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ABSTRACT 

In literature, leader – follower strategy has been used extensively for formation 

control of car-like mobile robots with the control law being derived from the kinematics.  

This work takes it a step further and nonlinear control laws are derived for formation 

control of car-like mobile robots using robot dynamics.  

Firstly, a traditional tracking and control design approach already available in 

literature is derived and discussed for a car-like mobile robot. It involves a decoupled 

design involving two separate algorithms, one for velocity control design and another for 

torque control design. Weak interactions among the algorithms and separate designs 

make the robot performance optimization and the formation stability difficult to achieve. 

So, a new tracking and control architecture wherein the conventional elements are 

replaced by a single component that performs all the functions and hence called the 

integrated tracking and control scheme is used.  

In a novel approach, the integrated tracking and control scheme is used to obtain a   

nonlinear control law for each follower in the formation. The controllers are obtained 

using Lyapunov analysis method and State Dependent Algebraic Riccati Equation 

(SDARE) based optimal control method. To bring robustness into the controller design, 

unknown quantities like friction, desired accelerations (unmeasured) are computed using 

an online neural network and the simulations are carried out in the presence of 

measurement noises. A robust optimal control design is made possible by using the extra 

control design approach using online neural networks. Simulation results prove the ability 

of the controllers to effectively stabilize the formation while maintaining the desired 

relative distance and bearing. 
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1.  INTRODUCTION 

1.1. MOTIVATION 
 

The use of dynamics coupled with kinematics for control of autonomous mobile 

robots has been gaining increasing popularity in recent years. The majority of control 

algorithms available in literature for autonomous mobile robots use only the kinematic 

model [1]. The kinematic model has its own advantages. It helps in keeping the steering 

and velocity of the vehicle completely decoupled but in the process, the dynamics of the 

vehicle is not taken into account and hence remains ignored. The velocity of the car-like 

robot is very dependant upon the dynamics of the steering system. Hence, in order to 

control the speed of the vehicle, the dynamics of the vehicle as well as dynamics of the 

steering must be taken into account.  

Automating car-like robot has many advantages which include operating in 

hazardous environments like mines, data collection and reconnaissance etc. These 

controllers can be put to use in autonomous armored vehicles (note not tanks) for 

patrolling the streets to detect improvised explosive devices (IED’s). In most of these 

scenarios the use of a team of robots is advantageous. Employing a team of mobile robots 

helps in increasing the efficiency with which the task is completed. In case of rescue and 

search operations, reconnaissance, detection of IED’s etc the use of a team helps in faster 

search of the entire search space and the operation can be carried out in a very systematic 

and effective way. It is extremely valuable in time critical operations. Hence the focus of 

research has shifted to the control of a swarm or team of mobile robots in the recent years 

instead of a single nonholonomic robot.  

 

1.2. PREVIOUS WORK  
 

There are many references available for control of single nonholonomic mobile 

robots [2]-[8]. The focus of this paper is on the formation control of a team of car-like 

mobile robots. There are various techniques available in literature for formation control 

of team of mobile robots. A few of the most commonly used techniques are: leader-



 

 

2

follower [9]-[13], virtual structure based [14] [15] and behavior based approaches [8] 

[16] [17].  

In the virtual structure approach the entire formation is considered as a single 

virtual rigid structure. A desired motion is assigned to the virtual structure as a whole, 

which will trace out trajectories for each robot in the formation to follow. The main 

disadvantage of the virtual structure implementation is centralization, which leads to a 

single point of failure for the whole system.  

In [14] Tan et al. developed a method for motion control of multiple robots using 

the idea that points in space maintaining fixed geometric relationships behave  identically 

to the points on a rigid body moving through space, hence using the concept of  

movement inside a virtual structure. Ogren et al. in [15] use control Lyapunov functions 

to define the formation and in addition use the idea of virtual vehicles to obtain the 

control for multi agent coordination.   

Behavior based approach prescribes several desired behaviors for each robot and 

the final action of each robot is derived by weighting the relative importance of each 

behavior. Limitation of this approach is that it is difficult to analyze mathematically, 

therefore it is hard to guarantee a precise formation control. In [16] [17] Balch et al. and 

Lawson et al. use the behavior based approach for formation control of multiple robots. 

The leader follower approach involves maintaining a desired relative distance and 

relative bearing between the leader and the follower. The follower robots need to position 

themselves relative to the leader and maintain a desired relative position which needs to 

be specified. When the motion of the leader is known, the desired positions of the 

followers relative to the leader can be achieved by local control law on each follower. 

In [1] Shao et al. use the concept of a virtual vehicle and the kinematics to derive 

the error system for control of multiple Pioneer 3DX vehicles. Li et al. [10] present a 

kinematics model for the leader following based formation control of tricycle mobile 

robots and a back stepping based stabilizing controller is derived under the conditions of 

perfect velocity tracking and no disturbances. Dierks et al. in [10] control a differentially 

steered robot by backstepping kinematics into dynamics. Desai et al. in [18] use the 

kinematic model and graph theory to design a controller for multiple mobile robot 

formations. 
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1.3. CONTRIBUTIONS OF THIS THESIS 
 

The autonomous mobile robot considered in this work is a front steer, rear drive 

car-like mobile robot. The focus of this work is on the formation control of a team of car-

like mobile robots. The most commonly used technique; the leader follower approach is 

used in this work. 

Unlike other papers, the dynamics of both the drive and the steering system are 

considered in this study. For the purpose of simulations a single leader single follower 

scenario is considered but the same can easily be extended to multiple follower scenarios 

and theoretical proofs are derived to justify the same. The separation-bearing ( ψ−l ) 

technique is made use of instead of the separation-separation strategy. The objective is to 

find a toque control input for the follower that will drive the relative distance and relative 

bearing between the leader and follower to the desired value. Two different schemes are 

considered; 

a) Traditional tracking and control design which uses a decoupled design 

involving two separate algorithms, one for velocity control design and 

another for torque control design. A lot has already been said about this 

method in literature. In this work, it has been adapted and simpler 

equations used for car-like mobile robots. Firstly, a velocity control input 

is designed for the ψ−l  formation control that will drive the relative 

distance and relative bearing between the leader and follower to the 

desired value. The dynamics of the leader and the follower are used to 

derive specific torque control inputs required to achieve the desired 

velocity profile derived earlier. Imperfect velocity tracking condition is 

considered. The asymptotic stability of the system is also guaranteed and it 

is proved that the position tracking errors and the velocity tracking errors 

go to zero asymptotically. Unknown quantities like friction, desired 

acceleration (unmeasured) are computed using an online neural network in 

the presence of measurement noises thereby making the controller robust. 

Simulation results prove the ability of the controller to effectively stabilize 

the formation while maintaining the desired relative distance and bearing. 
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Proofs are derived to guarantee formation stability in case of multiple 

robot formations with single leader and “n” followers. 

b) Control law for each follower is obtained using integrated tracking and 

control scheme [19]. Traditional tracking and control designs use a 

decoupled design involving two separate algorithms, one for velocity 

control design and another for torque control design. Weak interactions 

among the algorithms and separate designs make the robot performance 

optimization and the formation stability difficult to achieve. So a new 

tracking and control architecture wherein the conventional elements are 

replaced by a single component that performs all the functions and hence 

called the integrated tracking and control scheme is used. This results in 

achieving a level of synergism between robot control and tracking which 

is extremely difficult to achieve in a decoupled scheme.  

 Initially, a coupled framework is obtained wherein the follower 

error equations are combined with follower dynamics. Once the combined 

framework is obtained, the state space equations thus obtained are used to 

design torque control inputs for the follower drive system as well as the 

steering system so that the formation is maintained. The asymptotic 

stability of the system is also guaranteed. The control inputs are designed 

using an optimal control approach and Lyapunov analysis approach.  

In the Lyapunov approach unknown quantities like friction, desired 

acceleration (unmeasured) are computed using an online neural network. 

Simulation results prove the ability of the controller to effectively stabilize 

the formation while maintaining the desired relative distance and bearing. 

A state dependant algebraic Riccati equation (SDARE) method 

[20]-[25] is used to obtain the optimal control law for the follower to 

maintain the formation. An extra control is used to handle the unmodeled 

uncertainties of the system [26]. The extra control makes the controller 

robust to uncertainties due to modeling error or parameter variations. In 

the design of the extra control an online neural network is used for 

approximating the unknown quantities and model uncertainties. 
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Simulation results prove the ability of the controller to effectively stabilize 

the formation while maintaining the desired relative distance and bearing. 

Proofs are derived to guarantee formation stability in case of multiple 

robot formations with single leader and “n” followers 

 

1.4. ORGANIZATION  
 

In Section 2 the mathematical model of the car-like mobile robot is derived. Both 

the kinematic and dynamic model of the robot are derived in this section.  

Section 3 presents the details of the mobile robot base along with sensors and 

architecture of the mobile robot.  

In Section 4 the formation control problem is described, various formation 

schemes presented and the error dynamics to be used in the design of the controller is 

derived.  

The traditional tracking and control design using Lyapunov method is carried out, 

the simulation results are presented and discussed in Section 5.  

The error system formulation required to perform integrated tracking and control 

is derived in Section 6. 

Integrated tracking and control design using optimal control approach with the 

SDARE method is presented and the simulation results discussed in Section 7. 

 In Section 8 integrated tracking and robust optimal control of the car-like mobile 

robot formation is designed using online neural networks and SDARE approach. The 

simulation results are also presented and discussed. 

Section 9 presents robust integrated tracking and control design using Lyapunov 

function based approach. Also presented in this section are the simulation results for the 

same.  
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2. MATHEMATICAL MODEL 

This section discusses the mathematical model used for the vehicle. The 

kinematic and dynamic models of the vehicle are derived in two separate subsections. 

The controller for the car-like mobile robot is derived using the mathematical model 

discussed below. 

 

2.1. KINEMATIC MODEL  
 

The kinematic model of the system will be derived taking the nonholonomic 

constraints into account. Nonholonomic constraints for mobile robots are non-integrable 

and are related to its velocity. The robot considered in this work is a four wheeled, front-

steer, rear drive mobile robot. For very small angles of steering the robot can be modeled 

as a bicycle (Figure 2.1) . 

 

 

 

 
Figure 2.1 Bicycle Model 
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Consider Figure 2.1. Let ),( yx denote the center of gravity (G) of the robot. The 

distance from G to the rear and front wheels be a and b respectively. Let θ  denote the 

heading angle of the robot i.e. the orientation of the robot with respect to the axisx −  and 

φ  denotes the steering angle between the front wheel and the body axis. Let ),( 11 yx and 

),( 22 yx denote the position of the rear and front wheels. Then from Figure 2.1, ),( 11 yx  

and ),( 22 yx  are given by  

)sin(
)cos(

1

1

θ
θ

byy
bxx

−=
−=

   )sin(
)cos(

2

2

θ
θ

ayy
axx

+=
+=

                                                                            (1) 

On differentiation (1) becomes   

)cos(

)sin(

1

1

θθ

θθ
&&&

&&&

byy

bxx

−=

+=
             

)cos(

)sin(

2

2

θθ

θθ
&&&

&&&

ayy

axx

+=

−=
                                        (2)                         

The nonholonomic constraints for each wheel is given by 

0)cos()sin(
0)cos()sin(

22

11

=+−+
=−

φθφθ
θθ

yx
yx

&&

&&
                (3)                         

Substituting (2) in (3) the nonholonomic constraints for the robot are given by  

0)cos()cos()sin(

0)cos()sin(

=−+−+

=+−

θθφθφθ

θθθ
&&&

&&&

ayx

byx
                                                                       (4) 

Let uv and wv be the longitudinal and lateral velocities of the vehicle. Using the body 

coordinates of the vehicle i.e. along the u and w axis ,x y& &  can be written as  

)cos()sin(
)sin()cos(

θθ
θθ

wu

wu

vvy
vvx

+=
−=

&

&
                                                                                      (5) 

Substituting (5) in (4) and manipulating results in (9) 

0))(cos)cos()sin()(sin)sin()cos( 22 =+−−− θθθθθθθ &bvvvv wuwu                             (6)                         

( cos( ) sin( ))sin( ) ( sin( ) cos( )) cos( ) 0u w u wv v v v bθ θ θ θ θ θ θ− − + + =&                                (7) 

2 2sin ( ) cos ( ))w wv v bθ θ θ− − = − &                (8) 

θ&bvw =                                                                                                                              (9) 

Also substituting (5) in (4) results in 

0)cos()cos())cos()sin(()sin())sin()cos(( =−++−+− θθφθθθφθθθ &avvvv wuwu     (10) 
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Using (9) in (10) and expanding  

)cos()sin()sin()sin()sin()cos( φθθφθθφθθ +−+−+ uwu vvv  

                                                                       0)cos()cos()cos( =−+− θφθθ
b
vav w

w    (11) 

Further manipulation results in   

0)cos()cos()sin( =−− θφφ
b
v

avv w
wu                 (12) 

⎟
⎠
⎞

⎜
⎝
⎛ +=

b
avv wu 1)tan(φ                 (13) 

uw v
L

bv φtan
=                           (14) 

From  (9) and (14) the heading angle is represented by the differential equation given 

below 

uv
L
φθ tan

=&                                                                                                                      (15) 

Using (15) and substituting (14) in (5) the kinematic model of the robot given by  

tancos( ) sin( )

tansin( ) cos( )

tan

u u

u u

u

bv v
Lx

by v v
L

v
L

φθ θ

φθ θ
θ φ

⎡ ⎤−⎢ ⎥
⎡ ⎤ ⎢ ⎥
⎢ ⎥ ⎢ ⎥= +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦

⎢ ⎥
⎢ ⎥⎣ ⎦

&

&

&
             (16) 

    

2.2. DYNAMIC MODEL  
 

Before the dynamic equations are derived, a few assumptions need to be made. 

The assumptions made are: 

(i) There is no slip at the wheel,  

(ii) The rear wheels cannot be steered and are always in the same direction as the 

orientation of the vehicle,  

(iii) The drive force and drive torque are assumed to act at the center of the rear 

wheels [1] [2]. 
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The forces acting on the robot are as shown in Figure 2.2. dwu FFF ,, denote the 

frictional force, the force acting perpendicular to each wheel as a result of the slippage 

assumption made and the drive force, respectively. Also, Im, denote the mass of the 

vehicle and the moment of inertia of the vehicle. Balancing the forces acting along the 

u and w direction as shown in Figure 2.2 results in 

( ) cos sin cos sinu w uir uor dir dor uof wof uif wifm v v F F F F F F F Fθ φ φ φ φ− = − − + + − − − −&&       (17) 

( ) cos sinu w ur dr uf wfm v v F F F Fθ φ φ⇒ − = − + − −&&             (18) 

Similarly,  

( ) cos cos sin sinw u wir wor wof wif uif uofm v v F F F F F Fθ φ φ φ φ+ = + + + − −&&                       (19)   

( ) sin cosw u wr uf wfm v v F F Fθ φ φ⇒ + = − +&&                  (20)    

where wrworwir FFF =+ ; uruoruir FFF =+ ; wfwofwif FFF =+ ; ufuofuif FFF =+ and

drdordir FFF =+  

 

 

 

θ

Φ

(x,y) G

V

L

b

a

2t

Fuor

Fuir

Fwir
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Fdir
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Fuif

Fw
if

Fw
of

U directionw direction

 
Figure 2.2 Free Body Diagram 
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Also, from Figure 2.2  

[ ] ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

−+−+−+

−−+++−
=

φφ

φφ
θ

cos)()(sin)(

sin)(cos)()(

uofuifuoruirwofwif

uofuifwifwofworwir

FFFFFFt

FFaFFaFFb
I &&                                 (21) 

On manipulation (21) becomes 

cos ( )sin ( )sin ( )

( ) cos
wr wf uif uof wif wof uir uor

uif uof

bF a F F F t F F F F
I

t F F

φ φ φ
θ

φ

⎛ ⎞⎡ ⎤ ⎡ ⎤− + − − + − + −⎣ ⎦ ⎣ ⎦⎜ ⎟=
⎜ ⎟+ −⎝ ⎠

&&     (22)                         

So the dynamical equations of the system are given by(18), (20) and(22). Also steering 

system dynamics of the robot can be modeled by a first order linear system represented 

by the differential equation [2] 

1 ( )
s

uφ φ
τ

= −&                                (23) 

where us ,τ denote the time constant and steering control, respectively.  
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3. ROBOT PLATFORM, SENSING AND STATE MEASUREMENT 

The robot platform consists of a toy Hummer base as the mobile robot base and is 

shown in Figure 3.1, with the following specifications 

• One steering servo motor 

• One 12 VDC rear drive motor 

• Mass of the vehicle is 7 kgs  

• The dimensions of the base are  

a) width = 0.349250 m  

b) length = 0.790575 m 

• Drive wheel diameter is 0.28575 m, radius = 0.142875 m   

 

 

 

 

Figure 3.1 Car-like Mobile Robot 
 

 

 

The mobile robot base uses a PC104 486 DX2 running at 100 MHz with 32 MB RAM 

and a 256 MB USB flash drive as the primary processing unit (PPU). The PPU has 16 
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channels of 16-bit A/D, 4 12-bit D/A channels, 4 serial ports, 1 parallel port, 2 USB ports 

and 24 DIO lines. Torque control of the DC motors is achieved by using PWM. There is 

a motor controller mounted on the robot base to provide the servo and drive motors with 

the desired PWM signals. 

 A Cirronet radio-modem provides serial communication at 115.2 kbps using the 

RS-232 COM1 port of the PPU and the base station. 

 The mobile robot platform also includes the following sensors 

• Hewlett Packard wheel encoders HEDS-5500, 500 pulses/rev  

• Crossbow INS MNAV 100CA, a calibrated digital sensor system for miniature air 

and ground robotic navigation. It has the following sensors  

a) Inertial Sensor Array: This is an assembly of three accelerometers, 

three gyros (rate sensors) with temperature sensors. 

b) Three axis magneto-resistive magnetometers that can be used to 

compute heading. 

c) A GPS receiver for position and velocity measurement. 

d) Servo Driving Circuit: The integrated circuit that can support up to9 

servos. 

e) The R/C Receiver PPM interface that can be used to read the PPM 

signal from the R/C receiver. 

f) Data processing module, which receives the signals from all the 

sensors, GPS and PPM interface, and transmits digital data via the 

serial link, and outputs standard servo signals. 

Figure 3.2 shows the schematic of the mobile robot platform. From the schematic 

it can be seen that the measurements from the sensors are communicated to the PC104 

via the serial port. The data thus received by PC104 is filtered using a navigation filter 

and Kalman filter. The control inputs to drive the motors are obtained by using the 

filtered data and control algorithms.  

The robot platform described above for the implementation of the control 

algorithm has been built as a part of this work. Real time implementation of the control 

algorithms to be designed in the sections to come is still in progress.  
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Figure 3.2 Schematic of the Mobile Robot Platform 
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4. FORMATION CONTROL PROBLEM AND ERROR DYNAMICS 
FORMULATION 

There are various approaches available for formation control. The most common 

approaches used are the leader follower, virtual structure and behavior based approach. In 

the virtual structure approach the entire formation is considered as a single virtual rigid 

structure. A desired motion is assigned to the virtual structure as a whole, which will 

trace out trajectories for each robot in the formation to follow. The main disadvantage of 

the virtual structure implementation is centralization, which leads to a single point of 

failure for the whole system.  

In the leader follower approach, one of the robots is designated as the leader with 

the rest being followers. The follower robots need to position themselves relative to the 

leader and maintain a desired relative position with respect to the leader. In this 

formulation the leader’s motion and desired relative positions between the leader and the 

followers needs to be specified. When the motion of the leader is known, the desired 

positions of the followers relative to the leader can be achieved by local control law on 

each follower. 

Behavior based approach prescribes several desired behaviors for each robot and 

the final action of each robot is derived by weighting the relative importance of each 

behavior. Limitation of this approach is that it is difficult to analyze mathematically, 

therefore it is hard to guarantee a precise formation control. 

In this work, the formation control of the robot is achieved using the leader 

follower approach. The separation-bearing ( ψ−l ) technique is made use of instead of the 

separation-separation strategy.  

The objective is to find a toque control input for the follower that will drive the 

relative distance and relative bearing between the leader and follower to the desired 

value. It is assumed that the leader’s motion is known i.e. there exists a control law that 

drives the leader independently to its desired trajectory. Most formation control 

techniques for car-like robots in the literature involve the kinematics and do not 

incorporate the dynamics. This issue has been addressed in this work. Two different 

schemes are addressed:  
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 1) Traditional tracking and control design which uses a decoupled design 

involving two separate algorithms, one for velocity control design and another for torque 

control design.  

2) A new tracking and control architecture wherein the conventional elements are 

replaced by a single component that performs all the functions and hence called the 

integrated tracking and control scheme is used. This results in achieving a level of 

synergism between robot control and tracking which is extremely difficult to achieve in a 

decoupled scheme. In this scheme the dynamics is combined along with the error system 

designed for the formation and the torque control input is designed for the integrated 

system. 

In this section the problem of formation control is modeled as a tracking problem 

[11] and the goal is to drive the tracking errors to zero. In order to derive the error 

dynamics for modeling the problem of formation control as a tracking problem, consider 

the single leader single follower scenario as shown below in Figure 4.1. This can be 

easily extended to multiple robots in a formation scheme. The subscripts l and f denote 

the leader and follower respectively. The relative distance LFL is the distance between the 

rear of the leader (point B) to the front of the follower (point A) and the relative bearing 

angle LFψ  is the defined as the angle measured from the leader (i.e. the direction of 

orientation of the leader) to the straight line joining the points A and B. Consider the 

point A and B in Figure 4.1. They can be written as ))]sin(()),cos([( FFFF dydx θθ ++  

and ))]sin(()),cos([( LLLL dydx θθ −−  where ),( FF yx and ),( LL yx indicate the position 

of the center of mass of the follower and leader respectively. It is assumed that the 

2/Ldba === (refer Figure 2.2 and Figure 4.1), where L is the length of the vehicle 

and d  indicates the distance between the center of mass and the rear and front of the 

robot. 

The relative distance LFL can be expressed in terms of the x  and y  coordinates of 

LFL  as 
222

LFyLFxLF LLL +=                                 (24)                         

where  

))cos()(cos( FLFLLFx dxxL θθ +−−=                                                            (25)                         
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))sin()(sin( FLFLLFy dyyL θθ +−−=                                                                  (26)  

Also from Figure 4.1, it can be seen that the relative bearing can be expressed in terms of 

the leader’s heading angle and the x  and y  coordinates of the relative distance as 

πθψ +−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
= L

LFx

LFy
LF L

L
arctan                                        (27) 

 

 

                                    

 
Figure 4.1 Formation Structure 

 

 

 

 

Differentiation of equations (25) and (26) yields  

)sin()sin( FFLLFLLFx ddxxL θθθθ &&&&& ++−=                                                                    (28)  

)cos()cos( FFLLFLLFy ddyyL θθθθ &&&&& −−−=                                                                  (29)     
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The kinematics of the leader and follower from (16) are given by the following equations 

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+
−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

L

LLLL

LLLL

L

L

L

dv
dv

y
x

ω
θωθ
θωθ

θ
)cos()sin(
)sin()cos(

&

&

&

                                                                                (30)     

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
+
−

=
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

F

FFFF

FFFF

F

F

F

dv
dv

y
x

ω
θωθ
θωθ

θ
)cos()sin(
)sin()cos(

&

&

&

                                                                                  (31) 

where 
L

vw LL
L

)tan(φ
=  and 

L
vw FF

F
)tan(φ

=  

Substituting (30) and (31) in (28) and (29) , taking dL 2=   

)sin()tan()cos()cos( FFFFFLLLFx vvvL θφθθ +−=&                                                         (32) 

)cos()tan()sin()sin( FFFFFLLLFy vvvL θφθθ −−=&                                                         (33) 

Differentiation of (24) gives  

LFy
LF

LFy
LFx

LF

LFx
LF L

L
L

L
L
L

L &&& +=                                                                                             (34) 

From Figure 4.1 it can be seen that  

cos( )LFx
LF L

LF

L
L

ψ θ π= + −                                                                                                 (35)     

sin( )LFy
LF L

LF

L
L

ψ θ π= + −                   (36)                         

Substituting(32), (33), (35) and (36) in (34) results in   

cos( )cos( ) cos( )cos( ) sin( )sin( )
sin( )sin( ) tan( )sin( ) cos( )
tan( ) cos( )sin( )

L LF L L F F LF L L L LF L

LF F F LF L F F F LF L

F F F LF L

v v v
L v v

v

ψ θ θ θ ψ θ θ ψ θ
θ ψ θ φ θ ψ θ
φ θ ψ θ

− + + + − +⎛ ⎞
⎜ ⎟= + + − +⎜ ⎟
⎜ ⎟+ +⎝ ⎠

& (37)   

Define FLLFF θθψγ −+=                                                                                              (38)   

Consider the trigonometric identities 

cos( ) cos( ) cos( ) sin( )sin( )C D C D C D− = +            (39)             

sin( ) sin( )cos( ) cos( )sin( )C D C D C D− = −             (40)                         

Using (38) through (40) in (37) LFL&  is given by  

cos( ) tan( )sin( ) cos( )LF L LF F F F F FL v v vψ φ γ γ= − + +&                                                       (41)                         
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Differentiation of (27) yields    

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−−= LLF

LF

LFxLFy

LF

LFyLFx

LF
LF L

L
LL

L
LL

L
θψ &

&&
&

1                                                                     (42)                         

Substituting(30), (32) and (33) in (42) results in   

sin( ) cos( ) sin( ) cos( ) cos( )sin( )
1 tan( ) cos( )cos( ) cos( )sin( )

tan( )sin( )sin( )

L L LF L F F LF L L L LF L

LF F F F LF L LF L F F LF L
LF

F F F LF L

v v v

v L v
L

v

θ ψ θ θ ψ θ θ ψ θ

ψ φ θ ψ θ θ θ ψ θ
φ θ ψ θ

− + + + + +⎛ ⎞
⎜ ⎟

= + + − − +⎜ ⎟
⎜ ⎟+ +⎝ ⎠

&&   (43) 

Using (38) through (40) in (43) LFψ&  becomes 

( ) ( )1 1sin( ) tan( )cos( ) sin( )LF L LF F F F F F LF L
LF LF

v v v L
L L

ψ ψ φ γ γ θ= + + − − &&                       (44) 

Substituting (30) in (44),  the simplified expression of LFψ&  is given by,  

( ) ( ) tan( )1 1sin( ) sin( ) tan( ) cos( ) L L
LF L LF F F F F F

LF LF

vv v v
L L L

φψ ψ γ φ γ= − + −&                  (45)                 

Also from the Figure 4.1 it can be seen that the actual and desired coordinates of 

point A can be written in terms of in terms of coordinates of point B, the actual relative 

distance LFL , the desired relative distance LFDL , the actual relative bearing LFψ and the 

desired relative bearing LFDψ  as given below:     

cos( ) cos( ) cos( )FD L L LFD LFD L FDx x d L dθ ψ θ θ= − + + −                                                   (46) 

Similarly, FDy  can be written as 

sin( ) sin( ) sin( )FD L L LFD LFD L FDy y d L dθ ψ θ θ= − + + −                    (47)                         

LFD θθ =                                                                          (48) 

The actual coordinates of the follower can be arrived at in the same way and are given by  

cos( ) cos( ) cos( )F L L LF LF L Fx x d L dθ ψ θ θ= − + + −                                             (49)                        

sin( ) sin( ) sin( )F L L LF LF L Fy y d L dθ ψ θ θ= − + + −                                                       (50) 

Let the error system be defined as given below 

1

2

3

FD F

FD F

L F

e x x
e y y
e θ θ

−⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= −⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

                                                                                                            (51) 
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Using equations (46) through (50) in (51) the error system can be expressed as 

1

2

3

[ cos( ) cos( ) cos( ) cos( )]
[ sin( ) sin( ) sin( ) sin( )]

[ ]

LFD LFD L FD LF LF L F

LFD LFD L FD LF LF L F

L F

e L d L d
e L d L d
e

ψ θ θ ψ θ θ
ψ θ θ ψ θ θ

θ θ

+ − − + +⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= + − − + +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

              (52)            

The equation (52) gives the expression for the error system in inertial coordinates. For 

better intuitive sense they are transformed to body coordinates as shown below: 

1

2

3

[ cos( ) cos( ) cos( ) cos( )]
[ sin( ) sin( ) sin( ) sin( )]

[ ]

F LFD LFD L FD LF LF L F

F R LFD LFD L FD LF LF L F

F L F

e L d L d
e T L d L d
e

ψ θ θ ψ θ θ
ψ θ θ ψ θ θ

θ θ

+ − − + +⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥= + − − + +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥−⎣ ⎦ ⎣ ⎦

             (53) 

with 
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
−=

100
0)cos()sin(
0)sin()cos(

FF

FF

RT θθ
θθ

.      

Simplifying equation (53) the expression for the errors in body coordinates is as follows, 

3 3 31

2 3 3 3

3

[ cos( ) cos( ) cos( ) ]
[ sin( ) sin( ) sin( )]
[ ]

LFD LFD F LF LF F FF

F LFD LFD F LF LF F F

F L F

L e L e d e de
e L e L e d e
e

ψ ψ
ψ ψ

θ θ

+ − + − +⎡ ⎤⎡ ⎤
⎢ ⎥⎢ ⎥ = + − + −⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦

                                   (54) 

Differentiating the expression for 3Fe  from(54), the expression for evolution of 3Fe  over 

time is obtained as given below, 

L
v

L
v

e FFLL
F

)tan()tan(
3

φφ
−=&                                                                                            (55) 

Similarly, differentiating 1Fe from (54) and substituting(41), (45) and (55), 1Fe&   can be 

expressed  as  

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

−+

−+−

−+−

+−+

+
+

+−

=

L
vL

v

vvv

vv
L

edv
L

edv
L
Lv

L
Lv

L
eLv

L
eLv

e

FLLLF
FFFF

FFFFLFLFFFF

FFFFLFL
FFF

FLLFLFFFFLFLL

FLFDLFDFFFLFDLFDLL

F

)sin()tan(
)sin()cos()tan(

)sin()sin()sin()sin()cos()sin()tan(

)cos()cos()cos()cos(
)sin()tan(

)sin()tan()sin()tan()sin()tan(

)sin()tan()sin()tan(

3

3

33

1

γφ
γγφ

γγγψγγφ

γγγψ
φ

φγφγφ

ψφψφ

&                  (56) 
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On simplification (56)  becomes 

[ ] 2231 )sin()cos( FFFFLFLFFLF eweLwveve +−−+−= γ&                                                     (57)                         

Similarly, differentiating 2Fe from (54) and substituting(41), (45) and (55) , the 

expression for 2Fe& is obtained as given below  

⎟⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

+−

+−−

+−+

−+−

+
−

+

=

L
edv

L
edv

L
vL

vv

vvv

v
L
Lv

L
Lv

L
eLv

L
eLv

e

FFFFLL

FLLLF
FFFFFFFF

FFFFFFFLFL

FLFL
FLFFFFLFLL

FLFDLFDFFFLFDLFDLL

F

)cos()tan()cos()tan(

)cos()tan(
)cos()cos()tan()sin()sin()tan(

)cos()sin()cos()sin()sin()cos(

)cos()sin(
)cos()tan()cos()tan(

)cos()tan()cos()tan(

33

33

2

φφ

γφ
γγφγγφ

γγγγγψ

γψ
γφγφ

ψφψφ

&  (58) 

Simplifying(58), 2Fe&  can be written as  

[ ] [ ]2 3 1 1sin( ) cos( )F L F F L F F F L LF Fe v e Lw w e d w e d w L γ= − + − − − +&                                       (59) 

Therefore, the error system is given by equation (60) as given below  

[ ]
[ ] [ ]

1 3 2 2

2 3 1 1

3

cos( ) sin( )
sin( ) cos( )

F L F F L LF F F F F

F L F F L F L LF F F F

F L F

e v e v w L e w e
e v e Lw w e d w L w e d
e w w

γ
γ

⎡ ⎤− + − − +⎡ ⎤
⎢ ⎥⎢ ⎥ = − + − + − −⎢ ⎥⎢ ⎥
⎢ ⎥⎢ ⎥ −⎣ ⎦ ⎣ ⎦

&

&

&
                               (60) 
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5. TRADITIONAL TRACKING AND CONTROL DESIGN USING LYAPUNOV 
FUNCTION BASED APPROACH  

Objective is to find a velocity control input using kinematics that will drive the 

relative distance and relative bearing angle between the leader and follower to the desired 

value to keep the formation. The dynamics of the leader and the follower are used to 

derive specific torque control inputs required to achieve the desired velocity profile 

derived using kinematics. The controller design follows a Lyapunov function based 

approach.  

 

5.1. CONTROLLER DESIGN  
 

To stabilize the kinematic system the velocity control inputs for the follower robot 

can be designed using Lyapunov analysis. The velocity control inputs thus chosen will 

help in maintaining the desired relative bearing and distance. Let the Lyapunov candidate 

function be chosen as  

))cos(1(
2 33

2
22

2
11

F
FF eK

eKeK
V −+

+
=               (61)   

On differentiation of (61) V&  can be expressed as given below, 

333222111 )sin( FFFFFF eeKeeKeeKV &&&& ++=                             (62)  

Substituting (60) in (62) and expanding, V&  can be expressed as  

⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−++−
+−+−+

+−−−
=

FFLFFFFFF

FLFLFLFFLFFFFLF

FFFFLFFLFLFFFFLF

weKweKdweKeweK
LweKdweKeweKLweKeveK

eweKeweKLweKveKeveK
V

)sin()sin(
)cos()sin(

)sin()cos(

333322122

222212222322

2112111111311

γ
γ

&   (63) 

Let  

KKK == 21                                                                                                                    (64) 

Then  (63) becomes  

[ ]⎟⎟⎠
⎞

⎜⎜
⎝

⎛
−−+−++

+−−
=

)sin()sin()cos(
)sin()sin()cos(

33211332

322131

FFFFFLFFLFLF

FLFLFFLFLFFLF

eKKdewveKweKLwKe
evKedwKeLwKeevKe

V
γ

γ&          (65) 

Choosing one of the velocity control inputs Fv , the linear velocity of the follower as  

)sin()cos( 31 FLFLFLFvFF LweveKv γ−+=                                                                        (66) 



 

 

22

Substituting (66) in (65) , V&  can be written as 

[ ] ⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜

⎝

⎛

−−+

+⎥⎦

⎤
⎢⎣

⎡ −−−−
=

)sin(

)sin(
)cos()sin(

332

33
3

2
2

1

FFF

LF
FLFLFL

LFFvF

eKKdew

weK
d

Lw
d

ev
wdKeeKK

V
γ

&                 (67) 

Now choosing the second velocity control input Fw , the angular velocity of the follower 

as 

⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

+

+++
+

++
+

+−

=

32

2
233

3

23

2

)cos()sin()(

KeKd

eKk
d

eKK
d

LwK
wK

d
eK

d
Lw

d
evk

w

w

F

FV
FwFLFL

L

FwFFLFLFLv
L

F

γ

                                       (68) 

and substituting (68) in (67) , V&  can be written as 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎦

⎤
⎢
⎣

⎡
+++

+
+

−

−−−

+
+

−−−

=

2
233

3
32

332

32
23333

33
3

2
32

2
2

1

2
)sin(

)sin(
)sin()cos()sin(

)sin(2
)(sin)(

FV
FwFLFL

L
F

FF

FFV
FFwFFLFLF

FL
FLV

FwFFvF

eKk
d

eKK
d

LwK
wK

KeKd
eKKde

eeKk
d

eeKK
d

LweK

ewK
d

evkK
eKKeKK

V
γ&                       (69) 

Converting the equality in (69) to an inequality results in (70) as given below 

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎥
⎦

⎤
⎢
⎣

⎡
+++

+

+
−+

+++
+

−−−

<

2
233

3
32

3223

2
3

3
3

2
32

2
2

1

2

2
)(sin)(

FV
FwFLFL

L
F

FFwF

FV
LFL

L
FLV

FwFFvF

eKk
d

eKK
d

LwK
wK

KeKd
KeKd

d
eKK

eKk
d

LwK
wK

d
evkK

eKKeKK
V&     (70) 

Therefore, from (70) it can be inferred that 
2

2 2 3 3
1 2

( )sin ( )V L F
vF F wF F

K k v eV KK e KK e
d

+
< − − −&

              (71) 

Since 0≥Lv , with KKK == 21  and 3, , , , 0vF wF VK K K K k > , 0<V& . Therefore the velocity 

control in (66) and (68) provides asymptotic stability to the error system in (60) i.e. 

0→Fe as ∞→t .      

In order to track the velocity and the angular velocity derived using Lyapunov 

analysis, the follower robot dynamics needs to be considered. The torque control inputs 
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for the drive and steering system which will produce the desired velocity profile need to 

be obtained. Define a velocity tracking error given by  

FFDFD ZZe −=                                              (72) 

where  

⎥
⎦

⎤
⎢
⎣

⎡
=

FD

FD
FD

v
φ

Z  and ⎥
⎦

⎤
⎢
⎣

⎡
=

F

F
F

v
φ

Z  .                                                                                       (73) 

where   

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=

FD

FD
FD v

Lw
a tanφ                         (74) 

In (73) FDv  and FDφ  are the desired linear velocity and steering angle profiles 

derived from the Lyapunov analysis while Fv  and Fφ denote the actual linear velocity and 

steering angle of the follower. Substituting (16) and drF rF=τ  (where rF ,τ denote the 

drive torque and wheel radius of the follower) in(18), taking Fu vv = , Fv&  can be expressed 

as 

rmm
F

L
bv

m
F

m
F

v FurFFFwfFuf
F

τφφφ
+−+−−= 2

22 tansincos
&                                    (75)                        

And the steering dynamics is given by(23). 

From (75) and (23), the combined dynamics of the system can be represented as  

Τ+−−= EBAZZ FF
&                          (76) 

where  
2

11 122

21 22

tan ; 0

10;

F F

s

dv
L

φ

τ

−
= =

= =

A A

A A
                                                                                       (77)                         

11 21
cos sin ; 0ur uF F w FF F F

m m m
φ φ

= + + + =B B              (78)                        

1 0

10
s

rm

τ

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥⎣ ⎦

E      and           ⎥
⎦

⎤
⎢
⎣

⎡
=Τ

u
Fτ                                                                            (79) 
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Adding and subtracting FDFD AZZ ,&  in (76) and simplifying, the expression for FDe&  is 

given by  

FD FD FD FD= − + + + − Τe Ae AZ Z B E&&                                                                               (80)                 

Define 

BZAZxf ++= FDFDFnew
&)(                                       (81) 

Note that ( )Fnewf x  involves friction terms and desired acceleration terms that cannot be 

computed in a real life accurately. Hence, online neural network will be used to 

estimate ( )Fnewf x .The error dynamics can now be written as 

Τ−+−= ExfAee )( FnewFDFD&                                                                                          (82) 

where [ ]1 2 3, , , , , ,Fnew F F F FD FD LF Fe e e v Lφ γ=x  

A torque control given by (83) is designed.  

[ ])(1
1

FnewFD xfeKE +=Τ −                   (83) 

Substituting (83) in (82)  results in  

1( )FD FD= − +e A K e&                                        (84) 

An appropriate choice of 1K will result in the system in (84) being asymptotically 

stable and the velocity tracking error will go to zero. Now consider a new Lyapunov 

candidate function obtained by appending the one in (61)  

1
2

T
new OLD FD FDV V= + e e                       (85) 

Differentiation of (85) results in  
T

new OLD FD FDV V= + e e& & &                       (86) 

Substituting (84) in(86), newV&  becomes 

1( )T
new OLD FD FDV V= − +e A K e& &                                          (87) 

From earlier derivation and proof it is known that 0<oldV& , so to make 0<newV&  the 

following choice of  1K  is made, 
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2

1 2

1

4

tan 0

10

F F

s

dvk
L

k

φ

τ

⎡ ⎤
+⎢ ⎥

⎢ ⎥=
⎢ ⎥− +⎢ ⎥⎣ ⎦

K                                                                                  (88) 

where 04,1 >kk  

Substituting (88) in (87), newV&  becomes 

1 2

2 2
1 4 0

F D F Dn ew O L DV V e k e k= − − <& &                                                           (89) 

From (89) it can be inferred that the tracking error system in (82) and the error system 

given by (60) are asymptotically stable. Since the function )( Fnewxf  is approximated by a 

neural network a weight update rule is needed for the neural network. In the section 

below a weight update rule is derived and the bounded-ness of weights is guaranteed. To 

guarantee the robustness of the controller, measurement noise is added to the inputs given 

to the neural network. 

 

5.2. WEIGHT UPDATE RULE AND PROOF OF BOUNDED-NESS OF       
WEIGHTS  

 

  A single layer functional link neural network (FLNN) is used for the 

approximation of )( Fnewxf [27]. The activation function )( Fnewxφ can be chosen as a basis 

set for the universal approximation property to hold for single layer FLNN [20]. Then 

there exists a weight W such that εφ += )()( Fnew
T

Fnew W xxf  with the estimation error ε  

bounded. The bound is given by Nε ε< . The ideal approximating weights are unknown 

and nonunique. So an assumption is made that BF
W W<  with the bound BW known. The 

Forbenius norm is denoted by
F

. Then an estimate of  )( Fnewxf  is given by  

)(ˆ)(ˆ
Fnew

T
Fnew W xxf φ=                (90) 

with Ŵ being neural network weights. Since the function )( Fnewxf  is approximated by a 

neural network, the expression for torque is given by   
1

1
ˆ( )FD Fnew

− ⎡ ⎤Τ = +⎣ ⎦E K e f x                                                                  (91) 
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where )(ˆ
Fnewxf is the estimate of )( Fnewxf . Define )(~

Fnewxf  as  

)(ˆ)()(~
FnewFnewFnew xfxfxf −=                                  (92) 

An online weight update rule is now developed to guarantee stable tracking and 

yet guarantee bounded-ness of weights. The weight estimation error is defined as 

WWW ˆ~ −=                 (93) 

Now substituting (91)in (82) and using(92), FDe&  can be expressed as 

)(~)( 1 FnewFDFD xfeKAe ++−=&                                                                                       (94) 

Using (93) and  (90) , (94) becomes    

)(~)( 1 Fnew
T

FDFD W xeKAe φ++−=&                                                 (95) 

Choose a Lyapunov candidate function as given below 

{ }11 1
2 2

T T
W OLD FD FDV V tr W F W−= + +e e % %                                                                            (96) 

where F  is a user defined tuning matrix and OLDV is given by (61). 

Differentiating (96) and substituting (95) WV&  becomes 

{ }1
1( ) ( )T T T

W OLD FD FD FDV V tr W F W φ−= − + + +e A K e e&& & % %                                                        (97) 

Selecting the weight tuning law as  

WkFFW FD
T
FD

ˆˆ ee −= φ&                 (98) 

It can be shown that  

( )1 min( ) ( )OLD FD FD BF F
V V k W W W≤ − + + −e A K e& & % %                                                   (99) 

where min(.) denotes the minimum singular value. 

The term given by  

( ) FD
BB

FBFFFD
kWWWkWWWk eKAeKA min1

22

min1 42
~)~(~)( ++−⎟

⎠
⎞

⎜
⎝
⎛ −=−++ (100) 

is guaranteed positive as long as  

( )
2 2

1 min
4 2 4FD

B B B
FD e WF

kW W kWb or W b≥ ≡ > + ≡
+

e
A K

%                                                       (101) 
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So, WV& is negative outside a compact set. Let the NN function approximation 

property hold for )( Fnewxf with an accuracy of Nε for all Fnewx  in the compact set 

{ | }
FnewFnew Fnew Fnew xS x x b≡ < with 

Fnewx FBb Z> where FBZ  is the bound on the desired 

trajectory FDZ . 

Define 0 1{ | ( ) /( )}
FD Fnewe FD FD x FBS e e b Z c c≡ < − +            (102) 

Now selecting the gain 

 ( )

2

0 1

1 min

( )
4

( )
Fnew

B

x FB

kW c c

b Z

+
+ >

−
A K                (103) 

ensures that the compact set defined by 
FDFD ee b< is contained in

FDeS . This guarantees 

that the error FDe and the NN weight estimates Ŵ are uniformly ultimately bounded 

(UUB) [27] with bounds given by (101).  

 

5.3. FORMATION STABILITY  
 

Consider a formation of 1N +  robots consisting of a leader “ il ” and N followers. 

Let there be a smooth velocity control input [ ]TL Lv w for the leader and let the torque 

control inputs [ ]TL Luτ be applied to the leader such that the leader tracks a virtual 

reference robot. The velocity and torque control inputs for the leader can be derived in a 

similar way as the velocity and torque control inputs for the follower. It is assumed that 

the leader’s motion is known i.e. there exists a control law that drives the leader 

independently to its desired trajectory. The smooth velocity control inputs [ ]TFi Fiv w for 

the thi follower are given by (66), (68) and torque control inputs by (91). Then the origin 

given by 
1 2 3 1 2 3

TT T T T T
l l l vl l F i F i F i vFi FiE e e e e e e e e e eφ φ⎡ ⎤= ⎣ ⎦ where (5( 1)) 1N XE +∈ , 

which represents the augmented position , orientation and velocity tracking error systems 

for the leader “ il ” and N followers, respectively, is asymptotically stable in the presence 

of uncertainties and noise is proved below.  
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Consider the following Lyapunov candidate function 

1
1

N

Formation Wi lV V V= +∑                             (104) 

where  WiV is given by (96) and  

1 1 2 3

2 2 2 2 2
l l l l vl lV e e e e eφ= + + + +                                                                                              (105) 

From (105) and (96) it can be seen that (104) is positive 

for
1 2 3 1 2 3 0

TT T T T T
l l l vl l F i F i F i vFi FiE e e e e e e e e e eφ φ⎡ ⎤= ≠⎣ ⎦ . Differentiating  (104) 

yields  

1
1

N

Formation Wi lV V V= +∑& & &                   (106) 

In the previous subsection it has been proved that WiV for all 1i toN=  individually is 

negative outside a compact set and that the error FDe and the NN weight estimates Ŵ are 

uniformly ultimately bounded (UUB). Hence, when 0WiV <&  for all 1i toN= , so it 

automatically follows that 
1

0
N

WiV <∑ & . Also, the torque control and velocity control inputs 

are designed such that the errors go to zero asymptotically and hence, 
1l

V& is negative. 

Therefore, 0FormationV <& , and the entire formation is asymptotically stable. 

 

5.4. RESULTS AND DISCUSSION  
 

A single leader single follower scenario is considered and the simulations are 

carried out using MATLAB for the same.  The leader executes a circular trajectory with 

radius = 60 m, linear velocity of 5 m/sec and an angular velocity ~ 0.08 rad/sec. It is 

desired for the follower to execute a circle of radius = 56 m being parallel to the leader at 

all times. So the desired relative distance to be maintained is 4.0774 m and a relative 

bearing angle of 78.8199 degrees. The gains used during simulation 

are .128VFk = , 01.03 =K , 0.0001Vk = , 180K = . The constants 5.0=k  and 

)20(*30 eyeF = are used in the NN weight update rule where )20(eye denotes 

a 20 20X identity matrix. The NN has 20 hidden layer neurons. Measurement noise is 
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added in the form Gaussian noise with zero mean. The noise added is one percent of the 

states that are inputs to the neural network. Also the simulations were carried out with 

different time constants for the steering dynamics and increased friction parameters. The 

plots shown below are the ones obtained for a time constant of 0.25 and increased friction 

parameters of 10, 20, 30uR uF WF F F= = = . 

From Figure 5.1, it can be seen that the follower achieves the desired position and 

orientation, with the position and orientation errors going to zero asymptotically as 

shown in Figure 5.2. In Figure 5.2 1Fe , 2Fe  denote the position errors in the u and w 

direction respectively (refer Figure 2.1) and 3Fe  denotes the error in the orientation of the 

follower. The torque control inputs to the drive and steering system are as shown in 

Figure 5.3 and Figure 5.4.  This torque control input achieves the velocity profile in (66) 

and (68)  resulting in the leader and follower trajectories as shown in Figure 5.5. It can be 

seen that the leader tracks a circle of 60 m radius and the follower is parallel to the leader 

at all times tracking a circle of radius 56 m. The velocity profile of the follower is shown 

in Figure 5.6 and Figure 5.7.   

From Figure 5.8 it can be inferred that the velocity tracking errors defined by the 

error system described by (82) also go to zero asymptotically. From Figure 5.9 it can bee 

seen that the neural network is able to approximate )( Fnewxf accurately. It is compared with 

the actual value of )( Fnewxf which is available to us during simulation runs and not during 

real-time implementation. Figure 5.10 shows the relative distance and bearing angle 

maintained by the follower and it confirms with the desired relative distance and bearing 

angle calculated. 

In this section simplified dynamic equations are used to obtain the torque control 

inputs for the drive and steering system of a car-like follower mobile robot to maintain a 

desired relative distance and bearing angle between the leader and the follower. Imperfect 

velocity tracking and uncertainties in the friction forces and the steering system modeling 

is taken into account.  
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Figure 5.1 Actual and Desired Position and Orientation of the Follower 
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Figure 5.2 Position and Orientation Errors in Body Coordinates 
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Figure 5.3 Drive and Steering Torques 
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Figure 5.4 Magnified Plot of Drive and Steering Torques 

 
 
 
 



 

 

34

-60 -40 -20 0 20 40 60
-60

-40

-20

0

20

40

60
xl vs yl, xf vs yf

X in meters

Y
 in

 m
et

er
s

 

 

leader
follower

 
 

Figure 5.5 Leader and Follower Trajectories  
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Figure 5.6 Linear and Angular Velocity Profile of the Follower 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 

 

36

0 10 20 30 40 50 60 70 80
0

1

2

3

4

5

6
velocity profile of the follower

Time in secs

V
f i

n 
m

/s
ec

10 15 20 25 30 35 40

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

angular velocity profile of the follower

Time in secs

W
f i

n 
ra

d/
se

c

 
Figure 5.7 Magnified Plot of Linear and Angular Velocity Profile of the Follower 
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Figure 5.8 Velocity and Steering Angle Error Plots 
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Figure 5.9 Neural Network Outputs in Comparison with Actual Outputs 
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Figure 5.10 Relative Distance and Relative Bearing of the Follower w.r.t. Leader 
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6. ERROR SYSTEM FORMULATION FOR INTEGRATED TRACKING AND 
CONTROL  

Control law for each follower is obtained using integrated tracking and control 

scheme [19]. Traditional tracking and control designs use a decoupled design involving 

two separate algorithms, one for velocity control design and another for torque control 

design. Weak interactions among the algorithms and separate designs make the robot 

performance optimization and the formation stability difficult to achieve. So a new 

tracking and control architecture wherein the conventional elements are replaced by a 

single component that performs all the functions and hence called the integrated tracking 

and control scheme is used. This results in achieving a level of synergism between robot 

control and tracking which is extremely difficult to achieve in a decoupled scheme.  

The error formulation (60) obtained from the kinematic model is combined with 

the error formulation to be obtained from the dynamics of the robot to arrive at a 

combined error formulation for integrated tracking and control [19]. Once the combined 

framework is obtained, the state space equations thus obtained will be used to design 

torque control inputs for the follower drive system as well as the steering system so that 

the formation is maintained. From (75) the drive system dynamics is given by 
2 2

2

cos sin tanuf F wf F urF F F
F

F F Fbvv
m m L m rm

φ φ φ τ
= − − + − +&                                                  (107)                  

Define the errors for linear velocity and steering angle as given below 

vF FD F

F FD F

e v v
eφ φ φ

−⎡ ⎤ ⎡ ⎤
=⎢ ⎥ ⎢ ⎥−⎣ ⎦⎣ ⎦

                                                                                                         (108) 

Substituting (108) in (107) , vFe&  can be expressed as 

2 2 22 2

1 2 2 2

2 tan ( ) tan( ) tan FD vF F vF FFD F F
vF

Dv e D eD ve F
L L L rm

φ φφ τ
= − + − −&                          (109) 

Also from (23), the steering dynamics can be expressed as 

2
FFD

F
S S S

e ue F φ
φ

φ
τ τ τ

= + − −&                                                                                               (110) 

where  

1
cos sinuR uF F w F

FD
F F FF v
m m m

φ φ
= + + + &                                                                           (111) 
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2 FDF φ= &                                                                                                                          (112) 

Therefore the combined error formulation is given by  

[ ]
[ ] [ ]

3 2 2

1 3 1 1

2

2 2 22 2
3

1 2 2 2

2

cos( ) sin( )
sin( ) cos( )

2 tan ( ) tan( ) tan

L F F L LF F F F F

F L F F L F L LF F F F

F L F

F FD vF F vF FFD F F

vF

FF FD

S S S

v e v w L e w e
e v e Lw w e d w L w e d
e w w
e Dv e D eD vFe L L L rm

ee uF φφ

γ
γ

φ φφ τ

φ
τ τ τ

⎡ − + − − +
⎢⎡ ⎤ − + − + − −⎢⎢ ⎥

−⎢ ⎥
⎢ ⎥ =
⎢ ⎥ − + − −
⎢ ⎥
⎢ ⎥⎣ ⎦ + − −

⎣

&

&

&

&

&

⎤
⎥
⎥

⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥⎦

                          (113) 

with  1F  and 2F  given by (111) and (112). 
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7. INTGERATED TRACKING AND OPTIMAL CONTROL DESIGN: 
APPLICATION OF SDARE   

7.1. OPTIMAL CONTROL PROBLEM AND SDARE APPROACH 
 

The common objective in many technical fields is to design control logic that 

commands a dynamic system to produce a desired output and augments the system 

stability. When the control objective is expressed as a quantitative criterion, then 

optimization of this criterion results in a set of equations to be solved to obtain the 

controller. Optimal control theory governs strategies for maximizing a performance 

measure or minimizing a quantitative criterion as the states of the dynamic system 

evolve. The fundamentals of optimal control of continuous-time dynamic linear and non-

linear systems are discussed below.   

The process of design of optimal control for linear systems which have quadratic 

performance indices is called the linear quadratic (LQ) problem. The theory for optimal 

control of linear systems using linear quadratic regulator (LQR) can be found in [29]. 

Consider a non-linear dynamic system, affine in control given by  

( ) ( )f g= +x x x u&                                                                                                             (114)                         

In the recent years, the SDARE method has been used to obtain the optimal 

control for non-linear systems. Considered below is the SDARE formulation. The 

problem considered here is the infinite-horizon regulation of general autonomous 

nonlinear systems which are affine in input [29]. Given the system equation in (114) and 

the performance index (PI), 

0

1
( ( ) ( ) )

2
T T dt

∞

= +∫J x Q x x u R x u                                                                                        (115)                        

which allows for trading-off state error x  versus control input u , via the weighting 

matrices ( ) 0≥Q x , ( ) 0>R x , ∀x , respectively. It is assumed that (0) 0f = and ( ) 0g ≠x ,∀x . 

A feedback control law ( )u x which regulates the system to the origin can be found by 

using the SDARE method [20]-[25] which approaches the problem by mimicking the 

LQR formulation for discussed for linear systems.  
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Accordingly, the system equations have to be first written in the form given by: 

( ) ( )= +x A x x B x u&                                                         (116)                         

where the state vector n∈ℜx , control input m∈ℜu , nxn∈ℜA , mxn∈ℜB , ( ) ( )f =x A x x  

and ( ) ( )g =x B x . The cost is denoted by J .The objective here is to find the control that 

minimizes the quadratic PI in(115). The control weighting matrix mxm∈ℜR and the state 

weighting matrix nxn∈ℜQ  are symmetric matrices. The former parameterization is 

possible if and only if (0) 0f = and ( )f x is continuously differentiable. Then as in the 

linear time-invariant case [29], a state-feedback control law of the form of 
1( ) ( ) ( ) ( ) ( )T−= − = −u x K x x R x B x S x x                                                                                  (117)                        

can be found. The Kalman gains given by ( )K x  in non-linear systems is state dependent 

and changes at every time step. ( )S x is unique, symmetric, positive-definite solution of 

the state-dependent algebraic Riccati equation 

 
1

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0
T T−

+ + − =A x S x S x A x Q x S x B x R x B x S x       (118)                         

The pair ( ( ), ( ))A x B x should be pointwise controllable in the linear sense so that the 

algebraic Riccati equation has a solution at that particular state x  [20]-[25] [30].  Due to 

the nonuniqueness of ( )A x , different ( )A x  choices yield different controllability 

matrices and thus different pointwise controllability characteristics. From the many 

choices for the parameterization ( ( ), ( ))A x B x , a pointwise stabilizable pair is chosen. The 

solving of the state dependent algebraic Riccati equation is very cumbersome and hence 

numerical tools are used. 

 

7.2. CONTROLLER DESIGN  
 

In order to take into account the bias terms while performing state dependent 

parameterization the system is augmented with a stable state [23] given by  

z zλ= −&                (119) 

 with 0λ > .  
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Then the bias term ( )b t can be factored as ( )( ) b tb t z
z

⎛ ⎞= ⎜ ⎟
⎝ ⎠

.Each time through the 

controller, the initial value (0)z is used in the state dependent coefficient matrix and in 

calculating the control. The shifting procedure described below in equations (120) and 

(121) is used for factorizing any state dependent term that doesn’t go through zero. 

[ ]1 1cos 1 cos 1x x= − + +                         (120) 

[ ] 1
1 1

1

1 cos1 cos xx x
x

⎡ ⎤− +
− + = ⎢ ⎥

⎣ ⎦
                     (121) 

Now the augmented system has 6 states given by
'

1 2 3, , , , ,F F F vF Fe e e e e zφ⎡ ⎤⎣ ⎦ . 

Therefore, the error system equations are given by  

( ) ( )E A E E B E u= +&                                                                                                       (122)                 

where ( )A E is 6 6XR . 

From earlier derivations, the differential equations that describe the evolution of 

errors over time are given by  

( )1 3 2 2cos sinF L F F L LF F F F Fe v e v w L e w eγ= − − + +&              (123)                         

( ) ( )2 3 1 1sin cosF L F L F F F F L LF Fe v e w e d w e d Lw w L γ= + − − − − +&                                 (124) 

3F L Fe w w= −&                          (125) 

2 2 22 2

1 2 2 2

2 tan ( ) tan( ) tan FD vF F vF FFD F F
vF

dv e d ed ve F
L L L rm

φ φφ τ
= − + − −&                            (126) 

2
FFD

F
S S S

e ue F φ
φ

φ
τ τ τ

= + − −&                (127) 

where  

1
cos sinuR uF F w F

FD
F F FF v
m m m

φ φ
= + + + &  

2 FDF φ= &  

On factorization (123) becomes 
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[ ] [ ]3 3
3 2 2 3

3 3
1

3
3

3

1 cos sin 1 cos

cos sin sin

L F L LF LF FL
F L F F F F

F F
F

L LF LF F L LF LF FD
vF F

F

v e w L eve z w e w e e
e z e

e
w L e w L ve e z z

e z z

ψ

ψ ψ

⎛ ⎞⎡ ⎤ ⎡ ⎤− + − +
+ − + −⎜ ⎟⎢ ⎥ ⎢ ⎥

⎜ ⎣ ⎦ ⎣ ⎦ ⎟= ⎜ ⎟⎡ ⎤ ⎡ ⎤⎜ ⎟+ − − −⎢ ⎥ ⎢ ⎥⎜ ⎟⎣ ⎦⎣ ⎦⎝ ⎠

&   (128) 

Substituting (313) in (15) , Fw  can be written as 

( ) tan( ) tan tan tan tan
1 tan tan 1 tan tan

FD vF FD F FD F FD FvFFD
F

FD F FD F

v e e e eevw
L L e L e

φ φ φ

φ φ

φ φ φ
φ φ

⎛ ⎞ ⎛ ⎞− − − −
= = −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

   (129) 

Therefore 2F Fw e can be expanded as, 

2 2

2

2 2

tantan
1 tan tan 1 tan tan

tantan
1 tan tan 1 tan tan

FFD F FD FD F

FD F FD F

F F

FvF F vF FFD

FD F FD F

ev e v e
L e L e

w e
ee e e e

L e L e

φ

φ φ

φ

φ φ

φ
φ φ

φ
φ φ

⎛ ⎞⎛ ⎞ ⎛ ⎞
−⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎜ ⎟⎝ ⎠ ⎝ ⎠= ⎜ ⎟

⎛ ⎞ ⎛ ⎞⎜ ⎟− +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠⎝ ⎠

                         (130) 

Substituting (130) in (128) 1Fe&  can be written as 

[ ] [ ]3 3
3 2 3

3 3

3
3

3

1
2 2

1 cos sin 1 cos

cos sin sin

tantan
1 tan tan 1 tan tan

L F L LF LF FL
F L F F vF

F F

L LF LF F L LF LF FD
F

F

F
FFD F FD FD F

FD F FD F

v e w L eve z w e e e
e z e

w L e w L ve z z
e z z

e
ev e v e

L e L e
φ

φ φ

ψ

ψ ψ

φ
φ φ

⎡ ⎤ ⎡ ⎤− + − +
+ − − +⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤− − −⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

=
⎛ ⎞ ⎛

+ −⎜ ⎟ ⎜⎜ ⎟ ⎜+ +⎝ ⎠ ⎝

&

2 2 tantan
1 tan tan 1 tan tan

FvF F vF FFD

FD F FD F

ee e e e
L e L e

φ

φ φ

φ
φ φ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

⎞⎜ ⎟
⎟⎜ ⎟⎟

⎜ ⎟⎠
⎜ ⎟⎛ ⎞ ⎛ ⎞⎜ ⎟− +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟+ +⎝ ⎠ ⎝ ⎠⎝ ⎠

(131) 
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On further parameterization 1Fe&  becomes 

[ ] [ ]3 3
3 2 3

3 3

3
3

3

2 2

1

1 cos sin 1 cos

cos sin sin

tantan
1 tan tan 1 tan tan

L F L LF LF FL
F L F F vF

F F

L LF LF F L LF LF FD
F

F

FFD F FD FD F

FD F FD F

F

v e w L eve z w e e e
e z e

w L e w L ve z z
e z z

ev e v e
L e L e

e

φ

φ φ

ψ

ψ ψ

φ α
φ φ

⎡ ⎤ ⎡ ⎤− + − +
+ − − +⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤− − −⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦

⎛ ⎞ ⎛
+ −⎜ ⎟ ⎜⎜ ⎟+ +⎝ ⎠ ⎝

=&
2 2

2 2

1 2

(1 ) tan tan
1 tan tan 1 tan tan

tan(1 ) tan
1 tan tan 1 tan tan

tan(1 )
1 tan tan

FD F F F vF F FD

F FD F FD F

FvF F vF FFD

FD F FD F

FvF F

FD

v e e e e e
Le e L e

ee e e e
L e L e

ee e
L e

φ φ

φ φ φ

φ

φ φ

φ

α α φ
φ φ

α αφ
φ φ

α α
φ

⎞
⎟⎜ ⎟
⎠

⎛ ⎞ ⎛ ⎞−
− −⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

⎛ ⎞ ⎛ ⎞−
− +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

−
+

+
1 2(1 )(1 ) tan

1 tan tan
vF F F F

F F FD F

e e e e
Le e

φ φ

φ φ φ

α α
φ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

⎛ ⎞ ⎛ ⎞− −⎜ ⎟
+⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠⎝ ⎠

(132) 

Let 1tantan1
tan T

e FFD

FD =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+ φφ
φ and 2tantan1

tan
T

e
e

FFD

F =⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

+ φ

φ

φ
                                         (133) 

Substituting (133) in (132) , (132) becomes 

[ ] [ ]3 3
3 2 3

3 3

3 2 1 2 2
3

3
1

2 2 2 1 2 1

1 cos sin 1 cos

cos sin sin

(1 ) (1 )

L F L LF LF FL
F L F F vF

F F

L LF LF F L LF LF FD FD F FD F
F

F
F

FD F F vF F vF F

F

v e w L eve z w e e e
e z e

w L e w L v v e T v e Te z z
e z z L L

e
v e e T e e T e e T
Le L L

φ

φ

ψ

ψ ψ α

α α α

⎡ ⎤ ⎡ ⎤− + − +
+ − − +⎢ ⎥ ⎢ ⎥

⎣ ⎦ ⎣ ⎦
⎡ ⎤ ⎡ ⎤− − − + −⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦=
− −

− − −

&

2 2 1 2 2

1 2 2

(1 )

(1 )(1 )

vF F vF F

vF F F

F

e e T e e T
L L

e e e T
Le

φ

φ

α α α

α α

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

−⎜ ⎟+ +⎜ ⎟
⎜ ⎟
⎜ ⎟− −
+⎜ ⎟⎜ ⎟
⎝ ⎠

    (134)

Factorizing (124) , 2Fe&  can be written as  
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3
1 3 3

3

2

1

tansin cos( )
1 tan tan

tantan tan
1 tan tan 1 tan tan 1 tan tan

t

FL F vFL
L F F L LF LF F

F FD F

F vFFD FD FD FD

FD F FD F FD F

F

FD F

ev e dew dw e z e w L e
z e L e

e dedv dv
L e L e L e

e
v e

L

φ

φ

φ

φ φ φ

ψ
φ

φ φ
φ φ φ

⎛ ⎞⎛ ⎞
− + + + − ⎜ ⎟⎜ ⎟ ⎜ ⎟+⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞ ⎛ ⎞

− + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + +⎝ ⎠ ⎝ ⎠ ⎝ ⎠=

−

&

1

1 1

tanan
1 tan tan 1 tan tan

tantan
1 tan tan 1 tan tan

FFD FD F

FD F FD F

FvF F vF FFD

FD F FD F

ev e
e L e

ee e e e
L e L e

φ

φ φ

φ

φ φ

φ
φ φ

φ
φ φ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎛ ⎞ ⎛ ⎞⎜ ⎟+⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟+ +⎝ ⎠ ⎝ ⎠⎜ ⎟

⎛ ⎞ ⎛ ⎞⎜ ⎟
+ −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟+ +⎝ ⎠ ⎝ ⎠⎝ ⎠

  (135) 

Also, 

333 sinsincoscos)cos( FLFLFLFLFLFLFLFLFL eLweLweLw ψψψ −=+                              (136) 

Parameterization of (136) results in  

[ ]

⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

⎟
⎠

⎞
⎜
⎝

⎛+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +−

=+

3
3

3

3
3

3

3
sinsin

coscos1cos

)cos(

F
F

FLFLFL

LFLFL
F

F

FLFLFL

FLFLFL

e
e

eLw

z
z

Lw
e

e
eLw

eLw
ψ

ψψ

ψ          (137) 

Substituting (133) and (137) in (135) and parameterizing 2Fe&  can be written as 

[ ]33
1 3 3

3 3

3 1 1 1 2
3

3

1 2 1 1 1 1 1
2

cos 1 cossin

sin sincos

(1 ) (1 )

L LF LF FL FL
L F F F

F F

L LF LF FL LF LF FD F FD F
F

F

FD F F vF F vF vF F
F

F

F

w L ev ew dw e z e e
z e e

w L ew L v e T v e Tz e
z e L L

v e e T e e T de T e e Te
Le L L L

dv

φ

φ

ψ

ψψ α

α α α

⎛ ⎞− +⎛ ⎞
− + + ⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
⎛ ⎞⎛ ⎞+ − − +⎜ ⎟⎜ ⎟

⎝ ⎠ ⎝ ⎠
− −= + + + +

+

&

2 22

1 1 21 2 1 1 2 1

(1 )

(1 )(1 )(1 )

D F vF FvF

F F

vF F FvF F vF F FD

F

e T de e Tde T
Le L Le

e e e Te e T e e T dv zT
L L Le Lz

φ φ

φ φ

φ

φ

αα

α αα α α

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟−

− −⎜ ⎟
⎜ ⎟
⎜ ⎟− −−⎜ ⎟− − − −⎜ ⎟
⎝ ⎠

       (138) 

Also , 

3

tantan
1 tan tan 1 tan tan

tantan
1 tan tan 1 tan tan

FL FD FD FD

FD F FD F

F

FvF vFFD

FD F FD F

ew v vz
z L e L e

e
ee e

L e L e

φ

φ φ

φ

φ φ

φ
φ φ

φ
φ φ

⎛ ⎞⎛ ⎞ ⎛ ⎞
− +⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎜ ⎟⎝ ⎠ ⎝ ⎠= ⎜ ⎟
⎛ ⎞ ⎛ ⎞⎜ ⎟+ −⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠⎝ ⎠

&           (139) 
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Parameterization of (139) results in   

3

tantan tan
1 tan tan 1 tan tan 1 tan tan

tan (1 ) tan
1 tan tan 1 tan tan

FD F F vFFD FD FD

FD F F FD F FD F

F

F vF F FvF L

FD F F FD F

v e e ev z
Lz e Le e L e

e
e e e ee w z

L e Le e z

φ φ

φ φ φ φ

φ φ φ

φ φ φ

φ φ
φ φ φ

αα
φ φ

⎛ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞
− + +⎜ ⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟+ + +⎜ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠= ⎜

⎛ ⎞ ⎛ ⎞−
− − +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠⎝

&

⎞
⎟
⎟
⎟

⎜ ⎟
⎜ ⎟

⎠

  (140) 

Substituting (133) in (140) the expression for 3Fe& becomes 

⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
−−++−=

F

FvFvFvF

F

FFDFDL
F Le

Tee
L

Te
L
Te

Le
Tev

Lz
zTv

z
z

w
e

φ

φ

φ

φ αα 22121
3

)1(
&                               (141) 

On parameterizing vFe&  from (126) , 

2 2

2

cos( ) sin( ) ( ) tan ( )uF FD F w FD F FD vF FD FuR

vF
F

FD

F e F e d v e eF z
mz m m Le
v

rm

φ φ φφ φ φ

τ

⎛ ⎞− − − −
+ + −⎜ ⎟

⎜ ⎟=
⎜ ⎟
+ −⎜ ⎟
⎝ ⎠

&

&

            (142) 

Expanding (142), vFe&  cane be written as 

2 2 2 2

2 2

2

2

cos cos sin sin sin cos

cos sin ( ) tan ( ) ( ) tan ( )

2 tan ( )

uF FD F uF FD F w FD FuR

w FD F FD FD F vF FD F
vF

FD vF FD F FD F

F e F e F eF z
mz m m m

F e d v e d e e
e

m L L
dv e e v z

L z rm

φ φ φ

φ φ φ

φ

φ φ φ

φ φ φ

φ τ

⎛ ⎞
+ + +⎜ ⎟

⎜ ⎟
⎜ ⎟− −

= − − −⎜ ⎟
⎜ ⎟
⎜ ⎟−
+ + −⎜ ⎟
⎝ ⎠

&

&

               (143) 

Parameterizing (143) further  

2 2

1 cos sin sincos cos

1 cos cos sinsin sin

( ) tan (

F uF FD FuR uF FD uF FD
F F

F F

F w FD Fw FD w FD FD
vF F F

F F

FD FD

e F eF F Fz e z e
mz m e mz me

e F eF F ve e z e z
m e mz me z

d v

φ φ
φ φ

φ φ

φ φ
φ φ

φ φ

φφ φ

φφ φ

φ

⎛ ⎞ ⎛ ⎞− + ⎛ ⎞+ + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞− + ⎛ ⎞= + + − +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

−
−

&
&

2 2 2

2 2 2

) ( ) tan ( ) 2 tan ( )F vF FD F FD vF FD F Fe d e e dv e e
L L L rm

φ φ φφ φ τ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟− −
⎜ ⎟− + −
⎜ ⎟
⎝ ⎠

 (144) 

Expanding and parameterizing a few terms in (144) is done below 

 
( )( )
( )( )

2 2 2

2 2

1 cos 2( ) tan ( ) ( )
1 cos 2

FD FFD FD F FD

FD F

ed v e d v
L L e

φφ

φ

φφ

φ

⎛ ⎞− −− ⎜ ⎟− = −
⎜ ⎟+ −⎝ ⎠

                  (145) 
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( )( )( ) ( )( )

( )( ) ( )( )

2 2

2

2 2

22

2 2

2 2

( ) tan ( )

1 cos 2( ) ( ) cos 2
1 cos 21 cos 2

sin 2 sin 2( ) cos 2 ( )
1 cos 2 1 cos 2

FD FD F

FFD FD FD
F

FFD FFD F

FD FFD FD FD

FFD F FD F

d v e
L

ed v d vz e
L eeL e z

ed v z d v
L z L ee e

φ

φ
φ

φφφ

φ

φφ φ

φ

φ
φφ

φφ
φ φ

−
⇒ − =

⎛ ⎞⎛ ⎞− +⎜ ⎟− + ⎜ ⎟⎜ ⎟⎜ ⎟+ −+ − ⎝ ⎠⎝ ⎠

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟+ +
⎜ ⎟ ⎜ ⎟+ − + −⎝ ⎠ ⎝ ⎠

Feφ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎜ ⎟
⎝ ⎠

   (146) 

Similarly  

( )( )( ) ( )( )( )

( )( )( )

2

2

2 2

2

2 tan ( )

2 cos 2 cos 22
1 cos 2 1 cos 2

2 sin 2 sin 2

1 cos 2

FD vF FD F

FD vF FD FFD
vF

FD F FD F

FD vF FD F

FD F

dv e e
L

dv e edv e
L e L e

dv e e

L e

φ

φ

φ φ

φ

φ

φ

φ

φ φ

φ

φ

−

⎛ ⎞
−⎜ ⎟

+ − + −⎜ ⎟
= ⎜ ⎟
⎜ ⎟−⎜ ⎟⎜ ⎟+ −
⎝ ⎠

                                   (147) 

Further expanding and parameterizing (147) the expression becomes  

( )( )( ) ( )( )

( )( )

( )( )

2

2

22

2

2

2 tan ( )

cos 2 cos 222
1 cos 21 cos 2

(1 )2 cos 2
1 cos 2

1 cos 2(1 )2 cos 2
1 cos 2

FD vF FD F

FD FFD vFFD
vF

FD FFD F

FD vF FD

FD F

FFD vF FD

FFD F

dv e e
L

edv edv e
L eL e

dv e
L e

edv e
L ee

φ

φ

φφ

φ

φ

φφ

φ

φα
φφ

α φ
φ

α φ
φ

−
⇒ =

⎛ ⎞
⎜ ⎟−
⎜ ⎟+ −+ − ⎝ ⎠

⎛ ⎞− ⎜ ⎟−
⎜ ⎟+ −⎝ ⎠
⎛ ⎞⎛ − +− ⎜ ⎟− ⎜⎜⎜ ⎟+ − ⎝⎝ ⎠

( )( ) ( )( )2 2

sin 2 sin 2 sin 2 sin 22 (1 )2
1 cos 2 1 cos 2

F

FD F FD FFD vF FD vF
F

FFD F FD F

e

e edv e dv e e
L L ee e

φ

φ φ
φ

φφ φ

φ φα α
φ φ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎞

⎟⎜ ⎟⎟⎜ ⎟⎠
⎜ ⎟

⎛ ⎞ ⎛ ⎞⎜ ⎟−⎜ ⎟ ⎜ ⎟⎜ ⎟− −
⎜ ⎟ ⎜ ⎟⎜ ⎟+ − + −⎝ ⎠ ⎝ ⎠⎝ ⎠

      (148)    

Also,  

( )( )
( )( )

2 2 2

2 2

1 cos 2( ) tan ( ) ( )
1 cos 2

FD FvF FD F vF

FD F

ed e e d e
L L e

φφ

φ

φφ

φ

⎛ ⎞− −− ⎜ ⎟− = −
⎜ ⎟+ −⎝ ⎠

                                     (149) 
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( )( )

( )( ) ( )( )

( )( )

2 2 2

2 2

2 2

2 2

2

2

( ) tan ( ) cos 2 cos 2( )
1 cos 2

sin 2 sin 2(1 ) ( ) ( )cos 2
1 cos 2 1 cos 2

(1 ) ( ) cos 2
1 cos 2

vF FD F FD FvF

FD F

FD FvF vFFD

FD F FD F

vF FD

FD F

d e e ed e
L L e

ed e d e
L Le e

d e
L e

φ φ

φ

φ

φ φ

φ

φ φα
φ

φα αφ
φ φ

α φ
φ

⎛ ⎞− ⎜ ⎟⇒ − = +
⎜ ⎟+ −⎝ ⎠

⎛ ⎞ ⎛ ⎞− ⎜ ⎟ ⎜ ⎟+ +
⎜ ⎟ ⎜ ⎟+ − + −⎝ ⎠ ⎝ ⎠
⎛ ⎞− ⎜+
⎜ + −⎝ ( )( )( )

( )( )

2

2

2

2

1 cos 2 ( )
1 cos 2

sin 2 sin 2(1 ) ( )
1 cos 2

F vF
F

F FD F

FD FvF
F

F FD F

e d ee
e L e

ed e e
L e e

φ
φ

φ φ

φ
φ

φ φ

φ

φα
φ

⎛ ⎞− +⎟ −⎜ ⎟⎜ ⎟⎟ + −⎝ ⎠⎠

⎛ ⎞− ⎜ ⎟+
⎜ ⎟+ −⎝ ⎠

(150)                         

Defining ( )( )( ) 3
2 2cos1 TeL FFD =−+ φφ                (151) 

and substituting all the above equations (146) through (151) in (144) the parameterized 

expression for  vFe&  is given as 

2

3

1 cos sin sincos cos

1 cos cos sinsin sin

( ) (

F uF FD FuR uF FD uF FD
F F

F F

F w FD Fw FD w FD FD
F F

F F

FD F

vF

e F eF F Fz e z e
mz m e mz me

e F eF F ve z e z
m e mz me z

d v d vz
T z

e

φ φ
φ φ

φ φ

φ φ
φ φ

φ φ

φφ φ

φφ φ

⎛ ⎞ ⎛ ⎞− + ⎛ ⎞+ + +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠
⎛ ⎞ ⎛ ⎞− + ⎛ ⎞+ + − +⎜ ⎟ ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠

− +

=

&

&

2 2

3 3

2

3 3

2

3 3 3

1 cos 2) cos 2 ( ) cos 2

(1 )2 sin 2 sin 2 (1 ) ( ) cos 2

( ) sin 2 sin 2 (1 )2 cos 22

2

FD FD FD FD
F

F

FD vF FD F vF FD
F

F

FD FD F FD vF FDFD
F vF

F

FD

e d ve z
T e T z

dv e e d ee
T e T

d v e dv edve e
T e T T

dv

φ
φ

φ

φ
φ

φ

φ
φ

φ

φ φ

α φ α φ

φ α φ

α

⎛ ⎞− +
+⎜ ⎟⎜ ⎟

⎝ ⎠
⎛ ⎞− −

− +⎜ ⎟⎜ ⎟
⎝ ⎠
⎛ ⎞ −

+ + −⎜ ⎟⎜ ⎟
⎝ ⎠

−
3 3

22

3 3 3

22

3 3

cos 2 cos 2 1 cos 2(1 )2 cos 2

2 sin 2 sin 2 ( ) cos 2 cos 2( )

1 cos 2 ( ) sin 2 sin 2(1 ) ( ) cos 2

(

vF FD F FFD vF FD
F

F

FD vF FD F vF FD FvF

F vF FD FvF FD
F

F

e e edv e e
T T e

dv e e d e ed e
T T T

e d e ed e e
T e T

φ φ
φ

φ

φ φ

φ φ
φ

φ

φ α φ

α φ α φ

α φα φ

⎛ ⎞− +−
− ⎜ ⎟⎜ ⎟

⎝ ⎠

− − +

⎛ ⎞− +−
+ +⎜ ⎟⎜ ⎟

⎝ ⎠

+
2

3

1 ) ( ) sin 2 sin 2vF FD F F
F

F

d e e
e

T e rm
φ

φ
φ

α φ τ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟

⎛ ⎞−⎜ ⎟−⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

    (152) 
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Parameterization (127) results in 

SS

F

S

FDFD
F

ue
z

z
z

z
e

τττ
φφ φ

φ −−+=
&

&                                                                                         (153) 

And the augmented stable state is given by  

zz λ−=&                                                                                                                           (154) 

From (122) the error system can be written as  

( ) ( )E A E E B E U= +&                (155) 

where 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

666564636261

565554535251

464544434241

363534333231

262524232221

161514131211

)(

aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa
aaaaaa

EA  and 

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

=

6261

5251

4241

3231

2221

1211

)(

bb
bb
bb
bb
bb
bb

EB  

 

From the equations(134), (138) and (140) the expressions for the elements of matrices 

( )A E and ( )B E are as given below 

011 =a                          (156) 

L
Te

L
Te

L
Tv

L
Tv

wa vFvFFDFD
L

1221
12

ααα
−+−+−=                  (157) 

[ ] [ ]
⎥
⎦

⎤
⎢
⎣

⎡
−⎥

⎦

⎤
⎢
⎣

⎡ +−
−⎥

⎦

⎤
⎢
⎣

⎡ +−
=

3

3

3

3

3

3
13

sincoscos1sincos1

F

FLFLFL

F

FLFLFL

F

FL

e
eLw

e
eLw

e
ev

a
ψψ           (158) 

L
Te

L
Te

a FF 12221
14

)1()1(
1

ααα −
−

−
+=              (159) 

F

FFD

F

FvF

Le
Tev

Le
Tee

a
φφ

ααα 22221
15

)1()1)(1( −
−

−−
=                            (160) 

⎥⎦

⎤
⎢⎣

⎡−−=
z

Lw
z

v
z

v
a LFLFLFDL ψsin

16                            (161) 

2 11 2
21

vF vFFD FD
L

e T e Tv T v Ta w
L L L L

α αα
= − + − +                (162) 

22 0a =                     (163) 
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[ ]33 3
23

3 3 3

cos 1 cossin sin sinL LF LF FL F L LF LF F

F F F

w L ev e w L ea
e e e

ψ ψ⎡ ⎤− +⎡ ⎤ ⎡ ⎤
= + −⎢ ⎥⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦

                   (164) 

1 1 1 1 2 1 2
24

(1 ) (1 )F Fe T e T dT dTa
L L L L
α α α α− −

= − + −                  (165) 

1 1 2 21 2 2
25

(1 )(1 ) (1 )(1 )vF F vFFD F FD

F F F F

e e T de Tv e T dv Ta
Le Le Le Leφ φ φ φ

α α αα− − −−
= − + + −                               (166) 

1
26

cosL FD L LF LFw d dv T w La
z Lz z

ψ⎡ ⎤= − − + ⎢ ⎥⎣ ⎦
                                      (167) 

31 0a =                                                                         (168) 

32 0a =                                                                                                                             (169) 

33 0a =                (170) 

1 2
34

T Ta
L L

α
= −                   (171) 

22
35

(1 ) vFFD

F F

e Tv Ta
Le Leφ φ

α−
= −                      (172) 

1
36

L FDw v Ta
z Lz

= −                (173) 

Let  

4

1 cos(2 )F

F

e
T

e
φ

φ

⎡ ⎤− +⎣ ⎦ =                  (174) 

5cos(2 )cos(2 )F FDe Tφ φ =                (175) 

6sin(2 )sin(2 )F FDe Tφ φ =               (176) 

7

1 cos F

F

e
T

e
φ

φ

⎡ ⎤− +⎣ ⎦ =                                                              (177) 

8sin sinF FDe Tφ φ =                 (178) 

Using (174) through (178) in (152) through (154) results in  

41 0a =                     (179) 

42 0a =                  (180) 

43 0a =                    (181) 
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55 6

3 3 3 3 3 3
44

6

3 3

2 22 (1 )2 cos(2 )

(1 ) cos(2 )

vF vFFD FDFD FD FD

vF FD vF

de de Tdv T dv Tdv dv
T T T T T T

a
de de T

T T

αα α α φ

α φ α

⎛ ⎞−
− − − − +⎜ ⎟

⎜ ⎟= ⎜ ⎟−
+ +⎜ ⎟⎜ ⎟
⎝ ⎠

      (182) 

2
7 8 7 4

3

2 2
6 4 6 6

45
3 3 3 3

2
4

3

cos sincos sin cos(2 )

(1 )2 cos(2 ) (1 )2 (1 )

(1 ) cos(2 )

w FD FuF FD uF w FD FD FD

F F

FD FD FD vF FD vF vF

F F F

FD vF

F eF T F T F T dv T
m me m me T

dv T dv T e dv T e de Ta
T e T T e T e

d T e
T

φ

φ φ

φ φ φ

φφ φ φ

α φ α α

α φ

⎛ ⎞
+ + − +⎜ ⎟

⎜ ⎟
⎜ ⎟− − −⎜ ⎟= + − − +
⎜ ⎟
⎜ ⎟

−⎜ ⎟+⎜ ⎟
⎝ ⎠

             (183) 

2 2

46
3 3

sin sin cos(2 )uR w FD uF FD FD FD FD FDF F F v dv dva
mz mz mz z T z T z

φ φ φ⎛ ⎞
= + + + + −⎜ ⎟
⎝ ⎠

&                                   (184) 

 

51 0a =                                                 (185) 

52 0a =                                                                                                                            (186) 

53 0a =                                                                           (187) 

54 0a =                                           (188) 

55
1

S

a
τ
−

=                                                      (189) 

56
FD FD

S

a
z z

φ φ
τ

= +
&

                                (190) 

61 0a =                                                                                                                            (191) 

62 0a =                                              (192) 

63 0a =                                                          (193) 

64 0a =                                                                                                                            (194) 

65 0a =                                                                                                                            (195)

66a λ= −                                           (196) 

11 0b = ; 12 0b =                                          (197)     

21 0b = ; 22 0b =                                     (198) 
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31 0b = ; 32 0b =                     (199) 

41
1b

rm
= − ; 42 0b =                              (200) 

51 0b = ; 52
1

S

b
τ

= −                              (201) 

61 0b = ; 62 0b =                                 (202) 

The state dependent algebraic Riccati equation in (118) is solved using MATLAB and the 

gains are obtained for the controller.  The torque control inputs to the follower are given 

by  

( )U K E E= −                                                                                                                  (203) 

where  

FU
u
τ⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 , E  is the augmented error vector and ( )K E is the gain matrix obtained by 

solving the SDARE. 

 

7.3. FORMATION STABILITY  
 

Consider a formation of 1N +  robots consisting of a leader “ il ” and N followers. 

Let the torque control inputs [ ]TL Luτ be applied to the leader such that the leader tracks 

a virtual reference robot. The torque control inputs for the leader can be derived in a 

similar way as the torque control inputs for the follower. It is assumed that the leader’s 

motion is known i.e. there exists a control law that drives the leader independently to its 

desired trajectory. The torque control inputs are given by(203). Then the origin given by 

1 2 3 1 2 3

TT T T T T
l l l vl l F i F i F i vFi FiE e e e e e e e e e eφ φ⎡ ⎤= ⎣ ⎦ where (5( 1)) 1N XE +∈ , which 

represents the augmented position, orientation and velocity tracking error systems for the 

leader “ il ” and N followers, respectively, is asymptotically stable in the presence of 

uncertainties and noise is proved below.  

Consider the following Lyapunov candidate function 

1
2

T
WV E E=                      (204) 
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On taking the derivative of (204) yields 

WV EE=& &                  (205) 

Substituting  (203)  in (155) and substituting the resultant equation in (205) results in  

( ( ) ( ))WV A E BK E E= −&                  (206) 

where ( ) ( )CLA A E BK E= −  is negative definite as ( )K E is chosen to make CLA negative 

definite. Therefore, 0WV <& . Consider a new Lyapunov function candidate given by  

1
1

N

Formation Wi lV V V= +∑                             (207) 

where  WiV is given by (204) and  

1 1 2 3

2 2 2 2 2
l l l l vl lV e e e e eφ= + + + +                                                                                              (208) 

Also (207) is positive for
1 2 3 1 2 3 0

TT T T T T
l l l vl l F i F i F i vFi FiE e e e e e e e e e eφ φ⎡ ⎤= ≠⎣ ⎦ . 

Differentiating  (207) yields  

1
1

N

Formation Wi lV V V= +∑& & &                   (209) 

Since when 0WiV <&  for all 1i toN= , so it automatically follows that 
1

0
N

WiV <∑ & . Also, the 

leader torque control inputs are designed such that the errors go to zero asymptotically 

and hence 
1l

V& is negative. Therefore, 0FormationV <& , and the entire formation is 

asymptotically stable. 

 

7.4. RESULTS AND DISCUSSION 
 

A single leader single follower scenario is considered and the simulations are 

carried out using MATLAB for the same.  The leader executes a circular trajectory with 

radius = 60 m, linear velocity of 5 m/sec and an angular velocity ~ 0.08 rad/sec. It is 

desired for the follower to execute a circle of radius = 56 m being parallel to the leader at 

all times. So the desired relative distance to be maintained is 4.0774 m and a relative 

bearing angle of 78.8199 degrees. The state weighting and control weighting matrices 

used for the simulation are Q = diag ([1400,900,900,900,1,1]); and R = diag ([1,1]).Also 
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the simulations were carried out with different time constants for the steering dynamics 

and increased friction parameters. The plots shown below are the ones obtained for a time 

constant of 0.25 and increased friction parameters of 10, 20, 30uR uF WF F F= = = . 

From Figure 7.1 it can be seen that the follower achieves the desired position and 

orientation, with the position and orientation errors going to zero asymptotically as 

shown in Figure 7.2. In Figure 7.2 1Fe , 2Fe   denote the position errors in the u and w 

direction respectively (refer Figure 2.1) and 3Fe  denotes the error in the orientation of the 

follower. The torque control inputs to the drive and steering system are as shown in 

Figure 7.3.  This torque control input drives the errors in (113) to zero asymptotically 

resulting in the leader and follower trajectories as shown in Figure 7.4. It can be seen that 

the leader tracks a circle of 60 m radius and the follower is parallel to the leader at all 

times tracking a circle of radius 56 m. Figure 7.5 shows the velocity profile of the 

follower. From Figure 7.6 it can be inferred that the velocity tracking errors defined by 

the error system described by (113) also go to zero asymptotically. Figure 7.7 shows the 

relative distance and bearing angle maintained by the follower and it confirms with the 

desired relative distance and bearing angle calculated. In Figure 7.8 the position and 

orientation errors in inertial coordinates are shown. 

In this section, an error system formulation (113) derived for integrated tracking 

and control is used to obtain the optimal torque control inputs. The input torque is 

obtained for the drive and steering system of a car-like follower mobile robot using 

SDARE approach to maintain a desired relative distance and bearing angle between the 

leader and the follower.  
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Figure 7.1 Actual and Desired Position and Orientation of the Follower 
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Figure 7.2 Position and Orientation Errors in Body Coordinates 
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Figure 7.3 Drive and Steering Torques 
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Figure 7.4 Leader and Follower Trajectories 
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Figure 7.5 Linear Velocity and Angular Velocity Profile of the Follower 
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Figure 7.6 Velocity Error and Steering Angle Error Plots 
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Figure 7.7 Relative Distance and Relative Bearing Angle of the Follower w.r.t. Leader 
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Figure 7.8 Position and Orientation Errors in Inertial Coordinates 
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8. INTEGRATED TRACKING AND ROBUST OPTIMAL CONTROL DESIGN 
USING ONLINE NEURAL NETWORK AND SDARE APPROACH  

8.1.  PROBLEM DESCRIPTION  
 

The error system dynamics for the integrated tracking and control formulation is 

given by(113). Consider a subsystem of  (113) given by  
2 2 22 2

1 2 2 2

2

2 tan ( ) tan( ) tan FD vF F vF FFD F F

vF

FF FD

S S S

Dv e D eD vFe L L L rm
ee uF φφ

φ φφ τ

φ
τ τ τ

⎡ ⎤
− + − −⎢ ⎥⎡ ⎤ ⎢ ⎥=⎢ ⎥ ⎢ ⎥⎣ ⎦ + − −⎢ ⎥

⎣ ⎦

&

&       (210) 

where  

1
cos sinuR uF F w F

FD
F F FF v
m m m

φ φ
= + + + &  

2 FDF φ= &
 

Grouping the error subsystem in (210) results in   

( )SUB SUB SUB SUBE D E F B U= + +&
           (211) 

where 

( ) 1

2
SUB

F
D E

F
⎡ ⎤

= ⎢ ⎥
⎣ ⎦              (212) 

2 2 22 2

2 2 2

2 tan ( ) tan( ) tan FD vF F vF FFD F

SUB
FFD

S S

Dv e D eD v
L L LF eφ

φ φφ

φ
τ τ

⎡ ⎤
− + −⎢ ⎥
⎢ ⎥=
⎢ ⎥−⎢ ⎥
⎣ ⎦

          (213) 

1 0

10
SUB

S

rmB

τ

⎡ ⎤−⎢ ⎥
⎢ ⎥=
⎢ ⎥−⎢ ⎥⎣ ⎦

             (214) 

FU
u
τ⎡ ⎤

= ⎢ ⎥
⎣ ⎦                                      (215) 

The expression in (212) represents the uncertainties in the system. The goal is to 

find an extra control that can make up for the effects of these uncertainties and one that 
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makes the controller robust to uncertainties due to modeling error or parameter 

variations.  

 

8.2. OPTIMAL CONTROL DERIVATION FOR THE NOMINAL SYSTEM 
 

The optimal control for the nominal system is obtained by using the SDARE 

approach. The nominal system is one without uncertainties. The expression for the 

nominal system is given by  

OPTOPT UEBEEAUEBEFE )()()()( +=+=&                                                               (216) 

where ( )A E is 6 6XR and ⎥
⎦

⎤
⎢
⎣

⎡
=

2

1

u
u

U OPT . 

From earlier derivations, the differential equations that describe the evolution of 

errors over time are given by  

( )1 3 2 2cos sinF L F F L LF F F F Fe v e v w L e w eγ= − − + +&              (217)                         

( ) ( )2 3 1 1sin cosF L F L F F F F L LF Fe v e w e d w e d Lw w L γ= + − − − − +&             (218) 

3F L Fe w w= −&                               (219) 

2 2 22 2

1 2 2 2

2 tan ( ) tan( ) tan FD vF F vF FFD F F
vF

dv e d ed ve F
L L L rm

φ φφ τ
= − + − −&          (220) 

2
FFD

F
S S S

e ue F φ
φ

φ
τ τ τ

= + − −&                     (221) 

The uncertainties 1F  and 2F  are not present in the nominal system. Therefore, the 

expression for vFNOMe& and FNOMeφ&  are given by  

rm
u

L
ed

L
vde

L
vde FvFFFDvFFFD

vFNOM
1

2

22

2

2

2

22 tan)(tan2tan)(
−−+

−
=

φφφ
&         (222) 

SS

F

S

FD
FNOM

ue
e

τττ
φ φ

φ
2−−=&                   (223) 

The parameterization of 1Fe& , 2Fe& and 3Fe&  is similar to the what was done earlier and the 

parameterized equations are given by  (134), (138) and (141).  
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On parameterizing vFNOMe&  from (222) the parameterized expression for vFNOMe&  is 

given by  
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On parameterizing FNOMeφ&  from (223) the parameterized expression for FNOMeφ&  is given 

by  

2FFD
F

S S S

e ue z
z

φ
φ

φ
τ τ τ

= − −&                (225) 

From the equations(134), (138) , (141), (224) and (225) the expressions for the elements 

of  matrices ( )A E and ( )B E are as given below 
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⎥⎦
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α αα
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1 1 1 1 2 1 2
24

(1 ) (1 )F Fe T e T dT dTa
L L L L
α α α α− −

= − + −                  (235) 
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31 0a =                                                                         (238) 
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Using (174) through (178) in (152) through (154) results in  

41 0a =                     (249) 

42 0a =                  (250) 
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51 0a =                                                 (255) 

52 0a =                                                                                                                            (256) 

53 0a =                                                                           (257) 

54 0a =                                           (258) 
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61 0a =                                                                                                                            (261) 

62 0a =                                              (262) 

63 0a =                                                          (263) 

64 0a =                                                                                                                            (264) 

65 0a =                                                                                                                            (265)

66a λ= −                                           (266) 

11 0b = ; 12 0b =                                          (267)     
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21 0b = ; 22 0b =                                     (268) 

31 0b = ; 32 0b =                     (269) 

41
1b

rm
= − ; 42 0b =                              (270) 

51 0b = ; 52
1

S

b
τ

= −                              (271) 

61 0b = ; 62 0b =                                 (272) 

The state dependent algebraic Riccati equation in (118) is solved using MATLAB 

and the gains K are obtained for the controller. The optimal control input to the system is 

given by  

( )OPTU K E E= −                (273) 

and the system is pointwise stable. 

 

8.3. UNCERTAINITY MODELING, WEIGHT UPDATES AND EXTRA 
CONTROL DERIVATION  

 

Two single layer functional link neural networks (FLNN) are used for the 

approximation of 1F and 2F , the elements of  ( )SUBD E  . These terms involve the friction 

terms and desired accelerations terms that cannot be computed in real life accurately. 

Hence, online neural networks will be used to estimate 1F  and 2F , and they are defined as  

⎥
⎦

⎤
⎢
⎣

⎡
=

)(
)(

)(
2

1

Fnew

Fnew
SUBED

xf
xf

                      (274) 

The activation functions 1 2( ), ( )Fnew Fnewφ φx x can be chosen as a basis set for the universal 

approximation property to hold for single layer FLNN. Then there exists 

weights 1W and 2W such that  

1 1 1 1( ) ( )T
Fnew FnewW φ ε= +f x x                (275)   

2 2 2 2( ) ( )T
Fnew FnewW φ ε= +f x x                   (276) 

with the estimation errors 1ε  and 2ε  bounded. The bounds are given by 1 1Nε ε<  and 

2 2Nε ε<  . The ideal approximating weights are unknown and nonunique. So an 
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assumption is made that 1 1BF
W W<  and 2 2BF

W W<  with the bounds 1BW  and 2BW  

known. The Forbenius norm is denoted by
F

. Then estimates of 1( )Fnewf x  and 

2( )Fnewf x are given by  

1 1 1 1
ˆˆ ˆ( ) ( )T

Fnew FnewF W φ= =f x x                 (277)   

2 2 2 2
ˆˆ ˆ( ) ( )T

Fnew FnewF W φ= =f x x               (278) 

with 1̂W  and 2Ŵ  being the weights of the two neural networks. 

Let OPTU  denote the control generated by the optimal controller using SDARE 

approach for the nominal system and let EXU  denote the extra control [22] applied 

to compensate for the uncertainties. Hence the total control applied to the system is  

EXOPT UUU +=             (279) 

Substituting (279) in (211) the expression for SUBE&  becomes, 

EXSUBOPTSUBSUBSUBSUB UBUBFDE +++=&            (280) 

The uncertainty is compensated for by choosing the extra control EXU  as  

SUBSUBEX DBU ˆ1−−=               (281) 

where 

⎥
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⎢
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11
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SUB W
WD

x
x

φ
φ             (282) 

Substituting (281) in (280) , the expression for SUBE&  becomes 

OPTSUBSUBSUBSUB UBFDE ++= ~&                  (283)    

When there is function estimation error present, then the system equation after 

substituting ( )OPTU K E E= − becomes  

( ) ( )E A E E BK E E D= − +& %                (284)

where 

1 1 2 20 0 0 ( ) ( )
TT T

FNEW FNEWD W Wφ φ⎡ ⎤= ⎣ ⎦x x% % %  

An online weight update rule is now developed to guarantee stable tracking and 

yet guarantee bounded-ness of weights. The weight estimation error is defined as 
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1 1 1
ˆW W W= −%               (285) 

2 2 2
ˆW W W= −%                (286) 

To derive the weight tuning law consider the Lyapunov candidate function given by  

{ } { }1 1
1 1 1 2 2 2

1 1 1
2 2 2

T T T
WV E E tr W L W tr W L W− −= + +% % % %          (287) 

On differentiating (287) and substituting (284) , the expression for WV&  is given by  
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where 1 2,L L  are user defined tuning matrices. 

Further grouping the terms in (288), WV&  becomes 
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Selecting the weight tuning laws as  

1 1 1 1 1 1
ˆ ˆ( )Fnew vF NEW vFW L e k L Wφ= −x e&             (290) 

2 2 2 2 2 2
ˆ ˆ( )Fnew F NEW FW L e k L e Wφ φφ= −x&                                          (291) 

Substituting (290) and (291) in (289) WV&  can be written as  

( ){ }
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Also from [20]              

{ } 22 ~~~,~)ˆ(~
FFFFF

T WWWWWWWWWtr −≤−=−            (293) 

Using (293) and further simplifying (292) 
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The term given by  

( )
2 2

1 11
1 1

min 1 1 1 1
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( ) 2 4
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NEW BB
NEW F
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is guaranteed positive as long as  

1

2 2
1 1 1 1

1 1
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The term given by  
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is guaranteed positive as long as  

2

2 2
2 2 2 2

2 2
min4( ) 2 4FD

NEW B B B
F e WF

k W W We b or W b
BK Aφ ≥ ≡ > + ≡

−
%            (298) 

So, WV&  is negative outside a compact set. Let the NN function approximation 

property holds for 1( )Fnewf x  and 2( )Fnewf x with an accuracy of 1Nε  and 2Nε  respectively 

for all 1Fnewx  and 2Fnewx  in the compact sets 
11 1 1{ | }

FnewFnew Fnew Fnew xS x x b≡ < and 

22 2 2{ | }
FnewFnew Fnew Fnew xS x x b≡ < with 

1Fnewx vFBb e>  and 
2Fnewx FBb eφ>  where vFBe  and 

sin FBeφ  are the bounds on the desired trajectory vFDe  andsin FDeφ . 

Define 
1 0 1{ | ( ) /( )}

VF Fnewe vF VF x vFBS e e b e c c≡ < − +            (299) 

2 2 3{ | ( ) /( )}
F Fnewe F F x FBS e e b e c c

φ φ φ φ≡ < − +                                               (300) 

Now selecting the gains 
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ensures that the compact sets defined by 
1FDvF ee b< and 

2FDF ee bφ < are contained in evFS  

and e FS φ . This guarantees that the error ,vF Fe eφ and the NN weight estimates 1̂W  and 

2Ŵ are uniformly ultimately bounded (UUB) [20] with bounds given by (296) and (298). 

 

8.4. FORMATION STABILITY  
 

Consider a formation of 1N +  robots consisting of a leader “ il ” and N followers. 

Let the torque control inputs [ ]TL Luτ be applied to the leader such that the leader tracks 

a virtual reference robot. The torque control inputs for the leader can be derived in a 

similar way as the torque control inputs for the follower. It is assumed that the leader’s 

motion is known i.e. there exists a control law that drives the leader independently to its 

desired trajectory. The torque control inputs are given by EXOPT UUU +=  with OPTU and 

EXU  given by (273) and (281) respectively.  Then the origin given by 

1 2 3 1 2 3

TT T T T T
l l l vl l F i F i F i vFi FiE e e e e e e e e e eφ φ⎡ ⎤= ⎣ ⎦ where (5( 1)) 1N XE +∈ , which 

represents the augmented position, orientation and velocity tracking error systems for the 

leader “ il ” and N followers, respectively, is asymptotically stable in the presence of 

uncertainties and noise is proved below.  

Consider the following Lyapunov candidate function 

1
1

N

Formation Wi lV V V= +∑                             (303) 

where  WiV is given by (287)  and  

1 1 2 3

2 2 2 2 2
l l l l vl lV e e e e eφ= + + + +                                                                                              (304) 

Also (303) is positive for
1 2 3 1 2 3 0

TT T T T T
l l l vl l F i F i F i vFi FiE e e e e e e e e e eφ φ⎡ ⎤= ≠⎣ ⎦ . 

Differentiating  (303) yields  

1
1

N

Formation Wi lV V V= +∑& & &                   (305) 
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In the previous subsection it has been proved that WiV for all 1i toN=  individually is 

negative outside a compact set and that the errors and the NN weight estimates 1̂W  and 

2Ŵ are uniformly ultimately bounded (UUB). Hence when 0WiV <&  for all 1i toN= , so it 

automatically follows that 
1

0
N

WiV <∑ & . Also the leader torque control inputs are designed 

such that the errors go to zero asymptotically and hence 
1l

V& is negative. Therefore 

0FormationV <& , and the entire formation is asymptotically stable 

 

8.5. RESULTS AND DISCUSSION  
 

A single leader single follower scenario is considered and the simulations are 

carried out using MATLAB for the same.  The leader executes a circular trajectory with 

radius = 60 m, linear velocity of 5 m/sec and an angular velocity ~ 0.08 rad/sec. It is 

desired for the follower to execute a circle of radius = 56 m being parallel to the leader at 

all times. So the desired relative distance to be maintained is 4.0774 m and a relative 

bearing angle of 78.8199 degrees. The state weighting and control weighting matrices 

used for the simulation are Q= diag([900,900,900,900,400,1]) and R=diag([1,1]). 

The constants 1 100NEWk =  , 2 100NEWk =  , 1 .044* (20)L eye=  and 2 1* (20)L eye=  

are used in the NN weight update rule where )20(eye denotes a 20 20X identity matrix. 

The NN’s have 20 hidden layer neurons each. Measurement noise is added in the form 

Gaussian noise with zero mean. The noise added is one percent of the states that are 

inputs to the neural network. Also the simulations were carried out with different time 

constants for the steering dynamics and increased friction parameters. The plots shown 

below are the ones obtained for a time constant of 0.25 and increased friction parameters 

of 10, 20, 30uR uF WF F F= = = . 

From Figure 8.1 it can be seen that the follower achieves the desired position and 

orientation, with the position and orientation errors going to zero asymptotically as 

shown in Figure 8.2. In Figure 8.2 1Fe , 2Fe denote the position errors in the u and w 

direction respectively (refer Figure 2.1) and 3Fe  denotes the error in the orientation of the 
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follower. Figure 8.3 shows the position and orientation errors in inertial coordinates. The 

optimal torque control inputs to the drive and steering system are as shown in Figure 8.4 

and Figure 8.5. The extra control inputs to the follower that compensate for the 

uncertainties are shown in Figure 8.6 and Figure 8.7.  The drive and steering torque 

inputs shown in Figure 8.8 drive the errors in (113) to zero asymptotically resulting in the 

leader and follower trajectories are as shown in Figure 8.9. The drive and steering torque 

are a combination of the optimal and extra control drive and steering inputs.  It can be 

seen that the leader tracks a circle of 60 m radius and the follower is parallel to the leader 

at all times tracking a circle of radius 56 m. The velocity profile is shown in Figure 8.10.    
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Figure 8.1 Actual and Desired Position and Orientation of the Follower 

 
 
 
 



 

 

77

0 20 40 60 80
0

0.1

0.2

0.3

0.4

0.5
ef1

Time in secs

ef
1

0 20 40 60 80
-0.2

-0.15

-0.1

-0.05

0

0.05
ef2

Time in secs

ef
2

0 20 40 60 80
-10

-5

0

5

10
ef3

Time in secs

ef
3 

in
 d

eg
re

es

 
Figure 8.2  Position and Orientation Errors of the Follower in Body Coordinates 
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Figure 8.3 Position and Orientation Errors of the Follower in Inertial Coordinates  
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Figure 8.4 Optimal Control Inputs to the Follower Linear and Angular  
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Figure 8.5 Magnified Plot of Optimal Control Inputs to the Follower 
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Figure 8.6 Magnified Plot of Extra Control Input to the Follower  
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Figure 8.7 Extra Control Inputs to the Follower  
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Figure 8.8 Drive Torque and Steering Torque of the Follower 
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Figure 8.9 Leader and Follower Trajectories 
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Figure 8.10 Velocity Profile of the Follower 
 

 
 
 

From Figure 8.11 it can be inferred that the velocity tracking errors defined by the 

error system described by (113) also go to zero asymptotically. From Figure 8.12 and 

Figure 8.13 it can bee seen that both the neural networks are able to approximate 

1( )Fnewf x and 2( )Fnewf x accurately. It is compared with the actual values of the estimated 

functions which is available to us during simulation runs and not during real-time 

implementation. Figure 8.14 shows the noisy input presented to the neural network. In the 

Figure 8.15 the boundedness of the neural network weights is shown. The relative 

distance and relative bearing angle plots are as shown in Figure 8.16. 
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Figure 8.11 Velocity and Steering Angle Error Plots  
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Figure 8.12 Neural Network Output 
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Figure 8.13 Neural Network Approximation Error  
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Figure 8.14 Magnified Plot of Noisy Inputs to the Neural Network 
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Figure 8.15 Plots Showing the Bounded-ness of Neural Network Weights 
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Figure 8.16 Relative Distance and Relative Bearing Angle of the Follower w.r.t.     

Leader   
  

 
 
 

  In this section the optimal control for the nominal system is obtained by using 

the SDARE approach. The nominal system is one without uncertainties. The uncertainties 

are compensated for by using extra control. The combination of the optimal and extra 

control inputs for the drive and steering system of a car-like follower mobile robot are 

used to maintain a desired relative distance and bearing angle between the leader and the 

follower.  

Below the results for the case where the extra control is set to zero is presented. It 

can be found from the figures that the system response becomes oscillatory and the 

position and orientation errors do not go to zero. Figure 8.17 and Figure 8.18 show the 

orientation and position of the follower when there is no extra control.  The error plots in 

both the body and inertial coordinates when the extra control is zero are as shown in 
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Figure 8.19 and Figure 8.20. The velocity profile and the velocity errors in the absence of 

extra control are as shown in Figure 8.21 and Figure 8.22.  
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Figure 8.17 Actual and Desired Position and Orientation of the follower with 0EXU =       
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Figure 8.18 Magnified Actual and Desired Position and Orientation of the Follower    

with 0EXU =  
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Figure 8.19 Magnified Position and Orientation Error Plots of the Follower with  

0EXU =  
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Figure 8.20 Magnified Position and Orientation Error Plots in Inertial Coordinates with 

0EXU =   
 
 
 
 
 
 
 
 
 
 
 



 

 

96

25 30 35 40 45 50 55 60

4.5

4.55

4.6

4.65

4.7

4.75

4.8

velocity profile of the follower

Time in secs

V
f i

n 
m

/s
ec

20 25 30 35 40 45 50 55

-0.1

-0.05

0

0.05

0.1

0.15
angular velocity profile of the follower

Time in secs

W
f i

n 
ra

d/
se

c

 
Figure 8.21 Magnified Linear and Angular Velocity Profile of the Follower with  

0EXU =   
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Figure 8.22 Magnified Velocity and Steering Angle Error Plots for the Follower with 

0EXU =   
 

 
 
 

The relative distance and bearing angle plots shown in Figure 8.23 indicate that 

the formation is not kept. The optimal control plot in the absence of extra control is 

shown in Figure 8.24. Figure 8.25 shows the magnified drive and steering torque plots.  
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Figure 8.23 Magnified Relative Distance and Bearing Angle of the Follower w.r.t   

Leader with 0EXU =  
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Figure 8.24 Magnified Optimal Control Inputs to the Follower with 0EXU =  
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Figure 8.25 Magnified Plot of Drive and Steering Torque Inputs to the Follower with 

0EXU =  
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9. INTEGRATED TRACKING AND CONTROL DESIGN USING LYAPUNOV 
FUNCTION BASED APPROACH  

The objective is to find torque control inputs to the follower for formation control 

of car-like mobile robots using the integrated tracking and control scheme. Initially a 

coupled framework is obtained wherein the follower error equations are combined with 

follower dynamics. Once the combined framework is obtained the state space equations 

thus obtained are used to design torque control inputs for the follower drive system as 

well as the steering system using Lyapunov function based approach so that the 

formation is maintained. It is assumed that the leader’s motion is known.  

 

9.1. CONTROLLER DESIGN  
 

In order to stabilize the error system in (113) a torque controller is designed using 

the Lyapunov function based approach. Let the Lyapunov function candidate be 

)cos1()cos1( 5
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22
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11 FvFFFF eKeKeKeKeKV φ−++−++=                                    (306)                         

Differentiating (306) , V&  can be expressed as  
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Each term on the right hand side (RHS) of (307) can be expanded as given below 
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From (108)  

[ ] ( ) ( ) TT
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Expanding the terms in (314) , V&  can be expressed as  
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Converting the equality in (315) into an inequality results in 
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By choosing the drive torque control input as  

3 31 2

4 4 4

22 2
3 3

1 2
4

2 2
2

12
4

sintan tan
2 1 tan tan 1 tan tan

tansin tan( ) tan
1 tan tan

tan( ) tan
2 1

FF F FD FD

FD F FD F

FF vF FD FFD F

FD F

FvF F F
vF

F

K eKe Ke
K K e K L e

eK e e vd vrm F
K L e L L

ee d Kek e
L K

φ φ

φ

φ

φ

φ φ
φ φ

α φφ
φ

φ α

τ

⎛ ⎞ ⎛ ⎞
+ +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

⎛ ⎞
− + − +⎜ ⎟⎜ ⎟+⎝ ⎠

− + −
+=

2 2 2
2 1 3 2 4 3 1 1

1 1 2

2
2 1 24

2 3

tan tan

( ) ( ) sin

sin( ) cos

tan
cos

2

sin

FD F

F F F F L F FD

F L LF LF F L LF LF F L

F FD FD
F L F L LF LFvF

F L LF LF

e

Kk e Kk e Kk e K e v K e v

K e w L K e w L K e w d
rm K e v

K e v K e w LK e

K e w L K w

φφ

ψ ψ

φ
ψ

ψ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

+ + + + −

+ − + + −

−+ + + +

+ + 3 tanFd FD
L

K v
L

φ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟+⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

(317) 

 

 

 

 



 

 

104

And the steering torque control input as  
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2cos 1 tan tan

S vF F
S FD F F

F FD F

S S FD FF FD

F FD F F FD F

S F vF

F FD

K e eF e k e
K L e e

K v eKe vu
K e e K L e e

Ke e
K e e

φ φ
φ φ

φ φ φ φ

φ φ

τ ατ φ
φ

τ τ
φ φ

τ α
φ

⎛ ⎞−
+ − + − ⎜ ⎟⎜ ⎟+⎝ ⎠

⎛ ⎞ ⎛ ⎞
= + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠

−
−

+ F

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

       (318) 

and substituting (317) and (318) in (316), the expression for V&  becomes  

( )2 2 2 2 2
1 4 5 5 2 1 3 2 4 3 3( ) sin ( ) ( ) sinvF F F F FV k K e k K e k K e k K e k K eφ< − − − − −&                         (319) 

With KKK == 21  and 0,,,,,,,, 54321543 >kkkkkKKKK  we have 0<V&  . Therefore the 

torque control inputs in (317) and (318) provides asymptotic stability to the error system 

in (113) i.e. 0→e as ∞→t .     

  

9.2. USE OF NEURAL NETWORK FOR CONTROLLER DESIGN, WEIGHT 
UPDATE RULE AND PROOF OF BOUNDED-NESS OF WEIGHTS 

 

Two single layer functional link neural networks (FLNN) are used for the 

approximation of the terms 1F  and 2F  in(113). These terms involve the friction terms and 

desired accelerations terms that cannot be computed in real life accurately. Hence, online 

neural networks will be used to estimate 1F  and 2F , and they are defined as follows 

1 1( )FnewF = f x              (320) 

1 2( )FnewF = f x                    (321) 

 The activation functions 1 2( ), ( )Fnew Fnewφ φx x can be chosen as a basis set for the 

universal approximation property to hold for single layer FLNN. Then there exists 

weights 1W and 2W such that  

1 1 1 1( ) ( )T
Fnew FnewW φ ε= +f x x               (322) 

2 2 2 2( ) ( )T
Fnew FnewW φ ε= +f x x                (323) 
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with the estimation errors 1ε  and 2ε  bounded. The bounds are given by 1 1Nε ε<  and 

2 2Nε ε<  . The ideal approximating weights are unknown and nonunique. So an 

assumption is made that 1 1BF
W W<  and 2 2BF

W W<  with the bounds 1BW  and 2BW  

known. The Forbenius norm is denoted by
F

. Then estimates of 1( )Fnewf x  and 

2( )Fnewf x are given by  

1 1 1 1
ˆˆ ˆ( ) ( )T

Fnew FnewF W φ= =f x x              (324) 

2 2 2 2
ˆˆ ˆ( ) ( )T

Fnew FnewF W φ= =f x x            (325) 

with 1̂W  and 2Ŵ  being the weights of the two neural networks.  

Now let the new drive and steering torque control inputs be given by  

3 31 2

4 4 4
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x
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+ − +

−+ + + +

+ 3
3 2

tan
sin Fd FD

F LF L F L

K v
K w K e w d

L
φ

ψ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
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⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎛ ⎞
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟+ + + −⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠  (326) 
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5
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cos 1 tan tan

sin1 1
2cos 1 tan tan cos 1 tan tan

(1 ) 1
2cos 1 tan tan
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F FD F

S S FD FF FD
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F FD F F FD F
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− ⎜ ⎟⎜ ⎟+⎝ ⎠
⎛ ⎞ ⎛ ⎞

= + +⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟+ +⎝ ⎠ ⎝ ⎠
⎛−

−
+⎝

x

5 sinFD F Fe k eφ φφ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟⎞⎜ ⎟+ − +⎜ ⎟⎜ ⎟⎜ ⎟⎠⎝ ⎠

  (327) 
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Define 1( )Fnewf x%  and 2( )Fnewf x%  as  

1 1 1
ˆ( ) ( ) ( )Fnew Fnew Fnew= −f x f x f x%                                (328) 

2 2 2
ˆ( ) ( ) ( )Fnew Fnew Fnew= −f x f x f x%              (329) 

An online weight update rule is now developed to guarantee stable tracking and 

yet guarantee bounded-ness of weights. The weight estimation error is defined as 

1 1 1
ˆW W W= −%               (330) 

2 2 2
ˆW W W= −%                (331) 

Let the Lyapunov candidate function in (306) be denoted by OLDV . The new Lyapunov 

candidate function is chosen as  

{ } { }1 1
1 1 1 2 2 2

1 1
2 2

T T
NEW OLDV V tr W L W tr W L W− −= + +% % % %          (332) 

On differentiating (332) and substituting the new drive and steering control torque 

expressions from (326) and (327) , the expression for NEWV&  is given by  

{ } { }
2 2 2 2 2

1 4 5 5 2 1 3 2 4 3 3

1 1
5 2 4 1 1 1 1 2 2 2

( ) sin ( ) ( ) sin

sin ( ) ( )

vF F F F F

NEW T T
F Fnew vF Fnew

k K e k K e k K e k K e k K e
V

K e K e tr W L W tr W L W

φ

φ
− −

⎛ ⎞− − − − −
⎜ ⎟=
⎜ ⎟+ + + +
⎝ ⎠

f x f x
&

& &% % % % % %
     (333) 

where 1 2,L L  are user defined tuning matrices. 

Using (328) through (331) in (333), NEWV&  becomes 

{ } { }
2 2 2 2 2

1 4 5 5 2 1 3 2 4 3 3

1 1
5 2 2 4 1 1 1 1 1 2 2 2

( ) sin ( ) ( ) sin

sin ( ) ( )

vF F F F F

NEW T T T T
F Fnew vF Fnew

k K e k K e k K e k K e k K e
V

K e W K e W tr W L W tr W L W

φ

φ φ φ − −

⎛ ⎞− − − − −
⎜ ⎟=
⎜ ⎟+ + + +
⎝ ⎠

x x
&

& &% % % % % %
    (334) 

Rearranging (334) results in  

( ){ } ( ){ }
2 2 2 2 2

1 4 5 5 2 1 3 2 4 3 3

1 1
1 1 1 1 4 2 2 2 2 5

( ) sin ( ) ( ) sin

( ) ( ) sin

vF F F F F

NEW T T
Fnew vF Fnew F

k K e k K e k K e k K e k K e
V

tr W L W K e tr W L W K e

φ

φφ φ− −

⎛ ⎞− − − − −
⎜ ⎟= ⎜ ⎟+ + + +⎜ ⎟
⎝ ⎠

x x
&

& &% % % %
      (335) 

Selecting the weight tuning laws as  

1 1 1 4 1 1 1
ˆ ˆ( )Fnew vF NEW vFW L K e k L Wφ= −x e&             (336) 

2 2 2 5 2 2 2
ˆ ˆ( ) sin sinFnew F NEW FW L K e k L e Wφ φφ= −x&                                      (337) 

Substituting (336) and (337) in (335) NEWV&  can be written as  
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( ){ } ( ){ }
2 2 2 2 2

1 4 5 5 2 1 3 2 4 3 3

1 1 1 1 2 2 2 2

( ) sin ( ) ( ) sin

ˆ ˆsin

vF F F F F

NEW T T
NEW vF NEW F

k K e k K e k K e k K e k K e
V

k e tr W W W k e tr W W W

φ

φ

⎛ ⎞− − − − −
⎜ ⎟=
⎜ ⎟+ − + −
⎝ ⎠

&
% %

        (338) 

Also from [20]              

{ } 22 ~~~,~)ˆ(~
FFFFF

T WWWWWWWWWtr −≤−=−            (339) 

Using (339) and further simplifying (338)  

( ){ }
( ){ }

2 2
2 1 1 4 1 1 1 1 3 2

2
5 5 2 2 2 2 4 3 3

( ) ( )

sin sin sin

F vF vF NEW B FF F
NEW

F F NEW B FF F

k K e e k K e k W W W k K e
V

e k K e k W W W k K eφ φ

⎛ ⎞− − + − −⎜ ⎟
≤ ⎜ ⎟

− + − −⎜ ⎟
⎝ ⎠

% %
&

% %
    (340) 

The term given by  

( )
2 2

1 11
1 4 1 1 1 1 1 1 1 42 4

NEW BB
vF NEW B NEW vFF F F

k WWk K e k W W W k W k K e⎛ ⎞+ − = − − +⎜ ⎟
⎝ ⎠

% % %   (341) 

is guaranteed positive as long as  

1

2 2
1 1 1 1

1 1
1 44 2 4FD

NEW B B B
vF e WF

k W W We b or W b
k K

≥ ≡ > + ≡%           (342) 

The term given by  

( )
2 2

2 22
2 2

5 5 2 2 2 2

5 5

2 4sin
sin

NEW BB
NEW F

F NEW BF F

F

k WWk W
k K e k W W W

k K e
φ

φ

⎛ ⎞⎛ ⎞− −⎜ ⎟⎜ ⎟+ − = ⎝ ⎠⎜ ⎟
⎜ ⎟+⎝ ⎠

%
% %       (343) 

is guaranteed positive as long as  

2

2 2
2 2 2 2

2 2
5 5

sin
4 2 4FD

NEW B B B
F e WF

k W W We b or W b
k Kφ ≥ ≡ > + ≡%            (344) 

So, NEWV&  is negative outside a compact set. Let the NN function approximation 

property holds for 1( )Fnewf x  and 2( )Fnewf x with an accuracy of 1Nε  and 2Nε  respectively 

for all 1Fnewx  and 2Fnewx  in the compact sets 
11 1 1{ | }

FnewFnew Fnew Fnew xS x x b≡ < and 

22 2 2{ | }
FnewFnew Fnew Fnew xS x x b≡ < with 

1Fnewx vFBb e>  and 
2

sin
Fnewx FBb eφ>  where vFBe  and 

sin FBeφ  are the bounds on the desired trajectory vFDe  andsin FDeφ . 

Define 
1 0 1{ | ( ) /( )}

VF Fnewe vF VF x vFBS e e b e c c≡ < − +            (345) 
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2 2 3{sin | sin ( sin ) /( )}
F Fnewe F F x FBS e e b e c c

φ φ φ φ≡ < − +                                          (346) 

Now selecting the gains 

1

2
1 1 0 1

1 4
( )

4( )
Fnew

NEW B

x vFB

k W c ck K
b e

+
>

−
               (347) 

2

2
2 2 2 3

5 5
( )

4( sin )
Fnew

NEW B

x FB

k W c ck K
b eφ

+
>

−
                 (348) 

ensures that the compact sets defined by 
1FDvF ee b< and 

2
sin

FDF ee bφ < are contained 

in evFS  and e FS φ . This guarantees that the error ,vF Fe eφ and the NN weight estimates 1̂W  

and 2Ŵ are uniformly ultimately bounded (UUB) [20] with bounds given by (342) and 

(344).  

 

9.3. FORMATION STABILITY  
 

Consider a formation of 1N +  robots consisting of a leader “ il ” and N followers. 

Let the torque control inputs [ ]TL Luτ be applied to the leader such that the leader tracks 

a virtual reference robot. The torque control inputs for the leader can be derived in a 

similar way as the torque control inputs for the follower. It is assumed that the leader’s 

motion is known i.e. there exists a control law that drives the leader independently to its 

desired trajectory. The torque control inputs by (326) and(327). Then the origin given by 

1 2 3 1 2 3

TT T T T T
l l l vl l F i F i F i vFi FiE e e e e e e e e e eφ φ⎡ ⎤= ⎣ ⎦ where (5( 1)) 1N XE +∈ , which 

represents the augmented position, orientation and velocity tracking error systems for the 

leader “ il ” and N followers, respectively, is asymptotically stable in the presence of 

uncertainties and noise is proved below.  

Consider the following Lyapunov candidate function 

1
1

N

Formation NEWi lV V V= +∑                             (349) 

where  NEWiV is given by (332) and  

1 1 2 3

2 2 2 2 2
l l l l vl lV e e e e eφ= + + + +                                                                                              (350) 
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Also (349) is positive for
1 2 3 1 2 3 0

TT T T T T
l l l vl l F i F i F i vFi FiE e e e e e e e e e eφ φ⎡ ⎤= ≠⎣ ⎦ . 

Differentiating  (349) yields  

1
1

N

Formation NEWi lV V V= +∑& & &                   (351) 

In the previous subsection it has been proved that NEWiV for all 1i toN=  individually is 

negative outside a compact set and that the errors and the NN weight estimates 1̂W  and 

2Ŵ are uniformly ultimately bounded (UUB). Hence, when 0NEWiV <&  for all 1i toN= , so it 

automatically follows that 
1

0
N

NEWiV <∑ & . Also, the leader torque control inputs are 

designed such that the errors go to zero asymptotically and hence, 
1l

V& is negative. 

Therefore, 0FormationV <& , and the entire formation is asymptotically stable. 

 

9.4. RESULTS AND DISCUSSION  
 

A single leader single follower scenario is considered and the simulations are 

carried out using MATLAB for the same.  The leader executes a circular trajectory with 

radius = 60 m, linear velocity of 5 m/sec and an angular velocity ~ 0.08 rad/sec. It is 

desired for the follower to execute a circle of radius = 56 m being parallel to the leader at 

all times. So the desired relative distance to be maintained is 4.0774 m and a relative 

bearing angle of 78.8199 degrees. The gains used during simulation are 1K = , 3 5.5K = , 

4 45K = , 5 45K = , 1 20k = , 2 5k = , 3 2.1k = , 4 40k = and 5 1k = . The results obtained are 

presented below.  

Figure 9.1 shows the position and orientation of the follower. The trajectories 

traced by the leader and follower are shown in Figure 9.2. The drive and steering torque 

plot is given in Figure 9.3. From the Figure 9.4, Figure 9.5 and Figure 9.6 it can be seen 

that the position errors and the velocity error do not go to zero. This is reflected in the 

follower not being able to keep the formation which can be observed from Figure 9.7. 

Figure 9.8 shows the error rate plots and Figure 9.9 shows the velocity profile of the 
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follower. The optimal set of gains that will make the errors go to zero could not be 

arrived at.  
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Figure 9.1 Actual and Desired Position and Orientation of the Follower  
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Figure 9.2 Leader and Follower Trajectories 
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Figure 9.3 Drive and Steering Torques 
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Figure 9.4 Position and Orientation Errors in Body Coordinates 
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Figure 9.5 Position and Orientation Errors in Inertial Coordinates 
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Figure 9.6 Velocity and Steering Angle Error Plots 
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Figure 9.7 Relative Distance and Relative Bearing of the Follower w.r.t. Leader 
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Figure 9.8 Error Rate Plots 
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Figure 9.9 Linear and Angular Velocity Profile of the Follower  
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