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ABSTRACT 
 

Path planning is used in, but not limited to robotics, telemetry, aerospace, and 

medical applications.  The goal of the path planning is to identify a route from an 

origination point to a destination point while avoiding obstacles.  This path might not 

always be the shortest in distance as time, terrain, speed limits, and many other factors 

can affect the optimality of the path.  However, in this thesis, the length, computational 

time, and the smoothness of the path are the only constraints that will be considered with 

the length of the path being the most important.  There are a variety of algorithms that 

can be used for path planning but Ant Colony Optimization (ACO), Neural Network, and 

A* will be the only algorithms explored in this thesis. 

The problem of solving general mazes has been greatly researched, but the 

contributions of this thesis extended Ant Colony Optimization to path planning for 

mazes, created a new landscape for the Neural Network to use, and added a bird’s eye 

view to the A* Algorithm.  The Ant Colony Optimization that was used in this thesis was 

able to discover a path to the goal, but it was jagged and required a larger computational 

time compared to the Neural Network and A* algorithm discussed in this thesis.  The 

Hopfield-type neural network used in this thesis propagated energy to create a landscape 

and used gradient decent to find the shortest path in terms of distance, but this thesis 

modified how the landscape was created to prevent the neural network from getting 

trapped in local minimas.  The last contribution was applying a bird’s eye view to the A* 

algorithm to learn more about the environment which helped to create shorter and 

smoother paths. 
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1. INTRODUCTION 

 

There are various searching techniques, algorithms, and path planning problems 

such as Hybrid Binary Particle Swarm Optimization (HBPSO) algorithm for a Multi-

vehicle Search Area coverage problem [1], Differential Evolution Particle Swarm 

Optimization (DEPSO) algorithm for clustering [2], and Adaptive Critic Design for the 

generalized maze problem [3-4].  This thesis will focus only on the generalized maze 

problem using Ant Colony Optimization (ACO), Neural Networks (NN), and A* 

(pronounced A-Star) algorithms. 

Ant Colony Optimization (ACO) [5-13] was the first algorithm considered for this 

thesis.  There are many different versions of ACO which have been used for problems 

such as routing, assignment, scheduling, subset, and others [5, 9].  Most of the problems 

ACO is used for are NP-hard problems [5, 9] and most notably the traveling salesman 

problem (TSP) [5, 9-11].  This thesis expanded ACO to path planning for mazes.  Since 

the goal of the TSP is to be able to find the shortest path by traveling to each city once 

and returning to the starting city, finding the shortest path through a maze should be 

similar. 

It is important to note that typically ACO is applied to small scale TSP not 

necessarily to make strides in solving the TSP problem but more so to be used as a 

benchmark to show how that version of ACO can be used as an optimization tool and 

possibly how it compares to other algorithms [5, 9-11]. Using TSP as a benchmark is not 

limited to ACO or even to small scale TSP problems, Mulder and Wunsch [14] not only 

compare multiple algorithms but compare how they scale by using large scale TSP 
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problems (1000+ cities).  It is also important to note that TSP problems, especially large 

scale TSP problems, are approached by heuristic methods [14-17].  The heuristic uses 

special knowledge about the problem and incorporates it to help simplify the problem or 

allows certain assumptions to be made which in turn helps to solve the problem quicker.  

Since this is usually an estimate, the result might not always be optimal but should return 

a close to optimal solution as long as the heuristic was chosen appropriately.  This can 

most be seen by the algorithms discussed in this paper especially in Section 7.2 where 

Dijkstra’s algorithm, which doesn’t have a heuristic [18-20], is compared to A*, which is 

the same algorithm but with a heuristic [18-22]. 

The ability of the algorithm to learn over time by using the collective swarm 

knowledge of how the ants have explored previously and its ability to be used for real-

time environments, as opposed to needing a simulated model of the environment, made 

this algorithm desirable.  Using a simulated model of the environment to plan a path 

might not be possible for unknown environments or environments that are constantly 

changing.  Since the path created depended on a stochastic process of the algorithm, the 

randomization caused the path to be very jagged.  The quality of the path and the 

computational time in creating the path were also affected by what the parameters for 

ACO were set to.  This is covered in more detail in Section 3.1.  One method that might 

have improved the performance would have been to make the ants stubborn [12, 13]. 

A new neural network method for path planning created by Zhong et al. [23] was 

the next algorithm to be employed.  Unlike ACO, this algorithm could be used in 

environments that change with the respect to time, had a much smaller computational 

time, and did not rely on parameters or randomization.  For the environments studied in 
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this thesis, the algorithm tended to become stuck in local minima.  Section 5.1 describes a 

way to improve the algorithm to avoid this problem.  While the algorithm was superior to 

ACO for the problems investigated, it generated paths that had zero radius or sharp turns.  

It was not immediately obvious how one would modify the neural network algorithm to 

favor smoother paths, which motivated us to explore other algorithms.  Instead of looking 

at other algorithms, further research into biasing neural networks to avoid obstacles might 

have yielded better results [24]. 

A* [18-22] was studied in Section 6 and 7 of this thesis because of its known 

performance and popularity as a path planning algorithm.  A* finds an optimal path in 

terms of distance but is generally not used for real-time environments since the 

environment needs to be static, or unchanging.  The A* algorithm was improved by using 

a “bird’s eye view”.  This allowed the algorithm to generate smoother paths, which could 

possibly allow the robot to traverse the paths faster, and avoids the need to have as many 

sharp turns. For environments that are constantly changing, a modified version of A* 

called LRTA* can be used [25]. 

The environments for each algorithm were all modeled using discrete space by 

creating an evenly spaced binary matrix where nodes that contained a value of one were 

considered travelable and nodes with a zero represented an obstacle.  This method was 

chosen for simplicity.  Since the nodes were discretely spaced instead of being 

continuous, the paths were not as good as they could have been.  Some of the issues with 

these paths include traveling too close to obstacles, creating 90 degree angles with small 

turning radius, and producing a jagged path. 
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Traveling too close to obstacles could cause the mobile robot to hit an obstacle or 

could lead to having to make sharper turns.  Having sharp turns or 90 degree angles with 

small turning radius could cause longer traveling time or could generate turns that are not 

feasibly possible for the mobile robot.  Jagged paths might slow down the robot and 

could be difficult to follow.  Many of these algorithms are also based on the length of the 

path instead of the time required to travel the path.  Therefore, creating or modifying an 

algorithm that could produce a path without these issues was desired.  Having more 

nodes to represent the environment could have also helped with some of these problems 

and would have made the paths seem more continuous but increasing the number of 

nodes also increases the computational time since there will be more nodes that would 

have to be traveled through and more searching done by the algorithms. 

All three algorithms (ACO, NN, and A*) will be covered respectively in sections 

2-7.  Each algorithm will be broken into two different sections, a literature review part 

and an implementation part.  The literature review section will give a brief explanation of 

each algorithm.  The implementation section will focus on modifications made by this 

thesis, issues discovered with the algorithm, and the results for the algorithm. 
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2. ACO LITERATURE REVIEW 

 

 Ant Colony Optimization simulates the behavior of biological ants.  For path 

planning, this behavior is that of the foraging ants.  Dorigo [5] developed this foraging 

behavior which he called the Ant System (AS).  Foraging ants randomly explore in 

search for food.  Once a food source is found, the ants deposit pheromone from the food 

back to the colony.  This pheromone trail attracts other ants.  Since only one pheromone 

deposit has been made, the pheromone level will be weak and will have limited attraction 

to other ants.  This means that most ants will still randomly explore for food instead of 

following the initial ant’s path. 

Over time as ants lay pheromone across the paths, the pheromone levels will 

increase.  Even though each ant’s path is different, there is generally some overlapping 

for certain areas especially where the path is the best.  Since multiple ants cross this 

section, pheromone is deposited at a much quicker rate. The areas with the largest amount 

of pheromone attract the most ants.  This reduces the amount of exploration and causes 

the ants to exploit the pheromone paths.  As time passes, pheromone slowly decays which 

weakens the attraction and if pheromone is not replenished, the path will disappear.  This 

allows the longer, rarely traveled paths to be forgotten.  Eventually the ants will converge 

on the shortest path. 
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3. ACO IMPLEMENTATION 

 

3.1. PARAMETERS 

 In order to replicate the foraging behavior artificially, all of the parameters 

(population size, pheromone decay rate, pheromone weight, heuristic weight, and 

pheromone intensity) need to be optimized.  However, since optimizing these parameters 

is a nonlinear multivariable problem, finding an optimized value is difficult.  The 

methods typically used to optimize these parameters are with trial-and-error where the 

length and computational time is checked with each parameter modification or to use 

another optimizing algorithm.  Both of these methods add to the computational time, and 

the values found for each parameter will have to constantly change as the environment 

changes.  Trial-and-error was used in this thesis. 

3.1.1. Population Size.  Having a large population size gives a more thorough 

search but also increases computational time due to more searches being done.  The 

larger the environment, the larger the population size will have to be to explore it. 

3.1.2. Pheromone Decay.  The pheromone decay rate determines the rate at 

which paths are forgotten.  Having poor paths remain in the environment to be explored 

over and over again is a waste of computational time, however, if the decay rate is too 

fast, it might be possible to forget an optimal path due to the path not remaining long 

enough for ants to deposit enough pheromone to be biased to it. 

3.1.3. Heuristic Weight.  The heuristic weight is the bias to the goal based on the 

heuristic information.  The heuristic information is the distant to the goal and is 

calculated using the Euclidean Distance Formula.  If the value for the heuristic weight is 
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too low then there will be no feedback to the goal and the ants’ paths will depend only on 

the pheromone quantity.  If the heuristic weight is too high then there will be no 

exploration and will only be a greedy search. The ants might also get trapped. 

3.1.4. Pheromone Weight.  The pheromone weight represents how strongly the 

pheromone influences the ant’s behavior.  If it’s too low then the searching will be based 

only on the heuristic information but if the heuristic weight is low too when the 

pheromone weight is low then the ants will randomly explore.  When the pheromone 

weight is too high, there will be very little exploration.  Instead, previous discovered 

paths will be exploited. 

3.1.5. Pheromone Intensity.  The amount of pheromone applied to each node is 

the pheromone intensity.  The pheromone quantity of each node is stored in matrix.  The 

pheromone intensity is the only parameter that has an equation to set it.  All nodes need 

to start with an equal amount of pheromone.  It should be equal so there is no initial bias.  

If the pheromone level is initialized too low the ants will converge too quickly and an 

optimal path will not be found.  When the pheromone intensity is too high, there will be 

many wasted iterations waiting for the pheromone to evaporate enough for the ants’ paths 

to be biased by the pheromone levels since the ants deposit only a small amount of 

pheromone.  Pheromone intensity can be determined by the following equation which is 

still estimated: 

*0
f

m=τ  

Where: 

− 0τ  is the pheromone intensity 

− m  is the number of ants 
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− *
f is an estimation of the optimal value, or distance, of the shortest path for the 

function. 

 

3.2. TOUR CONSTRUCTION 

Ants use a probabilistic selection based on the quantity of the pheromone and the 

heuristic information to decide which node to travel to.  The ACO literature [5-9] does 

not describe how these probabilities were applied so the probability mass function was 

used.  In order to prevent the ants from traveling through a single node multiple times 

during a single trip, a revisiting prevention method was created. 

Since obstacles have a pheromone value of zero to prevent being traveled to, a 

temporary pheromone matrix was created to set the pheromone level to zero for 

previously traveled to nodes.  A temporary matrix is initialized as an exact copy of the 

actual pheromone values at the start of each ant’s tour.  A temporary matrix is used 

because the actual pheromone values still need to be used for future explorations.  Each 

time an ant travels to a new node, the temporary pheromone value will be set to zero to 

prevent the ant from staying at that node or returning to it but this could cause the ant to 

be able to trap itself by being surrounded by nodes with a pheromone level of zero.  

Therefore, any time the current node and surrounding nodes are zero, the temporary 

pheromone matrix is re-initialized with the same values as the actual pheromone matrix.  

Since it is still possible to visit a node more than once in a tour, a check is done to see 

when the first and last time a repeated node is visited.  All nodes in-between the first and 

last time are removed from the tour. 
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3.3. RESULTS 

 There are many different versions of ACO but only three of them were tested: Ant 

System (AS) [5, 9] Figure 3.1., Elitist Ant System (EAS) [5, 9] Figure 3.2., and Rank 

Based Ant System (ASrank) [5, 9] Figure 3.3.  The computational time and paths change 

each time the algorithms are used.  This can be seen from Figure 3.4. where Ant System 

is simulated five times.  Do to these changes, the average and standard deviation for 

computational time and path lengths of each algorithm for five trials are recorded in 

Table 3.1.  The parameters were optimized through trial-and-error for AS, and then, those 

same parameters were used for ASrank and EAS. 

 

 

 

   
   Figure 3.1. Ant System   Figure 3.2. Elitist Ant System 

 

 

 

 



10 

   
      Figure 3.3. Rank Based Ant System      Figure 3.4. AS Simulated 5 Times 

 

 

 

 

Table 3.1. ACO Simulated Five Times Result 

Name Average 

Computational 

Time 

Standard 

Deviation of 

Time 

Average 

Path Length 

Standard 

Deviation of 

Path Length 

Ant System 48 minutes 

27.2134 seconds 

7 minutes 

40.5503 seconds 

309.4074 5.2346 

Elitist Ant 

System 

48 minutes 26.4 

seconds 

3 minutes 

53.0489 seconds 

309.4476 10.8615 

Rank Based Ant 

System 

54 minutes 

11.0868 seconds 

5 minutes 

28.6259 seconds 

305.1532 6.1198 

 

 

 

 

3.4. CONCLUSION 

Upon implementation of the algorithm, it was discovered that, due to the 

randomization and needing to optimize the parameters, paths were jagged and were not 

optimal in terms of distance. The over-all path as far as which areas were best to travel 

through was optimal, but how it traveled through those areas was far from optimal. Most 

of the paths contained “zig-zags” instead of being a straight line.  The ants use a 
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probabilistic selection based on the quantity of pheromone and the heuristic information 

when deciding which node to travel to which causes the randomization.  This 

randomization is good for finding different paths but bad for being able to create an 

optimal path and causes the paths to not be smooth. 

Even though the algorithm learned over time to improve its path, it would not 

work in a real-time environment where the environment constantly changes because of 

parameter changes and needing time to learn.  It would work best in an environment 

where it could first be trained offline and then when a change in the environment 

occurred it would need to have time to learn the new environment. For each change, the 

parameters would need to be re-optimized, but I am unaware of a formula to optimize 

these parameters.  Trial-and-error or another optimizing algorithm would have to be used 

instead which both methods would add to computational time.  It took ACO on average 

over 48 minutes computationally to create the path not counting time spent for trial-and-

error.  It took the neural network and A* only seconds to solve the same maze and they 

were both able to find shorter paths than ACO.  The time and paths might have been 

improved by making the ants stubborn. Stubborn ants can differentiate their own 

pheromone compared to other ants’ pheromone and will be biased more to their own 

pheromone which helps to create diversity in the paths [12, 13]. 
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4. NEURAL NETWORK LITERATURE REVIEW 

 

Neural networks have successfully been applied to path planning by using neural 

networks to recognize patterns for a wall following algorithm [26], using spiking neural 

networks with dynamic memory for autonomous mobile robots [27], and using Hopfield 

neural networks for direction in a direction map [28].  A different collision-free path 

planning algorithm that uses a Hopfield-type neural network that does not need any 

previous knowledge of the search space or learning procedures was purposed by Zhong et 

al. [23].  This was accomplished by treating the target as an energy source.  The energy 

was propagated in a square formation from the target to all of the connecting neurons 

which represent free spaces in the search space.  The neurons not connected to other 

neurons represented obstacles and thus, were never given any energy.  This energy was 

then used as a landscape in which the highest energy, the target, represented the peak of 

the landscape while the obstacles represented the lowest elevation of the landscape.  By 

traveling up the steepest gradient from the starting point, an optimal or close to optimal 

path was found in terms of shortest distance.  The main ways this paper differs from the 

paper purposed by Zhong et al. [23] was by creating a separate landscape instead of using 

the actual energy and by propagating in a cross fashion instead of a square formation. 
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5. NEURAL NETWORK IMPLEMENTATION 

 

5.1. PROPAGATION 

To propagate the energy, a matrix was created to store the amount of energy of 

each neuron in the search space.  The target was then given an initial integer value of one 

while all other neurons were set to zero as shown in Figure 5.1. 

 

 

 

 
Figure 5.1.  Initial Energy with Target at (3,3) 

 

 

 

 

Another matrix was created which was used for the elevation.  This matrix adds a 

one to any position within itself that has energy located at that position (Figure 5.2.). 

 

 

 

 
Figure 5.2.  Elevation of Figure 5.1. at (3,3) 



14 

 

 

 

 

The energy matrix values were propagated by shifting the energy up one node, 

down one node, left one node, and to the right one node.  These shifts were then added 

back into the original energy matrix after being multiplied by a weight.  The weights for 

diagonal movements should have been given a value of 0.5 and all horizontal and vertical 

movements should have a weights of 1 [23], but since the energy was not used as the 

landscape, all weights were set to 1.  A check was then done to see if any of these nodes 

with energy were unconnected neurons.  If they were unconnected, the energy was reset 

to zero for that particular neuron (Figure 5.3.).  

 

 

 

 
Figure 5.3.  Energy After First Propagation 

 

 

 

 

The main difference from this method and the method purposed in the neural 

network paper [23] was that only the neighbors above, below, to the left, and to the right 

were allowed to propagate, not diagonal, and since energy wasn’t used for the landscape, 

there was no additional energy deposited to the target after each iteration.  This can be 

seen from the following equations: 
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Where: 

M = The matrix 

R = The number of rows in the matrix 

C = The number of columns in the matrix 

Ri <<1  

Cj <<1  

 

After the energy propagation, the elevation matrix added a one to itself for any 

node that contained energy (Figure 5.4.). 

 

 

 

 
Figure 5.4.  Elevation of Figure 5.3 

 

 

 

 

  This process continued until a certain number of iterations had passed or until 

the energy had propagated from the target to the starting point (Figures 5.5.-5.6.).   
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Figure 5.5.  Final Energy 

 

 

 

 

 
Figure 5.6.  Final Elevation 

 

The target, which should have the largest value for gradient decent to work, is 

located at (3,3).  Figure 5.6. has the largest value at the target at (3,3) but in Figure 5.5. 

the largest value is at (4,4) which is not the correct target which is why the landscape in 

Figure 5.6. had to be used instead of the energy.  Iterations were used to prevent an 

infinite loop just in case there was no solution to the search space such as obstacles 

completely surrounding the target space preventing any movement to it. 

 

5.2. RESULTS 

The results of the simulations are illustrated in Figures 5.7.-5.15.  These paths 

almost identically match those from the neural network paper [23] even though the 

weights, landscape, and propagation were different from the purposed method.  Another 



17 

main difference was instead of plotting the path on the vertices of the grid they were 

plotted on the center of the free space squares.  Each simulation took less than a second. 

Propagating energy from the target to the starting point as purposed from Zhong 

et al. [23] did not always create a peak at the target in which case the path never traveled 

to the target.  They added an additional amount to the target, but since the propagation 

expands exponentially, adding an additional amount did not solve the problem.  Instead, 

the target had to be manually set once the propagation was done to have the most energy.  

Because energy is propagated from each neighbor, any neuron next to an obstacle (an 

unconnected neuron) did not receive as much energy from its neighbors.  This was 

desired to keep the robot away from the obstacles but this also caused multiple peaks to 

form which the path would get stuck on and was also the reason why the target was not 

always the maximum point.  No where in the paper did it state how their algorithm 

prevented these problems. 

Using a separate landscape based on if any energy was present at each specific 

location was used instead.  This method ensured the target was always at the maximum 

and that all the obstacles were minimums.  Propagating in a square formation as in the 

replicated paper caused certain areas to not change in elevation for a few steps.  When 

looking at the surrounding neighbors, it appeared that the neuron was a peak even though 

at least one neighbor had the same value.  So instead of making a sloping elevation, it 

made a stair-like elevation.  This could be fixed in the code where the robot always has to 

choose a new neuron to travel to, but in certain dynamic situations, it might be better for 

the robot to wait where it is instead of moving.  Propagating in a cross fashion solved this 

problem by evenly disperse the elevation of the landscape which made it sloped.  The 
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weights recommended were then used in the computing of the path instead of in 

propagating the energy even though some weights were also used in the propagation. 

The modified neural network method purposed by this thesis can be seen in 

Figures 5.7.-5.15.  Figures 5.7-5.9. show the path found using the new method for three 

different mazes.  Figures 5.10.-5.15. contain elevations that correspond to the three 

different mazes.  Table 5.1. displays the average and standard deviation for 

computational time and path lengths of each maze for five trials. 

 

 

 

  
Figure 5.7.  First Maze    Figure 5.8.  Second Maze 
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Figure 5.9.  Third Maze      Figure 5.10.  First Maze 2D Elevation 

 

 

 

 

   
     Figure 5.11.  First Maze 3D Elevation   Figure 5.12.  Second Maze 2D Elevation 
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  Figure 5.13.  Second Maze 3D Elevation   Figure 5.14.  Third Maze 2D Elevation 

 

 

 

 

 
    Figure 5.15.  Third Maze 3D Elevation 

 

 

 

 

Table 5.1. Neural Network Simulated Five Times Result 

Name Average 

Computational 

Time 

Standard 

Deviation of 

Time 

Average 

Path Length 

Standard 

Deviation of 

Path Length 

First Maze 0.8061 seconds 0.0134 seconds 16 0.0 

Second Maze 0.9442 seconds 0.0790 seconds 124 0.0 

Third Maze 1.2730 seconds 0.0558 seconds 252.51 0.0 
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5.3. CONCLUSION 

By propagating energy through the connected neurons, a landscape was created in 

which the target was at the peak while the obstacles were at the bottom.  Even though a 

different method was used in creating the landscape, propagating the energy, and using 

the weights, the results were very similar to what Zhong et al. [23] found.  This is most 

likely because the overall idea of how the neural network is suppose to work by traveling 

up the gradient to the target since the target is the largest while the starting point is the 

smallest besides for obstacles was exactly the same.  In their paper, they did not fully 

describe their process well enough for it to be replicated using the exact same method as 

them. 

The neural network was able to solve each maze substantially faster than ACO.  

Even the path discovered was smoother and had a better result in terms of distance.  

Every path could be exactly replicated since there was no randomization or probabilities 

used.  There were no parameters that needed to be optimized so the exact algorithm could 

be used on any path planning problem.  Since the gradient decent method was used, the 

only way to modify the paths to become smoother would be to improve the elevation.  

The original method [23] was supposed to work on dynamic problems and keep a slight 

distance from all obstacles but the method actually employed will work only on static 

environments and has no distant requirement from obstacles as long as it does not collide 

with them.  Since the elevation depends on the environment, modifying the elevation to 

get smoother paths would be difficult.  As stated in the introduction, adding an extra 

biasing to the neural network could possibly solve this problem [24]. 
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6. A* LITERATURE REVIEW 

 

The A* algorithm was chosen for its popularity, its ability to find an optimal 

solution, and its use in navigation systems and video games [18-22].  A*’s ability for its 

paths to be replicated by constantly finding the optimal solution and for the search 

algorithm to be easily modified made this algorithm desirable for path planning.  A*, 

however, will only work for static environments, environments that do not change, since 

all obstacles and costs need to be known. 

A* is a combination of both an exhaustive search, guaranteed to find the optimal 

path but will typically require a large amount of computational time, and a greedy search, 

directs the search towards the goal and is generally faster but will not usually find the 

optimal solution [18-22].  The movement cost, a known cost from the starting point to get 

to its current location, is the exhaustive part. The heuristic, an estimation of the distance 

from its current location to the desired ending location, is the greedy part [18-22].  Since 

A* is a combination of each, the algorithm is guaranteed that an optimal path will be 

found and usually in a faster time than an exhaustive search. 

There are numerous ways to calculate these costs. Which way works the best 

depends on the method of travel and the desired speed and accuracy of the algorithm.  If 

only horizontal and vertical movements are allowed, the Manhattan Distance Formula 

should work the best for accuracy, but if movement in all directions is allowed, then the 

Euclidean Distance Formula would most likely be a better option [19-21].  Other methods 

and situations for choosing the correct heuristic are thoroughly covered by Amit [18].  A* 

without the heuristic part is known as Dijkstra’s algorithm [18-20]. 
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7. A* IMPLEMENTATION 

 

7.1. BIRD’S EYE VIEW 

 A* consists of two lists, an open-list and a closed-list.  The open-list contains a 

list of nodes that can currently be traveled to and the closed-list contains all the nodes 

already traveled to [18-22].  The typical version of A* checks all adjacent nodes from its 

current location and adds them to the open-list as long as they are not obstacles or already 

on the open or closed list.  The movement cost is then calculated from its current location 

for all adjacent nodes that are free of obstacles.  If this new movement cost is lower than 

the previous calculated one, then that becomes the new value for the movement cost and 

current node is remembered as the best way to get to that node. The following equation 

uses the Euclidean Distance Formula for calculating the movement cost. 

22 )()( cncncn ccrrGG −+−+=  

Where: 

− nG  movement cost of the adjacent node. 

− cG  movement cost of the current node. 

− nr  row coordinate of the adjacent node. 

− cr  row coordinate of the current node. 

− nc  column coordinate of the adjacent node. 

− cc  column coordinate of the current node. 
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The heuristic cost will also be calculated but only for the adjacent nodes that are free 

of obstacles and where the heuristic has yet to be calculated since the heuristic cost will 

never change. The Euclidean Distance Formula was used in the following heuristic cost 

equation. 

22 )()( nfnfn ccrrH −+−=  

Where: 

− nH  heuristic cost of the adjacent node. 

− fr  row coordinate of the desired ending location. 

− nr  row coordinate of the adjacent node. 

− fc  column coordinate of the desired ending location. 

− nc  column coordinate of the adjacent node. 

 

The movement and heuristic costs are added together for each node on the open list, 

and the node with the lowest overall cost will become the new current node. 

nnn HGF +=  

Where: 

− nF  fitness cost of the adjacent node. 

− nG  movement cost of the adjacent node. 

− nH  heuristic cost of the adjacent node. 

 

This process is repeated until the desired ending location is reached. 
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 Instead of using the adjacent nodes, a bird’s eye view was implemented.  The 

bird’s eye view was created by first checking the adjacent nodes for obstacles.  If an 

obstacle was found in any of the adjacent nodes, then the original A* algorithm was used.  

However, if there are not any obstacles, then the unchecked adjacent nodes from the 

original adjacent nodes are checked.  This square-formation expansion is continued until 

at least one obstacle is found and all nodes are checked from that square formation.  The 

outer parameter nodes of this square are the only nodes added to the open-list.  The rest 

of the A* algorithm works the same. 

 

7.2. RESULTS 

 Using the bird’s eye view method sometimes lowered the computational time 

required to find the shortest path but some mazes it also increased the time.  It was also 

able to find a better path for certain mazes.  These results can be seen from Figures 7.1-

7.12 and Table 7.1.  By having a larger viewing area for creating a path, allowed the 

paths to be more direct and even though not used in this thesis, provided knowledge if 

there was enough room for arc style turns to be used.  The rest of the algorithm’s 

searching procedure was the same as the original A*. 
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       Figure 7.1.  Dijkstra’s Test Maze  Figure 7.2.  A* Test Maze 

 

 

 

 

   
 Figure 7.3.  A* W/ Bird’s Eye Test Maze      Figure 7.4.  Dijkstra’s First Maze 
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Figure 7.5.  A* First Maze            Figure 7.6.  A* W/ Bird’s Eye First Maze 

 

 

 

 

   
     Figure 7.7.  Dijkstra’s Second Maze          Figure 7.8.  A* Second Maze 
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Figure 7.9.  A* W/ Bird’s Eye Second Maze      Figure 7.10. Dijkstra’s Third Maze  

 

 

 

 

   
           Figure 7.11.  A* Third Maze           Figure 7.12.  A* W/ Bird’s Eye Third Maze 
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Table 7.1. A* Simulated Five Times Result 

Name Average 

Computational 

Time 

Standard 

Deviation of 

Time 

Average 

Path Length 

Standard 

Deviation of 

Path Length 

Dijkstra 

Test Maze 

0.0348 seconds 0.0063 seconds 9.65685 0.0 

A* 

Test Maze 

0.0164 seconds 0.0087 seconds 9.65685 0.0 

A* W/ Bird-Eye 

Test Maze 

0.0136 seconds 0.0158 seconds 9.18204 0.0 

Dijkstra 

First Maze 

0.0230 seconds 0.0045 seconds 14.2426 0.0 

A* 

First Maze 

0.0142 seconds 0.0072 seconds 14.2426 0.0 

A* W/ Bird-Eye 

First Maze 

0.0224 seconds 0.0222 seconds 14.2426 0.0 

Dijkstra 

Second Maze 

0.2570 seconds 0.0208 seconds 107.012 0.0 

A* 

Second Maze 

0.2172 seconds 0.0119 seconds 107.012 0.0 

A* W/ Bird-Eye 

Second Maze 

0.2052 seconds 0.0171 seconds 107.012 0.0 

Dijkstra 

Third Maze 

25.4634 seconds 0.4297 seconds 247.823 0.0 

A* 

Third Maze 

10.4932 seconds 0.0206 seconds 247.823 0.0 

A* W/ Bird-Eye 

Third Maze 

15.9394 seconds 0.0845 seconds 245.191 0.0 

 

 

 

 

7.3. CONCLUSION 

 Using a bird’s eye view of the search space, attempted to improve the 

computational time of the A* algorithm, tried to create smoother paths, and made an 

effort to develop the ability of making arc turns.  However, as the results showed, the 

computational time to discover the shortest path actually got worse for some mazes but 

did better for other ones.  This was because the bird’s eye view method requires more 

computational time to process all of the additional knowledge about the search space.  
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This computational time lost is usually made up by the fact that certain nodes can be 

skipped over which decreases the number of steps. Having less steps, can make the bird’s 

eye view faster than the normal A* method.  The bird’s eye view had more computational 

time than A* for the mazes where steps were rarely skipped.  The length of the path and 

creating a smoother path had similar results by improving for some mazes and other 

mazes there were no improvements.  Once again, this performance improves if steps can 

be skipped.  One change, that should help to improve the bird’s eye method by allowing 

more steps to be skipped, is to change the view from a uniform square view to a more 

realistic view.  Instead of expanding out until an obstacle is reached, it would work better 

if the expansion in that one particular direction stops while the other directions still 

expand until they reach an obstacle. 
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8. CONCLUSION 

 

 Even though Ant Colony Optimization can improve itself over time, the algorithm 

had too long of a computational time and found sub-optimal solutions.  Not every ACO 

algorithm was tested but the ones that were tested (Ant System, Elitist Ant System, and 

Rank Based Ant System) typically had similar results.  The algorithm could be modified 

but because of the parameters and randomization looking into neural networks seemed 

like a better solution. 

 The neural network did not have parameters or randomization and had a small 

computational time, but it still had problems of its own.  The neural network could work 

in environments that changed over time, but when replicating the results from the 

literature [23], the algorithm got trapped in local minimas so a slight variant of the 

algorithm was used instead.  This variation no longer got trapped but changed the 

algorithm where it could only be used for static environments.  Due to the propagation 

and using gradient decent, the neural network could not easily be modified and this meant 

creating a method for smooth turning arcs would be difficult. 

 A* was the final algorithm tested.  It had a similar performance to that of the 

neural network but was much easier to modify since its path was based on formulas 

instead of propagation.  By adding a bird’s eye view, a larger portion of the environment 

was known which helped to create a smoother, more direct path.  With a few more 

tweaks to the algorithm, smoother paths with arc turns appear to be feasible. 
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