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ABSTRACT 

 
In this thesis, the detection and prediction of faults in rotating machinery is 

undertaken and presented in two papers.  In the first paper, Principal Component 

Analysis (PCA), a well known data-driven dimension reduction technique, is applied to 

data for normal operation and four fault conditions from a one-half horsepower 

centrifugal water pump.  Fault isolation in this scheme is done by observing the location 

of the data points in the Principal Component domain, and the time to failure (TTF) is 

calculated by applying statistical regression on the resulting PC scores.  The application 

of the proposed scheme demonstrated that PCA was able to detect and isolate all four 

faults.  Additionally, the TTF calculation for the impeller failure was found to yield 

satisfactory results. 

On the other hand, in the second paper, the fault detection and failure prediction 

are done by using a model based approach which utilizes a nonlinear observer consisting 

of an online approximator in discrete-time (OLAD) and a robust adaptive term.  Once a 

fault has been detected, both the OLAD and the robust adaptive term are initiated and the 

OLAD then utilizes its update law to learn the unknown dynamics of the encountered 

fault.  While in similar applications it is common to use neural networks to be used for 

the OLAD, in this paper an Artificial Immune System (AIS) is used for the OLAD.  The 

proposed approach was verified through implementation on data from an axial piston 

pump.  The scheme was able to satisfactorily detect and learn both an incipient piston 

wear fault and an abrupt sensor failure. 
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1.  INTRODUCTION 
 

 
Many types of machines are currently being used in modern industrial processes 

all of them susceptible to many different failure modes.  These failure modes can have 

consequences ranging from a mild inconvenience to life-threatening situations.  

Additionally, every fault occurrence has an associated cost.  This cost include the parts 

and labor for repairing or replacing the failed system component, as well as the cost 

incurred by the production line shutdown, and possibly the repair of the collateral 

damage.  Because of the associated risks and costs of failures, early detection, isolation, 

and prediction of faults is important. 

 

1.1   OVERVIEW OF FDP METHODOLOGIES 
 

Typically, the fault detection and prediction (FDP) schemes currently in use 

belong in one of two categories:  data-based, or model-based.  Both categories operate on 

the same two fundamental concepts:  

 1) Thresholds can be established to distinguish between healthy and faulty 

data; an example is shown in Fig. 1.1 where Var 1 and Var 2 are two of 

the system parameters, and  

 2) The faults encountered by the system will be distinct, i.e. separable ; as 

shown in Fig. 1.2 where Var 1 and Var 2 are two of the system 

parameters, N is the normal operation region and F1-F4 are four known 

fault types.   

The key difference between the two categories is the approach used to establish the 

thresholds required for heath determination as well as fault classification.   
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Data-based schemes such as FFT, wavelets, or PCA which is used in this thesis, 

require the collection of data to determine the ranges each system parameter can take 

under normal condition.  Based on those ranges, thresholds can be set beyond which the 

data is deemed to be faulty.  However, this does not mean the fault has been identified.  It 

simply means that the system has encountered a fault, but which fault has yet to be 

determined.  If data typical for a particular fault is available, then it is possible to identify 

thresholds corresponding to the particular fault classes.  If the faulty data falls within the 

boundaries of a known fault class, the data is then determined to be of that class.  If the 

data does not fall within the boundaries of any known fault class, the data based 

methodology will be able to detect, but not isolate, the fault being experienced.  

Additionally, if two faults are indistinguishable, a data based methodology will 

frequently incorrectly classify both faults as a single fault. 

 

 

Fig 1.1 Fault Detection Example 
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Fig 1.2 Fault Isolation Example 

 

A major disadvantage of such methodologies is the created model’s dependence 

on the data provided to create the model.  Also data –based schemes require the 

collection of data that is representative of all modes of healthy operation as well as each 

fault type in each of the healthy operation modes.  If this is not done, the performance of 

the data-based methodology will suffer.  For example, if a fault has not been represented 

in all operation modes, then a known fault can be classified incorrectly or not at all if the 

system is operating in a mode in which the given fault has not been represented.  Another 

example is if all healthy operation modes have not been accounted for in the model, the 

algorithm may classify a data from a healthy operation mode as faulty.  As a result of the 

dependence of the model on the data, data collection for such a scheme can be quite 

costly in terms of storage space, as well as the time and money invested. 

In contrast, model-based methodologies require a suitable mathematical model of 

the system.  The variation of the modeled output can then be used for establishing a 

suitable fault detection threshold.  This means that data is not needed for the selection of 

the fault detection threshold.  In model-based methodologies, an observer observes the 

system parameters and compares them to the model to create a residual.  The residual is 
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then compared to the fault detection threshold determined by the model.  Because no data 

is required, fault detection and learning can be done online without any offline training.  

Additionally, no data is required for fault isolation.  However, as in the data-based 

methodologies, isolation requires that a given fault has been experienced before.  

Otherwise, the fault can only be detected.  Additional, one of the disadvantages of model-

based methodologies is the fact that models can be quite complex, computationally 

expensive, or difficult to obtain. 

1.2   ORGANIZATION OF THE THESIS 
 

  In this thesis, fault detection and prediction for rotating machinery is undertaken 

by utilizing schemes in a novel approach that has not been presented in existing literature. 

This thesis is presented in two papers. Their relation to each other is illustrated in Fig. 

1.3.  The common theme of these papers is the detection and prediction of faults on 

rotating machinery, or, more specifically, pumps. 

In the first paper, a data-based method called Principal Component Analysis 

(PCA) is used to detect four different fault types (impeller failure, seal failure, sensor 

failure, and a filter clog) which were seeded on a centrifugal water pump test bed.  PCA 

is a multivariate statistical analysis technique which is typically used for dimension 

reduction, fault detection, and fault isolation [1-7].  PCA uses eigenanalysis to determine 

the relationships between different system parameters.  Using PCA for fault detection and 

isolation assumes that the relationships between the variables will change as the relative 

system health changes. 

In contrast, the second paper implements model-based approach utilizing the 

system dynamic equations of a 10.5cc axial piston pump and an Artificial Immune 

System (AIS) as an online approximator in discrete time (OLAD) for the detection and 
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learning, in real time, of two different fault types (piston wear and sensor failure).  The 

AIS used in this paper is inspired by biological immune systems, such as the human 

immune system.   

 

 

Fig 1.3 Thesis Outline 

A biological immune system protects the body from invasion by antigens such as 

viruses or bacteria.  To do this, the immune system has two primary types of white blood 

cells floating in the blood stream, T-cells and B-cells.  When a T-cell encounters another 

cell, it determines if it is an antigen or not.  If the cell is not an antigen, the T-cell moves 

on.  If, however, the cell is an antigen, the T-cells will swarm the antigen in an attempt to 

destroy the antigen [8].  In addition to the search and destroy behavior, the T-cell also 

triggers the B-cells to start generating antibodies to fight the invasion [8].  The B-cells 

effectively “remember” all antigens that have been encountered previously.  In the event 

the immune system encounters a new antigen, the B-cells compare the new antigen to the 
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previously encountered ones.  The B-cell will then release the antibody that was effective 

on the most similar previous antigen.  Over time, the B-cell learns how to fight the new 

antigen and stores that information in memory [8]. 

In the second paper of this thesis, the T-cells are determining whether or not each 

data point is faulty, which is the counterpart to being an antigen in the biological system 

[8].  When a data point is considered faulty, the OLAD, or B-Cells, is triggered.  Each 

subsequent data point is then treated as an antigen would in a biological system.  With 

each data point the OLAD learns the fault. 

 

1.3 CONTRIBUTIONS OF THE THESIS 
 

This thesis provides contributions to the field of fault detection and prediction.  

PCA was extended to the area of fault prognosis.  In Paper 1, the proposed methodology 

uses only the Principal Component scores, also called PC scores, and basic regression to 

isolate and predict faults.  The PCs need to be determined offline.  However, once the 

PCs have been determined, they can be implemented in real time for fault detection and 

determining which know fault the system is likely experiencing.  Using the knowledge of 

the likely fault, a time to failure calculation is achieved utilizing least squares regression 

on a combination of appropriate PCs.  Additionally, past literature [2-8] depicted that 

PCA typically applied to detect faults in processes and was rarely applied to an individual 

machine. When it was applied to a single machine [6-8], it was typically used in 

combination with other algorithms such as wavelets or other statistical features such as 

kurtosis and skewness are introduced. For the approach proposed in this thesis, the PCA 

was applied to a single centrifugal water pump. 
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While in literature the AIS has been mainly used as offline for classification and 

pattern recognition [8-18], in Paper 2 of this thesis, the AIS is used as an OLAD for the 

detection and learning of the fault in real time.  Additionally, the AIS-based methods in 

literature [11, 13-18] are data driven and require offline training.  In contrast, the 

methodology proposed here uses the AIS is tuned online without a priori training.  The 

proposed methodology was verified in simulation on a two degree of freedom 

manipulator, and a hydraulic 10.5cc axial piston pump.  It was further verified through 

the application to data from the pump mentioned above. 
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PAPER 
 
 

1.  PCA-Based Fault Isolation and Prognosis  
with Application to Water Pump1 

 
 

Gary R. Halligan and S. Jagannathan 
 
 

Abstract — In this paper, the use of Linear and Kernel PCA for fault isolation and 

prognosis is explored in contrast to the traditional usage of PCA for detection and 

isolation.  Vector projection and statistical analysis were utilized to isolate and predict 

faults in the PCA domain.  Linear and Kernel PCA were applied to data collected from 

experiments on a one-half horsepower centrifugal water pump both for normal and faulty 

operation consisting of the four fault scenarios: Impeller failure, seal failure, inlet 

pressure sensor failure, and a filter clog.  Upon close observation of the behavior of the 

principal component scores, it was determined that the linear PCA does not adequately 

isolate and predict the failures due to the nonlinear nature of the pump and the inherent 

linearity assumption of Linear PCA.  Therefore, Kernel PCA, utilizing a Gaussian kernel 

was applied to the same data sets.  Analysis of the behavior shows that the principal 

component scores gained from the Kernel PCA were more suitable than linear PCA. 

   
Keywords:  Principal Component Analysis, Fault Isolation, Fault Prognosis, Rotating 
Machinery 
 
 

                                                           
1This work was supported in part by NSF I/UCRC Intelligent Maintenance Systems Center grant. 

Gary Halligan is with the Department of Computer and Electrical Engineering, Missouri University of Science and Technology, 
Rolla, MO 65409 USA (phone: 573-341-6405; e-mail: halligan@mst.edu).  

S. Jagannathan is with the Department of Computer and Electrical Engineering, Missouri University of Science and Technology, 
Rolla, MO 65409 USA (email: sarangap@mst.edu). 
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I. INTRODUCTION 

Principal Component Analysis (PCA) is a multivariate statistical analysis 

technique which is very commonly used for dimension reduction, fault detection and 

isolation.  PCA constructs a model from the eigenvalues and eigenvectors of the 

covariance matrix of the data to be analyzed.  Dimension reduction is achieved by having 

the user define the minimum percentage of variance the PCA model must account for  

and retaining as few eigenvectors, also called PCs, as possible while still reaching the 

threshold.  The fault detection and diagnosis comes from observing the relationships 

between the variables and monitoring any changes in these relationships due to the 

occurrence of faults in the system.   

There are many types of PCA including: linear, or conventional, Moving PCA 

[1], Adaptive PCA [1], Exponentially Weighted PCA [1], and kernel PCA [2].  As with 

any analysis technique, each of these techniques have advantages and disadvantages, 

many of which are discussed at length in [1].  While conventional PCA is well suited for 

application to a linear system, its greatest weaknesses are assumptions that the data is of a 

Gaussian distribution and relationships among the variables are linear [3] in nature.  As a 

result, the conventional PCA is ill-suited for processes with multiple operation modes and 

non-linear systems. An additional weakness of conventional PCA is its inability to 

recognize outliers [4].  In short, Moving PCA, Adaptive PCA and Exponentially 

Weighted PCA are all less sensitive to outliers than linear PCA and are better suited for 

applications with multiple operating conditions provided the additional computational 

complexity can be accommodated [1].  In [5], the authors suggest that faults based on the 

behavior of the PCs can be isolated by identifying the out of control PCs.  The isolation 
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mentioned in [5] requires observing the changes in the variables feeding the out of 

control PCs and combining that information with the expertise of the operator to relate 

the observed behavior to a given fault. 

On the other hand, Wang et al. [6], aimed at detecting the failure of a rolling 

bearing on an electric motor.  The measurements taken on the test apparatus were 

vibration of the bearing housing and acoustic signal to monitor the noise generated by the 

apparatus.  In addition to these readings, eight additional non-dimensional statistical 

features were extracted. These statistical features consisted of: Shape, Kurtosis, Crest, 

Skewness, Impulse, Second-order moment, Clearance, and K Factor.  Both linear 

(conventional) and kernel PCA, utilizing a Gaussian kernel, were applied to the data and 

the results were compared. Additionally, both variations of PCA were applied to just the 

vibration and acoustic signals, and again to the vibration and acoustic signals including 

the eight statistical features.  It was found that due to the nonlinear nature of the 

machinery in the experiment, the kernel PCA performed better than the linear PCA both 

with and without the statistical features.  It was also found that the analysis which 

included the statistical features performed better than without the statistical features. 

In Wang et al. [2], the aim was again to detect the failure of rolling bearings on an 

electric motor.  The acoustic and vibration signals were recorded and the same eight 

statistical features were calculated. In contrast to [6], a genetic algorithm was included in 

the analysis.  Both linear and kernel PCA were applied to the data with and without the 

genetic algorithm.  It was found that incorporating the genetic algorithm with PCA 

improved the performance of both versions of PCA, under the same conditions, kernel 

PCA performed better than linear PCA. 



 12

Lachouri et. al [7] used a Daubechies-1 wavelets for analysis and processing of 

vibration signals to detect the failure of rolling bearings.  The use of the wavelet was 

intended to decompose the signals into approximations. Then, multi-scale PCA was 

applied to each of the resulting matrices.  The authors in [7] concluded that the results 

obtained were satisfactory and the method ensured a good and accurate diagnosis.  

However, this method is more mathematically complex than the method proposed in this 

paper.  In this paper, PCA is applied directly to the data and the FDP determination was 

applied to the resulting PC scores. 

 To the best knowledge of the author’s knowledge, there has not been any work 

done in extending PCA into the area of fault prognosis. In this paper, the proposed 

methodology uses only the PC scores and basic regression algorithms to isolate and 

predict faults.  Once the PCA components and associated thresholds are identified offline, 

the approach can be implemented in real-time to detect abnormal data and determine 

which known fault is the most likely to be occurring.  Once the type of fault has been 

identified, the time to failure can then be estimated online using least squares regression 

from a combination of appropriate PCA components. 

In addition past literature [1-7] indicated that PCA was typically applied to 

processes to aid in the detection, and rarely applied to individual machines.  In the few 

cases of the application of PCA to individual pieces of machinery [2, 6, 7], PCA was 

used in conjunction with other approaches such as wavelets, or genetic algorithms, or by 

simply introducing statistical features for instance: kurtosis and skewness. In contrast to 

the proposed approach applied the PCA directly, and without utilizing any other schemes,  
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to data from a single piece of rotating machinery, a centrifugal water pump.  The 

isolation and prognosis are verified using experimental data.   

Therefore the main contributions of this paper include the extension of the PCA-

based schemes for fault isolation and prognosis, and the application of the PCA-based 

detection, isolation and prognosis scheme onto a rotating machine. 

The remainder of the paper is organized as follows: Section II presents the 

methodology of both linear and kernel PCA, Section III discusses a case study involving 

a centrifugal water pump.  Conclusions are given in Section IV, and finally the references 

are included in Section V. 

II. PCA METHODOLOGY 

A. Linear PCA 

The first step in PCA is the normalization of the data.  Standardization simply 

means that the data is scaled so that it has a mean of zero and a variance of one.  The  

standardization is defined as 

  1
0

 SUXX            1  

where X0 is a M by N matrix of raw data,  is an M x 1 matrix with all entries equal to 

one, U is a 1 x N matrix with each column entry being the mean of the corresponding 

column in X0 and S is an N x N diagonal matrix containing the standard deviations of the 

columns in X0.  Since S is a diagonal matrix, S-1 is a diagonal matrix with the inverse of 

the standard deviations.  PCA calculates principal components, or PCs, that are thought to 

contain the essence of the data.  These PCs describe varying amounts of variance 

observed in the data.  The dimension reduction feature mentioned earlier comes into play 
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when the user wishes to account for only a percentage of the variance.  The first step in 

the calculation of the PCs is the calculation the covariance matrix, C, of the data matrix X 

which is given by  

XXMC T1)1(                                                     2  

The PCs mentioned above are the eigenvectors associated with the eigenvalues of the 

covariance matrix.  The eigenvalues are equal to the variance explained by each of the 

PCs [8].  This means that the relative magnitudes of the eigenvalues are a measure of the 

relative importance of the corresponding PCs.  In other words the PCs associated with 

larger eigenvalues are more important, for dimension reduction applications, than the PCs 

associated with smaller eigenvalues [9].  In order to determine which PCs must be 

retained for dimension reduction approaches, the user must establish a threshold for the 

minimum amount of variance that the model must account for.  Next, the eigenvalues, 

’s, must be sorted in the descending order: N  21 .  The PCs to be retained 

can be determined by utilizing  

thc
N

k
k

j

i
i
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


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


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


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









 100*

1

1




, Nj                                             3  

where thc is a user defined threshold expressed as a percentage.  Now the user should 

retain only the PCs which were associated in the first term of (3).  By reordering the 

eignenvalues, it is guaranteed that the minimum number of PCs are retained while still 

reaching the minimum variance threshold. 

The retained PCs, expressed as column vectors, are then placed into a principal 

component loading matrix P.  The standardized data is then mapped into a new 
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coordinate system which is defined by the PCs [8] by multiplying the standardized data 

matrix, X, with the principal component loading matrix P.  The resulting matrix, T, is 

called the principal component score matrix.  The PC score matrix can be calculated 

using   

XPT                       (4) 

PCA reduces the number of data dimensions through the construction of 

orthogonal principal components that are weighted, linear combinations of the original 

variables as 

EptX
a

j

T
jj  

1

                                       (5) 

where pj is the jth vector in the principal component loading matrix, P, tj is the jth vector in 

the principal component score matrix T, E is the residual error, and a is the number of 

principal components retained [1, 2].  

From (5) it is clear that the error and the number of PCs retained have an inverse 

relationship.  In other words, as the number of retained PCs increases, the error will 

decrease.  However, eliminating even one PC will introduce errors.  Therefore, the only 

way to not have any residual error is to retain all of the PCs.  When PCA is being used 

for dimension reduction, retaining all of the PCs would defeat the point of doing the 

PCA.  However, for the methodology proposed in this paper, all of the PCs will be 

retained.  It will be shown in Section III that retaining all PCs aids fault isolation. 

The PCA is now complete, as the high dimensional data has been projected onto a 

lower dimensional subspace.   However, the model established by PCA only yields a 

framework in which data samples can be compared.  There are many ways in which the  
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comparison can be carried out.  However, Hotelling’s T2 and the squared prediction error 

Q statistics are typical [1] metrics.  The Hotelling’s metric is defined by 

   Tii xxCxxT  12                              6  

where x is the sample mean. 

 

The Squared Prediction Error (SPE) for the ith sample data xi is defined as  

T
iii eeSPE                                                         (7) 

where 



k

j

T
jjii ptXe

1

)(  and k is the number of retained PCs.   

These two quantities, Hotelling’s T2 and SPE, are widely used to detect and 

diagnose the malfunctions.  Both statistics observe at the relationships between the 

variables and detect any changes.  If the T2 statistic of a data entry exceeds the user 

defined maximum threshold, then there is an increased chance that at least one fault is 

present. Unfortunately, by setting a threshold the user must determine what level of false 

alarms or missed detections is acceptable [5].  If the level is set too high, there will be 

instances when a fault is present without crossing the threshold.  Conversely, if the 

threshold is set too low, the threshold may be crossed even when no fault is present in the 

system rendering false alarms.   

From the discussion above it is clear that for each PC the variables with the 

largest coefficients, or loadings, have the most influence where the score will be plotted.  

Additionally, the PCs which most clearly demonstrate abnormal behavior likely contain 

information indicating the reason why the nonlinear system has left the normal operation  
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region.  By observing the abnormal PCs and utilizing prior knowledge of the system, an 

operator may be able to relate the changes to a particular malfunction [5]. 

 When the number of retained PCs is relatively small, the PC plots can be used as 

visual aids.  If the process variables are highly correlated, a fault would likely cause the 

process measurements to move in a specific direction.  This movement of PCs in a 

specific direction would aid fault classification or isolation [4]. 

Although the PC/SPE chart can be helpful for detecting abnormal operation, such 

charts are not always able to give exact causes for the deviations [4, 10].  In short, 

traditional PCA is useful for fault detection when the relationships among variables are 

linear in nature but not for fault diagnosis. Additionally, linear PCA is ill-suited for 

application to non-linear systems as it cannot adequately model nonlinear dynamics. 

B. Kernel PCA 

Kernel PCA is a nonlinear generalization of PCA.  Kernel PCA maps the data into 

a higher dimensional space using nonlinear mapping and computing dot products in the 

feature space.  The kernel PCA algorithm has two main steps.  The first step is to 

linearize the data utilizing the kernel for nonlinear mapping from the input space to a 

higher-dimensional feature space [9].  The mapping  is defined implicitly and takes the 

form of the dot product mentioned earlier [9].  The dot product, defined in terms of the 

kernel function is given by  

     jiji xxxxK ,  

The most commonly used kernels are Gaussian kernels of the form demonstrated by  

   




  22

2/exp, yxyxK                                                 8  
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If the nonlinear function mappings of the input variables to the PC domain are 

unknown, a Gaussian kernel is the logical choice due to the well-known nonlinear 

approximation properties of the Gaussian functions.  If the mappings are known, 

however, another kernel that more closely matches the nonlinear function may be 

preferable. The mapped data set in the feature space is given by  nii ,,1:  , where 

 ii x .  The second step of kernel PCA is to apply PCA on the centered mapped data 

given by 

     










n

i

ii x
n

xU
1

1~                                  9  

where is an M x 1 matrix of ones, U is a 1 x N matrix with each column entry being the 

mean of the appropriate column in . Then apply PCA by calculating the covariance 

matrix of the centered mapped data mapped data given by 

   

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1                                           9  

where n is the number of dimensions of the feature space and performing the eigen 

decomposition.  The eigenvectors, of C are given by 

Cvv                                                                10  

where  is the matrix of eigenvalues and C is the covariance matrix from (9).  

Rearranging (10) and substituting the third term of (9) into (10) yields 

       
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where   
  1

~





n

xi
i 


 .  Taking the dot product with  results in 
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Rearranging the definition for i from (11) and utilizing the first and third terms in (12), 

implies that  

  



n

i

ijij Kn
1

~
1            13  

and therefore 

 ~~
K                                                              14  

 

where  n ,,1   and  1~  n .  In other words, , is an eigenvector of K
~ .  The 

derivation in this section is based on the work in [9]. 

  The user again defines a threshold for percentage of variance that must be 

accounted for by the PCA model. As before, the equation (3) will determine the PCs 

necessary to reach the threshold.  Retaining only those PCs necessary to reach the 

threshold will reduce the dimensionality.  The data is then multiplied by the retained PCs 

to project the data into the PC domain.  However, it is important to note that not much 

work on isolation and prognosis was accomplished using PCs. The fault isolation and 

prognosis schemes proposed next can then be applied to the resulting PC scores. 

C. Isolation and Prognosis 

For both the linear and kernel PCA methodologies described in the previous 

section, data from the normal operation of the nonlinear system, for instance a pump, was 

utilized to establish the PCA model.   

The PC scores, i.e. the projection into the PC domain, of data from four different 

fault types (e.g. impeller failure, seal failure, inlet pressure sensor failure, and a filter 

clog) were calculated.  Additionally, the PC scores were plotted for the data transitioning 
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from normal operation to impeller failure.  The first step in prognosis is the isolation of 

the fault. To achieve fault isolation, each data point of unknown classification, 

represented by U in Figure 1, was compared to the 95% confidence interval of the normal 

data, represented by N.  If the point falls within the confidence interval, the point is then 

assumed to be normal. 

However, if the point did not fall into the 95% confidence interval of the normal 

data the point was then compared to each of the known fault classes, represented by F1, 

F2, and F3.  This was done by calculating the angle between the point to be classified and 

the mean vector of each of the known fault classes, .  The smaller the angle is, the more 

aligned the data point is with the given fault classification. 

 

Figure 1: Illustration of the Angle Based Isolation 

 

The values of the angles between the point and each fault class were then 

compared.  To avoid class assignment due to insufficient knowledge, this angle 

calculation and comparison was done for each of the PC pairings, represented by PCx 

and PCy in Figure 1.  The data point was then assigned to the fault class which contained 

the most minima.  The assumption made here is that the data which is transitioning from 

normal operation to a given fault will follow a roughly linear trajectory as illustrated by 
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Figure 2.  This assignment merely asserts that, of the known faults, the system is most 

likely trending towards the assigned fault.  It is worth noting here that all of the analysis 

is being applied directly to the PC scores without any SVMs, NNs, etc., which is typical 

in the current/past literature.  Consequently, the complexity of the proposed scheme is 

low. 

 

Figure 2: Illustration of the Prognosis Assumption 

 

The basis which was used to calculate the Estimated Time to Failure (ETTF) for 

linear and kernel PCA was the product of PC1 and PC3, and the product of PC2 and PC4, 

respectively.  Both products correspond to the passivity of the system.  It is worth noting 

that the passivity [11] is the time derivative of the stored energy of the system as a 

function of time.  In a stable system, the derivative should be decreasing over time.  

Conversely, for an unstable system the derivative should increase over time.   

While the PC scores do not have any units, the physical meaning of the scores 

may be inferred by analyzing the units of the inputs with the largest loading.  The failure 

threshold, i.e. the threshold for determining the presence of the failure, was assigned to be 

slightly larger than the maximum value observed in the transition data. The data during 

the seeding of the fault changes abruptly over time.  This makes fault prognosis nearly 
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impossible.  Therefore, the following analysis was conducted on data after the fault was 

seeded in order to determine the time to failure. 

Next, for each data point a parabolic data trajectory expressed in (15) was 

calculated using least squares regression by utilizing the current data point and all 

previous points. 

cbtaty  2                                                     (15) 

Solving (15) for t yields the well known quadratic formula: 

a

acbb
t failure 2

42 
                                                  (16) 

Solving (16) will yield two values for tfailure.  The larger of the two values yielded by (16) 

is time index for the occurrence of failure.  ETTF can be found by simply subtracting the 

index for the current sample from tfailure as  

 

currentfailureremaining ttt                                                 (17) 

III. CASE STUDY 

Both the linear and kernel PCA were applied to data from the centrifugal water 

pump shown in Figure 3.  The data consisted of: 125 hours of normal operation, 40 hours 

of impeller failure, 20 hours of seal failure, 78 hours of filter clog, 9 hours of impeller 

fault seeding, and six instances of inlet pressure sensor failure (about one hour each). 
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Figure 3: Centrifugal Water Pump Test Bed 

A. Linear PCA 

The result of plotting the normal, fault, and fault seeding data with respect to PC1 

and PC2 is shown in Figure 4.  The assumed linear trajectory the data would take towards 

each fault is also included in Figure 4.  The sensor failures shown in plots throughout the 

remainder of this paper are multiple failures of the same sensor.  Additionally, between 

the first and second instances of sensor failure, modifications were made to the system to 

allow the pump to operate in two operation modes.  Previously, the pump had only one 

operation mode.   The modifications resulted in the difference in location of the data/PC 

scores for the first sensor failure and the additional sensor failures.  Also, the pump was 

toggling between the two possible operation modes, thus resulting in two clusters of data 

points. 

Figure 4 illustrates that the PCA model can distinguish between each 

classification of data.  However, the prognosis based solely on the PC1 and PC2 scores 

would be problematic since the data for the seal failure and sensor failures lay close to the 

trajectory for the impeller failure.  For example, the difference in trajectory between first 

sensor failure and impeller failure is approximately one degree.   
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Figure 4: Score Plots for PC1 and PC2 with mean vector 

 

Analyzing the loadings of the different sensors in Table 1, the inlet pressure 

sensor has the largest loading in PC1.  Additionally, by looking at the readings of each 

sensor over time it was determined that an impeller failure manifests itself in a reduction 

of inlet pressure.  This explains how the two failures could lie roughly on the same 

trajectory with respect to the origin.   

 

Table 1: Linear Principal Component Coefficients 

 PC1 PC2 PC3 PC4 

Inlet 
Pressure 

0.6393 -0.1930 0.2259 -0.7092 

Outlet 
Pressure 

-0.4434 -0.4359 0.7825 -0.0318 

Lateral 
Accel 

-0.5796 0.4388 -0.1115 -0.6775 

Vertical 
Accel 

0.2422 0.7617 0.5694 0.1924 

 

By comparison, Figure 5 shows the data plotted with respect to PC1 and PC3.  In 

this case, the data classes have significantly larger angles between them.  This increase in 

the angular distance facilitates the fault isolation.  
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Figure 5: Score Plots for PC1 and PC3 with Mean Vector 

 

To verify the methodology for the fault isolation, the second instance of the inlet 

sensor failure, the first instance in which the pump had multiple operation modes, was 

used as a reference for the other four instances of the inlet pressure sensor failure.  When 

the angle based isolation algorithm was applied, it correctly classified all of the data 

points from the four sensor failures.  The results of the isolation are expressed in Table 2. 

 

Table 2: Results of Angle Based Isolation  

Sensor 
Failure 

Number of 
Data 
Points 

Classified as 
Sensor 
Failure 

Percent 
Accuracy 

Failure 3 72 72 100 
Failure 4 59 59 100 
Failure 5 58 58 100 
Failure 6 73 73 100 

 

As stated earlier, the product of PC1 and PC3, or the passivity, of the system was 

utilized for the prognosis of the impeller failure.  From Table 1, the inputs with the 
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Failure 

Transition 
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largest loading in PC1 and PC3 in the linear case are the inlet and outlet pressures 

respectively.  

The normalized product is shown in Figure 6. Since the system is failing, an 

upward trend is expected.  Instead the analysis shown in Figure 6 yields a downward 

trend.  A pump is not a linear system and the downward trend is an indication that the 

nonlinear dynamics that are not adequately accounted for in the model established by 

linear PCA.  Therefore, applying linear PCA to such a system will result in large errors in 

the results.  Hence, kernel PCA is applied.  The results of the two methodologies are 

contrasted in the subsequent section. 

          

Figure 6: Normalized Product of PC1 and PC3 Following Failure Seeding 

 

Figure 7 shows the normalized PC1 times PC3 product averaged over a sliding 

window of 30 minutes.  The plot in Figure 8 shows the ETTF based on the averaged 

product from Figure 7.  Initially, the prognosis attempts struggle due to the limited 

number of data points and weak downward trend.  At approximately 15 hours the 

downward trend becomes more pronounced since the fault progressed.  At that time the 

trending yields a more accurate time to failure prediction.   
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Figure 7: Product of PC1 and PC3 Averaged over a 0.5 Hour Sliding Window 

 

Figure 8: ETTF vs. Time 

 

For the time between 16 hours and 40 hours the ETTF follows the ideal time to 

failure.  The maximum error in the ETTF after the 16 hour mark is approximately three 

hours occurring at the time of 28 hours.  Additionally, the ETTF crosses zero at about 33 

hours.  As mentioned earlier, the system has nonlinear dynamics which are not 

adequately accounted for in the model established from linear PCA.  Hence, the large 

error in ETTF is observed. 
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B. Kernel PCA 

In this section, the test bed data is analyzed using kernel PCA.  A Gaussian kernel 

was selected due to its generic nature.  Figures 9 and 10 respectively show PC1 and PC2 

plotted with respect to PC4.  By observing the leading terms of the PCs in Table 1 and 

Table 3, it can be seen that Figures 9 and 10 are effective plotting kernel PCA equivalent 

of the PCs shown in Figures 4 and 5. 

 

Table 3: Kernel Principal Component Coefficients 

 PC1 PC2 PC3 PC4 
Inlet 

Pressure 
0.2747 -0.6060 0.1926 -0.7213 

Outlet 
Pressure 

-0.009 -0.7747 -0.0951 0.6251 

Lateral 
Accel 

0.0120 -0.0518 -0.9757 -0.2125 

Vertical 
Accel 

0.9615 0.1730 -0.0429 0.2093 
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Figure 9: Score Plots for PC1 and PC4 with Mean Vector  
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Figure 10: Score Plots for PC2 and PC4 with Mean Vector 

 

In both plots, the faults were better separated from each other in comparison to when the 

linear PCA was utilized since the kernel PCA included the nonlinear dynamics. 

In the linear case, the first instance of inlet pressure sensor failure was used as a 

reference for the other instances.  The isolation algorithm was applied to the PC scores 

resulting from the kernel PCA.  The end result of the isolation algorithm was in 

agreement with the results from earlier, in Table 2. 

 

Table 4: Results of Angle Based Isolation 

Sensor 
Failure 

Number of 
Data 
Points 

Classified as 
Sensor 
Failure 

Percent 
Accuracy 

Failure 3 72 72 100 
Failure 4 59 59 100 
Failure 5 58 58 100 
Failure 6 73 73 100 

 

 In the linear case, the passivity was used for the prognosis of the impeller 

failure.  One noticeable difference is the upward trend over time of the product.  This is 
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more in line with expectations and indicates that the use of kernel PCA is preferable to 

the use of linear PCA.  Following the methodology from subsection III.A, the prognosis 

results are obtained and shown in Figures 11 and 12. 

 

 

Figure 11: Product of PC2 and PC4 Averaged over a 0.5 Hour Sliding Window 

 

 

Figure 12: ETTF vs. Time 

 

While the general shape of the ETTF is similar to that of the linear case, before 

approximately 30 hours, the linear PCA ETTF approximation performed better than the 

kernel PCA approximation.  In the linear case the maximum error in estimation was 

about 3 hours at time of 28 hours.  In the kernel PCA case, the maximum error is 7.2 
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hours and it occurs at 20 hours.  However, after reaching the 30 hour point, the 

approximation from the kernel PCA was closer to the “ideal” time to failure line than the 

linear PCA approximation.  The actual failure occurred at 35 hours while the 

approximation of the ETTF, from the linear PCA and kernel PCA cross zero at 33 and 34 

hours, respectively. 

IV. CONCLUSIONS 

This paper introduces a new PCA-based method for fault prognosis while PCA is 

typically used for dimension reduction, fault detection and isolation.  The water pump’s 

nonlinear dynamics are not adequately modeled by linear PCA.  By applying the 

Gaussian kernel, the fault isolation and prognosis results were improved by 

approximately 10 percent for the proposed case study of a water pump. 
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 
Abstract — In this paper, an observer-based fault detection and prediction (FDP) scheme 

using artificial immune system (AIS) as an online approximator is introduced for a class of 

nonlinear discrete-time systems. Traditionally, AIS was considered as an offline tool for 

fault detection in an ad hoc manner. However, in this paper, the AIS utilized as an online 

approximator in discrete-time (OLAD) is considered while its parameters are tuned online. 

A nonlinear observer comprising of the AIS and a robust adaptive term is used for 

detecting faults in the given nonlinear system. A fault is detected by comparing the residual 

against apriori chosen threshold, which is obtained by comparing the output of the 

nonlinear estimator to that of the given system. Upon detection, the AIS and the robust 

adaptive term are initiated in the observer, where the AIS parameters are tuned online 

using a suitable update law for learning the unknown fault dynamics. Additionally, this 

update law is used to estimate the time-to-failure (TTF), which is considered as a first step 

for prognostics On the other hand, the robust term, which is a function of the AIS 

parameter vector, is used to deliver asymptotic convergence of the residual unlike bounded 
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stability in other schemes. The performance of the proposed FDP scheme is first 

demonstrated on a two-link robot arm and an axial piston pump in simulation and 

subsequently on an axial piston pump test bed.  

 

I. INTRODUCTION 

Modern engineering systems require early fault detection and warning system to 

render safe and reliable service. Therefore, numerous efforts have been under taken in 

addressing the problem of fault detection and prediction (FDP). Due to the presence of 

noise and system uncertainties, the problem of fault detection (FD) is complex thus 

requiring robustness. The commonly used FD methods include quantitative or 

model-based [1] and qualitative or data-driven based techniques [2]. The qualitative based 

techniques are found to be expensive [1] due to the need for large quantities of data and are 

dependent upon region of operation. However, quantitative methods require a suitable 

representation of the nonlinear discrete-time systems. Typically, an observer is utilized to 

represent the nonlinear system.  

In the past literature, FD efforts are limited to linear systems [1-5], by using a 

sliding mode observer [3], geometric approach [4], and parity relations [2] etc. Typically, 

in the observer based approach, a residual is generated by comparing the observer output 

with that of the actual system. Moreover, a fault is detected by comparing the generated 

residual against apriori chosen threshold. However, selection of the threshold is a 

challenging task due to the presence of uncertainties, but an analytical procedure has been 

developed to identify thresholds [5] analytically.  

 

In the recent years, with better understanding of nonlinear control system theory, 
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the techniques proposed for linear systems have been extended to nonlinear systems. Such 

schemes include the sliding mode observers [6], geometric approach [7], adaptive and 

diagonal observers [5, 8, 9] and so on. A recent survey on the various FD schemes for 

nonlinear systems can be found in [10]. Another aspect that is of interest to the FD 

community is the stability and the robustness of the FD schemes. Recently, various FD 

schemes [5- 9] have been proven to be stable. However, most of the developments are in 

continuous-time and not much has been accomplished in the discrete-time.  

The time-to-failure determination (TTF) is another important feature, which in 

general is unavailable in the previously reported schemes [3-9], since TTF is the first step 

for prognostics assessment. Some TTF schemes like the data-driven approaches [11-13], 

assume a specific degradation model which has been found to be limited to the particular 

system or material type under consideration. Another scheme [14] employs a deterministic 

polynomial and a probabilistic method for prognosis by assuming that certain parameters 

are affected by the fault.  While others [15] use a black box approach using neural network 

(NN) on the failure data. All these schemes [11-15] while being data-driven address only 

TTF prediction, require offline training and do not offer performance guarantees. 

Therefore, it is envisioned that a unified FDP scheme will be necessary to alert an 

impending failure and provide the remaining useful life. 

Discrete-time development is important due to the stability problems incurred in 

the direct conversion of the continuous time FD schemes to discrete-time [16]. Recent 

developments in discrete-time include [16, 17], where a FD scheme is introduced by using 

the persistent of excitation (PE) condition. Since it is very difficult to verify or guarantee 

PE, in our previous work [18], a FD scheme using linearly parameterized online 
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approximators is introduced by relaxing the PE requirement. However, bounded stability 

of all the signals is demonstrated similar to the case of fault detection algorithms in 

continuous-time.  

 In contrast, in this paper a FDP scheme for nonlinear discrete-time systems with 

guarantees of asymptotic stability is introduced by using an observer. To best of our 

knowledge not many FDP schemes in discrete-time render asymptotic stability. However, 

in [19], asymptotic stability of a continuous time FD scheme for robotic systems with 

specific actuator faults is undertaken. The FD scheme proposed in this paper comprises of 

a nonlinear observer, which is used for detecting faults in the given system. Additionally, 

the nonlinear observer comprises of an online approximator in discrete-time (OLAD) and a 

robust adaptive term generated by the OLAD parameter vector. The OLAD and the robust 

adaptive term are initiated only after the detection of a fault. Moreover, a fault is detected 

by comparing the generated residual against apriori chosen threshold. The residual is 

generated by comparing the outputs of the nonlinear system with that of the observer. By 

using a suitable update law, the parameters of the OLAD are tuned online to learn the 

unknown fault dynamics. Additionally, the robust adaptive term is used to guarantee the 

asymptotic convergence of the residual and the parameter estimation errors after the 

occurrence of the fault and in the presence of the uncertainties.   

Most of the previously proposed FD scheme [5, 9, 16-18] uses neural networks or 

fuzzy systems as online approximators. However, in this paper, we use an artificial 

immune system (AIS) as the OLAD since biological immune systems detect external virus 

and protect the human body. Conventionally, AIS has been considered as an offline tool for 

applications such as classification, pattern recognition and detection. Additionally, offline 
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data based training schemes are proposed to obtain AIS [20-30] parameters. However, in 

this paper a new online adaptive law is introduced for tuning the AIS parameter vector 

online while demonstrating that the AIS is an online approximator.  

 In general, AIS draws inspiration from the biological immune system. In the event 

of a disease causing antigen (such as virus, bacteria etc.) attacking the human body, the 

immune system detects the foreign bodies and responds to the antigen by releasing suitable 

antibodies. Based on the affinity between the released antibody and the antigen, the disease 

causing antigen is destroyed. Moreover, the immune system memorizes the type of 

antibodies utilized to kill the antigen, so that in future attacks it ensures a quick release of 

antibody to overcome the antigen. The inherent advantage of the immune system in 

detecting anomalies makes it as a natural candidate for system identification [21], FD 

[25-29] and control [30] when compared to neural networks (NNs) which are derived from 

neurological system.  

However, existing AIS-based methods [22, 25-30] are data driven, ad hoc and 

require extensive offline training to tune the AIS parameter vector. Therefore, in this 

paper, AIS is used as an OLAD, which is a part of the nonlinear FD observer. Moreover, 

the AIS parameter vector is tuned online without any apriori offline training. Moreover, 

mathematically, the asymptotic convergence of the residual and the parameter estimation 

errors of the FD scheme after the occurrence of the fault is shown by using Lyapunov 

analysis.   

Using the parameter update, mathematically a method is proposed to derive the 

TTF by projecting the current value of the parameter to its limit provided the limiting 

parameter value is defined by the designer. This process is iteratively performed to 
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continuously predict TTF up to the failure threshold beyond which the system is 

considered unsafe. For most practical systems, the unknown parameters could be tied to 

physical entities thus making the parameter-based TTF determination very useful. 

Alternatively, the state trajectories from the FD estimator can be utilized for TTF 

determination due to asymptotic convergence. Finally, simulation examples and 

experimental results are presented to show the performance of the proposed FDP scheme. 

 The important contribution of this paper is the asymptotic stability of the FD 

scheme for nonlinear discrete time systems using the robust adaptive term and the AIS as 

an OLAD. Addition of the robust adaptive term complicates the stability analysis whereas 

the Lyapunov proof is still offered.  In addition, the time to failure determination is 

introduced by using the AIS parameter vector. Finally, the online fault detection and 

prediction is verified on an experimental test bed. 

This paper is organized as follows: Section II provides background on the AIS. 

Section III introduces the system under investigation whereas Section IV explains the FD 

scheme and the stability analysis. Section V introduces the prediction scheme whereas 

Section VI provides simulation results and Section VII explains the experimental results. 

In Section VIII conclusions and future work are given.  

II. ARTIFICIAL IMMUNE SYSTEM AS FUNCTION APPROXIMATORS 

In biological organisms, the function of the immune system is to protect the body 

from invasion by foreign objects, called antigens.  This is done by lymphocytes, which 

comprises of the two main types of white blood cells: T-cells and B-cells.  There are two 

classes of T-cells: killer T-cells and helper T-cells.  When an infection is detected, the 

killer T-cells destroys the infected cells whereas the helper T-cells assist in engulfing and 
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destroying the invading pathogens.  In addition, the helper T-cells stimulates B-cells to 

produce clones of antibodies to attack the pathogen.  The B-cells fine tunes the antibodies 

to increase their affinities to the antigen being encountered. The higher the affinity is, the 

stronger the immune response will be. Additionally, more antibodies will be released to 

mitigate the antigen. Antibodies with highest affinity are retained while a feedback is 

provided to the T-cells to store in memory the type of antibody required for a particular 

antigen. This would help in mitigating future attacks by the similar antigen. Interested 

readers for further reading could refer to [20].  

Based on this understanding, a recent work on AIS can be found in [21, 23] wherein 

the AIS is utilized to solve engineering problems. For instance, in [24], AIS is used for 

identification of nonlinear systems. In this method, an offline data based training scheme is 

proposed for the nonlinear system identification. However, an interesting contribution is 

the definition of a mathematical equation to describe the function of the AIS for system 

identification 
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where 1,...,i N  is the number of antibodies, 1,..., sj N is the number of data sets, ijm is the 

thji affinity function, i is the shape parameter, ia is the appropriate immune response, 

d x pj iij   is the Euclidean distance between the thj antigen epitope vector ( x j ) and the 

thi antibody receptor vector pi .  

For engineering problems, the artificial immune response considers the unknown 

data as antigen, and the output is the net response of all the antibodies (i.e., output of 
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equation (1)). Therefore, by calculating the error between the estimated and the actual 

value, the parameters of the AIS function are updated. However, the AIS training is an 

iterative process and is performed offline. Therefore, in this paper, a new online tuning 

mechanism is proposed to tune the parameters of the AIS online by using adaptive control 

techniques. Moreover, we use the same mathematical equation as that given in [24] to 

describe the function of the AIS and exploit the function approximation property.  

To guarantee that the AIS scheme could be utilized for approximating any 

unknown function over the compact set, in the following theorem we show that indeed an 

AIS possesses function approximation properties. This enables the AIS to be an OLAD 

similar to an artificial neural network, fuzzy logic and other online approximators. 

However, AIS is preferred for FD due to its natural affinity of detecting and preventing 

antigen attacks when compared to the other online approximators. 

Theorem 1: For every continuous smooth function f  , every AIS basis function , every 

probability measure  , and every 1an  , there exists a linear combination of AIS 

functions ˆ ( )af x , such that 

   2
2 2ˆ( ) ( )a

B a

C

n
f x f x                 (2) 

where 0C  , B is a compact set, and an is the number of antibodies or the size of the AIS 

function.  

Proof: Follow steps similar to [31].     

As shown in this theorem, the use of AIS in approximating unknown functions is 

valid.  Therefore, similar to neural networks, the unknown function ( ( )f x ) and the estimate 

of AIS could be written as  
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where l n
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 is the unknown ideal immune response, ( )k is the approximation error and 

bounded by a known constant, i.e., ( ) ak   . Also, ( )
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where i , 1, ....,i l  is a positive randomly chosen shape parameter, d x pii   , where 

1nx  is the input to the AIS basis function, 1n
pi

 , 1, ....,i l  is a randomly chosen 

constant vector. With this understanding on AIS, we next proceed with the discussion on 

the system under investigation. 

 

III. PROBLEM STATEMENT 

Consider the following general class of nonlinear discrete-time systems described 

by 

( 1) ( ( ), ( )) ( ( ), ( )) ( ( ), ( ))x k x k u k x k u k h x k u k             (4) 

where nx  is the system state vector, mu  is the control input vector, : n m n     , 

: n m n    , : n m nh     are smooth vector fields. The term ( ( ), ( ))x k u k  represents 

the known nonlinear system dynamics while ( ( ), ( ))x k u k  is the system uncertainty. The 
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unknown fault function 0( ) ( ( ), ( ))( ( ), ( )) k k f x k u kh x k u k   with ( ( ), ( ))f x k u k  representing the  

unknown fault dynamics while 0( )k k   being a n n  square matrix function representing 

the time profiles of faults, and 
0 0k   is the initial time. 

Typically, the time profile of the faults are modeled by 

0 1 0 2 0 0( ) ( ( ), ( ), ...., ( ))nk k diag k k k k k k         

where  

i-

0
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i i n

e
 
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         (5) 

and 0i   is an unknown constant that represents the rate at which the fault in the 

corresponding state ix  occurs. The term ( )i   approaches a step function when i is large, 

which in turn represents an abrupt fault whereas a small value of i implies incipient faults.  

It is important to understand that the exponential time profile is only used to classify the 

faults as incipient or abrupt. However, ( ( ), ( ))f x k u k represents the magnitude and the type of 

the fault. Since the fault function is expressed as a nonlinear function of the system states 

and the inputs, therefore, it represents a wide range of faults that can potentially occur in a 

given system.  For example, such faults could be a piston wear in a compressor or an 

actuator fault. 

Remark 1: The known nominal dynamics in (4) is in nonaffine form. However, for affine 

systems, the known nominal dynamics could be written as ( ( ), ( )) ( ( )) ( ( )) ( )gfx k u k x k x k u k    , 

where, 1n
f

 and n m
g

 are known smooth functions. However, the system 

uncertainty and the faults still be expressed in nonaffine form and are functions of the 

system states and the input. It is important to note that the following discussion for 
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nonaffine systems is also applicable to affine systems.  

Remark 2: Modeling faults using the above time profile is quite common in the FD 

literature [32], and is used extensively by researchers [5, 9, 16-18].  

Before proceeding any further, we propose the following assumption.  

Assumption 1: The modeling uncertainty is unstructured and bounded [5, 9, 16-18] above 

satisfying ( ( ), ( )) ,  ( , ) ( )Mx k u k x u U      where 0M   is a known constant.  

Remark 3: The uncertainties have to be bounded above in order to identify faults from 

system uncertainties.  

In certain previously reported FD schemes [3, 8], the system uncertainty is 

assumed to structured, which helps to simplify the development of the FD scheme. In other 

schemes [1-3], structured faults are assumed, which also simplifies the development of the 

FD scheme. However, such assumptions are not considered in this paper.  

In this paper, we consider a general framework for nonlinear systems with 

unknown system uncertainty. However, this complicates the design of a FD scheme, but is 

still undertaken in this paper.  In the next section, the fault detection scheme is introduced 

by using a novel nonlinear observer using AIS as the online approximator. Additionally, 

using Lyapunov theory, the asymptotic performance of the proposed FD scheme is shown.  

IV. FAULT DETECTION SCHEME 

In this FD scheme, a nonlinear observer is designed to monitor and detect faults in 

the given system described in (4). It is essential to understand that the purpose of the FD 

observer is not to estimate the system states [16, 17] whereas to obtain residual for the 

purpose of detection.  
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A. Observer Dynamics 

Consider the nonlinear observer described by 

0 0
ˆ ˆˆ ˆ( 1) ( ) ( ( ), ( )) ( ( ), ( ); ( )) ( ) ( )A Ax k x k x k u k h x k u k k x k v k                   (6) 

where ˆ nx  is the estimated state vector, 0A  is a constant n n  design matrix chosen by 

the user, ˆ :
n m q n n

h
    is the online approximator in discrete-time (OLAD) [18], 

ˆ q n 
  is a set of adjustable immune system parameters, and ( )v k is the robust adaptive 

term, which is to be defined later. Prior to the fault, the initial values for the estimated 

model (6) are taken as ˆ(0) (0)x x ,
0

ˆ ˆ(0)  , so that 
0

ˆ ˆ, ) 0( ,h x u    for all x   and u U . 

Typically, the commonly used OLAD’s are neural networks, fuzzy systems etc. However, 

in this paper, we consider AIS as an OLAD. Therefore, the AIS based OLAD is defined by 

using (3) as  

ˆ ( )ˆ ˆ, ) ( )( T
h kz z                      (7) 

where [ , ]
T

x uz  is the input vector, ˆ( )
l n

k  is a tunable immune system response, 

and ( )z is the AIS basis function as defined in (3).  

 

Remark 4: Upon the detection of the fault, the OLAD and the robust adaptive term are 

initiated. 

Now define the detection residual or state estimation error as ˆe x x  . Then from 

(4) and (6) prior to the fault the residual dynamics are given by 

0( 1) ( ) ( ( ), ( ))Ae k e k x k u k        (8) 

In order to detect faults in the given system, the residual is compared against a 

known threshold via a dead-zone operator. The selection of the threshold is a challenging 



 45

task; however a mathematical procedure is developed for selecting it by using (8). It is  

important to note that by using a threshold, the robustness of the fault detection scheme can 

be improved [1, 2, 5, 16-18].  

Prior to the fault, the residual, ( )e k , remains within the threshold.  However, in the 

event of a fault, the residual increases and crosses the threshold and therefore a fault is 

declared active.  We define the threshold operator as [ ]D     

if ( )0,  
[ ( )]

if ( )( ),

e k
D e k

e ke k














                 (9) 

where 0   is the threshold. The selection of the dead-zone size   clearly provides a 

tradeoff between reducing the possibility of false alarms (robustness) and improving the 

sensitivity of the faults. The selection of an appropriate value for  is addressed next. 

B. Fault Detection Threshold Selection 

A suitable threshold is selected by solving the residual dynamics (8) through 

standard linear control theory as
0

1
1

0
( ( ), ( ))( )

k
k j

j
x k u ke k A 


 


  . Since the matrix 0A is stable with its 

poles chosen inside the unit disc, there exists two positive constants  and c  such that the 

Frobenius norm [33] 0 1k k
cA    . Therefore, ( )

(1 )

(1 )
M

k

e k 







, where c   .  This implies 

that the threshold can be selected as a constant value
(1 )

M



 or a time-varying function  

as (1 )

(1 )

M

k








 . As a consequence, the residual ( )e k  remains within the threshold for 

all 0k k and the OLAD and the robust adaptive terms stay at zero. 
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The dead-zone operator is utilized to turn the OLAD and robust adaptive terms 

online. Prior to the fault, i.e., ( )e k  ,
ˆ( )

0 . . . 0

. . . . .

. . . . .

0 . . . 0
l n

k





 
 
 
 
 
 

, 0 k T  , and  ( ) 0, 0, ...., 0
T

kv  . 

This means  ˆ ˆ( ( ), ( ); ( )) 0, 0, ...., 0
T

h x k u k k  , in the time interval 0 k T   prior to a state or output 

fault.  

When the residual exceeds the detection threshold, i.e., ( )e k  , a fault is declared 

active and the OLAD schemes that generate, ˆ(.)h is initiated. A standard delta-based 

parameter tuning algorithm [34] can be utilized whereas it is slower in convergence. To 

overcome this problem, the following parameter update law is used 

( )ˆ ˆ ˆ( 1) ( ) D[ ( 1)] ( ) ( ) ( )
T T

kk k k k k ke I                    (10) 

is proposed where 0  is the learning rate, 0  is the adaptation rate, and ( )k is the OLAD 

basis function. Now using Theorem 1 and equation (3), we rewrite the fault dynamics in (4) 

as  

1( ( ), ( )) ( ( ), ( )) ( )
T

h x k u k x k u k k                 (11) 

where l n



  is the target parameter matrix such that the approximation error 1 ( )k  is 

bounded above and ( ( ), ( ))x k u k is the known basis function of the AIS. By appropriate 

selection of the antibodies in the AIS scheme, the approximation error can be decreased. 

The output of the OLAD is given by  

ˆ ˆ ˆ( ( ), ( ); ( )) ( ) ( ( ), ( ))
T

h x k u k k k x k u k                (12) 

where ˆ( )k
l n




  is the estimated AIS parameter matrix.  

 With this understanding of the proposed observer design, the stability of the 
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proposed fault detection scheme will be studied next. By using (4) and (6), the residual 

dynamics after the fault is given by  

0
ˆ ˆ( ( ), ( )) ( ( ), ( ); ( )) ( )( 1) ( ) ( ( ), ( ))A h x k u k h x k u k k v ke k e k x k u k     where the robust adaptive term is 

defined as
1 1

1
ˆ ( )

( )
ˆ ˆ( ) ( )

T

T T

c

k B
v k

B k k B c



 



,with

1

1l
B


   is a constant vector and 0cc   a constant. 

Next using (11) and (12), the residual dynamics is rewritten as 

1 1

1
0( 1) ( ) ( ) ( , )

ˆ ( )
( )

ˆ ˆ( ) ( )

T
T

T T
k k k x u

c

k B
A e k

B k k B
e

c
 




 
 


            (13) 

where 1( ) ( ) ( ( ), ( ))k k x k u k    with the parameter estimation error defined as 

ˆ( ) ( )k k    .  Next, add and subtract
 

1 1

1 1

ˆ ˆ( ) ( )

T

T T

B C

B k k B cc



  


, in (13), where 1

1
n

C


   is a 

constant vector.   The residual dynamics become  

 1 1

1

1 1

0 2( 1) ( ) ( ) ( ) ( )
ˆ ˆ( ) ( )

T

T T

c

B C
k A e k k k k

B k k B
e

c


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 


   


                (14) 

where 

1 ( )( ) ( , )
T

kk x u     and
 

2

1 1

1 1( )
( )

ˆ ˆ( ) ( )

T

T T

c

k B C
k

B k k B c



 


 





. Next the following lemma is needed in 

order to proceed.  

Lemma 1: The term, ( )k , comprising of the approximation error, 1( )k , and the system 

uncertainty, ( ( ), ( ))x k u k  are bounded above according to  

2 2

0 2 31 ( ) ( ) ( )( ) ( ) ( )
T

M k k kk k d d d e k d e                   (15) 

where 0 1 2, , ,d d d and 3d  are computable positive constants.   

Proof: Refer to Appendix.  
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Remark 5: This lemma is necessary similar to the case of continuous-time [38] while such 

results are not available for discrete-time systems. This result is very mild [35-38] when 

compared to the case where the approximation error is considered bounded above by a 

known constant.   

Next, the following theorem guarantees the asymptotic stability of the proposed FD 

scheme after a fault occurs. Additionally, it is clear that prior to the fault the system 

remains stable for a bounded system uncertainty ( ( ), ( ))x k u k . This is evident from (8) 

since 0A has eigen values within the unit disc.  

Theorem 2 (FD Observer Performance upon Detection):  Let the proposed nonlinear 

observer in (6) be used to monitor the system given in (4). Let the update law given in (10) 

be used for tuning the immune response of the AIS based OLAD. In the presence of a fault 

and bounded system uncertainties, the detection residual, ( )e k , and the parameter 

estimation errors ( )k  are locally asymptotically stable provided: 

(a)   max 2

max

0

(1 / 5)

4 20 (2 1 / )

A
  




  ,  0 1                     (16) 

(b) 
1 1

( ) ( )
( ) ( )

1
T

T

Cr
I k k

I k k
 

 


 



                       (17) 

and 

(c) 0 0.5s  , 0 1                               (18) 

where 
max0 0A A , max( )k  , and 0Cr  is a constant.  

Proof: Refer to Appendix.  

Remark 6: Theorem 2 guarantees the asymptotic stability of the proposed FD scheme 

after a fault occurs. In other words, the proposed OLAD will characterize the faults 
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accurately in comparison with the detection schemes in continuous-time where a bounded 

residual is demonstrated [5, 9].  

 In the next section, the prediction scheme is introduced. 

V. PREDICTION SCHEME 

Thus far, a new FD estimator design using the AIS as online approximator was 

introduced and its stability was studied rigorously.  Now TTF can be determined using the 

behavior of the immune system parameter trajectories before and after the occurrence of a 

fault. The following assumption holds in deriving the TTF. 

Assumption 2: The parameter vector ˆ( )k  is an estimate of the actual system parameters.  

Remark 7: This assumption is satisfied when a system can be expressed as linear in the 

unknown parameters (LIP). For example, in a mass damper system, or in civil 

infrastructure such as a bridge, the mass, damping constant and spring constant may be 

expressed as linear in the unknown parameters. In the event of a fault, system parameters 

change, and tend to reach their limits. When any one of the parameters exceeds its limit, 

operation is considered unsafe.  TTF is defined as the time elapsed when the first parameter 

reaches its limit. The TTF can also be analyzed with lower limits. 

In this section, to develop an explicit mathematical equation for predicting TTF, we 

use the parameter update law given in (10). Subsequently, by using this equation, we 

develop an algorithm for the continuous prediction of TTF iteratively at every time instant. 

Alternatively, estimated state trajectories can be employed as well if the states can be 

related to physical quantities. Next, the mathematical equation is presented in the 

following theorem. 
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Theorem 3 (Time to Failure): If the system in (4) can be expressed as LIP, the TTF for 

the ijth system parameter at the kth time instant can be determined using  

  
  

max

0

0
log(1 )

log

T T

T T

Tj jfi i

ij ij

ij ij

e

e

I

I

I
k k

  

  

 

 

 
 

 

 

 

 
  
 

            (19)   

where 
jfi

k is the TTF, 0 ji
k is the time instant when the prediction starts (bearing in mind that 

dtk  was the initial value, which increases incrementally), 
maxij is the maximum value of the 

system parameter, and 
0ij is the value of the system parameter at the time instant 0 ji

k .  

Proof: Refer to [39].  

Remark 8: The mathematical equation (19) presents the TTF for the ijth system parameter. 

In general, for a given system with a parameter vector, the TTF would 

be ), 1, 2, ........min(ft f j
i l

i
k k  , 1, .......,j n , where l n  are the number of system parameters. The 

TTF is defined as the time elapsed when the first parameter reaches its limit.  The speed at 

which the actual parameters approach their target values is dictated by the learning rate or 

adaptation gain and the design constant in the parameter update law (10). A small value for 

the learning rate implies slower convergence which further means that the TTF is not as 

accurate when the learning rate is higher. However, a large value of the learning rate can 

speed up the convergence. Increasing the learning rate can cause hunting problems which 

will result in inaccurate prediction of TTF. 

Remark 9: Although the proposed prediction scheme is based on the parameter trajectory, 

estimated system states could also be used for prediction since asymptotic stability is 

proven.  A relationship similar to (19) can be derived for TTF using (6). However, for 
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brevity, no further discussions on the use of state trajectories for prediction are included in 

this paper. 

Remark 10: The proposed prediction scheme could be applied to unknown systems that 

satisfy LIP. It could also be applied to systems with partial information that satisfy LIP. 

Such systems were addressed in Section III.  

    Figure 1 provides a flow chart of the iterative algorithm to determine TTF ( ftk ) 

for each system parameter.  The TTF is calculated at each time instant starting when a fault 

is detected until the system parameter reaches its maximum value (threshold). Therefore, it 

is logical that the TTF decreases as the parameters approach their corresponding limits.  

The simulation results presented below will indeed show that the performance of the FDP 

scheme as indicated in the theorems can be demonstrated in simulation.  

By tuning the system parameter estimate ( ˆ ( )i k ) to update the TTF recursively, the 

system could be more accurately monitored than would be possible with other methods 

[13, 14]. In fact, the TTF will not be accurate when the parameter estimate vector is just 

started. Over time when the parameter vector starts converging to its true values, the TTF 

prediction starts improving. Additionally, no prior offline training is required to estimate 

the system parameters, which significantly reduces the burden of collecting data. In the 

next section, we present some simulation example and later some experimental study to 

illustrate the proposed FDP scheme.  
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Figure 1: Flow Chart Indicating the TTF Determination. 

 

VI. SIMULATION RESULTS 

In this section, two different simulation examples are presented to demonstrate the 

proposed fault detection scheme. Initially, a two link manipulator is considered followed 

by an axial piston pump.  Subsequently, in the next section, the proposed FDP scheme is 

verified on a pump test bed.  

A. Two link robot manipulator 

A schematic of a two degree of freedom manipulator is shown in Fig. 2 and its 

dynamics model is given below [24] 

         FGVM  ,                    (20) 

Yes 

No 
 

If ft fk k (actual 

TTF)  

 

Calculate 0 )(
ji k , )0(

ji ke and )0(ˆ
ji k at the 

0 j

th
k instant 

Fault detected, 0 j dtk k   (time of 

fault detection)

Calculate TTF using (19) 

Calculate min( )
jft fk k  

System failed 

0 0 1
j j

k k   
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where
1 2[ , ]T   is the vector of angular positions and 1 2[ , ]

T     is the vector of angular 

velocity of  links 1 and 2 respectively. Additionally,  M  is the inertia matrix,   ,V is the 

coriolis or centripetal matrix,  G  is the gravity vector, and  F  is the friction vector. 

Moreover,  is a vector of torque input applied to the two link manipulator. 

 

 

 

Fig. 2: Schematic of a Two Link Manipulator.  

 

For convenience, we express (20) in the following discrete-time state space form  

21 1( 1) ( ) ( )k k kTxx x    

3 4 3( 1) ( ) ( )k k kTxx x    

1 1 121

3 3 3

2 1 3

4 2 4 4

( 1)

( 1)
,

k

k

x
T M V G F

x

x x xx x

x x xx x








   

                 
                                   

2

4

( )

( )

x k

x k

 
  
 

 

where 1 2 3 4[ , , , ]Tx x x x x is the system state vector. We assume an actuator fault, which is 

expressed as 0.05( 40)
1( )[0,1.8(1( ) ) ,0,0]k T

keh k    . The fault is induced at the 40th second of system 

operation with a growth rate of 0.05. Moreover, we assume the sampling time for this 

simulation is taken as 10 secT m . Additionally, a white noise is introduced in this simulation 
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with a magnitude of 0.004 units and a constant uncertainty of 0.5 units. To monitor and 

detect faults in the given system, we use the following FD estimator  

21 1 1 1( 1) ( ) ( ) 0.005( ( ) ( ))ˆ ˆk k k k kTxx x x x     

3 4 3 3 3( 1) ( ) ( ) 0.005( ( ) ( ))ˆk k k k kTxx x x x    

1 1 121

3 3 3

2 1 3

4 2 4 4

( 1)

( 1)
,

k

k
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T M V G F

x

x x xx x

x x xx x







   

                 
                                   

 2 2 2
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( ) 0.005( ( ) ( ))
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x k k k

x k k k

x x
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 

  (21) 

where 1 2 3 4ˆ ˆ ˆ ˆ ˆ[ , , , ]Tx x x x x  is the estimated state vector, the OLAD is taken as 

1
ˆ( ) ( )[0,ˆ( ) ,0,0]T

k kh k   . Next, using (20) and (21), we generate the norm of the residual as 

shown in Fig. 3. Since we assumed some disturbances, therefore, we need a threshold to 

improve the robustness of the proposed fault detection scheme. The threshold is derived by 

taking 1.03  , 0.01  , and 0.5M  , we have 0.52  . As seen in Fig. 3, the residual remains 

within the threshold prior to the fault, however, after the fault occurs, the residual exceeds 

the threshold. Subsequently, the OLAD and the robust adaptive terms are initiated to learn 

the unknown fault dynamics.  This is evidenced by the fact the residual quickly drops after 

initiating the OLAD and the robust adaptive term.  Additionally, the asymptotic 

convergence of the residual after the fault is guaranteed as seen in Fig. 3. Therefore, the 

theoretical results presented in this paper are validated.  
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Fig. 3: Residual and the FD Threshold. 
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Next, the online estimation of the fault magnitude using the proposed OLAD 

scheme is shown in Fig. 4. As seen in the figure, the online learning is found to be 

satisfactory. The parameter of the OLAD is tuned online using the update law in (9) with 

0.034  and 0.1  . Using the online estimation of the parameters, we estimate TTF as 

shown in Fig. 5. From the figure, it’s evident that the TTF prediction is satisfactory. 

However, it is noted that the first few seconds of TTF prediction after the fault detection 

didn’t render reliable results therefore, is not presented. This could be attributed to the 

random selection in the gains of the weight update law. However, after the 50th second of 

the system operation, the TTF prediction seems to be reasonable and converges to the 

actual time of failure, which is 79.43 sec.  
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Fig. 4: Online Estimation of the Fault Magnitude. 
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Fig. 5: The TTF Determination Due to the Incipient Actuator Fault. 
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To show that the proposed scheme is generic, next, an axial piston pump example is 

considered in simulation.  

B. Axial Piston Pump 

A discrete-time dynamic representation of the axial piston pump derived in [40] is 

given as 

          1 1,..,9,
p p

pikpi
i

i ilpi
BT

x k Q k Q k Q k x k i
C A S

     


 

        10 101 p s
c

TBC
x k Q k Q k x k

V
     

   10y k kx                    (22) 

where,  kxi , 1,...,9i  are the system states. Additionally,    1 9[ ,....., ]T
k kx x is the pressure in 

the nine pistons, 10x is the pump outlet pressure, B is the bulk modulus of the hydraulic 

fluid, T is the sample timing, cV is the theoretical volume of flow, and pA  is the piston area. 

Moreover, piS , kpiQ , piQ , lpiQ , and sQ are the thi piston stroke length, kinematical flow from 

the piston chamber to the discharge chamber, internal leakage from piston to the case 

chamber, and the outlet flow of the pump respectively.  Additionally, they are obtained 

using the following equation  

 
2

tan .sin( ( 1) )
4

p
c pkpiQ k

d R
k i


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cilpiQ k k P
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2 ( ) ( )
( ( ) ( ))i

d di
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pi iQ k
x k x k

C A sign x k x k
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  1, .., 9, i   
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   
9

1
p pi

i

Q kQ k


   

  10

2

2 ( )
d vs

c

x k
Q k C A


  

( ) tan (1 cos( ( 1) ))p ccpiS k R k i       

where is the angular velocity of the pump drive shaft (rad/s),  

d is the diameter of the piston (m), pR is the piston pitch radius on barrel, c is the angle of 

swash plate, p is the phase delay (rad), r is the radius of piston (m), gh is the radial 

clearance between piston and cylinder bore (m),  is the absolute fluid viscosity (N 

sec/m2), L is the length of leakage passage (m), 1dC is the flow discharge coefficient of the 

discharge areas for piston port opening to discharge chamber, c is the flow density 

(kg/m3), diA is the thi discharge area for piston port opening to the discharge chamber in 

valve plate (m2), 2dC is the discharge coefficient of needle valve orifice, and vA is the orifice 

area of the needle valve (m2). The values of the parameters used in this simulation are taken 

from [40] and we use a sampling interval of 10 secT m .  To monitor and detect faults in (22), 

we use the following FD estimator  

              0
ˆ ˆ1 ( )

p p
pikpi

i
i ilpi

BT
x k Q k Q k Q k x k A x k x k

C A S i i i     


 1, .., 9, i   

            10 10 0 10 1010
ˆ ˆ1 ( )p s

c

TBC
x k Q k Q k x k A x k x k

V
           10

ˆ ˆy k kx   (23)   

where,  ˆ kxi , 1,...,10i  are the estimated system states.  

4
0 10 (0.0630,0.1796,0.8,0.0305,0.1431,0.1683,0.1567,0.1996,0.1172, 0.0001)A diag


 is the estimator gain matrix. For this 

simulation, two different faults, i.e., piston wear fault and pressure sensor fault are seeded. 

First, we discuss the piston wear fault. 
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B.1) Piston Wear Fault 

An incipient piston wear fault described by   

    0.02 100
][0,0,0,0,0,0,0,0,0,34 1 k Th k e    

is induced at the 100th minute of system operation. Additionally, a constant uncertainty of 

30 units is considered in the simulation. Next to detect the fault online, we generate norm 

of the residual (i.e.,      
10 10

ˆk k ke x x  ) from (22) and (23) as shown in Fig. 6.  Due to the 

presence of system uncertainties, a threshold is needed to guarantee robustness. Therefore, 

by taking 1.15  , 0.01  , and 30M  , we have 35  , a constant threshold as shown in Fig. 

6. From the figure, we see that the fault is detected at 105th minute. After the detection, the 

OLAD is initiated to learn online the magnitude of the unknown fault dynamics as shown 

in Fig. 7. Additionally, parameters of the OLAD are tuned online using the update law in 

(9) with 0.1  and 0.001  . From the figure, it is observed that the online learning of the 

fault by the OLAD is satisfactory.  

Subsequently, the TTF is determined using the scheme outlined in Section IV and 

is shown in Fig. 8. From the figure, the initial TTF prediction and the oscillatory behavior 

in the prediction is attributed to the random selection of the gains. However, as the online 

estimation of the fault parameter improves, the TTF prediction improves and concurs with 

the actual time of failure, which 251 min. 
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Fig. 6: Residual and the FD Threshold- Piston Wear Fault. 
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Fig. 7: Online Estimation of the Piston Wear Fault Magnitude. 
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Fig. 8: The TTF Determination Due to the Piston Wear Fault. 

 

B.2) Outlet Pressure Sensor Fault  

Next, a pressure sensor fault is induced, which may be due to loose wiring. 

Mathematically, the fault is described by   
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  0.4
0 100 min

( 99) for 100< 300 min

1390  for 300 min
o
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 





 

For sake of completeness, we assumed a time varying disturbance of 1 unit 

magnitude. Therefore, we need a threshold to avoid missed or false alarms. Thus by 

taking 1.48  , 0.01   and 1M  , we have 1.5  .  The fault is induced at the 100th minute of 

system operation.  After the fault is initiated, the norm of the residual tends to increase as 

observed in Fig. 9. Therefore, the fault is detected when the residual exceeds the threshold. 

Subsequently, the OLAD ˆ( ) ( )ˆ ( )o k kh k    is initiated to learn online the unknown fault 

dynamics. Moreover, the OLAD parameter is tuned online using (9) 

with 0.61  and 0.001  .  Although, the fault begins at 100 minutes, the fault tends to grow 

and has a sudden increase in the magnitude, which is similar to a step fault. Therefore, we 

see that the magnitude of the fault changes to a large value, which increases the residual to 

a large value as seen at around 300 minutes in Fig. 9. However, as the OLAD continues to 

learn the fault online, eventually the residual converges to zero as seen in the figure.  

Next, the online learning of the fault dynamics by the OLAD is given in Fig. 10 and 

it is found to be satisfactory.  
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Fig. 9: Residual and the FD Threshold- Output Sensor Fault. 
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Fig. 10: Evolution of the Pressure Sensor Fault and the OLAD Learning. 

 

Till now, we presented two examples in simulation to verify the proposed scheme. 

However, in the next section, we verify the proposed FD scheme on an axial piston pump 

test bed. Additionally, the two faults, i.e., piston wear and pressure sensor faults are 

induced through accelerated testing as detailed below.   

VII. EXPERIMENTAL RESULTS 

The performance of the proposed FDP scheme is evaluated on a pump test bed. In 

addition, the two faults assumed in the simulation are used in the experimental study. The 

piston wear fault was induced by creating cavitation in the axial piston pump test stand, 

which shown in Fig. 11.  In addition, the sensor fault was due to the loosing wiring. In the 

test stand shown, we have a 10.5cc variable displacement axial piston pump with nine 

pistons.  On the test stand, the inlet, outlet, and case drain pressures were recorded 

continuously at 1 kHz using NI cDAQ 9172 hardware.  Additionally, the case drain flow, 

outlet flow, reservoir temperature, case drain temperature, and pump temperature were 

also recorded.  

The estimator model derived in (22) is used again for detecting faults in the pump. 

Moreover, from the model given in (22), we could see that only the output pressure is 
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measurable. Therefore, we use the measured outlet pressure for detecting faults in the 

pump. Before using the data, due to the measurement noise, therefore, to attenuate them, 

we use a 10th order band-pass pass Butterworth filter with a cut-off frequency of 250 Hz 

and 300Hz. A snapshot of the raw data and the filtered data for the outlet pressure signal is 

shown in Figs. 12 and 13 respectively. As seen in Fig. 13, the raw data is filtered using the 

above defined filter and averaged over a one second fixed time window. Subsequently, the 

filtered data was used for the verification of the FDP scheme.   

 

 

 

Fig. 11: Picture of the Axial Piston Pump Test Bed. 
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Fig. 12: Raw outlet pressure signal. 
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Fig. 13: Processed outlet pressure signal. 

 

Therefore, the FD estimator in (23) is used for monitoring and detecting fault in the 

pump test bed. The residual generated by comparing the experimental outlet pressure with 

that of the estimated outlet pressure from the FD estimator is shown in Fig. 14. In this case, 

the threshold is obtained by taking 1.1  , 0.01  and 25M  , we have 28  .  As seen in 

the figure, the residual remains bounded for the healthy system operation. However, as the 

fault occurs due to the accelerated testing, the residual tends to increase and thus exceeds 

the threshold. Subsequently, the fault is detected and the OLAD and robust term are 

initiated.  
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Fig. 14: Residual and the FD Threshold- Piston Wear Fault (experimental results). 
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Moreover, the OLAD is tuned online using (9) with 0.2  and 0.03  . From Fig. 15, 

we could see the satisfactory estimation of the fault magnitude by the OLAD. It is noted 

that the fluctuations in the magnitude of the OLAD response were reduced to demonstrate 

the learning. Subsequently, using the online estimation of the fault magnitude, the TTF 

prediction is determined as shown in Fig. 16. Since the initial online estimation of the fault 

magnitude was not accurate and also due the random selection in the gains, the TTF 

prediction was not accurate. However, as the learning improved and approached the actual 

failure, the TTF prediction was satisfactory. Therefore, in Fig. 16, the TTF prediction is 

shown only for the last few minutes before the failure.    
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Fig. 15: Online Estimation of the Piston Wear Fault Magnitude (experimental results). 
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Fig. 16: The TTF Determination Due to the Piston Wear Fault. 
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In the next case, we assume a pressure sensor fault on the axial piston pump. The 

norm of the residual used for detecting the fault is shown in Fig. 17. Here again, the 

residual shown is the difference in the estimated and the experimental outlet pressure. 

Also, the threshold is obtained by taking 1.11  , 0 .0 1  and 16M  , we have a constant 

FD threshold of 18  . From the figure, the fault occurs at the 100th min of operation, where, 

the sensor fault is due to the loosening of the connect pin, and has a unique behavior. The 

fault grows with time and at around 300 minutes; the connecting pin is detached 

completely off the sensor. Therefore, we see a sharp increase in the residual as seen in Fig. 

17. Although, the OLAD and the robust term were activated the first time the residual 

exceeded the threshold, however, the residual converges to zero only after the second spike 

as in the figure.  
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Fig. 17: Residual and the FD Threshold- Pressure Sensor Fault (Experimental Results). 

 

Moreover, the learning of the fault by the OLAD is shown in Fig. 18, and is found 

to be highly satisfactory. Similar to the previous case, the OLAD is tuned online using (9) 

with 0.9  and 9
1 10


  . 
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Fig. 18: Evolution of the Pressure Sensor Fault and the  

OLAD Learning (Experimental Results). 

 

Therefore, from the simulation and experimental verification, one could see that the 

proposed scheme detects and learns both the incipient and abrupt faults online without any 

apriori offline training. Moreover, the experimental results show the feasibility in the 

implementing the proposed scheme on an experimental hardware. Therefore, the proposed 

FDP scheme renders a stable performance both in simulation and in practice.  

VIII. CONCLUSIONS 

In this paper, an online fault detection scheme using a new online approximator 

using AIS is proposed for a class of nonaffine nonlinear discrete-time systems. An 

asymptotic estimator is designed to monitor and detect faults in the given system.  The 

scheme could detect both the abrupt and incipient faults. Mathematical asymptotic stability 

results of the proposed fault detection scheme are derived. Moreover, initially two 

simulation examples were presented to demonstrate the asymptotic stability and the online 

learning capabilities of the proposed AIS based FD estimator. Later, the FD scheme was 

verified on an axial-piston pump test bed. From the experimental results, the FD scheme is 
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found to successful in detecting and learning online both the incipient and abrupt faults. 

Therefore, the proposed FD scheme renders asymptotic performance both in simulation 

and in experiment.  

APPENDIX 

Proof of Lemma 1: Consider (14) and solving it would render 
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max0A  is the maximum singular value of 0A .  
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Expand the term on the right hand side of the above equation, we have  
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Apply Cauchy-Schwarz inequality to terms numbered as 1 in the above equation, and 

combine similar terms, we would have the following equation  
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Substitute (14) in 1V of (A.1), therefore, we have  
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Next substitute the parameter update law (10) in 2V of (A.1), to obtain 
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Apply Cauchy-Schwarz inequality   ( 2 2
2ab a b  ) to terms numbered as 1 in the above 

equation would reveal 
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where 0  is a constant. Next, substitute the residual dynamics (14) to the term numbered 

as 1 in the above equation and apply the Cauchy-Schwarz inequality  
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Next, the overall first difference of the Lyapunov function candidate, 1 2V V V    , can be 

obtained from (A.2) and (A.3) as  
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Consider only terms numbered as 1 in (A.4), we have the following equation 
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Next, consider only terms numbered as 2 in (A.4), we have the following equation 
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T
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(A.5) and (A.6) in (A.4), would render the following equation   
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d d     . Apply Cauchy-Schwarz inequality ( 2 2ab a b  ) to the term 

numbered as 1 in (A.7), then, take Frobenius norm in the above equation, therefore, the 

first difference of the Lyapunov function is given by 
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then, equation (A.8) could be rewritten as  
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As long as the gains in (16)-(18) are satisfied, therefore, 0V  in (A.9), which shows 

stability in the sense of Lyapunov. Hence ( )e k and ( )k  are bounded, provided if
0

( )e k and
0

( )k  

are bounded in the compact set S. Hence ( )e k and ( )k converges to zero asymptotically.  
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2.  CONCLUSIONS AND FUTURE WORK 
 
 

In this thesis, fault detection and prediction for rotating machinery is undertaken 

by utilizing schemes, which are normally applied to the areas of fault detection, and in 

ways other than their conventional usage.  The first paper proposes a method for the use 

of PCA for prognosis.  Both conventional (linear), PCA and kernel PCA were applied on 

water pump for the purpose of fault prognosis.  The conventional PCA did not adequately 

model the fault dynamics and the by applying a Gaussian kernel, the results were 

significantly improved by 10%.  This is due to the conventional PCA’s inherent 

assumption that the data to be analyzed is linear.  By comparison, Kernel PCA makes no 

such assumption, and, therefore, is better suited for nonlinear applications.  This clearly 

illustrates a main weakness of data driven schemes:  the results are only as good as the 

data being used to create the model. 

In the second paper a new online fault detection schemes is proposed using an 

AIS as an OLAD for a class of nonaffine nonlinear discrete-time systems.  Additionally, 

an estimator was designed to monitor the system and detect the occurrence of faults.  This 

scheme was able to detect both the abrupt as well as incipient faults.  The stability and 

online learning were demonstrated in two simulated applications: a two degree of 

freedom manipulator, and an axial piston pump.  The FD scheme was later verified with 

an application to an axial piston pump test bed.  From the experimental results, the FD 

scheme was able to detect and learn both incipient and abrupt faults online.  Therefore, 

the FD scheme proposed in the second paper renders asymptotic stability in both 

simulation and in hardware.   

In conclusion, while both data driven and model driven methodologies have 

merit.  The performance of a data driven methodology is dependent on the suitability of 
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the data to the type of methodology to be applied (e.g. nonlinear data to be analyzed 

using linear techniques).  In contrast, model based methodologies are more robust to 

system noise and disturbance as well as multiple operation modes than data based 

approaches.  However, for a model based methodology to work satisfactorily, the model 

must adequately describe system dynamics.  Such equations can be quite complex, 

computationally expensive, and difficult to obtain. 

Future work utilizing in PCA in the context of FDP focus on determining how to 

evaluate the physical meaning if any of the principal components.  Knowledge of the 

physical meaning of the principle components could provide insights as to which 

component(s) might be useful for the isolation and prediction of faults. 

The use of AIS in the future should extend not only into the detection and 

learning of faults, but also into areas of fault isolation and prognosis.  For such an 

application, a bank of isolators would need to be accumulated.  After isolator bank has 

been created and an OLAD been placed in the appropriate state variables, isolation 

should be possible through careful observation of each OLAD behavior and comparison 

to the behavior modeled by the faults in the isolation bank. 
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