
  
p19_16=polyfit(meancurrents(:,19),meancurrents(:,16),1); 
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p19_17=polyfit(meancurrents(:,19),meancurrents(:,17),1); 
p19_20=polyfit(meancurrents(:,19),meancurrents(:,20),1); 
 
p21_18=polyfit(meancurrents(:,21),meancurrents(:,18),1); 
p21_17=polyfit(meancurrents(:,21),meancurrents(:,17),1); 
p21_20=polyfit(meancurrents(:,21),meancurrents(:,20),1); 
 
p2_4=polyfit(meancurrents(:,2),meancurrents(:,4),1); 
p2_5=polyfit(meancurrents(:,2),meancurrents(:,5),1); 
p2_6=polyfit(meancurrents(:,2),meancurrents(:,6),1); 
  
p3_2=polyfit(meancurrents(:,3),meancurrents(:,2),1); 
p3_5=polyfit(meancurrents(:,3),meancurrents(:,5),1); 
p3_6=polyfit(meancurrents(:,3),meancurrents(:,6),1); 
  
p1_2=polyfit(meancurrents(:,1),meancurrents(:,2),1); 
p1_4=polyfit(meancurrents(:,1),meancurrents(:,4),1); 
p1_5=polyfit(meancurrents(:,1),meancurrents(:,5),1); 
  
p23_19=polyfit(meancurrents(:,23),meancurrents(:,19),1); 
p23_21=polyfit(meancurrents(:,23),meancurrents(:,21),1); 
p23_20=polyfit(meancurrents(:,23),meancurrents(:,20),1); 
 
p22_19=polyfit(meancurrents(:,22),meancurrents(:,19),1); 
p22_23=polyfit(meancurrents(:,22),meancurrents(:,23),1); 
p22_20=polyfit(meancurrents(:,22),meancurrents(:,20),1); 
 
p24_21=polyfit(meancurrents(:,24),meancurrents(:,21),1); 
p24_23=polyfit(meancurrents(:,24),meancurrents(:,23),1); 
p24_20=polyfit(meancurrents(:,24),meancurrents(:,20),1); 
 
 
figure(10) 
hold on 
t=0:2; 
y=polyval(p1_5,t); 
plot(meancurrents(:,1),meancurrents(:,5),'.k',t,y) 
set(gcf,'Position',[200 200 4.5*96 3*96]) 
set(gca,'FontName','Times') 
set(gca,'FontSize',[10]) 
xlabel('Ish1 (mA)') 
ylabel('Ish5 (mA)') 
text(.1,1.8,sprintf('Slope= %f',p1__5(1))) 
savemyfig3 
  
figure(11) 
t=0:2; 
y=polyval(p4_8,t); 
plot(meancurrents(:,1),meancurrents(:,5),'.b',t,y) 
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set(gcf,'Position',[200 200 4.5*96 3*96]) 
set(gca,'FontName','Times') 
set(gca,'FontSize',[10]) 
xlabel('Ish4 (mA)') 
ylabel('Ish8 (mA)') 
text(.1,1.8,sprintf('Slope= %f',p4__8(1))) 
savemyfig3 
  
figure(12) 
t=0:2; 
y=polyval(p2_6,t); 
  
plot(meancurrents(:,1),meancurrents(:,5),'.r',t,y) 
set(gcf,'Position',[200 200 4.5*96 3*96]) 
set(gca,'FontName','Times') 
set(gca,'FontSize',[10]) 
xlabel('Ish2 (mA)') 
ylabel('Ish6 (mA)') 
text(.1,1.8,sprintf('Slope= %f',p2__6(1))) 
savemyfig3 
 
% (4) FILTER 
 
function [i1_f]=Data_Filtering(maximump,i1n) 
  
 
    if i1n>maximum*1.2 
        i1_f=0.7*i1n; 
    else 
         i1_f=i1n; 
    end 
end 
 
  

  
 % -------------------------------------------------------------------- 
% Comparison Between Difference and Division for Different Window Size 

% on April 1st, 2012 
  
% SUBTRACTING AND DIVISION 
start=336; 
endd=923; 
for y=start:endd 
    diff1(y)=meancurrents(y,1)-I2(y); 
end 
  
for y=start:endd 
    div(y)=meancurrents(y,1)/I2(y); 
end 
 
% MSE ERROR 
error1=mse(diff1); 
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error2=mse(div); 
  
figure(13) 
  
hold on 
f=plot(T_m,I2,'r'); 
ff=plot(T_m,meancurrents(:,1)); 
set(gcf,'Position',[200 200 4.5*96 3*96]) 
set(gca,'FontName','Times') 
set(gca,'FontSize',[11]) 
set(f,'Displayname','Model') 
set(ff,'Displayname','Actual') 
legend('Location','west') 
xlabel('Time(Min.)') 
ylabel('SC. Current (mA)') 
line([445;445],[0;2]) 
line([1034;1034],[0;2]) 
text(460,0.1,'X1=445 Min.') 
text(800,0.1,'X2=1034.') 
hold off 
savemyfig3 
  
figure(14) 
  
hold on 
f=plot(T_m,I2,'r'); 
ff=plot(T_m,meancurrents(:,1)); 
set(gcf,'Position',[200 200 4.5*96 3*96]) 
set(gca,'FontName','Times') 
set(gca,'FontSize',[11]) 
set(f,'Displayname','Model') 
set(ff,'Displayname','Actual') 
legend('Location','west') 
xlabel('Time(Min.)') 
ylabel('SC. Current (mA)') 
hold off 
savemyfig3 
  
figure(15) 
set(gcf,'Position',[200 200 4.5*96 3*96]) 
set(gca,'FontName','Times') 
set(gca,'FontSize',[9]) 
plot(diff1) 
text(350,0.15,sprintf('Mean Squared Error= %f',error1)) 
hold on 
plot(div,'r') 
text(350,1.15,sprintf('Mean Squared Error= %f',error2)) 
ylabel('         Actual Data - Model        Actual Data / Model') 
xlabel('Time (Min.)') 
savemyfig3 
  
% LINEAR REGRESSION 
%A) Difference 
  
j=length(diff1); 
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%window=3 
for z=4:j 
     
    slop=(3*((z-1)*diff1(z-1)+(z-2)*diff1(z-2)+(z-3)*diff1(z-3))-((z-
1)+(z-2)+(z-3))*(diff1(z-1)+diff1(z-2)+diff1(z-3)))/(3*((z-1)^2+(z-
2)^2+(z-3)^2)-(((z-1)+(z-2)+(z-3))^2)); 
     
    b=((diff1(z-1)+diff1(z-2)+diff1(z-3))-slop*((z-1)+(z-2)+(z-3)))/3; 
     
    expected1(z-3,:)=slop*(z)+b; 
     
end 
  
%window=4 
for z=5:j 
     
    slop=(4*((z-1)*diff1(z-1)+(z-2)*diff1(z-2)+(z-3)*diff1(z-3)+(z-
4)*diff1(z-4))-((z-1)+(z-2)+(z-3)+(z-4))*(diff1(z-1)+diff1(z-
2)+diff1(z-3)+diff1(z-4)))/(4*((z-1)^2+(z-2)^2+(z-3)^2+(z-4)^2)-(((z-
1)+(z-2)+(z-3)+(z-4))^2)); 
     
    b=((diff1(z-1)+diff1(z-2)+diff1(z-3)+diff1(z-4))-slop*((z-1)+(z-
2)+(z-3)+(z-4)))/4; 
     
    expected2(z-4,:)=slop*(z)+b; 
     
end 
  
%window=5 
for z=6:j 
     
    slop=(5*((z-1)*diff1(z-1)+(z-2)*diff1(z-2)+(z-3)*diff1(z-3)+(z-
4)*diff1(z-4)+(z-5)*diff1(z-5))-((z-1)+(z-2)+(z-3)+(z-4)+(z-
5))*(diff1(z-1)+diff1(z-2)+diff1(z-3)+diff1(z-4)+diff1(z-5)))/(5*((z-
1)^2+(z-2)^2+(z-3)^2+(z-4)^2+(z-5)^2)-(((z-1)+(z-2)+(z-3)+(z-4)+(z-
5))^2)); 
     
    b=((diff1(z-1)+diff1(z-2)+diff1(z-3)+diff1(z-4)+diff1(z-5))-
slop*((z-1)+(z-2)+(z-3)+(z-4)+(z-5)))/5; 
     
    expected3(z-5,:)=slop*(z)+b; 
     
end 
  
%window=6 
for z=7:j 
     
    slop=(6*((z-1)*diff1(z-1)+(z-2)*diff1(z-2)+(z-3)*diff1(z-3)+(z-
4)*diff1(z-4)+(z-5)*diff1(z-5)+(z-6)*diff1(z-6))-((z-1)+(z-2)+(z-3)+(z-
4)+(z-5)+(z-6))*(diff1(z-1)+diff1(z-2)+diff1(z-3)+diff1(z-4)+diff1(z-
5)+diff1(z-6)))/(6*((z-1)^2+(z-2)^2+(z-3)^2+(z-4)^2+(z-5)^2+(z-6)^2)-
(((z-1)+(z-2)+(z-3)+(z-4)+(z-5)+(z-6))^2)); 
    b=((diff1(z-1)+diff1(z-2)+diff1(z-3)+diff1(z-4)+diff1(z-5)+diff1(z-
6))-slop*((z-1)+(z-2)+(z-3)+(z-4)+(z-5)+(z-6)))/6; 
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    expected4(z-6,:)=slop*(z)+b; 
     
end 
  
  
%B) Division 
  
diff_stor=diff1; 
diff1=div; 
j=length(div); 
  
%window=3 
for z=4:j 
     
    slop=(3*((z-1)*diff1(z-1)+(z-2)*diff1(z-2)+(z-3)*diff1(z-3))-((z-
1)+(z-2)+(z-3))*(diff1(z-1)+diff1(z-2)+diff1(z-3)))/(3*((z-1)^2+(z-
2)^2+(z-3)^2)-(((z-1)+(z-2)+(z-3))^2)); 
     
    b=((diff1(z-1)+diff1(z-2)+diff1(z-3))-slop*((z-1)+(z-2)+(z-3)))/3; 
     
    expecteda(z-3,:)=slop*(z)+b; 
     
end 
  
%window=4 
for z=5:j 
     
    slop=(4*((z-1)*diff1(z-1)+(z-2)*diff1(z-2)+(z-3)*diff1(z-3)+(z-
4)*diff1(z-4))-((z-1)+(z-2)+(z-3)+(z-4))*(diff1(z-1)+diff1(z-
2)+diff1(z-3)+diff1(z-4)))/(4*((z-1)^2+(z-2)^2+(z-3)^2+(z-4)^2)-(((z-
1)+(z-2)+(z-3)+(z-4))^2)); 
     
    b=((diff1(z-1)+diff1(z-2)+diff1(z-3)+diff1(z-4))-slop*((z-1)+(z-
2)+(z-3)+(z-4)))/4; 
     
    expectedb(z-4,:)=slop*(z)+b; 
     
end 
  
%window=5 
for z=6:j 
     
    slop=(5*((z-1)*diff1(z-1)+(z-2)*diff1(z-2)+(z-3)*diff1(z-3)+(z-
4)*diff1(z-4)+(z-5)*diff1(z-5))-((z-1)+(z-2)+(z-3)+(z-4)+(z-
5))*(diff1(z-1)+diff1(z-2)+diff1(z-3)+diff1(z-4)+diff1(z-5)))/(5*((z-
1)^2+(z-2)^2+(z-3)^2+(z-4)^2+(z-5)^2)-(((z-1)+(z-2)+(z-3)+(z-4)+(z-
5))^2)); 
     
    b=((diff1(z-1)+diff1(z-2)+diff1(z-3)+diff1(z-4)+diff1(z-5))-
slop*((z-1)+(z-2)+(z-3)+(z-4)+(z-5)))/5; 
     
    expectedc(z-5,:)=slop*(z)+b; 
     
end 
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%window=6 
for z=7:j 
 
    slop=(6*((z-1)*diff1(z-1)+(z-2)*diff1(z-2)+(z-3)*diff1(z-3)+(z-
4)*diff1(z-4)+(z-5)*diff1(z-5)+(z-6)*diff1(z-6))-((z-1)+(z-2)+(z-3)+(z-
4)+(z-5)+(z-6))*(diff1(z-1)+diff1(z-2)+diff1(z-3)+diff1(z-4)+diff1(z-
5)+diff1(z-6)))/(6*((z-1)^2+(z-2)^2+(z-3)^2+(z-4)^2+(z-5)^2+(z-6)^2)-
(((z-1)+(z-2)+(z-3)+(z-4)+(z-5)+(z-6))^2)); 
b=((diff1(z-1)+diff1(z-2)+diff1(z-3)+diff1(z-4)+diff1(z-5)+diff1(z-6))-
slop*((z-1)+(z-2)+(z-3)+(z-4)+(z-5)+(z-6)))/6; 
     
    expectedd(z-6,:)=slop*(z)+b; 
     
end 
  
%Adding and multiplying the expected noise to the solar radiation 
model: 
  
%window=3 
m=length(expected1); 
for i=start:endd-3 
     
windo3_diff(i)=expected1(i)+I2(i+3); 
windo3_div(i)=expecteda(i)*I2(i); 
  
end 
  
%window=4 
m=length(expected2); 
for i=start:endd-4 
     
windo4_diff(i)=expected2(i)+I2(i+4); 
windo4_div(i)=expectedb(i)*I2(i); 
  
end 
  
%window=5 
m=length(expected3); 
for i=start:endd-5 
     
windo5_diff(i)=expected3(i)+I2(i+5); 
windo5_div(i)=expectedc(i)*I2(i); 
  
end 
  
%window=6 
m=length(expected4); 
 
for i=start:endd-6 
     
windo6_diff(i)=expected4(i)+I2(i+6); 
windo6_div(i)=expectedd(i)*I2(i); 
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end 
 
%Subtracting the expected trends from the actual readings 
%window=3 
for i=start:endd-3 
    diff_after_expect_diff3(i)=meancurrents(i+2,1)-windo3_diff(i); 
     
    diff_after_expect_div3(i)=meancurrents(i+2,1)-windo3_div(i); 
end 
%window=4 
for i=start:endd-4 
    diff_after_expect_diff4(i)=meancurrents(i+3,1)-windo4_diff(i); 
     
    diff_after_expect_div4(i)=meancurrents(i+3,1)-windo4_div(i); 
end 
%window=5 
for i=start:endd-5 
    diff_after_expect_diff5(i)=meancurrents(i+4,1)-windo5_diff(i); 
     
    diff_after_expect_div5(i)=meancurrents(i+4,1)-windo5_div(i); 
end 
%window=6 
  
for i=start:endd-6 
    diff_after_expect_diff6(i)=meancurrents(i+5,1)-windo6_diff(i); 
     
    diff_after_expect_div6(i)=meancurrents(i+5,1)-windo6_div(i); 
end 
  
%           MSE FOR ALL 
%window=3 
msed3=mse(diff_after_expect_diff3); 
msedv3=mse(diff_after_expect_div3); 
%window=4 
msed4=mse(diff_after_expect_diff4); 
msedv4=mse(diff_after_expect_div4); 
%window=5 
msed5=mse(diff_after_expect_diff5); 
msedv5=mse(diff_after_expect_div5); 
%window=6 
msed6=mse(diff_after_expect_diff6); 
msedv6=mse(diff_after_expect_div6); 
  
%----------------------------------------------------------------------
---- 
figure(16) 
                             
subplot(4,2,1) 
plot(diff_after_expect_diff3); 
set(gcf,'Position',[200 200 4.5*96 3*96]) 
set(gca,'FontName','Times') 
set(gca,'FontSize',[10]) 
text(200,0.2,'Window size=3') 
text(200,-0.3,sprintf('MSE= %f',msed3)) 
%************* 
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subplot(4,2,3) 
plot(diff_after_expect_diff4); 
set(gcf,'Position',[200 200 4.5*96 3*96]) 
set(gca,'FontName','Times') 
set(gca,'FontSize',[10]) 
text(150,0.2,'Window size=4') 
text(150,-0.3,sprintf('MSE= %f',msed4)) 
%************* 
subplot(4,2,5) 
plot(diff_after_expect_diff5); 
set(gcf,'Position',[200 200 4.5*96 3*96]) 
set(gca,'FontName','Times') 
set(gca,'FontSize',[10]) 
text(150,0.2,'Window size=5') 
text(150,-0.3,sprintf('MSE= %f',msed5)) 
%*************************** 
subplot(4,2,7) 
plot(diff_after_expect_diff6); 
set(gcf,'Position',[200 200 4.5*96 3*96]) 
set(gca,'FontName','Times') 
set(gca,'FontSize',[10]) 
text(150,0.2,'Window size=6') 
text(150,-0.3,sprintf('MSE= %f',msed6)) 
%****************************** 
subplot(4,2,2) 
plot(diff_after_expect_div3); 
set(gcf,'Position',[200 200 4.5*96 3*96]) 
set(gca,'FontName','Times') 
set(gca,'FontSize',[10]) 
text(150,0.2,'Window size=3') 
text(150,-0.3,sprintf('MSE= %f',msedv3)) 
%************* 
subplot(4,2,4) 
plot(diff_after_expect_div4); 
set(gcf,'Position',[200 200 4.5*96 3*96]) 
set(gca,'FontName','Times') 
set(gca,'FontSize',[10]) 
text(150,0.2,'Window size=4') 
text(150,-0.3,sprintf('MSE= %f',msedv4)) 
%************* 
subplot(4,2,6) 
plot(diff_after_expect_div5); 
set(gcf,'Position',[200 200 4.5*96 3*96]) 
set(gca,'FontName','Times') 
set(gca,'FontSize',[10]) 
text(150,0.2,'Window size=5') 
text(150,-0.3,sprintf('MSE= %f',msedv5)) 
%*************************** 
subplot(4,2,8) 
plot(diff_after_expect_div6); 
set(gcf,'Position',[200 200 4.5*96 3*96]) 
set(gca,'FontName','Times') 
set(gca,'FontSize',[10]) 
text(150,0.2,'Window size=6') 
text(150,-0.3,sprintf('MSE= %f',msedv6)) 
savemyfig3 
%****************************** 
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figure(17) 
f=plot(meancurrents(:,1),'k'); 
hold on 
ff=plot([3:endd-1],windo3_diff,'r'); 
set(gcf,'Position',[200 200 4.5*96 3*96]) 
set(gca,'FontName','Times') 
set(gca,'FontSize',[11]) 
set(f,'Displayname','Actual') 
set(ff,'Displayname','Expected data') 
legend('Location','northwest') 
xlabel('Time(min.)') 
ylabel('Actual data &Expected data (mA)') 
savemyfig3 
  
figure(18) 
plot(diff_after_expect_diff3); 
set(gcf,'Position',[200 200 4.5*96 3*96]) 
set(gca,'FontName','Times') 
set(gca,'FontSize',[10]) 
text(200,0.07,'Window size=3') 
text(200,-0.1,sprintf('MSE= %f',msed3)) 
xlabel('Time(min.)') 
ylabel('Difference between Actual data &Expected data') 
savemyfig3 
  
figure(19) 
  
hold on 
k=1:length(diff_stor); 
f=plot(k,diff_stor); 
ff=plot([3:max(k)-1], expected1,'r'); 
set(gcf,'Position',[200 200 4.5*96 3*96]) 
set(gca,'FontName','Times') 
set(gca,'FontSize',[11]) 
set(f,'Displayname','Actual data-Model') 
set(ff,'Displayname','Regression Model') 
legend('Location','northwest') 
  
xlabel('Time (min.)') 
ylabel('Data-Model') 
hold off 
savemyfig3 
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