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ABSTRACT 

Sensor arrays have evolved as powerful approaches for providing detection and 

discrimination of volatile organic compounds (VOCs) as required across numerous 

analytical applications. Such systems typically comprise a number of cross reactive 

sensor elements, which generate analyte specific response patterns upon exposure to 

VOCs, and are known as multisensor arrays. When evaluated using statistical methods, 

these response patterns facilitate classification of VOCs. As an alternative, a single 

dynamically operated sensor could also be used to generate analyte specific response 

patterns. This approach is known as a virtual sensor array (VSA) and can exhibit 

significant advantages when compared to MSAs. Some advantages include lower power 

consumption, sensor drift, material cost, and experimental preparatory time. 

Furthermore, several dynamically operated sensors could be used in tandem (using the 

MSA and VSA scheme in a complementary fashion) to fabricate virtual multisensor 

arrays (V-MSAs). Such systems would exhibit greater data density than either the MSA 

or VSA, and are promising for samples that are particularly challenging to discriminate.    

Among the various systems utilized for VOC discrimination, sorption based 

systems hold considerable promise because they are simple and inexpensive yet highly 

effective. This dissertation is focused on the development of array sensing schemes 

using ionic liquids (ILs), a group of uniform materials based on organic salts (GUMBOS), 

and binary blends of either IL or GUMBOS with polymer as recognition elements and the 

quartz crystal microbalance (QCM) as the transducer. Towards this end, ILs, which are 

defined as organic salts with melting points below 100 °C, and group of uniform 

materials based on organic salts (GUMBOS) which extend the melting range of ILs to 

250 °C to encompass similar solid phase salts, were used to design the first examples of 

QCM based VSAs, and V-MSAs, for pure VOC and complex mixture analyses. 

Furthermore binary blends of organic salts and polymer were used to fabricate the first 
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VSA with the capability to identify and approximate molecular weight of pure VOCs. By 

and large, the studies presented here demonstrate the excellent potential of these 

materials and techniques for advancement of vapor phase measurement science. 



1 

CHAPTER 1. INTRODUCTION 

1.1 Volatile Organic Compounds Importance and Analysis 

1.1.1 Volatile Organic Compounds 

Volatile organic compounds (VOCs) are a ubiquitous class of organic chemicals, 

which readily evaporate or sublimate under ambient conditions. Typically, VOCs exhibit 

molecular weights below 300 Da and weak intermolecular forces. As a result, they 

exhibit low boiling points and high vapor pressures. In fact, VOCs have been defined by 

the World Health Organization as  organic compounds with boiling points from about 

50°C to about 260°C.1 Notably, VOCs are emitted from numerous sources, both natural 

and artificial. Furthermore, complex mixtures of VOCs constitute many familiar odors or 

aromas. Moreover, natural sources, such as plants, animals, and microorganisms, emit 

a large variety of VOCs, for a number of reasons.2 These might include 

communication,3–7 self-preservation,8–10 or as metabolic byproducts.9,11–13 Artificial 

sources, such as industrialization, are also major contributors to global VOC emissions, 

evidenced by environmental concern and regulatory efforts.14–19  When considering the 

ubiquitous nature and societal impact of VOCs, it is not surprising that it would be 

important to detect and analyze this class of chemicals.  

1.1.2 Importance of VOC Detection and Determination 

While some VOCs are innocuous, many can be harmful. Acute and chronic 

exposure to harmful VOCs can have numerous health and environmental effects.20,21 

Some of the most deleterious health effects caused by VOC exposure, include cancer, 

as well as damage to the central nervous system, kidneys, liver and lungs. Other, less 

severe, effects include headache, irritation, allergic reactions, nausea, fatigue and 

dizziness. Notably, concentrations of certain VOCs can be many times higher indoors vs 

outdoors depending on usage/function of the space.1,22–25 This may have direct 

implications on life quality as many people spend the majority of their time indoors. 
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Thus, development of gas sensing approaches for detection and 

identification/discrimination of VOCs has attracted considerable research interest. In this 

regard, research is driven by requirements to monitor VOCs in many sectors including 

environmental protection, industry, health, and safety.12,13,26–36 Since VOCs are 

characteristic of the emission source, they can be used as markers for identification of 

various conditions. As a result, VOC analyses can be used for many applications 

including  assessment of  food quality,29,37–39 detection of disease states,11–13,40,41 or  the 

presence of explosives.42–44 With such a large variety in potential applications, many 

different methods have been devised to analyze VOCs.     

1.1.3 VOCs Analysis 

GC-MS has long been regarded as the “gold standard” method for VOC 

analysis.45 However, such instrumentation is expensive and requires significant 

expertise to employ effectively.20,45 As a result, researchers have endeavored to find 

sensitive, simplistic, and cost effective alternatives for VOCs analysis. In this regard, 

sorption based gas sensor technology has proven increasingly attractive. Generally, 

such sensors are comprised of a recognition element coupled with an appropriate 

transducer. A recognition element is composed of a chemosensitive material, which 

exhibits a change of physical or chemical properties upon interaction with analytes. 

Transducers convert the change in properties to an electronic signal that allows 

quantification of the interaction. In this regard, most commonly employed transducers fall 

within four main classes of transduction e.g. electrochemical, thermometric, optical and 

gravimetric transduction. 

Electrochemical transducers typically measure change in conductivity, 

resistance, permittivity or impedance.46 The most common examples of these devices in 

sorption based VOCs sensing are chemicapacitors and chemiresistors.46 Well known 

examples of chemicapacitive sensors are demonstrated in Micro-Electro-Mechanical 
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Systems (MEMS) sensors47 while examples of chemiresistive sensors are Metal Oxide 

Semiconductor (MOS) sensors.48 Such sensors are characteristic of the internal 

components in many commercially fabricated electronic noses.48  

Thermal transducers, as the name suggests, measure change in thermal energy. 

Chemical sensors that employ this transducer are based on the first law of 

thermodynamics which states: when internal energy of a system changes, heat is either 

absorbed or produced.46 This is important because many chemical reactions absorb or 

produce heat (endothermic or exothermic). Hence, these sensors have been designed to 

quantify heat transfer during such chemical reactions. The most common examples of 

this sensor class when employed for VOC sensing are calorimetric and catalytic 

sensors.49–53  

Optical transducers measure interaction of the electromagnetic spectrum with 

chemicals or chemosensitive materials. In this regard, many spectroscopic techniques 

can be applied as a transducer to create optical sensors for VOC detection. These 

sensors are widely used in literature, and popular examples include fluorescence,43,54,55 

UV-VIS,20,28,56–58 and surface plasmon resonance based sensors.59–61    

Gravimetric transducers measure mass change. Common examples of sensors 

that employ gravimetric transduction include surface acoustic wave (SAW) 

sensors,48,62,63 thickness shear mode (TSM) sensors,48,62,63 and mircocantilevers.62,64 

These transducers, typically fabricated from a piezoelectric material, quantify change in 

mass as a function of change in frequency or vibrational properties. This dissertation will 

focus on the quartz crystal microbalance (QCM) which is a member of the TSM class of 

acoustic wave sensors. Herein, applications in VOC sensing will be explored. Further 

detail on operation of the QCM will be explained in section 1.2. While many types of 

sensors have proven robust for detection of gases, as individual entities, they are 

typically not the most efficient means for analyses of gases.    
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1.1.4 Cross Reactive Sensor Arrays 

A popular approach for analyzing volatile organic compounds (VOCs) is use of 

cross-reactive sensor arrays (CRSAs).20,28,29,35,37,48,65–69 The advantage of these systems 

lies in their ability to identify/ discriminate samples, without the need to identify individual 

VOCs. In fact, the operating principle was developed to mimic the excellent performance 

of biological olfactory systems.67 For example, the typical olfactory system employs 

numerous cross reactive receptors that generate response signals from odor stimuli. The 

aggregate of these responses is then processed by the brain to identify a particular odor. 

CRSAs mimic this operating principle, on a smaller scale, by employing cross reactive 

sensors/ sensing schemes. A schematic for the operating principle of CRSAs is depicted 

in Figure 1.1.  With regard to quartz crystal microbalance based sensor arrays, there are 

two main array schemes employed by CRSAs reported in literature: 1) Multisensor array 

2) Virtual Sensor Array. Each scheme will be explored within this dissertation.

Figure 1.1 Schematic of CRSA operating principle. 

1.1.5 Multisensor Arrays 

The majority of CRSAs reported in the literature are known as multisensor arrays 

(MSAs). In this array scheme, several cross reactive sensors are employed in a tandem 

fashion. Subsequently, these sensors are exposed to an analyte of interest. Each sensor 
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responds to all analytes however to varying degrees. In this regard, the sensors exhibit 

differential responses. When taken in aggregate, the responses of all sensors constitute 

and analyte specific response pattern. Such patterns are then employed using pattern 

classification techniques or statistical approaches to identify or discriminate analytes. 

Statistical approaches will be discussed in further detail in section 1.3. An example of a 

multisensor array scheme for the QCM is depicted in Figure 1.2.  

Figure 1.2 Schematic of a QCM based multisensor array, where 1, 2, and 3 represent 
chemically distinct sensors and the small sensor labeled one represents a single 
harmonic.  

This array scheme effectively converts the limitation of partial selectivity, which is 

observed for many chemosensitive materials and their corresponding sensors, into an 

advantage.  Although a very robust scheme, MSAs, suffer from a number of limitations. 

A few examples might include sensor drift, increased preparative time, and requirement 
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of judicious selection of sensing materials and numerous physical sensors are a few 

among others. To address these limitations, researchers have strived to develop 

effective alternative array schemes. Hence, virtual sensor arrays (VSAs) were developed 

as a viable alternative.  

1.1.6 Virtual Sensor Arrays  

VSAs consist of a small number of sensors or only a single sensor that can 

contribute many quasi-independent responses to the resultant array output pattern.69  In 

simpler terms, this sensing scheme is based on dynamic operation of physical sensors 

to generate additional sensor responses. This mimics inclusion of a larger number of 

physical sensors within an array however these sensors are nonexistent i.e. virtual 

sensors. This approach can address limitations in sensor drift, data dimensionality, cost, 

and complexity that are encountered with use of a MSA.69 Notably, the operating 

principle is largely similar to that employed by an MSA.  In this regard, a number of 

(single) dynamically operated sensor(s) are (is) exposed to an analyte and 

measurements are obtained. The aggregate of sensor responses form an analyte 

specific response pattern. Since pattern classification is independent of the data 

collection method these measurements are subject to the same statistical treatment 

utilized by MSAs. Dynamic operation as exploited by VSAs, typically employs an easily 

tunable variable or factor that suitably alters sensor response. Such variables might 

include temperature, exposure time, excitation energy, data windows, frames, or carrier 

gas etc.69 Incidentally, devices based on temperature variation, such as metal oxide 

sensors and field effect transistor (MOSFET) devices, represent the most extensively 

reported examples of VSAs.70,71 Other non-conventional VSAs involving the use of 

tandem methods have also been documented.41,42,72 Within this dissertation, two types of 

dynamically operated arrays are distinguished. In this regard, VSAs comprising only a 

single sensor are termed VSAs, while those comprising multiple sensors are termed 
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Virtual Multisensor Arrays. (V-MSAs). An example of a virtual sensor array scheme for a 

QCM is depicted in Figure 1.3.  

Figure 1.3 Schematic of a QCM based virtual sensor array, where sensors 1-13 
represent seven harmonics utilized for dynamic operation. 

1.2 Quartz Crystal Microbalance based Sensors for VOC analysis 

Quartz crystal microbalance based sensors are comprised of a QCM transducer 

coupled with an appropriate chemsosensitive adlayer for detection of a desired analyte. 

The selected coupling of chemosensitive material (recognition element) and transducer 

is essential for successful operation of sensors and the sensor arrays which they 

comprise. Section 1.2 will detail fundamental background on the QCM as well as explore 

promising chemosensitive materials which have been employed as adlayers. 
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1.2.1 Desire for Quartz based Devices 

To discuss the development of the quartz crystal microbalance, it is worth briefly 

mentioning the developmental history of quartz based devices. The original desire for 

quartz based devices stemmed from the development of quartz based clocks and radios 

among other military and civilian technologies.73,74 Such devices employed quartz crystal 

oscillators to supply their various functions. Within each device the quartz crystal was 

typically sequestered away from the surrounding environment because their proper 

function was sensitive to environmental changes. Interestingly, it is exactly this non ideal 

scenario of quartz within a clock or radio that made it attractive for fabrication of a 

sensitive instrument.  

1.2.2 Quartz Crystal Microbalance  

The quartz crystal microbalance (QCM) is a simple, yet sensitive, tool for 

monitoring changes in force along the quartz surface.  In simplest terms, the device 

comprises a power source, interface electronics and quartz oscillator. In this regard, the 

device uses the power source to drive the oscillator and interface electronics are used to 

monitor environmental changes that come in contact with the oscillator surface. This 

oscillator, more specifically termed a quartz crystal resonator (QCR), operates based on 

the converse piezoelectric effect, and is the centerpiece of the device. Incidentally, there 

have been several types of oscillators, circuits and interface electronics developed to 

generate optimal QCM devices. The remainder of section 1.2 will explore the discovery 

of piezoelectricity, development of quartz resonators and design and application of the 

QCM. 

1.2.3 Piezoelectricity 

Central to the development of quartz based technology is a foundational 

understanding of piezoelectricity. In this regard, piezoelectricity is a form of electrical 

energy generated from mechanical deformation of crystalline materials that exhibit 
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asymmetrically charged unit cells.74 The term piezoelectricity was coined by Hankel.75 

However, this phenomenon was discovered by physicists Pierre and Jacques Curie 

when examining asymmetric crystalline structures in 1880, and termed the piezoelectric 

effect.74 At this time, the Curie brothers established the existence of the piezoelectric 

effect using crystalline materials such as quartz, topaz, and Rochelle salt. In 1881, 

Gabriel Lippman mathematically deduced that the converse piezoelectric effect should 

exist,76 and this deduction was experimentally proven by the Curies thereafter.77 A visual 

example of the piezoelectric effect using a mock quartz unit cell is depicted in Figure 1.4, 

while Figure 1.5 is a depiction of the converse piezoelectric effect. The converse 

piezoelectric effect, which states that application of an electric voltage to a piezoelectric 

material causes a mechanical deformation, is particularly important to the function of the 

quartz crystal microbalance. Notably these discoveries have allowed quartz (as well as 

Figure 1.4 Schematic of the piezoelectric effect in a quartz crystal lattice. Adapted from 
https://www.creationscience.com/onlinebook/Radioactivity2.html (Accessed 2/2016)  

https://www.creationscience.com/onlinebook/Radioactivity2.html
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other piezoelectric materials) to be employed in applications ranging from time keeping 

to telecommunications. However for successful implementation of the piezoelectric 

properties of quartz to occur, specific cuts had to be developed. In this regard the quartz 

resonator employed in the QCM is no different.   

Figure 1.5 Schematic of the converse piezoelectric effect in a quartz crystal lattice. 

1.2.4 Quartz Crystal Resonators 

About 40 years after the discovery of piezoelectricity, the first quartz resonator was 

developed and employed for frequency stabilization.73,74 Unfortunately these devices 

suffered from temperature-frequency coupling. This is a condition where temperature 

adversely effects crystal oscillation causing undesirable frequency shifts. To overcome 

this limitation, two temperature compensated crystal cuts were developed by Koga in the 

1930’s.73,74,78 These cuts, termed AT and BT shear cuts are still employed today. The 

cutting scheme for AT cut quartz is depicted in Figure 1.6. The angle of the cut relative 
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to the axes of the quartz determines the temperature-frequency coupling characteristics. 

There are other cuts in existence however only the AT cut is relevant to the QCM 

employed herein. The QCR utilized within this dissertation employs an AT cut quartz 

wafer with electrodes on both sides. In this regard, gold electrodes were utilized on the 

QCRs employed, since they are robust and chemically inert.  

Figure 1.6. Schematic of AT cut quartz 

A schematic of a typical QCR used in a QCM is depicted in Figure 1.7. These resonators 

are known as thickness shear mode resonators and under AC voltage generate an 

acoustic wave from the surface that is essential to QCM operation. Section 1.2.5 will 

discuss the basic operating principles of QCRs that contribute to the function of the 

QCM.     

Figure 1.7 Schematic representation of a quartz crystal resonator with gold electrodes. 
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1.2.5 Acoustic Shear Waves and Basic QCM Principle of Operation 

From the converse piezoelectric effect, applying an AC voltage across a QCR 

should result in a mechanical deformation or in this case crystal oscillations. These 

oscillations ultimately give rise to an acoustic wave. A schematic of crystal oscillation 

under applied voltage for a QCR is depicted in Figure 1.8. It should be noted that the 

oscillation of the crystal is parallel to the crystal surface which is typical of a thickness 

shear mode resonator. Specifically, QCR oscillations exhibit sine wave behavior, with 

nodes inside the crystal and antinodes at the crystal surface, under resonance 

conditions. This behavior generates an acoustic wave that propagates perpendicular to 

the QCR surface with a wavelength that is approximately twice the QCR thickness at the 

fundamental frequency. This relationship is given by equation 1.1.73  

𝑓 =
𝑐𝑞

𝜆
=

𝑐𝑞

2(𝑑𝑞 + 𝑑𝑓)
 (1.1), 

Where f is frequency, cq is speed of sound, dq is thickness of the QCR, and df is the film 

thickness. This acoustic wave is known as the resonance frequency.73 It is one of the 

two parameters exploited for measurements with the quartz crystal microbalance. (The 

other is dissipation which is discussed in section 1.2.7) If sorption of an analyte or 

deposition of a material on the surface of a QCR is considered increasing the thickness 

of the QCR, it is easy to see why the QCM would be sensitive to change in surface 

mass. In this regard, increases in QCR thickness, would result in decreases of 

resonance frequency. This relationship was discovered by Gunter Sauerbrey in the 

1960’s and is the basis of gravimetric sensing (use of the QCM as a mass detector) 

using the QCM. Equation 1.2 denotes the Sauerbrey equation.79 Where ∆f is change in 
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∆𝑓 = −
𝑛

𝑐
∆𝑚 = −

𝑛

𝑐
𝜌𝑓𝑡𝑓  (1.2), 

resonance frequency, n is harmonic number, c is mass sensitivity which is 17.7 ngcm-

2Hz-1 for the 5MHz AT cut crystal used herein, ρf is the density of the film, and tf is film 

thickness. 

Figure 1.8 Schematic of QCR under applied voltage 

1.2.6. Overtones 

Since resonance conditions of the QCR are achieved electrically, it is possible to 

excite the QCR to higher energy resonances. This process results in the generation of 

overtones or harmonics of the fundamental frequency. Interestingly, it is only possible to 

excite odd harmonics due to reverse polarity of the electrodes on the QCR surface. 

Examples of wave behavior exhibited by the QCR are depicted in Figure 1.9. It should 

be noted from the figure that it is possible to have multiple resonances with nodes in the 

center of the crystal. In this regard, a wave with a single node is characteristic of the 

fundamental frequency (1st harmonic), while a wave with three nodes is characteristic of 
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the 3rd harmonic. Hence, the number of nodes parallel to the resonator surface 

corresponds to the overtone number. Moreover, as the number of nodes increases, the 

wavelength decreases resulting in an increase in frequency. Thus, each overtone 

represents a higher frequency than the fundamental frequency. As the frequency of the 

acoustic wave increases, the penetration depth of the acoustic wave decreases. 

Incidentally, at higher frequencies, sensitivity increases however, so does instrumental 

noise. Additionally, it is worth noting that penetration depth of the acoustic wave is also 

dependent upon the density and viscosity of the environment in contact with QCR 

surface. The mathematical relationship for penetration depth is depicted in equation 1.3.  

𝛿 = √
2𝜂

𝜌𝜔
 𝑤ℎ𝑒𝑟𝑒 𝑖𝑠 𝜔 = 2𝜋𝑓  (1.3), 

Where σ = penetration depth, η= viscosity of the adlayer, ρ= density of the adlayer, ω is 

the angular frequency and f is frequency. Multiple harmonics have been employed for 

the work presented within this dissertation.  

Figure 1.9 Schematic of wave behavior inside the QCR. 

1.2.7 QCR Resonance 

The QCM technique utilized in this dissertation employs QCRs under resonance 

conditions. Such resonances are found by electrically exciting the QCR, across a range 
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of frequencies, and monitoring conductance of the system. In this regard, resonance 

occurs at those frequencies that exhibit peak conductance as depicted in Figure 1.10. 

Each QCR is capable of several resonances and this is directly related to overtones. For 

example, the first resonance of the QCRs employed herein would be exhibited at 5 MHz 

(fundamental frequency). Thus, overtones would be exhibited at odd multiples of this 

frequency. Therefore the 3rd harmonic would exhibit resonance at 15 MHz, the 5Th 

harmonic at 25 MHz, 7th harmonic at 35 MHz and so on. Another parameter that can be 

obtained from the conductance plot of a QCR under resonance conditions is the 

bandwidth, which is related to energy dissipation of the oscillating crystal. Bandwidth 

corresponds to the full width at half maximum of the conductance curve at the resonance 

frequency. The relationship between dissipation and bandwidth is given by equation 1.4  

𝐷 =
2𝛤

𝑓
 (1.4) 

Where D= dissipation factor, Γ= bandwidth and f= resonance frequency. Specifically, 

Figure 1.10 Plot of current versus frequency. 
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dissipation is a measurement of the energy lost during oscillation and can be calculated 

as D = Edissipated/2πEstored where Edissipated is the energy lost per oscillation cycle, and Estored 

is the total energy stored in the oscillation system. Importantly, dissipation is the second 

parameter commonly employed for QCM measurements.  

1.2.8 Quartz Crystal Microbalance with Dissipation Monitoring Technique 

The resonance behavior of QCRs is utilized for development of the quartz crystal 

microbalance. In regard to the QCM-D technique, two parameters of the oscillating QCR 

are typically monitored. These parameters are resonance frequency and dissipation. The 

operating principle of the QCM-D utilized within this dissertation, employs a ring down 

approach. This approach is based on impulse excitation of the QCR, which is essentially 

a process of briefly exciting the QCR and monitoring the amplitude of resonance decay. 

The amplitude of decay is governed by the sine expression denoted in equation 1.5.  

𝐴𝑡 = 𝐴0𝑒 − 𝜋 sin(𝜔𝑡 + 𝜑) + 𝑐, 𝑡 ≥ 0  (1.5) 

Where At is the amplitude at time t, A0 is the amplitude t = 0, τ is the decay time 

constant, ω is the angular frequency, φ is the phase, and c is the dc offset. Hence the 

dissipation factor can be calculated as:   

𝐷 =
2

𝜔𝜏
 (1.6) 

Where D= dissipation factor, τ is the decay time constant, and ω is the angular 

frequency Figure 1.11 depicts a plot of resonance decay as a function of time.  Due to 

use of impulse excitation, it is possible for the QCM-D to progressively probe multiple 

harmonics in short succession. In this regard the fundamental frequency is excited and 



17 

Figure 1.11 Schematic of amplitude change versus time 

the resonance decay is monitored, then a higher resonance is excited and that 

resonance decay is monitored. This process takes milliseconds, and it was possible to 

monitor up to 7 overtones (odd harmonics 1st through 13th) for the work presented 

herein.  

1.2.9 Gravimetric and Non-gravimetric Sensing in Air using the QCM 

Gravimetric sensing, as related to the QCM, can be defined as the detection or 

determination of analyte mass. In fact, this is the same function as a standard balance, 

thus the name quartz crystal microbalance. In this regard, the QCM has been widely 

employed as a mass detector. The measurement principle is based on the Sauerbrery 

equation, as introduced in 1960, by German physicist Gunter Sauerbrey.79 The 

Sauerbrey equation is denoted here:  
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∆𝑓 = −
𝑛

𝑐
∆𝑚 = −

𝑛

𝑐
𝜌𝑓𝑡𝑓  (1.7) 

 where ∆f is change in resosnance frequency, n is harmonic number, c is mass 

sensitivity which is 17.7 ngcm-2Hz-1 for the 5 MHz AT cut crystal used herein, ρf is the 

density of the film, and tf is film thickness.  In simple terms, this equation states that the 

change in resonance frequency of a QCR is directly proportional to the mass deposited 

on the surface. Specifically, resonance frequency should decrease with the addition of 

mass on the QCR surface.  This behavior is known as ideal Sauerbrey behavior and is 

only valid for loadings that are rigid, uniform, and thin (thickness) relative to the 

wavelength of the acoustic wave used to interrogate the sensor. For such films, 

dissipation values are typically small. However, if these conditions are not met, deviation 

from ideal Sauerbrey behavior occurs.80, 81 In fact, this is true for many non-rigid i.e. soft 

films (such as those comprised by various chemosensitive adlayers including ionic 

liquids and polymers), and films not in the thin film or Sauerbrey regime (thick films).  

These films typically exhibit larger dissipation values. The sensor response of these films 

may be influenced by a variety of effects including viscoelasticity, film thickness, or film 

resonance.73,80 Viscoelasticity is a property of soft films where they exhibit both viscous 

and elastic characteristics. Soft films which exhibit viscoelastic properties behave 

differently under resonant conditions as compared to rigid films. Ultimately, this 

difference in behavior affects sensor response in various ways, depending upon how 

viscoelastic/ how thick a film may be.73,80 A plot adapted from a study on how 

viscoelasticity and film thickness affect sensor response is depicted in figure 1.12.80 Film 

resonance is a condition that occurs when a soft films’ thickness reaches ¼ the 

wavelength of the acoustic wave interrogating the sensor. During this condition, 

resonance frequency increases with increases in film thickness.73 In fact, film resonance 
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is represented by the extrema seen on plots of Figure 1.12. At this point sensor 

response can become progressively positive. Notably, film resonance is dependent on 

harmonic as an increase in harmonic decreases the wavelength of acoustic wave. 

Furthermore, occurrence of film resonance is dependent upon softness of the film as 

increasing film softness decreases acoustic wavelength as well. Finally, film resonance 

may be dependent of film properties such as swelling, because if a film swells during 

sorption of an analyte, film thickness increases. Thus, for a given soft film, film 

resonance would more likely be exhibited at higher harmonics. Such deviations from 

ideal Sauerbrey behavior fall within the realm of non-gravimetric QCM sensing and 

opens new possibilities for QCM based measurement. Typically, film resonance 

Figure 1.12 Schematic of Sensor response depending upon viscoelasticity and film 
thickness 
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conditions are avoided for QCM measurements as modeling for extraction of parameters 

important for some studies does not yield good agreement. Lesser deviations to ideal 

Sauerbrey behavior can be modeled using equations that account for viscoelastic 

contributions to sensor response. Examples of these models include the Maxwell and 

Kelvin-Voigt equations.81–83 Notably, these corrections are primarily important for 

applications which seek to approximate certain parameters outside of frequency or 

dissipation change. However, for other applications such as the sensor arrays presented 

in this dissertation non gravimetric behavior of soft films coated on the QCM is essential 

to proper function.  

1.2.10 Chemosensitive Materials for QCM based VOC Sensors 

Sensors, which comprise QCM sensor arrays, typically employ a QCM 

transducer in conjunction with chemosensitive material. This is because the transducer 

is inherently non-selective. Thus, chemosensitive materials are of paramount importance 

for the proper function of QCM based chemosensors. These materials, typically 

employed as adlayers (thin films) on the QCR surface, affect the sensitivity and 

selectivity of the sensor. Moreover, in the case of gas phase QCM sensors, such 

materials influence the sorption-desorption profiles of analytes which directly impacts 

sensor performance. Thus, the development of novel chemosensitive materials has 

been an active area of research. Ideally, these materials should be inexpensive, stable 

under operating conditions, exhibit reversible sorption, and be sensitive to desired 

analytes. Furthermore, for application in sensor arrays, these materials should exhibit 

partial selectivity. To satisfy these criteria, researchers have employed a plethora of 

materials including ordinary polymers,26,84,85 molecularly imprinted polymers,86–88 metal 

complexes,89 calixarenes,90,91 carbon nanotubes,92 metalloporphyrins and 

phthalocyanines,93–96 and  ceramic materials97 among others.  One class of materials 

that has proven promising in the last decade are organic salts, specifically Ionic Liquids 
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and GUMBOS. In fact, the application of these materials in QCM based VOC 

discrimination is expanded upon within this dissertation. The following will give a brief 

introduction on Ionic Liquids and GUMBOS, as well as a history on the application of 

such materials for QCM sensor arrays.  

1.2.11 Ionic Liquids and GUMBOS 

Due to shortcomings observed in many chemosensitive materials, a search for 

materials that are both easily tunable and sensitive began. Organic salts are a class of 

materials that can satisfy these requirements.  Specifically, Ionic Liquids and GUMBOS 

are a subset of organic materials composed of organic cations and anions that contain 

favorable properties. In fact, they can exhibit a number of interactions that can be 

tailored to specific analytes. The ability to tune the properties of ILs and GUMBOS stems 

from the interactions of the constituent cations and anions. Furthermore, these ions 

contain large structural diversity and can be flexibly interchanged via simple ion 

exchange methods allowing specificity to a broad range of analytes. Figure 1.13 depicts 

many commonly employed cations and anions. Ionic liquids (ILs), which are defined as 

organic salts having a melting point below 100°C, are typically composed of bulky 

cations and/or anions.98 They can be divided into two classes, namely room temperature 

ionic liquids (RTILs) and frozen ionic liquids (FILs). The first, RTILS, are ILs which have 

a melting point below room temperature and have been shown to exhibit a number of 

properties such as low vapor pressure,99 high conductivity,100 high thermal stability,101 

wide solvation range,102 and recyclability.103 Furthermore, functionalizing their constituent 

ions can tune their properties for specific applications. Examples of these task specific 

ionic liquids (TSILs) include those that are magnetic, antimicrobial, anticancer, and 

fluorescent. This class of materials has seen an increase in applications across various 

fields such as catalysis,98,104 electrochemistry,104–106 separations,103,107 and synthesis.98 

The second class, known as FILs, are defined as ILs, which melt at temperatures above 
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room temperature and have been applied in controlled nanoparticle synthesis and as 

rewritable surfaces.108 The term Group of Uniform Materials Based on Organic Salts 

(GUMBOS) has recently been introduced by the Warner research group to encompass a 

range of solid phase organic salts exhibiting melting points between 25°C and 250°C. 

GUMBOS exhibit the same highly tunable properties and ease of synthesis 

characteristic of ILs. Furthermore, particles in the nanoscale derived from GUMBOS i.e. 

nanoGUMBOS can possess the favorable properties of GUMBOS in addition to the 

unique physicochemical properties of nanoparticles. GUMBOS have found application in 

numerous areas including medicine,109–114 energy generation and sustainability,115–117 

nanomaterials,111,112,114,115,118–128 sensors/sensor arrays,93,129–131 and matrices for MALDI 

mass spectrometry.132  

1.2.12 Ionic Liquid based QCM Sensor Arrays 

Within the last 15 years, several ILs and GUMBOS based QCM sensors/ sensor arrays 

for VOCs analysis have been reported. In fact, the first application of ionic liquids as 

chemosensitive adlayers for QCM sensors was presented by Liang and colleagues in 

2002.133 This work utilized the favorable viscosity, diffusion, and vapor pressure 

properties of ionic liquids to detect organic vapors using the QCM. This seminal 

publication set the stage for development of many types of IL based QCM sensors,133 

including those that employ composites,134 or chemical reactions to enhance film 

properties or sensitivity respectively. Furthermore, this work paved the way for 

development of IL sensor arrays which are the primary focus of this dissertation. Hence, 

Jin et al. constructed the first QCM based ionic liquid sensor array a few years later.101 In 

this regard, an IL sensor array for discrimination of gases at elevated temperatures (e.g., 

120°C) was presented. This study utilizes the negligible vapor pressure and high thermal 

stability exhibited by ILs to develop the presented sensor array. The array data 
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Figure 1.13 Common ions used to prepare ionic liquids and GUMBOS 

was classified using LDA to accurately discriminate between several VOCs. 

Subsequently, Xu et al. employed an IL based QCM sensor array for ambient 

discrimination of VOCs utilizing artificial neural networks (ANN) to accurately analyze the 

array data.135 Later, Toniolo et al. reported a IL based QCM sensor array for potentially 

monitoring food quality.37 The presented array was capable of discriminating between 31 

VOCs allowing classes to be visualized using PCA. Furthermore, the array was able to 

discriminate between two complex mixtures of VOCs represented by two distinct 

cinnamon odors. This study represents the first example of a IL based QCM sensor 

array applied for real sample analysis. Most recently, I reported the development of an IL 

based QCM VSA.136 This study utilized the viscoelastic properties of ionic liquids 
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coupled with dynamic operation of the QCM to discriminate between 18 closely related 

VOCs. Furthermore, two complex mixtures represented by petroleum ether and 

kerosene were discriminated. Discrimination accuracies were obtained using QDA and 

LDA. This study represents the first example of a QCM based VSA.  

While each study is more promising than the last, more elaborate studies are 

required to investigate the full potential of organic salts as recognition elements for QCM 

sensor arrays. Moreover, additional studies are required to elevate QCM sensing 

approaches within the measurement sciences. The work within this dissertation is a 

small step in furthering each of these aims.     

1.3 Statistical Analysis 

Statistics is a field of mathematics developed by scientist and mathematicians to 

study data, events, probabilities and patterns.137,138 This field specifically focuses on 

development of analysis methods that allow for conclusions to be drawn from observed 

data. In this regard, statistical analysis provides a means for interpretation and 

presentation of data. Such topics are of pivotal importance for the successful fabrication 

of sensor arrays as discussed in this dissertation. 

Statistics can be divided into two major types i.e descriptive and inferential 

statistics. The former consists of methods for organizing and summarizing data, while 

the later consists of methods for drawing conclusions and inferences from data.138 To 

expound upon this, descriptive statistics includes all types of data presentation and 

commonplace calculations (graphs, tables, histograms, averages, means, etc.) as well 

as univariate and bivariate analysis techniques.  In contrast, inferential statistics includes 

methods for scaling, prediction, estimation, and classification of data (MANOVA, 

discriminant analysis, linear regression, etc.) This dissertation employs several elements 

from each category however the emphasis of this brief introduction will be placed on the 

less common place inferential techniques employed herein.  
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1.3.1 Principal Component Analysis (PCA)

Principal component analysis (PCA) is a technique commonly employed to 

display and reduce the dimensionality of data sets.139,140 The mathematical basis of 

which was pioneered by Pearson in 1901.141 However, with the advent of computerized 

computation, the tedious mathematics employed have been streamlined into software 

packages such as SAS, MATLAB, and R, making this method accessible to data analyst 

at large. More in depth discussions on PCA can be found here.139,140,142–144 Herein, a 

non-mathematically rigorous example of the function and importance of PCA as applied 

for sensor arrays is provided.     

When considering array data sets, it is commonplace for such measurements to 

exhibit multidimensionality. A good example of this is color data, such as that obtained 

from a colorimetric sensor array.  A 6 sensor colorimetric sensor array mock up that will 

be used as an aid in this discussion is depicted in Figure 1.14. In colorimetric sensor 

arrays, sensors change color upon interaction with chemical analytes and 

measurements of the sensor colors are obtained. Each color measurement of the 

individual sensors yields a Red, Green, Blue (RGB) value. Thus, the data set for even a 

single sensor measurement is multidimensional. Typically, a series of analytes are 

introduced and the aggregate of all sensor measurements are collected to form a data 

set further enhancing the dimensionality. For clarity, 5 replicate measurements of 5 

samples were obtained. If this data set was then arranged into a matrix, with the 

columns representing sensors and the rows representing sensor response, the first table 

in Figure 1.14 would obtained. Examining the columns, this data set has 18 dimensions. 

(6 sensors 3 RGB values per sensor)  Drawing meaningful conclusions from this data 

set using conventional graphical techniques would prove challenging. However, PCA, 

which reduces the dimensionality of data sets, is ideally suited to this situation.140,142,143 

Typically, sensor responses are quasi -independent and so this process is able to 
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reduce the data to a small set of orthogonal (linearly independent) variables known as 

Figure 1.14 Schematic representation of a statistical analysis work flow 

principal components. Reduction of dimensionality is accomplished by performing an 

orthogonal liner transformation of this matrix, which projects the original data onto a 

different coordinate space where the proportions of the variance in the original data set 
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correspond with the new coordinates in a sequential fashion. In this regard, the first 

coordinate comprises the most variance, while the second coordinate comprises the 

second most variance and so on until 100% of the variance in the original data set is 

accounted. These coordinates also termed variables are called principal components. 

Within this dissertation, a set of principal components accounting for 99% of the variance 

in the original data set are kept for further analysis. A schematic of a reduction that might 

occur for the example colorimetric sensor array is depicted in Figure 1.14. The principal 

components can then be displayed using graphical means such as scatter plots, to 

obtain a qualitative survey of the data. However, to obtain a quantitative assessment of 

discrimination, as is typically desired for sensor arrays, methods such as discriminant 

analysis must be performed.139,140 In this regard, the principal components generated 

from PCA can be used as input variables for quantitative analysis. 

1.3.2 Discriminant Analysis (DA) 

Discriminant analysis broadly describes a set of supervised (requires that group 

membership is known) techniques that are useful for identifying and classifying the 

patterns within data. These techniques analyze input variables and construct new 

canonical axes that best maximize separation of data groups.140 Group membership is 

determined by distance from the point to the group mean in multivariate space known as 

the Mahalanobis distance. In this regard, samples are classified to the group where the 

Mahalanobis distance is shortest from the group mean. To quantify classification 

accuracy, cross validation is performed. Within this dissertation two types of DA are 

employed specifically linear discriminant analysis (LDA) and quadratic discriminant 

analysis (QDA) in conjunction with cross validation. More detailed explanations of each 

process can be found here.140,145–147  

The former, LDA, was first developed by Fisher in 1936, and is based on 

maximizing the ratio of variance between groups divided by the variance within 
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groups.148 This ratio bears the developers name and is called the Fisher ratio. 

Effectively, this technique clusters group members of the same group while maximizing 

separation between groups. This is accomplished as stated above. LDA assumes a 

common covariance matrix and the number of canonicals can never exceed the number 

of variables or number of groups minus one. The latter, QDA, is closely related to LDA 

except that it is assumed that the covariance matrix is different for each group. This 

requires that a quadratic discriminant function be employed. The advantage of QDA is 

that it allows better fit of the data; however this technique may not be applicable for small 

data sets. An example of a DA canonical plot is depicted in Figure 1.14.     

To quantify classification accuracy of DA, the cross validation method was employed. 

Specifically, the leave one out cross validation method was utilized within this 

dissertation. Cross validation is a statistical method employed for assessing how a 

statistical model would classify an independent sample set. In other words, it is a method 

for assessing how a statistical model would perform in a real test run. This method, as 

the name suggests, excludes one sample (removes the sample and treats it as an 

unknown) from the data set and uses the rest of the data to create a predictive model. 

Then, the excluded sample’s group membership is determined based on the predicative 

model. This process is performed iteratively for every sample within the data set, to 

determine an error rate from which the classification accuracy can be obtained. This 

method is known to generate a highly unbiased estimate of classification accuracy.140    

1.4 Scope of Dissertation 

This dissertation focuses on design, development, and implementation of novel 

sensing schemes for vapor phase QCM based sensor arrays. The objective of this work 

was to introduce sensing schemes, alternative to the conventional MSA, which would 

address current limitations while advancing the field of QCM based measurement 

science. Although, organic salts were employed as chemosensitive materials in each of 
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the following chapters, the techniques presented herein should prove applicable for any 

chemosensitive material that sorbs analyte and is suitably viscoelastic.  

The first alternative sensing scheme developed is introduced in chapter 2. In this 

regard, the theory, design, and implementation of the first example of a QCM based VSA 

is examined. The VSAs presented comprise a single dynamically operated sensor 

employing ionic liquid recognition elements. As a proof of concept, the VSAs were 

employed to distinguish between 18 closely related VOCs as well as two complex 

mixtures. Notably, excellent identification accuracy was achieved. Thus, this system 

proved an interesting platform for further optimization due to its considerable promise for 

vapor phase analyses.   

In Chapter 3, the VSA approach developed in the previous chapter was further 

optimized as a step towards developing a sophisticated QCM based analytical method. 

In this regard, a VSA with the capability to simultaneously identify pure VOCs while 

independently approximating their respective molecular weights was developed. This 

was accomplished by expanding the approach presented in the previous chapter while 

employing an ionic liquid-polymer composite as the chemosensitive material. To 

benchmark this system, several alcohols including isomers were tested. This approach 

resulted in excellent identification accuracy with strong molecular weight correlations. 

These results further extol the virtue of the VSA approach.  

Whenever a new array sensing scheme is developed, the question of how does it 

compare to the conventional scheme arises. A direct comparison of the VSA versus 

MSA is presented in chapter 4. Furthermore, the second alternative sensing scheme i.e. 

the V-MSA, is introduced and the systematic design is explored. Effectively, it is a logical 

fusion of the MSA and VSA schemes. To benchmark the capabilities of each system, a 

set of complex mixtures represented by citrus type odors were tested and identification 

accuracies were obtained. The newly introduced V-MSA proved particularly promising 
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for complex mixture analyses. 

Utilizing the knowledge on V-MSAs gained in chapter 4, a V-MSA was 

subsequently applied for another real world application. Chapter 5, contains studies on 

the implementation of a QCM based V-MSA for fuel discrimination and detection of 

gasoline adulteration. In this regard, petroleum based fuels, gasoline grades, and 

gasoline adulteration were all identified with extremely high accuracy. This is a first for 

QCM sensor arrays and was only possible using the newly developed V-MSA scheme.     

To conclude this dissertation, a summary of the findings, and discussion on the 

foreseeable implications as well as future directions are presented in chapter 6. Taken in 

aggregate, this work is a promising step towards advancing the field of QCM based 

measurement science.  
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CHAPTER 2. RATIONAL DESIGN OF QCM-D VIRTUAL SENSOR ARRAYS BASED ON FILM 

      THICKNESS, VISCOELASTICITY AND HARMONICS FOR VAPOR DISCRIMINATION∗ 

2.1 Introduction 

Acute and chronic exposure to volatile organic compounds (VOCs) can have 

numerous and far-reaching consequences with regard to health effects. Thus, 

development of novel gas sensing materials and systems for detection and 

discrimination of VOCs has attracted considerable research interests in recent years. 

Research involving VOC sensing is driven by requirements to monitor VOCs in different 

kinds of samples including ambient air monitoring,1-3 biomedical diagnostics,4-6 food 

quality assurance,7-9 and military and civilian counterterrorism.10-12 A conventional 

technique for VOC monitoring is GC-MS. However, this technique requires expensive 

instrumentation, as well as highly skilled and dedicated operators. Therefore, a current 

trend is to develop simple low-cost devices for accurate and real-time monitoring of 

VOCs. 

A large fraction of the currently used gas sensing systems employ multisensor 

arrays (MSAs), popularly referred to as electronic noses.2, 12-22 This concept effectively 

converts the limitation of partial selectivity, which is observed for many sensors, into an 

advantage. The creation of MSAs has allowed vast improvements in the chemical 

diversity and chemical selectivity with which analytes can be discriminated. A typical 

configuration for an MSA consists of a collection of several partially selective sensors, 

where each of the sensor elements interact with all or most analytes, but to varying 

degrees. In other words, an MSA comprises a number of cross-reactive sensors.16-18 The 

collective responses from an MSA are best analyzed by use of pattern recognition 

techniques such as principal component analysis (PCA), discriminant analysis (DA), and 

 Reprinted with permission from N. C. Speller, N. Siraj, B. P. Regmi, H. Marzoughi, C. 
Neal and I. M. Warner, Anal. Chem., 2015, 87, 5156-5166.Copyright 2015 American 
Chemical Society.  
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artificial neural networks (ANN) that facilitate identification and classification of such 

analytes. In such cases, a judicious selection of sensing materials is critical for 

discrimination between structurally similar analytes. One important consideration is that 

MSAs should be simple and inexpensive for optimal implementation.  

A very promising approach, alternative and/or complementary to MSA, which 

allows generation of analyte-specific response patterns is to use a single physical sensor 

that can produce multiple responses.23-25 This approach, which is generally known as a 

virtual sensor array (VSA) or virtual multisensors, relies on dynamic operation of a single 

sensor that gives analyte-specific response patterns similar to that obtained from an 

MSA.24, 25 The most extensively reported examples of VSAs are metal oxide sensors and 

field effect transistor devices that discriminate between different analytes by use of 

temperature variations.25, 26 Other non-conventional VSAs involving use of tandem 

methods have also been documented.27-29 In fact, VSAs offer several distinct 

advantages, and in this regard, cost, complexity, and problems associated with sensor 

drift are minimized in VSAs as compared to MSAs.24 

The detection principle of a gas sensor depends on both the chemosensitive film 

and the transducer. With regard to transducers, the quartz crystal microbalance (QCM) 

has been increasingly adopted for construction of gas sensing devices1, 5, 9, 12, 14, 15, 30-33 

because it is  sensitive, offers potential for miniaturization,34 and is amenable to 

fabrication of sensor arrays. A QCM sensor is typically fabricated by immobilizing a thin 

film of suitable sensing material onto the surface of an AT-cut quartz crystal. In this 

regard, ionic liquids (ILs) have proved to be promising sensing materials for detection 

and discrimination of a wide range of organic vapors.14, 15, 31-34 This is because ILs, which 

are defined as organic salts with melting point below 100 °C, are highly tunable materials 

with low vapor pressures and reversible capture of organic vapors. In addition, ILs have 

also been shown to possess viscoelastic properties,33, 35, 36 which are particularly 
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relevant to the studies presented in this chapter. In this chapter, my desire is to create 

sensor arrays by exploiting the viscoelastic properties of ILs, rather than utilizing 

differences in chemical affinity as is usually done.  

Herein, I report an IL-based virtual sensor array (VSA) fabricated by depositing a 

thin film of IL on the surface of a QCM-D transducer. The films utilized in this study 

consisted of an IL, 1-octyl-3-methylimidazolium bromide ([OMIm][Br]) or 1-octyl-3-

methylimidazolium thiocyanate ([OMIm][SCN]), at two different thicknesses. These four 

individual QCM-D sensors were then exposed to a range of different organic vapors at 

various concentrations and the frequency shift (Δf) at multiple harmonics were 

measured. Due to the viscoelastic properties of the IL coating, both increases and 

decreases in ∆f were observed depending on the analyte, harmonic number, and film 

thickness. Variable harmonics have been used previously by a number of researchers 

for examination of binding, adhesion, interaction forces, and, viscoelastic modeling .37-43  

Moreover, use of dynamic methods can be categorized under the general heading of 

“higher order sensing”.44 In contrast, harmonics has been used in this chapter for the first 

time as a sensor element on the basis of different decay lengths. In developing this 

sensor array, focus is placed on intraclass discrimination as opposed to the typical 

interclass discrimination commonly reported in the literature. For proof of concept, 

discrimination of members of four homologous series (alcohols, hydrocarbons, nitriles, 

chlorohydrocarbons) was investigated. Furthermore, interclass discrimination potential 

was also evaluated. Lastly, discrimination of two related complex mixtures (petroleum 

ether and kerosene) was examined. Responses obtained at different harmonics were 

subsequently analyzed using PCA and DA, and examination of the resultant data 

demonstrated that discrimination of analytes can be achieved with very high accuracy. 

The high level of discrimination achieved by use of this approach truly underscores the 

potential of QCM based VSAs for analyses of organic vapors in a wide range of 
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applications. To the best of my knowledge, my work is the first report of a QCM based 

virtual sensor array, as well as an experimental sensor array that is based primarily on 

viscoelasticity, film thickness, and harmonics. 

2.2 Experimental Section 

2.2.1 Preparation of Stock Solutions  

Stock solutions of [OMIm][Br] or [OMIm][SCN]  (1mg/mL) were prepared in DCM 

using 20 mL borosilicate glass scintillation vials. Synthesis of ionic liquids is detailed in 

appendix A. 

2.2.2 Preparation of Sensing Films 

Electrospray was used to prepare thin films and details are provided in appendix 

A. All films were coated under similar conditions onto a clean quartz crystal resonator so 

that film variation was purely time dependent. Regular coating time intervals were 

chosen to study the effect of film thickness. After coating, all films were dried using 

nitrogen, followed by storage in a desiccator.  

2.2.3 QCM-D Data Acquisition  

 A schematic of the experimental system is depicted in Figure 2.1. The system 

consists of two independent gas flow channels i.e. one channel for the sample vapors 

and the other channel for the carrier gas. Before data collection, ultrapure argon was 

purged through the system until a stable frequency was achieved. Afterwards, chemical 

vapors were introduced via bubbling of argon gas through the sample reservoir, which 

was filled with pure liquid phase analyte of interest to generate a sample of saturated 

vapor pressure. As the sample channel and carrier channel merge, the sample flow is 

diluted yielding various concentrations which are represented here in terms of partial 

pressure, pa/po = 0.2, 0.3, 0.4, where pa is the partial pressure of the VOC and po is the 

saturated vapor pressure. The flow rate was controlled by use of digital mass flow 

controllers and adjusted to a total flow rate of 100 sccm. After sufficient mixing over the 
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length of the tubing (1 m), the vapors are passed over the QCM sensor crystal placed 

inside a flow module. The chamber temperature was precisely regulated (22 °C). Finally, 

to remove sample vapors, the system was purged with ultrapure argon until recovery of 

the baseline.  

Figure 2.1 Schematic of the experimental system 

2.2.4 Data Analysis 

Multiple harmonic data generated from these experiments were used to design 

statistical models for identification of analytes. Predictive models were developed using 

∆f values obtained using multiple harmonics. As a first step in data analysis, principal 

component analysis (PCA) was used to reduce the dimensionality of the predictor space. 

The goal of this analysis was to create a smaller number of predictors based on the full 

set of original measured variables that retain as much of the variability in the original 

variables as possible. In all cases, up to five principal components were sufficient to 

account for 99% of the variability in the original variables. The indices created by PCA 

were used as input variables to QDA or LDA for the purpose of developing models that 

could accurately distinguish among and specifically identify the various analytes within 
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each homologous series and 18 analyte set. In order to accurately assess the predictive 

ability of the developed models, cross-validation was used to estimate classification error 

rates of the models.  

2.3 Results and Discussion 

2.3.1 Preparation and Characterization of Sensing Films  

As previously noted, thin composite films were prepared using an electrospray 

method due to its high material deposition efficiency.45 These films were then imaged 

using SEM and EDS. Representative micrographs for four different films, corresponding 

to either [OMIm][Br] or [OMIm][SCN] coated for 1.5, and 3 minutes respectively, are 

shown in Figure A1. Based on these SEM images, it was evident that all films were 

heterogeneous and comprised of isolated islands/droplets of varying sizes. SEM images 

and EDS spectra further show that the surface coverage increases with coating time 

(Figure A2). Furthermore, EDS point mapping confirms that the ionic liquid coating 

material is represented in black while the grey areas of the images correspond to the 

gold surface (Figure A3). By using AFM, it was found that the Z-depth of droplets 

increases proportional to droplet size in the x-y dimension. (Figure A4) Increased coating 

time leads to larger droplets in the x-y dimension and proportionally the z-dimension. 

Moreover, an increased population of larger sized droplets was also observed as 

compared to smaller sized droplets on the QCR surface, which resulted in an average 

increase in Z depth.     

2.3.2 Examination of the Effect of Film Thickness on Gas-sensing Response  

Four QCRs coated with either [OMIm][Br] or [OMIm][SCN] films of two different 

thicknesses were installed into the QCM-D system. The frequency change at the first 

harmonic for each sensor after coating was found to be ~ -1000 Hz, and ~ -2000 Hz, for 

coating times of 1.5, and 3 minutes respectively. As the coating time is increased, there 

is an increase in both surface coverage and thickness. All sensors were subsequently 
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exposed to a number of different analyte vapors belonging to four classes of organic 

compounds (See Table A1)46 at different concentrations (pa/po = 0.2, 0.3, 0.4), and the 

changes in frequency were measured. It was found that sensor response varied 

between films of the same chemical composition, depending upon coating thickness for 

the QCR and concentration of the analyte. Additionally, it is noted that for each sensor 

the baseline is stable and response is very reproducible. (Figure A5-A8)    Moreover, as 

expected, sensor response varied between coatings of different chemical composition. 

The values of Δf plotted against thickness (coating time) for five analytes (methanol, 

ethanol, DCM, n-hexane, and acetonitrile) across several concentrations (pa/po = 0.2, 

0.3, 0.4) is depicted in Figure 2.2 Depending on the thickness of the coating, positive 

and negative shifts in frequency were observed. Simply by changing thickness, the 

response pattern for the five analytes is altered. Furthermore, it is noted that these 

virtual sensor elements display a cross-reactive response to different analytes, and 

cross-reactivity is a requirement for array based sensing. This thickness-dependent 

response can be attributed to relative changes in the mass and viscoelastic contributions 

to the sensor response. A number of theoretical treatments have been presented in the 

literature that supports these observations. In this regard, McHale and colleagues 

introduced a model that can account for changes as a function of film thickness and 

viscoelasticity ranging from liquid to amorphous solid coatings.47 The conclusion from 

this model illustrates that it is possible to obtain both positive and negative frequency 

shift depending upon film thickness and viscoelastic properties of the coating material. 

Moreover, Vogt et al.,48 after examination of the effect of film thickness on validity of the 

Sauerbrey equation using a polyelectrolyte film, found that as the coating thickness 

increases, so does the effect of its viscoelasticity, leading to deviations from the 

Sauerbrey equation. Finally, at least one research group has sought to model and 

quantify the relationship between mass change and frequency shift of a QCM in contact 
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with viscoelastic media.49  In agreement with theoretical models, I was able to obtain 

both positive and negative resonant frequency changes using these coating materials  

 

 

Figure 2.2 Δf (Hz) response patterns of 5 analytes generated by four sensors at different 
concentration of vapors. A) first harmonic frequency change of [OMIm][Br] sensors 
coated for 1.5 and 3 minutes and B) first harmonic frequency of [OMIm][SCN] sensors 
coated for 1.5 and 3 minutes. Error bars represent three replicate measurements.  

 

after exposure to organic vapors. Based on the above results and discussions, I 

concluded that a sensor array based solely upon viscoelasticity could be fabricated by 

changes in film thickness.  
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2.3.3 Fabrication and Evaluation of Virtual Sensor Arrays 

Since cross-reactive responses to different analytes can be obtained by simply 

changing the coating thickness, similar responses are expected to be obtained when 

measuring the frequency response at different harmonics using a QCM-D sensor. There 

is equivalence between measurements of multiple thicknesses at a single harmonic and 

a fixed thickness at multiple harmonics which can be better understood by considering 

the following equation: 

𝛿 =  √
2𝜂

𝜌𝜔
 𝑤ℎ𝑒𝑟𝑒, 𝜔 = 2𝜋𝑓  (2.1) 

where  is penetration depth, i.e. the distance at which the amplitude of the wave 

decreases to 1/e of its value at the surface; η is the viscosity of the coating; ρ is the 

density of the coating; ω is angular frequency, and  is the frequency. From this 

equation, it is evident that as frequency increases, the penetration depth of the acoustic 

wave decreases. In addition, as the penetration depth decreases, the acoustic wave 

probes progressively closer to the QCR surface (Figure 2.3). In other words, for a 

coating of fixed thickness on the QCR surface, as the frequency of waves increases, the 

thickness perceived by the waves also increases. Therefore, probing a single sensor at 

multiple harmonics should provide analyte-specific response patterns similar to those 

obtained by probing multiple sensors of different thickness at a single harmonic. Using 

the QSense QCM-D, it is possible to measure the resonance frequency at up to seven 

different harmonics (odd harmonics from 1st through 13th). Different harmonics are 

successively probed within a range of milliseconds.50  In order to obtain data from 

multiple harmonics, a film of suitable thickness is required, and for this reason, two 

QCRs coated for shorter times 1.5 and 3 minutes, were chosen to perform further 

studies. Typically, as film thickness increases, the number of harmonics that can be 

measured decreases. In this regard, 7 harmonics were obtained for the thinner films (1.5 
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min coatings) and 6 harmonics were obtained for the thicker films (3 min coatings). To 

the best of my knowledge, variations in harmonics have never been used to create  

Figure 2.3 Schematic showing that change in harmonic number alters the penetration 
depth of the shear waves. 

sensor arrays. Although Q-sense markets their instrument with the ability to excite 

various harmonics, to date there are few practical applications in gas sensing that 

employ multiple harmonics simultaneously.51 In this chapter, I present a novel concept of 

using multiple harmonics to create virtual sensor arrays for QCM transducers via the 

aforementioned thickness equivalencies. The QCM-D sensors were exposed to 18 

different analyte vapors, which are listed in Table 2.1. To evaluate the gas discrimination 

power of a single-sensor-based virtual sensor array, I investigated analytes belonging to 

the same class, as well as different classes. In this regard, four classes of organic 

vapors, namely, alcohols, chlorohydrocarbons, hydrocarbons, and nitriles, were selected 

as analytes. The QCM-D sensor was then exposed to different concentrations of each 

analyte and the changes in frequency were measured at each harmonic. The baseline 

for all tested sensors was very stable and the signal was highly reproducible as depicted 

in Figure A5-A8. A flow-type system was employed for gas generation, and the vapor 

coming from a liquid after bubbling a carrier gas was assumed to be saturated. Figure 

2.4 contains plots of the sensor response (Δf) versus harmonic number for a single class 

of analytes, e.g. alcohols, at pa/po=0.2 for all sensors. It should be noted that by simply 

changing the harmonics, a suitably varied response was achieved. Moreover, it is clear 
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that film thickness and chemical composition of the coating have a marked effect on 

sensor response. In changing the chemical composition, i.e. anion of the ionic liquid, 

many properties of the material change such as viscosity, hydrophobicity, and chemical 

affinity. This is clearly represented by the vast differences in sensor response obtained 

using [OMIm][Br] and [OMIm][SCN] based sensors. Finally, by varying the thickness of 

coatings comprised of the same ionic liquid, it is also possible to generate varied 

response. This result is only logical based upon previous works which suggest thin films 

exhibit more Sauerbrey behavior while thicker films experience deviations from this 

behavior due to increased viscoelasticity. Due to this revelation, evaluation of these 

sensors to create VSAs was initiated.  

A VSA has been defined as an array that consists of a small number of sensors 

Figure 2.4  Δf (Hz) as a function of harmonic number for a single sensor on exposure to 
pa/po = 0.2 of a series of alcohols A) 3 minute [OMIm][Br] B) 1.5 minute [OMIm][Br] C) 3 
minute [OMIm][SCN] D) 1.5 minute [OMIm][SCN]. Error bars represent three replicate 
measurements.  
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or only one sensor that can contribute many responses to the output pattern.23 By using 

viscoelasticity as the discriminating factor, it was possible to apply the VSA scheme to 

the QCM-D transducer. Significant advantages arise when using a VSA scheme in 

comparison to MSAs. Although MSAs are widely used, there are several limitations 

associated with the use of these arrays. For instance, MSAs require stringent selection 

of multiple coating materials based on chemical affinity in addition to multiple readout 

electronics.24 Additionally, the signal drift associated with even a single sensor 

deteriorates the performances of such MSAs.24, 52 As a result of these limitations, there 

has been growing interest in the creation of virtual sensor arrays.24, 53-55  

ILs were selected for the present study because they are viscoelastic, exhibit rapid 

absorption and desorption of analytes, and IL-based QCM sensors show minimal signal 

drift.33 Three different concentrations of vapors were tested for all analytes, ranging from 

pa/po = 0.2-0.4. I note that these concentrations are typically high for trace VOC 

detection. However, they are appropriate for real samples that use concentrations up to 

saturated vapor pressure. Therefore, I explore such concentrations herein.18, 56-58 

Moreover, I have also investigated discrimination of a set of analytes at lower 

concentrations. For clarity, data at pa/po = 0.2 are presented here. In Figure 2.5, Δf 

response patterns for each class of analytes obtained at multiple harmonics for a A) 3 

minute [OMIm][SCN] coating and B) 3 minute [OMIm][Br] coating based sensors are 

shown. Plots of Δf response patterns for 1.5 minute coating based sensors are shown in 

figure A9. It is observed that different analytes exhibit different response patterns. 

Principal component analysis (PCA) and quadratic discriminant analysis (QDA) were 

performed for each class of analytes, as well as for the complete set of analytes. PCA is 

a technique for data dimension reduction and display, which allows a qualitative survey 

of the possible discriminating power of the array. QDA is a method that allows 

quantitative classification of group membership, specifically using the method of cross 
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validation, and data display. This approach yields a quantitative survey of the possible 

discriminating power of the array. In this regard, I have depicted QDA canonical plots for 

further analyses. These analyses were based on a data matrix of Δf values, where the 

columns represent harmonics and the rows represent the analytes. Three replicate 

measurements for three concentrations (pa/po = 0.2, 0.3, 0.4) were considered for each 

analyte, for a total of 9 measurements per analyte. Data were baseline shifted to account 

for positive and negative responses and normalized to adjust for concentration related 

magnitude changes. Canonical plots for each of the tested classes for a A) 3 minute 

[OMIm][Br] coating based VSA and a B) 3 minute [OMIm][SCN] coating based VSA are 

depicted in Figure 2.6. Plots for 1.5 minute coating based VSAs for all classes are 

presented in Figure A10. Ellipses and Ellipsoids represent 95% confidence. In each case 

extremely high accuracy was achieved independent of the coating material or thickness. 

For each of the classes, it was possible to discriminate each class member with 100% 

accuracy over a range of concentrations for each three minute VSA with the exception of 

alcohols for [OMIm][Br] where one observation of ethanol was confused for 1-propanol, 

yielding 98.4% accuracy. In regard to the 1 minute VSAs, 100% accuracy was achieved 

for each class of analytes tested independent of coating material. These results indicate 

that this approach is truly promising for discrimination of members of the same 

homologous series. It is important to recognize that several previously published studies 

have reported on discrimination of completely unrelated analytes14, 59 (e.g., polar, 

nonpolar, from different classes etc.). In contrast, herein I strive to discriminate between 

closely related analytes within a chosen class. In fact, electronic nose technology has 

been found to be successful in discrimination of compounds belonging to different 

homologous series, while distinction of members within a chemical class still remains a 

challenge.60  Additionally, I have evaluated the discriminating power of the VSAs towards 

all 18 analytes, independent of the class. The data for the 18 analyte set were similarly 
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analyzed using PCA and QDA techniques; canonical plots for each VSA are depicted in 

appendix A Figures A11-A15. Accuracies of 97.6% and 98.7% were achieved for 3 

minute [OMIm][Br] and [OMIm][SCN] based VSAs, respectively. In the case of the 3 

minute [OMIm][Br] based VSA, 4 out of 162 total samples were misclassified, specifically 

3 chloroform samples were confused for acrylonitrile and 1 acrylonitrile sample was 

confused for chloroform. This discrepancy is a result of the large degree of sample 

overlap within the corresponding canonical plots. (Figure A11) When considering the 3 

minute [OMIm][SCN] VSA, 2 out of 162 total samples were misclassified, specifically 1 

sample of DCM was confused for methanol and acrylonitrile, respectively. Again this is 

supported by a large degree of overlap between the three vapors in the corresponding 

canonical plots. (Figure A12)  In regard to the 1 minute VSAs, QDA accuracies of 99.4%, 

corresponding to 1 misclassification out of 162 total samples, were achieved 

independent of coating composition. For the 1 minute [OMIm][Br] based VSA, 1 sample 

of chloroform was confused for acrylonitrile(Figure A13), while for a 1 minute 

[OMIm][SCN] based VSA, 1 sample of dichloromethane was confused for methanol 

(Figure A14). Overall, the 1 minute VSAs outperformed the thicker film counterparts. 

However, these VSAs exhibited lower signal. Furthermore, VSAs of the same chemical 

composition exhibited the same types of misclassification, suggesting that anion 

variation, which produces variations in the properties of the material, plays an important 

role in performance of these virtual sensor arrays. Finally, since confused samples are 

not chemically related, this suggests that viscoelasticity and not chemical affinity is the 

primary discriminating factor at work in these arrays.   

     To demonstrate capability for trace VOC detection, the most sensitive class of 

analytes, chlorohydrocarbons, was tested at a low concentration range. (pa/po = 0.02- 

0.15) In this case, only the three minute VSAs were considered since they exhibited 

superior signal at low concentrations. Three replicate measurements over four 
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concentrations (pa/po = 0.02, 0.05, 0.10, 0.15) were considered for a total of 12 

measurements per analyte. QDA canonical plots are depicted in Figure 2.7. Again, each 

VSA was able to classify class members with 100% accuracy over the range of 

concentrations tested. When all data are taken in aggregate, these results demonstrate 

the excellent potential of this approach for discriminating pure organic vapors, whether 

from the same or different chemical classes at high or low vapor concentrations. 

Finally, to provide a more stringent test of these VSAs, I have investigated the 

discriminating power towards similar complex mixtures. In this regard, two industrially 

relevant petroleum distillates, petroleum ether and kerosene, were chosen as 

representative samples. During the refining process, petroleum ether contains a fraction 

of hydrocarbons distilled prior to kerosene. As a result, petroleum ether is a mixture of 

lower boiling hydrocarbons while kerosene contains higher boiling hydrocarbons. 

Hydrocarbon complex mixtures were chosen since hydrocarbons have been previously 

shown to be the least sensitive class tested for each array. In Figure 2.8, Δf response 

patterns for petroleum ether and kerosene exposed to pa/po= 0.2 obtained at multiple 

harmonics for A) 3 minute [OMIm][Br] based VSA and B) 3 minute [OMIm][SCN] coating 

based VSA are depicted. LDA plots for analyses of five replicate measurements of each 

of the two analytes at a single concentration (pa/po= 0.2)   are shown in Figure A16. for 

each array, suggesting that this approach is very promising for discrimination of similar 

complex mixtures. All experimental results have been summarized in Table A2. Overall, 

the results presented here suggest that use of a material property, such as 

viscoelasticity, for pure analyte and mixture discrimination is indeed a viable approach 

for fabrication of arrays, as well as a viable alternative to chemical affinity. Moreover, the 

VSA methodology presented here is a promising alternative to the conventional MSA 

approach used for QCM based gas discrimination, whether for analyses of pure samples 

or complex mixtures.     



56 
 

 
 

Figure 2.5 Δf (Hz) response patterns for each class of vapors (in descending order n-
alcohols, chlorohydrocarbons, hydrocarbons, and nitriles) are shown for a A) 3 minute 
[OMIm][Br] coating based sensor and B) 3 minute [OMIm][SCN] coating based sensor. 
The vapor partial pressure for all analytes is fixed at pa/po =0.2. Error bars represent the 
standard deviations of three replicate measurements. 
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Figure 2.6 QDA canonical plots for each class of organic vapors (in descending order n-
alcohols, chlorohydrocarbons, hydrocarbons, and nitriles) with respect to a VSA 
comprised of either a 3 minute coating of A) [OMIm][Br] or B) [OMIm][SCN] 
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Figure 2.7 QDA canonical plots for chlorohydrocarbons at low concentrations (pa/po = 
0.02, 0.05, 0.10, 0.15) with respect to a VSA comprised of either a 3 minute coating of A) 
[OMIm][Br] or B) [OMIm][SCN]. 
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Figure 2.8 Sensor response, Δf (Hz), and QDA canonical plots for two complex mixtures 
of hydrocarbons, i.e petroleum ether and kerosene with respect to a VSA comprised of 
either a 3 minute coating of A) [OMIm][Br] or B) [OMIm][SCN]  
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2.4 Conclusion 

In summary, I have demonstrated the concept of using a QCM-D based virtual 

sensor array for facile discrimination of a wide range of organic vapors. The most 

commonly used sensor arrays utilize multiple sensor elements coated with recognition 

elements that possess different binding affinities to different analytes. In this chapter, I 

sought to present an entirely fresh perspective for use of QCM sensor arrays, i.e. the 

use of material properties (viscoelasticity and film thickness) as the discriminating factor 

in contrast to chemical affinity. Four QCM-D sensors were prepared by coating two ILs 

which differ in anion, at two thicknesses, and were subsequently exposed to 18 different 

analytes belonging to the same or different homologous series. Changes in frequencies 

at different harmonics were monitored. Data acquired at multiple harmonics were 

analyzed using PCA and DA, which provided highly accurate identification of closely 

related compounds within a class. Additionally, upon analyses of the complete set of 18 

analytes at multiple concentrations for interclass discrimination, accuracies ranged from 

97.6%-99.4% for the four VSAs tested. When applied to discrimination of two similar 

complex mixtures, accuracies of 100% were achieved. This level of accuracy for this 

approach is truly promising for discrimination of closely related and chemically distinct 

analytes, as well as complex mixtures. Furthermore, by use of only a single sensor, I 

have decreased the sensor array preparative time and material cost, while 

simultaneously increasing data output. Thus, I have introduced a simplistic array method 

for the QCM-D in the form of a virtual sensor array based on a single QCM-D sensor that 

permits facile discrimination of organic vapors. Overall, I believe that this approach is a 

promising alternative (or at least complementary) technique to the conventional MSA 

approach used for QCM based gas discrimination. Further investigations are underway 

to ascertain the full potential of this new strategy for vapor phase analyses.     
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CHAPTER 3. QCM VIRTUAL SENSOR ARRAY: VAPOR IDENTIFICATION AND 
MOLECULAR WEIGHT APPROXIMATION 

3.1 Introduction 

Development of the sensor array concept has provided a powerful analytical 

approach for detection and discrimination of volatile organic compounds (VOCs). Such 

analyses are important for ambient air monitoring,1, 2 biomedical diagnostics,3 food 

quality assurance,4-6 and military and civilian counterterrorism.7-9 Moreover, as our 

understanding of the far reaching health and environmental impacts of organic vapors 

has evolved, so has the number of viable methods for VOC analysis. While such 

methods vary greatly, each should have the important properties of simplicity, sensitivity, 

and selectivity.    

Among the various methods employed for VOC analyses, quartz crystal 

microbalance (QCM) based sensor arrays have been recognized as simple, 

inexpensive, and amenable to miniaturization. Furthermore, the sensitivity and selectivity 

of such arrays can be controlled by judicious selection of chemosensitive adlayers. As a 

result, materials with easily alterable properties that facilitate optimal array responses 

are highly sought. Organic salts with depressed melting points have proven to be 

particularly attractive. Specifically, ionic liquids (ILs) and solid phase organic salts termed 

as a Group of Uniform Materials Based on Organic Salts (GUMBOS) are two classes of 

materials which embody simple synthesis and broad chemical diversity with untold 

potential for sensing applications.9-14 Indeed, simply by varying counter ions, material 

properties such as (1) melting point, (2) solubility, (3) polarity, (4) viscosity, and (5) 

toxicity can be easily manipulated. Moreover, these materials show reversible capture of 

organic vapors and are amenable to development of binary blends using polymers. Such 

blends can be used to enhance or modulate sensor response. In this regard, we have 

previously demonstrated that IL-polymer composite-coated QCM sensors exhibit stable 



67 

dual-parameter response (i.e. change in frequency (Δf) and change in dissipation (ΔD) 

due to the viscoelastic properties of the coatings.15, 16   More importantly, we have shown 

that the ratio of the modulated dual parameter response allows molecular weight 

approximation of adsorbed pure organic vapors.15, 16  While quite promising, these 

studies only facilitate molecular weight based discrimination. Thus, identification of same 

molecular weight compounds i.e. closely related isomers, would prove problematic, and 

necessitate additional methodologies. In order to extend the utility of our previous 

studies, I propose herein the fabrication of a multifunctional sensor array. If successful, 

such an impactful strategy in a sensor array would have great potential for increasing the 

diversity of analytical information output, i.e. discrimination of analytes as well as 

approximation of their respective molecular weights.   

Generally speaking, most QCM based sensor arrays have employed a standard 

multisensor array (MSA) approach. 9, 12, 14, 17-25 In contrast, I have introduced a technique 

for using a dynamically operated single sensor which acts as a sensor array. In this 

regard, I have previously demonstrated successful fabrication of QCM based virtual 

sensor arrays (VSAs) using a viscoelastic material.26 Briefly, ionic liquid coated QCM 

sensors were exposed to a range of different organic vapors and the frequency shifts 

(Δf) at multiple harmonics were measured. Thus, each harmonic functions as a virtual 

sensor. Using QCM-D, different responses at multiple harmonics can be easily recorded 

simultaneously upon interaction of an analyte with the ionic liquid coating material. Due 

to inherent viscoelastic properties of the coating, both increases and decreases of ∆f 

were exhibited depending on the analyte, harmonic number, and film thickness. When 

responses across multiple harmonics were taken in aggregate, analyte specific response 

patterns were generated and could be analyzed using statistical methods. I note that Q-

sense markets their instrument with the ability to excite various harmonics. However to 

date, variable response at multiple harmonics of the QCM-D instrument has never been 
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exploited as a sensor array with the exception of my previous work.26 In this regard, the 

majority of applications that employ multiple harmonics concern modeling studies, or 

sensor sensitivity, but never in the form of a sensor array. 27-31 This approach, while quite 

simple, proved to be highly effective for discrimination of distinct, as well as closely 

related organic vapors using the quartz crystal microbalance with dissipation (QCM-D). 

Significant advantages arise when using a VSA scheme in comparison to MSAs. In 

particular, limitations such as stringent selection of multiple coating materials based on 

chemical affinity, requirement of multiple readout electronics, and signal drift issues that 

deteriorate the performance of MSAs are alleviated.32, 33 Thus, researchers are 

embracing the development of VSAs to circumvent these concerns.32, 34-36 I desire to 

further expand my QCM VSA technique by exploiting the unique properties of composite 

materials to facilitate two dimensional analyses. It should be noted, that the potential for 

molecular weight approximation by VSA, is negated by using only ionic liquid 

chemosensitive layers, as previously published26. Therefore, in this study, a binary blend 

composed of ionic liquids and polymer was explored as an alternative chemosensitive 

layer for molecular weight approximation using VSAs. 

3.1.1 Approach 

In this chapter, I present the first fabrication of a sensor array with capabilities for 

approximating molecular weights of adsorbed analytes. In this regard, the development 

of QCM VSAs employing a binary blend of ionic liquid and polymer as a chemosensitive 

adlayer is introduced. The unique properties of these materials suitably modulate sensor 

response allowing for measurement of stable resonance frequency and dissipation shift 

(Δf and ΔD). Moreover, the ratio of change in two parameters (
Δ𝑓

Δ𝐷
), can be directly 

correlated with molecular weight of adsorbed vapors under low to moderate loadings as 

previously described by us. 15, 16  Notably, such blends have been found to exhibit 
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viscoelastic behavior.16  This makes such materials particularly amenable to the 

presented virtual sensor array approach. The composite films utilized in this study 

consisted of a binary blend of the ionic liquid, 1-hexyl-3-methylimidazolium 

bis(trifluoromethylsulfonyl)imide ([HMIm][NTf2]), and the polymer polymethylmethacrylate 

(PMMA). It should be noted that this adlayer employs a very low viscosity ionic liquid, 

which contrasts with previously reported highly viscous/ solid phase ionic liquids and 

GUMBOS that were employed for applications involving molecular weight 

approximations.15, 16 The present composite material was investigated using three 

distinct film thicknesses. Each individual sensor was then exposed to organic vapors and 

the frequency and dissipation shift over multiples harmonics was monitored.  Due to the 

viscoelastic properties of this composite material, all combinations of ∆f and ∆D were 

exhibited.  Multiple harmonic data resulting from the best thickness of composite 

material were then examined using statistical methods. Each parameter was analyzed 

separately to ascertain capability for discrimination. Additionally, the 
Δ𝑓

Δ𝐷
 ratio was 

analyzed using the 1st harmonic to obtain optimal molecular weight approximations. To 

evaluate this concept, as well as demonstrate the innate selectivity of my method, I 

assessed a set of closely related alcohols including isomers. Alcohols are volatile 

solvents and important pollutants, which are ubiquitously found in civilian and industrial 

settings and thus represent an important class of VOCs. It should be noted that I am 

using simple composites, with no additional modifications, to discriminate between a 

homologous series, as well as isomers which exhibit very similar characteristics and the 

same molecular weight. Thus, this is a very simplistic approach, especially when 

compared to some of the synthetic materials employed for QCM based methods.37, 38 

Upon evaluation of the resultant data, this method was found to be exceedingly 

promising for simultaneous discrimination and molecular weight approximation of closely 
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related organic vapors. While we have previously presented molecular weight 

approximation using the QCM, this concept has never been employed in a sensor array 

scheme. In this chapter, I further extend my study to demonstrate the first example of a 

sensor array which allows molecular weight determination, discrimination of closely 

related organic vapors over multiple concentrations, and discrimination of isomers. 

Coincidentally, this chapter also is a report of the first fabrication of a dissipation based 

virtual sensor array.  

3.1.2 Theory of QCM based Molecular Weight Approximation 

 We have previously reported the use of ionic liquid –polymer composite coated 

QCM sensors for molecular weight (MW) approximation of VOCs. 15, 16   Therein, a 

relationship was determined between resonance frequency (∆f), motional resistance 

(∆R) / dissipation (∆D) and MW of VOCs.16 Motional resistance and dissipation are 

equivalent parameters and thus can be used interchangeably. The relationship is 

denoted below in equation 3.1: 

1) MW =
−∆𝑓

𝑘′∆𝑅2+𝑘∆𝑅
 (3.1), 

In this equation, MW is molecular weight; ∆f is change in resonance frequency; ∆R is 

change in motional resistance; k’ and k are coating dependent constants. Typically, k’ is 

small with low motional resistance change and thus equation 3.1 can be reduced to 

equation 3.2.  

2) 
∆𝑓

∆𝑅
= −𝑘MW  (3.2), 
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Thus, for composite coated QCM sensors the ratio of ∆f to ∆R or alternatively ∆f to ∆D is 

found to correlate with molecular weight of absorbed VOCs. Such a relationship allows 

approximation of MW of VOCs. Finally, we note that this relationship has not been found 

to be true for pure ionic liquids.    

3.1.3 Theory of QCM based Virtual Sensing  
 

I have previously reported the fabrication and theory of QCM virtual sensor 

arrays.26 QCM virtual sensing is based on dynamic operation of a single QCM sensor 

coated with a viscoelastic chemosensitive material. In this regard, a single sensor coated 

with a thin film of viscoelastic material when measured at multiple harmonics yields 

several quasi-independent sensor responses. Changes in sensor response at different 

harmonics are due to changes in mass and viscoelastic contributions as a result of 

perceived variations in film thickness. In fact, measurements of a fixed film thickness at 

multiple harmonics have an equivalency with measurements of multiple film thicknesses 

at a single harmonic.  This is recognized when one considers the following equation: 

 

𝛿 =  √
2𝜂

𝜌𝜔
       𝑤ℎ𝑒𝑟𝑒, 𝜔 = 2𝜋𝑓          (3.3), 

 

where δ is penetration depth, i.e. the distance at which the amplitude of the wave 

decreases to 1/e of its value at the surface, η is the viscosity of the coating; ρ is the 

density of the  coating; ω is angular frequency, and f is frequency. Therefore, as 

frequency increases/decreases, the penetration depth of the acoustic wave 

decreases/increases.  As a result of this changing penetration depth, perceived film 

thickness changes. It is well known from the Sauerbrey equation, that thin, rigid films 

exhibit the most Sauerbrey like behavior, while thick less rigid films exhibit more 

viscoelastic behavior, resulting in deviations from ideal sauerbrey behavior. Such 



72 

behavior allows large variations in sensor response to be achieved based on film 

thickness, viscoelasticity, and harmonics employed.26, 39, 40 It should be noted that the 

same effect could be accomplished by employing several physical sensors however it is 

more efficient to use a single sensor operated at multiple harmonics.   

3.2 Experimental Section 

3.2.1 Reagents and Materials 

 The composite chemosensitive adlayers used in the present study consists of IL 

[HMIm][NTf2] and PMMA. PMMA (molecular weight ~500,000 Da) was obtained from 

Polysciences, Inc. (Warrington, PA, USA). Anhydrous methanol, anhydrous ethanol, 

anhydrous 1-propanol, anhydrous 2-propanol, anhydrous 1-butanol, anhydrous 2-

butanol, anhydrous 3-methyl-1-butanol, and anhydrous 1-hexanol, 1-chlorohexane, 1-

methylimidazole and lithium bis(trifluoromethylsulfonyl)imide (LiNTf2) were obtained from 

Sigma-Aldrich (St. Louis, MO, USA). Dichloromethane (DCM) was obtained from Macron 

Fine Chemicals (Center Valley, PA, USA). All chemicals were used as received without 

further purification. 

3.2.2 Instrumentation 

The QCM-D E4 system and gold sensors were obtained from Q-Sense AB 

(Gothenburg, Sweden). Each QSX 301 sensor is a gold-coated AT-cut quartz crystal 

with a diameter of 14 mm and 5MHz fundamental frequency. Readout equipment (Model 

5878) as well as mass flow controllers (Model 5850E) were obtained from Brooks 

Instrument, LLC (Hatfield, PA, USA).  

3.2.3 Synthesis of Ionic Liquid  

The IL [HMIm][NTf2] was synthesized using a previously reported method.41, 42 

Briefly, a mixture containing equimolar amounts 1-methylimidazole and 1-chlorohexane 

was refluxed at 70°C for 48 hours. The product was isolated and subsequently washed 

with ethyl acetate several times. Finally, the product was rotovaped to obtain 1-hexyl-3-
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methylimidazolium chloride ([HMIm][Cl]), a light yellow highly viscous liquid. [HMIm][Cl] 

and [Li][NTf2] were dissolved in water at a 1:1.1 mole ratio and stirred overnight to 

facilitate ion exchange. The product was then washed with water to remove lithium 

chloride (LiCl) byproduct and then lyophilized to obtain [HMIm][NTf2] as a pale yellow, 

less viscous liquid.    

3.2.4 Preparation of Stock Solutions  

Stock solutions of [HMIm][NTf2] (1 mg mL-1) and PMMA (0.5 mg mL-1) were 

prepared in DCM using 20 mL borosilicate glass scintillation vials. Chemical structures 

are shown in Scheme B1.  

3.2.5 Preparation of Sensing Films  

All composite thin films utilized in these studies were prepared using an 

electrospray technique. Each film was coated onto a clean quartz crystal resonator 

(QCR)  using the same coating parameters, specifically, 1) voltage of 2.9 V, 2) current of 

3 A, 3) flow rate of 100 L/min and 4) working distance of 7 cm. The working distance is 

the distance between the nozzle and QCR surface. Variations in coating thicknesses 

were achieved solely by changing the electrospray time period.  

3.2.6 Film Characterization  

Films were imaged using a JEOL JSM-6390 Scanning Electron Microscope 

(SEM) in high vacuum mode. Energy Dispersive X-ray Spectroscopy (EDS) was 

performed using an EDAX APPOLLO X instrument.  

3.2.7 QCM-D Data Acquisition 

The present study was performed on a flow type system, as depicted in 

supporting information (Scheme B2). This system consists primarily of the computer 

interface, QCM-D, two independent gas flow channels, i.e. one channel for sample 

vapors and another channel for carrier gas, in combination with their respective mass 

flow controllers. Prior to data acquisition, the system was purged with ultrapure argon to 



74 

achieve a stable frequency and dissipation baseline. Chemical vapors were introduced 

via bubbling of argon gas through the sample reservoir in order to generate a sample 

assumed to be at saturated vapor pressure.  Sample flow is diluted as the sample 

channel and carrier channel merge, thus yielding percentages of the respective 

saturated vapor pressure (SVP) represented here in terms of partial pressure, pa/p0 = 

0.2, 0.3, 0.4. Digital mass flow controllers were used to control flow rate for each 

channel, while the total flow rate was adjusted to 100 sccm. Both channels are mixed 

over a 1 m length of tubing and vapors are passed over the QCM sensor crystal within 

the flow module. Flow module temperature was precisely regulated at 22 °C. Sample 

vapors were removed by purging the system with ultrapure argon until recovery of the 

baseline.  

3.2.8 Data Analysis  

Predictive models were developed independently using each of the three 

parameters tested, i.e. ∆f alone, ∆D alone, or 
Δ𝑓

Δ𝐷
 values. First, principal component

analysis (PCA) was performed in order to reduce the dimensionality of the original data 

set. The resultant principal components were used as input variables to discriminant 

analysis (DA) in order to quantitatively distinguish among and specifically identify the 

various test analytes. Input variables for each DA corresponded to the number of PCs 

required to constitute 99% of the variability in the original data set. A cross validation 

method was used to estimate classification error rates for each model.  

3.3 Results and Discussion 

3.3.1 Preparation and Characterization of Sensing Films  

Composite films were deposited onto the QCR surface using an electrospray. 

These films were then imaged using SEM and EDS. Representative micrographs for two 

different films, corresponding to a thin and thick coating, are shown in Figure B1. Based 
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on observation of these SEM images, it is evident that the films are heterogeneous and 

comprise isolated islands/droplets of varying sizes. SEM images further show that the 

surface coverage increases with coating time. These EDS images were acquired to 

obtain elemental compositions of the films. Upon close examination of each isolated 

mass, two distinct regions were observed, a circular central portion and an irregularly 

shaped peripheral region. It can be discerned that the central circular portion in each 

case is primarily ionic liquid and the peripheral region is primarily polymer by comparison 

of the SEM images and EDS composition analyses. This inference is supported by the 

high relative intensities of ionic liquid constituent elements in the circular region and the 

high polymer constituents in the peripheral region. I therefore concluded that the coating 

is not only spatially heterogeneous, but also compositionally heterogeneous. 

3.3.2 Examination of the Effect of Film Thickness on Gas-sensing Response of 

Ionic Liquid-Polymer Composites   

In order to examine whether sensor response for composite-based sensors exhibits 

similar thickness dependencies to those coated with pure ionic liquid, (as reported 

previously26), several sensors employing varying film thicknesses were investigated. 

Three QCRs were coated with a binary blend of [HMIm][NTf2]-PMMA to acquire three 

different film thicknesses with corresponding frequency change of ~ -2500 Hz, ~ -3,500 

Hz, and ~ -16000 Hz, respectively. This change in frequency represents the 1st harmonic 

change in frequency between the coated and uncoated QCR and corresponds to 

different film thicknesses. It should be noted that this material is one of many possible 

combinations of ionic liquid and polymer, and in this regard, other specifically tailored 

composites could be employed to enhance sensitivity if required for a particular 

application. However, a major advantage of this approach is that judicious selection of 

the ionic liquid was not required as is typically the case with QCM sensor arrays. 

Furthermore, employing ionic liquids with pronounced chemical affinities is likely to 
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deteriorate molecular weight approximation. Herein, I seek to demonstrate the simplicity 

of this method through proof of concept. Each sensor was exposed to various alcohol 

vapors at three different concentrations (pa/p0 = 0.2, 0.3, 0.4 where pa/p0 = 0.2 

corresponds to approximately 100 ppm for the least volatile analyte, hexanol, and 500 

ppm for the most volatile analyte methanol) and responses with respect to each 

parameter (∆f, ∆D, and 
Δ𝑓

Δ𝐷
) were measured in triplicate. Sensor response with regard to 

each parameter is depicted in Figure 3.1. Each sensor exhibited a stable baseline and 

responses were found to be stable, reproducible, and reversible as depicted in Figure 

B2. In agreement with theory, both positive and negative responses are observed.40 

Moreover, response pattern was observed to change with alteration in film thickness as 

shown in Figure 3.1. Such thickness dependent responses suggest that ionic liquid-

polymer composites are suitable for fabrication of VSAs. Furthermore, based on 

responses obtained from these experiments, ∆f and ∆D, as conventionally used 

parameters seem most suitable for discrimination of the closely related set of alcohols 

including positional isomers, as compared to 
Δ𝑓

Δ𝐷
. This result is truly logical, as the ratio of 

Δ𝑓

Δ𝐷
 responses for composite materials is known to correlate with molecular weight of 

pure vapor phase analytes.15, 16 As a result, isomers should exhibit similar response for 

the parameter 
Δ𝑓

Δ𝐷
, as depicted in Figure 3.1. While molecular weight approximation 

using the 
Δ𝑓

Δ𝐷
 parameter is feasible, discrimination of isomers for such systems is 

problematic, and thus necessitates a different strategy. In this regard, the presented VSA 

technique is particularly promising since it is amenable to discrimination using approriate 

parameters (∆f and ∆D), while simultaneously facilitating molecular weight approximation 

using data obtained from a single collection step. 
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Figure 3.1 Sensor response at fundamental frequency (1st harmonic ) across multiple 
film thicknesses at pa/p0=0.2. A) Change in frequency B) Change in dissipation C) 
Change in frequency/Change in dissipation. Insets depict sensor response at 2500 Hz 
and 3500 Hz. Error bars represent three replicate measurements. 
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3.3.3 Fabrication and Evaluation of a Virtual Sensor Array for Discrimination and 

Molecular Weight Approximation   

In order to fabricate viable VSAs, the previously coated QCRs corresponding to ~ 

-2500 Hz, and ~ -3,500 Hz were employed. These QCRs were selected because the 

respective films were of suitable thickness to obtain multiple harmonics with the thinnest 

film (~ -2500 Hz), exhibiting five harmonics and a film of intermediate thickness (~ -3500 

Hz) exhibiting four harmonics. This corresponds to 5 and 4 virtual sensors respectively. 

The thickest film (~ -16000 Hz) exhibited only one harmonic and thus was not suitable 

for fabrication of virtual sensor arrays. Each QCR was installed into the QCM-D and 

exposed to a set of alcohols and isomers at varying concentrations (pa/p0 = 0.2, 0.3, 0.4). 

By use of this instrumentation, it is possible to measure the resonance frequency and 

dissipation for up to seven different harmonics (odd harmonics from 1st through 13th). 

The frequency and dissipation at a particular harmonic are simultaneously measured, 

while different harmonics are successively probed within a range of milliseconds.43 In 

this manner, multiple harmonic data was collected for each of the QCRs, effectively 

creating two separate virtual sensor arrays. Although responses for ~ -2500 Hz, and ~ -

3,500 Hz based sensors were similar in sensitivity, ~ -2500 Hz exhibited more harmonics 

or virtual sensors. Thus, only the ~ -2500 Hz based VSA was selected for further studies. 

For clarity, Figure 3.2 depicts the VSA response with respect to the parameters Δf, and 

ΔD at a single concentration pa/p0= 0.2 The parameter 
Δ𝑓

Δ𝐷
 is excluded for discriminatory 

purposes since molecular weight dependencies would make this parameter ineffectual 

(Figure B3). As seen with pure ionic liquids,26 responses vary across harmonics, i.e. 

each virtual sensor yields a quasi-independent response. Responses were found to be 

stable, reversible, and reproducible across all harmonics. (Figure B2) When taken in 

aggregate, the patterns for these closely related analytes  show slight to extreme  



79 

Figure 3.2 Sensor response patterns at different harmonics for each alcohol with respect 
to the parameters A) ∆f and B) ∆D which constitute a virtual sensor array. The vapor 
partial pressure for all analytes is fixed at pa/p0 =0.2. Error bars represent the standard 
deviations of three replicate measurements. 

variations depending on harmonic and measured parameter. Each pattern is noted to 

exhibit cross reactive elements and is analyte specific, satisfying two requirements for 

effective use of sensor arrays. More importantly, isomers yield unique response patterns 

for each parameter tested, which demonstrates the ability of the VSA to distinguish these 

closely related analytes. Moreover, VSA pattern similarity, in the case of resonance 

frequency for the set of alcohols, is consistent with the pattern similarity presented for 

arrays based on chemical affinity.14 I note that resonance frequency and dissipation vary 

in different ways with increasing harmonic (thickness) which is in full agreement with and 
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well supported by data in the literature.40 Overall, these results seem promising for 

discrimination of set of closely related alcohols.   

3.3.4 Evaluation of a Virtual Sensor Array for Discrimination of Alcohols and 

Isomers  

To assess the discriminatory power of the developed VSA, two statistical 

approaches were employed. In this regard, principal component analysis (PCA), allows a 

qualitative assessment of discriminatory power via the use of score plots. In order to 

quantitate discrimination power, the second approach, discriminant analysis, uses the 

resultant principal components as inputs for classification of analytes using a cross 

validation method. Figure 3.3 contains quadratic discriminant analysis (QDA) canonical 

plots analyzed with respect to the parameters ∆f, and ∆D across three concentrations 

(pa/p0 = 0.2, 0.3, 0.4). In each analysis, three replicate measurements for each analyte 

at each concentration were considered for a total of 72 measurements. This data set 

was baseline shifted to account for positive and negative responses and normalized to 

account for concentration related magnitude increases. When examining these plots, 

good discriminatory capability is typically signified by spatial separation of different 

analytes and good clustering between replicate measurements of the same analyte. In 

this regard, the plot corresponding to the parameter ∆f, should represent superior 

discrimination as compared to the parameter ∆D. In fact, accuracies of 100% and 97.3% 

were achieved for the parameters ∆f, and ∆D respectively. For the parameter of ∆D, with 

slightly diminished identification accuracy, two samples of 1-propanol were confused for 

2-propanol. Overall, each parameter is highly successful in discriminating a set of 

alcohols and isomers. In order to approximate molecular weight of the vapor phase 

analytes, the normalized ∆f and the normalized ∆D data from the previous analysis step 

were used to calculate the 
Δ𝑓

Δ𝐷
 ratio. From the Sauerbrey equation, ∆f is proportional to 
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Figure 3.3 QDA canonical plots for a set of alcohols, with respect to parameters A) Δf 
and B) ΔD.  Plots consider either data set (∆f, or ∆D values for each analyte measured 
across three concentrations (pa/p0 = 0.2, 0.3, 0.4) in triplicate. Thus 9 measurements per 
analyte and 72 total measurements) normalized for concentration.   

 

mass change on the surface, while we have found that for ionic-liquid polymer blends, 

with low to moderate vapor sorption conditions, ∆D is proportional to moles adsorbed to 

the surface. The 
Δ𝑓

Δ𝐷
 data were plotted against molecular weight for all analytes, which is 

depicted in Figure 3.4. These plots consist of three replicate measurements at 3 

concentrations (pa/p0 = 0.2, 0.3, 0.4) for each analyte. (72 total measurements). A 

reasonably linear correlation between sensor response and molecular weight is 

achieved for all analytes with an R-squared value of 0.976. As expected, isomers exhibit 

close overlap since the molecular weight is identical. Notably, some spread in the 
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individual sample clusters is observed due to varying concentration.  While the overall 

molecular weight approximation for the 72 samples is reasonably good (R2=0.976), it is 

possible to further enhance correlation for these approximations. Towards this aim, 

another analysis was performed based on the raw data without normalization and 

baseline shifting. In this way, it is possible to determine not only the analyte identity, but 

also the concentration of the analyte. This type of analysis would be highly desirous for 

determination of unknowns, where not only the identity but also the concentration of the 

unknown is important. Figure 3.5 depicts PCA score plots across multiple concentrations 

(pa/p0 = 0.2, 0.3, 0.4) with respect to parameters ∆f, and ∆D. PCA score plots are 

presented here for ease of visual interpretation, while the corresponding linear  

 

   

Figure 3.4 Molecular weight approximation of alcohols using the 
Δ𝑓

Δ𝐷
 values calculated 

from the normalized data set.(  
Δ𝑓

Δ𝐷
 values calculated using normalized ∆f divided by 

normalized ∆D for each measurement) Nine measurements represented by dots (each 
alcohol measured across three concentrations (pa/p0 = 0.2, 0.3, 0.4) in triplicate) are 
depicted for each  alcohol at for a total of 72 measurements.  
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discriminant analysis (LDA) canonical plots are presented in Figure B4. LDA is used in 

this analysis as opposed to QDA in deference to the low sample size for each analyte. 

Examination of these plots shows that ∆f exhibits good clustering and spatial separation 

between each analyte, while ∆D exhibits fair clustering and some spatial separation. 

Typically, increasing concentration has a linear effect on sensor response for individual 

analytes and this is depicted by the arrows. Qualitatively the parameter ∆f appears to 

yield better discriminatory power.Moreover, the parameter ∆f exhibits superior 

quantitative discriminatory power as compared to the parameter ∆D, with classification 

accuracies of 100% and 98.7%, respectively. Overall ∆f still proves to be the best 

parameter for discrimination of this set of alcohols and isomers, whether or not 

identifying concentration is a concern. Once the identity of an analyte and its 

concentration has been determined, it is then possible to fit the data to a corresponding 

concentration specific molecular weight approximation. Figure 3.6 depicts plots of 
Δ𝑓

Δ𝐷

ratio at the first harmonic versus molecular weight at each concentration independently. 

Again, an excellent correlation between sensor response and molecular weight of 

analytes is observed. In fact, the linear correlation is enhanced with each plot exhibiting 

an R2≈0.99 Notably, the slope of the correlation varies gradually depending on 

concentration, with the lowest concentration exhibiting the highest slope and the highest 

concentration exhibiting the lowest slope. As a result, superimposition of these plots will 

exhibit the cluster spreading seen in Figure 3.4. Moreover, for the tested data set, it 

seems that as concentration increases, so does the quality of the molecular weight 

correlation due to increased overlap between the isomers. This is attributed to increased 

concentration overcoming sorption variation due to factors such as volatility and 

chemical affinity differences. Nonetheless, the presented data deconvolution thoroughly 

resolves the previous spreading issue and allows for excellent molecular weight 
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approximation across all concentrations. When taken in aggregate, these presented 

analyses are extremely promising for discrimination and molecular weight approximation 

of a set of alcohols and isomers, whether used for determination of analyte identity, 

concentration, or molecular weight. 

 

Figure 3.5 PCA score plots for a set of alcohols, measured in triplicate across multiple 
concentrations (pa/p0 =0.2, 0.3, 0.4) with respect to parameters A) Δf and B) ΔD Arrows 
depict direction of increasing concentration.   
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Figure 3.6 Molecular weight approximation of alcohols accounting for variation in 
concentration. Three replicate measurement dots are depicted for each alcohol at a 
single concentration for a total of 24 measurements in plot A) pa/p0 =0.2, B) pa/p0 =0.3, 
and C) pa/p0 =0.4 respectively.  
 

3.4  Conclusion  

In conclusion, I have presented a relatively simple method for increasing the 

diversity of analytical information output of QCM based sensor arrays. As such, I have 

developed a QCM VSA with two dimensional analysis capability, i.e. identification of 

analytes, as well as approximation of molecular weights. This is a first for a relatively 
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simple measurement technique such as QCM-D. In this regard, two types of analyses 

are presented: 1) identification of analyte and 2) identification of analyte as well as 

concentration of closely related alcohols. In each instance, excellent accuracy was 

achieved with the parameter, ∆f, providing superior discrimination power. The 
Δ𝑓

Δ𝐷
 ratio 

was used for molecular weight approximation and excellent correlations were obtained. 

In aggregate, the analyses presented herein are extremely promising for discrimination 

and molecular weight approximation of organic vapors, whether determining analyte 

identity, concentration, or molecular weight. Moreover this method seems promising for 

discrimination of vapor phase isomers. Further investigations are under way to ascertain 

the full potential of this approach.  

3.5 References 

1. Ayad, M. M. & Torad, N. L. Alcohol vapours sensor based on thin polyaniline salt 
film and quartz crystal microbalance. Talanta 78, 1280–1285 (2009). 

 
2. Karousos, N. G., Aouabdi, S., Way, A. S. & Reddy, S. M. Quartz crystal 

microbalance determination of organophosphorus and carbamate pesticides. 
Anal. Chim. Acta 469, 189–196 (2002). 

 
3. Yakovleva, M. E., Moran, A. P., Safina, G. R., Wadström, T. & Danielsson, B. 

Lectin typing of Campylobacter jejuni using a novel quartz crystal microbalance 
technique. Anal. Chim. Acta 694, 1–5 (2011). 

 
4. Bello, A. et al. Potentialities of a modified QCM sensor for the detection of 

analytes interacting via H-bonding and application to the determination of ethanol 
in bread. Sens. Actuators B Chem. 125, 321–325 (2007). 

 
5. Capone, S. et al. Monitoring of rancidity of milk by means of an electronic nose 

and a dynamic PCA analysis. Sens. Actuators B Chem. 78, 174–179 (2001). 
 
6. Buratti, S., Benedetti, S., Scampicchio, M. & Pangerod, E. C. Characterization 

and classification of Italian Barbera wines by using an electronic nose and an 
amperometric electronic tongue. Anal. Chim. Acta 525, 133–139 (2004). 

 
7. Ponrathnam, T., Cho, J., Kurup, P., Nagarajan, R. & Kumar, J. Investigation of 

QCM Sensors with Azobenzene Functionalized Coatings for the Detection of 
Nitroaromatics. J. Macromol. Sci. Part A 48, 1031–1037 (2011). 



87 
 

8. Wang, F., Gu, H. & Swager, T. M. Carbon Nanotube/Polythiophene 
Chemiresistive Sensors for Chemical Warfare Agents. J. Am. Chem. Soc. 130, 
5392–5393 (2008). 

 
9. Rehman, A. et al. Differential Solute Gas Response in Ionic-Liquid-Based QCM 

Arrays: Elucidating Design Factors Responsible for Discriminative Explosive Gas 
Sensing. Anal. Chem. 83, 7823–7833 (2011). 

 
10. Liang, C., Yuan, C.-Y., Warmack, R. J., Barnes, C. E. & Dai, S. Ionic Liquids: A 

New Class of Sensing Materials for Detection of Organic Vapors Based on the 
Use of a Quartz Crystal Microbalance. Anal. Chem. 74, 2172–2176 (2002). 

 
11. Goubaidoulline, I., Vidrich, G. & Johannsmann, D. Organic Vapor Sensing with 

Ionic Liquids Entrapped in Alumina Nanopores on Quartz Crystal Resonators. 
Anal. Chem. 77, 615–619 (2005). 

 
12. Jin, X., Yu, L., Garcia, D., Ren, R. X. & Zeng, X. Ionic Liquid High-Temperature 

Gas Sensor Array. Anal. Chem. 78, 6980–6989 (2006). 
 
13. Xu, X. et al. Ionic liquids used as QCM coating materials for the detection of 

alcohols. Sens. Actuators B Chem. 134, 258–265 (2008). 
 
14. Toniolo, R. et al. Room Temperature Ionic Liquids As Useful Overlayers for 

Estimating Food Quality from Their Odor Analysis by Quartz Crystal 
Microbalance Measurements. Anal. Chem. 85, 7241–7247 (2013). 

 
15. Regmi, B. P. et al. A novel composite film for detection and molecular weight 

determination of organic vapors. J. Mater. Chem. 22, 13732 (2012). 
 
16. Regmi, B. P. et al. Molecular weight sensing properties of ionic liquid-polymer 

composite films: theory and experiment. J Mater Chem C 2, 4867–4878 (2014). 
 
17. Bachar, N. et al. Sensor Arrays Based on Polycyclic Aromatic Hydrocarbons: 

Chemiresistors versus Quartz-Crystal Microbalance. ACS Appl. Mater. Interfaces 
5, 11641–11653 (2013). 

 
18. Umali, A. P. & Anslyn, E. V. A general approach to differential sensing using 

synthetic molecular receptors. Curr. Opin. Chem. Biol. 14, 685–692 (2010). 
 
19. Albert, K. J. et al. Cross-Reactive Chemical Sensor Arrays. Chem. Rev. 100, 

2595–2626 (2000). 
 
20. Suslick, B. A., Feng, L. & Suslick, K. S. Discrimination of Complex Mixtures by a 

Colorimetric Sensor Array: Coffee Aromas. Anal. Chem. 82, 2067–2073 (2010). 
 
21. Hierlemann, A., Weimar, U., Kraus, G., Schweizer-Berberich, M. & Göpel, W. 

Polymer-based sensor arrays and multicomponent analysis for the detection of 
hazardous oragnic vapours in the environment. Sens. Actuators B Chem. 26, 
126–134 (1995). 



88 

22. Janzen, M. C., Ponder, J. B., Bailey, D. P., Ingison, C. K. & Suslick, K. S.
Colorimetric Sensor Arrays for Volatile Organic Compounds. Anal. Chem. 78,
3591–3600 (2006).

23. Galpothdeniya, W. I. S. et al. Ionic liquid-based optoelectronic sensor arrays for
chemical detection. RSC Adv 4, 7225–7234 (2014).

24. Koo, C.-K., Samain, F., Dai, N. & Kool, E. T. DNA polyfluorophores as highly
diverse chemosensors of toxic gases. Chem. Sci. 2, 1910 (2011).

25. Kwon, H., Samain, F. & Kool, E. T. Fluorescent DNAs printed on paper: sensing
food spoilage and ripening in the vapor phase. Chem. Sci. 3, 2542 (2012).

26. Speller, N. C. et al. Rational Design of QCM-D Virtual Sensor Arrays Based on
Film Thickness, Viscoelasticity, and Harmonics for Vapor Discrimination. Anal.
Chem. 87, 5156–5166 (2015).

27. Granéli, A., Edvardsson, M. & Höök, F. DNA-Based Formation of a Supported,
Three-Dimensional Lipid Vesicle Matrix Probed by QCM-D and SPR.
ChemPhysChem 5, 729–733 (2004).

28. Höök, F. & Kasemo, B. in Piezoelectric Sensors (eds. Steinem, C. & Janshoff, A.)
5, 425–447 (Springer Berlin Heidelberg, 2007).

29. Lubarsky, G. V., Davidson, M. R. & Bradley, R. H. Hydration–dehydration of
adsorbed protein films studied by AFM and QCM-D. Biosens. Bioelectron. 22,
1275–1281 (2007).

30. Patel, A. R., Kerwin, B. A. & Kanapuram, S. R. Viscoelastic characterization of
high concentration antibody formulations using quartz crystal microbalance with
dissipation monitoring. J. Pharm. Sci. 98, 3108–3116 (2009).

31. Muller, J. B. A., Smith, C. E., Newton, M. I. & Percival, C. J. Evaluation of coated
QCM for the detection of atmospheric ozone. The Analyst 136, 2963 (2011).

32. Reimann, P. & Schütze, A. in Gas Sensing Fundamentals (eds. Kohl, C.-D. &
Wagner, T.) 15, 67–107 (Springer Berlin Heidelberg, 2013).

33. Vergara, A. et al. Chemical gas sensor drift compensation using classifier
ensembles. Sens. Actuators B Chem. 166–167, 320–329 (2012).

34. Beckers, N. A., Taschuk, M. T. & Brett, M. J. Selective room temperature
nanostructured thin film alcohol sensor as a virtual sensor array. Sens. Actuators
B Chem. 176, 1096–1102 (2013).

35. Ziyatdinov, A. & Perera-Lluna, A. Data Simulation in Machine Olfaction with the R
Package Chemosensors. PLoS ONE 9, e88839 (2014).

36. Xing Chen et al. A Non-invasive Detection of Lung Cancer Combined Virtual Gas
Sensors Array with Imaging Recognition Technique. in 5873–5876 (IEEE, 2005).
doi:10.1109/IEMBS.2005.1615826



89 

37. Yuan-Yuan, L. et al. QCM Coated with Self-assembled Cystine-bearing 1,3-
Bridged Calix[4]arenes for Recognizing Gas-phase Butylamines. Chin. J. Chem.
23, 571–575 (2005).

38. Latif, U., Rohrer, A., Lieberzeit, P. A. & Dickert, F. L. QCM gas phase detection
with ceramic materials—VOCs and oil vapors. Anal. Bioanal. Chem. 400, 2457–
2462 (2011).

39. Vogt, B. D., Lin, E. K., Wu, W. & White, C. C. Effect of Film Thickness on the
Validity of the Sauerbrey Equation for Hydrated Polyelectrolyte Films. J. Phys.
Chem. B 108, 12685–12690 (2004).

40. McHale, G., Lücklum, R., Newton, M. I. & Cowen, J. A. Influence of viscoelasticity
and interfacial slip on acoustic wave sensors. J. Appl. Phys. 88, 7304 (2000).

41. Berton, P., Regmi, B. P., Spivak, D. A. & Warner, I. M. Ionic liquid-based
dispersive microextraction of nitrotoluenes in water samples. Microchim. Acta
181, 1191–1198 (2014).

42. Huddleston, J. G. et al. Characterization and comparison of hydrophilic and
hydrophobic room temperature ionic liquids incorporating the imidazolium cation.
Green Chem. 3, 156–164 (2001).

43. Dixon, M. C. Quartz Crystal Microbalance with Dissipation Monitoring: Enabling
Real-Time Characterization of Biological Materials and Their Interactions. J.
Biomol. Tech. JBT 19, 151–158 (2008).



90 

CHAPTER 4. ASSESSMENT OF QCM ARRAY SCHEMES FOR 
MIXTURE IDENTIFICATION: CITRUS SCENTED ODORS 

4.1 Introduction 

One approach to discriminating complex mixtures of volatile organic compounds 

(VOCs) that is gaining popularity is use of cross-reactive sensor arrays (CRSAs).1-6 The 

advantage of CRSAs lies in their use to identify and discriminate complex samples, 

without the need for identification of individual VOCs. In fact, this operating principle is 

similar to that of using the mammalian nose, which is held as the gold standard. As a 

result, this approach has been applied to fabrication of gas sensing arrays using various 

combinations of transducers and recognition elements.7-9 Among possible combinations, 

quartz-crystal microbalance (QCM) transducers, coupled with ionic liquids as recognition 

elements, have proven increasingly attractive.3,5,10-13 As a transducer, the QCM is 

sensitive, offers potential for miniaturization,14 and is amenable to fabrication of sensor 

arrays.  Moreover, ionic liquids (ILs), as recognition elements,  have been demonstrated 

to be promising sensing materials for detection and discrimination of a wide range of 

organic vapors,3,11,14-17 ILs, which are defined as organic salts with melting points below 

100 °C, are highly tunable, possess low vapor pressure, and allow reversible capture of 

organic vapors. ILs have also been shown to possess viscoelastic behavior,16,18,19,26 a 

property which plays a critical role  in the present studies. Notably, IL based QCM 

sensor arrays have great potential to satisfy the requirements of simple, rapid, 

reproducible and reliable systems for discrimination of complex mixtures.3,11,20,21   

By convention, multisensor arrays (MSA) based on chemical affinity have been 

employed for applications using QCM based CRSAs. In such schemes, each sensor 

contains a unique cross-reactive recognition element. Upon exposure to complex 

mixtures, differential sensor responses are exhibited and subsequently used to generate 

analyte specific patterns. Such patterns are then analyzed using statistical methods 
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(e.g., principal component analysis (PCA), discriminant analysis (DA), artificial neural 

networks (ANN), cluster analysis (CA), etc.) to predict the utility of the array for 

identification/ discrimination. However, I have recently introduced an alternative strategy 

for a virtual sensor array (VSA) based on a single sensor, viscoelasticity, film thickness, 

and harmonics that exhibits significant advantages as compared to MSAs.10 In this 

regard, cost, complexity, and problems associated with sensor drift are minimized in 

VSAs. However, chemical affinity is lost as a discriminatory factor. Naturally, questions 

arise as to whether these two schemes are 1) comparable for a given application and 2) 

can be used as complementary approaches. 

Herein, I detail a comparative study between QCM array sensing schemes for complex 

mixture identification. Hence, the utility of MSA and VSA schemes for citrus odor 

recognition is directly compared. Furthermore, I introduce, for the first time, a 

complementary approach that incorporates the two sensing schemes, i.e. use of 

chemical affinity and viscoelastic discriminatory factors, to rapidly enhance the 

information density of QCM based sensor arrays. In this regard, we introduce a QCM 

based Virtual multisensor array (V-MSA) for complex mixture discrimination. Thus, I 

ultimately compare the performance of MSAs, VSAs, and V-MSAs, using statistical 

analysis to reveal the best array strategy for complex mixture identification. As a proof of 

concept, a set of citrus odors, represented by aroma profiles of five essential oils, were 

chosen as representative complex mixtures. Essential oils are produced by plants, and 

are responsible for the characteristic flavor and odors of particular species. As a result, 

these oils are important stocks for the food, pharmaceutical, and perfume industries.22,23 

Odors emitted from essential oils are highly complex mixtures of VOCs.  In fact, a 

common scent, such as one derived from an orange essential oil may contain more than 

300 VOCs although only a small fraction of these are truly responsible for the scent 
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commonly identify as orange.23 Hence, odors are challenging targets for accurate 

identification and discrimination using conventional approaches.2   

4.2 Approach  

4.2.1 Array Fabrication  

In this study one MSA, four VSAs and eleven V-MSAs were fabricated using ILs 

immobilized as thin films onto QCM-D transducers. Ionic liquids were chosen as 

promising chemosensitive materials for odor recognition based on work in the field by 

Nakamoto and colleagues, who have demonstrated that lipids have favorable aroma/ 

odor sensing properties.22,24-26 Since lipids are composed of a polar head group(s) and 

an aliphatic tail(s), four ionic liquids, 1-nonyl-3-methylimidazolium thiocyanate 

([C9MIm][SCN]), 1-nonyl-3-methylimidazolium bromide ([C9MIm][Br]), 1-octenyl-3-

pyridinium bromide ([C8Pyr][Br]), and 1-undecenyl-3-pyridinium bromide ([C11Pyr][Br]) 

were chosen for odor sensing since each IL contains a polar head group represented by 

the charged imidazolium/pyridinium group and anion and aliphatic tails represented by 

varying length carbon side chains (saturated and unsaturated). Structures of these four 

ILs are displayed in Scheme 1. Each of the four sensors acquired by coating four quartz 

crystal using these different ionic liquid, were installed into the instrument 

simultaneously. Measurements were taken concurrently for each sensor across multiple 

harmonics to create one master data set. Subsequently, fabrication of each sensor array 

scheme was accomplished by considering appropriate measurements from the master 

data set. The MSA comprises four sensors with coatings [C9MIm][SCN], [C9MIm][Br], 

[C8Pyr][Br], and  [C11Pyr][Br] respectively, where only the response at the first harmonic 

(i.e fundamental frequency) was used for data analysis. This is consistent with the 

standard operation of QCM MSAs in the literature. Four VSAs were employed using the 

same sensors from the MSA, only individually. In this regard, measurements across all 

harmonics for an individual sensor were considered for analysis as performed in a 
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previous publication.27 Finally, to test the utility of these two schemes as complementary 

methods, multiple V-MSAs were fabricated by considering the aggregate of 

measurements from all four sensors over all harmonics and these data were analyzed. It 

should be noted that all measurements considered for each array were taken 

concurrently. Therefore, any variation in identification accuracy is a result of the scheme 

as tested and not to differing experimental procedure or conditions. For clarity a scheme 

of each array type is depicted in Figure 4.2. 

Figure 4.1 Chemical structures of organic salt adlayers. 

4.2.2 QCM Virtual Sensor Arrays 

Development of QCM based virtual sensor arrays has been detailed in a 

previous publication.27 For clarification, a brief synopsis is provided here. Briefly, a QCM 

sensor coated with a viscoelastic material is dynamically operated to obtain analyte 

specific response patterns, which can be used for identification purposes. Such patterns 

are obtained by exploiting the effects of film thickness, harmonics, and viscoelasticity on 

sensor response of the QCM. It is known from the Sauerbrey equation that thin and rigid 
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Figure 4.2 QCM array sensing schemes A) MSA B) VSA and C) V-MSA. Where red, 
green, and blue sensors represent physical sensors. Smaller odd numbered sensors 
represent harmonics.   
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films exhibit best Sauerbrey like behavior. However, as film thickness increases, 

deviations from ideal Sauerbrey behavior occur due to increasing viscoelastic effects on 

sensor response. It is also known that such deviations can be further enhanced 

depending on the viscoelastic properties of the coating material to obtain all 

combinations of positive and negative sensor response. In my previous studies, this 

relationship was exploited to create sensor arrays by performing measurements across 

multiple harmonics. This strategy is based on the observation that change in sensor 

response at different harmonics is due to changes in mass and viscoelastic contributions 

as a result of perceived variations in film thickness. In fact, measurements of a fixed film 

thickness at multiple harmonics can be viewed as equivalent to measurements of 

multiple film thicknesses at a single harmonic. This idea is rationalized using the 

following equation: 

𝛿 =  √
2𝜂

𝜌𝜔
 𝑤ℎ𝑒𝑟𝑒, 𝜔 = 2𝜋𝑓  (4.1) 

where δ is penetration depth, i.e. the distance at which the amplitude of the wave 

decreases to 1/e of its value at the surface; η is the viscosity of the coating; ρ is the 

density of the  coating; ω is angular frequency, and f is frequency.10,28,29 

4.2.3 QCM Virtual Multisensor Arrays 

Herein, I introduce the first example of a QCM virtual multisensor array scheme. 

This scheme is based on employing the multisensory array and virtual sensor array 

schemes in a complementary fashion. Notably, the multisensor array scheme is based 

on employing multiple sensors, which differ, based on chemical affinity. In contrast, the 

virtual sensor array scheme is based on dynamic operation of a single sensor, which 

elicits differential response based on harmonics, film thickness, and viscoelasticity. 
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Thus, the logical conclusion is that the schemes are not required to be mutually 

exclusive. In fact, since each scheme employs different discriminatory factors, it should 

be expected that the combination (V-MSA) should yield more discriminatory information. 

In this regard, the V-MSA scheme should exhibit enhanced data density, which should 

result in more accurate analyses than either the MSA or VSA alone.     

4.3 Experimental Section 

4.3.1 Reagents and Materials 

Four ILs, i.e. [C9MIm][SCN],  [C9MIm][Br], [C8Pyr][Br] and [C11Pyr][Br],  were used 

to prepare  quartz crystal coatings in the present studies and were synthesized using 

previously documented procedures.27,30 Foods brand 100% pure essential oils were 

purchased from Whole Foods Inc, i.e. lemon, lime, orange, lemon eucalyptus, and 

lemongrass. All oils were used as received without further purification. Dichloromethance 

was purchased from Macron Fine Chemicals (Center Valley, PA, USA) and used without 

further purification.  

4.3.2 Preparation of Stock Solutions 

Stock solutions of [C9MIm][SCN], [C9MIm][Br], [C8Pyr][Br] and [C11Pyr][Br] (1 mg 

mL-1) were prepared in dichloromethane (DCM) using 20 mL borosilicate glass 

scintillation vials.  

4.3.3 Preparation of Sensing Films 

Electrospray was used for deposition of thin films. All films were coated using the 

same parameters: deposition time of 1.5 min, flowrate of 100 µl/ min, current of 3 Amps, 

voltage of 2.9 V, and a working distance of 7 cm. After coating, all films were blown with 

nitrogen and stored in a desiccator. The change in frequency between coated and 

uncoated crystal was found to be ~ -1000 Hz at the fundamental frequency. 
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4.3.4 QCM-D Data Acquisition 

The flow type system used to perform these experiments consists of two 

independent gas flow channels i.e., one channel for sample odors and another channel 

for carrier gas. As a first step in data collection, ultrapure argon is purged through the 

system to obtain a stable baseline frequency. Odors are introduced via bubbling of argon 

gas through the sample reservoir, which was filled with the pure essential oil of interest, 

in order to generate a sample of saturated vapor pressure.  As the sample channel and 

carrier channel merge, the sample flow is diluted yielding percentages of the respective 

saturated vapor pressure (SVP). (e.g. 10% 50%, 75%, 100% of saturated vapor 

pressure)  The flow rate was controlled by digital mass flow controllers and adjusted to a 

total flow rate of 100 sccm. After sufficient mixing over the length of the tubing (1m), the 

vapors are passed over the QCM sensor crystal placed inside a flow module. The 

chamber temperature was precisely regulated (22°C). Finally, to remove sample vapors, 

the system was purged with ultrapure argon until recovery of the baseline. A schematic 

of the experimental system is depicted in Figure C10. 

4.3.5 Data Analysis 

 A single data set was generated from these experiments and used to develop 

statistical models for assessing the identification accuracies of each of the arrays.  In this 

regard, independent predictive models were developed using frequency change (Δf) 

response values appropriate for a particular array scheme (VSA, MSA, V-MSA). In order 

to reduce the dimensionality of the data set, principal component analysis (PCA) was 

performed. Subsequently, discriminant analysis was performed using PCA indices 

(accounting for 99% of variance in the original data set) as input variables to 

quantitatively access the ability of each array for identification of selected odors. In this 

regard, linear discriminant analysis (LDA) and quadratic discriminant analysis (QDA) 

using cross-validation were used to obtain classification error rates for all models. 
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4.4 Results and Discussion 

4.4.1 Sensor Response of ILs to Odors 

Four QCM sensors coated with [C9MIm][SCN], [C9MIm][Br], [C8Pyr][Br], and  [C11Pyr][Br] 

respectively, were installed into a flow type system. Subsequently all sensors were 

introduced to a set of five citrus scented odors (lemon, lime, orange, lemon eucalyptus, 

lemongrass) selected for comparative assessment of complex mixture identification 

ability. This set consists of chemically distinct and closely related odors generated by 

essential oils. All sensors were exposed to three different concentrations (10%, 20%, 

40% of SVP) of the respective odors for 30s intervals and Δf at each harmonic was 

measured. Each sensor was found to exhibit stable baseline, and reversible capture. 

(Figure C1-C9) Moreover, sensor responses were found to be stable and reproducible. 

Figure 4.3 depicts sensor response for all sensors across multiple harmonics when 

exposed to each of the five citrus scented odors. As in my previous study,27 cross-

reactive responses to different analytes were obtained by simply changing harmonics of 

the same sensor. This suggests that each sensor has potential for not only fabrication of 

MSAs, but also VSA and V-MSAs. As expected, positive and negative shifts in resonant 

frequency were obtained. Such shifts can be attributed to relative changes in the mass 

and viscoelastic contributions of the chemosensitive film to sensor response. In this 

regard, response variability is primarily governed by film viscoelasticity and penetration 

depth with changing harmonic. These dependencies have been described in previous 

publication.27 Overall, the differential sensing patterns obtained for each sensor seem 

promising for fabrication of sensor arrays. 

4.4.2 Evaluation of a Multisensor Array for Odor Recognition  

Fabrication of an MSA was performed in the traditional fashion.  In this regard, an MSA 

consisted of all four chemically distinct sensors, specifically [C9MIm][SCN], [C9MIm][Br], 

[C8Pyr][Br], and  [C11Pyr][Br]. Only measurements taken at the fundamental frequency  
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Figure 4.3 Sensor response of citrus type odors at multiple harmonics at 20% of SVP for 
A) [C9MIm][SCN], B) [C9MIm][Br], C) [C8Pyr][Br], and D) [C11Pyr][Br]. Error bars
represents standard deviation for three replicate measurements. 
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(first harmonic) for each sensor were considered for MSA performance evaluation. As a 

result, the data matrix consisted of Δf values, where the columns represented each of 

the chemically distinct sensors and the rows represented each of the odors tested at 

three concentrations (10%, 20%, and 40% of SVP).  Three replicate measurements 

were considered for each odor, giving a total of 9 measurements per sample.(4 columns 

x 45 rows) A canonical plot for this MSA is depicted in Figure 4.4, wherein ellipses 

represent 95% confidence. Qualitatively, high level discrimination is typically represented 

by good clustering within a sample and spatial separation between samples. Therefore, 

the high degree of overlap exhibited in this plot suggests less than optimal accuracy. 

This is quantitatively supported, by classification results using LDA with the cross 

validation method, where an accuracy of 84.5% was achieved. This corresponds to 7 

total misclassifications. As suggested by examination of the plot, two major groups of 

odor confusion were exhibited. The first group contains 5 instances of confusion 

between lemon, lemongrass, and orange odors, while the second group consists of 2 

instances between lime and lemon eucalyptus odors. Typically classification accuracies 

can be improved by employing quadratic discriminant analysis (QDA). This method 

allows for better approximation of decision boundaries resulting in better classification. 

However, it can only be employed when the number of sensors are less than the number 

of sample measurements for a single analyte. Upon employing QDA on the same data 

set, an accuracy of 91.2% corresponding to 4 misclassifications, was achieved. Overall, 

this level of accuracy suggests that the multisensor array as presented is a reasonable 

method for odor identification. Incidentally, including additional sensors as is done in 

some studies should further enhance accuracy.3,11 Yet, when compared to methods 

presented herein, addition of more sensors could be disadvantageous as it increases 

experimental time, materials cost, and complexity when using the current system.  
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Figure 4.4 Canonical plot for identification of five citrus type odors with respect to a 4 
sensor MSA. Plot considers 45 total measurements consisting of three replicate 
measurements at three concentrations for each odor (9 measurements per sample). 

4.4.3 Evaluation of Virtual Sensor Arrays for Odor Recognition. 

To examine the utility of VSAs for applications in complex mixture identification, 

each sensor was analyzed as an independent system. In this regard, an individual 

sensor, coated with a single ionic liquid and its respective multiple harmonic data 

(frequency change at different harmonics) would constitute an array. The analyte-

selective sensing patterns generated by measurements at multiple harmonics are 

subsequently used for data analysis. Thus, the data matrix would consist of Δf values 

where the columns represented each of the harmonics and the rows represented each 

of the odors tested (7 columns x 45 rows). Three replicate measurements were 

considered for each odor. Each ionic liquid was tested as a separate VSA. Figure 4.5 

depicts canonical plots for each of the 4 VSAs tested, where ellipses represent 95% 

confidence. Al-though the discriminating factors for the two array sensing schemes 

(MSA and VSA) are different, it is interesting to see that the same overlaps between 
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certain odors are present. This would suggest that both array types yield comparable 

information. This is further supported when considering the identification accuracies 

obtained via LDA. In this regard, accuracies of 88.9%, 73.4%, 80%, 73.4% were 

acquired for [C9MIm][SCN], [C9\MIm][Br], [C8Pyr][Br], and [C11Pyr][Br] based VSAs, 

respectively. Furthermore, these accuracies can be enhanced by employing QDA. In this 

Figure 4.5 Canonical plots for identification of five citrus type odors with respect to four 
VSAs based on A) [C9MIm][SCN] B) [C9MIm][Br] C) [C8Pyr][Br], and D)  [C11Pyr][Br] 
respectively. Each Plot considers 45 total measurements consisting of three replicate 
measurements at three concentrations for each odor (9 measurements per sample). 

regard, accuracies of 97.8%, 91.2%, 97.8%, and 97.8% were obtained for 

[C9MIm][SCN], [C9\MIm][Br], [C8Pyr][Br], and  [C11Pyr][Br] based VSAs, respectively. 
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Thus, depending on sensor composition, the accuracies obtained are comparable or 

better than the presented MSA. However, when considering the ease of implementation 

and significant advantages that arise when using a VSA, this method may have better 

utility for certain applications. Although, these accuracies represent a vast improvement 

compared to earlier results (MSA), further optimization would be needed to obtain 100% 

accuracy. 

4.4.4 Evaluation of Virtual Multisensor Sensor Arrays for Odor Recognition  

Thus far, evaluation of data presented herein, supports the assertion that MSAs and 

VSAs can be used interchangeably. Notably, such array schemes are not mutually 

exclusive. In addition, the discriminating factor for each scheme is quite different. Thus, it 

is reasonable to expect that the two schemes could be complementary. Since a VSA is 

based on dynamic operation of a single sensor and an MSA is based on utility of multiple 

chemically distinct sensors, a complementary system could consist of several 

dynamically operated sensors, which are chemically distinct. In order to assess the utility 

of using the MSA and VSA methods as complementary methods, several V-MSAs were 

fabricated using previously collected data.  First, a set of V-MSAs, consisting of two 

sensors, was fabricated. In this regard, response data for two chemically distinct sensors 

at all harmonics were considered, effectively combining each of the array schemes. By 

combining the two schemes, the response output has been augmented 2 fold in 

comparison to a VSA and 7 fold when compared to 2-sensor MSA.  In terms of 

dimensions, the resultant data matrix consisted of 14 columns representing the 

harmonics (i.e 2 VSAs or 7 harmonics per sensor) and 45 rows representing three 

replicate tests at three concentrations of 5 odors. Figure 4.6 is a depiction of canonical 

plots for the six possible 2-sensor V-MSA combinations derived from the four chemically 

distinct sensors (1- [C9MIm][SCN], 2- [C9MIm][Br], 3- [C8Pyr][Br], and 4- [C11Pyr][Br] ). 

While it is challenging to discern qualitative differences between these plots, quantitative 
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accuracies showed a marked increase in identification capability for each of the two 

sensor V-MSAs. In this regard, LDA accuracies of 97.8%, 100%, 97.8%, 93.4%, 84.5% 

and 93.4% were obtained for sensor combination A) 1-2 B) 1-3 C) 1-4 D) 2-3 E) 2-4 and 

F) 3-4, respectively. It should be noted that these accuracies are obtained through LDA

since QDA is not applicable for this system given that the number of sensors are more 

than the number of measurements per sample. Therefore, performance comparisons 

should be made by considering the LDA results for the previous array sensing schemes, 

which indicates that the V-MSA method is very promising. Moreover, there is a trend in 

accuracies for the V-MSAs comprised of 2 chemical sensors that can be predicted by 

considering their constituent VSA accuracies. In this regard, V-MSAs comprising more 

accurate VSA sensors yield higher identification accuracies, while V-MSAs comprising 

less accurate VSA sensors yield lower accuracies. This can be clearly seen when 

examining V-MSA B, which is comprised of a [C9MIm][SCN] VSA (88.9%) and a 

[C8Pyr][Br] VSA (80%) to V-MSA E, which consists of a [C9MIm][Br] VSA (73.4%)  and a 

[C11Pyr][Br] VSA (73.4%). The former combination comprises the most accurate VSAs 

and exhibits the highest accuracy V-MSA (100%) as compared to the latter combination, 

which comprises the least accurate VSAs and exhibits the lowest accuracy V-MSA 

(84.5%). While these results are quite reasonable, it is still possible to further enhance 

the discriminatory power and identification accuracies of V-MSAs. In this regard, a set of 

V-MSAs consisting of three chemical sensors was fabricated. Figure 4.7 is a depiction of 

LDA canonical plots for 4 possible combinations of V-MSAs (comprised of three 

chemical sensors) derived from the four chemically distinct sensors ( 1- [C9MIm][SCN], 

2- [C9MIm][Br], 3- [C8Pyr][Br], and  4- [C11Pyr][Br] ).For each array, the resultant data 

matrix consisted of 21 columns representing the harmonics and 45 rows representing 

three replicate tests at three concentrations of 5 odors. This corresponds to a 3-fold 

enhancement of data output as compared to a VSA and a 7-fold enhancement as 
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compared to a 3 sensor MSA. Again, LDA was employed using the cross validation 

method, and accuracies of 100%, 97.8%, 100%, 97.8% were obtained for sensor 

combination A) 1-2-3 B) 1-2-4 C) 1-3-4 D) 2-3-4, respectively. Interestingly, two 

observations can be made when examining the resultant plots and accuracies. When 

considering the plots, it is clear that the addition of a 3rd sensor to the V-MSA, 

significantly enhances spatial separation and clustering of individual samples. In fact, the 

degree of overlap displayed in these plots is by far the least when compared to any of 

the previous sensing schemes. Qualitatively, this agrees with the excellent identification 

accuracies obtained. When considering accuracies, it is clear that addition of an extra 

sensor further enhances V-MSA results as would be expected from comparing the V-

MSA comprised of 2 sensors to the single sensor VSA. Notably, sensor combinations, 

which were 100% accurate in the two-sensor iteration, retained their level of accuracy 

upon addition of a third sensor as would be expected. Moreover, two sensor 

combinations which were less accurate exhibited an increase in accuracy upon addition 

of a third sensor. Such results suggest that even the least accurate systems can be 

suitably optimized by addition of a single sensor. Finally, a V-MSA was fabricated by 

using all four ionic liquid sensors, and statistical analysis was used to measure 

identification accuracy. The resultant data matrix of this array consisted of 28 columns, 

representing the harmonics and 45 rows, representing three replicate tests at three 

concentrations of 5 odors. Apparently, this corresponds to a 4-fold enhancement of data 

output as compared to a VSA and a 7-fold enhancement as compared to a 4 sensor 

MSA. Figure 4.8 is a canonical plot for the 4 sensor V-MSA comprised of four chemically 

distinct sensors ( 1- [C9MIm][SCN], 2- [C9MIm][Br], 3- [C8Pyr][Br], and  4- [C11Pyr][Br] ). 

In comparison to plots generated from previous sensing schemes, it is easy to see that 

clustering within a sample and spatial separation between samples is significantly 

improved. Qualitatively, this plot should represent a significant increase in odor using the 
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Figure 4.6 Canonical plots for identification of five citrus type odors with respect to 
several two sensor V-MSAs  based on combinations of 1- [C9MIm][SCN], 2- [C9MIm][Br], 
3- [C8Pyr][Br], and  4- [C11Pyr][Br] ) where arrays consist of  sensors A) 1-2 B) 1-3 C) 1-4 
D) 2-3 E) 2-4 and F) 3-4  respectively. Each Plot considers 45 total measurements
consisting of three replicate measurements at three concentrations for each odor (9 
measurements per sample). 
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cross validation method. This result is truly logical based on results from the three 

sensor V-MSA. Taken in aggregate, the results herein extoll the effectiveness of the new 

V-MSA scheme. Hence, I have proven that the V-MSA is an excellent approach 

identification accuracy, as sample overlap is almost nonexistent. This supposition is 

supported quantitatively, where an odor identification accuracy of 100% was obtained 

Figure 4.7 Canonical plots for identification of five citrus type odors with respect to 
several three sensor V-MSAs  based on combinations of 1- [C9MIm][SCN], 2- 
[C9MIm][Br], 3- [C8Pyr][Br], and  4- [C11Pyr][Br] ) where arrays consist of  sensors A) 1-2-
3 B) 1-2-4 C) 1-3-4 D) 2-3-4 respectively. Each Plot considers 45 total measurements 
consisting of three replicate measurements at three concentrations for each odor (9 
measurements per sample). 
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Figure 4.8 Canonical plot for identification of five citrus type odors with respect to a four 
sensor V-MSA comprised of  sensors 1-2-3-4 where 1- [C9MIm][SCN], 2- [C9MIm][Br], 3- 
[C8Pyr][Br], and  4- [C11Pyr][Br]. Plot considers 45 total measurements consisting of 
three replicate measurements at three concentrations for each odor (9 measurements 
per sample). 

for complex mixtures analysis. High discrimination accuracy was acquired as the number 

of sensors were increased within a given V-MSA scheme. 

4.5 Conclusion 

In conclusion, a comparative study to assess the utility of QCM array sensing schemes 

for complex mixture identification was performed by employing four chemically distinct 

ionic liquids. It was observed that MSA and VSA schemes could be used 

interchangeably since accuracy levels were comparable. However, the VSA scheme is 

potentially more promising than MSA in terms of cost, labor, and time expenditure. 

Furthermore, a new sensing scheme based on complementary use of MSA and VSA 

schemes was introduced. In this regard, multiple V-MSAs were systematically developed 

and analyzed using two, three, and four ionic liquid based sensors. After comparing 
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results, it is clear that the V-MSA scheme is extremely promising as compared to 

existing QCM sensing schemes. It is also apparent from this scheme that increased data 

density is important for achieving highly accurate identification of complex mixtures. 

Overall, these studies are particularly promising for use of QCM sensor arrays in 

applications involving odor recognition. Potential examples of such applications would 

include: quality control of perfume/ scents and vapor phase assessment of food quality. 

Currently, additional studies are underway to ascertain the full potential of this method 

with regard to complex mixture analysis. 
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CHAPTER 5. QCM VIRTUAL MULTISENSOR ARRAY FOR FUEL DISCRIMINATION 
AND DETECTION OF GASOLINE ADULTERATION 

5.1 Introduction 

Since the mid -19th century, petroleum based fuels have been the energy source 

of choice for meeting energy requirements worldwide. In this regard, gasoline, and diesel 

have proven to be globally important fuels, for transportation purposes.1,2 As a result, 

illegal adulteration of such fuels can be a lucrative endeavor. This illegal activity is 

typically spurred by price disparities between petroleum based fuels and commonly 

available adulterants, such as industrial solvents.3,4 In this regard, the cost difference is 

normally driven by differential taxation between fuels and potential adulterants. 3,4 

Unfortunately, adulteration can have significant economic and environmental impacts. 

Such impacts include increased toxic emissions, lost taxes, and consumer vehicle 

malfunctions.3-8 Thus there is a need for simplistic cost effective methods for detection of 

fuel adulteration. 

Numerous analytical techniques have been employed to detect fuel adulteration. 

In fact, the American Society for Testing and Materials International (ASTM) has 

documented several methods that have been accepted as global standards.3  These 

include a number of physicochemical property based tests as well as more sophisticated 

analytical approaches.  In this regard, relative density measurements, and 

evaporation/distillation methods are among the simplest approaches. However these 

approaches are often not sufficient for detecting low level adulteration or adulteration 

with naturally occurring fuel constituents such as hydrocarbon solvents.3 More complex 

analytical methods such as gas chromatography-mass spectrometry (GC-MS) or 

implementation of dye markers are more reliable.3,9 However, these approaches are 

typically expensive, time consuming or require significant expertise to achieve accurate 

results.3,8 Due to these limitations, researchers are developing novel systems or 
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application of novel techniques for detection of fuel adulteration. In this regard, all 

advanced research can be divided into two main categories 1) application of new 

techniques to traditional analytical approaches or 2) implementation of new instrumental 

approaches. With regard to the former category, the vast majority of reports in literature 

employ statistical analyses of data to enhance traditional approaches such as distillation 

and gas chromatography based methods.10-14 In each case, statistical techniques are 

employed to simplify data analyses and enhance accuracy of detection.  This approach 

addresses some of the limitations of traditional techniques such as the requirement for 

lengthy analysis time. With regard to the latter category, several new methods have 

been developed for detection of gasoline adulteration which are mostly based on 

applying new instrumental approaches. In this regard, several spectroscopy and 

spectrometry based methods have been reported recently.8,15-25 In the present study, an 

alternative method for fuel discrimination and detection of gasoline adulteration, based 

on the quartz crystal microbalance (QCM), is introduced. Similar to some of the 

spectroscopy based methods, advantages of this approach include, lack of sample 

preparation, and prompt nondestructive analyses.  

The QCM is a simple yet sensitive analytical tool primarily used as a mass 

detection device. However, as a physical event transducer, this device is particularly 

amenable to the fabrication of sensors and sensor arrays. 26-35 In this regard, a gas 

phase QCM sensor is typically comprised of a chemosensitive layer immobilized onto 

the quartz crystal resonator surface (QCR). The chemosensitive adlayer, which directly 

affects sorption properties, imparts sensitivity and selectivity to the sensor.  As a 

gravimetric transducer, the QCM converts the sorption event into a quantifiable 

electronic signal. When several sensors employing different chemosensitive adlayers 

are utilized in tandem, a mutisensor array (MSA) is developed. MSAs represent the most 

prevalent examples of QCM sensor arrays in literature, 30-32,36-44 however such systems 
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suffer from limitations when trying to discriminate numerous closely related highly 

complex mixtures. Recently, I introduced an alternative scheme called a virtual sensor 

array (VSA) based on the dynamic operation of a signal sensor that utilizes harmonics, 

film thickness, and viscoelasticity to generate differential responses.45 While powerful for 

discriminating closely related pure analytes, using single chemosensitive material, this 

scheme can also suffer some accuracy limitations when analyzing multiple highly 

complex mixtures. To address the limitations experienced by the MSA and VSA 

schemes, I introduced a new scheme that combines the MSA and VSA scheme, termed 

a Virtual Multisensor array (V-MSA). This new scheme is based on dynamic operation of 

multiple sensors, and exhibits multifold enhancement of data density when compared to 

its component schemes. It was found that enhanced data density was a key factor in 

accurate discrimination of volatile complex mixtures. Hence, I further explore the utility of 

this newly reported sensing scheme (V-MSA) by assessing its potential for fuel 

discrimination and detection of gasoline adulteration.   

Herein, a new approach for fuel discrimination based on employing the quartz 

crystal microbalance is introduced. In this regard, the development and implementation 

of a QCM V-MSA, employing organic salts (OSs) as recognition elements, for 

discrimination of pure and adulterated fuel samples is described. OSs, particularly Ionic 

liquids and Group of Uniform Materials based on Organic Salts (GUMBOS), have proven 

promising chemosensitive adlayers for gas phase QCM sensors and sensor 

arrays.31,32,45-48 Moreover, OSs exhibit viscoelasticity and favorable sorption properties, 

which are vital for fabrication of V-MSAs. 35,49,50  As a proof of concept, this system was 

initially employed to discriminate between four petroleum based fuels, specifically 

petroleum ether, gasoline, kerosene and diesel, which represent the most chemically 

distinct complex mixtures assessed. Subsequently, this array was used to discriminate 

more closely related complex mixtures represented by gasoline grades (Exxon Regular, 
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Exxon Plus, Exxon Supreme). Finally the system was utilized to detect adulteration of 

gasoline by common industrial solvents (methanol, ethanol, xylenes, and toluene) with 

varying adulterant concentration (v/v ratios 1%,10%,20%,40%). This study is the first 

report of a QCM sensor array for applications in fuel discrimination and detection of 

gasoline adulteration.     

5.2 Experimental Section 

5.2.1 Reagents and Materials 

 Four OSs, named 1-octyl-3-methylimidazolium bromide ([C8MIm][Br]), 1-decyl-3-

methylimidazolium bromide ([C10MIm][Br]), 1-dodecyl-3-methylimidazolium bromide 

([C12MIm][Br]), 1-hexadecyl-3-methylimidazolium bromide ([C16MIm][Br])   were used to 

prepare coatings on the quartz crystal resonators utilized in these studies. These ILs 

were synthesized using previously documented procedures.51,52 Fuel samples were 

purchased from a local Exxon Gas station in Baton Rouge, Louisiana. Dichloromethane 

was obtained from Malindkroft fine chemicals, Xylenes were obtained from Fischer 

Scientific while Toluene, Anhydrous Methanol and Anhydrous Ethanol were obtained 

from Sigma Aldrich. All materials were used as is, without any further purification.  

5.2.2 Preparation of Stock Solutions  

Stock solutions of [C8MIm][Br], [C10MIm][Br], [C12MIm][Br], and [C16MIm][Br] (1 

mg mL-1) were prepared in dichloromethane (DCM) using 20 mL borosilicate glass 

scintillation vials.  

5.2.3 Preparation of Sensing Films  

All films were coated on the QCR using electrospray deposition under the same 

parameters. A flowrate of 100 µl/ min, current of 3 Amps, voltage of 2.9 V, and a working 

distance of 7 cm were used. After coating, nitrogen gas was blown on all films, and films 

were stored in a desiccator. Change in frequency between coated and uncoated crystal 

was found to be ~ -2000 Hz at the fundamental frequency. 
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5.2.4 Preparation of Fuel Samples 

All fuel samples (non adulterated samples) were prepared by introducing 10 mL 

of the respective sample into a 20 mL borosilicate glass scintillation vials. 

5.2.5 Preparation of Adulterated Samples 

 All adulterated samples were prepared in 20 mL borosilicate glass scintillation 

vials using Exxon regular gasoline and the chosen adulterant.  Adulterated samples of 

gasoline were prepared by calculating the appropriate v/v ratio (1%,10%,20%,40%)  for 

a 10 mL sample.  

5.2.6 Array Fabrication 

 In this chapter, a V-MSA was fabricated using OSs immobilized as thin films onto 

QCM-D transducers. In this regard, four QCRs were coated with ionic liquids: 1-octyl-3-

methylimidazolium bromide ([C8MIm][Br]), 1-decyl-3-methylimidazolium bromide 

([C10MIm][Br]), 1-dodecyl-3-methylimidazolium bromide ([C12MIm][Br]), 1-hexadecyl-3-

methylimidazolium bromide ([C16MIm][Br]) respectively.  These materials were selected 

as a simple representation of a homologous series of organic salts. A bromide counter 

ion was chosen due to high sensitivity that halide containing ionic liquids exhibit towards 

alcohols.46  As chain length increases within the series, viscosity increases resulting in 

two of the four OSs being solid phase. Structures of the four OSs are displayed in Figure 

D1. Subsequently, the four sensors coated with these four OSs were installed into the 

QCM-D and concurrent measurements were recorded for all sensors across multiple 

harmonics. This effectively creates a master data set which represents a virtual 

mutisensor array (V-MSA), i.e. measurements from several dynamically operated, 

chemically distinct sensors.  

The operating principle of the V-MSA, is based on an amalgamation of the MSA 

and VSA schemes i.e dynamic operation of chemically distinct sensors. In this regard, 

sensor response is dependent upon five parameters: chemical affinity, viscoelasticity, 
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film thickness, harmonics and nature of analyte. Thus it is possible to obtain 

combinations of positive and negative differential sensor response as seen in previous 

publications.45   

5.2.7 Data Acquisition 

A system consisting of two independent gas flow channels (one channel for 

sample odors and another channel for carrier gas) was used to perform this experiment. 

As a first step in data collection, a stable baseline was obtained by purging the system 

with ultrapure argon. Subsequently, fuel samples were introduced via bubbling of argon 

gas through the sample reservoir, which was filled with the sample of interest, to 

generate a sample of saturated vapor pressure.  As the sample channel and carrier 

channel merge, the sample flow is diluted yielding percentages of the respective 

saturated vapor pressure (SVP). (e.g. 10%, 20%, 40% of SVP) The flow rate was 

controlled by digital mass flow controllers and adjusted to a total flow rate of 100 sccm. 

After mixing over the 1 meter length of the tubing, the vapors flow over the QCM sensor 

crystals placed inside a flow modules. Chamber temperature was precisely regulated 

(22°C). Finally, to remove sample vapors, the system was purged with ultrapure argon 

until recovery of the baseline. A schematic of the experimental system is depicted in 

Figure D2 of the appendix. 

5.2.8 Data Analysis  

Data sets consisting of Δf responses, generated from these experiments were 

used to develop statistical models for assessing the identification accuracies of the V-

MSA.  As a first step in analysis, PCA was employed to reduce the dimensionality of the 

data set. Thereafter, the principal components accounting for 99% of variance in the 

original data set were used as input variables for linear discriminant analysis. 

Quantitative assessment of classification accuracy was obtained via of the use of LDA 

coupled with leave one out cross validation.   
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5.3 Results and Discussion 

5.3.1 Fuel Discrimination using a QCM V-MSA  

After installing the four sensors into the QCM-D, all sensors were exposed to four 

hydrocarbon fuels (petroleum, gasoline, kerosene and diesel) at multiple concentrations 

to assess suitability of the system for discrimination between complex hydrocarbon 

mixtures. Each fuel was exposed at three different concentrations (10%, 20%, 40% of 

SVP) for an exposure time of 1 minute. Measurements of Δf at each harmonic were 

acquired, and each sensor was found to exhibit stable baseline and reproducible 

responses with reversible capture. (Supporting information figure D3-D6) Figure 5.1 

depicts sensor response of each sensor for the four hydrocarbon fuels. As in my 

previous work, positive and negative responses were obtained via measurement at  

 

 

Figure 5.1 Multiple harmonic sensor response of ionic liquids [C8MIm][Br], [C10MIm][Br], 
[C12MIm][Br], [C16MIm][Br] to four hydrocarbon fuels at 20% of SVP. Responses 
considered in aggregate constitute a V-MSA. For clarity X-axis labels are in  the form, 
CnFn where Cn represents ionic liquid cation and Fn represents harmonic number. Error 
bars represent three replicate measurements.  
 

multiple harmonics. Moreover, each fuel mixture exhibited an analyte specific response 

pattern which is promising for identification of each complex mixture. Overall, gasoline 
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generally exhibits the greatest sensor response and this is likely due to the presence of 

ethanol within the mixture. This is particularly promising for further studies in this 

chapter. To assess the capability of the V-MSA for discrimination between the four 

different fuels, principal component analysis (PCA) and linear discriminant analysis 

(LDA) were employed.The data matrix consisted of Δf values where the columns 

represented each of the sensors and the rows represented each of the fuels tested 

across three concentrations (20%, 30%, and 40% of SVP). Three replicate 

measurements were considered for each sample for a total of 9 measurements per 

sample. (24 columns x 36 rows) A canonical plot for the V-MSA is depicted in figure 5.2,  

Figure 5.2 LDA canonical plot for discrimination of four hydrocarbon fuels using a V-
MSA. Plots considers a data set of ∆f values for each sample measured across three 
concentrations (pa/p0 = 0.2, 0.3, 0.4) in triplicate (9 measurements per sample for 36 total 
measurements).   
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wherein ellipses represent 95% confidence. From a quick visual assessment of this 

figure, it is easy to identify that each sample is well discriminated. A quantitative 

assessment of identification accuracy was obtained using the cross validation method. In 

this regard, each sample was correctly identified yielding 100% accurate discrimination 

of the hydrocarbon fuels. These results demonstrate that utilizing a QCM V-MSA is a 

promising approach for discrimination of hydrocarbon fuels. Since gasoline proved to be 

the most sensitive fuel for the array as configured, further studies were conducted with 

gasoline. This result is to be expected as halide containing organic salts were shown be 

sensitive to alcohols,46 and gasoline contains a significant concentration of ethanol (10-

15%v/v).    

5.3.2 Gasoline Grade Discrimination using a QCM V-MSA 

To further benchmark the capabilities of the fabricated V-MSA, three closely 

related hydrocarbon fuels were chosen for discrimination. In this regard, three gasoline 

grades, Exxon Regular, Exxon Plus, and Exxon Supreme, were chosen to establish 

whether the V-MSA could accurately distinguish between each sample. As described in 

the previous section, all sensors were exposed to each gasoline grade at varying 

concentrations for exposure times of 1 minute per sample. Measurements of Δf at each 

harmonic were acquired to construct a data matrix of 24 columns x 27 rows. In this 

regard, three replicate measurements of each gasoline grade across three 

concentrations (20%, 30%, and 40% of SVP) were tested for a total of 9 measurements 

per sample. Figure 5.3 depicts sensor response of each sensor to the gasoline grades. 

Notably each gasoline grade yields a specific response pattern. However it is easy to 

discern that the responses are much more similar than the previously tested fuels in 

figure 5.1. This result is expected as these samples are much more closely related. 

Figure 5.4 depicts a canonical plot for identification of the three gasoline grades.  
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Figure 5.3 Multiple harmonic sensor response of organic salts [C8MIm][Br], [C10MIm][Br], 
[C12MIm][Br], [C16MIm][Br] to three gasoline grades at 20% of SVP. Responses 
considered in aggregate constitute a V-MSA. For clarity X-axis labels are in the form, 
CnFn where Cn represents ionic liquid cation and Fn represents harmonic number. Error 
bars represent three replicate measurements 

Figure 5.4 LDA canonical plot for discrimination of three gasoline grades using a V-MSA. 
Plots considers a data set of ∆f values for each sample measured across three 
concentrations (pa/p0 = 0.2, 0.3, 0.4) in triplicate (9 measurements per sample for 27 
total measurements.) 
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Although these samples are more closely related than the previously tested fuels, 100% 

accurate discrimination was attained via the cross validation method. Such results  

revealed that the V-MSA approach is a very promising tool for discrimination of gasoline 

samples, which is essential for detecting gasoline adulteration. 

5.3.3 Detection of Gasoline Adulteration using a QCM V-MSA 

To assess the capability of the V-MSA to be used for gasoline adulteration, four common 

industrial solvents (methanol, ethanol, xylene and toluene) were tested as gasoline 

adulterants. In this regard, Exxon Regular gasoline was adulterated with each solvent 

(adulterant) at four v/v ratios (1%, 10%, 20%, 40%). As performed previously, each 

sample was exposed for 1 minute three different concentrations (20%, 30%, 40% of 

SVP) and three replicate measurements were considered for each sample. Figures 5.5-

5.8 depict sensor response for each adulterated sample. To assess the capability of the 

V-MSA to detect gasoline adulteration a data matrix considering all gasoline grades 

(Exxon Regular, Plus and Supreme) and adulterated samples was constructed (24 

columns x 171 rows). Figure 5.9 depicts canonical plots for detection of gasoline 

adulteration using a V-MSA. Canonical 1 and 2 successfully discriminates between 

adulterated and unadulterated gasoline samples. Moreover, canonical 2 and 3 

accurately discriminates between samples adulterated by xylene and toluene. Finally 

canonical 3 and 4 successfully classifies samples adulterated by methanol and ethanol. 

Overall 100% accurate determination of gasoline adulteration as well as the nature of 

the adulterant over multiple v/v ratios was achieved. These results are very promising for 

the development of QCM based methods for adulteration screening of gasoline and 

other important petroleum based fuels. 
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Figure 5.5 Multiple harmonic sensor response of organic salts [C8MIm][Br], [C10MIm][Br], 
[C12MIm][Br], [C16MIm][Br] exposed to Exxon regular Gasoline adulterated with methanol 
at five v/v ratios (0%, 1%, 10%, 20% 40%) at 20% of SVP. Responses considered in 
aggregate constitute a V-MSA. For clarity X-axis labels are in the form, CnFn where Cn 
represents ionic liquid cation and Fn represents harmonic number.  Error bars represent 
three replicate measurements 
 
 

 

Figure 5.6 Multiple harmonic sensor response of organic salts [C8MIm][Br], [C10MIm][Br], 
[C12MIm][Br], [C16MIm][Br] exposed to Exxon regular Gasoline adulterated with ethanol 
at five v/v ratios (0%, 1%, 10%, 20% 40%) at 20% of SVP. Responses considered in 
aggregate constitute a V-MSA. For clarity X-axis labels are in the form, CnFn where Cn 
represents ionic liquid cation and Fn represents harmonic number.  Error bars represent 
three replicate measurements. 
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Figure 5.7 Multiple harmonic sensor response of organic salts [C8MIm][Br], [C10MIm][Br], 
[C12MIm][Br], [C16MIm][Br] exposed to Exxon regular Gasoline adulterated with toluene 
at five v/v ratios (0%, 1%, 10%, 20% 40%) at 20% of SVP. Responses considered in 
aggregate constitute a V-MSA. For clarity X-axis labels are in the form, CnFn where Cn 
represents ionic liquid cation and Fn represents harmonic number.  Error bars represent 
three replicate measurements. 

 

 

Figure 5.8 Multiple harmonic sensor response of organic salts [C8MIm][Br], [C10MIm][Br], 
[C12MIm][Br], [C16MIm][Br] exposed to Exxon regular Gasoline adulterated with xylenes 
at five v/v ratios (0%, 1%, 10%, 20% 40%) at 20% of SVP. Responses considered in 
aggregate constitute a V-MSA. For clarity X-axis labels are in the form, CnFn where Cn 
represents ionic liquid cation and Fn represents harmonic number.  Error bars represent 
three replicate measurements.  
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Figure 5.9 LDA canonical plots for detection of gasoline adulteration using a V-MSA. 
Plots considers a data set of ∆f values for each sample measured across three 
concentrations (pa/p0 = 0.2, 0.3, 0.4) in triplicate.  Adulterated samples denoted 
Methanol, Ethanol, Toluene and Xylene are Exxon Regular gasoline adulterated at four 
v/v ratios (1%, 10%, 20% 40%). (36 measurements per adulterant type for 144 total 
measurements) Additionally the sample termed gasoline considers all measurements of 
Exxon Regular, Exxon Plus and Exxon Supreme.( 9 measurements per grade for 27 
total measurements) The plot considers 9 measurements per sample for a total of 171 
measurements. 
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 5.4 Conclusion 

This work is a description of the development and implementation of a QCM V-

MSA for fuel discrimination and detection of gasoline adulteration. In this regard, a V-

MSA was fabricated using organic salts as chemosensitive adlayers. Initially, the system 

was used to successfully discriminate between four petroleum based fuels (Petroleum 

Ether, Gasoline, Kerosene and Diesel). Subsequently, the V-MSA was used to 

discriminate between, more closely related, gasoline grades. Finally, the system was 

employed to detect and determine the nature of gasoline adulteration by several 

common industrial solvents across four v/v ratios (1%, 10%, 20%, 40%). All analyses 

were accomplished with 100% accuracy as determined via LDA employing the cross 

validation method. These studies are very promising for implementation of QCM V-

MSAs for quality control applications and are an interesting benchmark. Further studies 

are underway to ascertain the full potential of this approach.   
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CHAPTER 6. CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 
VOCs are a ubiquitous class of organic chemicals emitted from numerous 

sources, both natural and artificial. Due to the health and environmental impact of VOCs, 

as well as the characteristic nature of VOC emissions, analyses of this class of 

chemicals has proven increasingly important. Hence, there is a need for simple yet 

inexpensive methods to perform VOC analyses. In this regard, gas sensor technology 

has garnered much interest in recent years. Typically, such sensors are comprised of a 

chemosensitive material coupled with an appropriate transducer. In fact, this dissertation 

employed sorption based gas sensors, comprised of organic salts based recognition 

elements and a QCM transducer. Organic salts, specifically ionic liquids and GUMBOS 

are attractive chemosensitive materials due to favorable properties including simple 

synthesis, tunable physicochemical properties, and negligible vapor pressure. Among 

transducers, the QCM is lauded for its simplistic operation and excellent sensitivity. 

While such sensors are promising for detection of VOCs, they are typically inefficient for 

discrimination of VOCs. Hence, sensor arrays are employed. In Chapter 1, an 

introduction to VOCs, gas sensors and sensor arrays, statistical analysis, and relevant 

background of the QCM is presented.     

The theory of QCM virtual sensing, fabrication of QCM virtual sensor arrays, 

discrimination of 18 VOCs, and real samples are presented in chapter 2. These studies 

introduce the first example of a virtual sensing scheme for the QCM. Furthermore, 

sensor arrays employing this scheme were designed and implemented to discriminate 

between several closely related homologous series of VOCs. Additionally discrimination 

between two related real samples was tested. The success of this foundational study led 

to further research in this area, as well as development of another powerful sensing 

scheme.  
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  In chapter 3, design and implementation of a QCM VSA for discrimination and 

molecular weight approximation of VOCs is presented. These studies are the first 

example of a sensor array with molecular weight approximation capabilities. Notably, a 

homologous series of alcohols including isomeric alcohols were discriminated and the 

molecular weight approximated in a single experimental step. This was accomplished 

using the favorable properties of an ionic liquid-polymer composite chemosensitive layer. 

These studies are a foundational step towards the development of a QCM based system 

that could be an inexpensive niche alternative to mass spectrometry.  

A comparative assessment of the alternative virtual sensor array scheme and the 

traditional multisensor array scheme for complex volatile mixture analysis is presented in 

Chapter 4. Additionally, a new sensing scheme called the virtual multisensor array, 

which is a combination of the VSA and MSA schemes, is introduced. In this regard, each 

array was utilized to discriminate between five complex volatile mixtures represented by 

citrus type odors. The classification accuracy for each array was assessed to determine 

the most useful array sensing approach for complex mixture analysis. These studies 

further examined the utility of each array type, and introduced a very powerful method, in 

the form of the V-MSA, for discriminating between volatile complex mixtures.  

In the previous chapter, it was discovered that the V-MSA approach is a powerful 

technique for analyzing volatile complex mixtures. In chapter 5, the V-MSA approach 

was tested for analyzing a real world application. Hence, the VMSA was utilized to 

identify petroleum based fuels, gasoline grades, and adulterated gasoline. These studies 

are the first example of a QCM sensor array applied towards fuel related issues. The 

excellent results of these studies suggest that this simplistic technique could hold great 

promise for real world applications. Overall, the culmination of studies presented in this 

dissertation represents a great step in advancement of QCM based measurements 

within the field of measurement science.  
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6.2 Future Work 

The work within this dissertation has demonstrated the utility of novel QCM 

based array sensing schemes employing organic salts. While this work is primarily 

focused on the development of novel sensor arrays, there are a host of areas where 

further investigation could be undertaken. Such areas include 1) development of novel 

chemosensitive materials, 2) further enhancement of existing approaches to incorporate 

new analytical techniques, and 3) optimization of existing approaches for different 

applications.   

With regard to development of chemosensitive materials, novel materials could 

be developed to enhance sensitivity and selectivity of the sensors that comprise the 

presented array sensing schemes. Furthermore, materials could be designed to exhibit 

specific viscoelastic properties that could be employed to systematically alter sensor 

response over multiple harmonics in a precise fashion or be used to effectively model 

each system. Finally other classes of materials could be investigated to ascertain their 

effectiveness as chemosensitive adlayers in virtual sensing. 

In chapter 2, a VSA which can identify VOCs and approximate their molecular 

weight was developed. This function is rather similar to mass spectrometry. The 

limitation of this technique is that molecular weight approximation is only possible for 

pure analytes. Thus analyzing mixtures of VOCs would prove problematic. However if 

this technique was coupled with gas chromatography, this problem could be readily 

solved.  In this regard, GC could be used to separate volatile mixtures and pure analytes 

could be introduced to the QCM for identification and molecular weight approximation. 

This function is analogous to a vastly less expensive niche GC-MS. The coupling of 

these two systems would represent an enhancement of a presented virtual sensing 

approach with an additional analytical technique.  
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Finally, the presented sensing approaches could be optimized for specific 

applications using a combination of chemosensitive material development and technique 

enhancement. Moreover virtual sensing in liquid based applications could be 

investigated. In particular the liquid analog of the electronic nose, i.e the electronic 

tongue could be developed using a QCM virtual array approach.    
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APPENDIX A: SUPPORTING INFORMATION FOR CHAPTER TWO 

Working Principle of QCM-D 

A typical QCM comprises a thin wafer of AT-cut quartz crystal that is inserted 

between two metallic electrodes. When an external voltage is applied across the quartz 

crystal, as a result of the piezoelectric characteristics of the quartz, the crystal 

undergoes thickness shear vibrations. The antinodes of the standing shear wave lie at 

the surfaces of the crystal, while one or more nodes lie in the bulk of the crystal. In fact, 

the crystal can be sequentially excited at different harmonics and in this regard, only odd 

harmonics are possible since the antinodes are always at the surfaces. The resonance 

frequency and amplitude of the shear waves undergo changes when passing through 

the coating material immobilized onto the crystal surface. Although different interface 

electronics are available for QCM measurements, a relatively new approach based on 

impulse-excitation techniques introduced by Kasemo and coworkers has proven very 

useful in recent years.1-3 The QCM instrument based on the impulse-excitation technique 

is called the quartz crystal microbalance with dissipation monitoring (QCM-D). The 

QCM-D measures frequency shift (Δf) and dissipation shift (ΔD) at up to seven different 

harmonics. 

In a majority of studies, the QCM has been used only as a mass sensor which is 

based on the original findings of Sauerbrey who showed that the decrease in resonance 

frequency is directly related to the mass adsorbed onto the surface.4 However, the 

Sauerbrey relationship is only valid for thin, rigid, and uniform films where the dissipation 

will be negligible. In the case of thick and/or viscoelastic coatings, ∆f and ∆D depend on 

both the mass and the viscoelastic properties of the coating materials. Several 

researchers have presented details on how the mass and viscoelasticity influence 

sensor responses, and more detailed equations in this regard can be found in references 
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cited therein.5-8 In this regard, we have recently studied the vapor sensing characteristics 

of IL or IL/polymer-coated QCM sensors, and have demonstrated that for the same 

mass of different vapors absorbed, the effect on viscoelasticity of the film is different.9,10 

Therefore, it is rational to conclude that different analytes should give different response 

patterns when multiple harmonic data from IL-based QCM-D are analyzed with suitable 

pattern recognition techniques. Furthermore, it follows that it should be possible to 

create sensor arrays by exploiting the viscoelastic properties of the coating materials, 

rather than primarily using chemical affinity as a factor for chemical discrimination. 

Experimental Section 

Reagents and Materials 

The ILs, 1-octyl-3-methylimidazolium bromide ([OMIm][Br]) or 1-octyl-3-

methylimidazolium thiocyanate ([OMIm][SCN]), were used to prepare coatings in the 

present studies. Anhydrous acetonitrile, anhydrous acrylonitrile, anhydrous chloroform 

(CCL3), anhydrous carbon tetrachloride (CCL4), anhydrous dicholoroethane (DCE), 1-

chlorohexane, anhydrous toluene, anhydrous 1-butanol, 1-pentanol, 1-propanol, 

anhydrous 1-hexanol, 1-octanol, p-xylene, n-hexane, cyclohexane, methanol were 

obtained from Sigma-Aldrich (St. Louis, MO, USA). Dichloromethane (DCM) was 

obtained from Avantor Performance Materials, Inc. (Center Valley, PA, USA). Absolute 

ethanol was obtained from Pharmco Products, Inc. (Brookfield, CT, USA). All chemicals 

were used as received without any further purification. The QCM-D E4 system and gold-

coated AT-cut quartz crystals with a diameter of 14 mm and a fundamental frequency of 

5 MHz were purchased from Q-Sense AB (Gothenburg, Sweden). Readout equipment 

(Model 5878) as well as mass flow controllers (Model 5850E) were obtained from Brooks 

Instrument, LLC (Hatfield, PA, USA).  

Synthesis of Ionic Liquids 
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 The IL [OMIm][Br] utilized here was synthesized by alkylation of methyl 

imidazole, using 1-bromooctane. Briefly, a mixture containing a 1:1.1 ratio of 1-

methylimidazole to 1-bromooctane in methanol was refluxed at 70 °C for 72 hours to 

directly generate the ionic liquid. This ionic liquid was then used to synthesize 

[OMIm][SCN] via a simple anion exchange reaction. This was achieved by dissolving 

[OMIm][Br] and KSCN in acetonitrile using a 1:2 mole ratio and stirring for 48 hours to 

facilitate ion exchange. The byproducts, KBr and excess KSCN, were then filtered from 

solution. The solution, which contained the product, was placed on a rotary evaporator to 

remove excess acetonitrile. Next, the product was redissolved into cooled 

dichloromethane (4°C). The remaining solid byproduct was again filtered. After rotary 

evaporation to remove the excess DCM, [OMIm][SCN] was obtained. The EDS spectra 

of these compounds are shown in figure A2, while the structures are shown in scheme 

A1.   

Film Preparation 

 In these studies, a solution containing IL (1mg/mL) in DCM was used for 

electrospraying. The optimized electrospray parameters chosen to prepare these 

coatings were 1) voltage of 2.8 V, 2) current of 3 Amps, and 3) flow rate of 100 L/min. 

The working distance between the nozzle and the quartz crystal resonator (QCR) was 

set at 7 cm. These parameters were chosen because they allowed a sufficient mass of 

materials to be coated onto the gold surface, while enabling evaporation of the organic 

solvent during prolonged coating times. In order to obtain films of different thicknesses, 

only the coating time was changed while maintaining other parameters constant.    

2.3 Film Characterization 

Films were imaged using a JEOL JEM-6610LV Scanning Electron Microscope 

(SEM) in high vacuum mode. Energy Dispersive X-ray Spectroscopy (EDS) was 

performed with the same microscopy system using an EDAX instrument.  
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Table A1 Analytes and their physical properties  

 

 

 
Table A2 Discriminant Analysis Classification Accuracy Derived from Cross Validation   
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Figure A1. SEM images of A) 1.5 minute [OMIm][SCN] film B) 3 minute [OMIm][SCN] 
film, C) 1.5 minute [OMIm][Br] film D) 3 minute [OMIm][Br] film. Scale bar represents 200 
µm.  
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Figure A2. EDS Spectra of A) 1.5 minute [OMIm][SCN] film B) 3 minute [OMIm][SCN] 
film, C) 1.5 minute [OMIm][Br] film D) 3 minute [OMIm][Br] film representing the relative 
amount of each element.  
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Figure A3. A)  SEM Image with two highlighted spots. EDS point analysis spectra of a 
1.5 minute [OMIm][SCN] film for B) spot 1, an area which corresponds to ionic liquid and  
C) spot 2 an area which contains significantly less ionic liquid, i.e. mostly gold surface 
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Figure A4. A number of droplets were measured to ascertain the effect of increased 
droplet size on film thickness via AFM. It was found that X-Y distance of droplet and Z-
Depth varied proportionally. As coatings are not homogenous, droplets of varying sizes 
were measured. A)  AFM image of a small droplet. B) AFM image of a large droplet C) 
Scatter plot of size in the x-y dimesion versus Z-Depth for droplets of varying sizes.   
 
 



142 
 

 
Scheme A1. Chemical structure of [OMIm][Br]  and [OMIm][SCN] 
 
 
 
 

 
Figure A5. Sensorgrams for the class of alcohols for A) 3 minute [OMIm][Br] film. 
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Figure A6. Sensorgrams for the class of alcohols for B) 1.5 minute [OMIm][Br] film  
 
 

 
Figure A7. Sensorgrams for the class of alcohols for C) 3 minute [OMIm][SCN] film  



144 

Figure A8. Sensorgrams for the class of alcohols for D) 1.5 minute [OMIm][SCN] film. 
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Figure A9. Δf response patterns for each class of vapors (in descending order n-
alcohols, chlorohydrocarbons, hydrocarbons, and nitriles)  are shown for a A) 1.5 minute 
[OMIm][Br] coating based sensor and B) 1.5 minute [OMIm][SCN] coating based sensor. 
The vapor partial pressure for all analytes is fixed at pa/po =0.2. Error bars represent the 
standard deviations of three replicate measurements. 
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Figure A10. QDA Canonical plots for each class of organic vapors (in descending order 
n-alcohols, chlorohydrocarbons, nitriles, and hydrocarbons) with respect to a VSA 
comprised of either a 1.5 minute coating of A) [OMIm][Br] or B) [OMIm][SCN] 
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Figure A11. A QDA 3D Canonical plots for the 18 analyte set, over all concentrations, 
with respect to a VSA comprised of either a 3 minute coating of [OMIm][Br] is presented. 
To assist visualization a 2D canonical plot is also presented.  
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Figure A12. A QDA 3D Canonical plots for the 18 analyte set, over all concentrations, 
with respect to a VSA comprised of either a 3 minute coating of [OMIm][SCN] is 
presented. To assist visualization a 2D canonical plot is also presented.  
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Figure A13. A QDA 3D Canonical plots for the 18 analyte set, over all concentrations, 
with respect to a VSA comprised of either a 1.5 minute coating of [OMIm][Br] is 
presented. To assist visualization a 2D canonical plot is also presented.  
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Figure A14. A QDA 3D Canonical plots for the 18 analyte set, over all concentrations, 
with respect to a VSA comprised of either a 1.5 minute coating of [OMIm][SCN] is 
presented. To assist visualization a 2D canonical plot is also presented.  
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Figure A15. QDA 3D Canonical plots for the 18 analyte set, over all concentrations, with 
respect to a VSA comprised of either a 3 minute coating of A) [OMIm][Br] or B) 
[OMIm][SCN] or a 1.5 minute coating of C) [OMIm][Br] or D) [OMIm][SCN]. To assist 
visualization 2D canonical plots are also presented with respect to a VSA comprised of 
either a 3 minute coating of E) [OMIm][Br] or F) [OMIm][SCN] or a 1.5 minute coating of 
G) [OMIm][Br] or H) [OMIm][SCN]. 
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Figure A16. LDA Canonical plots for the real sample, at pa/po =0.2, with respect to a VSA 
comprised of either a 3 minute coating of A) [OMIm][Br] or B) [OMIm][SCN]. LDA was 
used for the presented analysis due to small data set size.  
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APPENDIX B: SUPPORTING INFORMATION FOR CHAPTER THREE 

Figure B1. SEM and EDS images of a thin and thick [HMIm][NTf2]-PMMA coating. Top) 
Thin film Bottom) Thick film. Scale bar is100 µm. EDS relative intensity spectra in K 
counts A) Thin [HMIM][NTF2]-PMMA film, B) Thick [HMIM][NTF2]-PMMA film 
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Figure B2. Sensorgrams for a set of 8 alcohols for parameters A) Δf and B) ΔD at pa/p0 

=0.2, 0.3,0.4.  
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Figure B3. QDA canonical plots for a set of alcohols, pa/p0 =0.2, 0.3,0.4, with respect to 

the parameter  
Δ𝑓

Δ𝐷
.  Plots consider the data set normalized for concentration 
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APPENDIX C: SUPPORTING INFORMATION FOR CHAPTER FOUR 

Figure C1. Sensorgrams for a sensor when exposed to 10 different odors. Sensors is 
coated with ionic liquid 1-nonyl-3-methylimidazolium thiocyanate ([C9MIm][SCN]) 

Figure C2. Sensorgrams for a sensor when exposed to 10 different odors. Sensors is 
coated with ionic liquid 1-nonyl-3-methylimidazolium bromide ([C9MIm][Br]) 
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Figure C3. Sensorgrams for a sensor when exposed to 10 different odors. Sensors is 
coated with ionic liquid 1-octenyl-3-pyridinium bromide ([C8Pyr][Br])  

Figure C4. Sensorgrams for a sensor when exposed to 10 different odors. Sensors is 
coated with ionic liquid 1-undecenyl-3-pyridinium bromide ([C11Pyr][Br]) respectively.   
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Figure C5. Sensorgrams for three replicate measurements of lime odor at multiple 
concentrations. Sensor is coated with ionic liquid 1-nonyl-3-methylimidazolium 
thiocyanate ([C9MIm][SCN]).  
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Figure C6. Sensorgrams for three replicate measurements of lime odor at multiple 
concentrations. Sensor is coated with ionic liquid 1-nonyl-3-methylimidazolium bromide 
([C9MIm][Br]). 
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Figure C7. Sensorgrams for three replicate measurements of lime odor at multiple 
concentrations. Sensor is coated with ionic liquid 1-octenyl-3-pyridinium bromide 
([C8Pyr][Br]). 
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Figure C8. Sensorgrams for three replicate measurements of lime odor at multiple 
concentrations. Sensor is coated with ionic liquid 1-undecenyl-3-pyridinium bromide 
([C11Pyr][Br]).   



162 

Figure C9. Sensorgrams for three replicate measurements of lime odor at multiple 
concentrations. Sensors are coated with ionic liquid A) 1-nonyl-3-methylimidazolium 
thiocyanate ([C9MIm][SCN]), B) 1-nonyl-3-methylimidazolium bromide ([C9MIm][Br]), C) 
1-octenyl-3-pyridinium bromide ([C8Pyr][Br]), and D)  1-undecenyl-3-pyridinium bromide 
([C11Pyr][Br]) respectively.   
.  
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Figure C10. Schematic of the experimental system 
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APPENDIX D: SUPPORTING INFORMATION FOR CHAPTER FIVE 

Figure D1. Structures of Organic Salts 

Figure D2. Schematic of the experimental system 
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Figure D3. Sensorgrams for three replicate measurements of ethanol adulterated 
gasoline at multiple concentrations. Sensor is coated with ionic liquid 1-octyl-3-
methylimidazolium bromide ([C8MIm][Br]).  

 
 
 

 
 

Figure D4. Sensorgrams for three replicate measurements of ethanol adulterated 
gasoline at multiple concentrations. Sensor is coated with ionic liquid 1-decyl-3-
methylimidazolium bromide ([C10MIm][Br]).  
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Figure D5. Sensorgrams for three replicate measurements of ethanol adulterated 
gasoline at multiple concentrations. Sensor is coated with ionic liquid 1-dodecyl-3-
methylimidazolium bromide ([C12MIm][Br]).  

Figure D6. Sensorgrams for three replicate measurements of ethanol adulterated 
gasoline at multiple concentrations. Sensor is coated with ionic liquid 1-hexadecyl-3-
methylimidazolium bromide ([C16MIm][Br]).  
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Figure D7. LDA Canonical plot and error rates for fuel discrimination using a 4 sensor 

MSA 
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Figure D8. QDA Canonical plot and error rates for fuel discrimination using a 4 sensor 

MSA 
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Figure D9. LDA Canonical plot and error rates for fuel discrimination using a [C8MIm][Br] 

VSA    
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Figure D10. QDA Canonical plot and error rates for fuel discrimination using a 

[C8MIm][Br] VSA    
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Figure D11. LDA Canonical plot and error rates for fuel discrimination using a 

[C10MIm][Br] VSA    
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Figure D12. QDA Canonical plot and error rates for fuel discrimination using a 

[C10MIm][Br] VSA    
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Figure D13. LDA Canonical plot and error rates for fuel discrimination using a 

[C12MIm][Br] VSA    
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Figure D14. QDA Canonical plot and error rates for fuel discrimination using a 

[C12MIm][Br] VSA    



175 

Figure D15. LDA Canonical plot and error rates for fuel discrimination using a 

[C16MIm][Br] VSA    
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Figure D16. QDA Canonical plot and error rates for fuel discrimination using a 

[C16MIm][Br] VSA    
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Figure D17. LDA Canonical plot and error rates for ethanol adulteration discrimination 

using a 4 sensor MSA    
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Figure D18. LDA Canonical plot and error rates for ethanol adulteration discrimination 

using a [C8MIm][Br] VSA    
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Figure D19. LDA Canonical plot and error rates for ethanol adulteration discrimination 

using a [C10MIm][Br] VSA    
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Figure D20. LDA Canonical plot and error rates for ethanol adulteration discrimination 

using a [C12MIm][Br] VSA    
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Figure D21. LDA Canonical plot and error rates for xylenes adulteration discrimination 

using a four sensor V-MSA    
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Figure D22. LDA Canonical plot and error rates for xylenes adulteration discrimination 

using a four sensor MSA    
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Figure D23. LDA Canonical plot and error rates for xylenes adulteration discrimination 

using a [C8MIm][Br] VSA    
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Figure D24. LDA Canonical plot and error rates for xylenes adulteration discrimination 

using a [C10MIm][Br] VSA    
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Figure D25. LDA Canonical plot and error rates for xylenes adulteration discrimination 

using a [C12MIm][Br] VSA    
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Figure D26. LDA Canonical plot and error rates for xylenes adulteration discrimination 

using a [C16MIm][Br] VSA    
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Figure D27. LDA Canonical plot and error rates for xylenes adulteration discrimination 

using a a four sensor V-MSA    
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Figure D28. LDA Canonical plot and error rates for toluene adulteration discrimination 

using a four sensor MSA    
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Figure D29. LDA Canonical plot and error rates for toluene adulteration discrimination 

using a [C8MIm][Br] VSA    
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Figure D30. LDA Canonical plot and error rates for toluene adulteration discrimination 

using a [C10MIm][Br] VSA    
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Figure D31. LDA Canonical plot and error rates for toluene adulteration discrimination 

using a [C12MIm][Br] VSA    
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Figure D32. LDA Canonical plot and error rates for toluene adulteration discrimination 

using a [C16MIm][Br] VSA    



193 
 

 

Figure D33. LDA Canonical plot and error rates for toluene adulteration discrimination 

using a four sensor V-MSA  
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Figure D34. LDA Canonical plot and error rates for 1%v/v adulteration discrimination 

using a four sensor V-MSA  
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