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ABSTRACT 

This work is focused on the design, synthesis and characterization of 

polypeptide and polypeptoid polymers. The former are composed of amino acid 

repeat units and possess intramolecular hydrogen bonding interactions allowing for 

the self-assembly into well-defined secondary structures (e.g. α-helix). Polypeptoids 

are based on N-alkyl substituted glycine and lack intramolecular hydrogen bonding 

interactions, resulting in enhanced proteolytic stability and thermal processability. 

Physicochemical properties of polypeptoids are strongly dependent on the side chain 

structures, allow for control of the solubility, crystallinity, and conformation of the 

polymers. Well-defined polypeptides and polypeptoids are synthesized by the ring-

opening polymerization (ROP) of their corresponding N-carboxyanhydride monomers 

(NCA), enabling access to high molecular weight polymers having well-defined 

structures. 

Chapter II is focused on the synthesis and characterization of 

glycopolypeptides by a combination of controlled polymerization methods and copper 

mediated alkyne/azide cycloaddition chemistry and investigation of the multivalent 

binding of the glycopolypeptides with Concanavalin A, a model lectin. The focus of 

the study is on understanding the effect of molecular characteristics of the 

glycopolypeptides such as chain length, epitope density and backbone conformation 

on the binding kinetics and stoichiometry.  

Chapter III is focused on the development of an organo-promoted ring-

opening polymerization of N-substituted NCAs using alcohol initiators in conjunction 

with 1,1,3,3-tetramethylguanidine (TMG), an organic promotor. It was found that 

TMG activates the alcohols through hydrogen bonding interaction. The activated 

alcohol moieties can initiate the NCAs polymerizations under mild conditions. It was 



xxiv 

further revealed that the electronic and steric characteristics of the alcohols impact the 

initiation efficiency and thus the polymerization behavior. 

Chapter IV is focused on the synthesis and polymerization of N-

thiocarboxyanhydrosulfides (NTA), a mercapto analog of the NCA. NTAs exhibited 

enhanced moisture-stability but reduced polymerization activities relative to the NCA 

analogs. Several initiating systems have been uncovered to enable controlled 

polymerization of NTAs in open air, allowing for access to high molecular weight 

polypeptides and polypeptoids. 
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CHAPTER I. INTRODUCTION TO PEPTIDOMIMETIC 
POLYMERS 

1.1 Overview of peptidomimetic polymers 

Peptidomimetic polymers are a class of polymers that bear structural resemblance 

and possess similar properties to proteins (e.g. well-defined secondary structures, 

biodegradability via proteolysis). They are being explored for their use in biologically and 

medically relevant applications such as antifouling surfaces1-12, therapeutics13-15, cell 

transfection16, and drug delivery.17-20 Non-biological or medically related applications of 

peptidomimetic polymers include the inhibition of ice crystal growth21 and the inhibition 

of gas hydrate formation.22 Because of their structural resemblance to proteins, 

peptidomimetic polymers have been demonstrated to exhibit low levels of cytotoxicity in 

vivo, making them good candidates as biomaterials.23 The peptidomimetic polymers 

covered in this work include polypeptides, also referred to as poly(α-amino acids), and 

polypeptoids, also known as poly(N-alkyl substituted glycines). Both polypeptides and 

polypeptoids possess similar properties to proteins such as the ability to self-assemble 

into well-defined secondary structures (α-helices, β-sheets, Σ-strands, polyproline I 

helices)24-28 and their ability to undergo proteolysis and enzymatic degradation, of which 

polypeptoids are more resistant to than polypeptides.29-30 The generic structures of the 

two types of peptidomimetic polymers covered in this work are shown in Figure 1.1. 

Figure 1.1. Generic structures of polypeptides and polypeptoids, the two types of 
peptidomimetic polymers covered in this work. 
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In order to be able to serve as a viable biomaterial, one set of criteria that a particular 

candidate polymer must exhibit is evidence of being biocompatible. One of the most 

commonly used polymers in various biomedical applications is poly(ethylene glycol) 

(PEG) as it has been reported to be relatively safe for medical applications.31 However, 

there have been a number of issues and adverse effects that have been reported for PEG 

based materials such as complement activation, oxidative degradation, and the formation 

of reactive oxygen species.32-35 Because of these reported issues, there is motivation to 

investigate alternative materials. Polypeptides and polypeptoids represent one avenue of 

alternative materials for application as biomaterials.  

1.2 Polypeptides 

 The composition of all proteins in all living organisms can be broken down into 

twenty amino acids. These amino acids can be sequenced in nearly infinite permutations 

and combinations via the peptide bond to give rise to the many proteins necessary for life. 

In nature, polypeptide chains of the proteins are synthesized by ribosomes during the 

process of translation. The polypeptides produced from translation eventually fold into 

the desired three dimensional structures, which are critical to their function. Poly(α-

amino acid) polymers (a.k.a. polypeptide polymers) differing from proteins have much 

simplified primary sequence and are obtained by polymerization strategies. A unique 

characteristic of polypeptide polymers, unlike acrylic based polymers such as polystyrene 

and methacrylates, is the presence of hydrogen bonding interactions between the carbonyl 

and the amide nitrogen along the main chain backbone. These interactions contribute to 

the self-assembly of polypeptide polymers into well-defined secondary structures25 which 

mimic those observed for naturally occurring proteins. These structures can consist of α-

helices or β-sheets. Polypeptides can be synthesized from a variety of naturally occurring 

or synthetic amino acids, allowing for tremendous molecular diversity in material design. 
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In addition, polypeptides are susceptible to proteolysis unlike acrylic polymers. In 

proteolysis, a polypeptide chain is broken down into smaller fragments36-41 and eventually 

down to basic amino acids, providing a mechanism of material removal from the living 

system. The combination of these characteristics make polypeptides a suitable synthetic 

platform for biomedical applications.  

1.2.1 Solid phase synthesis of polypeptides 

 One aspect to take into consideration in polypeptide synthesis is the sequencing of 

the amino acids on the chain. Exact sequences of amino acids are found in all living 

systems and incorrect sequences can contribute to mutations and other abnormalities. An 

exact sequence of amino acids may be necessary for a particular function or response 

such as that found in the pentapeptide GRGDS, which plays a role in integrin-mediated 

cell adhesion and acts as a cell binding peptide.42 Changing the sequencing on this 

pentapeptide would most likely cause the molecule to behave differently and it may not 

participate in cell binding, which is observed in the exactly sequenced GRGDS. 

Monodisperse polypeptides with specific sequences can be synthesized using 

recombinant DNA techniques but these methods are time consuming and the synthetic 

procedures can be complicated.43-44  

One method used in the synthesis of shorter yet exact peptide sequences is solid 

phase synthesis. Solid phase synthesis was developed by Robert Bruce Merrifield45 for 

which he was awarded the 1984 Nobel Prize in Chemistry. The method relies on the 

stepwise addition of each successive amino acid starting with a solid support resin. One 

of the most commonly used resins is a polystyrene based resin known as “Merrifield 

resin” after the namesake of its creator and is used in the solid phase synthesis of peptide 

acids. Other resins also exist such as Rink resin, which is used when a C-terminal amide 

is desired in the final product but the process by which peptides are built stepwise 
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remains the same. The growing peptide chain is tethered onto the hydrophobic resin, 

preventing it from being washed away during filtration and washing steps. Solid phase 

peptide synthesis can be manually performed using a solid phase reactor or it can be 

programmed to be a fully automated process using a peptide synthesizer. Regardless of 

whether the process is automated or manual, the steps are the same for the addition of 

each additional amino acid sequence. A general scheme is shown in Figure 1.2. Starting 

from a labile amino acid tethered onto the resin, the exposed amine group of the amino 

acid is reacted with the successive amino acid. This successive amino acid has its own 

amine group protected to prevent additional peptide bond forming reactions from 

occurring. The protecting group (commonly Fmoc) is then removed exposing a labile 

amine allowing the addition of the next protected amino acid. This process is repeated 

until the desired oligopeptide is complete. The peptide is then cleaved from the solid 

phase resin support under acidic conditions (commonly trifluoroacetic acid). The 

advantage of solid phase peptide synthesis is that an exact sequence of amino acids and 

compositions can be obtained. However there are drawbacks. One big drawback is that 

the product yield and purity decrease as the chain length increases, thus making it more 

difficult to access longer peptide species with adequate purity. This is in part due to the 

increased likelihood that there would be incomplete deprotection of the amine. Deletions 

are also possible due to incomplete coupling. Another drawback is that excessive starting 

material and reagents are required to carry out the transformations, making the syntheses 

of oligopeptides costly. 

1.2.2 Polypeptide synthesis via the ring-opening polymerization of N-carboxyanhydride 
monomers 
 

Polymerizations of polypeptides would allow access to higher molecular weight 

polypeptides than those afforded by solid phase synthesis at large scales. However, 

polymerization methods sacrifice the exact sequencing of the amino acids in the peptide. 
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In order to obtain a well-defined system of polypeptides with adequate molecular weight 

control and narrow PDI, the use of a controlled or living polymerization method is 

 

 

Figure 1.2. Generic scheme detailing the stepwise process of peptide synthesis using solid 
resin anchors. 

 
required. Although it has been demonstrated that well-defined polypeptides can be 

synthesized via an alternate copolymerization of imine and carbon monoxide46, the ring-

opening polymerization of heterocyclic compounds known as N-carboxyanhydrides is 

more commonly adopted among researchers. 

Synthesis and purification of N-carboxyanhydride monomers. N-carboxyanhydrides 

(NCA) are commonly used in the polymerization of peptidomimetic polymers. NCAs 

were an unexpected discovery made by Herman Leuchs during the preparation of N-
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During heating and attempted vacuum distillation of the obtained product, it was 

observed that alkyl halide had been released and resulted in the cyclization of the amino 

acid derivative into the first NCA heterocycle. Polypeptides as well as polypeptoids, 

where the nitrogen atom along the peptide backbone is substituted with a non-proton 

group, are synthesized from NCAs via a ring-opening polymerization (ROP).  

There are a number of ways to obtain amino acid-based NCA monomers. The 

route described above, the Leuchs method, uses SOCl2 as the cyclization agent. The 

Fuchs method of synthesis of NCA monomers involves the phosgenation of the amino 

acid precursor into the desired NCA via phosgene.49 Farthing improved on the Fuchs 

method in 1950, suggesting that dry organic solvents be used in the syntheses of more 

hydrophilic NCAs due to their instability in aqueous media.50 This method is now 

commonly referred to in the literature as the Fuchs-Farthing method. Phosgene was 

originally used to cyclize amino acids in the Fuchs-Farthing method but it is a gas making 

it more difficult to handle and its toxicity and use in chemical warfare has led to a number 

of alternatives to using phosgene directly. Alternative techniques using derivatives of 

phosgene such as diphosgene (liquid) and triphosgene (solid) have been developed and 

each of these has been used in the successful cyclization of amino acid based NCAs.51-53  

HCl is generated in each of these cyclization reactions whose presence can be harmful in 

a polymerization system and result in premature chain termination.48 Additionally, 

chloride anions have also been shown to act as initiators in the ROP of NCAs, especially 

in DMF24, which would ultimately affect the resulting Mn and PDI. The presence of 

chloride anions could also potentially result in self-initiation.  

High purity of the NCAs is essential to ensure a well-controlled polymerization 

behavior. There are a number of impurities that can form during the cyclization process 

with phosgene derivatives (i.e. diphosgene, triphosgene) or halogenating agents (e.g. 
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PCl3, PBr3, SOCl2) (Scheme 1.1) The formation of HCl and the effect of Cl- anions has 

already been noted previously. Through the Fuchs-Farthing method (Scheme 1.1, A), a 

number of other impurities aside from HCl are formed which include hydrochloride 

 

Scheme 1.1. Generic synthesis of an α-amino acid based NCA via the Fuchs-Farthing 
method of phosgenation (A) or halogenating agents (B) and the resulting impurities from 
each method 
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volatility such as diphosgene can remain in the reaction if cyclization was incomplete or 

excess starting material was used. Other oily residues such as alkyl halides can form and 

remain present in the case of the cyclization of N-substituted monomer precursors (e.g. 

Boc, Cbz) (Scheme 1.1, B). The latter synthetic route is more relevant in the synthesis of 

N-alkyl substituted glycine based NCAs and will be discussed in subsequent sections. 

OH

O

NH2

R

Cl

O

Cl

Cl

O

O CCl3

O

O

O CCl3Cl3C

or

or

HN O
R

O

O

HCl+ + OH

O
R

NH3
Cl

+ OH

O
R

NCO

OH

O

HN

R

PX3

SOCl2

O

O R1
O

Cl

Cl

or

or

X= Cl, Br

HN O
R

O

O

HX+ + R1X + POX3

A

B



 8 

Recrystallization under anhydrous conditions is a commonly used method to purify amino 

acid based NCA monomers.48 However, this process usually has to be repeated a number 

of times before NCA monomers of sufficient purity can be obtained for use in 

polymerizations. The addition of an organic base (i.e. α-pinene)56 was used in the 

synthesis of L-leucine NCA with diphosgene in order to remove the HCl that is formed 

during phosgenation but the resulting alkyl halide was difficult to remove. Another 

commonly used method used to purify amino acid based NCA monomers is a cold base 

wash, usually saturated sodium bicarbonate.53, 57-58 While this can remove HCl and HCl 

amino acid salts, there is the inherent possibility that water, a possible initiator, can be 

introduced into the NCA crop, leading to premature initiation. Recently, column 

chromatography has been used as a possible method of NCA purification.42, 59-61 Deming 

et al have demonstrated that column chromatography under anhydrous conditions can 

yield amino acid based NCA monomers that could be used to obtain high molecular 

weight polypeptides regardless of the hydrophilicity or hydrophobicity of the side chains 

and that the NCAs are tolerant and stable in silica gel.60 Additionally, column 

chromatography is less time consuming than that of repeated recrystallizations. A number 

of less conventional methods have been also been used to purify NCA monomers ranging 

from celite filtration62, and rephosgenation to remove amino acid⋅HCl salts.55  

Normal amine mechanism. The nucleophilic ROP of NCAs is perhaps the simplest route 

for polymerization. Primary amines are the most common initiators used for nucleophilic 

based ROP (Scheme 1.2). The reaction pathway for nucleophilic ROP or normal amine 

mechanism (NAM) as proposed by Waley and Watson63-64 begins with an attack on the 

C5 position (Scheme 1.2), which results in the breaking of the weak anhydride bond 

forming a terminal carbamic acid. The carbamic acid subsequently undergoes a 

decarboxylation to form a new primary amine active chain end. This is the initiating 
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species and propagating events continue through the nucleophilic attack of subsequent 

NCA monomers by this primary amine chain end before a termination event suppresses 

the growing chain end.  

 

Scheme 1.2. Generic primary amine initiated ROP of an α-amino acid based NCA  
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aminoacyl compounds from stoichiometric reactions of their respective NCAs and the 

hydrochloride salts of primary amines and not produce polymeric product. 

 One additional drawback of NAM is that the reaction is relatively slow. The rate 

determining step in NAM is presently inconclusive. One group of reserachers argue that 

the rate determining step is the loss of CO2 from the carbamic acid species that is formed 

following ring-opening. The loss of CO2 drives the equilibrium towards the formation of 

the primary amine reactive species.69-70 It was previously found that the immediate 

removal of CO2 from the system sped up the reaction due to the instability of the 

carbamic acid intermediate species.71-72 Molecular weight control was investigated 

Wooley et al and it was reported that the immediate removal of CO2 by constant nitrogen 

flow simultaneously improved rates of polymerization and maintained the living 

characteristics of NAM.73 Compared to a reaction with zero nitrogen flow, a threefold 

increase in the observed propagation rate constant kp of the ROP of γ-benzyl-L-glutamate 

NCA using hexylamine initiator was observed in a parallel reaction using a nitrogen flow 

rate of 100 mL/min. Further analysis of Mn versus conversion of the hexylamine initiated 

ROP of γ-benzyl-L-glutamate NCA using a 100 mL/min flow rate of nitrogen suggested 

that the living character of this polymerization was maintained. Another group argues that 

the rate determining step is the attack on C5 by the primary amine initiator based on DFT 

calculations;74 the nucleophilic attack at the C5 position was found to have the highest 

activation energy compared to other steps in NAM. 

Side reactions in NCA polymerizations. Scheme 1.2 only represented the ideal scenario 

that would occur in NAM order to generate the desired polypeptide species. In reality 

there are a number of side reactions that can occur in polymerization systems. A number 

of them are discussed in this section. 
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 NCAs contain two electrophilic centers on C2 and C5 as indicated on the generic 

NCA in Scheme 1.2. In the ideal scenario, attack at the C5 carbonyl by the primary amine 

initiator or propagating species opens the NCA ring and forms a terminal carbamic acid. 

Carbon dioxide is lost through decarboxylation, which forms a new reactive primary 

amine terminus for subsequent propagation reactions with additional NCA monomers. 

However, it has been shown that there is a mode of termination for an attack on the C2 

position. It is possible that the primary amine can simply attack the C2 position during the 

initiation step resulting in the formation of a urea species with a free carboxylate (Scheme 

1.3A).48, 75 The resulting ring-opened urea species does not participate in any further 

reactions thus rendering it a dead chain. This attack at the C2 carbonyl is not limited to 

the initiation step. Sela and Berger have demonstrated that the formation of a urea species 

can occur during propagation leading to premature termination in the case of poly(DL-

phenylalanine).76-77 The major factor influencing the tendency for a particular primary 

amine initiator to attack C2 or C5 was determined to be the nucleophilicity of the amine. 

Primary amine initiators with higher nucleophilicity had a much lower tendency to attack 

C2 thus mostly producing the desired initiating species via attack on C5.69, 78-80  

 Another side reaction that could occur is the formation of an isocyanate at the C2 

position (Scheme 1.3B). This is usually observed following the deprotonation of the –NH 

proton by a strong base when the polymerization proceeds through the activated 

monomer mechanism (vide infra). It is also possible for less nucleophilic primary and 

secondary amine initiators to deprotonate the amido proton, leading to the formation of 

the isocyanate. It was also reported that the use of secondary amine initiators, especially 

those with branched alkyl groups, can favor rearrangement into hydantoic acids.48 
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During the ROP of glutamic acid based NCAs, one of the most commonly 

observed side reactions is an event known as backbiting, where the primary amine active 

chain end performs an intramolecular reaction at the γ-carbonyl center resulting in the 

 

Scheme 1.3. (A) Formation of urea species via nucleophilic attack on C2 (B) formation of 
isocyanate via deprotonation of –NH and subsequent rearrangement to hydantoic acid 

 

 

formation of a cyclic pyroglutamate through ester cleavage (Scheme 1.4). This 
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polymerization of γ-benzyl-L-glutamate NCA where backbiting products were observed 
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carried out at low temperature (0 °C) to prevent the formation of backbiting impurities.81-

82  

 

Scheme 1.4. Generic scheme of the formation of a terminal pyroglutamate species via 
backbiting 
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The choice of solvent can contribute to the observation of side reactions. DMF is 

often used in the polymerization of polypeptides due to minimal aggregation but it has 

been observed that DMF itself can participate in the reaction, both as an initiator and as a 

mode of termination.83-85 Kricheldorf et al have observed that at 60 °C, the growing chain 

end of poly(DL-phenylalanine) can react with DMF, releasing dimethylamine. The results 

of this attack on DMF are twofold. First, the polypeptide is now end capped with a 

formamide species thus rendering it a dead chain via termination. Second, the released 

dimethylamine is very nucleophilic and can participate in initiation and propagation of 

additional NCA monomers. Both of these events (Scheme 1.5) lead to the decrease of Mn 

and broadening of PDI, which are undesired results of a controlled polymerization. 

 

Scheme 1.5. Termination of a growing polypeptide chain via reaction with DMF and 
subsequent reinitiation by released dimethylamine 
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block the addition of water to the anhydride. Self-polymerization via water initiation was 

also observed to occur in the solid state in crystalline ε-carboxybenzyl-L-lysine NCA.91 

 

Scheme 1.6. Hydrolysis of NCAs 

 

 

Activated monomer mechanism. A second method to initiate the polymerization of amino 

acid based NCAs is known as the activated monomer mechanism (AMM).92-94 Unlike N-

alkyl substituted glycine based NCAs, which will be discussed in subsequent sections, the 

nitrogen atom of amino acid NCAs bears a proton which can be deprotonated by a strong 

base, commonly triethylamine, generating negatively charged species which act as 

nucleophiles in the polymerization reaction (Scheme 1.7). This technique has the 

distinction to be able to generate higher molecular weight species than that of NAM. 

However, this also makes control of the polymerization difficult because initiation is 

much slower than that of propagation (ki < kp), which yields high molecular weight 

polypeptides with broader than expected PDIs.48 However, ROP of NCAs that proceed 

via AMM have higher propagation rate constants than those of NAM, allowing access to 

these high molecular weight polypeptides with shorter reaction times. In AMM, it is 

possible that the deprotonation of the amido proton can result in the formation of 

isocyanates, leading to premature termination (vide supra). 

 One major characteristic of AMM presented in Scheme 1.7 is that the mechanism 

relies upon the continual formation of “activated monomer” species via the deprotonation 

of additional NCA with carbamate chain ends. Much criticism has been levied against the 

proposed propagation mechanism.95 There is a significant difference in the pKa values of 

HN O
R

O

O

+ H2O
HN O

R
OH

O

OH proton transfer
HO

O H
N OH

OR



 15 

carbamates and NCAs (ΔpKa ~ 6) rendering this step highly unlikely. The AMM also 

assumes that activated species will only react with N-acyl NCA chain ends versus 

additional NCA monomers. However, evidence for the proposed terminal cyclic initiating 

species obtained in AMM was presented by Peggion et al, who used 14C labeled amine 

initiators in the polymerization of γ-benzyl-L-glutamate NCA.96 Although there is 

evidence for the proposed initiating species, much investigation needs to be done to 

elucidate the mechanism of propagation in AMM. 

Transition metal catalysts. A third method for the ROP of amino acid based NCAs 

involves the use of transition metal catalysts. The goal of using transition metal initiators 

 

Scheme 1.7. Activated monomer mechanistic pathway for the ROP of a generic amino 
acid based NCA 
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conventional nucleophilic ROP of amino acid based NCAs. Unlike the side reaction 

above where a nucleophilic initiator (i.e. primary amine) has the possibility of attacking 

the carbonyl at the C2 position resulting in the formation of an inactive urea species, the 

Ni(bpy)COD catalyst is regioselective and oxidatively adds across the O-C5 bond 

exclusively, versus adding across the O-C2 or N-H bonds, forming a five-membered 

metallacycle. Following oxidative addition, the five-membered metallacycle reacts with 

an additional NCA monomer to form a stable six-membered species which contracts to a 

five-membered amino-amidate initiating species. Propagation was proposed to occur via 

the free amido group on the amino-amidate attacking the C5 position of another NCA 

monomer once again forming a metallacycle species that can contract following proton 

transfer. The metal species in essence migrates along the propagating chain end.99 This is 

summarized in Scheme 1.8. It was demonstrated that polymerizations with these initiators 

yielded polypeptides whose molecular weights increased linearly according to initial 

monomer to initiator feed ratios. The observation of narrow PDIs suggested that there 

was an absence of side reactions. Kinetic experiments studying the ROP of γ-benzyl-L-

glutamate NCA by Ni(bpy)COD revealed that the polymerization proceeded in a first-

order type reaction. The resulting polypeptide, poly(γ-benzyl-L-glutamate) (PBLG), was 

found to retain its α-helical secondary structure, a well-known and well-studied 

attribute.24 Polymerization via organonickel catalysts has been extended to the synthesis 

of various block copolypeptides via the sequential addition of monomer, further 

demonstrating the living nature of this polymerization technique.  

Additional transition metal catalysts were explored, the main requirements of an 

adequate transition metal catalyst being functional group tolerant towards potential 

functionalities on NCA monomers and their resulting polypeptides, having low valency, 

being able to undergo a 2-electron oxidative addition, and possessing strong electron 
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donating ligands.100 Potential new catalysts based off of palladium and platinum were 

found to be regioselective in reacting with the N-H bonds of NCAs thus being unable to 

form the correct propagating species for the controlled ROP of NCAs.101 Cobalt and iron 

catalysts (i.e. M(PMe3)4, M=Co, Fe) for the ROP of NCAs have been developed.100 A 

much faster initiation was observed in cobalt initiators than those of nickel, allowing 

access to lower molecular weight polypeptides as observed in low [M]0:[I]0 reactions. 

Aggregation was observed in iron catalysts, giving low yields of uncontrolled 

polypeptide, due to the increased Lewis acidity of iron. Aggregation can be prevented 

 

Scheme 1.8. Proposed ROP mechanism of NCAs via transition metal catalysts 
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found to be similar to that of nickel. The main advantages of this initiation system are that 

early termination side reactions can be eliminated and the increased tolerance of the 

initiator to impurities. The metal species added to the reactions are removed via the 

addition of acidic methanol (1 mM HCl). However, no evidence (e.g. atomic absorption 

spectroscopy, inductively coupled plasma atomic emission spectroscopy results) for 

whether all of the metal species have been removed was provided. If polypeptides were to 

be used in biomedical applications, removal of heavy metals is important. 

Organosilicon amine mediated ROP. Organosilicon amines can be used as initiators to 

obtain high molecular weight polypeptides through the ROP of their corresponding 

NCAs. PBLG102-103 and PCPLG58 have been shown to polymerize from their respective 

NCA monomers mediated by hexamethyldisilazane (HMDS). Organosilicon amine-

mediated ROP of NCAs differs mechanistically from previous methods. It was initially 

proposed by Cheng et al that the trimethylsilane group (TMS) of HMDS is transferred to 

the carbonyl of the NCA and the NCA ring is opened by the resulting silyl amine. The 

TMS-carbamate intermediate formed in the initiation step participates in propagation via 

a six-membered ring transition state where the TMS group is transferred to the incoming 

NCA monomer, regenerating the TMS-carbamate species (Scheme 1.9a), similar to that 

of a group transfer polymerization. This process continues as TMS is continually 

transferred to incoming NCA monomers until all monomer has been consumed. 

Interestingly, HMDS-mediated ROP of amino acid based NCAs can be extended to their 

polypeptoid counterparts, specifically N-methyl glycine NCA.104 

The fact that N-methyl glycine NCA can be polymerized via a HMDS-meditated 

pathway (Scheme 1.9b) led to a revision of the initially proposed mechanism.104 Scheme 

1.9a suggests that the NCA monomer undergoes a tautomerization in order to generate 

the desired intermediate product 1, which is the propagating species. The nitrogen atom 
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of N-methyl glycine NCA does not contain a proton to undergo tautomerization. 

Additionally, it was demonstrated through equimolar reactions with HMDS and succinic 

anhydride (Scheme 1.9c) that the nitrogen atom is not necessary for HMDS to open cyclic 

anhydrides. A new cooperative mechanism (Scheme 1.9d) was proposed where the amide 

bond formation and TMS transfer occur simultaneously. 

Recently, it was reported that the process can be accelerated through the use of a 

trimethyl sulfide species because of the combination of the increased nucleophilicity of 

the sulfur atom and increased reactivity of the S-Si bond (Scheme 1.10).105 Through the 

use of a commercially available phenyl trimethyl sulfide initiator (PhS-TMS), a variety of 

amino acid based NCA monomers (i.e. ε-carbobenzyloxy-L-lysine, γ-triethylene glycol-

L-glutamate, γ-benzyl-L-glutamate, γ-4-vinylbenzyl-L-glutamate, γ-allyl-L-glutamate, O-

diethylphoso-L-tyrosine, and γ-3-chloropropyl-L-glutamate) were polymerized with 

adequate molecular weight control and narrow polydispersities (< 1.1). 

The TMS group transfer mediated ROP of amino acid based NCAs can be 

combined with different polymerization strategies to obtain polymers with different 

architectures. One such material seldom seen with respect to polypeptides is a brush 

copolymer composed of polypeptide “bristles.” Ring-opening metathesis polymerization 

(ROMP) using Grubbs’ catalyst is a commonly used method in order to obtain polymer 

brush backbones, usually of norbornene derivatives.106 Using a norbornyl amine to 

synthesize a brush backbone with the intent of using the primary amine side chains in a 

grafting from approach to initiate ROP of amino acid based NCAs, it was found that 

ROMP did not proceed due to the deactivation of the Grubbs’ catalyst by the norbornyl 

amine.107 N-TMS protection of the norbornyl amines used in this study served two 

purposes. One the one hand, it would allow for ROMP to proceed due to the reduced 

likelihood of catalyst deactivation and secondly would generate a reactive macroinitiator  
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Scheme 1.9. Proposed mechanisms for the organosilane amine mediated ROP of NCAs. 
Reproduced from Reference 104 with permission of The Royal Society of Chemistry. 

 

 

species to allow for a “grafting from” approach to synthesize the brush copolymers.108 

These combined methods of ROMP and TMS group transfer ROP of amino acid based 

NCAs were further extended to achieve other materials such as hybrid block 

copolymers109 and supramolecular structures.110 
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Rare earth borohydride polymerization. A method involving the use of rare earth 

borohydrides in the ROP of amino acid based NCA monomers was recently reported by 

Ling et al. Poly(γ-benzyl-L-glutamate) and block copolypeptides with poly(ε-

carboxybenzyl-L-lysine) with adequate molecular weight control and PDI (1.16, 1.05 in 

homopolypeptide and block copolypeptide respectively) were synthesized from the ROP 

of NCAs using coordination compounds with the structure M(BH4)3(THF)3 where M = 

Sc, Y, La, Dy.111 Rare earth metals are well-known catalysts in the ROP of polyesters112-

118 but have not been explored for their application as catalysts in the ROP of NCAs. 

Mechanistic studies of rare earth borohydride initiated ROP of alanine-NCA revealed the 

simultaneous attack of the catalyst on the C5 position and deprotonation of the nitrogen 

atom, giving two reactive centers from which propagation can occur via the attack of the 

metal-carbamic acid species on successive NCAs or via AMM.  The end result is a 

telechelic polypeptide species. Through temperature variation (0 °C), the AMM pathway 

could be suppressed, allowing the NAM-like pathway to dominate (Scheme 1.11). 

 

Scheme 1.11. “NAM”-like reaction pathway in the ROP of NCA monomers using rare 
earth borohydrides. Reproduced from Reference 111 with permission of John Wiley & 
Sons. 
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Accelerated amine mechanism through monomer activation. This final method for the 

ROP of NCAs discussed in this section is known as the accelerated amine mechanism 

through monomer activation (AAMMA).119 The motivation for the development of this 

method was to obtain well-defined and well-controlled polypeptide species in short 

reaction times but with adequate control over the targeted molecular weight species. This 

essentially combines the aspects of AMM (rate of reaction) with those of NAM (control). 

Optimizing this polymerization strategy first entailed screening initiators that contain 

both primary and tertiary amines. It was found that triethylaminetriamine (TREN) 

initiated polymerizations of γ-benzyl-L-glutamate and ε-carbobenzyloxy-L-lysine NCAs 

produced polypeptides with well-controlled molecular weights (up to 45 kg⋅mol-1), 

narrow PDIs (< 1.19) in a much shorter timeframe (2-3 h). An AMM polymerization 

pathway was ruled out due to the presence of only one set of narrowly distributed 

polymers being observed. Mark-Houwink-Sakurada plots revealed the presence of three-

arm stars, which would indicate an exclusive NAM pathway. 15N NMR studies of TREN 

compared with other amines screened, namely tetramethylethylamine (TMEDA), 

revealed that the tertiary nitrogen of TREN was electron deficient with respect to the two 

tertiary nitrogen atoms of TMEDA suggesting that deprotonation of the –NH of NCAs as 

observed in AMM does not occur. Instead, it is proposed that the amido proton is 

activated by TREN via hydrogen bonding without deprotonation, leading to the observed 

faster propagation. This behavior is not limited to complex amines consisting of primary 

and tertiary amines. Recently, a system using amines consisting of primary and secondary 

amine components such as triethylenetetramine (TETA) produced similar results to that 

of TREN initiated ROP of NCAs (Figure 1.3).120 TETA initiated ROP via AAMMA was 

also found to follow first-order kinetics and the living characteristics were confirmed 

through investigation of Mn with respect to conversion. High molecular weight poly(γ-
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benzyl-L-glutamate)s (up to 46 kg⋅mol-1) with adequate PDIs (< 1.29) were obtained from 

TETA initiated ROP. In summary, this discovery represents a foray into the development 

of metal-free initiators for the well-controlled ROP of amino acid based NCAs and it is 

hoped that the scope of polymerizations using this method can be expanded to give 

interesting polymer architectures. 

1.2.3 Post-polymerization modification of polypeptides 

Glutamic acid derivatives. In particular, polypeptides based off of glutamic acid and its 

derivatives have the potential for expanding side chain structural diversity, which may 

allow for post-polymerization modification reactions. The main reason for this variability 

is that the synthetic methodology used to access NCAs based off of glutamic acid 

 

 

Figure 1.3. Proposed reaction pathway of AAMMA in the ROP of amino acid based NCA 
monomers via initiation by TETA. Reprinted from Reference 120 with permission from 
the American Chemical Society. Copyright 2015 American Chemical Society.  

 

derivatives allows for a number of diverse, functional side chains to be added. This 

discussion will exclude those side chain functionalities that do not necessarily allow for 

the grafting of functional moieties such as those of γ-methoxy-L-glutamate121, and γ-

cinnamyl-L-glutamate122, the latter of which only allows for photocrosslinking.  
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 As will be explored further with N-alkyl substituted glycine based NCAs, the side 

chains of glutamic acid based NCAs can be varied in the initial synthetic steps of 

monomer preparation thus increasing side chain structural diversity. L-glutamic acid can 

 

Scheme 1.12. Functionalization of L-glutamic acid via esterification under acidic 
conditions for post-polymerization modification. 
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role in a number of biological functions such as cellular signal transduction and 

metabolism, and protein recognition.128-129 Chapter II is devoted to the study of 

carbohydrate-lectin interactions using glycopolypeptide scaffolds and the research and 

development glycopolypeptides (and glycopolymers) will be covered in much more detail 

in that chapter and will not be covered here. 

One set of glutamic acid derived NCA precursors are not synthesized via the 

direct esterification of glutamic acid under acidic conditions. These precursors are 

synthesized using the copper chelation of glutamic acid followed by reaction of the 

resulting copper complex with an alkyl halide bearing the desired functionality.130 One 

polypeptide of note is that of poly(γ-4-vinyl-benzyl-L-glutamate).131 Cheng et al have 

reported the versatility of the terminal vinyl group in post-polymerization modification 

 

Scheme 1.13. Post-polymerization modification reactions of poly(L-glutamic acid) 
derivatives 
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ozonolysis or osmium tetroxide oxidation. The terminal alkene of poly(γ -4-vinyl-

benzene-L-glutamate) could also form new carbon-carbon bonds via metathesis using 

Grubb’s catalyst, Suzuki coupling, and photocrosslinking. These are summarized in 

Scheme 1.14. 

Methionine alkylation. Deming et al reported a post-polymerization reaction involving 

the thioether group of poly(L-methionine).132 L-methionine NCA was synthesized and 

purified using methods previously discussed and polymerized using Co(PMe3)4 initiator 

with adequate molecular weight control (up to 58 kg⋅mol-1) as verified by end group 

analysis using a PEG end group (Mn = 2000 g⋅mol-1). The thioether group could be 

alkylated using various alkyl halides, or triflates, ranging from simple aliphatic groups to 

carbohydrates (Scheme 1.15). This wide range of functionalities demonstrates the 

versatility of the thioether group and shows the functional group tolerance of the 

 

Scheme 1.14. Various post-polymerization transformations of poly(γ-4-vinyl-benzene-L-
glutamate) 
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thioether. The thioether alkylation was demonstrated to be a reversible in the presence of 

a sulfur based nucleophile such as glutathione, 2-mercaptoethanol, thiourea, and 2-

mercaptopyridine.133 Thus, polypeptide based materials synthesized via post-

polymerization thioether alkylation of poly(L-methionine) show potential future 

application as trigger-release materials. One drawback with poly(L-methionine) is the 

lack of solubility of the polypeptide in common organic solvents hence rendering 

characterization more difficult and requiring the end capping of the growing polypeptide 

chain with a large PEG species in order to allow for 1H NMR end group analysis to be 

performed. 

Thiol-ene reactions with poly(L-cysteine). One of the most versatile post-polymerization 

reactions is the thiol-ene coupling reaction. Patton et al reported the synthesis of S-tert-

butylmercapto-L-cysteine NCA, which was subsequently polymerized 

 

Scheme 1.15. Thioether alkylation with various alkyl halides and triflates. Reprinted from 
Reference 134 with permission from the American Chemical Society. Copyright 2016 
American Chemical Society. 
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on silicon surfaces using Ni catalysts (Scheme 1.16).135 The resulting polypeptide was 

deprotected via dithiothreitol to expose the thiol moiety on the side chains allowing for 

the thiol-ene coupling reaction to occur between the poly(L-cysteine) and a fluorinated 

maleimide. 

Thiol-ene reactions with poly(L-serine). Cheng et al have reported the synthesis of an L-

serine based NCA monomer bearing an O-pentenyl side chain, allowing for thiol-ene 

coupling to occur at the terminal alkene (Scheme 1.17). The advantage to serine based 

 

Scheme 1.16. Thiol-ene coupling of poly(L-cysteine) 

 

 

polypeptides is their water solubility, a necessary property of potential biomaterials. The 

resulting polypeptides maintained their β-sheet forming character. Applicability of the 
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thiol-ene coupling and cellular uptake of the polypeptides was observed. 
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Scheme 1.17. Thiol-ene coupling of poly(O-pentenyl-L-serine) 

 

 

 

Scheme 1.18. (A) Thiol-ene coupling of poly(DL-allylglycine) and of poly(DL-propargyl 
glycine) (B) as described by Schlaad et al 
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on the nitrogen atom versus that of the α-carbon (with respect to poly(α-amino acids)). By 

shifting the side chain to the nitrogen atom, intramolecular hydrogen bonding interactions 

are lost as there is no longer an –NH species to act as a hydrogen bond donor and there is 

the loss of main chain chirality. This has two consequences. The first is that due to the 

lack of strong hydrogen bonding interactions along the polypeptoid chain, there are few 

opportunities for the polymer to adopt a well-defined secondary structure like that of 

polypeptides resulting in most polypeptoids adopting random coil conformations. Chiral 

N-alkyl side chains can be installed during R-NCA synthesis to allow polyproline I 

helices to form, indicating the importance of side chain structure on the determination of 

secondary structure and polypeptoid function.27 Recently, a new secondary structure 

observed in peptoid systems was observed which has been termed “Σ-strand.”28 These 

“zigzag” like structures result from the ability of the peptoid backbone residues to adopt 

opposite rotations. A more positive consequence due to the loss of rigidity due to the 

presence of well-defined secondary structures allows for easier thermal processing of 

polypeptoid based materials.141 Polypeptoids can also be degraded via base catalyzed 

hydrolysis (1.0 M NaOH), demonstrating their potential to be broken down and 

potentially cleared by living systems. 

Side chain functionalization is important to the functionalities and properties of 

polypeptoids. It will be observed in subsequent sections that a variety of primary amines 

can be used in the synthesis of N-alkyl substituted glycine based NCAs. Functional 

groups that allow for post-polymerization modification such as allyl142 or propargyl143-144 

groups can be installed through the initial synthesis of the monomer, thus allowing for 

thiol-ene and CuAAC reactions to be used to graft additional functional moieties to the 

side chains.  
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1.3.1 Solid phase synthesis of polypeptoids 

Polypeptoids can be synthesized using a stepwise process similar to those found in 

solid phase peptide synthesis except that protected N-alkyl substituted glycine derivatives 

are used in place of regular amino acids. Solid phase synthesis of peptoids has been 

developed and refined by Zuckermann.145-146 Because the synthesis of protected N-alkyl 

substituted glycines is expensive, time consuming, and low yielding, an alternative 

procedure known as the “submonomer method” was developed to curtail these additional 

synthetic steps.146 The submonomer method (Figure 1.4) differs from the conventional 

methods discussed previously in that the first step involves an acylation of bromoacetic 

acid to the amine terminus of the resin. Because bromine is a good leaving group, the 

second step is a nucleophilic displacement of the bromine using the desired alkyl amine, 

creating the resulting N-alkyl substituted glycine. The secondary amine terminus formed 

in this second step becomes the reactive center of the following acylation reaction with 

bromoacetic acid. The processes of acylation and nucleophilic displacement are repeated 

until the desired peptoid sequence is complete. Similar to solid phase peptide synthesis, 

the final product can be cleaved from the solid resin support under acidic conditions. 

While the residue compositions and chain lengths can be controlled to near exactness as 

in solid phase peptide synthesis, solid phase stepwise synthesis of polypeptoids bears the 

same disadvantages namely requiring excess starting material, and has limited access to 

longer chain lengths due to the increased likelihood of deletions from incomplete 

reactions from previous steps (i.e. acylation of the secondary amine terminus or 

nucleophilic displacement of Br). However, due to the large variety of commercially 

available primary amines, there exists a great level of versatility in polymer design 

through side chain modification via the submonomer solid phase method. 
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1.3.2 Ring-opening polymerization of N-alkyl substituted glycine based NCA monomers 
to synthesize polypeptoids 
Monomer synthesis. High molecular weight polypeptoids can be obtained from the ring-

opening polymerization (ROP) of their respective N-alkyl substituted NCA monomers 

(R-NCA) at the cost of sequence specificity. N-substituted glycine hydrochloride salts, 

the precursors to N-alkyl substituted glycine based NCAs, are synthesized from the 

 

 

Figure 1.4. Scheme showing the solid phase synthesis of oligopeptoids using the 
submonomer method. 
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strongly basic conditions (NaH) with iodomethane.147 Alternatively, commercially 

available sarcosine can be N-Boc protected under basic conditions to generate a similar 

compound under significantly milder conditions.149 N-alkyl substituted glycines are 

cyclized into the desired R-NCA monomers using a phosphorus trihalide (chloride or 

bromide) or acetic anhydride.27, 49, 147-148, 150-152 In the case of N-methyl glycine NCA, a 

form of phosgenation (e.g. triphosgene) can be used directly with sarcosine to obtain the 

corresponding NCA.153-154 The synthetic steps of R-NCAs starting from glyoxylic acid 

monohydrate or methyl bromoacetate, and primary amine are summarized in Scheme 

1.19. The synthesis of N-methyl NCA is summarized in Scheme 1.20. Purification of R-

NCAs has been accomplished through sublimation or distillation. 

 

Scheme 1.19. Generic synthesis of R-NCAs 
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acid, and subsequent propagation by an amine active chain end. The propagating chain 

end is a secondary amine in the case of polypeptoids because of the N-alkyl substitution. 

Luxenhofer et al have demonstrated that well-controlled and well-defined polypeptoid 

species could be obtained from the ROP of a number of R-NCAs ranging from 

hydrophilic N-methyl glycine NCA to hydrophobic N-butyl glycine NCA using 

benzylamine initiator.153 The ROP of these R-NCAs was found to follow pseudo first-

order kinetics. The living character of these polymerizations was also exploited to 

 

Scheme 1.20. Synthesis of N-methyl glycine NCA 

 

 

 

Figure 1.5. Generic structure of R-NCA and the many alkyl side chain variations that 
have been synthesized. 

H
N

O

OHO

O

1. NaH
2. CH3I

THF
N

O

OHO

O

PX3

N O

O

O

H
N

O

OH
Boc2O

H2O
Et3N

OCCl3

O

Cl3CO

CH2Cl2

N
O

R

O

O

n
n=4, 5, 7, 9, 11, 13

O
n

n=1, 2, 3

Functional side chains

R:

N3



 35 

synthesize block copolypeptoids via the sequential addition of monomer. A pentablock 

copolypeptoid (five separate, distinct blocks) was able to be synthesized through the 

sequential addition of additional monomer following the consumption and quantitative 

conversion of the previous R-NCA batch (Figure 1.6).155 The living character of the ROP 

of sarcosine-NCA was also demonstrated through repeated enchainment experiments.  

Primary amine-mediated ROP of R-NCAs via NAM was also extended to the use 

of solid supports bearing terminal amine groups in the form of a resin.156 These primary 

amines displayed well-controlled molecular weights based on their monomer and initiator 

initial feed ratios may allow for polymerization methods to be combined with those of 

solid phase synthesis. However one drawback in using solid support methods is that 

trifluroacetic acid salts were formed during the cleavage of the polypeptoids from the 

solid resins. These salts could not be removed from the precipitation methods used to 

obtain the synthesized polypeptoids. Additionally, the PDIs obtained through solid 

support methods were significantly broader (as high as 2.20) than those expected from 

generic NAM initiated ROP of R-NCAs. 

Resins are not the only solid surfaces on which amine-mediated polymerization 

can occur. One major application for polypeptoids is for anti-fouling surfaces whose 

goals are to prevent the adhesion of proteins and bacteria.3, 5-10, 12 However, each of the 

polypeptoids used in question were synthesized using solid phase methods and the 

maximum layer thickness was reported to be approximately 4 nm.5 

Aminopropyltrimethoxysilane bearing a terminal primary amine was immobilized onto 

silicon wafer surfaces so that ROP of R-NCAs (i.e. N-methyl glycine and N-butyl glycine 

NCAs) could take place at the amine termini.157 This surface initiated method was also 

extended to form surface brush copolypeptoids through the sequential addition of 

monomer. Monolayer thicknesses of approximately 40 nm were obtained through the 



 36 

surface initiated ROP of R-NCAs by primary amines as revealed by atomic force 

microscopy, a tenfold increase over the thicknesses previously obtained. Another 

example of surface initiated ROP of R-NCA monomers was reported by Lu et al using 

nanolithography techniques to pattern Si(111) surfaces with (3-

aminopropyl)triethoxysilane (APTES) filled pores.158 N-allyl glycine NCA was 

polymerized via NAM, using the terminal primary amines of APTES, producing 

 

 

Figure 1.6. MALDI TOF MS spectrum of the synthesis of a tetrablock copolypeptoid 
through stepwise monomer addition. Reproduced from Reference 155 with permission of 
John Wiley & Sons.  

 

patterned surfaces of polypeptoid nanorods up to heights of 35 nm. Poly(N-allyl glycine) 

has multiple applications as the polypeptoid can undergo post-polymerization 

modification via thiol-ene coupling (vide infra) or undergo hydrophobic collapse with 

heating. 
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Polypeptoids obtained from NAM methods have displayed a number of 

interesting properties such as the dependence of the side chain length (number of carbon 

atoms) or branching on main chain and side chain crystallization and packing.159 The 

random copolymerization of N-ethyl glycine and N-butyl glycine NCAs has also yielded 

a series of thermoresponsive copolypeptoids whose cloud point temperatures could be 

tuned by altering the hydrophilic lipophilic balance via adjusting the feed ratios of the 

two R-NCAs during polymerization. Thermoresponsive bottle brush copolypeptoids were 

obtained from ring-opening metathesis polymerization (ROMP) of a series of random 

copolypeptoids polymerized using a norbornene amine based initiator in a “grafting 

through” technique.160-161 

Polypeptoids obtained from NAM have also been studied in a number of 

applications. Xuan et at reported the synthesis of a triblock copolypeptoid via the 

sequential addition of monomers starting from benzylamine initiator. The ABC triblock 

copolypeptoids contained hydrophobic, hydrophilic, and thermoresponsive segments. 

Upon heating, it was observed that the triblock copolypeptoid systems formed free 

standing gels with narrow sol-to-gel transition windows and that the gels could be 

injected through a 24 gauge needle without breaking apart. Similarly using benzylamine 

initiator, Li et al recently reported the synthesis of core-crosslinked micelles composed of 

poly(N-ethyl glycine), poly(N-propargyl glycine), and poly(N-decyl glycine). 

Crosslinking was achieved via CuAAC (vide supra) using a disulfide crosslinker species 

which could be degraded using glutathione. The loading and gradual release of 

doxorubicin, a commonly used anti-cancer drug was also demonstrated.162 

Zwitterionic ring-opening polymerization to afford cyclic polypeptoids. One area of 

interest that has always intrigued polymer chemists is the synthesis of polymers with 
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unique architectures (e.g. cyclic, star, dendritic). This section focuses on synthetic 

strategies used to obtain cyclic polypeptoids.  

 Recent advances in a technique known as zwitterionic ring-opening 

polymerization have allowed access to well-defined polymers with cyclic architectures. A 

generic reaction scheme for nucleophilic based ZROP is shown in Scheme 1.21. A 

nucleophile attacks a cyclic electrophilic species, generating a positively charged reaction 

center and an anionic terminus. In ZROP, the two oppositely charged termini are kept in 

close proximity via electrostatic interactions. During propagation, the system undergoes 

ring expansion in order to further increase DPn. Guanidines, amidines, and N-heterocyclic 

carbenes (NHC) have been found to be able to stabilize the intermediate reactive species 

that form during ZROP. NHCs were first investigated as potential initiators in the ring-

opening polymerizations of cyclic ester monomers to obtain well-defined poly(esters)s163-

168 and poly(ethylene oxide)s,169 and the scope of monomers polymerized with NHCs has 

been expanded to include poly(carbosiloxanes).170  

 

Scheme 1.21. Generic reaction mechanism of nucleophilic ZROP 

 

 

Li et al reported that NHCs could also follow a ZROP type of mechanism in the ROP of 

R-NCAs in order to produce cyclic polypeptoid species (Scheme 1.22).147, 150 Well-

controlled polypeptoid species obtained from the ring-opening polymerization of N-butyl 

glycine NCA using NHC initiator were suggested to possess cyclic architectures based on 

the MALDI TOF MS of a low molecular weight species and from Mark- Houwink-

XE

Nucleophile

XENu
XE

n-1 XENu A X

n-1
E

XE

X
n-1



 39 

Sakurada plots.147 This initial work represented the first foray into the synthesis of 

polypeptoids with unique (i.e. cyclic) architectures. 

 

Scheme 1.22. Synthesis of cyclic polypeptoids via ZROP of R-NCAs using NHC initiator  
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as thermoresponsive behavior (vide supra), crystalline side chain packing159, and micelle 

and gel formation.159, 172 

One major disadvantage of NHCs is their instability to moisture. Alternative 

methods were sought in order to combat this drawback. Diazabicyclodecene (DBU)173 

and isothiourea174 have been investigated as initiators in the ring-opening polymerization 

of cyclic ester monomers to obtain their cyclic polymeric counterparts. Well-controlled 

ROP of R-NCAs was observed when using DBU as the initiator in low dielectric solvents 

(i.e. THF, toluene) like that previously observed in NHC-mediated ROP of R-NCAs.19 

Mechanistic studies suggested the presence of oppositely charged chain ends during 

polymerization, a positively charged DBU and a negatively charged carbamate species 

(Scheme 1.23). 

 

Scheme 1.23. Proposed mechanism of DBU-mediated ZROP of R-NCAs. Reprinted from 
Reference 19 with permission from the American Chemical Society. Copyright 2016 
American Chemical Society. 
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Synthesis of polypeptoids with star or brush architectures. Other unique architectures that 

are of interest are star and brush polymers. The former was synthesized by Lahasky et al 

from a graft through approach, starting from a norbornene methylamine initiator in the 

ROP of N-ethyl glycine and N-butyl glycine NCAs.161 The norbornene end group is 

polymerized via ROMP in order to generate the brush backbone following the 

polymerization of the “bristles” via NAM. Using polymeric macroinitiators bearing 

primary amines, Schmidt et al recently reported the synthesis of brush copolymers 

bearing polysarcosine side chains using poly[N-(6-aminohexyl)methacrylamide] 

macroinitiators which bore primary amine initiating species on the side chains.175 Their 

ability as carriers of siRNA was also demonstrated. Less conventional substrates, namely 

amino bearing chitin176 and chitosan177, were also used to generate brush copolymers 

bearing polysarcosine side chains. However, the poor solubility of the polymeric 

substrates required the addition of nicotinic or isonicotinic acid in order to maintain 

control of the polymerization. Star polypeptoids bearing polysarcosine arms were also 

reported to be polymerized from a poly(trimethylenimine) core.178 Star shaped 

polydepsipeptides containing poly(lactide) and polysarcosine arms have been synthesized 

by Kimura et al for the study of these materials as potential in vivo nanocarriers.179-180 

Post-polymerization modification of polypeptoids. Post-polymerization modification of 

the polypeptoid side chains is one method that can be used to both graft desired 

functionalities onto the polymer and further increase side chain structural diversity. Two 

polypeptoid species that allow for a variety of post-polymerization reactions to take place 

are poly(N-allyl glycine) and poly(N-propargyl glycine). 

 N-allyl glycine NCA was synthesized by Schlaad et al using methods described 

previously starting from allylamine. The resulting polypeptoid bearing allyl side chains 

can undergo thiol-ene photochemistry in order to install various functional moieties (e.g. 
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glycerol, glucose) using their respective thio-analogs (Scheme 1.24).142 This demonstrates 

the versatility of thiol-ene chemistry and its ability to tolerate the functional groups of 

numerous functional moieties as well as demonstrating that the side chains of poly(N-

allyl glycine) can be modified using such a robust reaction. 

The alkyne group in poly(N-propargyl glycine) is more versatile than its allyl 

counterpart in that there are additional post-polymerization reactions that are only 

accessible to the propargyl species (Scheme 1.25).144 In addition to thiol-ene chemistry, 

the propargyl group allows access to copper mediated alkyne/azide cycloaddition 

(CuAAC), a versatile reaction known for its chemoselectivity. However, grafting 

 

Scheme 1.24. Thiol-ene photochemical reaction between poly(N-allyl glycine) and a 
functional thio-moiety 
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increased the grafting density. A polypeptoid based imidazolium side chain can be 

obtained from the resulting triazole sepcies obtained from successful grafting via CuAAC 

through the quarternization of the triazole with an alkyl bromide. The single alkyne 

proton can also be deprotonated under basic conditions using a phosphazene base181 to 

yield a nucleophilic anion, which has been demonstrated to participate in the ROP of 

epoxides. Crosslinking of the polypeptoid network could also be obtained by heating the 

polymer system above 150 °C.   

Scheme 1.25. Post-polymerization modification reactions with poly(N-propargyl glycine) 
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of potentially nucleophilic impurities such as chloride anions, which are generated during 

the synthesis, have been shown to act as potential and unwanted initiators.24 These 

caveats with respect to the handling of NCAs limit their availability only to those who 

possess the necessary equipment and synthetic capability to handle them (e.g. glovebox, 

Schlenk techniques). A structurally similar alternative to NCA monomers substitutes a 

sulfur anhydride. These are collectively known as N-thiocarboxyanhydrosulfides (NTA). 

Amino acid derived NTAs have been reported to be stable for months at a time under 

ambient conditions and the monomers do not have to be synthesized under strict moisture 

free conditions like those of NCAs; synthesis of NTAs can be carried out in open air.182 It 

is possible then that NTAs could be the gateway to obtaining well-controlled 

peptidomimetic materials in polymerizations for those lacking the capability to carry out 

the synthesis and polymerization of conventional NCA monomers. NTAs were originally 

synthesized for use in small peptide synthesis183-188 and have been applied in the 

modification of textiles with peptides.189  Recently there have been a number of research 

efforts to show that NTAs could be feasible alternatives to NCAs. This was disputed by 

Kricheldorf, who demonstrated that a series polysarcosines, poly(DL-phenylalanine)s, 

and poly(DL-leucine)s synthesized from their corresponding NTAs using a primary 

amine initiator did not exhibit good control over the obtained molecular weights.190 Much 

more recently, Ling and coworkers have demonstrated that N-methyl glycine NTA could 

be polymerized using a PEG-functionalized primary amine and heat (60 °C) in order to 

obtain polypeptoids that exhibited good molecular weight control relative to the initial 

monomer and initiator feed ratios (Scheme 1.26).182 Additionally, it was demonstrated 

that rare earth borohydride initiators (Scheme 1.27) could also be used in the ROP of N-

methyl glycine NTA to obtain well-controlled species of polysarcosine in addition to 

block copolypeptoids from the ROP of N-butyl glycine NTA using the polysarcosine as a 
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macroinitiator in addition to benzylamine.191-192 These polysarcosine and PNBG 

copolypeptoids have been shown to exhibit lower critical solution temperature behavior 

and the cloud points of these polymers can be tuned based on the feed ratios of sarcosine 

and N-butyl glycine NTA monomers during the polymerization.192 These recent 

developments show that R-NTA monomers exhibit some promise as potential alternatives 

to R-NCA synthesis and subsequent polymerization of polypeptoids. The same 

polypeptoids as obtained from the ROP of R-NCA monomers can be obtained via the 

ROP of their thio analogs. 

Scheme 1.26. Ring-opening polymerization of N-Me NTA with PEGylated amines 

Scheme 1.27. Homoolymerization (A) and random copolymerization (B) of sarcosine and 
N-butyl NTAs using rare earth borohydride initiators 
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CHAPTER II. MULTIVALENT BINDING INTERACTIONS OF 
MANNOSE FUNCTIONALIZED GLYCOPOLYPEPTIDES WITH 
CONCANAVALIN A  

2.1 Objectives 

Chapter I gave a broad overview on the background of polypeptides. Because of 

their resemblance to proteins, polypeptides are good candidates for use as biomaterials as 

they have been demonstrated to display minimal cytotoxicity.23 One main feature that 

distinguishes polypeptides from other polymers is their ability to self-assemble into well-

defined secondary structures, most notably α-helices and β-sheets without any necessary 

chemical modification to induce such behavior. These well-defined secondary structures 

are formed via intramolecular hydrogen bonding interactions. The α-helix, especially that 

of poly(γ-benzyl-L-glutamate) has been noted to have a high persistence length rendering 

the structure rod-like, which maximizes side chain display to the environment compared 

with that of random coil polymers. The latter is prevalent in many glycopolymer systems, 

which have been used as synthetic substrates to study multivalent binding effects to 

lectins, proteins which bind to specific carbohydrates. The goal of this study is to 

synthesize a series of glycopolypeptides whose chain lengths, backbone conformations, 

and binding epitope densities can be systematically tuned, and investigate the effects of 

these molecular characteristics on interactions with lectin in particular with respect to the 

binding kinetics, binding stoichiometry, and binding efficiency. It is proposed that the 

enhanced side chain display observed in helical glycopolypeptides will enhance the 

binding activity of a lectin to the carbohydrate side chains.  

2.2 Multivalent binding, glycopolymers, and glycopolypeptides 

The primary structure of a protein is defined by its specific amino acid sequence. 

In nature, many of these amino acid derivatives bear side chains functionalized with 
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carbohydrates or sugars and are known as glycopolypeptides. One example is 

glycosaminoglycans connected to a protein via a serine residue. Glycopolypeptides occur 

in the extracellular matrices of living systems as proteoglycans. Proteoglycans are 

involved in a number of biological processes such as regulating the growth of collagen 

fibrils, controlling the activities of growth factor-beta, and serving as an anionic source in 

glomerular filtration.193 One problem encountered in working with proteoglycans is their 

heterogeneity in vivo often requiring multiple separations.194 Synthetic models, 

glycopolymers, have been developed to gain a better understanding the behavior of 

proteoglycans. Many glycopolymers are based on backbones that cannot be degraded by 

proteolysis such as acrylates. Polystyrene and polyethylene have been shown to illicit 

immune response in mice, making them poor candidates as biomaterials.195 Recent 

developments have been focused on the synthesis of glycopolypeptides, which have a 

main chain polymer backbone composed of amino acid repeat units. Glycopolypeptides 

provide a number of advantages such as tunable backbone conformation and proteolytic 

degradability.36-41 These attributes would make glycopolypeptides an ideal model to 

investigate multivalent carbohydrate-lectin interactions. 

2.2.1 Multivalent carbohydrate-lectin interactions 

 There are numerous processes that are governed by multivalent interactions 

between two different components in living systems. These interactions can occur 

between proteins and small molecules, proteins and cell membranes, antibodies and cells, 

and between viruses and cells. One of the most widely studied multivalent interactions 

are those between proteins and carbohydrates as carbohydrates play a vital role in 

controlling cell-cell signaling196-197, protein and cell interactions198-200, and the targeting 

of antibodies, and toxins.201-204 One notable example is the triggering of apoptosis on 

human T-cells by the binding of galectin-1 to external galactose residues of T-cells.198-199 
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These processes are mediated by the binding of carbohydrate to lectins, which are 

proteins that have binding affinity for specific carbohydrates. Some examples of lectins 

are Concanavalin A, Ricin, and Ulex europaeus agglutinin, which bind to mannose, 

galactose, and fucose respectively. Lectins often bind to glycosylated cellular membranes, 

which contain the necessary carbohydrates for the specific interaction. The relationship 

between carbohydrate and lectin serves as a method of cellular recognition between the 

many components of biological processes. 

 Individual binding interactions between monosaccharides and individual protein 

receptors are weak as their association constants are rarely beyond 10-6 M-1.205 This value 

must be significantly higher in order to achieve any control over the specific biological 

process dictated by the binding interaction. These weak binding interactions between 

monosaccharides and protein receptors have been overcome by nature through 

multivalent interactions; carbohydrate binding proteins (lectins) tend to exist as highly 

ordered or multivalent species where multiple copies of a particular protein receptor are 

present. The weak binding interactions that do exist between proteins and carbohydrates 

can be overcome through what has become known as the glycoside cluster effect206 where 

the binding of multiple lectins to a carbohydrate substrate greatly improves the binding 

strength and affinity versus that of a monovalent lectin and receptor system. The 

glycoside cluster effect can be best realized in the binding of viruses to target cells; 

viruses often contain hundreds of copies of a specific lectin used to bind to target cells. 

The influenza virus contains approximately 300 copies of hemagluttinin used to bind to 

N-acetyl neuraminic acid found on the extracellular matrices.207 The synthesis of various 

glycopolymers and glycopolypeptides has allowed these systems of multivalent 

carbohydrate-lectin interactions to be better characterized and understood.  
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2.2.2 Glycopolymers 

 The synthesis of glycopolymers is motivated by the need to create synthetic 

analogs of proteoglycans and to serve as polysaccharide mimics in therapeutic 

applications such as drug delivery.208-210 In this work, glycopolymers refer to those 

polymers containing carbohydrate moieties and non-polypeptide backbones. 

Glycopolymer synthesis. Glycopolymers are composed of backbones that cannot be 

enzymatically degraded such as those based on carbon-carbon bonds. 

Poly(methacrylate)s211-214 and styrenes215-216 are among the most commonly used 

polymers in the synthesis of glycopolymers. There are numerous methods used to 

synthesize well-defined poly(methacrylate) and poly(styrene) polymers and they will not 

be covered here. Post-polymerization modification reactions using functionalized 

carbohydrate moieties are often used for their selectivity to couple with the desired 

functional groups in a “grafting to” approach. One of the earliest reports by Bovin et al 

used the amidation (vide infra) of an aminobenzyl functionalized sialic acid to the 

polymer pendant side chain.217 This is summarized in Scheme 2.1. The biggest issues that 

can be seen with amidation reactions are that there is the possibility of disfavored 

equilibria, which may lead to incomplete side chain grafting. More chemoselective post-

polymerization methods include copper mediated alkyne-azide cycloaddition (vide infra) 

and reactions with thiolated species either in thiol-ene, thiol-yne, or para-substitution of a 

fluorophenyl species.214, 216, 218-220 

Alternatively, one could synthesize glycopolymers directly through the synthesis 

and polymerization of glycosylated monomers. However, accessing these monomers can 

be synthetically challenging. One notable example is the synthesis and polymerization of 

a glycosylated norbornene.221 The derivatized norbornene is polymerized through ring-
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opening metathesis polymerization (ROMP) to generate a fully glycosylated 

glycopolymer through what is known as a “grafting through” method (Scheme 2.2). 

 

Scheme 2.1. Synthesis of sialic acid based glycopolymers via amidation 

   

 

Scheme 2.2. ROMP of glycosylated norbornene 
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substrate gradually increases with additional binding interactions to a ligand through the 

glycoside cluster effect. In the case of the influenza virus, multivalent binding occurs 

between the trimeric complex of hemagluttinin and the N-acetyl neuraminic acid residues 

of the target cell. Each monomeric binding event between N-acetyl neuraminic acid and 

hemaglutinin generates a weak binding interaction (Kd = 2 mM).222 This single interaction 

is not strong enough for the virus to adhere to the cell. However, multiple binding 

interactions of the hemaglutinin onto additional copies of the N-acetyl neuraminic acid 

greatly increase the association constant and thus contribute to the adhesion that is 

observed when a virus binds to the cell in order to begin the lytic cycle to produce more 

viruses. 

The first reported example that used glycopolymers as inhibitors of the influenza 

virus was reported by Bovin et al.217 Aminobenzyl functionalized sialic acid were reacted 

with poly(4-nitrophenylacrylate)s in an amidation reaction in order to generate the desired 

glycopolymer (Scheme 2.1). The content of sialic acid was varied between samples and 

monomeric glycoside was also investigated as a potential inhibitor of the virus. It was 

found that increasing the content of the sugar on the glycopolymers increased the 

measured inhibition. The maximum inhibition was determined at 20% glycosylation; 

increasing the sugar content above 20% actually led to decreased levels of inhibition. 

Minimal, if any, inhibition of the virus was observed in monomeric sugar species and 

those glycopolymer species bearing low levels of glycosylation supporting the 

observations of weak binding interactions between monosaccharides and lectins.   

The Whitesides group has made significant foray into the application of 

glycopolymers in therapeutics with respect to influenza virus inhibition.222-229 Whitesides 

et al expanded upon the findings made by Bovin, who previously determined that 

intermediate levels of glycosylation on the polymer side chains provide the maximum 
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levels of virus binding inhibition due to competition between cooperative binding 

interactions of adjacent carbohydrate moieties. Overcrowding the glycopolymer backbone 

leads to increased steric bulk of the binding epitopes amongst each other. This results in 

reduced access by the lectin to the binding epitopes. One report explored the effects of 

side chain sterics and charge on inhibition.223 It was determined that the addition of bulky 

groups or charged species decreased the observed binding with the influenza virus and 

thus lowered the observed inhibition levels. These studies involved the use of O-linked 

sialic acid moieties, which can be cleaved by neuraminidases, producing monomeric 

sialic acid, and potentially lowering the inhibitory potential of the glycopolymer systems. 

A C-linked sialic acid acrylate monomer was synthesized and demonstrated to be 

resistant to the effects of neuramidinases yet the level of viral inhibition paralleled that of 

the O-linked glycopolymers.225 

One issue observed with these earlier studies is that copolymerization of 

functionalized comonomers was used to obtain the resulting glycopolymers and provide 

the spacing between the functional sialic acid moieties. Because it is known that the 

maximum inhibitory potential can be achieved by spacing out the binding epitopes from 

each other, copolymerization has allowed for the insertion of spacers. However, because 

two different acrylic monomers were used, there is the potential for the reactivity ratios of 

the monomers to differ significantly, possibly resulting in a gradient distribution and may 

contribute to overcrowding of the polymer side chains. Additionally, the use of post-

polymerization modification allows polymers from a single reaction batch to be used 

comparatively in inhibition studies; the polymer species from a specific reaction batch 

would have similar polydispersity, molecular weights, and degrees of polymerization 

unlike those obtained from copolymerization.  
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A number of works by the Whitesides group have attempted to address these 

issues through post-polymerization modification strategies. A number of strategies that 

were explored in order to obtain a more statistical distribution of binding epitopes along 

the polymer chains was through the functionalization of poly[(N-acryloxy)succinimide]227 

or poly(acrylic anhydride)229 with a variety of primary amines in addition to the sialic 

acid binding epitopes. From these studies, it was revealed that sub-nano molar levels of 

influenza virus inhibition could be achieved and that there was a dependence on the 

observed inhibitory potential with the sterics of the primary amines used; sterically 

bulkier side chains contributed to decreased inhibition. 

Investigation of multivalent binding with Concanavalin A. It is interesting that increased 

epitope density actually led to decreased binding interactions between hemagluttinin and 

the influenza virus leading to decreased inhibition. A number of studies by Kiessling et al 

have investigated the effects of multivalency on the binding of the carbohydrate side 

chains of glycopolymers with Concanavalin A (ConA), a plant lectin derived from the 

jackbean, which has binding affinities for both glucose and mannose.230-234  

Kiessling et al investigated the effects of multivalent binding of monovalent 

glucose and mannose and glycopolymeric scaffolds bearing glucose and mannose side 

chains to ConA. Glycopolymers used in the studies were synthesized by ring-opening 

metathesis polymerization (ROMP) of a glycosylated norbornene monomer (Scheme 

2.2).221, 230 Compared to previous methods which involved the radical polymerization of 

acrylic monomers217, 223, a ROMP based strategy would allow for improved control over 

the size, and epitope density of the resulting glycopolymers.221 These early studies 

demonstrated that compared with monosaccharide species of glucose and mannose, the 

polyvalent glycopolymers exhibited at most, a 50000-fold improvement in inhibitory 

potential in the investigation of agglutination of erythrocytes.230 The specificity of ConA 
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towards mannose versus glucose was also investigated. Previous studies have found that 

the free energies of binding of glucose and mannose to ConA only differ from 

approximately 0.2-0.8 kcal/mol.235 This difference was clearly observed in the 

comparison of glycopolymers bearing glucose versus mannose side chains; 

glycopolymers bearing mannosides exhibited 160-fold lower inhibitory concentrations 

versus the glucoside analogues suggesting the improved binding affinity of ConA for 

mannose over glucose.  

 Subsequent studies investigated the effects of binding epitope density with respect 

the rate of clustering (kinetics), and binding stoichiometry.234 Glycopolymers were 

synthesized via ROMP bearing either mannose or galactose moieties on the side chains, 

the latter of which does not bind to ConA. The relative loadings of the mannoside or 

galactoside monomer were adjusted in order to obtain a series of glycopolymers with 

varying binding epitope densities. With respect to the rate of clustering, glycopolymers 

with higher percentages of mannosides on the side chains exhibited faster rates of 

clustering (ki) than those glycopolymers with lower degrees of mannosides. As expected, 

minimal clustering was observed in the species bearing all galactosides. Thus, the number 

of receptors is important when fast kinetics are desired. Higher binding epitope densities 

also led to higher observed binding stoichiometry, which is a measure of the number of 

ConA tetramers bound per chain. However, those glycopolymers with lower binding 

epitope densities tend to bind more ConA residues per mannose residue present on the 

chain due to the increased spacing between binding residues, requiring only 2 mannose 

residues per binding interaction with ConA versus 9 mannose residues in the fully 

glycosylated species.234 Thus, although the former species binds the slowest, it benefits 

from the most use of the available mannose residues (Figure 2.1). 
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Figure 2.1. (A) Binding of ConA to a glycopolymer with maximum binding epitope 
density. Mannose binding epitopes are represented by the semicircles. (B) Binding of 
ConA to a glycopolymer with lower binding epitope density and spacing in between each 
of the binding species. Though example A binds more ConA, the example in B displays 
more effective binding with respect to a per mannose residue basis (mannose/ConA) due 
to usage of all of the available mannose receptors versus that of A where a number of 
mannosides are rendered inaccessible due to sterics.  

 

Drug delivery. Another application that has been explored with glycopolymers is in drug 

delivery. There are a number of obstacles that must be overcome in the development of 

an efficient drug delivery system. One such roadblock is overcoming the blood brain 

barrier (BBB), which regulates the diffusion and transport of molecules into the brain. 

Unlike the rest of the body, the area surrounding the BBB does not contain pores known 

as fenestrae, which allow the two-way diffusion of molecules between the bloodstream 

and the tissue. Transport across the BBB must be via the lipid membrane. Interestingly it 

has been found that glycosylation allows molecules to pass through the BBB, thus 
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inspiring a potential application of glycopolymers as site specific drug delivery vessels 

which target the brain. 

 With respect to drug delivery methods, a commonly used method is one 

developed by Ringsdorf where a polymer is functionalized with the drug to be delivered, 

a solubilizing agent, and a targeting ligand.236 Carbohydrate moieties are in this case able 

to assist as a targeting ligand, solubilizing agent, or both simultaneously. One example of 

a drug delivery system involving glycopolymers using the Ringsdorf method was 

developed by Cameron and Davis et al which involved the targeting of boar spermatozoa 

which display a galactose binding lectin. Site specific delivery could be achieved through 

the application of a galactose targeting ligand on the respective polymeric drug delivery 

platform. To demonstrate the site specific capabilities of their system, acrylic terpolymers 

composed of galactose, 2-diaminoethyl groups, and α-tocopherol were synthesized. α-

tocopherol is an antioxidant, designed to repair oxidative damage of the spermatozoa 

brought on by storage and transport. The α-tocopherol functionalized moeity was also 

replaced with a fluorescent marker, hostasol, to allow visualization of the spermatozoa.237  

2.2.3 Glycopolypeptides 

Each example of a glycosylated polymer species previously discussed was 

composed of a non-degradable polymer backbone, which may present problems with 

respect to biocompatibility. Poly(methyl methacrylate) has been shown to trigger an 

immune response in patients who have received methyl methacrylate based prostheses.238-

239 Glycopolypeptides have a number of distinct properties that may render them 

advantageous over glycopolymers. Most importantly, polypeptides have the potential to 

be enzymatically degraded, allowing for their removal from living systems. Secondly, 

polypeptides can self-assemble into well-defined secondary structures, (i.e. α-helices, β-
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sheets) which enhance side chain display and may allow for improved access to the 

pendant side chains.  

Glycopolypeptide synthesis.  As with the synthesis of oligopeptides with exact 

sequencing of the amino acid repeat units, glycopolypeptides have been synthesized using 

solid phase peptide methods using amino acid starting material that has been 

glycosylated.240-241 Similarly, high molecular weight species are difficult to access and the 

quantities by which syntheses can be conducted are also limited. 

 A more unusual method to access glycopolypeptides, DNA recombinant 

techniques, combine aspects of chemical and biological syntheses. Kiick et al have 

produced a series of sequence specific oligopeptides where the exact spacing of the 

glycosylated species can be controlled.242-243 Following the synthesis of the peptide, the 

glutamic acid residues on the chain were functionalized with galactose through amidation 

reactions. The exact sequencing of the sugar moieties in these studies was designed in 

order to mimic the distance between the galactose binding sites of the cholera toxin so 

that the inhibition of the toxin using the glycopeptide could be further investigated. The 

main disadvantages with recombinant DNA techniques for polypeptide synthesis are the 

multiple steps required and that the process is time consuming.244 

Glycopolypeptides can also be accessed via the products of the ROP of amino 

acid based NCAs. There are a number of strategies that could be used with respect to 

NCA ROP to access the desired glycopolypeptides. The carbohydrate moieties could be 

added onto the pendant side chains during monomer preparation to produce glycosylated 

amino acid based NCAs. Alternatively, carbohydrate moieties could be grafted onto the 

side chains using one of many post-polymerization modification reactions. A generic 

diagram outlining these synthetic strategies is shown in Figure 2.2. 
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Figure 2.2. Diagrams outlining the various synthetic strategies to access 
glycopolypeptides in the ROP of NCAs. 
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glycosylated lysine based NCAs.248 Three different carbohydrates, glucose, mannose, and 

galactose were used in the preparation of three glyco-lysine NCAs (galactose example 

shown in Scheme 2.3). Through the use of Co(PMe3)4 catalyst100, it was demonstrated 

that glycopolypeptides of varying chain lengths could be synthesized through the 

controlled ROP of NCAs. A glyco-cysteine derivative was also reported by Deming et al 

which displayed the ability to undergo a conformation switch to a random coil via 

aqueous oxidation in the presence of hydrogen peroxide.249 Gupta et al also reported a 

series of glycopolypeptides that could be obtained from the ROP of pre-functionalized 

NCAs using primary amine initiators.250-251 The biggest advantages to starting with 

functionalized, or glycosylated monomer, are that there is no need for post-

polymerization modification in order to graft the carbohydrate moieties onto the side 

chains and that 100% glycosylation is guaranteed. However, glycosylated NCA 

monomers can be synthetically challenging to access. 

 

Scheme 2.3. Synthesis of galactose functionalized L-lysine NCA as reported by Deming 
et al 
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Post-polymerization modification reactions are another strategy used in the 

synthesis of glycopolypeptides. The main advantage of post-polymerization modification 

is the avoidance of the synthesis of complex monomers but grafting efficiency may be 

limited using post-polymerization modification reactions. Grafting efficiency may vary 

depending on a number of factors such as starting material solubility, sterics, and 

functional group compatibility. Thus quantitative grafting of carbohydrates in the 

synthesis of glycopolypeptides is not necessarily ensured. A number of the earliest reports 

by Feng et al relied on the formation of amide linkages between poly(L-lysine) and 

gluconolactone or lactobionolactone under basic conditions (Scheme 2.4) to produce a 

series of glycopolypeptides functionalized with linear carbohydrates.252-253 While the feed 

ratios of ring-opened, linear carbohydrates could be adjusted in order to tune the sugar 

grafting densities, the highest reported grafting percentage was reported to be 75% due to 

the steric blockage of other available binding sites by the already grafted carbohydrate 

moieties. 

 

Scheme 2.4. Post-polymerization synthesis of a glycopolypeptide via the reaction 
between poly(lysine) and gluconolactone as described by Feng et al 
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Another post-polymerization strategy that has been explored is the formation of 

thiourea linkages by Li et al. Deprotected poly(L-lysine) is reacted with isothiocyanate 

functionalized carbohydrates in order to generate the thiourea linkage between the 

poly(L-lysine) side chain and functional moiety (Scheme 2.5).254-255 The biggest 

disadvantage of this method was the inefficiency of grafting; the maximum observed 

glycosylation density was only 36%, even if an excess of isothiocyanate sugar was used 

in the glycosylation reaction. This low grafting percent is possibly due to steric blockage 

of the side chains. Thus, this method is not robust and alternative methods need to be 

sought out to achieve higher grafting densities. 

 

Scheme 2.5. Glycopolypeptide synthesis via thiourea linkage formation as described by 
Li et al 
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synthesis of glycopolypeptides via post-polymerization modification.58, 123, 126-127, 258-259 

While CuAAC allows for the grafting of the desired moieties, Cu ions could be 

introduced into living systems, possibly inducing cytotoxicity. Thus, extensive 

purification is required following a CuAAC reaction to ensure that Cu is completely 

removed. Common methods used to remove Cu ions following CuAAC include column 

chromatography260, ion exchange resin123, 212, and dialysis against water using EDTA.58 

Other post-polymerization modification methods used in the synthesis of 

glycopolypeptides include thioether alkylation of poly(L-methionine) via alkyl halides or 

triflates.132 The thioether alkylation has a unique advantage in forming cationic charge via 

a sulfonium cation upon completion of the reaction, which may allow uptake by cells but 

may also induce cytotoxicity. Glycosylated poly(L-methionine) derivatives were 

demonstrated to show potential as viable cell penetrating peptides because of adequate 

uptake as evidenced by fluorescence imaging and the minimal cytotoxicity exhibited by 

the cationic glycopolypeptide systems.261 One disadvantage of this system is the 

insolubility of poly(L-methionine) in common solvents, making characterization of the 

parent polypeptide difficult. 

Thiol-ene coupling was used by Schlaad in the synthesis of glycopolypeptides 

from poly(DL-allyl glycine) and poly(DL-propargyl-glycine).137 Unlike CuAAC, thiol-

ene coupling is copper free and requires minimal purification and does not have the 

potential to introduce cytotoxic Cu ions into living systems. However, it was reported that 

quantitative grafting of carbohydrate moieties to the alkene or alkyne side chains could 

not be accomplished except when 1-thio-β-D-glucopyranose was used versus the O-acetyl 

protected analog. The low grafting efficiency was perhaps due to solvent choice as DMF 

appeared to be a poor solvent for poly(DL-allyl glycine). The thiol-ene reaction using 1-
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thio-β-D-glucopyranose was run in trifluoroacetic acid, which could be potentially 

hazardous.  

Self-assembly of glycopolypeptides into more complex aggregates has been 

observed in a number of amphiphilic systems. Amphiphilic glycopolypeptide systems 

could be synthesized via CuAAC as demonstrated by Lecommandoux where the self-

assembly of the “tree-like” glycopolypeptides into micelles was observed.262 Gupta et al 

used a different approach to synthesizing amphiphlic glycopolypeptides via CuAAC, 

using azido functionalized mannose moieties bearing hydrophobic alkyl chains.258 These 

species were also observed to self-assemble into spherical micelles. 

Investigations of multivalent binding in glycopolypeptides. It is expected that backbone 

conformation would have an effect on the binding of the carbohydrate side chains to 

lectins. Based on the relative side chain presentation of a helical rod versus a compact 

coil, it would be expected that there would be enhanced binding activity in the former 

species. Unfortunately, previous studies show conflicting reports as to the effect of 

backbone conformation on the observed binding interactions of carbohydrates with 

lectins. Although helical species are expected to behave similarly to rigid rods, good and 

efficient binding of a lectin will only occur if the distance between two sugar moieties 

matches that of the distance between two lectin binding sites. This was observed in a 

report by Kobayashi et al where the binding activity of a series of stiff poly(glycosyl 

phenyl isocyanate)s was compared with that of a more flexible phenylacrylamide 

analog.263 The former rigid rod species showed minimal activity towards lectin binding 

whereas enhanced binding of the lectins used in the study (Concanavalin A and RCA120) 

to the glycopolymers was observed in the latter flexible species, suggesting that the 

flexibility of the polymer chain allows for the spacing between sugar moieties on the side 

chains to conform to the spacing between the binding sites of the lectin. In turn this will 
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induce binding between carbohydrate and lectin. In contrast, Kiick et al have 

demonstrated that helical glycopolypeptides demonstrate superior binding activity in the 

investigation of the binding of galactose to cholera toxin in comparison to those of 

random coil species.264 Thus, further investigation is required with respect to the effects 

of backbone conformation on the observed binding interactions between carbohydrates 

and lectins. 

Chen123 and Gupta251 et al have investigated the effect of multivalent binding to 

ConA using glycopolypeptide scaffolds. The study by Chen et al investigated the effects 

of binding epitope density on the observed lectin-carbohydrate interactions. Synthesis of 

the glycopolypeptides was accomplished using post-polymerization modification of 

poly(γ-propargyl-L-glutamate) via CuAAC. It was found that for a series of 

glycopolypeptides with decreasing mannose density that binding activity to ConA 

decreased with decreasing mannose content. Binding stoichiometry was determined to be 

much less than a previous report where a flexible glycopolymer synthesized via ATRP 

was investigated211 suggesting that the sterics of the rigid rod helix contributed towards 

steric overcrowding of the chain, even with enhanced side chain display. Steric 

overcrowding ultimately affects access to the mannose side chains by the lectin resulting 

in decreased binding activity. 

Gupta et al investigated a series of glycopolypeptides synthesized from the ROP 

of glycosylated lysine NCA. The monomer used in this study consisted of both 

enantiomerically pure (i.e. L) and racemic (DL) NCA. Polymerization of DL or racemic 

NCA monomers versus enantiomerically pure monomers (i.e. D or L) produces random 

coil species due to the introduction of disorder along the polypeptide backbone.265-266 

These random coil species would allow for a control species in the analysis of the effects 

of backbone conformation in synthetic glycopolypeptides. It was reported that backbone 
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conformation does not drastically affect carbohydrate-lectin binding interactions in 

experiments using ConA.  

These works however are limited in scope as only a narrow range of DPn were 

studied, ranging from 35 to 66. Although it has been established in the study of 

glycopolymer interactions with ConA that chain length affects the observed binding due 

to the presence of more available binding sites232, 234, 267, this has not been elaborated 

upon in studies with glycopolypeptides. Further investigation is required with respect to 

the effect of varying chain lengths on multivalent lectin-carbohydrate interactions in 

glycopolypeptides. We have developed a series of glycopolypeptides of varying DPn from 

DPn=12 to 174 and of varying backbone conformations and will further explore the 

effects of these properties on the binding of ConA to these multivalent glycopolypeptides. 

2.3 Results and discussion 

2.3.1 Synthesis and characterization of glycopolypeptides 

 The synthetic methodology used to synthesize the helical and random coil 

glycopolypeptides was adopted from previous methods.58 For the sake of brevity, 

schemes that are shown in this chapter will only show the L enantiomer although the 

racemic analogs are synthesized using parallel methods.  

L-glutamic acid can be functionalized via an esterification reaction between the γ-

carboxylic acid and a respective alcohol under acidic conditions. The versatility of this 

esterification can be demonstrated through a variety of monomer precursor glutamates 

that can be synthesized via this method such as γ-benzyl-L-glutamate211, γ-allyl-L-

glutamate125, γ-3-chloropropyl-L-glutamate58, and γ-propargyl-L-glutamate.57 The latter 

three glutamate derivatives have the potential to be functionalized in post-polymerization 

reactions, allowing for a variety of functionalities to be grafted to the side chains. 
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Esterification of L-glutamic acid with propargyl alcohol (Scheme 2.6) yielded the 

monomer precursor in good yield (81 %) thus allowing for larger scale reactions.  

The NCA cyclization reaction was carried out via the Fuchs-Farthing method 

using triphosgene which has been shown to be easier to handle as a solid when compared 

with phosgene (gas) or diphosgene (liquid).51 Three equivalents of phosgene are evolved 

for each mole of triphosgene thus the NCA synthesis uses a glutamic acid precursor to 

triphosgene ratio of 1:0.34. HCl is evolved during this reaction, which has been shown to 

contribute to early termination and the lowering of Mn and subsequent broadening of PDI. 

Thus, high purity of the γ-propargyl-L-glutamate N-carboxyanhydride (PLG-NCA) and 

its racemic analogue γ-propargyl-DL-glutamate N-carboxyanhydride (PDLG-NCA) is 

necessary in order to maintain polymerization control and prevent early termination, 

lowering of Mn, and subsequent broadening of PDI. Purification of PLG and PDLG-NCA 

was achieved using dry flash chromatography methods previously reported by Deming et 

al, which have been shown to be successful in the purification of amino acid based 

NCAs.60 

 

Scheme 2.6. Synthesis of PLG-NCA from L-glutamic acid 

 

 

ROP of PLG and PDLG NCAs was achieved using benzylamine initiator (Scheme 

2.7). The molecular weights of the resulting polypeptide species could be controlled 

through variation of the initial monomer to initiator loadings ([M]0:[BnNH2]0=10-200:1), 

allowing for the synthesis of a series of propargyl functionalized polypeptides at varying 

Mn (2.0-29.0 kg⋅mol-1) with adequate PDI (1.05-1.15). These polymerization data of the 
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resulting poly(γ-propargyl-L-glutamate) (PPLG) and poly(γ-propargyl-DL-glutamate) 

(PPDLG) are shown in Table 2.1 and Table 2.2 respectively. Monomer conversion was 

analyzed using FTIR monitoring the disappearance of the carbonyl stretching bands at 

1852 and 1785 cm-1. It can be seen from the polymerization data that the obtained 

molecular weights are comparable with theoretical values based on single-site initiation 

by benzylamine initiator and that the obtained molecular weight distributions are also 

adequate. This demonstrates that a series of well-defined polypeptides of varying chain 

lengths and backbone conformations can be obtained from the ROP of enantiomerically 

pure PLG NCA and its racemic counterpart PDLG NCA. 

 

Scheme 2.7. Polymerization of PLG-NCA via benzylamine initiator 

 

 

Table 2.1 Molecular weight characterization data for a series of PPLG obtained from the 
ROP of PLG NCA using benzylamine initiator a 

[M]0:[BnNH2]0 Mn (theo.) 
(kg⋅mol-1) b 

Mn (SEC) 
(kg⋅mol-1) c 

PDI DPn Percent 
helicity 

10:1 1.7 2.2 1.05 13 6.15 

25:1 4.2 3.8 1.15 23 41.5 

50:1 8.4 8.9 1.06 53 47.7 

100:1 16.7 17.5 1.09 105 63.5 

200:1 33.4 29.0 1.13 174 67.9 

a All polymerizations were performed at [M]0 = 1.0 M in DMF for 24 h; b based on 
conversion calculated from FTIR analysis; c absolute molecular weights were calculated 
using previously determined dn/dc = 0.0844 mL/g. 
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Table 2.2. Molecular weight characterization data for a series of PPDLG obtained from 
the ROP of PDLG NCA a 

[M]0:[BnNH2]0 Mn (theo.) 
(kg⋅mol-1) b 

Mn (SEC) 
(kg⋅mol-1) c 

PDI DP 

10:1 1.6 2.0 1.11 12 

25:1 4.2 3.1 1.12 19 

50:1 8.4 6.7 1.07 40 

100:1 16.7 17.2 1.15 103 

a All polymerizations were performed at [M]0 = 1.0 M in DMF for 24 h; b based on 
conversion calculated from FTIR analysis; c absolute molecular weights were calculated 
using previously determined dn/dc = 0.0872 mL/g. 
 

 The side chains of PPLG and PPDLG contain propargyl groups, which can 

undergo post-polymerization modification via CuAAC. Synthesis of the 

glycopolypeptides was completed via CuAAC using 2-azidoethyl mannose (Scheme 2.8), 

which was performed under an oxygen free atmosphere in the glovebox in order to 

prevent possible oxidation of the Cu(I) to Cu(II). Oxidation would quench the reaction as 

Cu(I) is necessary for the reaction to occur. Unlike other CuAAC systems whose copper 

source was either copper(I)bromide58 or copper(I)sulfate123, freshly shaved copper wire 

was used the copper source.268 The copper wire can be used multiples times using this 

method.  

 

Scheme 2.8. Glycosylation of PPLG via CuAAC using copper wire method 
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The formation of the triazole heterocycle is observed in the 1H NMR spectrum of 

the resulting glycopolypeptide with the formation of a singlet at 8.04 ppm. There is also 

an observed downfield shift in the chemical shift of the methylene proton of the propargyl 

group from 4.68 to 5.13 ppm. The percentage of glycosylation can be determined via the 

integration of the triazole singlet peak with those of the aliphatic backbone. One issue that 

has plagued previous glycopolymer systems is the inability to reach quantitative grafting 

on the side chains. Based on the relative integrations of the newly observed triazole peak 

with those of the aliphatic backbone, it was suggested that quantitative grafting of 

mannose was achieved in both PPLG and PPDLG to yield their fully glycosylated 

glycopolypeptide counterparts. Exemplary 1H NMR spectra of PPLG parent polymer, 

PPLG mannose, and PPLG mannose-galactose where the binding epitope densities were 

varied (vide infra) are shown in Figure 2.3. 

2.3.2 Circular dichroism of glycopolypeptides 

Circular dichroism (CD) is a commonly used technique in the study of the 

secondary structures of proteins (i.e. α-helix, β-sheet, random coil) and how changes in 

the environment such as pH, sample concentration, and temperature can affect the 

observed secondary structures. In this study, we hypothesize that helical 

glycopolypeptides are near rod-like thus having enhanced surface area for side chain 

presentation whereas random coil glycopolypeptides have a much more compact form, 

suppressing side chain exposure. The α-helix shows distinct minima at 208 and 222 nm 

on the CD spectrum. Random coil species display only a distinct maximum at 215 nm. 

Percent helicity in the glycopolypeptides was calculated using the formula ((-[θ222] + 

3000) /39000).269 It was found that as DPn increased from 13 to 174, the helicity 

increased from 6.15 to 67.9% (Figure 2.4, Table 2.1). This increase in observed helicity 
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Figure 2.3. 1H NMR spectrum of PPLG ([M]0:[I]0=100:1) (blue) collected in CDCl3 and 
subsequent PPLG mannose (red) and PPLG mannose-galactose (green) collected in D2O. 

 

with respect to DPn may be due to improved H-bonding cooperation in samples with 

higher DPn. However it was also observed that none of the samples are 100% helical 

suggesting that the observed polypeptides are not true rods. However, in contrast, there is 

a clear distinction in the measured CD spectra of helical samples versus those of random 

coil samples demonstrating that random coil analogs could be accessed using racemic 

starting material to introduce disorder in the hydrogen bonding interactions along the 

polypeptide backbone (Figure 2.5). The CD data obtained will allow for a better 

understanding of how a multivalent ligand will bind to the glycopolypeptide substrate 

with respect to the general backbone architecture of the polymer and the relative percent 

helicity. 
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Figure 2.4. (A) CD spectra for a series of PPLG mannose glycopolypeptides. Samples 
were prepared at 1.0 mg/mL in HEPES buffered saline. Each curve is the average of three 
runs. (B) Plot of percent helicity versus DPn. Percent helicity values were calculated using 
the formula (([θ222] + 3000) / 39000). 
 

 

 

Figure 2.5. CD spectra for a series of PPDLG mannose glycopolypeptides. Samples were 
prepared at 1.0 mg/mL in HEPES buffered saline. Each curve is the average of three runs.   
 

2.3.3 Binding studies of PPLG and PPDLG mannose with ConA  
 
 Concanavalin A (ConA) is a plant lectin with a binding affinity for mannose and 

glucose derived from the jackbean and is commonly used as a model ligand to investigate 

A B 
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the binding activities of synthetic carbohydrate functionalized systems. At neutral pH, 

ConA exists as a tetramer thus allowing for four possible binding sites which are spaced 

65 Å apart.270 Figure 2.6 shows a generic diagram of ConA and the effect of 

glycoclustering that occurs between ConA and the glycopolypeptides upon binding. We 

will investigate specific aspects of the binding of ConA to mannose, namely the initial 

binding rate constant (ki), the binding stoichiometry, and the mannose/ConA ratio and 

how DPn and backbone architecture affect these parameters. 

2.3.3.1 Binding kinetic study 

 One factor that may be influenced by the chain length, backbone architecture, or 

binding epitope density is the initial rate of aggregation that is observed when the 

glycopolypeptides are exposed to ConA. The glycoclustering that occurs during the 

 

 

Figure 2.6. Glycoclustering due to ConA and the glycopolypeptide forming highly 
ordered species and a diagram of ConA indicating the distance between binding sites. 

 

65	Å 
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binding between the glycopolypeptide and ConA results in an increase in the turbidity of 

the solution due to the insoluble aggregates that form, possibly due to the formation of 

higher ordered species from the crosslinking between ConA and the glycopolypeptides. 

The turbidity further increases with more binding events, indicating that larger clusters 

are formed, until all of the binding sites have been exhausted either through occupation of 

all of the available sites or via steric inhibition. The former is the ideal scenario and the 

latter is the most likely case with respect to ConA binding due to its size.  

To investigate the initial rate of clustering that occurs between ConA and the 

glycopolypeptides, ConA (1 µM) was mixed with a fiftyfold excess of glycopolypeptide 

solution in HEPES buffered saline resulting in clustering as evidenced by the change in 

turbidity by UV-vis spectroscopy over the course of time (Figure A1, A2). The initial rate 

of cluster formation (ki) was determined by a linear fit to the steepest part of each 

 

 

 
Figure 2.7. Plot of ki versus DPn obtained from turbidity assay experiments for helical 
(black) and random coil (red) glycopolypeptides. The ki for L 174 is not plotted. Some 
error bars are smaller than the plot markers. 
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Table 2.3. Initial binding rate constants (ki) for a series of PPLG and PPDLG mannose 

Entrya ki (A.U. min-1) b 

L 13 0.0035(9)  

L 23 0.0048(4) 

L 53 0.0069(7) 

L 105 0.0104(11) 

L 174 0.161(11) 

DL 12 0.0025(3) 

DL 19 0.0026(4) 

DL 40 0.0021(1) 

DL 103 0.0108(7) 

ConA alone - 

Methyl mannose - 

a Each entry is listed with the backbone followed by the DPn as determined by SEC-
MALS-DRI of the PPLG or PPDLG precursor. DL samples represent random coil 
samples whereas L samples are used to designate helical polypeptides; b the reported ki 
were determined by a linear fit to the steepest part of each curve and are the average of 
three independent runs. 
  

displayed curve. These results are shown in Figure 2.7 and Table 2.3. A control 

experiment using methyl mannose demonstrated the lack of clustering due to the low 

binding constants of monosaccharides. ConA alone was also measured to demonstrate 

that the observed changes in turbidity were not due to ConA potentially being unstable 

and insoluble in aqueous solution. A number of trends were observed.  It can be observed 

from the data shown in Figure 2.7 that the observed kis increase with increasing DPn. As 

DPn increased from 13 to 174 in PPLG mannose samples, the measured ki increased from 

0.0035(9) to 0.161(1) A.U.⋅min-1, a 46-fold increase. Similarly, as PPDLG mannose DPn 

increased from 12 to 103, the measured ki increased fourfold from 0.0025(3) to 0.0108(7) 
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A.U.⋅min-1. These observations are perhaps due to the higher availability of binding sites, 

which increases the likelihood for a binding event to occur due to the exposure of the 

additional mannose moieties. Secondly, those samples with higher DPn are less likely to 

experience steric hindrance of the binding sites in the early stages of the binding 

interactions due to the additional space afforded by possessing more binding sites. This 

allows for larger clusters to form much more quickly in those samples than in 

glycopolypeptides with lower DPn. These demonstrate that sample DPn contributes 

significantly to ki as binding occurs fastest in glycopolypeptides where there are more 

binding epitopes and can accommodate more ConA due to the increased size of the 

multivalent glycopolypeptides. There does appear to be an effect on the observed ki with 

respect to backbone architecture as evidenced in Figure 2.7. Helical glycopolypeptides in 

general appeared to bind faster than their random coil counterparts at lower DPn. This 

observed higher ki of helical glycopolypeptides versus random coil polymers is suggested 

to be due to the enhanced side chain display in the former.  Interestingly, the observed ki 

of a helical and random coil glycopolypeptide at similar DPn (DPn= 105, 103 for PPLG 

and PPDLG mannose respectively) were comparable (ki= 0.0104(11), 0.0108(7) 

A.U.⋅min-1 for PPLG and PPDLG mannose respectively). A random coil 

glycopolypeptide at similar DPn to the L 174 sample was not successfully synthesized by 

the described method; accessing a random coil polypeptide of similar DPn to that of the L 

174 sample could be helpful in the study of the effect of backbone architecture on the 

observed ki at higher DPn. 

2.3.3.2 Binding stoichiometry from quantitative precipitation assay  
 
 Another aspect of carbohydrate-lectin interactions that has been studied is the 

binding stoichiometry of the system. The binding stoichiometry refers to the number of 

ligands bound per polymer chain; the higher the binding stoichiometry the greater number 
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of ConA tetramers bound per chain. The binding efficiency could also be determined via 

the ratio of the average number of mannose residues available on the side chains (i.e. 

DPn) to binding stoichiometry (mannose/ConA). This value quantifies the number of 

mannose residues required for each observed binding event. Lower mannose/ConA 

values indicate more effective binding as less mannose moieties are required for each 

observed binding event as suggested by the measured binding stoichiometry. Higher 

mannose/ConA values reveal less effective binding and may indicate that effects due to 

sterics may be hindering access to the mannose side chains. This shows a less effective 

use of all of the available binding epitopes.  

Quantitative precipitation assays were performed in order to measure the binding 

stoichiometry of the glycopolypeptide series. Methods for quantitative precipitation assay 

were adopted from previous methiods234, 271 where a series of glycopolypeptide samples 

were prepared at various concentrations and mixed in equal volume ratios with a solution 

of ConA of known concentration in order to induce clustering and the observation of 

precipitation in the samples. Samples were allowed to incubate until no additional 

precipitation was observed in the systems (48 h). Following the collection and washing of 

the precipitated ConA, the ConA content is measured by dissolving the obtained 

precipitate in a solution of competing ligand, methyl mannose and analyzing for 

absorption by UV-vis spectroscopy at 280 nm. From quantitative precipitation assay, the 

concentration for the half-maximal precipitation of ConA from the solution can be 

determined from sigmoidal fits to the resulting curves. From this concentration, the 

binding stoichiometry can be determined. These results are shown in Table 2.4 and Figure 

2.8, 2.9.   

 Similar to the turbidity experiments to determine binding kinetics, the measured 

binding stoichiometry was found to be correlated with the degree of polymerization or 
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chain length. As DPn increased in PPLG mannose from 13 to 174, the binding 

stoichiometry increased from 1.19 ± 0.16 to 7.49 ± 1.18. This is not surprising as 

substrates with higher valency have a larger number of binding sites available and thus 

have the ability to bind additional tetramers of ConA and lower the effective 

concentration required to precipitate ConA. This has been previously demonstrated in 

glycopolymers that have been produced via ring-opening metathesis polymerization.232 

The obtained Not every mannose binding site on the glycopolypeptides can be accessed, 

especially in those with low degrees of polymerization as ConA is a large molecule and 

sterics would prevent side chain access, even in helical samples. This is evident in the 

reduced binding stoichiometry observed in short glycopolypeptides. However, the 

obtained binding stoichiometry values agree well with theoretical prediction based on the 

ConA binding site distance of 65 Å and the peptide unit length of 3.8 Å. This indicates 

that 17 repeat units are required for each possible binding event. For example, the PPLG 

mannose sample of DPn=105 can theoretically accommodate 6 individual ConA ligands. 

The observed binding stoichiometry of DPn=105 (5.30 ± 0.17) is comparable to 

theoretical value. The mannose/ConA ratio also increases with increasing DPn indicating 

that binding efficiency decreases with increasing DPn because more mannose residues are 

required to bind to each ConA tetramer. This would suggest that the steric hindrance of 

the binding sites is dominant and ultimately affects the binding efficiency. 

The backbone architecture of the glycopolypeptides also affects the observed 

binding stoichiometry. The high concentrations required for half-maximal precipitation of 

PPDLG mannose lead to the observed low binding stoichiometries. The obtained binding 

stoichiometries at higher DPn were determined to be much lower than those of their 

helical counterparts. Even as DPn increased from 12 to 103, binding stoichiometry only 

increased from 0.96 ± 0.10 to 2.74 ± 0.09. These results are in contrast to those reported 



 78 

by Gupta et al, where the glycopolypeptide backbone conformation did not affect binding 

stoichiometry. The obtained results support the argument of Kiick et al in that helical 

glycopolypeptides are more effective in the binding of lectins. The continual increase of 

mannose/ConA of fully glycosylated helical glycopolypeptide species indicate that the 

effects of sterics and chain overcrowding limit access to the mannose moieties in these 

systems and thus the effects of longer chain length and a more favorable side chain 

presentation due to helical backbone architecture are insufficient to further improve upon 

the binding efficiency. However, even in PPDLG mannose experiments, the 

mannose/ConA ratio still increased with increasing DPn suggesting that similar steric 

limitations influence the observed binding. 

A control sample of methyl mannose was prepared similarly to the 

glycopolypeptide samples. The results from quantitative precipitation assay of methyl 

mannose with ConA indicate that monomeric mannose is unable to precipitate out ConA 

and clustering does not occur in such samples due to the inability for crosslinking to 

occur between the methyl mannose substrates even though it is possible that all of the 

binding sites in the ConA tetramers are occupied due to the much smaller size of methyl 

mannose versus a glycopolypeptide, whose influence on the observed binding is greatly 

affected by sterics. 

2.3.4 Varying binding epitope density 

 One factor that could further influence the effects of the multivalent binding of 

ConA to the mannose glycopolypeptides is the variation of binding epitope density. 

Decreasing the binding epitope density decreases the number of binding sites but 

increases the likelihood that they will be spaced out farther apart from each other, 

possibly overcoming steric crowding along the polymer backbone. Previous studies have 

noted that decreasing binding epitope density leads to slower binding kinetics but may 
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improve the overall binding efficiency by decreasing the number of sugar residues 

necessary for each measured binding event (mannose/ConA) by quantitative precipitation 

assay determination of binding stoichiometry. It was previously stated that ConA has a 

binding specificity for mannose and glucose; ConA does not recognize and bind to 

galactose. Incorporating galactose at various ratios will space out the mannose binding 

epitopes along the polypeptide backbone and may aid in overcoming steric blockage of 

the binding sites. 2-azidoethyl galactose was used in conjunction with 2-azidoethyl 

mannose in CuAAC to obtain a series of glycopolypeptides with varying epitope densities 

(Scheme 2.9). An exemplary 1H NMR spectrum of the glycopolypeptide containing both 

mannose and galactose residues was shown in Figure 2.3 (vide supra). Galactose and 

mannose content were determined via the relative integration of the methylene protons of 

galactose (3.4 ppm) and mannose (3.0 ppm). 

 

 

 

Figure 2.8. Plot of binding stoichiometry versus DPn obtained from quantitative 
precipitation assay experiments for helical (black) and random coil (red) 
glycopolypeptides. Some error bars are smaller than the plot markers. 
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Figure 2.9. Plot of mannose/ConA versus DPn obtained from quantitative precipitation 
assay experiments for helical (black) and random coil (red) glycopolypeptides. Some 
error bars are smaller than the plot markers. 

 

Table 2.4. Binding stoichiometry data for a series of helical and random coil 
glycopolypeptides 

Sample DPn 
a Binding stoichiometry b Mannose/ConA c 

L 13 1.19 ± 0.16 11.16 ± 1.46 
L 23 1.46 ± 0.02 15.76 ± 0.21 
L 53 2.98 ± 0.14 17.80 ± 0.82 
L 105 5.30 ± 0.17 19.83 ± 0.64 
L 105 68% mannose 2.72 ± 0.37 29.43 ± 3.94 
L 174 7.49 ± 1.18 23.83 ± 3.76 
DL 12 0.96 ± 0.10 12.64 ± 1.32 
DL 19 1.54 ± 0.16 12.47 ± 1.29 
DL 40 2.32 ± 0.11 17.28 ± 0.82 
DL 103 2.74 ± 0.09 37.70 ± 1.17 
Methyl mannose - - 

a Each entry is listed with the backbone followed by the DPn as determined by SEC-
MALS-DRI of the PPLG or PPDLG parent polypeptide; b binding stoichiometry was 
determined at the half maximal concentration required to completely precipitate out 
ConA c mannose/ConA was determined by [(percent mannose × DPn) / binding 
stoichiometry]. 
 

Interestingly, we found that altering the mannose epitope density drastically 

affected the observed binding kinetics (Figure 2.11). By decreasing the mannose percent 

by approximately one third (68 % mannose by 1H NMR), the observed initial rate of 
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Scheme 2.9. Glycosylation of PPLG with varying mannose and galactose loadings 

 

 

clustering as determined by turbidity assay was determined to be ki= 0.0012(1) A.U.⋅min-

1, which is drastically lower than any of the previously observed ki. Further decreasing the 

mannose density on the glycopolypeptide side chain led to further decreased in ki as 

indicated by the lack of increase of turbidity within the experimental timeframe as shown 

in Figure 2.10 suggesting that the presence of galactose residues has negative effects on 

the observed carbohydrate-lectin interactions. The increase in galactose content may have 

contributed to additional difficulty of ConA accessing the mannose binding sites, contrary 

to previous reports where spacing out mannose improves the binding efficiency. The 

mannose residues may be too far apart in glycopolypeptides with low mannose densities, 

not allowing for an effective binding interaction between lectin and carbohydrate. This is 

also evident in the determined binding stoichiometry (Table 2.4) as the sample with 68 % 

mannose which was nearly half that of the 100 % mannose analog. A larger 

mannose/ConA was also observed compared with that of the fully glycosylates species 

suggesting that binding efficiency was decreasing. Thus, increasing the spacing between 

binding epitopes in glycopolypeptides appears to lower the observed binding efficiency of 

ConA than previous reports where a more effective use of the binding epitopes was 

observed through a decrease in mannose/ConA, suggesting and increase in efficiency. 
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Figure 2.10. Turbidity curves obtained from the analysis of a series of PPLG 
mannose/galactose at varying epitope densities (DPn=105) in the presence of ConA 
(mannose:ConA=50:1) at 420 nm. The shown curves are the averages of three 
independent runs.  

 
2.4 Dynamic light scattering of glycopolypeptides 

 Dynamic light scattering (DLS) was used in order to investigate the relative size 

of the glycopolypeptides and may give some insight into the slower observed ki, lower 

binding stoichiometry, and higher mannose/ConA observed in the glycopolypeptides in 

comparison with their previously reported glycopolymer counterparts. Significant 

aggregation was observed in all of the glycopolypeptide samples. Exemplary DLS spectra 

of a helical glycopolypeptide (Figure 2.11) and a random coil glycopolypeptide (Figure 

2.12) are shown. This has a number of implications. It is possible that the observed 

aggregation contributes to the steric hindrance that leads to the lower ki, lower binding 

stoichiometry, and higher mannose/ConA. The contribution of other glycopolypeptides to 

the observed aggregation may be blocking additional mannose binding sites that could 

potentially partake in binding activity with ConA to increase ki, binding stoichiometry, 

and decrease mannose/ConA. 
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Figure 2.11. DLS results of three separate runs of PPLG mannose (DPn=13) taken in 
HEPES buffered saline at a concentration of 1 mg/mL. Correlograms for each respective 
run are shown in the inset. 

 
 We hypothesized that the addition of cationically charged species to the side 

chains could potentially break up the aggregates due to electrostatic repulsion. However, 

the addition of charge could potentially disrupt the observed helicity. Cheng et al have 

reported that moving the charge at least eleven carbons away from the main polypeptide 

backbone does not affect the helicity. A terminal azide functionalized six carbon 

quaternary amine was used in CuAAC reactions together with 2-azidoethyl mannose 

order to investigate the effects of placing charge on the side chains (Scheme 2.10). DLS 
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Figure 2.12. DLS results of three separate runs of PPDLG mannose (DPn=103) taken in 
HEPES buffered saline at a concentration of 1 mg/mL. Correlograms for each respective 
run are shown in the inset. 

 
analysis of the resulting glycopolypeptide (Figure 2.13) coupled with the quaternary 

amine indicates that there is still significant aggregation and the addition of charge has 

little to no effect on mitigating the effects of aggregation. 

2.5. Conclusions 

 A series of glycopolypeptides have been synthesized from the ROP of their 

corresponding propargyl-L-glutamate and propargyl-DL-glutamate NCAs using 

benzylamine initiator followed by post-polymerization grafting of mannose moieties via 

the highly efficient CuAAC. The former series adopt helical conformations and the latter 

adopt random coil conformations according to CD analysis. Helicity was found to 

decrease with decreasing DPn. In binding studies with ConA, it was found that DPn has 
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Scheme 2.10. Synthesis of cationically charged glycopolypeptide species via CuAAC 

 

 

the greatest contribution with respect to the initial observed binding kinetics as the 

presence of additional binding sites promotes the faster binding of ConA to the 

glycopolypeptide substrates resulting in a much faster observed change in turbidity. As 

expected, glycopolypeptides possessing random coil conformations had lower observed ki 

and lower binding stoichiometry suggesting the more restricted side chain presentation 

and access in random coil species. This is much more apparent at low DPn. However, at 

higher DPn, the initial rate of binding was found to be comparable to that of a helical 

glycopolypeptide of comparable DPn. This may suggest more compact coil conformations 

at low DPn and more extended conformations at high DPn. Steric hindrance is still 

suggested to be the biggest limiting factor in the number of ConA tetramers that could 

possibly be bound to the glycopolypeptide samples as evidenced in quantitative 

precipitation assays. Although increasing DPn allows for additional binding sites and 

additional space for binding events, the increasing mannose/ConA ratios indicate binding 

efficiency decreases with increasing DPn. Significant aggregation was revealed by DLS 

analysis, which may also have an effect on the slower observed ki, lower binding 

stoichiometry, and higher mannose/ConA observed in the glycopolypeptides in 

comparison with their previously reported glycopolymer counterparts. The installation of 

cationic charge did not appear to contribute to breakup of the observed aggregates. 

Although trends can be observed in the observed binding activity to ConA with respect to 
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Figure 2.13. DLS results of three separate runs for PPLG mannose (DPn=23) bearing no 
cationic charge on the side chains (A) and 9% cationic charge (B) as determined by 1H 
NMR. Samples were prepared at concentrations of 1 mg/mL in HEPES buffered saline. 
Correlograms for each respective run are shown in the insets. 
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changing DPn and backbone conformation, the results are still dwarfed by those of 

glycopolymers. Thus, helical glycopolypeptides with superior side chain presentation 

may not necessarily be the most efficient multivalent materials. 

2.6 Experimental 

2.6.1 Instrumentation and general considerations 

All chemicals were used as received unless otherwise noted. Anhydrous THF, and 

N, N-dimethylformamide (DMF) for monomer synthesis and polymerizations respectively 

were purified by passing through activated alumina columns under an argon atmosphere 

(Innovative Technology, Inc.). 1H NMR spectra were recorded on a Bruker AV-400 and 

AVIII-400. Chemical shifts were determined in reference to the protio impurities of the 

deuterated solvents (CDCl3, or D2O) Size exclusion chromatography (SEC) analysis was 

carried out on an Agilent 1200 system (Agilent 1200 series degasser, isocratic pump, auto 

sampler, and column heater) equipped with three Phenomenex 5 µm, 300 Å×7.8 mm 

columns [100 Å, 1000 Å, and Linear (2)], Wyatt DAWN EOS multiangle light scattering 

(MALS) detector (GaAs 30 mW laser at λ) 690 nm], and Wyatt Optilab rEX differential 

refractive index (DRI) detector with a 690 nm light source. DMF containing 0.1 M LiBr 

was used as the eluent at a flow rate of 0.5 mL· min-1. The column and the MALS and 

DRI detector temperatures were all maintained at ambient temperature (21 °C). Data from 

SEC-MALS-DRI was processed using Wyatt Astra v 6.0 software. Circular dichroism 

(CD) data were collected on a Jasco J810 CD spectrometer (Japan Spectroscopic 

Corporation) using a cell with a path length of 0.1 cm and a band width of 1.0 nm at 20 

°C. Three scans were collected and averaged between 190 nm and 250 nm at a scanning 

rate of 50 nm·min-1 with a data pitch of 0.5 nm. UV-vis spectroscopy experiments were 

carried out on a Cary 50 Bio UV-vis spectrometer equipped with a xenon flash lamp at a 

scan rate of 50 nm/s. Dynamic light scattering (DLS) experiments were conducted on a 
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Malvern Zetasizer Nano-ZS instrument using Zetasizer software 6.12. Each sample was 

measured three times. 

The random coil analogues used in this study can be similarly synthesized to the 

enantiomerically pure (i.e. L) species using DL-glutamic acid in place of L-glutamic acid. 

The respective polypeptide is abbreviated as PPDLG throughout the text. For the sake of 

brevity, only the “L” designation is used in the experimental details.  

2.6.2 Synthesis of γ-propargyl-L-glutamate N-carboxyanhydride 

Synthesis of γ-propargyl-L-glutamate. L-glutamic acid (23.44 g, 159 mmol) was 

suspended in propargyl alcohol (400 mL, 4.8 mol) and the flask was purged with nitrogen 

for 20 minutes. Chlorotrimethylsilane (45 mL, 355 mmol) was added dropwise to the 

flask via an addition funnel. The suspension was stirred at ambient temperature until the 

solution became homogenous. The obtained dark brown homogenous solution was 

decanted into diethyl ether (1 L). The product precipitated out as an off white solid and 

was collected via filtration and dried under vacuum (23.85 g, 81 %). 

Synthesis of γ-propargyl-L-glutamate N-carboxyanhydride. γ-Propargyl-L-glutamate 

(8.04 g, 43.9 mmol) and triphosgene (4.43 g, 14.9 mmol) were charged into an oven dried 

flask and suspended in anhydrous THF (200 mL). The reaction suspension was heated at 

55 °C during which the reaction slowly became homogeneous. THF was then removed 

under vacuum leaving the product as a crude viscous liquid. The NCA monomer was 

purified via dry column chromatography using silica gel dried in the vacuum oven for 48 

h at 120 °C. The mobile phase used first was anhydrous hexanes followed by a gradient 

of 9:1–1:1 anhydrous THF:hexanes (Rf=0.23 in 1:1 THF:hexanes). Fractions containing 

the NCA were collected and concentrated to yield the NCA as a viscous orange liquid  

(3.62 g, 39 %). 

 



 89 

 

Figure 2.14. 1H NMR spectrum of PLG-NCA collected in CDCl3. 

 
2.6.3. General procedure for the polymerization of γ-propargyl-L-glutamate N-
carboxyanhydride 
In the glovebox, PLG-NCA (275 mg, 1.3 mmol, [M]0 = 1.0 M) was weighed into a vial 

and dissolved in DMF (1265 µL). A known volume of a benzylamine stock solution (37 

µL, 13 µmol, 0.35 M) was then added to the solution. The reaction was stirred for 24 h at 

ambient temperature under a nitrogen atmosphere. Monomer conversion was calculated 

via FTIR. DMF was removed via vacuum distillation at 50 °C, 100 mTorr leaving a crude 

solid film. Purified PPLG was obtained by dissolving the crude solid film in minimal 

dichloromethane, reprecipitation from excess hexanes as a white solid, and subsequently 

collected via filtration, and dried under vacuum (153 mg 70%). 
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Figure 2.15. 13C{1H} NMR spectrum of PLG NCA collected in CDCl3.  

 
 
2.6.4 Glycosylation of poly(γ-propargyl-L-glutamate) via CuAAC  

2-azidoethyl mannose was previously synthesized from a known procedure.211 2-

azidoethyl galactose can be synthesized using the same procedure. PPLG (22 mg, 0.132 

mmol) and 2-azidoethyl mannose (66 mg, 0.264 mmol) were weighed into a vial. A piece 

of copper wire (~0.5 g) was freshly shaved with sandpaper and placed in the vial with 

PPLG and mannose. The polypeptide and sugar moiety were dissolved in DMF (5 mL) 

and PMDETA (4 µL, 20 µmol) was subsequently added to the vial. The reaction was 

stirred at 50 °C for 3 days. DMF was removed via vacuum distillation leaving crude 

glycopolypeptide in the flask, which was dissolved in water (5 mL) and dialyzed against 

distilled water for 3 days (MWCO=6000-8000 Da) with the water being changed twice 

daily. The contents of the dialysis bag were emptied into a vial and lyophilized to yield 

the glycopolypeptide as an off white solid (32 mg, 58%). In cases where 2-azidoethyl 
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galactose is involved in the glycosylation, the relative loadings of 2-azidoethyl mannose 

and 2-azidoethyl galactose can be adjusted accordingly in order to vary the binding 

epitope densities in the resulting glycopolypeptides. 

2.6.5 Circular dichroism 

Glycopolypeptide samples were dissolved at concentrations of 1 mg/mL in HEPES 

buffered saline and measured from 250 – 190 nm (0.5 nm data pitch) at a scanning rate of 

50 nm/s on the CD instrument. Shown plots are the average of three runs following 

background subtraction of HEPES buffered saline. Conversion to mean residue molar 

ellipticity was accomplished using the concentration of the glycopolypeptide solution and 

the mass of the repeat unit of the glycopolypeptide (416 g⋅mol-1). 

2.6.6 Turbidity assay 

Concanavalin A (ConA) was dissolved in HEPES buffered saline (HBS) at a 

concentration of 1 µM. Solutions of glycopolypeptide were prepared in HBS so that the 

concentration of mannose residues was 50 µM. In a polystytrene cuvette, the ConA and 

glycopolypeptide solutions were mixed (1:1 v/v) and placed into the UV-vis spectrometer 

running “cycle mode” where the absorpotion at 420 nm was analyzed every 10 s. Initial 

rates of aggregation and clustering were determined from the steepest part of the obtained 

plots. 

2.6.7 Quantitative precipitation assay 

A series of glycopolypeptide solutions were made at varying concentrations from 0.01 

µM to 100 µM. The glycopolypeptide solutions were mixed in an equal volume ratio with 

a stock solution of ConA (60 µM) so that the final concentration of ConA was 30 µM. 

The samples were allowed to incubate at room temperature overnight. The precipitates 

were collected via centrifugation for 10 minutes and washed with additional cold HBS. 

The centrifugation and washing steps were repeated twice. An aqueous solution of methyl 
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mannopyranose (1 mL, 1.0 M) was added to dissolve the obtained precipitate and the 

content of precipitated ConA per sample was determined via UV-vis spectroscopy at 280 

nm. 

2.7 Supplemental data for Chapter II 

 

Figure A1. Plots of absorption at 420 nm versus time obtained from turbidity assay 
experiments with helical glycopolypeptides. The shown curves are the averages of three 
runs. 

 
Figure A2. Plots of absorption at 420 nm versus time obtained from turbidity assay 
experiments with random coil glycopolypeptides. The shown curves are the averages of 
three runs. 
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Figure A3. Sigmoidal plots obtained from quantitative precipitation assay experiments 
with helical glycopolypeptides. The shown curves are the averages of two independent 
experiments. An inset of an exemplary curve plotted in the linear scale is included for 
reference. Some error bars are smaller than the plot markers. 

 
 

 
Figure A4. Sigmoidal plots obtained from quantitative precipitation assay experiments 
with random coil glycopolypeptides. The shown curves are the averages of two 
independent experiments. An inset of an exemplary curve plotted in the linear scale is 
included for reference. Some error bars are smaller than the plot markers. 
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CHAPTER III. 1,1,3,3-TETRAMETHYLGUANIDINE PROMOTED 
RING-OPENING POLYMERIZATION OF N-BUTYL N-
CARBOXYANHYDRIDE USING ALCOHOL INITIATORS* 
 

3.1 Objectives 

 Chapter I gave a brief introduction to nucleophilic ROP of both polypeptide and 

polypeptoid based NCAs, which is commonly accomplished using primary amine 

initiators. The hydroxyl group is one of the most common functional groups found in 

nature but is a weak nucleophile. Hydroxyl groups can be found at the termini of 

numerous polymer species (i.e. polyesters, polyethers) which could potentially be 

hybridized with polypeptoids to create new materials. In a straightforward polymerization 

reaction of Bu-NCA with benzyl alcohol initiator, it was observed that no polymerization 

had occurred, thus affirming that hydroxyls are poorer initiators than amines. We 

reasoned that if the nucleophilicity of alcohols could be improved through the 

development of a catalytic system, they could be made into viable initiators. We were 

inspired by a number of reports by Waymouth et al, which used organocatalysts to 

improve the nucleophilicity of the hydroxyl group of alcohols through hydrogen bonding 

interactions, and used them in the ROP of various polyesters. In addition to being able to 

possibly synthesize new polypeptoid based materials, ROP of NCAs using alcohol 

initiators may also eliminate the need for chain end functionalization in order to convert 

the hydroxyl to the more labile primary amine. This chapter details our study of the 

organocatalytic ROP of Bu-NCA using alcohol initiators. 

 

                                                
* This chapter previously appeared as Chan, B. A.; Xuan, S.; Horton, M.; Zhang, D., 
1,1,3,3-Tetramethylguanidine-Promoted Ring-Opening Polymerization of N-Butyl N-
Carboxyanhydride Using Alcohol Initiators. Macromolecules 2016, 49 (6), 2002-2012. It 
is reprinted with permission by the American Chemical Society. Copyright 2016 
American Chemical Society. 
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3.2 Introduction to organocatalysis in polymerization 

Organo-mediated polymerization has gained traction due to the need for metal-free 

polymers for certain applications (e.g., biomedical uses and microelectronics) and the 

successful development of catalytic systems that enable efficient controlled 

polymerizations under relatively mild reaction conditions. One of the earliest accounts of 

organo-mediated polymerization involved the acid-catalyzed (p-toluene sulfonic acid) 

polymerization between adipic acid and diethylene glycol.273 Neutral organic bases have 

recently been shown to mediate the ring-opening polymerizations (ROPs) of a variety of 

heterocycles (e.g., lactones, epoxides, cyclic carbonates, and cyclic siloxanes) to form 

polyester, polyether, polycarbonate, and polysiloxane polymers in the presence of alcohol 

initiators. Among the myriad of neutral organic bases used in organocatalytic ROP 

systems are guanidines,274-279 amidines,173, 275 phosphazenes,280-281 phosphines,282 

pyridines,282-283 tertiary amines,282-285 isothioureas,174 imidazoles,286 and N-heterocyclic 

carbenes (NHC).166, 287-289 It has been proposed that these organo-bases mediate the 

polymerizations of the heterocycles by either nucleophilic activation of the monomers or 

alcohol/chain-end activation via hydrogen bonding interaction.275-276, 278-279, 281, 288, 290,291  

Polypeptoids are structural mimics of polypeptides featuring an N-alkyl substituted 

polyglycine backbone. Without intramolecular hydrogen bonding interactions along the 

backbone, polypeptoids exhibit enhanced protease-resistance292 and can be thermally 

processed in bulk, in contrast to polypeptides.141 In addition, the physicochemical 

properties of polypeptoids (e.g., crystallinity,141, 159, 293 solubility,160-161 and 

conformation)27, 294 are highly tailorable by controlling the side chain structure. These 

combined attributes make polypeptoids an emerging class of biomimetic polymers useful 

for various biomedical applications.3, 5-6, 153, 295-296 Polypeptoids can be prepared by solid 

phase synthesis either by the conventional techniques developed by Merrifield45 which 
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involve coupling the successive amino acid unit in a protected (commonly Fmoc) form to 

a growing chain anchored on a resin. The Fmoc protecting group is then removed, 

exposing an amine on which the next coupling step to form the peptide bond can occur.145 

This method requires the synthesis of various N-substituted glycines which is time 

consuming and costly. A different approach by Zuckermann known as the “sub-

monomer” method146 does not require protecting groups but uses successive acylation and 

nucleophilic displacement with bromoacetic acid and secondary amines to build the 

sequence-specific polypeptoid. While the solid phase synthetic methods ensure a precise 

control over chain length and sequence, they have the disadvantages of being inefficient 

and difficult to access high molecular weight species. Alternatively, high molecular 

weight polypeptoids have been synthesized through controlled ROPs of N-substituted N-

carboxyanhydride monomers (R-NCAs)27, 142, 147, 155, 157, 160-161 or N-

thiocarboxyanhydrosulfides.111, 182, 190-191 For the controlled NCA polymerization, primary 

amines or NHCs are the commonly used initiators. The former initiates the ROP of R-

NCAs via the generation of a linear propagating species bearing a secondary amino chain 

end, whereas the latter initiates the chain growth by the formation of a cyclic zwitterionic 

propagating intermediate.84, 147, 150  

While hydroxyl groups are one of the most common functionalities found in small 

organic compounds and polymers alike (e.g., the chain ends of polyester and polyether), 

alcohol-initiated polymerization of R-NCAs has never been reported. One early study 

showed that α-amino acid derived N-carboxyanhydrides can be converted into high 

molecular weight polypeptides in the presence of alcohol in high yield.48 The solution pH 

was found to affect the reaction product. Reactions in acidic conditions produce amino 

acid esters via alcoholysis,297-300 whereas neutral or basic conditions favor oligo or 

polypeptide products. Under basic conditions, alkoxide species can initiate the 
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polymerization of NCAs by an activated monomer mechanism which involves the 

deprotonation of the N-H protons of the NCA monomer and addition of the deprotonated 

(“activated”) monomer to a neutral monomer to initiate the chain growth.78 In contrast to 

α-amino acid-based NCAs, we have found that R-NCAs do not react with alcohols alone.  

Early work by Waymouth and Hedrick has revealed that the nucleophilicity of 

alcohols can be enhanced by hydrogen bonding interaction with bifunctional thioureas, 

diazabicycloundecene, and triazabicyclodecene (TBD), enabling alcohol-initiated 

controlled ROPs of various cyclic esters. We reason that R-NCAs can potentially be 

polymerized using a suitable combination of alcohol initiators and organic bases. Herein, 

we report the investigation of the ROPs of N-butyl N-carboxyanhydride using various 

alcohol initiators and 1,1,3,3-tetramethylguanidine (TMG) as an organocatalyst. The 

polymerization behavior is strongly dependent on the sterics of the alcohols. With 

primary alcohols such as BnOH, MeOH, EtOH, 2-methoxyethanol, and n-PrOH, the 

polymerizations proceed in a controlled manner, producing well-defined poly(N-butyl 

glycine) (PNBG) polypeptoids with controlled molecular weight and narrow molecular 

weight distribution in the low to moderate molecular weight range (Mn= 3-23 kg·mol-1). 

The reaction has also been extended towards the synthesis of amphiphilic hetero-block 

copolymers consisting of PEG and PNBG segments by using a hydroxyl-ended PEG 

macroinitiator. This method can potentially enable the facile access to a variety of hetero-

block copolymers comprised of polypeptoid segments without the need of chain-end 

derivation to install primary amine functionalities.301 

3.3 Results and discussion 

3.3.1 Initial results 

N-butyl N-carboxyanhydride (Bu-NCA) was chosen as the model monomer in this 

study, as the monomer can be readily synthesized in high purity and good yield, and the 
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resulting poly(N-butyl glycine)s (PNBGs) have been well characterized previously.147 

Polymerization of Bu-NCA was carried out in the presence of 1,1,3,3-

tetramethylguanidine (TMG) and benzyl alcohol in various solvents (i.e., THF, toluene, 

CH2Cl2, and DMF) at 50 °C under a nitrogen atmosphere (Scheme 3.1). The initial 

monomer to alcohol ratios ([M]0:[BnOH]0) were systematically varied between 25:1 and 

400:1, while the initial TMG and monomer concentration ([TMG]0=0.6 mM, [M]0=1.0 

M) were kept constant. All reactions reached quantitative conversion within 24 h. This is 

verified by the FTIR analysis of reaction aliquots showing the complete disappearance of 

carbonyl stretching bands at 1851 cm-1 and 1777 cm-1 that are characteristic of the Bu-

NCA monomers. The resulting polypeptoids were obtained by precipitation into excess 

hexanes (or diethyl ether in the case of reactions conducted in DMF), collected by 

filtration, and drying under vacuum.  

 

Scheme 3.1. ROP of Bu-NCA via BnOH initiator and TMG organocatalyst 

 
 

1H NMR spectroscopic analysis confirms the formation of the desired PNBG 

polymers.147 An exemplary 1H NMR spectrum of the obtained PNBG is shown in Figure 

3.1. MALDI-TOF MS analysis of a low MW polymer obtained from a reaction in THF 

([M]0:[BnOH]0=25:1) indicates that the polypeptoids mainly contain one benzyl ester and 

one secondary amino end groups, in agreement of benzyl alcohol initiating the ROP of 

the Bu-NCAs (Figure 3.2). Polypeptoids containing TMG moieties were also observed in 
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the MS spectra, although in a low apparent quantity. This suggests the potential 

occurrence of TMG-initiated polymerization of Bu-NCA to some extent (vide infra). 

Analysis of all polymers obtained from polymerizations in THF by size-exclusion 

chromatography equipped with multiangle light scattering and differential refractive 

index detectors (SEC-MALS-DRI) revealed mono-modal peaks with molecular weight 

 

 
Figure 3.1. 1H NMR spectrum of PNBG obtained via ROP of Bu-NCA with benzyl 
alcohol initiator and TMG promotor ([M]0:[BnOH]0=25:1). Polymerization was 
performed at [M]0=1.0 M, 50 °C, in THF for 24 h. [TMG]0 was held at 0.6 mM. The 
spectrum was collected in CD2Cl2. 

 

(Mn) in the 2.9-20.5 kg·mol-1 range and narrow molecular weight distribution (PDI=1.03-

1.08) (Figure 3.3). It was found that the control over Mns is strongly dependent on the 

solvent (Table 3.1). For polymerization conducted in THF and toluene, the polymer 

molecular weight increases as the initial monomer to benzyl alcohol ratio is 

systematically increased. The polymer molecular weights agree with the theoretical 
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values based on single-site initiation by the benzyl alcohol at low molecular range and 

become lower than the theoretical values at the higher molecular weight range 

([M]0:[BnOH]0>100:1). The deviation becomes more pronounced as the [M]0:[BnOH]0 

ratio is further increased. In contrast to reactions in THF and toluene, polypeptoids 

obtained from polymerization in CH2Cl2 and DMF have comparable molecular weights 

regardless of the [M]0:[BnOH]0 ratio, indicating a lack of controlled polymerization in 

these solvents. 

It was also noted that for the polymers obtained from reactions in THF and toluene, 

the Mns determined by 1H NMR spectroscopy via integration of protons due to the PNBG 

repeating units relative to the benzyl ester end-groups (Figure 3.3) are higher than those 

determined by the SEC-MALS-DRI method and the discrepancy becomes more 

pronounced at the high MW range. This suggests that some of the high molecular weight 

polymers may contain chain ends other than benzyl ester groups, in accordance with 

MALDI-TOF MS results.  

3.3.2 Competition with TMG initiation 

To assess whether TMG may initiate the polymerization of Bu-NCA, a series of 

polymerizations of Bu-NCA with varying initial TMG loadings were conducted under the 

standard conditions (i.e., [M]0:[TMG]0=25:1-200:1, [M]0=1.0 M, 50 °C, THF, 24 h). It 

was found that the molecular weight of the resulting PNBG polymers increases 

proportionally with the [M]0:[TMG]0 ratio until the ratio exceeds 200:1 at which point the 

Mn becomes lower than the theoretical value (Table 3.2 and Figure 3.4). 1H NMR and 

MALDI-TOF MS analyses of the resulting polymers (Figure 3.5 and 3.6) also indicate the 

attachment of TMG to the polymers. These results indicate that TMG indeed can 

efficiently initiate the polymerization of Bu-NCAs on its own. This may contribute to the 

deviation of the polymer molecular weight of the PNBGs from the theoretical values in 
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the TMG-promoted polymerization of Bu-NCA using benzyl alcohol initiators, as the 

theoretical values are based on the single-site initiation with alcohol alone. For reactions 

with low loading of alcohol initiators (e.g., [M]0:[I]0=400:1), the TMG concentration (0.6 

mM) becomes comparable to that of benzyl alcohol (2.5 mM), resulting in competitive 

initiating pathways that would lower the polymer molecular weight. To further 

investigate the effect of TMG concentration on the polymer molecular weight control, a 

series of polymerizations of Bu-NCAs where [TMG]0 was increased to equimolar 

concentration relative to that of benzyl alcohol was conducted under the standard 

conditions (i.e., [M]0=1.0 M, [M]0:[BnOH]0=25:1-100:1, 50 °C, THF, 24 h). The 

resulting polymer molecular weights (Mns) were approximately half of the theoretical 

values based on initiation by benzyl alcohol alone when the [M]0:[BnOH]0 ratio exceeded 

25:1 (Entry 2-3, Table 3.3). These results further support that TMG can compete with 

alcohols to initiate the polymerization of Bu-NCA on its own. As a result, the control of 

TMG concentration relative to that of the alcohol is important in order to ensure the 

efficient and predominant initiation by alcohols, yielding well-defined polypeptoids with 

controlled polymer molecular weight and chain-end structures. 

3.3.3 Demonstration of a living polymerization 

 Polymerizations of Bu-NCA in the presence of BnOH and TMG exhibit living 

polymerization characteristics, evidenced by the linear increase of polymer molecular 

weight and decreasing molecular weight distribution (PDI=1.22-1.05) with increasing 

conversion (Figure 3.7A). A chain extension experiment was also conducted to further 

verify the living nature of the polymerization. Specifically, a polymerization 

([M]0:[BnOH]0:[TMG]0=50:1:0.03) was conducted under standard conditions in 50 °C 

THF for 24 h to reach full conversion. A second batch of monomer 
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Figure 3.2. MALDI-TOF MS spectra of a low molecular weight PNBG obtained by 
BnOH-initiated polymerization of Bu-NCA in the presence of TMG under the standard 
conditions ([M]0=1.0 M, [TMG]0=0.6 mM, [M]0:[BnOH]0=25:1, THF, 50 °C) and the 
PNBG polymer structures corresponding to the respective mass ions. CHCA was used as 
the matrix. 

 

 
Figure 3.3. SEC-DRI chromatograms of PNBG polymers obtained by ROP of Bu-NCAs 
in the presence of benzyl alcohol and TMG with increasing [M]0:[BnOH]0 ratio and a 
constant initial monomer and TMG concentration ([M]0=1.0 M and [TMG]0=0.6 mM) in 
50 °C THF. 
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Table 3.1. TMG-mediated polymerization of Bu-NCAs to afford poly(N-butyl glycine)s 
in the presence or absence of benzyl alcohol in different solvents.a 

Solvent [M]0:[BnOH]0 [TMG]0 
(mM) 

Mn 
(theo.)b 

Mn 
(SEC)c 

Mn 
(NMR)d 

PDIc DPe Conv. 
(%)f 

THF 25:1 no TMG - - - - - 0 
no BnOH 0.6 - 42.9 - g 1.03 380 100 

25:1 0.6 2.8 2.9 3.8 1.08 26 100 
50:1 0.6 5.7 5.6 5.5 1.04 50 100 
100:1 0.6 11.3 8.9 14.5 1.08 79 100 
200:1 0.6 22.6 13.1 15.7 1.05 116 100 
400:1 0.6 45.2 20.5 42.5 1.04 181 100 

Toluene 25:1 0.6 2.8 4.0 5.3 1.13 35 100 
50:1 0.6 5.7 4.8 6.7 1.09 42 100 
100:1 0.6 11.3 8.2 9.3 1.04 72 100 
200:1 0.6  22.6 11.1 19.4 1.02 98 100 
400:1 0.6 45.2 15.4 25.2 1.02 136 100 

CH2Cl2 25:1 0.6 2.8 5.3 2.2 1.23 47 100 
50:1 0.6 5.7 6.1 4.2 1.18 54 100 
100:1 0.6 11.3 6.5 6.3 1.04 57 100 

DMF 25:1 0.6 2.8 3.1 3.5 1.09 27 100 
50:1 0.6 5.7 4.1 5.2 1.19 36 100 
100:1 0.6 11.3 5.3 6.1 1.03 47 100 

a.All polymerizations were conducted at [M]0=1.0 M at 50 °C and were allowed to reach 
full conversion in 24 h. The initial TMG concentration ([TMG]0) was held constant at 0.6 
mM; b. theoretical molecular weights in the unit of kg·mol-1 are calculated from 
[M]0:[BnOH]0 ratio and conversion; c. polymer molecular weights (kg·mol-1) are 
determined by the SEC-MALS-DRI method using dn/dc = 0.0815 ± 0.0012 mL·g-1;147 d. 
polymer molecular weights (kg·mol-1) are determined by end group analysis using 1H 
NMR spectroscopy, assuming all polymers are terminated with benzyl end-groups; e. 

calculated from the Mn determined by SEC-MALS-DRI method; f. determined by FTIR 
analysis of reaction aliquots after 24 h; g. end groups were not observed in the 1H NMR 
spectrum.  

 
Table 3.2. Molecular weight analysis of PNBGs obtained by ROP of Bu-NCAs using 

TMG initiators at varying [M]0:[TMG]0 ratio a 

[M]0:[TMG]0 Mn (theo.) 
(kg·mol-1)b 

Mn (SEC) 
(kg·mol-1)c 

Mn (NMR) 
(kg·mol-1)d 

PDI c Conv e.  
(%) 

25:1 2.8 2.7 2.5 1.11 100 

50:1 5.6 4.3 5.3 1.02 100 

125:1 12.0 11.7 10.7 1.10 85 

200:1 16.5 9.2 8.8 1.04 73 
a. All polymerizations were conducted at [M]0=1.0 M in THF at 50 °C for 24 h; b. 

theoretical molecular weights were calculated from the [M]0:[TMG]0 ratio and 
conversion; c. polymer molecular weights and the molecular weight distribution were 
determined by SEC-MALS-DRI method using dn/dc = 0.0815 ± 0.0012 mL·g-1;147 d. 
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polymer molecular weights were determined by end group analysis using 1H NMR 
assuming that all polymers were terminated with TMG amide groups;  e. conversions were 
determined by FTIR analysis of the reaction aliquots after 24 h. 
 
 

 
Figure 3.4. SEC-DRI chromatograms of PNBG polymers obtained from the ROP of Bu-
NCA using TMG as initiators ([M]0=1.0 M, 50 °C, THF). 

 
 

 
Figure 3.5. 1H NMR spectrum of PNBGs obtained via ROP of Bu-NCA with TMG 
initiator ([M]0:[TMG]0=25:1). Polymerization was performed at [M]0=1.0 M, 50 °C, in 
THF for at least 24 h. The spectrum was collected in CDCl3. 
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Figure 3.6. MALDI-TOF MS spectra of PNBGs obtained from ROP of Bu-NCA using 
TMG initiator alone ([M]0:[TMG]0=25:1, [M]0=1.0 M, 50 °C, THF). CHCA matrix was 
used in sample preparation.  

 

Table 3.3. Polymerization of Bu-NCA in the presence of equimolar BnOH and TMG a 

[M]0:[BnOH]0: 
[TMG]0 

Mn (theo.) 
(kg·mol-1)b 

Mn (SEC) 
(kg·mol-1)c 

PDI c DP Conv. d  
(%) 

25:1:1 2.8 2.2 1.03 19 100 

50:1:1 5.6 3.0 1.08 27 100 

100:1:1 11.3 5.8 1.03 51 100 
a. All polymerizations were conducted at [M]0=1.0 M in THF at 50 °C for 24 h; b. 

theoretical molecular weights were calculated from the [M]0:[BnOH]0 ratio and 
conversion; c. polymer molecular weights and the molecular weight distribution were 
determined by SEC-MALS-DRI method using dn/dc = 0.0815 ± 0.0012 mL·g-1;147 d. 

conversions were determined by FTIR analysis of the reaction aliquots after 24 h. 
  

 ([M]0:[BnOH]0=100:1) was subsequently introduced to the reaction mixture to allow for 

further chain propagation. SEC-MALS-DRI analysis of the PNBG polymers obtained 

from the first and second polymerization (Figure 3.7B) revealed an increase of polymer 

Mn that agrees well with the theoretical predictions for a controlled enchainment where all 

propagating chains remain active for monomer addition (Table 3.4).  
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Figure 3.7. (A) Plots of polymer molecular weight (Mn) and molecular weight distribution 
(PDI) versus conversion for the TMG-mediated polymerization of Bu-NCA using BnOH 
initiators ([M]0:[BnOH]0:[TMG]0=50:1:0.03, [M]0=1.0 M, THF, 50 °C) R2=0.98. (B) 
SEC-MALS-DRI chromatograms from the chain extension experiment (first reaction: 
[M]0:[BnOH]0:[TMG]0=50:1:0.03, [M]0=1.0 M, THF, 50 °C; chain extension reaction: 
[M]0:[BnOH]0 =100:1).  

 
Table 3.4. Chain extension of PNBG polymers prepared by TMG-mediated 

polymerization of Bu-NCA using BnOH initiators a 

 [M]0:[BnOH]0 Mn (theo.) b 

(kg·mol-1) 
Mn (SEC)c 

(kg·mol-1) 
PDIc DPd 

Pre-extension 50:1 5.6 6.4 1.13 57 

Post-extension 150:1 17.0 16.2 1.09 143 
a. All polymerizations were conducted at [M]0=1.0 M in 50 °C THF and were allowed to 
react for at least 24 h to reach quantitative conversion. [TMG]0 was held constant at 0.6 
mM; b. theoretical molecular weights in kg·mol-1 are calculated from [M]0:[BnOH]0 ratio 
and conversion; c. determined by the SEC-MALS-DRI method using dn/dc = 0.0815 ± 
0.0012 mL·g-1;147 d. number average degree of polymerization was calculated from the Mn 
determined by SEC-MALS-DRI method.  
 

3.3.4 Kinetic study of the polymerization 

Kinetic experiments were conducted for the polymerization of Bu-NCAs under standard 

conditions using deuterated solvent (50 °C, THF-d8), where the initial loading of BnOH 

loading is systematically varied ([M]0:[BnOH]0=25:1-100:1) and the initial monomer and 

TMG concentrations are kept constant ([M]0=0.15 M, [TMG]0=90 µM (0.06 mol% 

relative to [M]0)). The progression of the reaction was monitored using 1H NMR 

spectroscopy. The polymerization exhibits a first-order dependence on the monomer and 



 107 

benzyl alcohol concentration respectively with a propagating rate constant (kp=0.59 ± 

0.01 M-1h-1) (Figure 3.8A and 3.8C, Table 3.5). To determine the effect of [TMG]0 on the 

propagation rate, polymerization of Bu-NCAs with varying loadings of TMG and 

constant initial monomer and BnOH concentrations ([M]0=0.15 M, [M]0:[BnOH]0=50:1) 

were conducted in 50 °C THF-d8. The polymerization still exhibited pseudo-first order 

kinetics (Figure 3.8B) and the propagating rate did not appear to be significantly affected 

by the variation of [TMG]0 in the 45-180 µM range (i.e., 0.03-0.12 mol.% relative to 

[M]0) (Table 3.6). This suggests that TMG does not affect the chain propagation and only 

acts cooperatively with BnOH to initiate the polymerization. 

 

 
Figure 3.8. (A) Plots of ln ([M]0:[M]) versus reaction time for the TMG-promoted 
polymerization of Bu-NCA using BnOH initiators at various initial BnOH loading 
([M]0:[BnOH]0 =25:1-100:1, [M]0=0.15 M, [TMG]0= 90 µM, THF-d8, 50 °C); (B) plots 
of ln ([M]0:[M]) versus reaction time for the TMG-promoted polymerization of Bu-NCA 
using BnOH initiators at various initial TMG loading; (C) plots of kobs versus [BnOH]0 
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for the TMG-promoted polymerization of Bu-NCA using BnOH initiators; (D) plots of ln 
([M]0:[M]) versus reaction time for the BnNH2-initiated polymerization of Bu-NCA with 
(red) or without TMG present (black) ([M]0:[BnNH2]0 =50:1, [M]0=0.15 M, [TMG]0=90 
or 0 µM, THF-d8, 50 °C).  

 
Table 3.5. The observed polymerization rate constant (kobs) for BnOH-initiated 

polymerization of Bu-NCA with varying BnOH loadings and constant initial monomer 
and TMG concentrations a 

Entry number [M]0:[BnOH]0 kobs (h-1) 

1 25:1 3.74 ± 0.18 

2 50:1 1.75 ± 0.05 

3 100:1 0.91 ± 0.08 
a. For all reactions, the initial monomer and TMG concentrations were held constant at 
[M]0= 0.15 M and [TMG]0 = 90 µM, respectively. All kinetic experiments were repeated 
at least twice. 
 
Table 3.6. The observed polymerization rate constant (kobs) for a series of BnOH-initiated 
polymerization of Bu-NCA with varying TMG loadings and constant initial monomer and 

BnOH concentrations a 

Entry number [M]0:[BnOH]0:[TMG]0 [TMG]0 (mM) kobs (h-1) 

1 50:1:0.015 45 1.62 ± 0.02 

2 50:1:0.030 90 1.75 ± 0.05 

3 50:1:0.060 180 1.81 ± 0.01 
a. For all reactions, the initial monomer and BnOH concentrations were held constant at 
[M]0= 0.15 M and [BnOH]0 = 3 mM, respectively. All kinetic experiments were repeated 
at least twice. 
 

Benzylamine has been previously shown to initiate the controlled polymerization of 

various R-NCAs.153 To further compare the relative polymerization efficiency, Bu-NCAs 

were also polymerized using benzylamine with or without TMG present under identical 

conditions to those reactions using BnOH and TMG ([M]0:[BnNH2]0=50:1, [M]0=0.15 M, 

[TMG]0=90 or 0 µM, 50 °C, THF-d8). The BnOH-initiated ROP of Bu-NCAs in the 

presence of TMG (kobs= 1.75 ± 0.05 h-1, Figure 3.8B) is only slightly faster than that with 

benzylamine initiator alone (kobs = 1.01 ± 0.12 h-1, Figure 3.8D). Addition of a catalytic 

amount of TMG (90 µM) to the benzylamine initiated polymerization has no significant 
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effect on the polymerization rate (kobs = 0.89 ± 0.06 h-1, Figure 3.8D). These results 

strongly suggest that TMG can promote the polymerization of Bu-NCAs by activating the 

benzyl alcohol initiator but not the primary amine initiator or the propagating species 

bearing secondary amino chain ends.  

3.3.5 Expanding the breadth of alcohol initiators and their dependence on sterics and 
electronics 

Encouraged by these initial findings, we set to investigate the general applicability 

of the polymerization method toward the synthesis of polypeptoids using a series of 

alcohol initiators having different structures in conjunction with TMG. Polymerization of 

Bu-NCAs using methanol, ethanol, 2-methoxyethanol, n-propanol, isopropyl alcohol, and 

tert-butyl alcohol in conjunction with TMG were conducted under identical conditions to 

those where benzyl alcohol was employed as initiators. It was found that the primary 

alcohol (i.e., methanol, ethanol, 2-methoxyethanol, and n-propanol)-initiated ROPs of 

Bu-NCAs produced PNBG polymers with controlled molecular weights in the 2.8-23.2 

kg·mol-1 range and narrow molecular weight distributions (PDI=1.02-1.16) (Table 3.7). 

The polymer molecular weights and end-group structures of the resulting PNBG 

polymers agree reasonably well with the theoretical prediction of controlled 

polymerizations with alcohol as initiators (Figure B1-4), up until the [M]0:[ROH]0 ratio 

reaches approximately 200:1 when the molecular weight begins to deviate. In stark 

contrast, polymerization of Bu-NCAs using a more sterically hindered secondary alcohol 

(e.g., isopropyl alcohol) together with TMG yielded polypeptoids whose molecular 

weights were substantially higher than the theoretical values, suggesting that initiation is 

significantly inefficient and slower relative to propagation. To our surprise, when tert-

butyl alcohol was used, no polymerization was observed regardless of the initial 

monomer to alcohol ratios under standard conditions. The pKa of these alcohols are 

comparable and differ within 2 units (Table 3.8). We also investigated 2,2,2-
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trifluoroethanol and phenol that are more electron deficient and have much lower pKas 

(Table 3.8) than all other alcohols that have been studied as initiators. It was found that 

2,2,2-trifluoroethanol in conjunction with TMG produced PNBGs whose Mns were 

significantly higher than the theoretical values, whereas phenol in conjunction with TMG 

failed to initiate the polymerization regardless of the initial monomer to alcohol ratios 

(Table 3.7). Similarly, when benzylmercaptan (BnSH) in conjunction with TMG was 

used, no polymerization was observed under standard conditions regardless of the initial 

monomer to initiator loadings.  These results clearly indicate that the electronic and steric 

characteristics of hydroxyl-containing nucleophiles strongly impact the initiation 

efficiency and the polymerization behavior. To understand the observed polymerization 

behavior, it is appropriate to consider the possible modes of initiation by alcohols in the 

presence of TMG.  

3.3.6 Elucidation of an initiating pathway 

TMG is a strong base (pKa=15.5 for TMG-H+ in THF, 23.37 in CH3CN)302-304 and 

good nucleophile similarly to triazabicyclodecene (TBD) (pKa=21.0 for TBD-H+ in THF, 

26.03 in CH3CN)302, 304-305 which has been widely studied in the ROPs of various cyclic 

esters.274-275, 277, 279, 291, 306-309 As a result, three possible mechanisms of initiation that 

differ from that of the normal primary amine-initiated polymerization of R-NCAs 

(Scheme 3.2)48, 153 can be envisioned for the role of TMG in the alcohol-initiated 

polymerization of Bu-NCAs with TMG present (Scheme 3.3). The first mechanism 

involves the formation of hydrogen bonding complexes (Scheme 3.3, Mechanism I) 

between TMG and alcohols, resulting in enhanced nucleophilicity of the alcohol initiators 

similarly to what was proposed for the TBD-catalyzed ROP of various cyclic esters.275 

This results in rapid initiation by ring-opening addition of the Bu-NCAs with the 

activated alcohols. The subsequent chain propagation proceeds by conventional 
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Table 3.7. Polymerization of Bu-NCA in the presence of TMG and different alcohols a 

Alcohol [M]0:[I]0 Mn (theo.)b 

(kg·mol-1) 
Mn (SEC)c 

(kg·mol-1) 
Mn (NMR)d 

(kg·mol-1) 
PDIc DPe Conv. 

(%)f 

CH3OH 25:1 2.8 3.9 - g 1.04 34 100 
50:1 5.6 6.7 - g 1.05 59 100 
100:1 11.3 11.3 - g 1.04 100 100 
200:1 22.6 13.9 - g 1.10 123 100 
400:1 45.2 14.8 - g 1.04 131 100 

 25:1 2.8 3.5 - g 1.03 31 100 
50:1 5.6 6.3 - g 1.09 58 100 
100:1 11.3 10.1 - g 1.02 89 100 
200:1 22.6 16.9 - g 1.04 150 100 
400:1 45.2 19.9 - g 1.04 176 100 

 25:1 2.8 4.3 - g 1.06 38 100 
50:1 5.6 6.3 - g 1.09 56 100 
100:1 11.3 13.3 - g 1.06 118 100 
200:1 22.6 18.1 - g 1.05 160 100 
400:1 45.2 23.2 - g 1.04 205 100 

 25:1 2.8 2.8 1.9 1.09 25 100 
50:1 5.6 5.6 5.4 1.16 50 100 
100:1 11.3 8.5 7.9 1.03 75 100 
200:1 22.6 12.9 - g 1.12 114 100 
400:1 45.2 13.3 - g 1.05 118 100 

 25:1 2.8 14.5 - g 1.06 128 100 
50:1 5.6 19.9 - g 1.04 176 100 
100:1 11.3 23.3 - g 1.01 206 100 

 
25:1 2.8 13.6 - g 1.08 120 100 
50:1 5.6 22.0 - g 1.05 194 100 
100:1 - h - h - h - h - h 0 

a.All polymerizations were conducted at [M]0=1.0 M in 50°C THF for 24 h. [TMG]0 was 
held constant at 0.06 mol % with respect to the molar amount of monomer; b. theoretical 
polymer molecular weights were determined by [M]0:[I]0 and conversion; c. polymer 
molecular weight and the molecular weight distribution are determined by the SEC-
MALS-DRI method using dn/dc = 0.0815 ± 0.0012 mL·g-1 for the PNBG polymer;147 d. 
polymer molecular weight are determined by end group analysis using 1H NMR 
spectroscopy; e. calculated from the Mn determined by the SEC analysis; f. determined by 
FTIR analysis of reaction aliquots after 24 h; g. end group protons cannot be 
unambiguously distinguished in the respective 1H NMR spectra; h. no polymerization was 
observed in the respective experiment. 
 

OH

O OH

F3C OH
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Table 3.8. Change of imine and hydroxyl proton chemical shifts upon formation of 
hydrogen bonding complexes between TMG and various alcohols/phenol/acids and the 

pKa of the alcohols/phenol/acid. 

Nucleophilic initiators ∆d1 (ppm) a 
 

∆d2 (ppm) b 
 

pKa 

DMSO 310-

311
 

H2O 311-

312
 

BnOH 0.07 1.42 - 15.4 

MeOH 0.82 1.46 29.0 15.5 

EtOH 0.57 1.39 29.8 16.0 

2-Methoxyethanol  0.40 2.39 - 14.8 

2,2,2-Trifluoroethanol 0.40 1.40 23.5 12.5 

n-PrOH 0.03 2.07 - 16.1 

i-PrOH 0.08 0.72 30.3 16.5 

t-BuOH 0.04 0.01 32.2 17.0 

Phenol 1.96 c 0.75 c 18.0 9.95 

Benzoic acid 3.38 c 1.73 d 11.1 4.2 
a. ∆δ1 refers to the chemical shift difference between the imine proton of TMG and the 
protons forming the hydrogen bonding between the TMG and various alcohols; b. 
∆δ2 refers to the chemical shift difference between the hydroxyl proton of various alcohols 
and the protons forming the hydrogen bonding between the TMG and the alcohols; c. for 
phenol and benzoic acid, ∆δ1 refers to the chemical shift difference between the imine 
proton of TMG and the iminium protons (=NH2

+) of the TMG-H + species; d. for phenol or 
benzoic acid, ∆δ2 refers to the chemical shift difference between the hydroxyl proton of 
phenol or carboxyl proton of benzoic acid and the iminium protons (=NH2

+) of the TMG-
H+ species. The pKa of BnSH =15.3 in DMSO. 
 

nucleophilic addition of the Bu-NCA monomers to the secondary amino chain ends of the 

growing polymer chains (Scheme 3.4). The second proposed mechanism of initiation 

involves the direct nucleophilic addition of the Bu-NCA monomers by the TMG to form 

a zwitterionic species (Scheme 3.3, Mechanism II), which can be displaced by the alcohol 

to form a neutral initiating species bearing secondary amino end-groups from which 

enchainment ensues. The third mechanism of initiation involves the deprotonation of 

alcohols by TMG to form an alkoxide species, which initiate the polymerization by 

nucleophilic addition of Bu-NCAs to form the anionic carbamate initiating species with 

1,1,3,3-tetramethylguanindinium counter ions (TMG-H+) (Scheme 3.3, Mechanism III). 
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The subsequent chain propagation occurs by ring-opening addition of Bu-NCAs with the 

carbamate species followed by decarboxylation of the mixed anhydride intermediate 

(Scheme 3.4). Early studies of small molecular compounds revealed that the mixed 

anhydride linkages are kinetically labile, readily yielding amide linkages accompanied by 

CO2 liberation.95, 313-314 

 We have shown that TMG alone can initiate the polymerization of Bu-NCAs to 

produce the PNBGs bearing the neutral TMG end-groups (vide supra). Addition of an 

excess of benzyl alcohol to the PNBGs bearing the neutral TMG end-group failed to 

produce any PNBGs bearing benzyl ester end-groups, verified by the MALDI-TOF MS 

analysis. This result suggests that benzyl alcohol was not able to substitute the neutral 

TMG moiety on the TMG N-butyl glycine amide to initiate the polymerization of Bu-

NCA (Mechanism II, Scheme 3.3). We also conducted a 1:1 reaction of TMG and Bu-

NCA as well as a 1:1:1 reaction of TMG, Bu-NCA and BnOH in 50 °C, THF. The ESI-

MS and 1H NMR analysis of the former reaction product revealed the formation of N-

butyl glycine cyclic dimer (i.e., diketopiperazine), N,N-dimethyl N-butyl glycine, N-butyl 

glycine derived hydroimidazolone, and TMG (Figure 3.9 and 3.10). The latter reaction 

also produced benzyl N-butyl glycine ester (Figure 3.11 and 3.12), the proposed initiating 

species (Mechanism II, Scheme 3.3), in addition to the four identical compounds that 

were also observed in the 1:1 reaction of TMG and Bu-NCA in THF. These results are 

consistent with the formation of a zwitterionic intermediate (Mechanism II, Scheme 3.3), 

which may react with alcohols to yield the initiating species (Scheme 3.5). As a result, 

Mechanism II is a possible mode of initiation for the alcohol-initiated polymerization of 

Bu-NCA in the presence of TMG. 
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Scheme 3.2. The mechanism of the primary amine-initiated ROP of Bu-NCA. 

 
 
  

To investigate whether TMG can activate the alcohols and thus promote the initiation 

through hydrogen bonding interactions or deprotonation (Mechanism I and II, Scheme 

3.3), 1H NMR spectra were collected for equimolar mixtures of various alcohols and 

TMG at 27 °C in THF-d8. 1H NMR analysis of an equimolar mixture of TMG and BnOH 

revealed that the disappearance of the hydroxyl proton of BnOH at 4.13 ppm and the 

imine proton of TMG at 5.38 ppm and the appearance of a new broad peak at 5.45 ppm 

that is integrated to two protons (Figure 3.14). The new peak is indicative of the 

formation of a TMG-BnOH complex by hydrogen bonding which has been previously 

shown to mediate the Baylis-Hillman reaction.315 The broadness of the new peaks is 

indicative of the dynamic exchange of the two protons in the hydrogen bonding 

complexes. The TMG-BnOH complex formed by hydrogen bonding is also suggested to 

be present during polymerization as formation of the complex was observed via 1H NMR 

at 50 °C (Figure 3.15) This observation is in contrast to a complete proton transfer to 

TMG that would result in the formation of a guanidinium species exhibiting a more 
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significant downfield chemical shift at 8.76 ppm (Figure B5) for the iminium protons, as 

demonstrated in the 1:1 equimolar reaction between TMG and benzoic acid that is 

 

Scheme 3.3. Three proposed initiation mechanisms of the TMG-promoted ROP of Bu-
NCA using alcohol initiators. 

 
 

 
significantly more acidic than alcohols (Table 3.8). 1H NMR analyses of equimolar 
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butyl alcohol) and TMG revealed the presence of two separate and distinct peaks (Figures 

B11 and B12) where each peak was integrated to one proton. These two peaks are 

 
 
Scheme 3.4. Proposed propagation pathways following different initiating mechanisms 
shown in Scheme 3.3 

 
 

 

somewhat broadened but minimally shifted relative to the hydroxyl proton peak of the 

alcohol or imine proton peak of the TMG on their own in the 1H NMR spectra. This 

clearly indicates the presence of interactions between these alcohols and TMG through 

hydrogen bonding. However, the structures of the hydrogen bonding complexes of the 

secondary or tertiary alcohols with TMG are significantly different from those of primary 

alcohols with TMG. For primary alcohols that do not have strong electron withdrawing 

substituents (EWS), the hydrogen bonding interactions between the alcohols and TMG 

promote the initiation by enhancing the nucleophilicity of the alcohols towards the ring-
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opening addition to the Bu-NCAs. For primary alcohols (e.g., 2,2,2-trifluoroethanol) that 

bear strong EWS, the initiation by the hydrogen bonding complex is inefficient due 

 

 
Figure 3.9. ESI-MS spectrum of the reaction product from the 1:1 (molar ratio) reaction 
of Bu-NCA and TMG in 50 °C THF. The spectrum was obtained in positive ionization 
mode.  

 
 

 
Figure 3.10. 1H NMR spectrum of the reaction product from the 1:1 (molar ratio) reaction 
of Bu-NCA and TMG in 50 °C THF. The spectrum was collected in CDCl3 solvent. 
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Figure 3.11. ESI-MS spectrum of the reaction product from the 1:1:1 (molar ratio) 
reaction of Bu-NCA, TMG and BnOH in 50 °C THF. The spectrum was obtained in 
positive ionization mode. 

 
 

 
Figure 3.12. 1H NMR spectrum of the reaction product from the 1:1:1 (molar ratio) 
reaction of Bu-NCA, TMG and BnOH in 50 °C THF. The spectrum was collected in 
CDCl3 solvent. 
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Scheme 3.5. Proposed reaction pathways for the formation of the reaction products from 
the 1:1 (molar ratio) reaction of Bu-NCA and TMG or the 1:1:1 reaction of Bu-NCA, 
TMG and BnOH in 50 °C THF.  

 

 

to the significantly reduced nucleophilicity of the alcohol moiety in the complex. The 

complexes involving secondary or tertiary alcohols (e.g., isopropyl alcohol or tert-butyl 

alcohol) have increasing steric hindrance, resulting in either inefficient initiation or 

failure to initiate the polymerization. 
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Figure 3.13. Overlaid 1H NMR spectra of benzyl alcohol (red), TMG (green), and an 
equimolar mixture of benzyl alcohol and TMG (blue) in THF-d8. The spectra were 
collected at 0.5 M concentration for the respective compounds.  
 
 

In contrast to alcohol-TMG complexes, 1H NMR analysis of the equimolar 

mixture of TMG and phenol showed a large downfield chemical shift of the imine 

protons to 7.34 ppm (Figure B13), consistent with the formation of guanidinium species 

by proton transfer rather than a hydrogen bonding complex. This is attributed to the much 

higher acidity of phenol relative to other aliphatic alcohols (Table 3.8). The higher acidity 

of BnSH (pKa=15.3 in DMSO) also likely contributed to the absence of polymerization. 

The resulting phenoxide having a TMG-H+ counter-ion does not effectively initiate the 

polymerization of Bu-NCA presumably due to steric hindrance imposed by the tightly 

associated TMG-H+ 
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Figure 3.14. Overlaid 1H NMR spectra of the 1:1 mixture of benzyl alcohol and TMG at 
27 °C (blue) and 50 °C (red) in THF-d8. The spectra were collected at 0.5 M 
concentration.  

 

counter-ions in the low polarity solvents. In contrast, sodium phenoxide has the potential 

to initiate polymerization of Bu-NCA (Table 3.9) suggesting that the choice of counter-

ion does matter. It is possible that the TMG-H+ counter-ion versus that of sodium is better 

solvated in THF, leading to a tighter association with the oxygen anion which leads to the 

observed significantly reduced polymerization activity. 

The formation of hydrogen bonding complexes between alcohols and TMG appears 

to be the most likely mode of initiation for the polymerization of Bu-NCA (Scheme 3.3, 

Mechanism I), although the initiation via the zwitterionic intermediate remains a 

possibility (Mechanism II, Scheme 3.3). Regarding the chain propagation, kinetic studies 

have shown that TMG has negligible effect on the observed rate of propagation in the 

alcohol-initiated polymerization of Bu-NCA (vide supra). This is consistent with the 

27 °C 

50 °C 
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proposed propagating species bearing secondary amino end-groups (Scheme 3.4), which 

is unlikely to be activated by TMG via hydrogen bonding in view of the high pKa of 

secondary amines (pKa ~44 in DMSO).316  

 

Table 3.9. Polymerization of Bu-NCA by sodium phenoxide a 

[M]0:[PhONa]0 Mn (theo.) 
(kg·mol-1)b 

Mn (SEC) 
(kg·mol-1)c 

PDI DP Mn (NMR) 
(kg·mol-1)d 

DP 
(NMR) 

25  2.8 4.1 1.06 36 1.9 17 

50  5.6 6.9 1.14 61 4.4 44 

100  11.3 13.5 1.26 119 8.1 72 

200  22.6 18.3 1.26 162 -e -e 

400  45.2 24.6 1.07 218 -e -e 

a.All polymerizations were conducted at [M]0=1.0 M in 50 °C THF for 24 h. b. theoretical 
polymer molecular weights were determined by [M]0:[PhONa]0 and conversion 
determined by FTIR; c. polymer molecular weight and the molecular weight distribution 
are determined by the SEC-MALS-DRI method using dn/dc = 0.0815 ± 0.0012 mL·g-1 for 
the PNBG polymer;147 d. polymer molecular weights are determined by end group 
analysis using 1H NMR spectroscopy; e. end group protons cannot be unambiguously 
distinguished in the respective 1H NMR spectra. 
 
 

 

 
Figure 3.15. Reaction scheme of TMG-promoted ROP of Bu-NCA using a PEG-OH (Mn 
= 550 g·mol-1) macroinitiator and SEC chromatograms of the PEG-OH precursor and the 
PEG-b-PNBG hetero-block copolymers obtained from the reaction ([M]0:[PEG-
OH]0=25:1-100:1). 
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3.3.7 Macroinitiation of Bu-NCA using poly(ethylene glycol) monomethyl ether  
The nature of the alcohols clearly affects the initiation efficiency and hence the 

controlled polymerization of Bu-NCAs. To assess the potential use of the TMG-promoted 

ROPs of Bu-NCAs towards the synthesis of hetero-block copolymers containing 

polypeptoid segments, we investigated the polymerization of Bu-NCA using a hydroxyl-

terminated poly(ethylene glycol) macroinitiator (PEG-OH). Low molecular weight 

poly(ethylene glycol) methyl ether (Mn = 550 g·mol-1, PDI=1.04) was used in the TMG-

promoted polymerization of Bu-NCA under the standard conditions as for the reactions 

using small alcohol initiators (Figure 3.15). The reaction reached high conversion in 24 h, 

evidenced by FTIR spectroscopic analysis of reaction aliquots. SEC analysis of the 

resulting polymers revealed mono-modal peaks with increasing polymer molecular 

weight as the [M]0:[PEG-OH]0 ratio is increased (Figure 3.15). This confirms the 

formation of hetero-block copolymers consisting of polyether and polypeptoid segments 

(PEG-b-PNBG). The molecular weight distribution (PDI) is modest in the 1.12-1.22 

range. MALDI-TOF MS analysis of a low molecular weight block copolymer product 

(Entry 1, Table 3.10) revealed the exclusive formation of PEG-b-PNBG block 

copolymers and the absence of any unreacted PEG macroinitiators (Figure 3.16). As a 

result, polymer molecular weights were also determined by integration of the methyl 

protons of PNBG segments (0.88 – 0.96 ppm) relative to the methylene protons of PEG 

segments (3.64 ppm) by 1H NMR spectroscopy (Figure 3.17). The Mns of the resulting 

block copolymers are slightly higher than the theoretical prediction based on sole 

initiation by the hydroxyl-ended PEGs, suggesting initiation of Bu-NCAs is somewhat 

slower relative to propagation when the PEG-OH macroinitiator is used. In spite of the 

high molecular  
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Figure 3.16. Representative MALDI-TOF MS spectra of the PEG-b-PNBG block 
copolymers obtained from the TMG-promoted ROP of Bu-NCAs using PEG (Mn = 550 
g·mol-1, PDI=1.04) macroinitiator ([M]0:[PEG-OH]0 = 25:1, [M]0 = 1.0 M, [TMG]0 = 0.6 
mM).  

 

weight of the PEG-OH relative to isopropyl alcohol or tert-butyl alcohol, the hydroxyl 

termini on the PEG chains are not sterically restricted as in the case of the secondary and 

tertiary alcohols. As a result, the hydrogen bonding complex involving PEG-OH and 

TMG can initiate the chain growth by nucleophilic ring-opening addition of Bu-NCAs, in 

contrast to the isopropyl alcohol or tert-butyl alcohol-TMG complexes which are too 

sterically hindered to initiate the polymerization of Bu-NCA efficiently (Table 3.8).  

3.4 Conclusions 

We have demonstrated that 1,1,3,3-tetramethylguanidine (TMG) can effectively 

promote the controlled polymerization of Bu-NCA monomers when appropriate alcohols 
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Table 3.10. TMG-promoted polymerization of Bu-NCA using a hydroxyl-terminated 
PEG (Mn = 550 g·mol-1, PDI=1.04) macroinitiator a 

[M]0:[PEG-
OH]0 

Mn (theo.) b 
(kg·mol-1) 

Mn (NMR) c 
(kg·mol-1)  

Mn (SEC) d 
(kg·mol-1)  

PDI d DP e 

(PNBG) 
Conv. f 

(%) 

25:1 3.7 4.3 6.6 1.22 32 100 

50:1 6.3 8.5 11.3 1.12 69 100 

100:1 11.0 14.2 17.2 1.14 120 91 
a All polymerizations were conducted at 1.0 M in THF at 50 °C. [TMG]0 was held 
constant at 0.06 mol % relative to [M]0 b Determined from the [M]0:[PEG-OH]0 ratio and 
conversion. c Calculated by end group analysis using 1H NMR spectroscopy. d 
Determined by SEC-DRI method using polystyrene standards. e Number average degree 
of polymerization of the PNBG segments was calculated from Mns determined by end-
group analysis using 1H NMR spectroscopy. f Determined by FTIR analysis of a reaction 
aliquot after 24 h. 

 

 
Figure 3.17. Representative 1H NMR spectrum of the PEG-b-PNBG block copolymers 
obtained from the TMG-promoted ROP of Bu-NCAs using PEG (Mn = 550 g·mol-1, 
PDI=1.04) macroinitiator ([M]0:[PEG-OH]0 = 25:1, [M]0 = 1.0 M, [TMG]0 = 0.6 mM).  

 
(e.g., BnOH, MeOH, EtOH, MeOCH2CH2OH, n-PrOH) are used as initiators, in sharp 

contrast to no polymerization activity when TMG is absent. In these reactions, TMG 

interacts with the alcohols via hydrogen bonding interaction, resulting in enhanced 

nucleophilicity of the alcohols towards the ring-opening addition of the Bu-NCA 
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monomers and thereby initiation of the chain growth. The steric and electronic 

characteristics of the alcohols have been found to strongly influence the polymerization 

behavior. Hydrogen bonding complexes involving secondary or tertiary alcohols (e.g., 

isopropyl alcohol and tert-butyl alcohol) and TMG are too sterically hindered to 

efficiently initiate the polymerization. Primary alcohols (e.g., 2,2,2-trifluoroethanol) that 

are strongly electron deficient are also poor initiators in spite of the hydrogen bonding 

interaction with TMG. This resulted in either no polymerization activity or 

polymerization characteristics that are significantly deviated from those of controlled 

polymerizations. Furthermore, it was demonstrated that the TMG-promoted ROPs of Bu-

NCA can be used to produce well-defined amphiphilic hetero-block copolymers 

consisting of hydrophilic PEG and hydrophobic PNBG blocks with tunable molecular 

weight and moderate molecular weight distribution by using hydroxyl-ended PEG 

macroinitiators. One distinct advantage of the method is that the activation of the alcohol 

initiators occurs under mild conditions via hydrogen bonding interaction with TMG. This 

can reduce many potential side reactions (e.g., substitution, elimination, epimerization) 

that may occur to monomers bearing functional side chains when activation of alcohol is 

rendered by deprotonation to form strongly nucleophilic and basic alkoxide species. It is a 

potentially convenient method to access hetero-block copolymers containing polypeptoid 

segment by using hydroxyl-terminated macro-initiators (e.g., polyether, polyester, or 

polyol). 

3.5 Experimental 

3.5.1 Instrumentation and general considerations 

All chemicals were used as received unless otherwise noted. 1,1,3,3-

tetramethylguanidine (TMG) and benzylamine were stirred over CaH2 and alcohols over 

anhydrous MgSO4 prior to being purified via vacuum distillation. Anhydrous deuterated 
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tetrahydrofuran (THF-d8) was obtained by stirring THF-d8 (Sigma-Aldrich) over CaH2 

overnight followed by vacuum transfer. Benzylamine for kinetics experiments was 

purified similarly to THF. Anhydrous THF, dichloromethane, toluene, and N, N-

dimethylformamide (DMF) for polymerizations were purified by passing through 

activated alumina columns under an argon atmosphere (Innovative Technology, Inc.). N-

butyl N-carboxyanyhydride (Bu-NCA) was synthesized from a previously reported 

method.147 1H NMR spectra were recorded on a Bruker AV-400 and AVIII-400. 

Chemical shifts were determined in reference to the protio impurities of the deuterated 

solvents (CDCl3, CD2Cl2, or THF-d8) 1H NMR spectra for kinetics experiments were also 

recorded on a Bruker AVIII-400. Size exclusion chromatography (SEC) analysis was 

carried out on an Agilent 1200 system (Agilent 1200 series degasser, isocratic pump, auto 

sampler, and column heater) equipped with three Phenomenex 5 µm, 300 Å×7.8 mm 

columns [100 Å, 1000 Å, and Linear (2)], Wyatt DAWN EOS multiangle light scattering 

(MALS) detector (GaAs 30 mW laser at λ) 690 nm], and Wyatt Optilab rEX differential 

refractive index (DRI) detector with a 690 nm light source. DMF containing 0.1 M LiBr 

was used as the eluent at a flow rate of 0.5 mL· min-1. The column and the MALS and 

DRI detector temperatures were all maintained at ambient temperature (21 °C). Data from 

SEC-MALS-DRI was processed using Wyatt Astra v 6.0 software. The MALDI-TOF MS 

experiments were carried out on a Bruker ultrafleXtreme tandem time-of-flight (TOF) 

mass spectrometer equipped with a smartbeam-IITM 1000 Hz laser (Bruker Daltonics, 

Billerica, MA). Prior to the measurement of each sample, the instrument was calibrated 

with Peptide Calibration Standard II consisting of a mixture of standard peptides 

Angiotensin I, Angiotensin II, Substance P, Bombesin, ACTH clip 1-17, ACTH clip 18-

39, and Somatotatin 28 (Bruker Daltonics, Billerica, MA). Samples were measured in 

positive reflector mode. A saturated α-cyano-4-hydroxycinnamic acid (CHCA) in 
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methanol was used as the matrix in all measurements. Polymer samples were dissolved in 

THF at 10 mg/mL. The matrix and polymer samples were combined (v/v, 50/50) and 

vortexed. Samples (1 µL) were deposited onto a 384-well ground-steel sample plate using 

the dry droplet method. Data analysis was conducted with flexAnalysis software. 

Electrospray ionization mass spectroscopy (ESI MS) was carried out on an ESI TOF 6210 

(Electrospray Time-of-Flight) mass spectrometer (Agilent Technologies). The capillary 

voltage was 4200 V, drying gas (nitrogen) temperature was 325 °C delivered at 8 L/min. 

The fragmentor voltage was set to 150 V. Samples were prepared by dissolving ~10 mg 

of the sample in 200 µL of THF. 20 µL of the THF solution was then added to 200 µL of 

acetonitrile solution containing 0.1% formic acid as the proton source. All samples were 

run in positive mode ionization. 

3.5.2 Synthesis of N-butyl N-carboxyanhydride 

Synthesis of N-butyl glycine hydrochloride. Glyoxylic acid monohydrate (25.12 g, 273 

mmol) was suspended in 400 mL of dichloromethane and butylamine (13.5 mL, 136 

mmol) was added. The reaction was stirred at ambient temperature for 24 h. 

Dichloromethane was removed via rotary evaporation and 1 N HCl (400 mL) was added 

to the residue and heated at reflux (85 °C) for 5 h. HCl was removed via rotary 

evaporation leaving a crude brown solid which was dissolved in minimal methanol and 

recrystallized from excess diethyl ether. The product was afforded as off-white crystals. 

(15.05 g, 66 %) 

Synthesis of N-Boc N-butyl glycine. A round bottom flask was charged with N-butyl 

glycine hydrochloride (15.05 g, 89.8 mmol) and Boc anhydride (45.4 g, 224 mmol) and 

the contents were dissolved in 300 mL of distilled water. Triethylamine (63 mL, 449 

mmol) was added and the reaction was stirred at ambient temperature for 24 h. The 

reaction solution was then extracted with hexanes (2 × 200 mL). The aqueous layer was 
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saved and acidified with 4 N HCl. The acidified aqueous layer was further extracted with 

ethyl acetate (3 × 200 mL). The combined organic layers were dried over MgSO4, 

filtered, and concentrated via rotary evaporation to yield the product as a clear liquid. 

(17.56 g, 85 %)  

Synthesis of Bu-NCA. N-Boc N-butyl glycine (17.56 g, 75.9 mmol) was dissolved in dry 

dichloromethane (200 mL) and chilled on an ice bath. Phosphorus trichloride (8.3 mL, 

94.9 mmol) was added dropwise over the course of 30 minutes to the dichloromethane 

solution. The ice bath was removed and the solution was allowed to warm up to ambient 

temperature and stirred for 2 hours. Dichloromethane was removed under vacuum leaving 

a crude white solid which was brought into the glovebox. The solid was extracted with 

dichloromethane, filtered, and stirred over NaH for 30 minutes. The solution was then 

refiltered and concentrated under vacuum to yield crude monomer as a white solid. Pure 

NCA was afforded via high vacuum sublimation at 50 °C, 120 mTorr. (2.71 g, 23 %) 

3.5.3 General polymerization procedure 

All polymerizations except for kinetics experiments were conducted in either THF, 

toluene, dichloromethane or DMF with initial monomer concentration [M]0=1.0 M at 50 

°C for 24 h to reach high conversion. An aliquot of the reaction mixture was taken and 

analyzed by FTIR spectroscopy to determine the conversion. Polymers were precipitated 

into excess hexanes (or diethyl ether for reactions in DMF) and dried at room temperature 

under vacuum to yield the respective polymers as white solids. A representative 

polymerization procedure is as follows. In the glovebox, Bu-NCA monomer (88 mg, 0.56 

mmol, [M]0 = 1.0 M) was weighed into an oven dried vial and dissolved in anhydrous 

THF (495 µL). A known volume of a benzyl alcohol/THF stock solution (59 µL, 5.6 

µmol, 95 mM) was then added to the solution followed by a known volume of a 1,1,3,3-

tetramethylguanidine stock solution (6 µL, 0.33 µmol, 54.5 mM) The reaction was 
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Figure 3.18. 1H NMR spectrum of Bu-NCA collected in CDCl3. 

 
 

 

Figure 3.19. 13C{1H} NMR spectrum of Bu-NCA collected in CDCl3. 



 131 

stirred for 24 h at 50°C under a nitrogen atmosphere and then quenched by the addition of 

excess hexanes. The white precipitate was isolated by careful removal of the supernatant 

and drying under vacuum. 1H NMR and 13C NMR data of high molecular weight poly(N-

butyl glycine) (PNBG) have previously been reported.147  

3.5.4 General kinetics procedure 

A predetermined amount of BnOH (or BnNH2) and TMG stock solutions in 

toluene-d8 (50 mM each) were added to a THF-d8 solution of Bu-NCA (500 µL, 0.075 

mmol, 150 mM) at room temperature. The contents were transferred into a resealable J. 

Young NMR tube. 1H NMR spectra were collected every 20 s at 50 °C over the course of 

four half-lives. Monomer conversion was calculated from the relative integration of the 

methylene proton resonance of the monomer and polymer respectively. In kinetic 

experiments involving TMGs, it was determined that by the time the first spectra were 

taken, approximately 5.9-13.8% of the monomer was converted into polymer. Kinetics 

experiments were repeated at least twice under identical conditions for each set of 

polymerization conditions. 

3.6 Supplemental data for Chapter III 

 
Figure B1. MALDI-TOF MS spectra of the PNBG polymers obtained via TMG-promoted 
ROP of Bu-NCA with methanol initiators ([M]0:[MeOH]0 = 25:1, [M]0 = 1.0 M, [TMG]0 
= 0.6 mM). 
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Figure B2. MALDI-TOF MS spectra of the PNBG polymers obtained by TMG-promoted 
ROP of Bu-NCAs using ethanol initiators ([M]0:[EtOH]0 = 25:1, [M]0 = 1.0 M, [TMG]0 = 
0.6 mM). 

 
 
 
 
 

 
Figure B3. MALDI-TOF MS spectra of the PNBG polymers obtained by TMG-promoted 
ROP of Bu-NCAs using n-propanol initiators ([M]0:[n-PrOH]0 = 25:1, [M]0 = 1.0 M, 
[TMG]0 = 0.6 mM). 
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Figure B4.  MALDI-TOF MS spectra of the PNBG polymers obtained by TMG-promoted 
ROP of Bu-NCAs using 2-methoxyethanol initiators ([M]0:[2-MeOEtOH]0 = 25:1, [M]0 = 
1.0 M, [TMG]0 = 0.6 mM). TMG-terminated polymeric species are present at low m/z. 

 

 
Figure B5. Overlaid 1H NMR spectra of TMG (red), TMG (green), and the 1:1 mixture of 
benzoic acid and TMG (blue). Spectra were collected in THF-d8 at 0.5 M concentrations 
for the respective compounds. THF-d8 is denoted by the asterisks (*). 
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Figure B6. Overlaid 1H NMR spectra of methanol (red), TMG (green), and the 1:1 
mixture of both compounds (blue) in THF-d8. Spectra were collected at 0.5 M 
concentrations for the respective compounds. THF-d8 is denoted by the asterisks (*). 

 

  

Figure B7. Overlaid 1H NMR spectra of ethanol (red), TMG (green), and the 1:1 mixture 
of both compounds (blue) in THF-d8. Spectra were collected at 0.5 M concentrations for 
the respective compounds. THF-d8 is denoted by the asterisks (*). 
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Figure B8. Overlaid 1H NMR spectra of 2-methoxyethanol (red), TMG (green), and the 
1:1 mixture of both compounds (blue) in THF-d8. Spectra were collected at 0.5 M 
concentrations for the respective compounds. THF-d8 is denoted by the asterisks (*). 

 
 
 

  
Figure B9. Overlaid 1H NMR spectra of n-propanol (red), TMG (green), and the 1:1 
mixture of both compounds (blue) in THF-d8. Spectra were collected at 0.5 M 
concentrations for the respective compounds. THF-d8 is denoted by the asterisks (*). 
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Figure B10. Overlaid 1H NMR spectra of 2,2,2-trifluoroethanol (red), TMG (green), and 
the 1:1 mixture of both compounds (blue) in THF-d8. Spectra were collected at 0.5 M 
concentrations for the respective compounds. THF-d8 is denoted by the asterisks (*). 

 

 

 

  

Figure B11. Overlaid 1H NMR spectra of isopropyl alcohol (red), TMG (green), and the 
1:1 mixture of both compounds (blue) in THF-d8. Spectra were collected at 0.5 M 
concentrations for the respective compounds. THF-d8 is denoted by the asterisks (*). 
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Figure B12. Overlaid 1H NMR spectra of tert-butyl alcohol (red), TMG (green), and the 
1:1 mixture of both compounds (blue) in THF-d8. Spectra were collected at 0.5 M 
concentrations for the respective compounds. THF-d8 is denoted by the asterisks (*). 

 
 

 
Figure B13. Overlaid 1H NMR spectra of phenol (red), TMG (green), and the 1:1 mixture 
of both compounds (blue) in THF-d8. Spectra were collected at 0.5 M concentrations for 
the respective compounds. THF-d8 is denoted by the asterisks (*). 
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CHAPTER IV. N-THIOCARBOXYANHYDROSULFIDES AS 
POTENTIAL ALTERNATIVES TO N-CARBOXYANHYDRIDE 
MONOMERS IN THE SYNTHESIS OF PEPTIDOMIMETIC 
POLYMERS 

 

4.1 Objectives 

 The syntheses of amino acid and N-alkyl glycine based NCA monomers have 

been discussed in Chapter I and it was noted that extreme care needs to be taken in the 

final steps in carrying out the cyclization and purification of NCAs because the NCAs are 

sensitive to moisture, potentially leading to self-initiation; a moisture-free atmosphere is 

essential. Additionally, purification of NCAs has to be performed under moisture-free 

conditions using dry solvent column chromatography, distillation, or vacuum sublimation 

in order to reduce the risk of introducing moisture and other impurities. There has been 

increasing interest in developing more robust and operationally simpler methods to obtain 

well-defined systems of polypeptides and polypeptoids. One such avenue explored by 

Endo et al is the polymerization of urethane derivatives of amino acids, which generates 

the respective NCA monomers in situ.317 While this avoids the synthesis of NCAs, the 

method did not allow for controlled polymerization and was limited to polypeptides 

whose DPns < 100. Doriti et al have improved the method reported by Endo et al and 

recently reported the synthesis of well-defined polysarcosines (up to 20 kg⋅mol-1) from in 

situ generation of N-methyl glycine NCA from the polycondensation of N-

phenoxycarbonyl sarcosine.318 Another viable strategy is the synthesis of structurally 

similar monomers to NCAs that demonstrate improved stability towards moisture and 

impurities but possess similar reactivity to NCAs in the presence of an initiator. 

Kricheldorf reported the ROP of amino acid based N-thiocarboxyanhdrides, 

thioanhydride analogs to NCAs, but displayed some skepticism190, 319 about the 
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robustness of their use in the polymerization of high molecular weight polypeptides; the 

reactions did not reach quantitative conversion and polymer molecular weights deviated 

from theory. We have explored the organo-mediated ROP of a number of N-substituted 

glycine NTAs. In contrast to Kricheldorf’s findings, we have found that well-controlled 

systems of high molecular weight polysarcosine can be synthesized using conventional 

initiators that have previously been used in the ROP of R-NCAs. Additionally, we have 

synthesized a number of new amino acid based NTA monomers, namely those of γ-

benzyl-L-glutamate and DL-methionine, the former of which is well-studied and known 

to be well-soluble in organic solvents. We have found that NTA monomers show 

potential to serve as viable alternatives to NCAs in the synthesis of well-controlled and 

well-defined polypeptides and polypeptoids. 

4.2 Background of N-thiocarboxyanhydrosulfides 
 

Synthesis of polypeptides and polypeptoids often involves the ring-opening 

polymerization (ROP) of the corresponding N-carboxyanhydride monomers (NCA) as 

these reactions proceed faster than solid phase methods and allow access to high 

molecular weight species. From these methods, polypeptides and polypeptoids with 

predictable molecular weights and adequate polydispersities could be obtained. 

 NCA monomers have been prepared under moisture-free conditions (under 

nitrogen atmosphere), using oven-dried glassware with dry solvents due to the fact that 

the anhydride group is easily susceptible to moisture. Successful controlled 

polymerizations also depend on obtaining NCA monomer of the utmost purity as the 

introduction of nucleophilic impurities (e.g. Cl-) can lead to self-initiation. Chapter I gave 

an overview of various purification methods for NCAs, which have ranged from 

recrystallization48, 51, 58, cold base wash53, 57-58, sublimation147, column chromatography42, 
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59-61, celite filtration62, and rephosgenation55, all of which can be tedious, and time 

consuming.  

 The general structure of N-thiocarboxyanhydrosulfides (NTA) only differs from 

NCAs in the anhydride functional group where a sulfur atom is substituted for oxygen 

(Figure 4.1). Originally, NTAs were used in the synthesis of small peptides and have been 

explored as potential monomers for use in stepwise methods.183-184 NTAs have also seen 

application in textile development.189 They are ideal alternatives to NCAs due to the fact 

that the thioanhydride has been observed to be less reactive towards nucleophiles than 

that of anhydrides, leading to increased stability under ambient conditions.48, 319 The main 

drawback with NTA monomers is that the improved stability of NTAs leads to low 

polymerization activity. It has also been suggested that NTAs are less reactive than NCAs 

because of the increased delocalization of the sulfur atom electrons in NTAs compared 

with those of the oxygen atom in NCAs.48 

 

 

Figure 4.1. Generic chemical structures of NCA and NTA monomers. 

 
The use of NTAs as monomers in polymerization reactions was first reported by 

Kricheldorf in 1974 where the ROPs of glycine-NTA and sarcosine-NTA were studied in 

parallel with the ROPs of their respective NCAs. These early studies showed that the 

obtained molecular weights from NTA polymerizations were significantly lower versus 

those of the polymerizations of their corresponding NCA monomers, suggesting the lack 

of adequate control over the polymerization.319-320 Kricheldorf et al reinvestigated NTAs 

as potential alternatives to NCAs in 2008 where the polymerizations of sarcosine, DL-
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phenylalanine, and DL-leucine NTAs were studied using hexylamine initiator.190 It was 

observed that quantitative conversions in the polymerization reactions were never reached 

except in the case of the ROP of sarcosine-NTA when [M]0:[I]0 = 20:1. Likewise, the 

observed molecular weights for the polymers obtained from the ROPs of NTAs were 

much lower than expected, regardless of [M]0:[I]0. A positive outcome of this study 

however confirmed the formation of the amide end group via initiation with a primary 

amine and a reactive amine terminus via NAM as determined by MALDI TOF MS. Two 

reasons were hypothesized for the observed low conversions and low molecular weights. 

The first was due to the steric hindrance of the active chain end via hydrogen bonding 

based aggregation in polypeptides. It was suggested that the intramolecular hydrogen 

bonding of the formed oligopeptides during the ROP of DL-leucine and DL-

phenylalanine NTAs contributes to a physical chain death due to the formation of β-sheet 

lamellae hindering access of the reactive amine terminus to successive NTAs via sterics. 

In the case of the ROP of sarcosine-NTA, the thiocarbonate intermediate was proposed to 

be stabilized via solvation with those of other polysarcosine chains, thus preventing 

additional propagation events. It was noted by Kricheldorf that NTAs appear to be poor 

candidates for the synthesis of polypeptides and polypeptoids190 and that the ROP of 

NTAs was not a viable and reliable method to obtain high molecular weight polypeptide 

species. 

On the contrary, interest in R-NTA monomers as alternatives to R-NCAs in the 

synthesis of polypeptoids has increased recently. Ling and coworkers synthesized two R-

NTA monomers, N-methyl and N-butyl N-thiocarboxyanhydrosulfides (Me-NTA and Bu-

NTA respectively) and developed two catalytic systems to obtain well-controlled 

molecular weight species of polysarcosine, and poly(N-butyl glycine) respectively.182, 191 

The first system uses primary amine mediated polymerization via NAM. It was noted in 
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the ROP of Me-NTA by NAM that high reaction temperatures (60 °C) and long reaction 

times (48 h) in a relatively poor solvent for polysarcosine, dioxane, are necessities for 

improved yields and molecular control.182 Polysarcosine is insoluble in dioxane resulting 

in a heterogeneous polymerization system, which may ultimately affect polymerization 

kinetics. Other solvents which are good solvents for polysarcosine, namely DMF, N-

methyl pyrrolidone, DMSO, and N,N-dimethylacetamide were all screened as potential 

polymerization solvents, but yielded uncontrollable polymerizations and low yields 

compared with those polysarcosines obtained from the ROP of the respective NCAs. This 

demonstrates the importance of solvent choice in the ROP of R-NTAs. The second 

catalytic system developed by Ling et al used rare earth borohydride initiators, which 

were previously explored as catalysts in the ROP of BLG-NCA.111 Similarly, 

polymerization conditions required high temperatures (60 °C), and longer reaction times 

(48 h) in acetonitrile in order to reach quantitative conversions. Rare earth borohydride 

initiators also have to be synthesized unlike those of the commercially available primary 

amines.191
 

 We studied the organo-mediated ROP of a series of N-alkyl glycine NTAs and 

show that one initiator, 1,1,3,3-tetramethylguanidine, can be used to obtain well-defined 

polysarcosines with predicable molecular weights and narrow PDI. Benzylamine was also 

demonstrated to be a viable initiator for the ROP of R-NTAs. Secondly, we expanded the 

scope of amino acid based NTA monomers which bear N-H proton. It was demonstrated 

that although notable challenges still remain in achieving solution phase polymerization 

of amino acid based NTAs in a controlled manner, polymerization of the corresponding 

NTAs in the solid state can produce well-controlled polypeptides and further demonstrate 

that NTAs are viable alternatives to NCAs in the synthesis of polypeptides and 

polypeptoids.  
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4.3 Results and discussion 

4.3.1 Synthesis and ROP of R-NTAs 

 Sarcosine or N-methyl NTA (Me-NTA) was prepared using published methods182, 

190 and was characterized by 1H NMR analysis, 13C NMR, and electrospray ionization 

mass spectrometry.190 All synthetic steps were carried out in open air, using regular 

solvent, in contrast to the syntheses of R-NCAs, where dry solvent was used in the 

cyclization of the R-NCA.  

The synthesis of XAA using commercially available potassium ethyl 

xanthogenate and chloroacetic acid under basic conditions was relatively straightforward 

and can be carried out at large scales (~ 25 g) with adequate yield (78%). XAA is coupled 

to commercially available sarcosine under basic conditions followed by cyclization with 

phosphorus tribromide to form the NTA heterocycle. Crude NTA was obtained following 

a base wash with saturated sodium bicarbonate and concentration of the organic layer. 

Overall yield was adequate (48%) following the vacuum distillation of the NTA 

monomer as a colorless liquid which solidifies when stored at -30 °C and melts at 

ambient temperature. Scheme 4.1 shows a generic synthetic scheme for the synthesis of 

Me-NTA. 

 

Scheme 4.1. Synthesis of Me-NTA 
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Scheme 4.2. Generic polymerization of Me-NTA 

 

 

Mechanistically, the polymerization of NTAs should parallel those of NCAs 

except that carbonyl sulfide gas is lost versus that of carbon dioxide as shown in Scheme 

4.2. We screened a number of initiators, which have been previously demonstrated to 

participate in the ROP of R-NCAs. An obvious choice is the screening of primary amine 

initiator as it has been demonstrated on numerous occasions that polypeptoids with 

predictable molecular weights can be obtained from primary amine mediated ROP of R-

NCAs via the normal amine mechanism. A number of organobases, namely amidines, 

guanidines, and NHCs, have previously been investigated in the ROP of cyclic esters into 

their corresponding polyesters.166, 173, 275-276, 278, 287, 321 Within this category of initiators, 

NHCs and diazabicycloundecene (DBU) have been studied in the ZROP of R-NCAs to 

obtain polypeptoids with well-defined cyclic architectures, making them viable 

candidates for further investigation in the ROP of R-NTAs.19, 147, 150 1,1,3,3-

tetramethylguanidine (TMG) was also reported to participate as an initiator in the ROP of 

Bu-NCA to obtain adequately controlled PNBG species.272 Organosilyl amine mediated 

ROP of sarcosine-NCA was briefly mentioned by Cheng et al in the mechanistic study of 

organosilyl amine mediated ROP of amino acid based NCAs.104 These initiators are 

summarized in Figure 4.2. 
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Figure 4.2. Chemical structures of the various initiators investigated in the ROP of Me-
NTA. 

 

The general reaction scheme for the ROP of Me-NTA is shown in Scheme 4.2. 

One observation from previous reports on the ROP of Me-NTA is that the choice of 

polymerization solvent (i.e. dioxane, THF, CH3CN) often leads to heterogeneous 

polymerization reactions as monomer conversion increases, which may affect 

polymerization kinetics. It was reported that polysarcosine can remain solubilized in 

polymerization reactions with dichloromethane.84 This was confirmed in our own 

polymerization experiments with Me-NTA and is the solvent of choice for this 

investigation. 

To our surprise, TMG performed the best out of the initiators we investigated in 

the ROP of Me-NTA. Polymerization reactions were observed to reach quantitative 

conversion in 18 h, nearly threefold faster than previous reports (48 h). Additionally, 
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previous reports. Polysarcosine was recovered through precipitation of the reaction 

solution into excess hexanes, and subsequent filtration and drying under vacuum. 
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Molecular weight characterization data from the ROP of Me-NTA using TMG initiators 

are shown in Table 4.1. It can be seen from the molecular weight characterization data 

that molecular weights increase with decreasing monomer to initiator loadings, 

suggesting that the ROP of Me-NTA exhibits living character. The obtained PDIs were 

also relatively narrow (1.04-1.11). The SEC-DRI-MALS traces however exhibited 

significant aggregation, evidenced by the presence of high molecular weight shoulders. 

Direct injection of the reaction solution containing unpurified polysarcosine did not 

remedy the observed high molecular weight shoulders in SEC-DRI-MALS analysis. Ling 

et al previously reported that DPn of up to 150 could be reached in the ROP of Me-NTA 

using benzylamine initiator.192 The DPn at low monomer to initiator loadings 

([M]0:[TMG]0=400:1) obtained using TMG initiator was observed to be more than double 

of the previously reported DPn based on SEC-DRI-MALS analysis (Figure 4.3, Table 

4.1). This demonstrates that high molecular weight polysarcosine can be obtained from 

the ROP of Me-NTA under significantly milder conditions and in less reaction time, 

showing potential for Me-NTA as an alternative monomer to synthesize high molecular 

weight polysarcosines. MALDI TOF MS and 1H NMR analyses indicated the presence of 

a TMG end group (Figure 4.4, 4.5). FTIR analysis of polysarcosine obtained from the 

ROP of Me-NTA initiated by TMG ([M]0:[TMG]0=25:1) also suggests the presence of 

the TMG end group as indicated by the broadened stretching band at 1632 cm-1  possibly 

corresponding to the imine (C=N) and carbonyl (C=O) stretching of the resulting 

polysarcosine (Figure 4.6). 

We wanted to further investigate the possible living character of the 

polymerization. A chain extension experiment using TMG initiator was performed in 

order to demonstrate that there are no termination events and that the polymer chains 

remain active for additional propagation. A polymerization was conducted using Me-
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NTA ([M]0:[TMG]0=100:1) under standard conditions ([M]0=1.0 M, 22 °C, in 

dichloromethane)  to achieve quantitative conversion of monomer. A second batch of 

monomer was subsequently introduced so additional chain propagation could occur 

([M]0:[TMG]0=200:1). 

 
Table 4.1. Molecular weight characterization data for TMG initiated ROP of Me-NTA a 

[M]0:[TMG]0 Mn (theo.) (kgŊmol-1)b Mn (GPC) (kgŊmol-1)c PDI DPn d 

25 1.8 1.9 1.11 27 

50 3.6 4.1 1.07 58 

100 7.1 6.0 1.04 85 

150 10.7 9.1 1.04 128 

250 17.8 12.6 1.05 177 

400 28.4 27.9 1.04 393 

a All polymerizations were performed at [M]0 = 1.0 M, 22 °C in dichloromethane for 18 
h; b based on conversion calculated from FTIR analysis; c absolute molecular weights 
were calculated using previously determined dn/dc = 0.0987 mL/g; d based on Mn 
obtained from SEC-DRI-MALS and the repeat unit of PNMG=71 gŊmol-1. 
 
 

 

Figure 4.3. SEC-DRI-MALS traces from the ROP of Me-NTA ([M]0=1.0 M) in the 
presence of TMG initiator with increasing [M]0:[TMG]0 ratios in CH2Cl2 at ambient 
temperature. 
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Figure 4.4. MALDI TOF MS spectrum of TMG initiated ROP of Me-NTA ([M]0:[TMG]0 
= 25:1, [M]0 = 1.0 M). 

 

 

Figure 4.5. 1H NMR spectrum of polysarcosine obtained from the ROP of Me-NTA with 
TMG initiator ([M]0:[TMG]0=25:1, [M]0=1.0 M in CH2Cl2). The spectrum was collected 
in D2O. 
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Figure 4.6. FTIR spectra of a low molecular weight polysarcosine synthesized via the 
ROP of Me-NTA using TMG initiator ([M]0:[TMG]0=25:1) and TMG. 

 
SEC-MALS-DRI analysis of the polysarcosines obtained before and after the introduction 

of the second batch of Me-NTA indicate an increase in polymer molecular weight that 

agrees well with theoretical values supporting the living character of the ROP of Me-

NTA and that enchainment is possible (Figure 4.7A, Table 4.2). The living character of 

the polymerization was further supported through the linear increase in Mn with respect to 

increasing monomer conversion (Figure 4.7B) 

 

Table 4.2. Chain extension of polysarcosine prepared by TMG-mediated polymerization 
of Me-NTA a 

Entry Mn (theo.) (kg·mol-1) b Mn (GPC) (kg·mol-1) c PDI c DP d 

Pre-extension 7.1 7.2 1.06 101 
Post-extension 14.2 15.5 1.05 218 

a. All polymerizations were conducted at [M]0=1.0 M in dichloromethane at 22 °C and 
were allowed to react for at least 18 h to reach quantitative conversion; b. theoretical 
molecular weights in kg·mol-1 are calculated from [M]0:[TMG]0 ratio and conversion; c. 

determined by the SEC-MALS-DRI method using dn/dc = 0.987(17) mL·g-1;147 d. number 
average degree of polymerization was calculated from the Mn determined by SEC-
MALS-DRI method.  
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Ling et al recently reported using benzylamine initiator in the random 

copolymerization of N-methyl and N-butyl glycine NTA monomers to obtain 

thermoresponsive copolypeptoids whose cloud point temperatures can be tuned by 

varying the sarcosine content in order to vary the hydrophilic character of the 

copolypeptoid and affect the observation of hydrophobic collapse.192 However, DPn of up 

to only 150 were reported (vide supra). Using the prescribed reaction conditions outlined 

in Scheme 1.2, we investigated the extent to which benzylamine (or primary amines in 

general) initiator could be used to synthesize homopolypeptoids. A series of 

polymerizations were set up at [M]0=1.0 M with monomer to initiator loadings ranging 

from 25-400:1. Similar to TMG initiated ROP of Me-NTA, quantitative conversion was 

observed after approximately 18 h, suggesting that the polymerization reactions 

proceeded much faster in dichloromethane under mild conditions. These reactions 

remained homogeneous and precipitation of polysarcosine was not observed, contrary to 

previous reports.182, 191 Molecular weights of the resulting polysarcosines were 

characterized by SEC-DRI-MALS whose results are shown in Figure 4.8 and Table 4.3. 

Table 4.3 suggests that the Mns of polysarcosine could also be controlled through 

varying the initial monomer to benzylamine loadings and that the PDI obtained from 

SEC-DRI-MALS are relatively narrow. SEC-DRI-MALS traces (Figure 4.6) also 

indicated high molecular weight shoulders, which may be due to aggregation of 

polysarcosine. Similar to TMG initiated polymerizations of Me-NTA, direct injection of 

unprecipitated and unpurified polysarcosine into the SEC-DRI-MALS instrument did not 

remedy the observation of high molecular weight aggregate shoulder peaks. The obtained 

Mns begin to deviate when [M]0:[BnNH2]0 > 200:1 suggesting that there are upper limits 

to the polymerization control. MALDI TOF MS analysis was conducted in order to assess  
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Figure 4.7. (A) SEC-MALS-DRI chromatograms from the chain extension experiment 
(first reaction: [M]0:[TMG]0=100:1, [M]0=1.0 M, DCM, 22 °C; chain extension reaction: 
[M]0:[TMG]0 =200:1) (B) Plots of Mn and PDI versus conversion for the ROP of Me-
NTA using TMG initiator ([M]0:[TMG]0=100:1, [M]0=1.0 M, 22°C in DCM). 
 

the end group structures. Kricheldorf had previously reported that in the case of the ROP 

of DL-phenylalanine and DL-leucine NTAs that the reaction pathway exclusively follows 

a C5 attack. MALDI TOF MS analysis of a low molecular weight benzylamine initiated 

species of polysarcosine (Figure 4.9) also suggested that the reaction follows an exclusive 

C5 attack. The major species observed were the benzyl amide terminated species with 

sodium or potassium counterions. The presence of benzyl terminated species was also 

verified by 1H NMR (Figure 4.10). The presence of thiocarbamic acid terminated species 

was also suggested in MALDI TOF MS, possibly lending some support to the 

stabilization of the thiocarbonate through enhanced solvation as previously proposed by 

Kricheldorf. Nonetheless, these results indicate that the ROP of Me-NTA follows the 

expected NAM pathway. 

Cheng et al have previously demonstrated the aspects of organosilicon amine 

mediated ROP of amino acid based NCAs.102-104 It was reported that HMDS was able to 

initiate the ROP of sarcosine-NCA during mechanistic studies but the concept was not 
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Table 4.3. Molecular weight characterization data for benzylamine initiated ROP of Me-
NTA a 

[M]0:[BnNH2]0 Mn (theo.) (kgŊmol-1) b Mn (GPC) (kgŊmol-1) c PDI DP d 

25 1.8 2.5 1.14 35 

50 3.6 3.8 1.04 54 

100 7.1 6.2 1.06 87 

200 14.2 12.7 1.03 179 

400  28.4 19.2 1.03 270 

a All polymerizations were performed at [M]0 = 1.0 M, 22 °C in dichloromethane for 18 
h; b based on conversion calculated from FTIR analysis; c absolute molecular weights 
were calculated using previously determined dn/dc = 0.0987(17) mL/g147; d based on Mn 
obtained from SEC-DRI-MALS and the repeat unit of PNMG=71 gŊmol-1. 
 

further explored. We also investigated whether or not Me-NTA could be polymerized 

using HMDS. Reaction conditions used were similar to those of benzylamine and TMG. 

While quantitative conversions were reached under similar conditions to previous 

reactions, HMDS failed to obtain higher molecular weight species (Table C1) and is 

therefore suggested to be a poor candidate for the ROP of NTAs. This is further 

supported by our use of phenyl trimethylsilyl sulfide (PhS-TMS), which was recently 

reported to participate in faster initiation of the ROP of polypeptide based NCAs than 

HMDS.105 PhS-TMS initiated reactions produced no observable conversion of NTA thus 

suggesting that organosilicon amines are ineffective initiators in the ROP of R-NTAs. 

 A number of organobases which include NHCs, DBU, TBD, and MTBD have all 

been explored as organocatalysts in the ROP of cyclic esters into their corresponding 

polyesters. The former two species were also demonstrated to proceed through ZROP of 

both cyclic ester and R-NCA monomers. Under similar conditions to previous reactions, a 
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Figure 4.8. SEC-DRI-MALS traces from the ROP of Me-NTA ([M]0=1.0 M) in the 
presence of benzylamine initiator with increasing [M]0:[BnNH2]0 ratios in CH2Cl2 at 
ambient temperature for 18 h. 

 
 

 

Figure 4.9. MALDI TOF MS spectrum of benzylamine initiated ROP of Me-NTA 
([M]0:[BnNH2]0 = 25:1, [M]0 = 1.0 M). 
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Figure 4.10. 1H NMR spectrum of polysarcosine obtained from the ROP of Me-NTA with 
benzylamine initiator ([M]0:[BnNH2]0=25:1, [M]0=1.0 M in CH2Cl2). The spectrum was 
collected in D2O. 

 
series of polymerizations using two NHCs of varying steric hindrance, DBU, TBD and 

MTBD initiators. Molecular weight characterization of the resulting polysarcosine 

species are tabulated in Table C2. An exemplary spectrum of NHC terminated 

polysarcosine is shown in Figure C1. A small singlet at 9.64 ppm can be observed in 

Figure C1 suggesting that the NHC initiator exists partially in the protonated state.150 In 

turn, this lowers the effective initiator concentration, which may have contributed to the 

slightly higher deviations in obtained Mn by SEC-DRI-MALS. Although end group 

analysis suggests the presence of the desired end groups, polymerization via amidine, and 

NHC is not as robust as those reactions obtained from those of benzylamine and TMG. 

The obtained Mns deviate even at low monomer to initiator loadings suggesting the 

relatively poor polymerization behavior of these organobases as initiators. For 
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polymerizations where [M]0:[I]0 < 100, it was observed that the more sterically hindered 

NHC and MTBD displayed adequate molecular weight control. This may be due to the 

reaction center being more electron rich due to contributions from the additional aliphatic 

groups. 

 NTAs are noted for their stability and longer shelf life than that of NCAs, 

especially under inert atmospheres (e.g. argon).182 A sample of Me-NTA was left exposed 

to the ambient atmosphere for one month. 1H NMR spectra were taken at t0 (time of 

synthesis and purification), 2 weeks, and 4 weeks as shown in Figure 4.11. Over the 

course of one month, the monomer did not appear to degrade in air and merely absorbed 

ambient moisture from the atmosphere as indicated by the formation of a small singlet at 

approximately 1.6 ppm. An aliquot was removed and polymerized in dichloromethane at 

[M]0= 1.0 M, and ambient temperature over a course of 18 h using TMG as the initiator 

with [M]0:[I]0 = 250:1. The reactivity of the slightly aged monomer did not appear to be 

affected as the reaction displayed quantitative conversion by FTIR analysis and the 

absolute molecular weight obtained by SEC-DRI-MALS was comparable to the 

theoretical value (Mn (SEC-DRI-MALS) = 17.9 kgŊmol-1, Mn (theo.) = 17.8 kgŊmol-1, PDI 

= 1.04, DP = 252). This shows that Me-NTA has adequate shelf life even if left exposed 

to the ambient environment for one month and its polymerization activity is unaffected. 

Inspired by the reactivity of Me-NTA towards a number of initiators, we desired 

to further investigate their application to the ROP of other R-NTAs. The synthesis of Bu-

NTA was reported by Ling et al191-192 and used as the hydrophobic component in the 

synthesis of thermoresponsive polypeptoids. Although the synthesis of Bu-NTA requires 

the synthesis of the corresponding N-butyl glycine precursor, the procedure to access Bu-

NTA parallels that of Me-NTA. Purification of Bu-NTA was achieved via column 

chromatography. Bu-NTA also solidifies when stored at -30 °C, similar to its Bu-NCA. 
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Figure 4.11. 1H NMR spectra taken in CDCl3 of Me-NTA at t0, 2 weeks, and 4 weeks 
exposed to the ambient air. “t0” refers to the time at which the synthesis and purification 
of the particular batch of monomer used in the study was complete. 

 

Scheme 4.3. Polymerization of Bu-NTA 

 

 

Polymerization of Bu-NTA (Scheme 4.3) was carried out at [M]0= 1.0 M, in THF 

at 50 °C using a variety of initiators. Surprisingly, the reactivity of Bu-NTA is much less 

than that of Me-NTA; unlike the 18 h required for the polymerizations of Me-NTA to 

reach quantitative conversion, much higher reaction times (48 h) are required in the ROP 

of Bu-NTA to reach quantitative conversion. Changing the polymerization solvent to 

dichloromethane did not speed up the reaction as observed in the ROP of Me-NTA. Only 
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benzylamine and TMG initiators were demonstrated to be able to reach quantitative 

conversion. Table 4.4 shows the molecular weight characterization data for the obtained 

PNBGs from the ROP of Bu-NTA. Although the obtained molecular weights somewhat 

agree with theoretical values and the PDI are adequate, synthesis of PNBGs via the ROP 

of Bu-NTA is inefficient compared with those from the ROP of Bu-NCA. One drawback 

is that zero monomer conversion is observed when [M]0:[I]0 > 100:1, hindering access to 

high molecular weight PNBGs. Secondly, the ROP of the NTA is much slower than that 

of the NCA; PNBGs of comparable Mn and DPn could be synthesized within 24 h via the 

ROP of Bu-NCA. 

 

Table 4.4. Molecular weight characterization data for the ROP of Bu-NTA using 
benzylamine and TMG initiators a 

Initiator [M]0:[I]0 Mn (theo)  
(kgŊmol-1) b  

Mn (SEC)  
(kgŊmol-1) c 

PDI DP 

 

25:1 2.8 2.3 1.05 20 
50:1 5.6 4.8 1.08 42 
100:1 11.3 14.5 1.05 128 

 

25:1 2.8 2.4 1.15 21 
50:1 5.6 6.2 1.12 55 
100:1 11.3 16.7 1.21 148 

a All polymerizations were carried out at [M]0= 1.0 M in THF, 50 °C for 48 h; b 
calculated from conversion determined by FTIR analysis; c absolute Mns were determined 
using the dn/dc value of PNBG = 0.0815(12) mL/g.147 
 
 

There are a number of possible explanations for the reduced reactivity of Bu-

NTA. Bu-NTA is sterically bulkier than Me-NTA thus it is possible that the steric bulk of 

the butyl aliphatic chain blocks nucleophilic attack at the C5 position. However, this is 

not observed in the ROP of Bu-NCA as polymerizations have been observed to occur 

relatively rapidly upon the addition of initiator. It is possible that Bu-NTA is more stable 

than Me-NTA due to the presence of additional aliphatic chains making the NTA more 

electron rich, thus improving the delocalization of the sulfur atom electrons, which 
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contribute to the stability and reduced polymerization activity in NTAs. Benzylamine and 

TMG initiators were possibly not nucleophilic enough to reliably initiate the ROP of Bu-

NTA. Benzyl alkoxide initiator was used in order to investigate whether a stronger 

nucleophile would be able to improve upon the polymerization activity of Bu-NTA. SEC-

MALS-DRI results are summarized in Table 4.5 and traces are shown in Figure 4.12. It 

can be observed from the molecular weight characterization data that well-controlled 

PNBGs can be obtained via the ROP of Bu-NTA up until [M]0:[I]0 > 200:1, a small 

improvement over the activity of benzylamine and TMG initiators. End group analysis 

via 1H NMR (exemplary spectrum shown in Figure 4.13) supports the absolute Mn 

obtained via SEC-DRI-MALS (Figure 4.12). Although the same PNBGs can be obtained 

through the ROP of Bu-NTA, the reaction is overall inefficient when compared with that 

of the ROP of Bu-NCA. This is due to the low yield of monomer synthesis and markedly 

reduced reactivity of Bu-NTA versus those of Bu-NCA and Me-NTA. Thus, the ROP of 

Bu-NTA is an inefficient pathway to obtain well-defined high molecular weight PNBGs. 

 

Table 4.5. Molecular weight characterization data for a series of PNBGs obtained via 
benzyl alkoxide initiator a 

[M]0:[I]0 Mn (theo.)  
(kgŊmol-1) b 

Mn (GPC)  
(kgŊmol-1) c 

Mn (NMR)  
(kgŊmol-1) 

PDI DP 

25:1 2.8 3.5 3.4 1.03 31 
50:1 5.6 5.4 6.2 1.13 48 
100:1 11.3 10.4 10.9 1.07 92 
200:1 22.6 19.2 - d 1.24 170 

a All polymerizations were carried out at [M]0= 1.0 M in THF, 50 °C for 48 h; b 
calculated from conversion determined by FTIR analysis; c absolute Mns were determined 
using the dn/dc value of PNBG = 0.0815(12) mL/g147; d end groups could not be 
distinguished in 1H NMR. 
 

4.3.2 Amino acid based NTA monomers 

To date, although a number of amino acid based NTAs have been synthesized185-

186, 190, 319, polymerization activity via the ROP of amino acid based NTAs has been 
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demonstrated to be relatively poor compared to the ROP of R-NTAs.190 We set out to 

synthesize a model monomer in order to demonstrate that well-defined polypeptides can 

be obtained from the ROP of their corresponding NTA monomers. 

 

 

Figure 4.12. SEC-MALS-DRI traces from the ROP of Bu-NTA with BnONa initiator 
([M]0=1.0 M) in 50 °C THF. 

 

 

Figure 4.13. 1H NMR spectrum of PNBG obtained from the ROP of Bu-NTA with benzyl 
alkoxide ([M]0:[BnONa]0=50:1, [M]0=0.5 M in THF, 50 °C). The spectrum was collected 
in CDCl3. 
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4.3.2.1 ROP of amino acid based NTA monomers in solution state 

γ-Benzyl-L-glutamate N-thiocarboxyanhydrosulfide. One of the most extensively studied 

polypeptides is poly(γ-benzyl-L-glutamate) (PBLG). PBLG has a number of well-defined 

characteristics such as its ability to self-assemble into α-helical secondary structures and a 

well-studied persistence chain length.24 PBLG is also soluble in many organic solvents 

and has been shown to not aggregate in solvents such as dioxane.24 PBLG can be 

synthesized from the ROP of its respective NCA monomer, synthesized via cyclization of 

the parent amino acid derivative with triphosgene51, among other cyclizing agents. 

However, the synthesis of the NTA analogue of BLG NCA has yet to be reported and 

would make an interesting model polypeptide based NTA monomer to investigate for 

polymerization activity. 

BLG-NTA synthesis. Synthesis of the monomer differs from that of the polypeptoid 

based NTAs. BLG contains a benzyl ester side chain, which is subject to hydrolysis at 

higher pH (>10). To avoid hydrolysis, milder basic conditions were used where the 

starting materials are reacted in the presence of saturated sodium bicarbonate, a weaker, 

non-nucleophilic base. Following the coupling reaction between XAA and BLG, the 

resulting intermediate is cyclized with phosphorus tribromide similar to the synthesis of 

Me-NTA (Scheme 4.4). Crude BLG NTA can be obtained after a base wash (saturate 

sodium bicarbonate) and concentration of the organic layer. BLG NTA is purified via 

column chromatography using 3:2 hexanes:ethyl acetate and was obtained in adequate 

yields (40-50%). The chemical structure of the NTA was verified via X-ray 

crystallography (Figure 4.14) using crystals grown via the slow evaporation of 

chloroform. X-ray crystallography revealed that racemization occurred during monomer 
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Scheme 4.4. Synthesis of BLG NTA 

 

 

synthesis, consistent with previous syntheses of α-amino acid NTAs.186 While this does 

not appear to affect future polymerizations using such monomers, it does affect purity of 

the monomer, not being able produce enatiomerically pure species. Possible solutions to 

remedy or reduce the amount of racemization could be to reduce the reaction time and 

temperature of cyclization reactions as was previously reported by Hirschmann.186 

Additionally, the steric bulk of the intermediate following the coupling reaction between 

XAA and benzyl-L-glutamate due to the ethyl group from XAA has been shown to 

potentially contribute to racemization.187 This could be potentially remedied by using a 

less sterically hindered methyl xanthate for the intermediate coupling, which may 

improve the rate of dealkylation and prevention of enolization of the proposed azlactone 

intermediate during cyclization (Scheme 4.5). This in turn would prevent or reduce the 

amount of racemization observed in the synthesis of amino acid based NTAs. 

In contrast to the ROP of R-NTAs, polymerization activity of BLG-NTA was 

poor under solution phase conditions as polymerizations either exhibited poor molecular 

weight control based on the significant deviations of the obtained Mns from theory, or that 

the polymerizations revealed low conversions, even after a number of days of reaction 
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Scheme 4.5. Proposed dealkylation and racemization mechanisms of amino acid based 
NTAs 

 

 

time. For example, zero conversion was observed in polymerization reactions of BLG 

NTA using benzylamine initiator in contrast to the polymerization reactions of Me-NTA 

previously discussed. The addition of triazabicyclodecene organocatalyst (TBD) (5 mol. 

% with respect to monomer) in conjunction with benzylamine initiator allows the reaction 

to proceed to quantitative conversion as observed by FTIR within 48 h. The molecular 

weight characterization however shows significant deviation with adequate 

polydispersities (Table 4.6).  

The rate of polymerization of BLG-NTA was also observed to be much slower 

than that of Me-NTA polymerization. It was found that polymerizations appeared to be 

concentration dependent. This was demonstrated in a series of polymerizations carried 

out in dioxane using hexylamine initiator where [M]0:[I]0= 80:1 and the initial monomer 

concentrations varied  from 0.5 to 2.0 M. Conversions were tracked by 1H NMR over the 

course of 48 h (Figure 4.15) and indicated that the rate of the ROP of BLG-NTA is 
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Figure 4.14. Crystal structure of BLG NTA as obtained via X-ray crystallography. 

 

Table 4.6. Molecular weight characterization data for benzylamine/TBD initiated ROP of 
BLG NTA a 

[M]0:[BnNH2]0 Mn (theo.) (kgŊmol-1) b Mn (SEC) (kgŊmol-1) c PDI DP 
25 5.5 13.5 1.09 61 

50 11.0 16.9 1.17 77 

100 21.9 26.2 1.19 120 

a All polymerizations were conducted at ambient temperature in DCM with [M]0=0.5 M; b 
calculated based on conversion determined by 1H NMR; c absolute molecular weight was 
determined using dn/dc=0.1292 mLŊg-1.97 
  

concentration dependent. The resulting PBLGs were characterized by SEC-MALS-DRI 

in order to assess the polymerization control afforded by the slow, solution state ROP 

(Figure 4.16, Table 4.7). The obtained molecular weights from concentration dependent 

studies in solution state were comparable to determined theoretical values based on 

conversion. 
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DL-Methionine NTA. Although PBLG is a well-studied polypeptide, the polymer cannot 

be further modified except under hydrolytic conditions where there is ester exchange of 

the benzyl ester side chain with the desired moieties.322-325 This process can be time 

consuming and does not guarantee that quantitative functionalization of the side chains as 

there could exist the possibility for disfavored equilibria for the desired end product. In 

general, orthogonal “click” chemistry reactions such as CuAAC, and thiol-ene coupling 

have arisen in order to accomplish efficient post-polymerization modification. One 

particular post-polymerization modification that has seen less attention than either 

CuAAC or thiol-ene coupling is the alkylation of a thioether. Deming reported the 

synthesis and polymerization of L-methionine NCA in order to access poly(L-

methionine) and have demonstrated a wide range of compounds ranging from simple 

alkyl chains to carbohydrates that can be grafted onto the side chains via the alkylation of 

the thioether.132 However, this system involves the use of NCA monomers and possesses 

the same drawbacks as all other NCA monomers. We sought out to synthesize an NTA 

monomer based on methionine that possesses the simplified synthesis, and ambient 

stability of previous NTAs but also possesses the opportunity for post-polymerization 

functionalization to demonstrate the versatility of the polypeptide platform. 

Synthesis of DL-methionine NTA was analogous to that of Me and Bu-NTAs as 

there is no possibility for side chain hydrolysis as encountered in BLG-NTA synthesis 

(Scheme 4.6). Like previous NTA monomers, DL-methionine NTA was synthesized in 

open air, using regular solvent, and adequate yields (~66%) were obtained following 

simple recrystallization from dichloromethane and hexanes as a colorless solid. 

 Unlike the ROP of BLG-NTA, the solution state polymerization of DL-

methionine showed promise as poly(DL-methionine)s ranging from 2.9-13.3 kg⋅mol-1 

were able to be obtained using a variety of initiators. The ROP of DL-methionine NTA 
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Figure 4.15. Plot of conversion percent versus reaction time in the solution state ROP of 
BLG-NTA at various [M]0. All polymerizations were carried out at [M]0:[I]0=80:1 at 50 
°C in dioxane using hexylamine initiator unless otherwise noted. Conversions were 
analyzed 1H NMR. 

 
 

 
Figure 4.16. SEC-DRI-MALS traces of the ROP of BLG-NTA at varying monomer 
concentrations after 48 h ([M]0:[I]0=80:1 at 50 °C in dioxane). Monomer conversion 
percentages at 48 h are shown in Table 4.7. 

 
(Scheme 4.7) did not proceed as a homogeneous solution. Although it was observed that 

the monomer could be dissolved in THF (polymerization solvent), the reaction solution 
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was observed to be heterogeneous following the addition of initiator (benzylamine or 

TMG). A control experiment containing monomer but no initiator in THF remained 

homogeneous and demonstrated that the observed precipitate in the heterogeneous 

 
 

Table 4.7. Molecular weight characterization of PBLG polymerized at varying [M]0 

[M]0 Mn (theo.) 
(kg⋅mol-1) a 

Mn (SEC) 
(kg⋅mol-1) b 

PDI DP Conv. % at 
48 h c 

0.5 M (rt) 5.3 4.1 1.09 19 30 

0.5 M 6.1 6.7 1.08 31 35 

1.0 M 10.7 12.8 1.09 58 61 

2.0 M 13.1 13.5 1.15 62 75 

a Theoretical molecular weight was calculated based on conversion at 48 h as determined 
by 1H NMR; b absolute molecular weights were determined using dn/dc=0.1292 mL/g97; c 
reproduced from Figure 4.15. 
 
 

Scheme 4.6. Synthesis of DL-methionine NTA 

 

 

solutions was that of an oligo/polymeric product and not precipitated monomer. The 

polypeptide is insoluble in common organic solvents but soluble in trifluoroacetic acid 

thus allowing for determination of molecular weight via end group analysis by 1H NMR 

in deuterated trifluoroacetic acid (d-TFA) (Table 4.8). Monomer conversion was easily 

analyzed by 1H NMR in deuterated trifluoroacetic acid as the peaks corresponding to the 

chiral center proton and methylene protons adjacent to the thioester were observed to shift 

downfield during the course of the polymerization. Polymerization activity was 
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investigated with either benzylamine or TMG initiator. At lower [M]0:[I]0 (< 50:1), 

benzylamine initiated polymerizations reached quantitative conversion within 24 h. 

However, at higher [M]0:[I]0 (100:1, 200:1), the reactions reached approximately 66, 35% 

conversion respectively, even after allowing the reactions to proceed for 72 h. Based on 

theoretical Mn calculations from conversion, the 100, 200:1 reactions using benzylamine 

initiator would have terminated at similar molecular weight and DPn. 1H NMR end group 

analysis of the resulting polypeptides revealed that the molecular weights were similar in 

those respective systems. In contrast, TMG initiated ROPs of DL-methionine NTA were 

able to reach quantitative conversion in reactions where [M]0:[I]0 =100:1 suggesting a 

more efficient polymerization using TMG initiator. Poly(DL-methionine) is insoluble in 

most common solvents and SEC-DRI-MALS analysis cannot be run on the resulting 

polymers from these ROPs to determine absolute Mn or PDI. Using 1H NMR end group 

analysis, it was determined that Mns ranging from 2.9-7.9 kg⋅mol-1 and from 3.8 to 13.3 

kg⋅mol-1 were able to be obtained by the ROP of DL-methionine NTA using benzylamine 

and TMG initiators respectively. Poly(DL-methionine) was obtained through stirring the 

heterogeneous reaction mixture with excess diethyl ether and collected via filtration, and 

drying under vacuum. The Mns of the obtained polypeptides were characterized via 1H 

NMR end group analysis in deuterated trifluoroacetic acid (Figure 4.17). 

 

Scheme 4.7. Polymerization of DL-methionine NTA 

 

 

 

HN S
S O

O

initiator

THF
50 °C
24 h

H
N

O

S

n



 168 

The versatility and flexibility of functionalizing the thioether side chains can be 

demonstrated through an alkylation of the thioether as was previously demonstrated by 

Kramer et al.132 A simple methylation was carried out using poly(DL-methionine) and 

iodomethane in aqueous media (Scheme 4.8). After stirring for 48 h, the initial 

suspension of poly(DL-methionine) in water was observed to have become homogeneous 

suggesting that the iodomethane reacted with poly(DL-methionine). The alkylated 

polypeptide was purified via dialysis against NaCl (aq) (0.1 M) to perform anion 

exchange, and then against water to remove unreacted iodomethane. The final product 

was obtained from the lyophilization of the dialysis bag contents. Evidence for the 

successful methylation of poly(DL-methionine) was observed in the resulting 1H NMR 

analysis in D2O (Figure 4.18) due to the change in chemical shift and relative peak 

intensity of the S-methyl thioether protons which integrated to six protons, relative to 

other protons of poly(DL-methionine). Additionally, the DPn of the resulting polypeptide 

from 1H NMR end group analysis was comparable with respect to the parent polypeptide. 

This simple experiment only serves to demonstrate the possible post-polymerization 

functionalization of poly(DL-methionine) and serves to show that functional NTA 

monomers can be synthesized and subsequently polymerized in order to obtain the same 

polypeptides without the inherent disadvantages of NCA monomers. SEC-MALS-DRI 

analysis was attempted on the final methylated product but the polymer was insoluble in 

DMF/LiBr. 

4.3.2.2 Solid state ROP of amino acid based NTAs 
 

Solid phase polymerization had previously been explored in the ROP of amino 

acid based NCAs noting that the overall molecular arrangement of the monomer 

molecules in a crystal have an effect on monomer reactivity.326 We decided to further 

investigate the possibility of solid-state polymerization of BLG NTA because high local 
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Table 4.8. Molecular weight characterization data for the ROP of DL-methionine NTA 
initiated by BnNH2 or TMG a 

Initiator [M]0:[I]0 Mn (theo.) 
(kg⋅mol-1) b 

Mn (NMR) 
(kg⋅mol-1) c 

DP Conv. (%) 
d 

 

Control - - - 0 

25 3.3 2.9 22 100 

50 6.6 6.0 46 100 

100 8.7 7.9 60 66 

 

25 3.3 3.8 29 100 

50 6.6 5.8 44 100 

100 13.2 13.3 101 100 

a All polymerizations were conducted at [M]0=0.5 M, 50 °C, in THF for 24 h; b calculated 
based on conversion determined by 1H NMR analysis and the repeat unit of poly(DL-
methionine) (131 g⋅mol-1); c determined via end group analysis via 1H NMR; d determined 
by 1H NMR analysis of a crude reaction aliquot in d-TFA. 
 
concentrations of the monomer molecules are afforded in the solid state. Solid-state 

polymerizations were carried out in hexanes, a poor solvent for BLG NTA, with 

hexylamine initiator ([M]0=0.5 M, 50 °C) (Scheme 4.9). Interestingly, polymerization 

control improved significantly in solid-state polymerizations with controllable molecular 

weights ranging from 6.4-22.0 kg⋅mol-1 using hexylamine initiator and from 8.5-30.8 

kg⋅mol-1 using TMG initiator (up to approximately DPn =140, Table 4.9, 4.10). The 

obtained PDI from SEC-MALS-DRI analysis (Figure 4.19) were also adequate (1.24-1.29 

using benzylamine initiator, 1.20-1.32 using TMG initiator) suggesting characteristics of 

a living polymerization in the solid state. 

One aspect that has been previously discussed in preceding chapters is the living 

nature of the NCA ring-opening polymerization, which allows access to peptidomimetic 

NH2

N N
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Figure 4.17. 1H NMR spectrum of benzylamine initiated poly(DL-methionine) 
([M]0:[BnNH2]0=25:1, [M]0=0.5 M). The spectrum was collected in deuterated 
trifluoroacetic acid. 

 
Scheme 4.8. Methylation of poly(DL-methionine) with iodomethane 

 

 

polymers with predictable molecular weights and narrow PDI. To investigate the 

potential living nature of the solid-state polymerization of BLG NTA, a series of 

polymerizations ([M]0:[I]0=80:1, [M]0=0.5 M, hexanes, 50 °C) were carried out using 

hexylamine initiator with the reactions being quenched at various conversion percentages 

(Figure 4.19) as determined by 1H NMR. Molecular weights obtained from SEC-MALS-

DRI analysis (Figure 4.20) were found to increase linearly based on conversion percent 

suggesting the living nature of the solid-state polymerization of BLG NTA. 
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Table 4.9. Molecular weight characterization data for the solid state ROP of BLG-NTA 
using hexylamine initiator a 

[M]0:[I]0 Mn (theo.) (kgŊmol-1) b Mn (SEC) (kgŊmol-1) c PDI DP 
25 5.5 6.4 1.29 29 

50 11.0 10.1 1.24 46 

100 21.9 18.6 1.27 85 

200 43.8 22.0 1.29 100 

400 87.6 20.4 1.25 93 

a All polymerizations were carried out at [M]0= 0.5 M in hexanes at 50 °C for 24 h; b  

theoretical molecular weights were based on monomer conversion determined by 1H 
NMR; c absolute molecular weights were determined using dn/dc=0.1292 mL/g. 
 

It was also demonstrated that solid state polymerization methods using 

hexylamine initiator could also be extended to that of ε-carbobenzyloxy-L-lysine NTA 

(Scheme 4.10) (Z-Lys NTA), which was unable to be polymerized to high conversion 

levels using conventional solution state ROP methods. The polymerization of Z-Lys NCA 

is a common route towards high molecular weight poly(lysine)s. The protection of the ε-

NH2 of lysine is necessary as an exposed labile primary amine side chain could interfere 

with both the synthesis and polymerization of NCAs. Following polymerization, the 

carboxybenzyl protecting group can be removed either through acidolysis or 

hydrogenolysis, exposing the labile primary amine side chain.327 Polymerization 

conversion was analyzed by removal of the solvent, dissolution of the remaining solid in 

a good solvent, and analyzed by 1H NMR. Polymerizations of Z-Lys NTA via solid state 

revealed quantitative conversion was reached in approximately 45 h when [M]0:[I]0 

<100:1. From SEC-MALS-DRI, the obtained absolute molecular weights from SEC-DRI-

MALS analysis ranged from 8.5-50.0 kg⋅mol-1 and are comparable to those of theory up 
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Scheme 4.9. Solid-state polymerization of BLG NTA using hexylamine initiator  

 

 

 

Figure 4.18. 1H NMR spectrum of poly(S,S-dimethyl-DL-methionine) obtained from the 
methylation of poly(DL-methionine) ([M]0:[I]0=25:1, [M]0=0.5 M) with iodomethane 
followed by dialysis and lyophilization. The spectrum was collected in D2O. 

 

until [M]0:[I]0 > 200:1 when the Mn is observed to deviate and PDI broadens (up to 1.60) 

(Table 4.11, Figure C2). This demonstrates both a slight expansion of the applicability of 

solid state polymerization methods of α-amino acid NTAs and represents an alternative 

route to access high molecular weight poly(Z-lysine)s. 
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Table 4.10. Molecular weight characterization from the solid state ROP of BLG NTA 
using TMG initiator a 

[M]0:[TMG]0 Mn (theo.) (kgŊmol-1) b Mn (SEC) (kgŊmol-1) c PDI DP 
25 5.5 8.5 1.20 39 

50 11.0 11.5 1.32 52 

100 21.9 21.8 1.30 99 

200 43.8 30.8 1.27 140 

400 87.6 30.4 1.27 139 

a All polymerizations were conducted at 50 °C in hexanes at [M]0=0.5 M; b calculated 
based on conversion determined by 1H NMR; c absolute molecular weight was 
determined using dn/dc=0.1292 mLŊg-1.97 
 
 

 

Figure 4.19. (A) SEC-DRI-MALS traces from the solid state polymerization of BLG-
NTA using hexylamine initiator. (B) SEC-DRI-MALS traces from the solid state 
polymerization of BLG-NTA using TMG initiator. 

 
4.4 Conclusions 

 In this chapter, we have demonstrated that contrary to previous reports, the 

synthesis of well-defined high molecular weight polypeptides and polypeptoids can be 

accomplished via the ROP of their corresponding NTA monomers. The synthesis of both 

amino acid and R-NTAs is greatly simplified from their NCA counterparts as the 
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Figure 4.20. Plots of molecular weight (Mn) and PDI versus conversion for the solid-state 
polymerization ([M]0:[I]0=80:1, [M]0=0.5 M, hexanes, 50 °C, R2=0.99) of BLG NTA 
using hexylamine initiator. Absolute Mns were determined using SEC-DRI-MALS with 
dn/dc=0.1292 mL g-1.97 

 

Table 4.11. Molecular weight characterization data for a series of poly(Z-lysine)s 
obtained from the solid state ROP of Z-lysine NTA a 

[M]0:[I]0 Mn (theo.) (kg⋅mol-1) b Mn (GPC) (kg⋅mol-1) c PDI DP Conv. % (48 h) d 

25:1 6.6 8.5 1.16 32 100 
50:1 13.1 12.9 1.31 49 100 
100:1 26.2 28.6 1.25 109 100 
200:1 31.4 44.4 1.60 169 60 
400:1 34.6 50.0 1.42 191 33 
a All polymerizations were carried out at [M]0= 0.2 M in heptane for 48 h; b calculated 
from conversion obtained from 1H NMR and the repeat unit of poly(Z-lysine) = 262 
g⋅mol-1; c absolute molecular weights were determined using previously measured 
dn/dc=0.123 mL/g; d monomer conversion was analyzed by 1H NMR.97 
 

reactions can be carried out in open air and purification was accomplished under similar 

mild conditions. Me-NTA was demonstrated to be able to be polymerized using a small 

library of commercially available initiators. One initiator stood out, TMG, demonstrating 

promise in being able to achieve well-defined high molecular weight polysarcosines. The 

living character of TMG initiated polymerization was also demonstrated through 

enchainment. Although the ROP of Bu-NTA was also demonstrated, the monomer was  
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Scheme 4.10. ROP of Z-lysine NTA using hexylamine initiator via solid state methods 

 

 

significantly less reactive than Me-NTA. We have reported the synthesis 

andcharacterization of a number of new amino acid based NTA monomers. It was found 

that the ROP of amino acid based NTA monomers proceeded poorly in solution state, 

obtaining polymer species whose molecular weights deviated significantly from theory or 

observing no monomer conversion at all. An improvement in polymerization activity was 

observed in the solid state polymerization of amino acid based NTAs as a series of well-

controlled polypeptides could be synthesized up to approximately DPn=140. However 

there seems to be an upper limit to the molecular weights obtainable by solid state 

methods. This work only represented a foray into the development of new monomers and 

polymerization systems to obtain the same polypeptides and polypeptoids previously 

obtained from the ROP of NCAs. 

4.5 Experimental 

4.5.1 Instrumentation and general considerations 

All chemicals were used as received unless otherwise noted. Benzylamine, 

1,1,3,3-tetramethylguanidine (TMG), hexamethyldisilazane (HMDS), N-heterocyclic 

carbenes (NHC), diazabicycloundecene (DBU), triazabicyclodecene (TBD), and N-

methyl triazabicyclodecene (MTBD) initiators were also used as received. 1H NMR 

spectra were recorded on a Bruker AV-400 and AVIII-400. Chemical shifts were 
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determined in reference to the protio impurities of the deuterated solvents (CDCl3). Size 

exclusion chromatography (SEC) analysis was carried out on an Agilent 1200 system 

(Agilent 1200 series degasser, isocratic pump, auto sampler and column heater) equipped 

with three Phenomenex 5 µm, 300 Å×7.8 mm columns [100 Å, 1000 Å, and Linear (2)], 

Wyatt DAWN EOS multiangle light scattering (MALS) detector (GaAs 30 mW laser at 

λ) 690 nm], and Wyatt Optilab rEX differential refractive index (DRI) detector with a 690 

nm light source. DMF containing 0.1 M LiBr was used as the eluent at a flow rate of 0.5 

mL·min-1. The column and the MALS and DRI detector temperatures were all maintained 

at ambient temperature (21 °C). Data from SEC-MALS-DRI was processed using Wyatt 

Astra v 6.0 software. 

4.5.2 N-methyl N-thiocarboxyanhydrosulfide synthesis 

N-methyl-NTA (Me-NTA) was synthesized according to previously reported literature.182, 

190  

Synthesis of S-ethoxythiocarbonyl mercaptoacetic acid (XAA). A typical synthesis of 

XAA is as follows. A round bottom flask was charged with potassium ethyl xanogenate 

(23.27 g, 145 mmol) and DI water (200 mL). A separate flask was charged with 

chloroacetic acid (13.72 g, 145 mmol), sodium hydroxide (5.80 g, 145 mmol) and 

distilled water (250 mL). The latter solution was subsequently added to the round bottom 

flask containing xanthate and stirred at ambient temperature for 24 h. The homogenous 

yellow solution was acidified with concentrated HCl, decanted into a separatory funnel, 

and extracted with chloroform (2 × 200 mL). The combined organic layers were dried 

over MgSO4, filtered, and concentrated to yield crude XAA as a yellow liquid. 

Purification via trituration in excess hexanes yielded XAA as a yellow crystals following 

filtration and drying under vacuum (20.28 g, 78%). 
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Synthesis of Me-NTA. A round bottom flask was charged with XAA (20.75 g, 115 

mmol), sarcosine (10.26 g, 115 mmol), sodium hydroxide (9.21 g, 230 mmol), and DI 

water (200 mL). The contents were stirred at ambient temperature for 3 days. The 

solution was acidified with concentrated HCl and extracted with chloroform (200 mL). 

The organic layer was dried over MgSO4, filtered, and concentrated via rotary 

evaporation to give a crystalline intermediate. The intermediate was weighed (16.05 g, 

90.6 mmol) and reconstituted in chloroform (200 mL). Phosphorus tribromide (4.3 mL, 

45.3 mmol) was then added to the solution. The solution was allowed to stir at ambient 

temperature for 1 h. Saturated sodium bicarbonate (200 mL) was added to the solution 

and stirred vigorously. Violent bubbling was observed and when the bubbling subsided, 

the biphasic solution was decanted into a separatory funnel and further extracted via 

shaking and venting. The aqueous layer was discarded and the organic layer was further 

washed with distilled water (200 mL), and brine (200 mL), dried over MgSO4, filtered, 

and concentrated to yield crude NTA as a pale yellow liquid. Pure NTA was obtained via 

vacuum distillation at 120 °C, 100 mTorr as a clear liquid (5.73 g, 48 %). 

4.5.3 N-butyl N-thiocarboxyanhydrosulfide synthesis 

Synthesis of N-butyl glycine hydrochloride. The synthetic procedure of N-butyl glycine 

hydrochloride was previously discussed in Chapter III. 

Synthesis of N-butyl N-thiocarboxyanhydrosulfide. A round bottom flask was charged 

with N-butyl glycine hydrochloride (13.90 g, 82.9 mmol), XAA (14.95 g, 82.9 mmol), 

NaOH (9.95 g, 249 mmol), and DI water (300 mL). The resulting homogeneous yellow 

solution was stirred for 3 days at ambient temperature. The solution was acidified with 

concentrated HCl and the aqueous solution extracted with ethyl acetate (2 × 150 mL). The 

combined organic layers were dried over MgSO4, filtered, and concentrated to yield a 

yellow liquid, which was subsequently dissolved in chloroform (200 mL). Phosphorus 
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Figure 4.21. 1H NMR spectrum of Me-NTA in CDCl3. 

 

tribromide (3.96 mL, 41.5 mmol) was added via syringe all at once and the reaction was 

stirred at ambient temperature for 1 h. The reaction solution was subsequently washed 

with saturated sodium bicarbonate (200 mL), DI water (200 mL), and brine (200 mL). 

The chloroform layer was dried over MgSO4, filtered, and concentrated to yield crude 

Bu-NTA as a yellow liquid. Bu-NTA was purified via column chromatography using a 

1:7 ethyl acetate:petroleum ether as the mobile phase (Rf=0.24). Bu-NTA solidifies when 

stored at -30 °C, but liquefies at ambient temperature, similar to Bu-NCA (2.20 g, 15 %). 

ESI-MS: calc’d m/z: 174.0583, experimental m/z: 174.0582 (M+H+)  

4.5.4 General polymerization procedure of Me-NTA 

All polymerizations were conducted in either dichloromethane with initial monomer 

concentration [M]0=1.0 M at ambient temperature for 18 h to reach high conversion. 

Polymers were precipitated into excess hexanes and dried at room temperature under 
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Figure 4.22. 13C23 NMR spectrum of Me-NTA in CDCl3. 

 

vacuum to yield the respective polymers as white solids. A representative polymerization 

procedure is as follows. In the glovebox, Me-NTA monomer (64 mg, 0.489 mmol, [M]0 = 

1.0 M) was weighed in an oven-dried vial and dissolved in anhydrous dichloromethane 

(440 µL). A known volume of a TMG/DCM stock solution (49 µL, 4.89 µmol, 0.1 M) 

was subsequently added. The reaction was stirred for 18 h at ambient temperature under a 

nitrogen atmosphere and then quenched by the addition of excess hexanes. 

Poly(sarcosine) as a white solid was isolated by suction filtration and drying under 

vacuum (26 mg, 76 %) 

4.5.5 General polymerization procedure of Bu-NTA 

Bu-NTA was polymerized similarly to that of Me-NTA except that the reaction was 

carried out in THF at 50 °C. 
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Figure 4.23. 1H NMR spectrum of Bu-NTA collected in CDCl3. 

 

 

Figure 4.24. 13C{1H} NMR spectrum of Bu-NTA obtained in CDCl3. 
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4.5.6 DL-methionine N-thiocarboxyanhydrosulfide synthesis 

DL-methionine NTA was synthesized similarly to Me-NTA. Unlike Me-NTA the 

intermediate compound isolated from the reaction between XAA and DL-methionine was 

cyclized in the presence of phosphorus trichloride (1.25 eq). The reaction solution was 

washed with saturated NaHCO3 (200 mL), DI H2O (200 mL), and brine (200 mL). The 

organic layer was dried over MgSO4, filtered, and concentrated via rotary evaporation to 

yield a pale yellow liquid, which crystallized at room temperature to give the crude 

desired product. The product was recrystallized from dichloromethane and hexanes as an 

off white solid (5.68, 66 %). 

ESI-MS: calc’d m/z: 192.0147, experimental m/z: 192.0148 (M+H+)  

 

 

Figure 4.25. 1H NMR spectrum of DL-methionine NTA collected in CDCl3. 
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4.5.7 General polymerization procedure of DL-methionine NTA 

All polymerizations were conducted in THF with initial monomer concentration [M]0=0.5 

M at 50 °C. A representative polymerization procedure is as follows. In the glovebox, 

DL-methionine NTA (153 mg, 0.80 mmol) was weighed into an oven dried vial and 

dissolved in THF (754 µL). A known volume of stock solution containing benzylamine in 

THF (46 µL, 0.35 M, [M]0:[BnNH2]0 =50:1) was added to the monomer solution. The 

contents were heated at 50 °C during which the reaction proceeded as a heterogeneous 

reaction. A control experiment set up under similar conditions but containing no initiator 

verified that DL-methionine NTA remained soluble in THF throughout the 

polymerization and the observed heterogeneity was due to polymerization activity. An 

aliquot of solution was removed and dissolved in deuterated trifluoroacetic acid for 

 

Figure 4.26. 13C23 NMR spectrum of DL-methionine NTA collected in CDCl3. 
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conversion analysis via 1H NMR. Upon reaching quantitative conversion, the 

heterogeneous mixture was triturated with diethyl ether, filtered, and dried under vacuum 

to give poly(DL-methionine) as a white solid (57 mg, 54%) 

4.5.8 Methylation of poly(DL-methionine) 

Poly(DL-methionine) was methylated using iodomethane according to a published 

procedure.132 Briefly, poly(DL-methionine) (20 mg, 0.152 mmol) was suspended in DI 

water (3 mL) and iodomethane (28 µL, 0.457 mmol, 3 equivalents per equivalent of 

polypeptide repeat unit) was subsequently added. The vial was covered with aluminum 

foil and stirred at ambient temperature for 48 h during which the suspension became 

homogeneous. The solution was further diluted with H2O (5 mL) and dialyzed against 

NaCl (aq) (0.1 M) for 24 h and DI water for 48 h (MWCO=2 kDa). The contents of the 

bag were emptied and lyophilized to give the methylated product as a colorless solid. (11 

mg, 49 %) 

4.5.9 Synthesis of γ-benzyl-L-glutamate N-thiocarboxyanhydrosulfide (BLG NTA) 
 
 γ-Benzyl-L-glutamate (10.30 g, 43.3 mmol) and XAA (7.82, 43.3 mmol) were 

suspended in saturated sodium bicarbonate solution (400 mL) and stirred for three days at 

ambient temperature during which the heterogeneous suspension became homogeneous. 

The solution was acidified with concentrated HCl and the aqueous solution was extracted 

with ethyl acetate (3 × 100 mL). The combined organic layers were dried over MgSO4 

and concentrated to a viscous yellow liquid as the reaction intermediate. The reaction 

intermediate was dissolved in ethyl acetate (200 mL) and phosphorus trichloride (3.54 

mL, 40.6 mmol) was added all at once. The reaction was stirred for 20 h before being 

washed with saturated sodium bicarbonate solution (2 × 200 mL), water (200 mL), and 

brine (100 mL). The organic layer was dried over MgSO4 and concentrated to yield the 

crude monomer as a white solid. Further purification was achieved via column 
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chromatography using an eluent of 3:2 hexanes:ethyl acetate. Crystals for X-ray 

crystallography analysis were grown from the slow evaporation of chloroform. (4.32 g, 

42%) 

4.5.10 Solid state polymerization of BLG NTA 

 A typical solid state polymerization is as follows. BLG NTA (33 mg, 0.118 

mmol) was weighed into a vial and suspended in hexanes (236 µL). A known volume of a 

solution of hexylamine in hexanes (11 µL, 133 mM) was subsequently added to the 

monomer suspension such that [M]0=0.5 M and [M]0:[I]0=80:1. The vial was sealed and 

stirred at 50 °C. Heterogenous aliquots were removed from the reaction vial, 

concentrated, and redissolved in CDCl3 for determining the percent conversion of 

monomer. PBLG as a white solid (16 mg, 62 %) was obtained by concentration of the 

heterogeneous reaction mixture under vacuum. 

 

 

Figure 4.27. 1H NMR spectrum of BLG-NTA collected in CDCl3. 

 



 185 

 

 

Figure 4.28. 13C{1H} NMR spectrum of BLG NTA collected in CDCl3. 

 

4.6 Supplemental data for Chapter IV 

 
Table C1. Molecular weight characterization data for HMDS initiated ROP of Me-NTA 

[M]0:[BnNH2]0 Mn (theo.) (kgŊmol-1) b Mn (GPC) (kgŊmol-1) c PDI DP d 

25 1.8 2.4 1.22 27 

100 7.1 5.8 1.20 82 

400 28.4 10.6 1.06 149 

a All polymerizations were performed at [M]0 = 1.0 M in dichloromethane; b based on 
conversion calculated from FTIR analysis; c absolute molecular weights were calculated 
using previously determined dn/dc = 0.0987(17) mL/g147; d based on Mn obtained from 
SEC-DRI-MALS and the repeat unit of PNMG=71 gŊmol-1. 
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Table C2. Molecular weight characterization for a series of polymerizations of Me-NTA 
initiated by various organobases and organocatalysts 

Initiator [M]0:[I]0 Mn (theo.) (kgŊmol-1) Mn (SEC) (kgŊmol-1) PDI DP 

 

25 1.8 2.4 1.30 34 

50 3.6 5.6 1.15 79 

100 7.1 9.3 1.05 131 

200 14.2 12.0 1.06 169 

400 28.4 16.2 1.03 228 

 

25 1.8 2.2 1.09 31 

50 3.6 3.9 1.12 55 

100 7.1 4.7 1.06 66 

200 14.2 6.4 1.04 90 

400 28.4 10.4 1.04 146 

 

25 1.8 4.8 1.16 68 

50 3.6 2.5 1.13 35 

100 7.1 3.6 1.05 50 

200 14.2 7.4 1.06 104 

400 28.4 16.8 1.07 236 

 

25 1.8 2.3 1.13 32 

50 3.6 3.8 1.20 54 

100 7.1 5.3 1.09 75 

200 14.2 8.1 1.04 114 

400 28.4 12.0 1.08 169 
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(Table C2 continued) 

Initiator [M]0:[I]0 Mn (theo.) (kgŊmol-1) Mn (SEC) (kgŊmol-1) PDI DP 

 

25 1.8 2.3 1.17 32 

50 3.6 2.4 1.09 34 

100 7.1 13.5 1.07 190 

200 14.2 31.0 1.04 436 

400 28.4 37.4 1.01 526 
a All polymerizations were performed at [M]0 = 1.0 M in dichloromethane; b based on 
conversion calculated from FTIR analysis; c absolute molecular weights were calculated 
using previously determined dn/dc = 0.0987 mL/g; d based on Mn obtained from SEC-
DRI-MALS and the repeat unit of PNMG=71 gŊmol-1. 
 

 

 

Figure C1. 1H NMR spectrum of polysarcosine obtained from the ROP of Me-NTA with 
NHC initiator ([M]0:[NHC]0=25:1, [M]0=1.0 M in CH2Cl2). The spectrum was collected 
in D2O. 
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N
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Figure C2. SEC-DRI-MALS chromatograms for a series of poly(Z-lysine)s obtained from 
the solid state ROP of Z-Lys NTA using hexylamine initiator ([M]0=0.2 M, 80 °C, 48 h in 
heptane). 
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CHAPTER V. CONCLUSIONS AND FUTURE WORK 

 The findings covered in this work are only an iota of the ongoing research 

involved with polypeptides and polypeptoids. It is hoped that polypeptides and 

polypeptoids can serve as ideal biomaterials due to low exhibited cytotoxicity. This 

differs significantly from acrylic based polymers, which have been shown to illicit an 

immune response and are not degradable by proteolysis. There are numerous challenges 

to overcome such as the sensitivity of NCAs to moisture. However, research interest in 

polypeptides and polypeptoids is still growing and there are still many niches that can be 

further explored in the research and development of polypeptides and polypeptoids as 

ideal candidates for application as biomaterials. 

 A series of glycopolypeptides were synthesized and investigated to better 

understand carbohydrate-lectin interactions with ConA. It was found that polypeptide 

chain lengths had the most significant effect on the observed binding kinetics and binding 

stoichiometry as a high DPn would provide the most binding sites to allow for fast 

binding with ConA and the most space to accommodate the large ConA tetramer. 

Backbone architecture was also found to affect binding kinetics as random coil 

glycopolypeptide analogs were found to bind to ConA slower than their helical 

counterparts. However, at higher DPn it is proposed that the random coil structure is more 

extended, allowing for comparable binding kinetics to a helical analog of similar DPn. 

Ultimately, even with ideal side chain presentation (helical conformation), sterics along 

the polypeptide backbone prevents many mannose binding sites from being accessed by 

ConA, lowering overall binding efficiency as suggested by the increasing mannose/ConA 

as measured by quantitative precipitation assay. The obtained results still pale in 

comparison to those of previously studied glycopolymers as they have been found to bind 

faster and more efficiently than the studied glycopolypeptides. Spacing the binding 



 190 

epitopes apart using the non-binding galactose does not appear to be a sufficient remedy 

as the steric bulk along the polymer backbone is still the same and appeared to only 

further lower binding rate and efficiency. A possible solution may be to vary the distances 

between the polypeptide backbone and the mannose binding moieties in a mixed linker 

length glycopolypeptide species. A series of mannose azides with varying carbon chain 

lengths (e.g. 2-azidooctyl, 2-azidodecyl mannose) could be synthesized using a parallel 

synthetic procedure used to obtain 2-azidoethyl mannose. Grafting mannose moieties 

with varying alkyl chain lengths will vary the side chain length in a particular 

glycopolypeptide species. Used in conjunction with mannose moieties of shorter chain 

lengths, this could produce glycopolypeptides with multiple “layers” on which binding 

events could occur. The variation side chain lengths would allow for some binding 

between ConA and mannose to occur farther away from the main chain and may relieve 

some steric overcrowding of the glycopolypeptide chain although steric overcrowding 

appears to be inevitable. One potential setback of this synthetic strategy is that water 

solubility of the glycopolypeptide may be affected through the introduction of long alkyl 

chains. 

 We have shown that the nucleophilicity of the hydroxyl group of alcohols can be 

activated in the presence of an organomediator and allow the alcohol to act as a 

nucleophile in the ROP of Bu-NCA to obtain well-defined high molecular weight 

polypeptoids. The biggest limiting factors were alcohol sterics and electronics. It was also 

noted that the organomediator of choice, TMG, was able to participate as an initiator in 

the reaction although its pathway was superseded by that of the alcohol. It would be 

interesting to investigate other species which may also activate the alcohol through 

hydrogen bonding interactions but not participate as an initiator. Additionally, although 

macroinitiation using a PEG-OH was demonstrated, other polymeric species could be 
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investigated as potential macroinitiators such as polyesters with terminal hydroxyl 

groups. Potential new interesting materials could be realized from the copolymerization 

of a polyester with a polypeptoid without the need for end chain functionalization. 

 N-thiocarboxyanhydrosulfides (NTA) are now being explored as potential 

candidates used in parallel to NCAs in the synthesis of polypeptides and polypeptoids. 

NTA monomers possess several advantages over NCAs that would present them as viable 

alternatives in the synthesis of polypeptoids. The first of these advantages is the 

simplicity of monomer synthesis. Because of the sensitivity of the oxygen anhydride to 

moisture, the synthesis of R-NCAs requires moisture-free conditions and the use of dry 

solvent for the cyclization reaction between the monomer precursor and the phosphorus 

trihalide cyclizing agent. R-NCAs are purified either by sublimation or column 

chromatography using dry solvent for the mobile phase and packing. In contrast, the 

synthesis of R-NTAs can be completed in open air and purification can be accomplished 

through vacuum distillation or column chromatography using regular solvents. NTA 

monomers have also been shown to remain stable under ambient conditions. The living 

nature of the ROP of Me-NTA using a variety of initiators to obtain high molecular 

weight polysarcosines was demonstrated under milder conditions than those previously 

reported. We believe that we can further expand the library of known R-NTAs using the 

synthetic techniques we have developed during the course of this study to demonstrate the 

feasibility of R-NTAs as alternative monomers to obtain well-defined polypeptoids. This 

would especially be helpful in the synthesis of poly(N-ethyl glycine) and poly(N-allyl 

glycine) whose respective R-NCA monomers have a propensity to self-initiate.  

It is proposed that the same inherent advantages found in R-NTAs could be 

carried over to the synthesis of amino acid based NTAs. We have synthesized and 

characterized two polypeptide based NTA monomers based on poly(γ-benzyl-L-
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glutamate), one of the most widely studied polypeptides, and poly(DL-methionine), 

whose ability to undergo post-polymerization modification has been previously 

demonstrated. It was revealed that significant racemization occurs in the synthesis of 

BLG-NTA, affecting the optical purity of the product. Polymerization of racemic 

monomers can introduce disorder into the polypeptide system and affect the resulting 

secondary structure as demonstrated in Chapter II. Thus, prevention of racemization  

during NTA synthesis is important and must be addressed. Possible remedies to reduce or 

eliminate racemization to obtain optically pure NTAs that being explored are the 

reduction of reaction time and temperature, and the use of a less sterically hindered 

xanthate starting material, the latter of which has been demonstrated to reduce the rate of 

enolization of the azlactone cyclization reaction intermediate, which is susceptible to 

racemization. 

The polymerization behavior of amino acid based NTAs is markedly different 

than that of R-NTAs; solution state polymerization activity appears to be poor. This is 

one area which will need to be further investigated as it has been shown that traditional 

polymerization techniques (e.g. primary amine mediation in solution state) either produce 

polypeptides whose molecular weights deviated significantly from theory or yielded no 

polymerization at all. Solid state polymerization of BLG NTA could be used to obtain 

well-controlled PBLGs but only up to approximately DPn=140. Thus, additional work 

needs to be done to find an adequate initiating system to allow access to higher molecular 

weight polypeptides from the ROP of amino acid based NTAs. Advancement in 

polypeptide and polypeptoid synthesis from the ROP of NTAs could allow researchers 

without the advanced synthetic capability to handle NCAs access to well-defined 

polypeptides and polypeptoids.   
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