
Scholars' Mine Scholars' Mine

Masters Theses Student Theses and Dissertations

Fall 2010

Dynamic networking for programmable logic controller Dynamic networking for programmable logic controller

communication communication

Richard Andrew Hardison

Follow this and additional works at: https://scholarsmine.mst.edu/masters_theses

 Part of the Electrical and Computer Engineering Commons

Department: Department:

Recommended Citation Recommended Citation
Hardison, Richard Andrew, "Dynamic networking for programmable logic controller communication"
(2010). Masters Theses. 4854.
https://scholarsmine.mst.edu/masters_theses/4854

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

https://library.mst.edu/
https://library.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/masters_theses
https://scholarsmine.mst.edu/student-tds
https://scholarsmine.mst.edu/masters_theses?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4854&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4854&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/masters_theses/4854?utm_source=scholarsmine.mst.edu%2Fmasters_theses%2F4854&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu

DYNAMIC NETWORKING FOR PROGRAMMABLE LOGIC CONTROLLER

COMMUNICATION

by

RICHARD ANDREW HARDISON

A THESIS

Presented to the Faculty of the Graduate School of the

MISSOURIUNIVERSITY OF SCIENCE AND TECHNOLOGY

In Partial Fulfillment of the Requirements for the Degree

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

2010

Approved by

Kelvin T. Erickson, Advisor

Ann Miller

Jagannathan Sarangapani

2010

Richard Andrew Hardison

All Rights Reserved

iii

ABSTRACT

This thesis confronts the issue of set path communication in Programmable Logic

Controllers (PLCs). In order to increase reliability in a networked automated process, it

is necessary to develop a dynamic method of communication between PLCs. Three

methods for dynamic messaging in PLCs are explored in this work. These methods are

based on the real-time reconfiguration of message paths when communication fails on the

originally configured path. The simplest method involves replacing the original message

block with an Add-On Instruction (AOI) which can accept multiple communication paths

and has the ability to switch between these paths to maintain communication. A more

complex method involving a complete network scan in order to automatically build

communication paths is also explored. Finally, a direct scan method having the ability to

build communication paths between two controllers which are located on multiple

common networks is developed. For the purpose of this research the Allen-Bradley

ControlLogix platform was used.

iv

ACKNOWLEDGMENTS

 I would like to thank Dr. Erickson for his guidance and direction during the

pursuit of a Master of Science degree. He was an integral part of my success as a

graduate student. It has truly been a privilege and an honor to work with Dr. Erickson.

 I would like to thank my graduate committee for their support and willingness to

work with me.

 I would like to thank my dad Richard L. Hardison and my good friend Chris

Smiley who helped steer me in the direction of a graduate degree. I would also like to

thank Terry and Linda Glick, Keith and Brenda Athmer, Doug and Patty McClendon,

Don and Judy Baker, and Tom and Connie Cromwell. Without their moral support,

guidance, and love this degree would not have been possible.

v

TABLE OF CONTENTS

Page

ABSTRACT ... iii

ACKNOWLEDGMENTS ... iv

LIST OF ILLUSTRATIONS .. vii

LIST OF TABLES ... viii

SECTION

1. INTRODUCTION .. 1

2. PROGRAMMABLE LOGIC CONTROLLER COMMUNICATION 2

2.1. MESSAGE CONFIGURATION .. 3

2.1.1. CIP Data Table Read/Write. ... 3

2.1.2. Device Who Message. .. 3

2.1.3. Get Attribute Single. ... 5

2.1.4. Message Path Configuration. ... 5

3. DYNAMIC MESSAGING... 11

3.1. KNOWN NETWORK APPROACH .. 11

3.1.1. AOI Operation. ... 11

3.1.2. AOI Implementation. .. 14

3.2. FULL NETWORK SCAN APPROACH.. 16

3.2.1. Scan Routine. .. 16

3.2.2. Scan_BP Routine. ... 16

3.2.3. Scan_CNET Routine. ... 17

3.2.4. Scan_DNET Routine. ... 17

3.2.5. Scan_ENET Routine. ... 17

3.2.6. Device_Module_Who Instruction. ... 17

3.2.7. Validate_Paths Routine. ... 17

3.2.8. Find_Path Instruction. .. 18

3.2.9. Message Error Handling. .. 18

3.2.10. Problems. .. 18

3.3. DIRECT PATH SCAN APPROACH ... 19

vi

3.3.1. Control. ... 19

3.3.2. Scan.. .. 20

3.3.3. Scan_BP. .. 21

3.3.4. Decode_Device_Who. .. 23

3.3.5. Get_Address_Info. ... 24

3.3.6. Build_Paths. ... 25

3.3.7. Verify_Paths. .. 26

3.3.8. Fault_Handling. .. 27

4. CONCLUSION AND FUTURE WORK ... 28

APPENDICES

 A. AOI DEFINITION……...………………………………………………………….30

 B. DIRECT PATH SCAN ROUTINE………………………………………………...37

 C. DIRECT PATH SCAN_BP ROUTINE…………………………………................41

 D. DIRECT PATH DECODE_DEVICE_WHO ROUTINE………………………….45

 E. DIRECT PATH GET_ADDRESS_INFO ROUTINE……………………………..48

 F. DIRECT PATH BUILD_PATHS ROUTINE……………………………………...54

 G. DIRECT PATH VERIFY_PATHS ROUTINE……………………………………61

 H. DIRECT PATH FAULT_HANDLING ROUTINE……………………………….64

BIBLIOGRAPHY ... 66

VITA……………………………………………………………………………………..67

vii

LIST OF ILLUSTRATIONS

Figure Page

2.1. CIP Data Table Read Configuration Tab .. 4

2.2. "Device WHO" Message Configuration ... 4

2.3. Get Single Attribute (Serial Number) Message Configuration 6

2.4. Using I/O Configuration to Build a Path .. 6

2.5. Network Path Illustration .. 7

2.6. Communication Configuration Tab .. 7

3.1. Dynamic Networking AOI Block ... 13

3.2. AOI Pseudo Code ... 13

3.3. AOI Used in Ladder Logic ... 15

3.4. Pseudo Code for Control Routine ... 20

3.5. Pseudo Code for Scan Routine ... 21

3.6. Pseudo Code for Scan_BP Routine... 22

3.7. Pseudo Code for Decode_Device_Who Routine .. 23

3.8. Pseudo Code for Get_Address_Info Routine .. 24

3.9. Pseudo Code for Build_Paths Routine .. 25

3.10. Pseudo Code for Verify_Paths Routine .. 26

3.11. Pseudo Code for Fault_Handling Routine .. 27

viii

LIST OF TABLES

Table Page

2.1. Port Numbers of Certain Media Types [2] ... 8

2.2. Address Format of Certain Media Types [2] .. 8

2.3. Number to Hexadecimal String Conversion ... 10

3.1. AOI Parameter Explanation .. 14

1. INTRODUCTION

With the extensive use of Programmable Logic Controllers (PLCs) in

manufacturing facilities, in order to control and optimize processes, there is a need for a

high standard of reliability. While stand alone networks which cannot be compromised

from outside sources may be safe from attack they may still cause equipment downtime

due to network hardware failures and other system faults. When equipment downtime

can cost in the thousands of dollars per minute [1] it becomes necessary to minimize it.

In order to combat downtime due to network failures it is possible to use redundant

networks for communication between PLCs. To obtain these redundant networks PLCs

may be placed on an automation network as well the facility Ethernet network. The

automation network is used as the primary means of communication between PLCs with

the facility network being used as a back-up. Placing the PLCs on the facility network

also adds the ability for real-time evaluation of processes by engineers without having to

be on the plant floor.

 The current method of communication between PLCs utilizes a preconfigured set

path to send data to or retrieve data from another controller. The method is not dynamic

in any way and communication fails if any part of the network path fails. To minimize

the amount of time communication is lost, methods have been developed which allow

communication to be rerouted to another network. By reconfiguring the message path in

real-time a communication fault can be recovered from quite quickly.

 For the purpose of this research the Allen-Bradley ControlLogix platform has

been used, although it is possible to transfer these methods to both the SLC-500 and

PLC-5 platforms with a few changes.

2

2. PROGRAMMABLE LOGIC CONTROLLER COMMUNICATION

In a PLC network of ControlLogix processors there are two ways in which the

controllers are able to share data with each other. These methods are producer/consumer

connections and message blocks [2].

Producer/consumer connections are created at the tag level by defining the tag to

be produced in one controller and consumed in another. The tag which is defined as

produced is configured with a maximum number of consumers, where the default is one.

The tag which is defined as consumed is configured with a path to the controller

containing the produced tag as well as the name of the produced tag. This path is chosen

from a drop down list containing controllers that have been added to the I/O tree of the

project. For this reason it is necessary to define paths in the I/O tree to all controllers to

be communicated with.

For the purpose of creating dynamic connections, producer/consumers tags do not

lend themselves to the idea. This is due to the way RSLogix handles the consumer

connection path making it inaccessible from the program. However, there is a work

around for this. It is possible to define multiple consumed tags which draw from the

same source, but use different paths to reach that source. This method loses feasibility

though due to increased network traffic across non-preferred networks. Since all defined

connections would be active at the same time, bandwidth is wasted on the connections

that are not needed unless a network failure occurs on the preferred network. For this

reason message blocks are the preferred method of communication with regards to

dynamic connections.

3

2.1. MESSAGE CONFIGURATION

Message blocks provide for PLC to PLC communication and can be configured in

a variety of ways depending on the intended communication and the type of PLC to be

communicated with [2].

2.1.1. CIP Data Table Read/Write. The CIP Data Table Read is used to copy

the value in the source tag located on another controller to the destination tag located on

the local controller. It is important to note that the source and destination tag need to be

of the same data type. Figure 2.1 on the following page shows the configuration tab of a

CIP Data Table read message. The CIP Data Table Write differs from the CIP Data

Table Read in only the location of the source tag and destination tag. For the CIP Data

Table Write message, the source tag is located on the local controller and the destination

tag is located on the remote controller. Otherwise, these two messages are configured the

same. It is often preferred to use the read type messages whenever possible to avoid

accidently writing over critical data in another controller.

2.1.2. Device Who Message. A module’s identification information can be

obtained directly from the module using a message type of CIP generic with a service

type of “Device WHO”. This identification information includes the vendor ID, product

type, product code, major and minor firmware revisions, device status, serial number, and

name of the module. Upon execution of the message, this data is stored in the destination

tag which is anarray of SINT data type. The array must then be decoded into its

appropriate parts. How these parts are stored in the array can be found in [3]. The

configuration of a “Device WHO” message is shown in Figure 2.2.

4

Figure 2.1. CIP Data Table Read Configuration Tab

Figure 2.2. “Device WHO” Message Configuration

5

2.1.3. Get Attribute Single. Get attribute single is a service type of the CIP

generic message type. The data type returned by this type of message depends on the

data being retrieved. Three instances of this were used in the process of this research.

The first instance was used to obtain the serial number of a module, and when this is done

the message returns a DINT. The configuration of a CIP generic message used to obtain

the serial number of a module is shown in Figure 2.3 [4]. The second instance of this

type of message was used to find the node address of a ControlNet module. This

message also returns a DINT and the configuration is changed only slightly. These

changes are in the Class and Attribute fields of the message configuration. The Class and

Attribute values used to return the node address of a ControlNet module are F0 and 84

respectfully [5]. The third use of this message type was to retrieve the IP address from an

Ethernet module. This message returns an array of SINT containing the IP address in the

form of an ASCII string. The configuration for the message to retrieve the IP address

uses a Class of F5 and an Attribute of 5 [6].

2.1.4. Message Path Configuration. There are multiple ways to define the path

between two controllers. The simplest way is to build the path in the I/O Configuration

tree of the project. Figure 2.4 shows a path built over Control Net from the main

controller to a remote controller operating a conveyor system. An illustration of this path

is shown in Figure 2.5. Though this method is simple it is limited by the types of

communication modules that can be used (EWEB and ENET modules cannot be used this

way) and does not show the full path in the communication configuration tab. This is

shown in figure 2.6.

6

Figure 2.3. Get Attribute Single (Serial Number) Message Configuration

Figure 2.4. Using I/O Configuration to Build a Path

7

Figure 2.5. Network Path Illustration

Figure 2.6. Communication Configuration Tab

8

 The second method for configuring a path is the preferred method though it has a

higher learning curve. This method uses port/address pairs to build the path for the

message. Table 2.1 shows some of the possible port values. Table 2.2 shows some of the

possible address values.

Table 2.1.Port Numbers of Certain Media Types [7]

Port # Media Type

 1 Backplane

2

DH485 - out channel A

DHRIO - out channel A

ENET - out onto Ethernet

ENBT - out onto Ethernet

CNB(R),CN2 - out onto

ControlNet

Controllers - out the serial port

3
DH485 - out channel B

DHRIO - out channel B

Table 2.2. Address Format of Certain Network Types [7]

Network Type Address Format and Value

 Backplane Backplane slot number (0-16 depending on chassis size)

Ethernet Ethernet IP address (a.b.c.d)

ControlNet ControlNet node address (0-99)

DeviceNet DeviceNet node address (0-63)

DH+

Decimal equivalent of Octal DH+ node address (0-63 or 8#00 -

8#77)

RS232 Serial

Port DF1 node address (0-255, 1 for point to point)

9

When building paths using port/address pairs, the pairs are concatenated in the

form port, address, port, address… For example: To go from the controller to a

communication module in slot 7 of the backplane the path would be 1, 7. 1, the first

number, to go out on the backplane and the second number, 7, to go to slot seven. The

slightly more complicated path in Figure 2.4 would be 1, 7, 2, 2, 1, 0. This path is

described as (1) go out on the backplane to slot 7. Then (2) go out over Control Net

using port 2 to Node address 2. Then (3) go out on the backplane to slot 0.

If the path used Ethernet instead of ControlNet, then the path would be 1, 7, 2,

192.168.0.106, 1, 0. The port/address pairs would then be described as (1) go out on the

backplane to slot 7. Then (2) go out over Ethernet using port 2 to IP address

192.168.0.106. Then (3) go out on the backplane to slot 0.

No matter which method is used to create the path between the two controllers the

data is stored in the message structure in the same way. The full path is converted into a

hexadecimal string. This portion is handled by the RSLogix software, but needs to be

understood in order to develop a program which can create new paths. All paths with the

exception of a path involving Ethernet are converted in the same way. First the commas

are ignored, then each port number and address is converted in to a hexadecimal

equivalent in the form of $00. Table 2.3 shows the conversion of 0-16. Note the

difference in numbers 9, 10, 12, and 13 from standard hexadecimal.

 Using Table 2.3 it can be shown that the path 1, 7, 2, 2, 1, 0 would be stored as

$01$07$02$02$01$00.

10

Table 2.3. Number to Hexadecimal String conversion

 Numbe
r

HEX
String

Numbe
r

HEX
String

Numbe
r

HEX
String

Numbe
r

HEX
String

0 $00 5 $05 10 $1 15 $0F

1 $01 6 $06 11 $0B 16 $10

2 $02 7 $07 12 $p

3 $03 8 $08 13 $r

4 $04 9 $t 14 $0E

 The difficulty comes in understanding what the software is doing when it sees an

Ethernet IP address in the path. First of all port/address pairs not involving the IP address

are converted in the same way previously mentioned. Only the port/IP pair is interpreted

differently. Take the port/address pair 2, 192.168.0.106 for instance. The port will

always be a 2 since that is what tells the controller to go out over Ethernet. This 2

however, is stored as $12 instead of $02. Then an Ethernet identifier is added ($0E)

followed by the IP address. So the pair 2, 192.168.0.106 is stored as

$12$0E192.168.0.106. The full path 1, 7, 2, 192.168.0.106, 1, 0 would be stored as

$01$07$12$0E192.168.0.106$01$00.

 Knowing how message paths are created, interpreted, and stored allows for the

movement from the set path method used by the PLC into a more dynamic approach

developed in the next chapter.

11

3. DYNAMIC MESSAGING

Dynamic messaging involves a single concept of real-time reconfiguration of the

message path when communication fails on the current path. The method of doing this

reconfiguration depends on the knowledge of the network and ranges from simple, when

a network map is available, to complex, when the network is virtually unknown. There is

also the stipulation that the PLCs in question be on redundant networks. This is usually

not a problem since in highly automated environments networked PLCs will often be on

both an automation network, usually ControlNet or Ethernet, and on the facility network,

usually Ethernet. In this case it is possible to use the facility network temporarily until

communication can be re-established across the automation network.

3.1. KNOWN NETWORK APPROACH

This method is the simplest approach for dynamic message path reconfiguration

and relies on the process engineer having knowledge of the network. An Add-On

Instruction (AOI) has been developed which allows for the definition of multiple paths to

the target PLC. When the network is known and both PLCs exist on multiple common

networks, the automation network and facility network for instance, then it is possible to

build an alternate path for communication between the local and remote PLC.

3.1.1. AOI Operation. The operation of the AOI, shown in Figure 3.1, begins

with creating a copy of the original message path to ensure it is not lost. This copy is

made on the first scan of the program and a counter is incremented. This counter is used

to prevent the copy instruction from executing again if the controller is switched to

12

program mode then back to run mode. There is a block reset bit which resets this counter

in case it is necessary to set a new original path.

 Once a copy of the original message path has been made the message block can

be executed. As long as the message is completed the AOI does nothing. If the message

error bit is set then a counter is incremented causing the AOI to change the path stored in

the message structure. If any of the variables associated with the counter values are

empty the AOI will increment the counter in order to find a stored path. Once the AOI

has incremented through the list of alternate paths the counter is reset and the AOI

switches back to the original path.

 To indicate there has been a fault on the given path a variable of type DINT is

used to indicate the current path being used. When this variable is zero the original path

is in operation. Values of 1, 2, or 3 indicate that one of the alternate paths is in operation.

This variable is designed to give the process engineer a method of programming an HMI

to tell process operators when there has been a communication fault so proper

maintenance personnel can be notified. This way communication can be restored over

the original message path with little to no downtime associated with the communication

error.

 Also included in the AOI is a path reset bit. This bit, when activated, restores the

original message path allowing engineers and maintenance personnel to move

communication back to the preferred network. Figure 3.1 shows the AOI as it would

appear in Ladder Logic. Figure 3.2 shows the pseudo code for the AOI.

13

Figure 3.1. Dynamic Networking AOI Block

Figure 3.2. AOI Pseudo Code

14

3.1.2. AOI Implementation. To use the AOI it is placed in the ladder logic on a

rung by itself directly under the rung containing the original message block. An example

of the AOI used in ladder logic is shown in Figure 3.3. The original message block is

then replaced by a Boolean which is to be the message trigger. Tags for each of the AOI

parameters DYN, Message, MSG_Trigger, Alt_Path (1, 2, 3), Using_Alt_Path,

Reset_Path, and Reset_Block are then defined. Table 3.1 explains the use of each of

these parameters. To create alternate paths, full message paths are entered into the

message configuration under the communication tab. Once the path is entered it is

possible to copy its converted form from the message structure in the tag database into

one of the alternate path variables. It is not necessary to define more than one alternate

path, but the variables must exist. The AOI will simply skip over paths that have been

left empty. Once the alternate paths have been defined the original path is re-entered into

the message block.

Table 3.1. AOI Parameter Explanation

Parameter Description

 DYN AOI Control Tag

Message Original Message Control Tag

MSG_Trigger Boolean used to Trigger Message

Alt_Path1 String used to Store Alternate Path 1

Alt_Path2 String used to Store Alternate Path 2

Alt_Path3 String used to Store Alternate Path 3

Using_Alt_Path DINT used to Indicate Current Path (0=Original 1,2,3=Alternate)

Reset_Path Boolean used to set Path to Original Path

Reset_Block Boolean used to Reset AOI so a new Original Path can be set

15

Figure 3.3. AOI Used in Ladder Logic

 Once all AOI parameters have been configured, one last step remains. In the

message configuration screen under the communications tab there is a box labeled Cache

Connections. This check box determines how each connection is handled. When the

message is executed a connection across the given path is opened and the data is

transferred. If the box is checked when the message is finished the connection will

remain open minimizing the time it takes to execute the message again. This creates a

problem when attempting to change the path back to a previously faulted path other than

16

Ethernet. When the box is left unchecked then the connection is closed after the message

is complete and this problem is alleviated. The increased time it takes to re-open the

connection is less than 10 milliseconds. This problem is believed to stem from how the

networks operate by scheduling communication. When a connection is faulted on one of

these networks it must be closed and then reopened in order to reset it. For this reason

the AOI forces the Cache Connections bit off prior to the execution of the message block.

3.2. FULL NETWORK SCAN APPROACH

 The full network scan approach involves a complete scan of the entire automation

network developed in [8] in addition to message error handling. The full network scan

consists of several routines, each with its own state machine to prevent over running the

maximum scan time set in the processor, as well as two AOIs. The purpose of each

routine and how it operates is described in the following sections. For further

explanation beyond what is described here see [8].

 3.2.1. Scan Routine. [8] The Scan routine is the backbone of the full network

scan and handles the transitions to the other routines. The networks paths are set here

allowing the program to reach deeper and deeper into the network as the scan continues.

The first step of this routine is to clear the current path, then call the Scan_BP routine. In

order to use this routine on a system other than the lab where it was designed, the

engineer must have some knowledge of the network (i.e. address ranges to be scanned by

the other routines).

 3.2.2. Scan_BP Routine. [8] The Scan_BP routine is used for scanning the

backplane of a PLC. The first time this routine is run it is set to scan the local backplane

17

looking for communication modules. Each time after the initial run this routine also

checks for the target controller as well as communication modules. The communication

modules are logged and the scan continues.

 3.2.3. Scan_CNET Routine. [8] The Scan_CNET routine scans a ControlNet

network for the range of addresses provided by the scan routine. When a module is

found at an address the new backplane will be scanned and communication modules

logged. When the ControlNet network has been scanned a bit is set to indicate its

completion.

 3.2.4. Scan_DNET Routine. [8] The Scan_DNET routine is similar to the

ControlNet scanning routine but designed to operate over a DeviceNet network.

 3.2.5. Scan_ENET Routine. [8] The Scan_ENET routine is also similar to the

ControlNet scanning routine but is more complex in nature due to having to construct the

Ethernet IP addresses. The range of addresses to be scanned must still be known and this

routine only allows for the last octet to be changed.

 3.2.6. Device_Module_Who Instruction. [8] Device_Module_Who is an AOI

developed for the purpose of decoding raw data retrieved from a device who type

message. The raw data is stored in the form of an array of SINT containing the vendor

ID, product type, product code, major and minor firmware revisions, device status, serial

number, and name of the module the message was sent to. The data is separated and

stored in a User defined Data Type (UDT) for later use.

 3.2.7. Validate_Paths Routine. [8] This routine is used to send messages across

the constructed paths to validate their correctness. Once the paths have been checked, the

valid paths are stored for use.

18

 3.2.8. Find_Path Instruction. [8] The Find_Path AOI is an instruction that can

be used to locate valid paths to a given module from the table of stored paths. This

instruction is passed the target processor serial number, The name of the table containing

the paths, and the destination for the retrieved path.

 3.2.9. Message Error Handling. The error handling for this approach is done by

first locating the array for the target processor in the table of stored paths. Once the array

is located the error handling section waits for the error bit on the message to be set.

When the error bit is set a counter is incremented and a new path is copied to the message

structure. The next time the message bock is executed it will use the new path in an

attempt to re-established communication. Each time communication fails the next path is

used. Once all possible paths has been attempted, the counter is reset and list is gone

through again.

 3.2.10. Problems. There were issues involved with this approach that prevent it

from being a practical solution for actual implementation. The first of these issues is

time. The time it takes to complete the full network scan is extremely high. When

scanning the lab network consisting of four individual networks with between 4 and 9

nodes each, the scan was still not complete after 78 hours of run time. The program was

then forced out of the scanning process so the error handling could be tested. The error

handling did prove successful, but this is not enough. The level of complexity in the

program combined with the amount of code which needs to be adapted for every

installation, severely hinders this approach from being implemented.

19

3.3. DIRECT PATH SCAN APPROACH

 Direct path scanning is a redesigned version of the full network scan. This

approach also involves several routines in order to define multiple paths to the target

controller. This method utilizes the original known path to establish a connection with

the remote backplane. The remote backplane is scanned and the communication modules

a logged. A message is then sent to each communication module to retrieve its network

address. This process eliminates the need to scan a range of addresses looking for

modules. Provided an original path has been configured and operates correctly, no other

knowledge of the network is needed since the appropriate network addresses are retrieved

from the communication modules involved. By not sending messages to a range of

addresses in an attempt to locate the communication modules, the time needed to

complete the scan is reduced to less than 1 second. The time necessary to validate

possible paths however, remains the same. For paths which return a value, correct or not,

only need a few milliseconds, while paths which “error out” require 30 seconds each.

The 30 seconds required by failed paths is due to the internal time-out of the message

when a connection cannot be established. The sections below describe in further detail

the operation of each routine.

 3.3.1. Control. The control routine is a short ladder routine used to switch from

scanning to fault handling. While path setup is not complete the program flows through

the scanning routines. Once the paths have been setup and verified the program flow

switches to fault handling and no longer flows through the scanning routines. Figure 3.4

shows the pseudo code for the control routine.

20

Figure 3.4 Pseudo Code for Control Routine

 3.3.2. Scan. The scan routine is the main state machine for the scanning process.

When the routine is first run a message is sent to the target controller to retrieve its serial

number. Once this is done the main scan state machine is activated.

 The first step is to scan the local backplane. This is done by clearing the path the

backplane scan routine will use and then calling the backplane scan routine. When the

program returns to the scan routine the main state machine is incremented. On the next

program scan the path for the backplane is cleared again and set to reach the remote

backplane. The backplane scan routine is called and the remote backplane is scanned.

Once both backplanes have been scanned, paths between the two can be built. This is

done by a call of the build paths routine. After completion of the possible message paths,

the routine used to verify the paths is called to check each path. When each path has

been verified they are stored in an array and the original path is concatenated to the end

of the array. A path setup complete bit is then set so the control routine will know to

switch to fault handling. Figure 3.5 shows the pseudo code for the scan routine.

21

Figure 3.5 Pseudo Code for Scan Routine

 3.3.3. Scan_BP. The backplane scan routine is designed with its own state

machine to scan a ControlLogix backplane located by the path passed to the routine and

catalog any communication modules found. If the routine is passed an empty path the

local backplane will be scanned.

 In order to scan a backplane the path to that backplane is first set and a slot

counter is initialized. A “Device WHO” type message is then sent to the current slot to

identify the module which may be located there. The Decode_Device_Who routine is

then called to decode the data retrieved by the message. This decoded data is then

22

checked in order to determine if the module is a communication module. If it is a

communication module and the module is located on the remote backplane then another

message is sent to the module to obtain its network address and the data is stored in an

array for use by the Build_Paths routine. Local communication modules are stored

without network addresses because it is not necessary to know them. The slot counter is

then incremented. This slot counter will increment from 0 to 16 which is the maximum

size of a ControlLogix chassis. Once slot 16 has been checked the program returns to the

scan routine. Figure 3.6 shows the pseudo code for the Scan_BP routine.

Figure 3.6 Pseudo Code for Scan_BP Routine

23

3.3.4. Decode_Device_Who. The Decode_Device_Who routine is a rework of an

AOI found in [8]. This routine takes an SINT array returned from a “Device WHO” type

message and separates it into parts and stores the information in a UDT of type Module.

The UDT is defined as a structure which contains the vendor ID, product type, product

code, major and minor firmware revisions, module serial number, module name, slot

number module was found in, and the module’s network address (either node or IP).

Figure 3.7 shows the pseudo code for the Decode_Device_Who routine.

Figure 3.7 Pseudo Code for Decode_Device_Who Routine

24

3.3.5. Get_Address_Info. The Get_Address_Info routine is used to send a

message to a communication module located on the remote backplane in order to retrieve

its network address. This is done by first checking the type of network the module

communicates over, then sending the appropriate type of message. The raw data from the

message is converted into a hexadecimal string and stored in the current module

structure. Figure 3.8 shows the pseudo code for the Get_Address_Info routine.

Figure 3.8 Pseudo Code for Get_Address_Info Routine

25

3.3.6. Build_Paths. The Build_Paths routine constructs possible message paths

based on comparison of network module product codes. Two indices are initialized to

step through the arrays of local and remote communication modules. When modules are

found to be of the same network type, a path is built using the information stored in their

structure. The path is then stored for verification and the process continues until all

modules have been compared. Figure 3.9 shows the pseudo code for the Build_Paths

routine.

Figure 3.9 Pseudo Code for Build_Paths Routine

26

3.3.7. Verify_Paths. The Verify_Paths routine sends messages across each path

built by the Build_Paths routine. This is done by initializing an index used to step

through the array of possible paths. Each path in turn is copied to a message structure

and a message is sent. The verification message is configured to retrieve the serial

number of a module. If the done bit of the message is set, the serial number retrieved is

compared with the target processor serial number. If they are the same, the path is a good

path and it is stored in the verified paths array. If the serial numbers are different or if the

message error bit is set, the index is incremented and the next path is checked. When all

paths have been checked, the program returns to the scan routine. Figure 3.10 shows the

pseudo code for the Verify_Paths routine.

Figure 3.10 Pseudo Code for Verify_Paths Routine

27

 3.3.8. Fault_Handling. The Fault_Handling routine is used to handle

communication errors. When the original message is executed this routine looks for the

error bit of that message. If it is set a counter is incremented and the next path stored in

the verified paths array is copied to the message structure. The next time the message is

executed, communication will travel across the new path attempting to re-establish

communication with the remote controller. Each time an error occurs a different path

will be copied to the message structure. Once the last path in the array is used the

counter is reset and the process starts over at the beginning of the array. Figure 3.11

shows the pseudo code for the Fault_Handling routine.

Figure 3.11 Pseudo Code for Fault_Handling Routine

28

4. CONCLUSION AND FUTURE WORK

In this work three separate methods for dynamic messaging, ranging from simple

to complex, have been explored. These methods all use real-time reconfiguration of the

message path in order move away from the set path method to a more dynamic

communication approach.

The simplest method, the AOI, is by far the most feasible and deployable. The

AOI can be imported into a project and used in place of a standard message block, which

affords the user the ability to use dynamic messaging with the least amount of hassle.

As it turns out the most complex approach is the least feasible. Due to the nature

of how the full network scan works, this method requires a great deal of time and effort to

implement. To deploy this on any scale would require major revisions to the method

used to scan the available networks. As future work it may be possible to decrease the

time the network scan takes to complete as well as refine the code for easier deployment.

The third method utilizing a direct scan approach is somewhat feasible on a small

scale. The scan executes very fast making the time necessary to build alternate paths

almost negligible. However, in order for this to be implemented on a large scale the code

would need to be adapted to handle multiple message blocks.

As new revisions of PLC programming software become available it may be

possible to revisit the issues concerning producer/consumer connections. If future

revisions allow for access to the communication path stored in the consumer tag it may

be possible to develop methods for monitoring their communication and altering the

connection path when a failure occurs. For this to become reality, the manufacturer

would have to realize the need for such a capability and alter their software accordingly.

29

As processes and systems become more automated the need for reliability in that

automation will also increase making the need for dynamic networking between

controllers be of greater necessity. Also, as manufacturing and other facilities move

further toward the use of redundant networks to increase efficiency and better monitor

processes, the ability to easily implement a dynamic networking control scheme is

strengthened. This work is just a small step in that direction.

30

APPENDIX A.

AOI DEFINITION

31

32

33

34

35

36

37

APPENDIX B.

DIRECT PATH SCAN ROUTINE

38

// Main Scan Routine

// On First run Get Serial Number from Target Processor

IF NOT First THEN

 COP(Get_Count.Path, Orig_Path, 1);

 COP(Get_Count.Path, Get_Serial.Path, 1);

 CASE Get_Target OF

 0: // Send Message to Target Processor

 MSG(Get_Serial);

 // Goto Step 1 if Message in Enabled

 IF Get_Serial.EN THEN

 Get_Target := 1;

 END_IF;

 1: // Wait for Message to Finish or Error

 IF Get_Serial.DN THEN

 Get_Target := 2;

 ELSIF Get_Serial.ER THEN

 Get_Target := 0;

 END_IF;

 2: // Set Target Found

 Target_Found := 1;

 // Goto Step 3

 Get_Target := 3;

 3: // Set First

 First := 1;

 END_CASE;

END_IF;

39

IF Target_Found THEN

 // Main Scan State Machine

 CASE Scan_Step OF

 0: // Scan Local Backplane

 // Set Path to Local Backplane

 // (Scan_BP Will Scan the Local Backplane if MSG Path is empty)

 DELETE(Path_BP,82,1,Path_BP);

 // Jump to Scan_BP Routine

 JSR(Scan_BP);

 // Goto Step 1 if Local Backplane Scan is Complete

 IF BP_Scan_Step = 8 THEN

 BP_Scan_Step := 0;

 Scan_Step := 1;

 END_IF;

 1: // Scan Remote Backplane

 // Set Path to Remote Backplane

 Start_Pos := Get_Count.Path.Len-1;

 DELETE(Get_Count.Path,82,Start_Pos,Path_BP);

 // Jump to Scan_BP Routine

 JSR(Scan_BP);

 // Goto Step 2 if Remote Backplane Scan is Complete

 IF BP_Scan_Step = 8 THEN

 Scan_Step := 2;

 END_IF;

 2: // Build Communication Paths

 JSR(Build_Paths);

40

 // Goto Step 3 if Build Paths is Complete

 IF Build_Path_Step = 8 THEN

 Scan_Step := 3;

 END_IF;

 3: // Varify Paths

 JSR(Verify_Paths);

 // Goto Step 4 When Path Verification is Complete

 IF Verify_Step = 6 THEN

 Scan_Step := 4;

 END_IF;

 4: // Copy Original Path in to Verified Paths

 COP(Orig_Path, Verified_Paths[V_Path_Index], 1);

 // Goto Step 5

 Scan_Step := 5;

 5: // Set Path_Setup_Complete

 Path_setup_Complete := 1;

 END_CASE;

END_IF;

41

APPENDIX C.

DIRECT PATH SCAN_BP ROUTINE

42

// Scan Backplane Routine

// Scan Backplane State Machine

Case BP_Scan_Step OF

 0: // Set Slot and Index to 0

 Slot := 0;

 Index := 0;

 // Goto Step 1

 BP_Scan_Step := 1;

 1: // Append Message Path to Scan Slot

 DELETE(Mod_Who.Path,82,1,Mod_Who.Path);

 INSERT(Mod_Who.Path,Path_BP,1,Mod_Who.Path);

 // Append Message Path to go out on Backplane to Slot

 Mod_Who.Path.Data[Mod_Who.path.len] := 1;

 Mod_Who.Path.Data[Mod_Who.path.len+1] := Slot;

 Mod_Who.path.len := Mod_Who.path.len + 2; // Two is added Here to Allow Room for Slot

 Number

 // Goto Step 2

 BP_Scan_Step := 2;

 2: // Send Device Who Message to Module

 MSG(Mod_Who);

 // Goto next step if message is enabled

 IF Mod_Who.EN THEN

 BP_Scan_Step := 3;

 END_IF;

 3: // Wait for Message to Finish or Error

 IF Mod_Who.DN THEN

43

 BP_Scan_Step := 4;

 ELSIF Mod_Who.ER THEN

 BP_Scan_Step := 7;

 END_IF;

 4: // Decode Retrieved Data

 JSR(Decode_Device_Who);

 // Goto Step 5

 BP_Scan_Step := 5;

 5: // Get Address Information if Remote Module is a Communication Module

 IF Current_Module.Product_Type = 12 AND Scan_Step = 1 THEN

 JSR(Get_Address_Info);

 IF Set AND (Add_Step = 9) THEN

 // Reset Set bit and Add_Step Then Goto Step 6

 Set := 0;

 Add_Step := 0;

 BP_Scan_Step := 6;

 END_IF;

 ELSE

 // Goto Step 6

 BP_Scan_Step := 6;

 END_IF;

 6: // Check if Communication Module and Store Information if so

 // If Type is 12 and Code is 7,17,58,125

 IF Current_Module.Product_Type = 12 THEN

 CASE Current_Module.Product_Code OF

 7,17,58,125: // Store Data and increment index to next storage spot

 IF Index < 17 THEN

 IF Scan_Step = 0 THEN

44

 COP(Current_Module, Scan_Result.Local[Index],1);

 Scan_Result.Local[Index].Slot := Slot;

 Index := Index +1;

 ELSIF Scan_Step = 1 THEN

 COP(Current_Module, Scan_Result.Remote[Index],1);

 Scan_Result.Remote[Index].Slot := Slot;

 Index := Index +1;

 END_IF;

 END_IF;

 END_CASE;

 END_IF;

 // Goto Step 7

 BP_Scan_Step := 7;

 7: // Increment slot counter 'Slot'

 Slot := Slot + 1;

 // Check 'Slot'

 IF Slot <= 16 THEN

 BP_Scan_Step := 1;

 ELSE

 BP_Scan_Step := 8;

 END_IF;

 8: // DONE scanning Backplane; Stop

ELSE

 // If Not in Steps 0-6, Goto Step 1

 BP_Scan_Step := 1;

END_CASE;

45

APPENDIX D.

DIRECT PATH DECODE_DEVICE_WHO ROUTINE

46

// Decode Device Who Message Routine

// Extract Vendor ID

Current_Module.Vendor_ID := 256*Mod_Who_Data[1] + Mod_Who_Data[0];

// Extract Product Type

Current_Module.Product_Type := 256*Mod_Who_Data[3] + Mod_Who_Data[2];

// Extract Product Code

Current_Module.Product_Code := 256*Mod_Who_Data[5] + Mod_Who_Data[4];

// Extract Major Revision

Current_Module.Major_Rev := Mod_Who_Data[6];

// Extract Minor Revision

Current_Module.Minor_Rev := Mod_Who_Data[7];

// Extract Serial Number (Use BTDT so sign is not considered)

Serial_BTDT.Source := Mod_Who_Data[10];

Serial_BTDT.SourceBit := 0;

Serial_BTDT.Length := 8;

Serial_BTDT.Target := Current_Module.Serial_Num;

Serial_BTDT.DestBit := 0;

BTDT(Serial_BTDT);

Current_Module.Serial_Num := Serial_BTDT.Dest;

Serial_BTDT.Source := Mod_Who_Data[11];

Serial_BTDT.Target := Current_Module.Serial_Num;

Serial_BTDT.DestBit := 8;

BTDT(Serial_BTDT);

Current_Module.Serial_Num := Serial_BTDT.Dest;

Serial_BTDT.Source := Mod_Who_Data[12];

Serial_BTDT.Target := Current_Module.Serial_Num;

Serial_BTDT.DestBit := 16;

BTDT(Serial_BTDT);

47

Current_Module.Serial_Num := Serial_BTDT.Dest;

Serial_BTDT.Source := Mod_Who_Data[13];

Serial_BTDT.Target := Current_Module.Serial_Num;

Serial_BTDT.DestBit := 24;

BTDT(Serial_BTDT);

Current_Module.Serial_Num := Serial_BTDT.Dest;

// Extract Name

Current_Module.Name.LEN := Mod_Who_Data[14];

FOR i:= 1 TO Mod_Who_Data[14] DO

Current_Module.Name.DATA[i-1] := Mod_Who_Data[i+14];

END_FOR;

48

APPENDIX E.

DIRECT PATH GET_ADDRESS_INFO ROUTINE

49

// Get Address Information Routine

IF NOT Set THEN

 // Set Case Step to Zero if Getting IP Address

 IF (Current_Module.Product_Code = 58) OR (Current_Module.Product_Code = 125) THEN

 // Set Path for Get IP Message

 COP(Mod_Who.Path, Get_IP.Path,1);

 // Set to Step 1

 Add_Step := 1;

 Set := 1;

 END_IF;

 // Set Case Step to Zero if Getting Node Address

 IF Current_Module.Product_Code = 7 THEN

 // Set Path for Get Node Message

 COP(Mod_Who.Path, Get_Node.Path, 1);

 // Set Step to 5

 Add_Step := 5;

 Set := 1;

 END_IF;

END_IF;

// Address Information State Machine

CASE Add_Step OF

 1: // Send Message to Get IP Address

 MSG(Get_IP);

50

 // Goto Next Step if Message is Enabled

 IF Get_IP.EN THEN

 Add_Step := 2;

 END_IF;

 2: // Wait for Message to Finish or Error

 IF Get_IP.DN THEN

 Add_Step := 3;

 ELSIF Get_IP.ER THEN

 Add_Step := 9;

 END_IF;

 3: // Convert IP Address to STRING

 // Extract IP Address Parts to DINT (Use BTDT so sign is not considered)

 IP_BTDT.Source := Current_IP_Info[0];

 IP_BTDT.SourceBit := 0;

 IP_BTDT.Length := 8;

 IP_BTDT.Target := Current_IP_Temp_DINT[0];

 IP_BTDT.DestBit := 0;

 BTDT(IP_BTDT);

 Current_IP_Temp_DINT[0] := IP_BTDT.Dest;

 IP_BTDT.Source := Current_IP_Info[1];

 IP_BTDT.Target := Current_IP_Temp_DINT[1];

 BTDT(IP_BTDT);

 Current_IP_Temp_DINT[1] := IP_BTDT.Dest;

 IP_BTDT.Source := Current_IP_Info[2];

 IP_BTDT.Target := Current_IP_Temp_DINT[2];

 BTDT(IP_BTDT);

 Current_IP_Temp_DINT[2] := IP_BTDT.Dest;

 IP_BTDT.Source := Current_IP_Info[3];

 IP_BTDT.Target := Current_IP_Temp_DINT[3];

 BTDT(IP_BTDT);

 Current_IP_Temp_DINT[3] := IP_BTDT.Dest;

51

 // Convert IP Address Parts to ASCII

 DTOS(Current_IP_Temp_DINT[3], Current_IP_Temp_ASCII[0]);

 DTOS(Current_IP_Temp_DINT[2], Current_IP_Temp_ASCII[1]);

 DTOS(Current_IP_Temp_DINT[1], Current_IP_Temp_ASCII[2]);

 DTOS(Current_IP_Temp_DINT[0], Current_IP_Temp_ASCII[3]);

 // Concatinate IP Address Parts

 INSERT(Current_IP_Add, Current_IP_Temp_ASCII[0], 1,Current_IP_Add);

 Position := Current_IP_Add.LEN + 1;

 INSERT(Current_IP_Add, Period, Position, Current_IP_Add);

 Position := Current_IP_Add.LEN + 1;

 INSERT(Current_IP_Add, Current_IP_Temp_ASCII[1], Position, Current_IP_Add);

 Position := Current_IP_Add.LEN + 1;

 INSERT(Current_IP_Add, Period, Position, Current_IP_Add);

 Position := Current_IP_Add.LEN + 1;

 INSERT(Current_IP_Add, Current_IP_Temp_ASCII[2], Position, Current_IP_Add);

 Position := Current_IP_Add.LEN + 1;

 INSERT(Current_IP_Add, Period, Position, Current_IP_Add);

 Position := Current_IP_Add.LEN + 1;

 INSERT(Current_IP_Add, Current_IP_Temp_ASCII[3], Position, Current_IP_Add);

 Position := Current_IP_Add.LEN + 1;

 // Goto Step 4

 Add_Step := 4;

 4: // Store Address in Current.Address

 COP(Current_IP_Add, Current_Module.Address, 1);

 // Goto Step 9

 Add_Step := 9;

 5: // Send Message to Get Node Address

 MSG(Get_Node);

52

 // Goto Next Step if Message is Enabled

 IF Get_Node.EN THEN

 Add_Step := 6;

 END_IF;

 6: // Wait for Message to Finish or Error

 IF Get_Node.DN THEN

 Add_Step := 7;

 ELSIF Get_Node.ER THEN

 Add_Step := 9;

 END_IF;

 7: // Convert Node Address to STRING

 //Copy First 8 Bits of DINT

 Current_Node_Temp.0 := Current_Node_Info.0;

 Current_Node_Temp.1 := Current_Node_Info.1;

 Current_Node_Temp.2 := Current_Node_Info.2;

 Current_Node_Temp.3 := Current_Node_Info.3;

 Current_Node_Temp.4 := Current_Node_Info.4;

 Current_Node_Temp.5 := Current_Node_Info.5;

 Current_Node_Temp.6 := Current_Node_Info.6;

 Current_Node_Temp.7 := Current_Node_Info.7;

 // Store SINT as STRING

 Current_Node_Add.Data[0].0 := Current_Node_Temp.0;

 Current_Node_Add.Data[0].1 := Current_Node_Temp.1;

 Current_Node_Add.Data[0].2 := Current_Node_Temp.2;

 Current_Node_Add.Data[0].3 := Current_Node_Temp.3;

 Current_Node_Add.Data[0].4 := Current_Node_Temp.4;

 Current_Node_Add.Data[0].5 := Current_Node_Temp.5;

 Current_Node_Add.Data[0].6 := Current_Node_Temp.6;

 Current_Node_Add.Data[0].7 := Current_Node_Temp.7;

 Current_Node_Add.LEN := 1;

53

 // Goto Step 8

 Add_Step := 8;

 8: // Store Address in Current.Address

 COP(Current_Node_Add, Current_Module.Address, 1);

 // Goto Step 9

 Add_Step := 9;

 9: // Stop, Set Done Bit, and Reset Set bit

END_CASE;

54

APPENDIX F.

DIRECT PATH BUILD_PATHS ROUTINE

55

// Build Paths Routine

// Build Path State Machine

CASE Build_Path_Step OF

 0: // Select First Local and Remote Communication Modules and Set Path Index to 0

 Local_Mod_Index := 0;

 Remote_Mod_Index := 0;

 Path_Index := 0;

 // Goto Step 1

 Build_Path_Step := 1;

 1: // Check Local Product Code

 IF Scan_Result.Local[Local_Mod_Index].Product_Code = 7 THEN

 // Goto Step 2

 Build_Path_Step := 2;

 ELSIF (Scan_Result.Local[Local_Mod_Index].Product_Code = 58) OR

 (Scan_Result.Local[Local_Mod_Index].Product_Code = 125) THEN

 // Goto Step 4

 Build_Path_Step := 4;

 ELSE

 // Goto Step 7

 Build_Path_Step := 7;

 END_IF;

 2: // Check Remote Product Code

 IF Scan_Result.Remote[Remote_Mod_Index].Product_Code = 7 THEN

56

 // Goto Step 3

 Build_Path_Step := 3;

 ELSE

 // Goto Step 6

 Build_Path_Step := 6;

 END_IF;

 3: // Build Path for Control Net

 // Delete Contents of Path_Temp

 DELETE(Path_Temp,82,1,Path_Temp);

 // Go out on Backplane

 Path_Temp.Data[0].0 := 1;

 Path_Temp.LEN := Path_Temp.LEN + 1;

 // To Local Slot

 Path_Temp.Data[1].0 := Scan_Result.Local[Local_Mod_Index].Slot.0;

 Path_Temp.Data[1].1 := Scan_Result.Local[Local_Mod_Index].Slot.1;

 Path_Temp.Data[1].2 := Scan_Result.Local[Local_Mod_Index].Slot.2;

 Path_Temp.Data[1].3 := Scan_Result.Local[Local_Mod_Index].Slot.3;

 Path_Temp.Data[1].4 := Scan_Result.Local[Local_Mod_Index].Slot.4;

 Path_Temp.Data[1].5 := Scan_Result.Local[Local_Mod_Index].Slot.5;

 Path_Temp.Data[1].6 := Scan_Result.Local[Local_Mod_Index].Slot.6;

 Path_Temp.Data[1].7 := Scan_Result.Local[Local_Mod_Index].Slot.7;

 Path_Temp.Len := Path_Temp.LEN + 1;

 // Go Out Over Control Net

 Path_Temp.Data[2].1 := 1;

 Path_Temp.Len := Path_Temp.LEN + 1;

 // To Remote Node Address

57

 CONCAT(Path_Temp, Scan_Result.Remote[Remote_Mod_Index].Address, Path_Temp);

 // Go Out on Backplane

 Path_Temp.Data[Path_Temp.LEN].0 := 1;

 Path_Temp.LEN := Path_Temp.LEN + 1;

 // To Remote Controller

 Position :=Get_Count.Path.LEN - 1;

 Path_Temp.Data[Path_Temp.LEN].0 := Get_Count.Path.Data[Position].0;

 Path_Temp.Data[Path_Temp.LEN].1 := Get_Count.Path.Data[Position].1;

 Path_Temp.Data[Path_Temp.LEN].2 := Get_Count.Path.Data[Position].2;

 Path_Temp.Data[Path_Temp.LEN].3 := Get_Count.Path.Data[Position].3;

 Path_Temp.Data[Path_Temp.LEN].4 := Get_Count.Path.Data[Position].4;

 Path_Temp.Data[Path_Temp.LEN].5 := Get_Count.Path.Data[Position].5;

 Path_Temp.Data[Path_Temp.LEN].6 := Get_Count.Path.Data[Position].6;

 Path_Temp.Data[Path_Temp.LEN].7 := Get_Count.Path.Data[Position].7;

 Path_Temp.LEN := Path_Temp.LEN + 1;

 // Copy Finished Path to Storage

 COP(Path_Temp, Unverified_Paths[Path_Index], 1);

 // Increment Path Index

 Path_Index := Path_Index + 1;

 // Goto Step 6

 Build_Path_Step := 6;

 4: // Check Remote Product Code

 IF (Scan_Result.Remote[Remote_Mod_Index].Product_Code = 58) OR

 (Scan_Result.Remote[Remote_Mod_Index].Product_Code = 125) THEN

 // Goto Step 5

 Build_Path_Step := 5;

58

 ELSE

 // Goto Step 6

 Build_Path_Step := 6;

 END_IF;

 5: // Build Path for Ethernet

 // 1, Local_Slot_Num, $12, $0E131.151.52.140, 1, Remote_Controller

 // Delete Contents of Path_Temp

 DELETE(Path_Temp,82,1,Path_Temp);

 // Go out on Backplane

 Path_Temp.Data[0].0 := 1;

 Path_Temp.LEN := Path_Temp.LEN + 1;

 // To Local Slot

 Path_Temp.Data[1].0 := Scan_Result.Local[Local_Mod_Index].Slot.0;

 Path_Temp.Data[1].1 := Scan_Result.Local[Local_Mod_Index].Slot.1;

 Path_Temp.Data[1].2 := Scan_Result.Local[Local_Mod_Index].Slot.2;

 Path_Temp.Data[1].3 := Scan_Result.Local[Local_Mod_Index].Slot.3;

 Path_Temp.Data[1].4 := Scan_Result.Local[Local_Mod_Index].Slot.4;

 Path_Temp.Data[1].5 := Scan_Result.Local[Local_Mod_Index].Slot.5;

 Path_Temp.Data[1].6 := Scan_Result.Local[Local_Mod_Index].Slot.6;

 Path_Temp.Data[1].7 := Scan_Result.Local[Local_Mod_Index].Slot.7;

 Path_Temp.Len := Path_Temp.LEN + 1;

 // Go Out Over Ethernet Net

 Path_Temp.Data[2].1 := 1;

 Path_Temp.Data[2].4 := 1;

 Path_Temp.Len := Path_Temp.LEN + 1;

 // Add Ethernet Designation

 Path_Temp.Data[3].0 := 0;

59

 Path_Temp.Data[3].1 := 1;

 Path_Temp.Data[3].2 := 1;

 Path_Temp.Data[3].3 := 1;

 Path_Temp.Len := Path_Temp.LEN + 1;

 // To Remote Node Address

 CONCAT(Path_Temp, Scan_Result.Remote[Remote_Mod_Index].Address, Path_Temp);

 // Go Out on Backplane

 Path_Temp.Data[Path_Temp.LEN].0 := 1;

 Path_Temp.LEN := Path_Temp.LEN + 1;

 // To Remote Controller

 Position :=Get_Count.Path.LEN - 1;

 Path_Temp.Data[Path_Temp.LEN].0 := Get_Count.Path.Data[Position].0;

 Path_Temp.Data[Path_Temp.LEN].1 := Get_Count.Path.Data[Position].1;

 Path_Temp.Data[Path_Temp.LEN].2 := Get_Count.Path.Data[Position].2;

 Path_Temp.Data[Path_Temp.LEN].3 := Get_Count.Path.Data[Position].3;

 Path_Temp.Data[Path_Temp.LEN].4 := Get_Count.Path.Data[Position].4;

 Path_Temp.Data[Path_Temp.LEN].5 := Get_Count.Path.Data[Position].5;

 Path_Temp.Data[Path_Temp.LEN].6 := Get_Count.Path.Data[Position].6;

 Path_Temp.Data[Path_Temp.LEN].7 := Get_Count.Path.Data[Position].7;

 Path_Temp.LEN := Path_Temp.LEN + 1;

 // Copy Finished Path to Storage

 COP(Path_Temp, Unverified_Paths[Path_Index], 1);

 // Increment Path Index

 Path_Index := Path_Index + 1;

 // Goto Step 6

 Build_Path_Step := 6;

 6: // Increment Remote Index

60

 Remote_Mod_Index := Remote_Mod_Index + 1;

 IF Remote_Mod_Index<= 16 THEN

 // Goto Step 1

 Build_Path_Step := 1;

 ELSE

 // Goto Step 7

 Build_Path_Step := 7;

 END_IF;

 7: // Increment Local Index and Reset Remote Index

 Local_Mod_Index := Local_Mod_Index + 1;

 Remote_Mod_Index := 0;

 IF Local_Mod_Index<= 16 THEN

 // Goto Step 1

 Build_Path_Step := 1;

 ELSE

 // Goto Step 8

 Build_Path_Step := 8;

 END_IF;

 8: // Stop

END_CASE;

61

APPENDIX G.

DIRECT PATH VERIFY_PATHS ROUTINE

62

// Verify Paths Routine

// Verify Path State Machine

CASE Verify_Step OF

 0: // Set Path Indices to 0 and Check to Ensure Target has been Identified

 Path_Index := 0;

 V_Path_Index := 0;

 IF Target_Serial<> 0 THEN

 // Goto Step 1

 Verify_Step := 1;

 END_IF;

 1: // Copy Message Path and Send Message

 COP(Unverified_Paths[Path_Index], Verify_MSG.Path, 1);

 // Goto Step 2

 Verify_Step := 2;

 2: // Send Message

 MSG(Verify_MSG);

 // Goto Next Step if Message is Enabled

 IF Verify_MSG.EN THEN

 Verify_Step := 3;

 END_IF;

 3: // Wait for Message to Finish or Error

 IF Verify_MSG.DN THEN

 Verify_Step := 4;

 ELSIF Verify_MSG.ER THEN

63

 Verify_Step := 5;

 END_IF;

 4: // Compare Serial Numbers and Store Path if Good

 IF Verify_Serial = Target_Serial THEN

 COP(Unverified_Paths[Path_Index], Verified_Paths[V_Path_Index], 1);

 V_Path_Index := V_Path_Index + 1;

 END_IF;

 // Goto Step 5

 Verify_Step := 5;

 5: // Increment Path Index

 Path_Index := Path_Index + 1;

 IF (Path_Index<= 99) AND (Unverified_Paths[Path_Index].LEN > 0) THEN

 // Goto Step 1

 Verify_Step := 1;

 ELSE

 // Goto Step 6

 Verify_Step := 6;

 END_IF;

 6: // Stop

END_CASE;

64

APPENDIX H.

DIRECT PATH FAULT_HANDLING ROUTINE

65

66

BIBLIOGRAPHY

[1] M.R. Muller, et al., “Industrial Productivity Training Manual”, Annual IAC

Director’s Meeting, 1996, Rutgers, the State University of New Jersey

[2] K. T. Erickson, Programmable Logic Controllers: An Emphasis on Design and

Application, Missouri: Dogwood Valley Press LLC, 2005, pp. 1231-1238.

[3] “Obtaining a Logix Processors Firmware Level Using a CIP Generic Message,”

 Allen-Bradley Knowledge Base Document, no. 23386, October 2008.

[4] “How Read SN From The Module?,” Allen-Bradley Knowledge Base Document,

no. 52870, October 2008.

[5] “Obtaining CNB node number,”Allen-Bradley Knowledge Base Document, no.

25592, August 2009.

[6] “Accessing IP Information on the 1756-ENBT 1788ENBT Module via Ladder

Logic,” Allen-Bradley Knowledge Base Document, no. 26779, August 2009.

[7] “Brief Summary to Clarify Message MSG Instruction CIP Paths and Pathing,”

Allen-Bradley Knowledge Base Document, no. 22562, December 2008.

[8] C.A. Parrott, “Real-Time Reconfiguration of Programmable Logic Controller

Communication Paths,” M.S. Thesis, Dept. Elect. Comp. Eng., Missouri S&T,

Rolla, 2009.

67

VITA

 Richard Andrew Hardison was born April 13, 1978 in Ashland, Kentucky to

Richard L. and Pauletta A. Hardison. He joined the U.S. Army Reserves in 1996 as a

junior in high school and graduated the following year. In 2001 his reserve unit was

mobilized to Fort Leonard Wood Missouri as part of Operation Noble Eagle. After the

mobilization ended, Richard relocated to Missouri and worked for Briggs and Stratton.

In 2004 he was deployed to Iraq for a one year tour in Operation Iraqi Freedom. In

January of 2007 he transferred to The University of Missouri – Rolla then earned a

Bachelor of Science degree in Electrical Engineering in 2009. Upon completion of his

undergraduate work he continued on to graduate school, completing a Master of Science

degree in Electrical Engineering from Missouri University of Science and Technology in

2010.

68

	Dynamic networking for programmable logic controller communication
	Recommended Citation

	II

