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ABSTRACT 

The potential is great for liposome drug delivery systems that provide specific 

contents release at diseased tissue sites upon activation by upregulated              

enzymes; however, this potential will only come to fruition with mechanistic knowledge 

of the contents release process. NAD(P)H:quinone oxidoreductase type 1 (NQO1) is a 

target for reductively-responsive liposomes, as it is an enzyme upregulated in numerous 

cancer tissues and is capable of reducing quinone propionic acid (QPA) trigger groups 

to hydroquinones that self-cleave from dioleolylphosphatidylethanolamine (DOPE) 

liposome surfaces, thereby initiating contents release. This research targets the 

development of analytical methodologies to observe and characterize the dynamics and 

resulting phase change of the QPA-DOPE liposomal system. It is known that after 

reduction, QPA-DOPE vesicles aggregate and that the aggregation is correlated with 

release of their encapsulated contents.  While postulated, the final phase identity of this 

system has not been identified as the conventional methods used to make this 

measurement are not capable of studying such a unique and dynamic system. 

Presented herein are the analytical methods, both developed and adapted, which have 

been used to investigate a liposomal system capable of redox stimulated contents 

release. The purpose of this work was to utilize these tools to (1) study the terminal 

phase identity of QPA-DOPE vesicles after reduction, (2) manipulate the QPA-DOPE 

liposomal system for triggerable inter-vesical fusion, and (3) investigate the liposome 

bilayer behavior post-reduction and pre-release. The findings of this work are presented 

and their significance discussed. 
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CHAPTER 1 
INTRODUCTION 

 
1.1  Research Goals and Aims 
 
 The goal of the research presented herein is a set of analytical methods capable 

of observing and characterizing the lipid dynamics and phase behavior of quinone 

propionic acid (QPA) functionalized 1,2-dioleolyl-sn-glycero-3-phosphatidylethanolamine 

(DOPE) lipid vesicles. The McCarley group has previously demonstrated lab that                   

QPA-DOPE spontaneously forms liposomes when dispersed in water, and they are 

capable of encapsulating cargo inside their aqueous space.1 Upon reduction and 

cleavage of the QPA head group from DOPE, the entrapped contents are released into 

the surrounding environment. Beyond this, our knowledge of the lipid moiety’s 

properties, specifically its polymorphic phase behavior during this process, was 

shrouded by the then-existing limitations of analytical methods to measure with the 

potential non-traditional lipids, such as QPA-DOPE. To overcome this challenge and 

probe behavior before, during, and after reduction, new analytical methods had to be 

developed or those traditional ones needed to be adapted. 

The therapeutic efficiency of conventional disease and cancer treatments is 

limited by the ability of the drug delivery method to specifically target the afflicted site 

without harming healthy tissues. Two primary objectives to improve cancer treatment 

therapies are: (1) increase the bioavailability of the anti-tumor agent at the tumor site, 

and (2) minimize the damage to healthy non-tumor cells. Liposomal drug delivery 

systems (DDS) have a demonstrated ability to bio-accumulate at tumor sites and 

passively deliver their encapsulated drugs at 710x higher concentrations relative to 

healthy tissue at non-tumor sites.2  A new class of “stealth” liposomes developed in the  
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mid-1990s has improved intravenous circulation times, thereby allowing such needed 

concentrations. This 2nd generation of liposomes relies on surface modification of the 

bilayer, which hinders the body’s immune response. However, this modification results 

in a decrease in the bioavailability of the encapsulated therapy agents inside the 

liposomes by hindering their diffusion through the bilayer.3 An ideal liposomal DDS 

would provide sitespecific drug delivery to a targeted tumor site and have long 

circulation times in the body.  Such a system should not rely on passive leakage of its 

contents, but rather, active release of its entire payload at the targeted site upon being 

triggered to do so.  To accomplish this, a new 3rdgeneration of liposomal DDSs, which 

utilizes an endogenous chemical stimulus unique to cancer cells capable of triggering 

contents release, is needed.  

An area gaining interest in the field of 3rdgeneration liposomes is that of 

liposomal DDSs engineered to respond to enzymes upregulated in cancer cells.4-6                    

The McCarley group has been investigating human NAD(P)H:quinone oxioreductase 

isozyme 1 (hNQO1) as an endogenous stimulus in cancer cells for novel therapy 

options. hNQO1 is upregulated in many solid tumors and is capable of catalyzing the 

2e/2H+ reduction of a quinone to a hydroquinone.7-10 The quinonebased responsive 

systems developed at LSU are based on a “trimethyllocked” quinone bound as a 

protecting group to an amine.11  Ong et al. in the McCarley group  first reported a 

quinone trigger group bound to the amine group of DOPE (QPA-DOPE).1 Upon reduction 

and cleavage of the quinonecapped head group from DOPE, the liposome releases 

its encapsulated contents into the surrounding medium (Scheme 1.1). From the results 

presented in this dissertation work, it is now definitively known that QPA-DOPE 

liposomes undergo a triggered phase change from a lamellar liquidcrystal (Lα) to an 
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inverted micelle hexagonal phase (HII), which is the driving process for aggregation and 

contactmediated release of the encapsulated contents after reduction. The chemically 

unique properties and behavior of QPA-DOPE liposomes (e.g., a redoxtriggered 

change in surface charge, chemical structure, and polymorphic phase behavior, and 

tuned control over contents release) suggests this lipid system is a possible 

3rdgeneration liposomal DDS candidate. 

Scheme 1.1. QPA-DOPE lipids spontaneously form liposomes having a lamellar liquid 
crystal phase (Lα) when dispersed in excess water and are capable of encapsulating 
materials in the entrapped volume (green). Upon introduction of a reducing agent 
capable of a 2e-/2H+ reduction, the quinone-capped head groups on the outer leaflet 
(red) are reduced to a hydroquinone (blue). Formation of a lactone soon follows, which 
results in cleavage from the DOPE lipids in the outer leaflet (black).  After a period of 
deformation of the bilayer, opposing bilayers aggregate and initiate a contactmediated 
Lα→HII phase transition that results in the release of the encapsulated contents into the 
interstitial space surrounding the liposomes. 
 
 The second aim of this work is to manipulate the behavior of a QPA-DOPE 

containing liposomal system, using the knowledge gained from its behavior during and 

after reduction. Biological cells contain more than one type of lipid. Studying                

multi-component bilayers is an effective way to probe the nature of lipids and their role 

in a membrane.  Understanding the role of a lipid in the Lα→HII process can give insight 
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into the biological fusion process of two opposed cells.  Moreover, greater insight into 

how lipids behave and interact in multicomponent bilayers can improve how scientists 

design liposomal DDSs.  Reported in this work are lipid mixtures containing QPA-DOPE 

with increasing amounts of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylethanolamine 

(POPE). The bicomponent bilayers are capable of releasing their encapsulated 

contents in dramatically less time than QPA-DOPE liposomes alone.  Moreover, this lipid 

system is not dependent on lipid concentration and exhibits fusogenic properties. 

 The goal of this project is to improve the function of the QPA-DOPE system using 

the criteria outlined above. Investigating the unique water-lipid interface properties, 

bilayer packing effects, and polymorphic phase behavior of this lipid will provide novel 

insight into the dynamics of the phase change process brought about by a chemical 

modification of the surface.  Furthering our understanding of the QPA-DOPE system and 

3rdgeneration liposomes alike are necessary to advance liposomal applications in this 

field. To this end, the overall goal of this work is to develop a robust strategy and 

exhaustive toolbox of analytical methods to probe the dynamic properties of QPA-DOPE 

in order to fully utilize its potential. 

1.2 The Nature of Lipids  

1.2.1  Defining Aqueous Phospholipid Dispersions   

A lipid is an amphiphilic molecule consisting of (1) a polar head group bound to 

a (2) glycerol backbone that binds (3) the non-polar region consisting of one or more 

hydrocarbon chains (Figure 1.1).  The physical properties of any lipid are dictated by 

the identity of the head group, as well as the length and degree of saturation of its acyl 

chain(s).  Alec Bangham is credited with discovering that phospholipids form liposomes 

when dispersed in aqueous media.12,13 Bangham had initially called these structures 
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“multi-lamellar smectic mesophases” or informally “banghasomes.”14  It wasn’t until 

1968 that the term “liposomes” was formally used to describe the spherical bilayers that 

Bangham had discovered.15  

Figure 1.1. The structure of a phospholipid consists of 3 regions: a polar head group 
(R), a glycerol backbone, and non-polar hydrocarbon chains (R’ and R’’). The properties 
and phase behavior of a phospholipid are determined by its class (eg., PE, PC, PS, 
PG, PA) and the identity of the hydrocarbon chains denoted n:m where n is the chain 
length and m is the number of double bonds (degree of unsaturation). 
   

In excess hydration, phospholipids will form an ordered structure of one of three 

basic phases: a lamellar gel (Lβ), lamellar liquidcrystal (Lα), or inverted micelle 

hexagonal tubes (HII), Figure 1.2.16  Other phases, such as, inverted cubic (QII) and 

rhombic (Rh), are commonly referred to as intermembrane intermediates (IMIs), 

because these phases are short-lived intermediates of either liposome fusion or the 

Lα→HII phase transition.17-24 Liposomes are further characterized by their size and 

lamellarity. A liposome can have one or more bilayers, termed as “unilamellar” or             

“multi-lamellar” vesicles, respectively.25 The size of a unilamellar liposome is also 

denoted by referring to it as small (SUV, d < 100 nm), large (LUV, d = 1001000 nm), 

giant (GUV, d > 1000 nm), Figure 1.3.26  

 

O

PO O

O

R'

R''
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R = (CH2)2NH3+ Phosphatidylethanolamine (PE) 

R = (CH2)2N+(CH3)3 Phosphatidylcholine (PC) 

R = C2H4(NH3+)COO Phosphatidylserine (PS) 

R = CH2CH(NH3+)(OH)2 Phosphatidylglycerol (PG) 

R = H Phosphatidic Acid (PA) 
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Figure 1.2. When hydrated in excess water, phospholipids spontaneously form one of 
three basic phases: lamellar gel (Lβ), characterized by a rigid bilayer; lamellar liquid 
crystal (Lα), characterized by a fluid bilayer; or inverted hexagonal (HII) characterized 
as inverted micelle tubes in an hexagonal packing arrangement. The free energy of 
these phases is a function of temperature. The temperature where a lipid undergoes a 
Lβ→Lα phase transition is denoted as TM, while TH is denoted as a Lα→HII phase 
transition. 
 

 
Figure 1.3. There are four subsets of a lamellar phase: small unilamellar vesicles 
(SUVs, d < 100 nm), large unilamellar vesicles (LUVs, d = 1001000 nm), giant 
unilamellar vesicles (GUVs, d > 1000 nm), and multi-lamellar vesicles (MLVs). MLVs 
have a large dynamic range of diameters but can range from 100s of nm to 10s of m 
in size. 
 
1.2.2 Factors Determining Phase Behavior 

Three properties dictate the free energy of a lipid’s phase: (1) chain length and 

saturation, (2) head group identity, and (3) its environment.27-29  Longer acyl chains and 

chains having increased degrees of unsaturation favor the HII phase as they increase 

the area of the non-polar region.28-30  A lower degree of saturation in a lipid’s acyl 

chain(s)  decreases hydrogen bonding between adjacent chains,  lowers their  packing  
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order, and favors the Lα phase.28, 29, 31-34  The head group of a lipid also affects the 

phase of lipid, based on the charge and hydration of its non-polar region. Adjacent 

anionic lipids undergo charge repulsion and require a larger radius of curvature relative 

to zwitterionic lipids.27,34-36  A lipid having a well hydrated head group will have a larger 

head group area and favor an Lα phase.27,37 The environment also plays a role in 

manipulating a lipid’s phase behavior.  For some lipids, altering the temperature may 

be used to transition between Lβ and Lα, denoted by TM and from Lα to HII, denoted by 

TH (Figure 1.3). Applying heat to a lipid increases the energy in the acyl chain bonds.38,39  

This results in an increased chain motion, less hydrogen bonding between adjacent 

acyl chains, and a larger volume of the overall non-polar region.  

The factors mentioned above have a combinatory effect on the phase of a lipid. 

To explain these effects, a comparison is made between PC and PE lipids. PC lipids 

contain three methyl groups bound to the amine of the polar head group, and it typically 

favors a lamellar phase (Figure 1.2). Their headgroups are much larger than PE lipids 

which in turn have three hydrogens bound to the amine.40 The geometrical arrangement 

of a lipid favors either “cylindrical” or “conical” packing arrangement, resulting in a 

lamellar or hexagonal phase (Figure 1.4).40,41 This packing parameter (P) is the head-

to-tail volume ratio and is mathematically modeled as the total volume of the lipid (v) 

divided by the product of the area of the polar region (a) and the length of the non-polar 

region (l).40 The lipid favors the cylinder packing arrangement of a bilayer when the 

head-to-tail ratio is even (P = 1) and the cone packing arrangement of an inverted 

hexagonal phase when the head group is smaller than its non-polar region (P > 1). 

Equation 1.1                           � =
�

��
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Figure 1.4. The head-to-tail ratio (P) of a lipid is a property of lipid packing parameter. 
When P = 1, the lipid favors the cylindrical geometry of a lamellar bilayer. When P > 1, 
the lipid favors the conical geometry of an inverted hexagonal phase. 
  

Because PC lipids have a bulky head group and are more hydrated, which 

intrinsically increases the area of the non-polar region, the geometry of PC lipids is 

more resilient to changes to PC aqueous environment.27 PE lipids, on the other hand, 

are more susceptible to changes to their environment (e.g., temperature, pH, ions) and 

exhibit a wider array of polymorphic phase behavior.38,39,42,43  For example, elevating 

the temperature increases the energy in the acyl chain. This weakens the hydrogen 

bonding between adjacent chains and increases their area of motion, ultimately 

resulting in a larger non-polar region volume (P > 1). Dehydration at the water-lipid 

interface by lowering pH or ionic interactions, decreases the area of the polar region   

(P > 1).27,37  Lipids intrinsically having bulky head groups (e.g., PG, PS, and PC) or 

functionalized headgroups (e.g., N-acyl-PE and QPA-DOPE) have larger polar areas    

(P = 1).1,44 For an Lα→HII phase transition, the area of the head group decreases, and 

the packing parameter (P) increases.34,36 

1.2.3 Curvature of Apposed Bilayers 

The free energy of two opposing lipid bilayers is dependent on the contributions 

of three forces: repulsive hydration force, electrostatic charge-charge repulsion, and a 

P = 1 P > 1 
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van der Waals attractive force.45-47 The balance between the attractive and repulsive 

forces is responsible for stable lamellar structures.46 The repulsive force of two opposed 

bilayers arises from the electrostatics of the charged-polar head groups and hydration 

of all polar groups, which requires a work potential for water removal.45   

A bilayer can be modeled as an electrostatic double layer.48,49 Strong 

electrostatic forces generated by the polar head groups can prevent membrane 

contact.46,50   Boström et al. found that SCN- is more attracted to a bilayer than Cl, and 

when SCN is bound to the bilayer, the surface has larger net charge, resulting in an 

increase in the bilayer’s repulsive force.51 An ion near a bilayer surface can shield the 

charge of the membrane’s surface, effectively decreasing the slipping plane of the 

vesicle.52, 53 Afzal et al. measured the dependence of monovalent salts on these forces 

for a neutral lipid surface and observed that an increased concentration of a monovalent 

salt resulted in a decrease in both the net repulsive hydration force and van der Waals 

attractive force.54 

LeNeveu has done an extensive amount of work in measuring the repulsive 

hydration force in bilayers.45,46  He found that the force vs distance curve of two opposed 

bilayers varies with the hydration force.46  When a larger number of water molecules 

are bound to a lipid, the thickness of a lipid bilayer increases, which causes repulsion 

of opposed bilayers.45  Lafrance et al. investigated the hydration effect of various                    

N-acyl functionalized PE lipids and found that more water molecules were bound to the 

polar headgroup with stretching the acyl chains.55 The repulsive hydration force extends      

23 nm from the surface and increases exponentially closer to the surface.56   

An attractive van der Waals force comes from interaction of the bilayers between 

two opposed vesicles.46  PE lipids are more sensitive to van der Waals interactions than 
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PC lipids, because PE lipid bilayers form both intra and intermolecular hydrogen 

bonds.57 When this force becomes the dominant force, opposing bilayers come into 

contact causing transitions into the inverted hexagonal phase.58  

As a bilayer membrane begins to destabilize into the inverted hexagonal phase, 

the radius of curvature (R) decreases, and its membrane curvature increases           

(Figure 1.6).59 Rand et al. investigated the bilayer effects with various ratios of 

DOPC:DOPE lipid and found that at higher DOPC/DOPE ratios, the radius of curvature 

increased.60  The cause of the change in R was due to increased hydration of the DOPE 

bilayer with DOPC. The bilayer membrane curvature effects associated with 

dehydration arise from compression of the polar region and expansion of the non-polar 

region, which has a flattening effect (Figure 1.5).61 This creates a large flat surface so 

that opposed bilayers can approach each other and gain enough attractive force to 

come into contact.58, 62  It is from these contact sites that the inverted hexagonal phase 

forms.63  

 

 

 

 

 

 
Figure 1.5.  (A) The spontaneous radius of curvature for a bilayer membrane is denoted 
Ro. (B) As the membrane is dehydrated the membrane begins to flatten, which results 
in a more curved membrane (arcTan (θ) > arcTan (Φ), where θ = Φ, and Ro > R. The 
flattening of the bilayer is due to a decrease in polar area and an increase in non-polar 
area. Once R << Ro, the inverted hexagonal phase is the more favorable phase. 
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1.3 Liposome Drug Delivery Systems 

With 1.6 million new diagnoses and over 580,000 deaths projected in 2015, 

cancer is the second leading cause of death in the United States.64 Cancers having a 

5year survival rate below than 50% are: liver (16.6%), ovarian (44.6%), pancreatic 

(6.7%) and lung and bronchial (16.8%) cancers.64 These low survival rates are due to 

late detection and few treatment options; therefore, new cancer therapies that target 

these deadly types of cancer is an area of need. Conventional chemotherapeutic tumor 

treatments of cancerous tissues are non-discriminating and come with an unwanted 

side effect of healthy tissue damage. Liposomes have been shown to minimize this 

effect, as they exploit abnormalities in both the vascular structure and inefficient 

lymphatic drainage of solid tumors.65,66 Tumors have hyperpermeable vasculatures that 

allows the passive diffusion of ~70500 nm particles into the interstitial area.67-71 

Additionally, solid tumors suffer from poor lymphatic drainage, causing bio-

accumulation of such sized particles at the tumor site.72-76 This phenomenon is known 

as the enhanced permeability and retention (EPR) effect and has been shown to 

elevate drug concentrations 710x higher relative to healthy tissue (Figure 1.6).2  

As early as the 1970s, unmodified phospholipid liposomes were being used as 

drug carriers to tumor sites.77-83 This was the 1stgeneration of liposomal DDSs.              

These liposomes relied solely on the EPR effect for bioaccumulation at the tumor site 

and released their contents by passive diffusion. By the mid-1970s, researchers had 

learned that modification of the bilayer and complexing the drug with macromolecules 

decreased the diffusion of the entrapped contents, but also led to more of the carried 

drugs reaching the tumor site.84,85 It was not until much later that researchers 

discovered that lipoproteins recognized unmodified phospholipid bilayers as foreign 
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bodies and removed the liposomes from circulation, while modified bilayers have longer 

circulation times.86,87 Lipoproteins are components of the mononuclear phagocyte 

system (MPS) also referred to as the reticuloendothelial system.88  The proteins bind to 

the surface of phospholipid vesicles, and the complex is recognized by the MPS, where 

it is then taken to the liver and lymph nodes for removal. The circulation time of the 

1stgeneration liposomal DDS before recognition and removal by the MPS is less than 

6 hours.89, 90 While this immune response has been harnessed as an effective treatment 

method for parasitic and bacterial infections of the MPS, it renders the liposomes 

ineffective in delivering their cargo beyond MPS recognition.91-93  

 

 

 

 

 

 

 

Figure 1.6. The enhanced permeability and retention (EPR) effect is phenomena where 
~70500 nm particles (blue) enter into tumor sites (grey) via leaky vasculatures and             
bio-accumulate due to poor lymphatic drainage of the tumor’s interstitial fluid. 

 
Allen et al. reported the first surface modification of liposomes with gangliosides 

and sphingomyelin to improve circulation times by hindering recognition from the 

macrophages.94 Their discovery brought about the idea of including of polyethylene 

glycol, PEG) in the bilayer, which resulted in a prolonged blood circulation time             

(>48 hours).95-98 Modification of the lipid to have a hydrophilic polymer, such as PEG 

attached to its head group, shields the bilayer surface from protein binding.99                     

Tumor 

Vasculature Liposome 
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These 2ndgeneration liposomes are commonly referred to as “stealth” liposomes, 

because they circulate in the blood and go unrecognized by the MPS.100  PEGylated or 

other surfacecoated liposomes have a decreased rate of drug diffusion from inside the 

liposome; however, in most cases this drawback is outweighed by longer circulation 

times.3 Several reviews have been written on surface modifications of liposomes to 

inhibit MPS recognition and applications of “stealth” liposomes.101-103  

The number of liposomal DDS peer reviewed publications has increased 

exponentially since the discovery of “stealth” liposomes, Figure 1.7. Since 1990, the 

United States Patent and Trade Office has issued over 75 patents for liposome 

applications and formulations: 23+ for liposomal DDS, 18+ for cancer therapy, and               

12+ classified as “stealth” liposomes.104 A list of current liposomal DDS currently on the 

market or at various stages of clinical development are shown in Table 1.1.  In 2012, 

the liposomal DDS market accounted for 22.5 billion USD in global sales, 9.3 billion 

USD in the United States alone. This market is project to grow to 43.3 billion USD on 

global sales by 2017 (14% CAGR).105  It is expected that 49% of all injectable nano-

DDS will be lipid based formulations by 2021.  Currently, the United States accounts 

for 41% of liposomal DDS intellectual property with Taiwan (19%), South Korea (14%), 

and China (10%) being the closest competitors.105, 106  

While liposomes offer a more site-specific delivery of chemotherapeutic agents 

to the tumor sites, the passive release mechanism of liposomal DDS make it difficult to 

determine the quantity of the drug that remains encapsulated and the amount released 

into the tumor site.129,130  Additionally, high concentrations of liposomes yield unwanted 

side effects (e.g., skin reactions, asthenia, hand-foot syndrome, nausea, and 

neutropenia) limiting dosage amounts.131-134 Liposomal DDS currently marketed for 
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cancer therapy depend on passive diffusion or carrier degradation for contents 

release.135 In order to increase the bioavailability of the anti-tumor agents being 

delivered and lower the concentration of liposomes, there is a need for a 3rdgeneration 

of liposomes capable of releasing their payload from the triggering of an endogenous 

stimulus present at the tumor site.   

Table 1.1 Listed are the liposomal drug delivery formulations currently on the market or 
at various phases of development. In the adjacent column of the liposomal system’s 
name is its corresponding treatment application. 
 

Compound Name Status Indication 
Cytarabine  

Liposomal103, 109 
DepoCyt Market Lymphomatous meningitis 

Liposomal 
daunorubicin103, 110, 111 

DaunoXome Market Kaposi’s sarcoma 

PEG- asparaginase112 Oncaspar Market Acute lymphoblastic leukemia 
PEG-immunoliposome-

doxorubicin113 
MCC-465 Phase I 

Various cancers, particularly 
stomach cancer  

PEG-interferon-α-2a114 PEGASYS Market Hepatitis C 
PEG-human growth 
factor antagonist115 

Somavert Market Acromegaly 

PEG-anti-TNF-α116 CDP 870 Phase III 
Crohn’s disease; rheumatoid 
arthritis 

PG-TXL or 
polyglutamate 
paclitaxel103, 117 

Xyotax Phase III Non-small lung cancer 

Stealth liposomal 
doxorubicin118-120 

Doxil/Caelyx  Market  
Kaposi’s sarcoma; refractory 
ovarian cancer, refractory breast 
cancer 

Amphotericin B 
complex103 

Abelcet Market 
Aspergillosis; invasive fungal 
infections 

Liposomal                     
all-trans-retinoic acid103 

ATRA-IV Phase II T cell non-Hodgkin’s lymphoma 

Liposomal  
doxorubicin103, 121 

Myocet  
Market 

(Europe)  

Metastatic breast cancer 
combination with 
cyclophosphamide 

Liposomal cisplatin103 SPI-077  Phase III Various cancers 

Liposomal 
prostaglandin E-1122 

Liprostin Phase II 
Peripheral artery disease and 
erectile dysfunction 

Liposomal  
paclitaxel103, 123 

LEP ETU  
Phase 

I/II  
Advanced solid tumors 

Liposomal irinotecan103 LE-SN38  
Phase 

I/II  
Advanced solid tumors 



15 
 

    
Table 1.1 Continued    

Compound Name Status Indication 

Liposomal  
vincristine103, 124 

Onco-TCS Market 
Relapsed non-Hodgkin’s 

lymphoma 

Liposomal lurtotecan103 OSI-211  Phase II  
Recurrent ovarian cancer; 
recurrent small cell-lung cancer 

Liposomal oxaliplatin103 Aroplatin  Phase II  Advanced colorectal cancer 

Liposomal irinotecan 
HCL/floxuridine125 

CPX-1 Phase III Advanced colorectal cancer 

Mitoxantrone 
liposomal126 

2010LO4017 Phase I Lymphoma and solid tumors 

HMPA-linked 
doxorubicin127 

HPMA-
PK1 

Phase II 
(UK) 

Advanced breast, colon and 
non-small cell lung cancer 

HPMA-linked 
doxorubicin -

galactosamine128 

HPMA-
PK2 

Phase 
I/II  

Primary and secondary liver 
cancer 

Topotecan 
Liposomal103 

Brakiva  Phase I 
Ovarian cancer and small cell 
lung cancer 

Vinorelbin 
 Liposomal 103 

Alocrest Phase I Breast cancer and lung cancer 

 

 
Figure 1.7. The number of peer-reviewed publications involving liposomal-based 
research has grown exponentially since its genesis in the late 1960s.  Applications of 
the systems reported included drug encapsulation, cosmetics, contrast agents for 
detection, food additives, coatings, and other miscellaneous applications.107, 108  The 
surge in publications relating to liposomal drug delivery systems surged in the               
mid-1990s due to the emergence of PEGylated “stealth” liposomes.  
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1.4 Stimuli-responsive Liposomes 
 

There are four key requirements for a successful drug delivery system: “Retain, 

Evade, Target, and Release.”136 As discussed earlier, liposomal DDSs passively 

“Target” tumor sites by making use of their leaky vasculatures where they are 

“Retained” by the EPR effect. Moreover, liposomes can be engineered with PEG to 

“Evade” the MPS.  This section will address how liposomes can be stimulated to 

“Release” their contents. Drug delivery systems that control or have a triggered function 

tuned to a specific stimulus are termed “intelligent” and are further defined as 

“opencircuit” or “closedcircuit” systems.137-139 Closedcircuit DDSs respond to 

changes in biological variables (e.g., temperature, pH, enzymes, or any other 

endogenous species) and are switched from “off” to “on” in its response.  Opencircuit 

DDSs respond to an external stimuli independent of its biological surroundings                   

(e.g., irradiation, heat, electricity, magnetism, and ultrasound).135,140-142 

1.4.1 Open-circuit Stimuli 

Temperature. The simplest method to stimulate the release of contents from a 

liposome is elevating the temperature above its TH to induce an Lα→HII phase 

transition.143-145 Yatvin et al. was the first to suggest using the TH phase transition of 

liposomes as a delivery system in 1978.146 The goal is to have engineered a liposome 

that has a TH just above physiological temperature and apply localized heating to that 

area in the body.147 Lipid-polymer mixtures with pore forming amphiphiles can be tuned 

to be thermally sensitive and have been termed “thermally gated liposomes.”148                    

The liposomes develop pores in the bilayer at or above lipid TM and are stable below 

this temperature. Needham et al. reported a highly successful thermal gated liposomal 

formulation using a DPPC:MPPC:DSPE-PEG-2000 (90:10:4) liposome that released 
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their contents in vivo at 3940 °C.149 A significant drawback using a temperature as a 

liposomal DDS is placing a patient first in a hyperthermic state during administration of 

the therapy, and localized heating of the tumor site may be necessary.150 

Photochemical. Liposomes have been used as carriers of photo-activated      

pro-drugs but with little success.151-154 Recent focus in the area of radiationtriggered 

liposomes has been on photo-sensitive lipids.155,156  The mode of photo-triggered or 

light sensitive liposomes can be either photopolymerization or photochemical 

triggering.155,157  The principle in photopolymerization is to incorporate a non-polar 

compound that can be polymerized when in a lipid bilayer. Upon exposure to light, the 

compounds polymerize into local domains in the bilayer, resulting in extensive 

leakage.158 Bonduran et al. incorporated a photoreactive lipid, 1,2-bis[10-(29,49-

hexadienoyloxy)de-canoyl]-sn-glycero-3-phosphocholine (bis-SorbPC), into a                     

1,2-dioleoylphosphatidylethanol-3-methoxy-poly(ethyleneoxide)amide, DOPE-PEG-

2000, and found that this mixture formed stable liposomes. Under irradiation of UV light, 

a cross-linked polymer network cause lateral phase separation resulting in                           

trans-membrane pores.159 

Photochemical triggering uses light to destabilize a bilayer to cause rupturing of 

the vesicle or its lysis. Thompson et al. have had much success with photo-oxidative 

liposomes.160,161 Their strategy is built on lipids having a plasmalogen vinyl etherlinked 

hydrocarbon chain.  In the presence of light, the vinyl ether bond is broken, thereby 

generating a hydrocarbon chain and a lysolipid, which induces Lα→HII phase change.162 

In photo-deprotected systems, a lipid that does not favor a Lα phase is functionalized 

with a photo-cleavable head group to form liposomes. Upon exposure to UV light, the 

head group cleaves, which induces an Lα→HII phase change.163,164 Despite these 



18 
 

achievements, these systems are limited by the depth light penetrates the body. 

Radiation of light having a wavelength below < 700 nm is limited to a penetration depth 

<< 1.0 cm.165,166 For liposomal DDS, adequate radiation only reaches a depth                                

of 0.05 mm.167 

pH. Tumors tend to have a pH lower than normal tissue.168-174  The most success 

in pHtriggered liposomal DDSs to date utilize PEGylated liposomes that have 

pHsensitive linkers which degrade under acidic conditions. These linkers include: 

double esters,175 vinyl esters,176,177 cleavable lipopolymers,178 and hydrazones.179                        

In principle, stable “stealth” liposomes will bioaccumulate at tumor sites where the              

acid-labile bonds connecting PEG to the lipid degrade, facilitating destabilization of the 

bilayer and contents release.100,180,181 The limiting factor in developing pH sensitive 

liposomal DDS is their sensitivity to changes in pH is low, wherein the in situ pH which 

can vary from 0.2 to 0.8 units based on the tumor and location.182  

1.4.2 Closed-circuit Stimuli 

Enzymes. Utilizing enzyme expression unique to tumor sites to activate anti-

cancer prodrugs is an explosive area of research.183 The principle with enzymatic 

triggering is to introduce an inactive molecule into the body and have the inactive 

molecule reach a targeted site where the enzyme chemically activates the molecule 

into its anti-cancer form. This same principle has been used to enzymatically trigger the 

release of liposomal contents.135,184,185 While alkaline phosphatase and phospholipase 

C have been studied, the most success with enzymatically triggered liposomal DDS 

has been achieved using phospholipase A2, matrix metalloproteases (MMPs), and 

elastase.135,183,184,186-189 
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Phospholipase A2 is a lipolytic enzyme that specifically hydrolyzes the 2-acyl 

position of glycerolphospholipids, forming fatty acids and lysolipids that induce a 

micellar or inverted hexagonal phase.6,190 This enzyme is overexpressed in stomach, 

breast, prostate, pancreas, colon, lung, liver, esophageal, and uterus cancerous 

tissue.191-195 It has been found that this enzyme is more successful at stimulating 

anionic charged liposomes (PS) as opposed to neutral (PC & PE).196  

Matrix metalloproteases (MMPs) have been used for prodrug activation, as they 

are overexpressed in brain, breast, cervical, colon, stomach, lung, skin, and ovarian 

cancers.197 Using MMP enzymes for liposomal DDS activation requires a specialized 

lipopeptide to be included in the bilayer to serve as substrates for MMP          

activation.198,199 This has been demonstrated with PEGylated liposomes.200,201                    

Once bound to the membrane substrate, the MMP hydrolyzes the peptide-lipid bond, 

thereby inducing an Lα→HII phase change.202 

 Elastase has also been targeted for liposomal DDS triggering. It is upregulated 

in cancerous breast and skin tissue, as well as other types of diseased tissues.203-210 

Similar to proteases, a peptide must be anchored onto the bilayer surface to act as a 

substrate for elastase to bind. Different anchors have been used to bind the peptide but 

success has been achieved using an N-acyl bound peptide to DOPE to induce a 

lamellar to inverted hexagonal phase change, which results in liposomal contents 

release.211 

Other Liposomal DDS Stimuli. There has been recent success in using 

ultrasoundsensitive liposomes to control liposomal contents release.212 The 

mechanism relies on encapsulating air or gas inside the vesicle and using ultrasound 

to release the contents.213  Liposomal DDS with encapsulated doxorubicincontaining 
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microbubbles have been successfully released using this method.214 Another stimulus 

method being used is that based on sequential triggers. Sawant et al. bound antibody 

2G4 to PEGmodified bilayers. The PEG prevented antibody recognition and 

internalization by the targeted cells; however, when the pH was lowered between 

5.06.0 the PEG groups were removed by acidic hydrolysis of hydrozone bound                  

PEG-hz-PE.215  

The McCarley group is interested in a reductionactivated liposomal DDS.                         

A 1001000x redox potential difference exists between the intra- and extra-cellular 

space.216 Most redox-sensitive DDS are for various gene therapies and rely on 

endocytosis.217,218 Saji et al. reported a redoxstimulated surfactant that utilized a 

ferrocene moiety.219 This system showed reversible micelle formation and disruption 

having a one electron oxidation step at +0.428 V vs SCE and a one electron reduction 

step at +0.440 V vs SCE.219  Both Fe2+ and Ni2+ transition metals have been complexed 

with hydrocarbon tails to make an amphiphile capable of intercalating into a bilayer.  

These complexes trigger vesical lysis upon reduction and cleavage from their 

hydrocarbon chains.220,221  

1.5 NAD(P)H:Quinone Oxidoreductase Type 1 

It has been known that certain cancer cells have different enzymatic expression 

relative to healthy cells. Human NAD(P)H:quinone oxidoreductase isozyme 1 (hNQO1) 

is one such enzyme. hNQO1 is overexpressed 2to50fold in breast, colon, 

pancreatic, lung, stomach, kidney, head and neck, and ovarian cancers.9,183,222-228 

hNQO1 is a homodimeric flavin enzyme of the DT-diaphorase class of enzymes and 

catalyzes the twoelectron reduction of quinones to the corresponding 

hydroquinones.229,230 The enzyme accepts electrons from either NADH or NADPH and 
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transfers a hydride to its 1,5-dihydro-flavin adenine dinucleotide (FADH2).231-233                 

There are three distinct binding regions in hNQO1: FAD, NAD(P), and a third for either 

NADH or NAD(P)H.232 The enzymatic hNQO1catalyzed reduction follows a ping-pong        

bibi mechanism, where NADH or NAD(P)H binds and donates two electron to hNQO1 

and a hydride to FAD, reducing it to FADH2. The NAD or NADP cofactor leaves its 

binding site with hNQO1 and is replaced by a quinone, which is promptly reduced to a 

hydroquinone (Scheme 1.2).234,235   

Scheme 1.2. The ping-pong, bi-bi scheme of NQO1 catalysis of a quinone to 
hydroquinone. The quinone, NADH, and FAD bind to NQO1 at three different sites.       
1e- from NADH is used to reduce the quinone to a semi-quinone and a hydride 
transferred to FAD. A second e- from NADH completes the reduction process and its 
hydride is transferred to the NQO1 bound FADH. 
 

Naturally occurring prodrugs have been investigated for DT-diaphorase (NQO1) 

activation: streptonigrin, mitomycin C, CB 1954, and diaziquone.183  Streptonigrin is an 

aminoquinone with anti-tumor activity when activated by DT-diaphorase.236  While the 

active drug molecule is not known, the result of the redox activation of streptonigrin is 

inhibition of DNA and RNA synthesis as well as ATP depletion.237 Mitomycin C is a 

natural prodrug activated by DT-diaphorase.238  Like streptonigrin, mitomycin C disrupts 

DNA production when activated; however, hNQO1 was less effective when compared 
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to other DT-diaphorases for mitomycin C activation.239,240 5-(Aziridin-1-yl)-2,4-

dinitrobenzamide or CB 1954 is activated by DT-diaphorase but is kinetically slow with 

hNQO1.241-243 Diaziquone is an antitumor prodrug that increases cytotoxicity and 

breaks DNA strands upon reduction.244, 245  Faig et al. studied the hNQO1 activation of 

three synthetic chemotherapeutic quinone based prodrugs with success: one 

benzoquinone derivative and two indolequinone derivatives.246 Other groups have also 

reported synthetic quinone prodrugs that are triggered by hNQO1.247,248 

Wang et al. first reported the use of a redox-triggered quinone based protective 

group for amines.11 After reduction from a quinone to a hydroquinone, the protecting 

group lactonizes and is released from the amine (Figure 1.8). Na2S2O4 is a mild 

reducing agent capable of stimulating the quinone reduction process and has a redox 

potential of -0.66 V vs SHE at pH 7.249  Silvers et al. showed the ability of hNQO1 to 

reduce a trimethyl-quinone propionic acid (QPA) protecting group in the presence of 

NADH and reported its reduction potential to be -0.28 V vs SHE.250  Recent work in the 

McCarley lab has shown the ability of hNQO1 to activate fluorescent quinone based 

dyes in cell lines with overexpressed levels of hNQO1.250-252  To date, no other lab has 

investigated a liposomal DDS capable of enzymatic redox destabilization by hNQO1. 

 

Scheme 1.3. Shown is the scheme of activation for a quinone protected amine reported 
by Wang et al.11 The terminal RX group on the carboxylic acid can be either OH, OR’, 
or NR’R’”. Reduction and subsequent cyclization frees the protected group bound at 
“RX” from the quinone. 
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1.6 Redox-triggered QPA-DOPE  

 The McCarley group first reported a 3rdgeneration, quinonebased liposomal 

DDS capable of encapsulating a dye and chemically triggering release of its contents 

by stimulating a 2e reduction of the quinone marker.1 This liposomal system is 

composed of a trimethyl quinone propionic acid (QPA) bound to the amine group of       

1,2-dioleolyl-sn-glycero-3-phosphatidylethanolamine, DOPE. This system is chemically 

unique in that no other liposomal DDS is defined by having one component bilayer, a 

system triggered by a chemical redox stimulus, a change from an anionic to zwitterionic 

lipid after reduction, and a contactmediated release between two opposing bilayers, 

all in the same system. 

 The McCarley group has investigated the effect of the aqueous environment 

properties (i.e., salt concentration, ion identity, and pH), as well as bilayer mixtures 

(DOPE and PEG) on QPA-DOPE liposomes.42,43 The Lα→HII phase transition of PE 

lipids typically starts with aggregation of opposed bilayers.89  To facilitate the close 

proximity of the bilayers, the lipid-water interface of the outer leaflet of the bilayer must 

dehydrate to overcome the long range repulsive hydration force.45,46 Various salts can 

interact with the surface of the bilayer to destabilize/dehydrate (kosmotropic salt) or 

support (chaotropic salt) the lipid-water interface.  McCarley et al. found the effect of 

salt identity on QPA-DOPE to align with the Hofmeister effect where the presence of a 

more polarizable and less hydrated chaotropic salts resulted in a significantly slower 

release, 50% contents release (t50) at 44 min vs 34 min for SCN and Cl,                             

respectively.42, 253 Additionally, a decrease in overall salt concentration resulted in the 

longer t50 values.  

(Kosmotrope) SO4
2- > Cl- > NO3

- > ClO4
- > SCN- (Chaotropes) 
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QPA-DOPE mixtures containing DOPE and PEG have also been investigated      

at LSU.43 QPA-DOPE mixtures containing 3.0% PEG in the bilayer resulted in complete 

hindrance of redox-triggered contents release. This is due to the well hydrated PEG 

sterically hindering bilayer contact. Incorporating non-functionalized DOPE into the       

QPA-DOPE lipid bilayer resulted in a dramatic decrease in the system’s t50 value, and 

deformation was no longer observed with 10% DOPE. QPA-DOPE also shows 

dependence on environmental pH.  At pH 9.5, DOPE favors the lamellar phase and can 

be made to form bilayers.143 Cleavage of the QPA head group on the outer leaflet of   

QPA-DOPE vesicles does not result in a phase change, thus no contents release is 

observed.43 

Because of the unique chemical nature of QPA-DOPE, conventional methods 

used to study the phase behavior of lipids cannot be employed for this system. While 

the observed contents release of QPA-DOPE liposomes after reduction is suspected to 

cause a triggered Lα→HII phase transition, no one has attempted to measure the 

polymorphic behavior of this dynamic system. It is pivotal that the phase behavior is 

known to confirm the contents release of this system is active release and not passive 

diffusion from a stabilized vesicle. Additionally, temporal observation of the phase 

behavior before and after reduction would yield key insights into the mechanism of this 

event. Also, harnessing a mechanistic understanding of the Lα to HII phase transition 

process is key to understanding how biological cells fuse.254-257  
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CHAPTER 2 
EXPERIMENTAL METHODS 

 
2.1 Aqueous Media 
 
 When properly hydrated, lipids organize into bilayers to from liposomes, which 

are defined as colloidal particles that possess both polar and non-polar regions.1                       

In Chapter 1, the effects of polarity, salt identity, ionic strength, viscosity, pH, and 

temperature on lipid phase behavior were discussed. Thus, it is important to not only 

consider the chemical structures lipids but also the physical environment that interacts 

with them. A difference in osmotic pressure across a lipid bilayer creates membrane 

stress that can lead to deformation, swelling, leaking and/or rupturing of the membrane.2  

Moreover, charged salts in the encapsulated media can strongly interact with oppositely 

charged lipids in the inner leaflet of a bilayer membrane, thus requiring addition of 

chelating agents to sequester the charged salt components.3-5 The aqueous 

environment inside liposomal delivery systems is inherently different; therefore, these 

media must be properly tuned. Presented here are the methods used to prepare and 

control the environment of the lipids used in this work. Also addressed are the 

precautions needed in order to account for analyte differences across a liposome. 

2.1.1  Buffer Preparation 

Commonly referred to as “Good’s buffers,” Good et al. investigated 20 different 

buffering agents for use in biological research (pH 68).6-8  Good’s buffers are hydrogen 

ion buffers that have adequate solubility and pKa values near physiological pH. While 

these buffers are still used today, a more recent comprehensive list consisting of             

64 buffers was prepared by Goldberg et al. in 2002.9  This reference should be used as 

a starting point when selecting an ideal buffer. 
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All buffers were prepared with components purchased, of Bioultra (> 99%) grade 

or better. Typically, phosphate-buffered saline (PBS) having a concentration of                      

50.0 mM phosphate and 100 mM KCl, buffered to pH 7.40 was used in liposome 

experiments. A concentrated solution of KOH was used to titrate the pH of the buffer 

media to the desired level. Unless noted otherwise, 0.10 mM ethylenediamine-

tetraacetic acid (EDTA) was incorporated into all buffer solutions as a divalent cationic 

chelating agent; divalent cations (i.e., Ca2+ and Mg2+) charge screen opposed anionic 

bilayers, and as a result can induce aggregation and fusion of liposomal vesicles.10,11  

Additionally, divalent cations can form quenching complexes with anionic fluorophores, 

such as calcein.12  In experiments requiring a non-phosphorus-containing buffer 

system, 2-[2-hydroxy-1,1-bis(hydroxymethyl)ethyl)amino] ethanesulfonic acid (TES; 

pKa=7.55) was substituted for phosphate buffer. All buffers were filtered through a 

sterile 0.22m pore size polyethersulfone membrane and stored in a refrigerator until 

used, to prevent the growth of bacteria. Immediately prior to use, an aliquot of the buffer 

media was transferred into a sterile transport tube, brought to room temperature, and 

degassed with nitrogen. 

2.1.2  Vapor Pressure Osmometry 

 In an instance where there is a difference in chemical species between the inside 

or outside media of a liposome, a difference in osmotic pressure can place unwanted 

stress on the lipid membrane.2  While this stress can be negligible and go unnoticed, 

the osmotic pressures between the inner and outer membrane must be equal for fusion 

assays or when molecular diffusion is concerned.13-15 Fusion of opposed vesicles 

requires a balance of local, packing, hydration, and charge free energies, which sum to 

a net free energy and  dedicates in intrinsic radius  of curvature of the  membrane  and  
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thereby the phase of the lipid.16,17 A difference in osmotic pressure across a liposomal 

bilayer results in a new force that is exerted onto the membrane changing the net free 

energy and altering the radius of curvature.  A vapor pressure osmometer is commonly 

employed to measure and correct the osmotic pressure of various buffer media to 

negate this force. 

A Vapro Vapor Pressure Osmometer 5520 (Wescor, Logan, UT) was used to 

measure and tune the vapor pressure of the buffer media examined in this work.  For a 

single measurement, 10 L of the buffer media being investigated was inoculated into 

a single-use disposable solute-free paper disk (Wescor, SS-033) positioned on a 

sample holder atop a tray then locked into place inside the osmometer.  After initiating 

the heating cycle, the vapor pressure value was displayed in mm Hg.  For a typical PBS 

buffer, the measured osmotic pressure was ~170 mm Hg.  A solution of 1.0 M KCl was 

titrated into the buffer media(s) having the lower vapor pressure so as to elevate its 

osmotic pressure to within 5% of the lighter.  Measurements were made in triplicate.  

2.2  Liposome Preparation 

 Numerous liposome preparation methods have been reported in literature.18-20   

In general, each method has four basic steps: (1) the lipids are dispersed in an organic 

solvent, (2) the solvent is removed, (3) aqueous media is added to the vessel in order 

to hydrate the lipids, and (4) a sizing procedure is used to produce relatively 

monodispersed (polydispersion index (PDI) ≤ 0.2). Where these methods vary are in 

the specifics of these steps. There are two more commonly accepted benchtop 

methods to prepare large unilamellar vesicles (LUVs): size-extrusion and reverse 

vaporization.21-23  The size-extrusion method is the primary mode of LUV preparation 

used  in  this  work;  however,  the  reverse  vaporization  method was  used in  contents  
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mixing assays to study vesicle fusion. For the purpose of this section, only the size 

extrusion will be discussed.  The reverse vaporization method will be presented in the 

section addressing vesicle fusion assays (Section 2.5). 

2.2.1  Large Unilamellar Vesicles (LUVs) 

 Typically, approximately 35 mg of dry lipid was dispersed in CH2Cl2 and 

transferred into a ground glass joint test tube. The solvent was removed via rotary 

evaporation, taking care not to bump the organic solvent, so as to leave a thin lipid film 

on the walls of the test tube that was visually confirmed by formation of sequential rings 

of a waxy film.  Once the solvent was removed, the test tube was placed under high 

vacuum for no less than 1 h to ensure all solvent had been removed. The lipid was then 

removed from vacuum, and 1.0 mL of the desired hydrating media was added.                        

For content release studies, a 40 mM calcein 100 mM KCl/0.10 mM EDTA aqueous 

solution buffered with 50.0 mM phosphate, pH 7.40, was used.  The hydrating lipid was 

then placed in a water bath above the TM and below the TH of the lipid. After 30 min, 

the vessel was agitated by six freeze/thaw cycles.  This entails submerging the bottom 

half of the glass test tube containing the lipid into a dry ice acetone bath for no less than                  

1 min, then thawing the vessel in a water bath (TM < T <TH), vortexing in-between.         

To generate 100-nm diameter vesicles, an Avanti mini-extruder (Avanti Polar Lipids; 

Birmingham, AL) equipped with a 100-nm pore track-etched polycarbonate membrane 

was used to size the vesicles. This entails passing the hydrated lipid dispersion through 

the membrane 19 times.  Different sized membranes can be used to size the vesicles, 

as desired. 
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2.2.2  Size-Exclusion Chromatography 

 In this work, size-exclusion chromatography was used to remove the analyte(s) 

of interest from the buffer media outside the vesicle. Dialysis is another method commonly              

used to replace the exterior buffer media; however, relative to size-exclusion 

chromatography dialysis, requires more time, larger volumes of buffer, and dilutes the 

total lipid concentration. Sephadex G-50 fine purchased from GE Healthcare 

Lifesciences (Pittsburgh, PA) was used as the stationary phase. The Sephadex used 

was hydrated in the desired aqueous media for no less than 5 h before use. For calcein 

content release assays, the aqueous matrix consisted of 100 mM KCl 0.10 mM EDTA 

buffered with 50.0 mM phosphate, pH 7.4.  A homemade spin column was typically 

used over the traditional gravimetric column to save both Sephadex material and time. 

(Scheme 2.1)  

 

 

 

 

 

Scheme 2.1. A schematic of a spin column used for size exclusion chromatography.  
(A) Damp glass wool was placed inside the bottom section of a 3-mL disposable plastic 
syringe at the outlet nipple to prevent loss of the stationary phase, then (B) hydrated 
Sephadex was transferred into the vessel atop the glass wool. The spin column was 
placed in a disposable 10-mL plastic test tube to collect the eluting aqueous media.  (C) 
The column was centrifuged to remove excess buffer media.  (D) 250 L of the lipid 
vesicle solution was added to the spin column and centrifuged again for 3 min, 
collecting the lipid into an Eppendorf vial situated between the bottom of the spin 
column and the disposable plastic tube.  (E) The resulting eluant contains vesicles 
encapsulated with the analyte of interest and a minimal amount of free analyte 
dispersed in the aqueous media which was used to hydrate the Sephadex. 
 
 

glass wool 

(A) (B) (C) (D) (E)

hydrated 
Sephadex 
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2.2.3  Determining Lipid Concentration 

 The characteristics and behavior of bulk vesicles can be dependent on lipid 

concentration as it relates to the number of particles in solution. To perform comparative 

studies, experimental methods require the same concentration of lipid be used in every 

experiment.  Because of the loss of lipid in the extrusion step and dilution during size-

exclusion chromatography, the concentration of lipid in the eluted vesicle containing 

solution must be determined prior to any study using this lipid. Multiple methods to 

measure lipid concentration have been reported in literature, with the most widely 

employed method being the Bartlett assay.24-27  Absorption of light by the quinone head 

group in functionalized PE-lipids, a modified Bartlett-total phosphorus assay, and 

modified Stewart-total organic phosphorus assay were used in this work. The Bartlett 

assay is the more accurate and precise of the three methods used in this work; 

however, it is a total phosphorous assay and cannot be employed when working in a 

phosphate-buffered system and requires ~3 h to complete. The Stewart assay was 

utilized in the instances when the lipid being studied did not contain a quinone group 

and was in a phosphate-buffered system. 

 Quinone UV-Vis Absorption Assay. The quinone group of QPA-DOPE strongly 

absorbs at 265 nm ( = 5500 M1 cm1). In a typical QPA-DOPE quantification 

experiment, 490 L of the aqueous media being used is transferred into a 0.5 mL quartz 

cuvette and blank absorbance spectrum acquired on a Cary-50 UV-Vis spectrometer 

(Varian-Agilent). 10 L of the eluted vesicle solution is added to the cuvette containing 

the 490 L aqueous media. The absorbance spectrum was measured and the intensity 

at 265 nm was recorded (Appendix 4). 
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Bartlett Assay. Use of a modified Bartlett Assay to determine the concentration 

of phospholipids in vesicle form has been well documented.10,13,24,28  It is important to 

note a second time that this assay is a total phosphorus assay and thus cannot be used 

to determine the concentration of phospholipids that are in aqueous media buffered 

with phosphate. A set of phosphate standards (0.010.10 mol) were prepared in 

triplicate from a 1.00 g L-1 phosphate standard purchased from Sigma-Aldrich                          

(St. Louis, MO) and placed in 10-mL disposable glass test tubes. 10 L of the eluted 

vesicle solution being measured was also aliquoted into a test tube in triplicate.                           

A 0.4-mL aliquot of 5.0 M H2SO4 was added to each vial, and the vials were placed in 

a heating block at 180 °C fo 30 min.  The vials were removed from the heat and amiably 

brought to < 100 °C before 0.100 mL of 30% H2O2 was added to remove all color from 

the solution.  The vials were returned to the heating block where they remained at                      

180 °C until H2O2 was no longer present, as determined by H2O2 indicator strips.                   

This process can take up to 90 min. Once the H2O2 had been removed, the vials were 

allowed to cool to room temperature before adding 4.6 mL of 0.22% ammonium 

molybdate in 0.125 M H2SO4 and 0.200 mL of a freshly prepared 0.16 g/mL                           

Fiske-SubbaRow reducer solution (Sigma).  The vials were vortexed to ensure the 

contents were well mixed and then placed in a 100 °C water bath for 10 min.                    

The presence of phosphorus is apparent by the formation of an aqua-blue color in the 

solutions. The absorbance at 830 nm of the phosphorus-molybdate complex was 

without dilution using a Cary-50 UV-Vis spectrometer (Varian-Agilent; Appendix 5). 

Stewart Assay.  The use of a Stewart assay to measure the concentration of 

phospholipids has also been reported.25,29 This assay measures the concentration of 

organic-soluble phosphorous, and allows the concentration of phospholipids hydrated 
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in phosphate-buffered media to be determined accurately. Because this method is a 

lipid water-organic extraction method, the Stewart assay has a lower precision and 

accuracy than the Bartlett assay. A standard stock solution of 0.1 mg mL-1 POPE lipid 

in CHCl3 was made using lipids purchased from Avanti Polar Lipid (Birmingham, AL). 

POPE standards (0.010.20 mol) were made in triplicate from the stock solution and 

then placed in 10-mL disposable glass test tubes, along with 10 L aliquots of the 

vesicle eluant solution being measured.  Each standard was brought to a total volume 

of 2.00 mL using CHCl3, and then 2.00 mL CHCl3 was added to the vesicle solution 

being measured. The vesicle-CHCl3 mixture was subjected to 3 sonication and vortex 

cycles to disperse the lipids into the organic phase. 2.00 mL of a 0.1 M FeCl3/0.4 M 

NH4SCN solution was added to each vial, then subjected to 3 cycles of sonication and 

vortexing to ensure adequate mixing of the organic and aqueous phases. The vials 

underwent centrifugation to separate the organic (bottom) and aqueous (top) phases.  

A change in color from colorless to faint red indicates the presence of phosphorus in 

the organic phase. The bottom layer was extracted with a glass pipette and transferred 

into a new glass test tube.  Na2S2O4 was added to the vials containing the organic layer 

to remove any latent water. The absorbance (485 nm) of the extracted organic layers 

was measured on a Cary-50 UV-Vis spectrometer without any further preparation or 

dilution (Appendix 6). 

2.3  Liposomal Contents Release and Aggregation 

 To test the ability of a lipid to encapsulate and release its encapsulated cargo 

upon being stimulated, liposomes were prepared using the procedure outlined in 

Section 2.2 with 40 mM calcein added as the encapsulated analyte.  A stock solution 

of 100 M lipid was prepared from the eluted vesical containing solution post                
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size-exclusion chromatography.  A 3.00 mL aliquot of the stock solution was transferred 

into a quartz cuvette equipped with a rubber septum, and this was degassed with 

nitrogen for no less than 15 min.  The cuvette was placed in an LS-55 Perkin Elmer 

Fluorescence Spectrometer (Waltham, MA) and the fluorescence of calcein measured 

with time using the following parameters: 2.5/2.5 nm excitation/emission 

monochromator slit widths, excitation/emission wavelengths  of 491/515 nm, 5 s data 

acquisition interval, and 1 s signal integration.  Both water Peltier and thermoelectric 

Peltier systems were used to maintain the temperature of the sample.  A baseline was 

taken for no less than 15 min to allow for thermal equilibrium prior to addition of a 

chemical stimulus. To reduce the quinone functionalized lipid to a hydroquinone, 

thereby triggering contents release of the QPA-DOPE system, a freshly prepared 

solution of sodium dithionite (Na2S2O4) degassed with argon was added to the cuvette 

(5:1, S2O4
2-lipid mol).  After there was no significant change in signal upon release, and 

the fluorescence signal had plateaued, 30 L of 30% Triton X-100 stock solution was 

added to lyse the remaining liposomes and free any calcein still encapsulated                        

(total concentration 1.0% vol/vol). The percentage of calcein released with time can be 

calculated by normalizing the dynamic signal (I) with the average baseline (I0) and 

maximum possible signal (I100) which is determined by lysing the vesicle with                         

Triton X-100 detergent (Equation 2.1). 

Equation 2.1             %	��������	������� =
����

�������
× 100 

To correlate the aggregation of liposomes with contents release, a light 

scattering study was carried out with the same stock solution used for contents release 

study. The experimental protocol is identical to the calcein contents release protocol 

outlined above but with an excitation/emission wavelengths of 600/610 nm and 
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excitation/emission monochromator slit widths of 5.0/5.0 nm. If the liposomes 

aggregate post S2O4
2- addition, the incident light is scattered, and an increase in 610 

nm signal is observed. The light scattering data can be normalized in the same manner 

as calcein. Figure 2.1 depicts the normalized calcein contents release and light 

scattering data of a 100 M QPA-DOPE liposomal system in 100 mM KCl/0.10 mM EDTA, 

buffered with 50.0 mM phosphate, pH 7.40. 

Figure 2.1. The content release curve of QPA-DOPE LUVs in PBS media (pH 7.40) 
triggered by S2O4

2 addition. The time for 50% of the content to be released (T50) is     
10.2 min with 75% of the total contents being released. Triton X-100 was the surfactant 
used to lyse the remaining vesicles to determine 100% release. 
 
2.4 Tb3+/DPA2 Fusion Assay 

 Wilschut et al. first reported a fluorescence contents mixing assay for fused 

vesicles that is based on encapsulating Tb3+ and dipicolinic acid (DPA2).13,30                        

DPA instantly chelates Tb3+ to form a highly fluorescent Tb(DPA)3
3 complex that 

absorbs at 276 nm and emits at 490 and 545 nm. This assay has been widely used to 
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study the fusogenic properties of liposomes.31 ANTS/DPX is another fusion assay 

commonly used to study liposomal content mixing; however, it has a pH 

dependence.32,33  

2.4.1 Encapsulation Media 

 99.9% TbCl3, 99.0% 2,6-pyridinecarboxylic acid (DPA), and 98.0% potassium 

citrate (K3C6H5O7) were obtained from Sigma-Aldrich (St. Louis, MO) at the highest 

purity available.  Three different solutions of buffer media are needed for the Tb3+/DPA2– 

liposome fusion assay: one containing 5.0 mM TbCl3 and 50.0 mM K3C6H5O7 buffered 

with 10.0 mM TES, pH 7.4 for encapsulation; a second containing 20.0 mM DPA2- and             

80 mM KCl buffered with 10.0 mM TES, pH 7.4 for encapsulation; and a third solution 

as an interstitial medium containing 100 mM KCl and 1.0 mM EDTA buffered with                  

10.0 mM TES, pH 7.4. To keep Tb3+ from binding with the anionic lipid bilayer, citrate 

is included in its buffer media as a weak chelator. The buffers were tuned to the same 

osmotic pressure by titrating with a 1.0 M KCl stock solution as to prevent unwanted 

contents leakage.  

2.4.2 Reverse Phase Vaporization 

 LUVs encapsulated with their respective Tb3+ and DPA2– media were prepared 

using a reverse phase vaporization.23 34 mg of lipid were dissolved in CHCl3 and 

transferred to a 25-mL round-bottom flask. The solvent was removed with a rotary 

evaporator, and then placed on a high-vacuum line (< 2 Torr) for no less than 1 h.                   

The lipid was dissolved in 0.6 mL of diethyl ether and 0.2 mL of the respective media 

for encapsulation added to the flask. The flask was sonicated for 5 min to ensure 

emulsification of the two phases. The flask was placed on a rotary evaporator                              

(30 °C, 350 mm Hg, 200 RPM) until a gel was observed to form. The flask was vortexed  
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for 5 s (no more than 10 s) and then placed back on a rotary evaporator                                         

(30 °C, 150 mm Hg, 200 RPM) for 2 min before adding an additional 0.5 mL of the 

respective buffer medium.  The flask was placed back on the rotary evaporator 

for a third time (30 °C, 10 mm Hg, 200 RPM) for 20–30 min to remove any latent ether. 

The aqueous solution containing the vesicles was extruded 11 times through a hand 

held, mini-extruder purchased from Avanti Polar Lipids (Birmingham, AL) and equipped 

with a 100-nm polycarbonate track-etched membrane.  

2.4.3 Size-Exclusion Chromatography: Fusion Assay 

 A traditional gravimetric size-exclusion chromatography column was used to 

separate the non-encapsulated analytes from the liposomes. This method was selected 

over a spin column so as to minimize the force exerted on the liposomes in an attempt 

to avoid contents leakage. Two columns (20’’ x 0.5’’) were loaded with hydrated 

Sephadex G-50 fine; one contained 100 mM KCl/1.0 mM EDTA buffered with                     

10.0 mM TES, pH 7.4 and a second contained 100 mM KCl buffered with 10.0 mM TES, 

pH 7.40 (no EDTA).  The entire volume of the liposomes after extrusion (~1 mL) was 

loaded onto their respective columns and the eluents were collected with disposable       

10-mL glass test tubes. The liposomes coming off the column were observed by a 

distinct change in the solution, changing from clear to cloudiness in the eluting media.  

The concentrations of the eluted liposome solutions were determined by a Bartlett 

assay and stored on ice until they were used. 

2.4.4 Ca2+-induced Fusion 

 Fusion of anionic liposomes was observed by loading 50 M of the liposome 

stock solution containing the DPA2– media and 50 M of the liposome stock solution 

containing the Tb3+ media, in a 3.0-mL quartz cuvette containing 100 mM KCl/1.0 mM EDTA 
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buffered with 10.0 mM TES, pH 7.40 as the matrix. The fluorescence was observed with a 

Perkin Elmer LS-55 Fluorimeter using the following parameters: excitation/emission 

wavelengths of 276 nm/545 nm, a 550 ± 10 nm bandpass filter equipped in front of the 

emission monochromator slit entrance, excitation/emission monochromator slit widths 

2.5 nm/10 nm, 5 s data interval/1 second integration, 25 °C. A baseline signal was 

obtained for 5 min prior to injecting 50 L of a 610 mM Ca2+ stock solution                                  

(10.0 mM Ca2+ final concentration).    

2.5  QPA-DOPE Synthesis 

This section begins with a word of caution. It is imperative that steps are taken 

to avoid any and all hydrocarbon contaminants, especially as they relate the final                        

QPA-DOPE coupling reaction. Contaminants from silicon oil baths, glass ground-joint 

grease, and chemical impurities, such as urea, adversity impacts the performance of 

the liposome systems here.  These species can intercalate into the non-polar region of 

the lipid membrane, which alter the phase behavior of the liposome.34,35 To this end, all 

glassware, glass joint-attachments, and equipment used in this synthetic work were 

cleaned meticulously before each use.  All glassware is cleaned with Alconox after use. 

The glassware used is kept in a base bath (500 g NaOH in 8 L isopropyl alcohol) for no 

less than 24 h prior to use.  In the instances where a grease contamination was 

observed or suspected, the glassware in question was cleaned with Piranha solution                                     

(3:7 vol:vol 30% hydrogen peroxide:concentrated sulfuric acid). Please note: Piranha 

solution is a strong oxidizer and is extremely exothermic; take all safety precautions 

when preparing or handling this solution. 
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Lactone (1c) 

 

 

 

(1c). 2,3,5-trimethylhydroquinone 1a (1.0 g, 6.57 mmol) and 3,3–dimethylacrylic 

acid (0.724 g, 7.23 mmol) were added to 10 mL of methanesulfonic acid, and then the 

mixture was heated to 80 °C in a water bath with stirring.  It is important to note that a 

water bath and not an oil bath was used to maintain temperature, so as to avoid 

hydrocarbon contamination.  The mixture was stirred for 2 h, and then the reaction was 

diluted with 100 mL of H2O, yielding a red-brown precipitate. The resulting 

inhomogeneous mixture was extracted with ethyl acetate (3 x 50 mL) or until the ethyl 

acetate was colorless. The collected ethyl acetate extracts were combined and washed 

with H2O (1 x 50 mL) before being washed with a saturated NaHCO3 solution                                

(3 x 50 mL).  The organic layer was washed a second time with H2O and then with 

brine, before the organic layer was dried with MgSO4.  The solvent was removed with 

the aid of a rotary evaporator, affording a pail-brown solid.  Recrystallization of the solid 

from acetone/hexanes (minimal acetone to dissolve) afforded 1.28 g (83%) of a white 

powder. 1H NMR (400 MHz, CDCl3)  1.46 ppm (s, 6H, geminal CH3), 2.19 and 2.22 

ppm (s, 3H, CH3), 2.36 ppm (s, 3H, CH3), 2.55 ppm (s, 2H CH2). 13C NMR                                         

(100.61 MHz, CDCl3)  12.34, 12.56, 14.51, 27.72, 35.47, 46.07, 119.11, 122.06, 

123.40, 128.19, 143.47, 148.92, and 169.08 ppm. HRMS (ESI) m/z [M+H]+,                   

calculated = 234.1256 (calculated for C14H18O3), observed = 234.1258, -1.01 ppm error.               

(Appendix 7–8) 
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Quinone Propionic Acid (QPA, 2b) 

 

 

 

 

 

(2b). The lactone product 1c (1.0 g, 4.27 mmol) was dissolved in a 30-mL 

solution of acetonitrile and water (9/1 vol/vol). N-Bromosuccinimide 2a                          

(0.84 g, 4.70 mmol) was dissolved in 5 mL of the acetonitrile/water solution, and it was 

added dropwise over 1 h. The reaction was stirred for an additional hour after NBS 

addition, and this was then diluted with 200 mL with H2O, transferred to a separatory 

funnel, and the product extracted using CH2Cl2 (3 x 50 mL) from the aqueous phase.  

The combined organic layers were washed with H2O (1 x 50 mL) and then with brine     

(1 x 50 mL) before being dried over MgSO4. The solvent was removed with a rotary 

evaporator to yield a yellow-brown solid. Recrystallization in acetone/hexane (minimal 

acetone to dissolve product) afforded 0.92 g (86%) of a yellow-brown crystalline solid. 

1H NMR (400 MHz, CDCl3)  1.43 ppm (s, 6H, geminal CH3), 1.93 and 1.96  ppm                       

(s, 3H, CH3), 2.14 (s, 3H, CH3), 3.02 ppm (s, 2H CH2). 13C NMR (100.61 MHz, CDCl3) 

 12.09, 12.49, 14.30, 28.79, 37.93, 47.26, 138.38, 139.03, and 142.98, 152.02, 178.74, 

187.44, 190.85 ppm. HRMS (ESI) m/z [M+H]-, calculated = 250.1205 (calculated for 

C14H18O4), observed = 250.1205, 0.06 ppm error (Appendix 9–10). 
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Quinone-NHS (3b) 
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3.30 ppm (s, 2H CH2). 13C NMR (100.61 MHz, CDCl3)  12.17, 12.20, 12.56, 25.98, 

29.14, 38.84, 44.13, 138.78, 140.35, 142.81, 149.98, 167.87, 168.92, 187.33, and 

190.25 ppm. HRMS (ESI) m/z [M+H]+, calculated = 347.1369 (calculated for 

C18H21O6N), observed = 347.1359, 2.93 ppm error. (Appendix 11–12) 
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a rotary evaporator before being loaded onto a 15-g silica column. The column was 

packed with CH2Cl2. Once the product was loaded onto the column, the mobile phase 

was changed to CH2Cl2/ethyl acetate (1:1 vol). Two yellow bands were observed: the 

eluting band was excess QPA-NHS, and the retained band was QPA-DOPE. Once the first 

band had eluted, an equal column volume of the mobile phase was allowed to pass 

through the column. A second mobile phase of CH2Cl2/MeOH/hexanes (3:1:2 vol/vol) 

was used to elute the product.  This yellow band was collected, and the solvent removed 

via rotary evaporation to yield 111.47 mg (85%) of a yellow waxy film. 1H NMR                     

(400 MHz, CDCl3)  0.90 ppm (t, 6H CH3), 1.29 ppm (bs, 40H CH2), 1.40 ppm                      

(s, 6H, geminal CH3), 1.60 ppm (bs, 4H CH2), 1.96 ppm (s, 8H CH2), 2.02 ppm                   

(s, 6H CH3), 2.13 ppm (s, 3H, CH3), 2.31 ppm (bs, 4H, CH2), 2.87 ppm (s, 2H CH2),                 

3.39 ppm (s, 2H CH2), 3.88 ppm (s, 2H CH2), 3.96 ppm (s, 2H CH2), 4.42 ppm and                

4.44 ppm (split s, 2H CH2), 5.35 ppm (s, 1H CH), 5.36 ppm (s, 4H CH). HRMS (ESI) 

m/z [M+H]+, calculated = 975.6564 (calculated for C55H95O11NP), observed = 975.6556, 

0.83 ppm error (Appendix 13–14). 

2.6 QBr-DOPE Synthesis 
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stirred at 80 °C for 2 h. The reaction mixture was diluted to 200 mL with water, and the 

product was extracted with ethyl acetate (3 × 50 mL).  The combined ethyl acetate 

extracts were then washed with H2O (1 x 50 mL), saturated NaHCO3 solution                     

(3 × 50 mL), H2O (1 x 50 mL), and brine (1 x 50 mL), followed by drying over MgSO4. 

The solvent was removed by rotary evaporation to yield a light-brown solid. This product 

was recrystallized in acetone/hexane (minimal acetone to dissolve product) to afford                   

1.17 g (74%). 1H NMR (400 MHz, CDCl3)  1.46 ppm (s, 6H, geminal CH3), 2.23 and                   

2.38 ppm (s, 3H, CH3), 2.57 ppm (s, 2H, CH2), 4.50 ppm (s, 1H, OH), 6.73 ppm                       

(s, 1H, aryl H). 13C NMR  (100.61 MHz, CDCl3)  14.42, 15.90, 27.75, 35.39, 46.02, 

116.81, 122.10, 122.68, 128.57, 144.80, 149.26, and 168.78 ppm. HRMS (ESI) m/z 

[M−H]−, calculated = 219.1020 (calculated for C13H15O3), observed = 219.1026,                       

−2.9 ppm error (Appendix 15–16). 
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with H2O (1 x 50 mL), and 6b was extracted by saturated sodium bicarbonate washes 

(3 x 50 mL). 6b was precipitated from the combined sodium bicarbonate washes by 

acidifying the solution with 30% HCl. The yellow precipitate (6b) was brought up in 

CHCl3 (3 x 50 mL). After rinsing with water (1 x 50 mL), a saturated sodium bicarbonate 

solution was slowly added to neutralize any remaining acid, with subsequent rinsing 

with H2O (1 x 50 mL) and with brine (1 x 50 mL).  The product was dried over MgSO4, 

and the solvent was removed by rotary evaporation, affording 0.75 g (52%) of a brown 

waxy solid (6d).  1H NMR (400 MHz, CDCl3)  1.47 ppm (s, 6H, geminal CH3), 2.19 ppm             

(s, 3H, CH3), 2.21 ppm (s, 3H, CH3), 3.06 ppm (s, 2H CH2). HRMS (ESI) m/z [M+H]+, 

calculated = 314.0159 (calculated for C13H15O4Br), observed = 314.0115,                            

0.16 ppm error (Appendix 17). 
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urea, 7a was dissolved in a minimal amount of CH2Cl2 and added onto a 50-g silica 

column. The product was eluted off the column with a CH2Cl2/ethyl acetate grandient 

mobile phase (95/5 vol/vol) with collection of the yellow band. The solvent was removed 

by rotary evaporation to yield 0.37 g (56%) of 7a-a bright yellow solid. 1H NMR                    

(400 MHz, CDCl3)  1.56 ppm (s, 6H, geminal CH3), 2.17 ppm (s, 3H, CH3), 2.23 ppm 

(s, 3H, CH3), 2.78 ppm (s, 4H CH2), 3.26 ppm (s, 2H CH2). 13C NMR                                         

(100.61 MHz, CDCl3)  14.70, 15.87, 25.88, 29.94, 39.72, 44.49, 135.28, 142.07, 

142.24, 149.12, 167.87, 169.22, 187.56, and 189.56 ppm. HRMS (ESI) m/z [M+H]+, 

calculated = 412.0396 (calculated for C17H19O6NBr), observed = 412.0398, 0.58 ppm 

error (Appendix 18–19). 

QBr-DOPE (8a) 
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7a (62.2 mg, 0.151 mmol) was dissolved in a minimal amount of dry CH2Cl2 and added 

to the DOPE containing flask. Triethylamine (TEA) (66 L, 47.5 mg, 0.469 mmol) was 

added, and the reaction was stirred at 0 °C under argon for 6 h.  The reaction contents 

were transferred to a separatory funnel and washed with 5% NaHCO3 (3 x 50 mL).              

The organic layer was then washed with H2O (1 x 50 mL) and brine (1 x 50 mL) before 

drying over Na2SO4.  The solvent was removed with a rotary evaporator, brought up in 

a minimal volume of CHCl3, then the liquid was loaded onto a 15-g silica column.           

The column was packed with CH2Cl2. Once the product was loaded onto the column 

the mobile phase was changed to CH2Cl2/ethyl acetate (1:1 vol/vol). Two bands were 

observed: the eluting band consisting of excess QBr-NHS 7a (yellow) and a retained       

red-brown band containing 8a.  Once the first band had eluted, an equal column volume 

of the mobile phase was allowed to pass through the column.  A second mobile phase 

of CH2Cl2/MeOH/hexanes (3:1:2 vol/vol) was used to elute the product.  Two bands are 

observed to elute: a leading red-brown impurity and a second brown-yellow band 8a. 

This brown-yellow band was collected and the solvent removed via rotary evaporation 

to yield 152 mg (63%) of 8a as a brown-yellow wax. 1H NMR  (400 MHz, CDCl3)                  

 0.88 ppm (t, 6H CH3), 1.27 ppm (bs, 40H CH2), 1.40 ppm (s, 6H, geminal CH3),                        

1.58 ppm (bs, 4H CH2), 2.00 ppm (s, 8H CH2), 2.14 ppm (s, 6H CH3), 2.31 ppm                              

(q, 4H, CH2), 2.87 ppm (s, 2H CH2), 3.38 ppm (s, 2H CH2), 3.87 ppm (s, 2H CH2),                      

3.95 ppm (s, 2H CH2), 4.17 ppm and 4.40 ppm (split s, 2H CH2), 5.25 ppm (s, 1H CH), 

5.34 ppm (s, 4H CH). HRMS (ESI) m/z [M+H]+, calculated = 1038.5440 (calculated for 

C54H90O11NP), observed = 1038.5445, 0.54 ppm error (Appendix 20). 
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2.7 Physical Characterization of Liposomes 

 Measurements of a lipid system’s physical properties (i.e., hydration, transition 

states TM/TH, phase, surface potential, size) are used to qualify and quantify a lipid’s 

response to a stimulus.36,37 For the scope of this work, three physical properties of 

liposomes are needed: (1) the quality of dispersion of the liposomal system as a colloid 

solution, (2) the surface charge profile of the liposome particles in solution, and (3) the  

transition temperatures of the Lβ→Lα and Lα→HII phases, TM and TH, respectively.                    

In the work presented herein, dynamic light scattering (DLS), zeta potential, and 

differential scanning calorimetry (DSC) were used to make these measurements, 

respectively. This section covers the methodology of these experiments.  

2.7.1 Dynamic Light Scattering 

 Dynamic light scattering (DLS) was used as a quality control support tool to 

provide liposome size and dispersion measurements. In a typical study, 0.4 mL of a    

100 M liposomal stock solution was added to a 12-mm square plastic DLS cuvette 

(Malvern, DTS0012) and placed in a Malvern Zetasizer (Worcestershire, UK).                           

The size and dispersion are measured in triplicate and an average with statistical error 

reported. For a 100-nm size extrusion, the measured diameter will be between  

100120 nm. Well dispersed vesicles will have a PDI of ≤ 2.0, which is indicative of a 

mono-dispersed colloid solution.38,39 A PDI >> 2.0 can be an indication of                               

poly-dispersed particles (Appendix 21). 

2.7.2 Zeta Potential 

 Liposomes, and charged particles alike, polarize and interact with nearby water 

molecules at their surface-water interface.40-43 A commonly reported physical value of 

this property is a particle’s zeta potential (ζ).44-46 This is the potential energy (mV) 
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measured at the slipping plane or near the outer edge of the double layer and is an 

indicator of colloidal stability.47,48  For liposomes, this value is an indirect measurement 

of their surface potential and is a reflection of their stability not to aggregate because of 

charge repulsion from opposed bilayers.37  A typical liposome made up of anionic lipids 

that are stable will have a zeta potential ~ –50 mV.48 As opposed liposomes come into 

contact, this value should decrease (less negative) due to a decrease in the charge 

repulsion forces on the membranes’ surfaces 

 A Malvern Zetasizer (Worcestershire, UK) was used to measure the zeta 

potential of liposomes. A 1.0-mL aliquot of a 100 M liposomal stock solution was added 

to a Folded Capillary Zeta Cell (Malvern, DTS1070) via a 1.0-mL disposable syringe, 

taking care to avoid air bubbles. The cell was placed in the Zetasizer, and the potential 

was measured no less than 3 times for statistical purposes (Appendix 22). 

2.7.3 Differential Scanning Calorimetry 

 Differential scanning calorimetry (DSC) is an analytical method used to measure 

the thermodynamics between phases.49 DSC functions by applying heat to a lipid 

system and referencing the change in temperature to the same buffer media absent 

lipids.  Two lipid thermal phase transitions may be observed between Lβ→Lα and Lα→HII 

phases corresponding to TM and TH respectively.1, 50 

  In a typical procedure, 9.4 mol of lipid were dissolved in CHCl3, transferred into 

a 10.0-mL ground-glass joint test tube, and the solvent removed via rotary evaporation.  

The sample was placed on high vacuum (< 2 Torr) for ≥ 1 h before being hydrated with 

0.5 mL (18.8 mM total lipid concentration) of either 200 mM sucrose or DI-Nanopure 

water.  The sample was kept at a temperature above its TM and below it TH during the 

hydration process. After ≥ 30 min of initial hydration, the sample was subject to                    
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6 freeze/thaw cycles, using a dry ice/acetone bath to freeze the sample.  The sample 

was stored below its TM before use. 

 A Microcal Differential Scanning Calorimeter (GE Heath Sciences,                        

Piscataway, NJ) was used for DSC analysis.  Prior to lipid analysis, 0.52 mL of the 

hydrating media were given to both the sample and reference pans and no less than               

12 background spectra were acquired.  For each scan, the cells were set to start and 

hold at 10 °C for 15 min, then the temperature was raised to 85 °C at a rate of                              

60 °C h–1, holding for 5 min before cycling back to 10 °C at a rate of 60 °C h–1.                         

Once overlap between the background scans were observed, the sample chamber was 

emptied and the prepared lipid sample added to the one chamber.  One upward scan 

was acquired for each lipid. 

2.8 31P NMR Anisotropy 

 Understanding the phase behavior of a liposomal DDS before and after 

application of a stimulus gives insight into the system’s pathway for contents release.  

X-ray diffraction, DSC, Cryo-TEM, and 31P NMR can be used to measure the phase of 

a lipid.50-57 X-ray diffraction is the ideal method for determining structure, phase, and 

hydration of a lipid system; however, this method requires specialized instrumentation 

with both temperature and humidly chambers.58-61 Moreover, the dynamics and time 

frame of QPA-DOPE reduction and release might prove too challenging for this method, 

and it has yet to be explored for this system.62,63  DSC measurements are sensitive to 

changes in salt concentration, so the addition of Na2S2O4 to reduce the lipid makes this 

method a dubious challenge.64  Cryo-TEM has been used to study the phase identity of 

liposomes; however, resolution can be a challenge and time-dependent sample 

preparation to meet the needs of the required experimental time for QPA-DOPE analysis  
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does not make this method easily used. 31P NMR has widely been used as a method 

to detect the phase of a lipid in a large array of aqueous environments for MLVs.51,65-68       

31P NMR has the most potential to obtain information on the phase transition of                     

QPA-DOPE; however, due to the chemical nature of QPA-DOPE and anisotropy 

constraints of the method, unilamellar vesicles > 1-m diameter must be used.69 

Methods to prepare GUVs have been published in literature, but none at a large enough 

scale and concentration to generate adequate 31P NMR signal. 

2.8.1 Hot Buffer Hydration 

The challenge is to prepare a large quantity of GUVs at a relatively high 

concentration. To prepare QPA-DOPE GUVs, a modification of the procedure first 

described by Hub et al. was used.70  50 mg of QPA-DOPE was dissolved in 30 mL 

CH2Cl2 and transferred into a 500 mL round bottom flask. The solvent was removed 

with a rotary evaporator leaving a lipid film on the inner wall of the round bottom flask, 

characterized by sequential circle layers encompassing the widest part of the flask and 

25% down the surface of the flask. The flask containing the film was placed on high 

vacuum (< 2 Torr) for no less than 1 h to ensure total evaporation of the solvent.                         

The sample was hydrated at 80 °C in 500 mL of a 2.00 x 10–2 mM sucrose solution 

buffered with 10.0 mM TES, pH 7.40.  The hydration typically takes, 12 h but can take 

as long as 5 days, depending on the lipid and temperature. However, the various stages 

towards completion can be observed as follows: (1) strings of liposomes form in the 

center around the walls, (2) a circular cloud of liposomes form at the center, and (3) 

massive aggregation of the circular cloud into a dense sphere. Once the sphere has 

formed, the GUVs were harvested. 
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2.8.2 Giant Unilamellar Vesicle Harvesting 

 The GUV aggregate was collected with a disposable glass Pasteur pipette and 

transferred into a 2-mL plastic Eppendorf centrifuge vial.  The solution was centrifuged 

at 10,000 x g for 3 min: The GUVs settled to the bottom as a colloidal suspension, and 

the excess aqueous media (1.00 x 10–2 mM sucrose buffered with 10.0 mM TES,                     

pH 7.40) was decanted: the GUVs were suspended in 100 mM KCl buffered with                      

10.0 mM TES, pH 7.40 and centrifuged at 10,000 x g for an additional 3 min.  With care, 

the vesicles were collected with a 14’’ disposable glass Pasteur pipette and transferred 

into a specialized NMR tube. 75 L of D2O having the same osmotic pressure as the 

buffered media was added to the NMR tube with gentle mixing.    

2.8.3 NMR Experimental: Shigemi NMR Tube & {1H} 31P Spin-echo 

A 5-mm Shigemi NMR tube (Shigemi, Allison Park, PA) having the same 

magnetic susceptibility as D2O was used for all 31P NMR anisotropy experiments. All 

NMR experiments were performed on either a Bruker DPX-400 or Bruker AV-400, both 

operating at a frequency of 161.9 MHz.  A 1H-decoupled 31P spin-echo pulse sequence 

was used to acquire the T2 relaxation profile of the lipid structures (Figure 2.2). 

Typically, 2,048 transient scans were acquired, but in instances of weak signal due to 

dilute sample; as many as 40,960 transients were acquired. 
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Figure 2.2 The schematic of the {1H} 31P NMR spin-echo pulse sequence used to study 
the anisotropy behavior of lipid structures.  PL12 and PL13 represent the power level 
for 1H decoupling preset by the NMR, DL11 is a 30 ms disk delay to account for the 
instrument hardware response, D1 is a relaxation delay for the 1H steady-state pulse, 
D2 and D3 are the relaxation delays after the 90° and 180° pulses to obtain T2 phase 
coherency and delayed relaxation, and the free induction decay (FID) represents the 
period of time data is acquired. 
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CHAPTER 3 
POLYMORPHIC PHASE STUDIES OF QPA-DOPE USING 

                   31P NMR ANISOTROPY 
 

Fully hydrated, unsaturated PE lipids form either an Lα or HII phase depending 

on their physical environment (e.g., pH, temperature, salt).1-3 Currently, the only 

analytical methods capable of identifying and quantifying lipid phases are: 31P NMR, 

differential scanning calorimetry (DSC), freeze-fracture microscopies, X-ray diffraction, 

and IR spectroscopy.1,4-7 DSC measures the enthalpy of a phase change event with 

temperature, but is not suitable for non-thermally triggered phase changes.4,8                  

Freeze-fracture methods require a significant amount of sample preparation, making 

temporal phase measurements of triggerable lipids, like QPA-DOPE, challenging.9-11                

X-ray diffraction can probe a variety of lipid phases, including the cubic phase; however, 

this method requires a strong radiation source for adequate resolution, typically from a 

synchrotron.12-14 31P NMR is a commonly used analytical method to determine the 

phase identity of lipid, because of the distinctive lineshapes these phases produce.1,2,12  

Moreover, the 31P NMR method can be carried out in an aqueous environment, thus 

the physical environment used for other experimental methods is amiable to this 

method.  Because 31P NMR spectroscopy is a widely accepted and utilized analytical 

method, permits studies in an aqueous environment, and the ease of instrumental 

access, 31P NMR was use to investigate the phase behavior of QPA-DOPE before and 

after reduction. 

3.1 Origins of Phospholipid 31P NMR Lineshapes 

31P NMR lineshapes contain information regarding the phase of a 

phospholipid system, as each phase yields a unique spectrum. The lineshape of an 

Lα phase phospholipid is characterized by a broad linewidth (Δσ) with an intense 

peak (σ┴) on the right and a less intense shoulder (σII) on the left (Figure 3.1A).15,16 



83 
 

HII phase phospholipids are characterized by a mirror image of the Lα lineshape, but 

possess one-half the Δσ value of the Lα phase counterpart (Figure 3.1B).16                         

The 31P NMR lineshapes of micelles, small unilamellar vesicles (SUVs), small lipidic 

particles, and lipid cubic phases produce a single isotropic Lorentzian peak       

(Figure 3.1C).1,2,17 The size of a liposome also factors into the measured signal. 

Because of vesicle tumbling and lateral diffusion in the bilayer, vesicles must have a 

diameter > 1 m to have the required anisotropic motion, which yields lineshapes 

similar to Figure 3A.15 The dynamic motion of LUVs and SUVs results in an 

averaging of the signal from the phospholipids, which results in an isotropic peak 

(Figure 3C).  

Figure 3.1A-C.  31P NMR lineshapes for phospholipids in various phases: (A) Lα,          
(B) HII and (C) isotropic phases. Reprint (adapted) with permission from Thayer, Ann 
M., and Kohler, Susan J., Phosphorus-31 nuclear magnetic resonance spectra 
characteristic of hexagonal and isotropic phospholipid phases generated from 
phosphatidylethanolamine in the bilayer phase. Biochemistry. 1981, 20 (24),           
6831-34. Copyright (1981) American Chemical Society. 
 

31P NMR spectroscopy has also been used as a method to determine the 

lamellar nature of liposomes (SUVs, LUVs, MLVs, and GUVs).18 To determine the 

lamellar nature of a system, Mn2+ is added to an NMR tube containing the liposomes, 

and the isotropic phosphorus signal is measured before and after Mn2+ addition.              
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The ratio of signal before/after is proportional to the number of bilayers, as only the 

signal form phospholipids in the outer most leaflet phospholipids are quenched by 

ionic interaction with Mn2+. 

3.2  Principles of 31P NMR Anisotropy 

31P NMR line shapes observed for both the Lα and HII phases arise from chemical 

shift anisotropy (CSA) of the phosphorous nuclei in a phospholipid.19,20 In actuality, 

three chemical shift tensors (σ11, σ22, σ33) create a principle axis with the phosphorous 

nucleus as its origin (Figure 3.2).21 The motion of the chemical shift tensors must be 

referenced relative to the molecular frame (x, y, z) where the z-axis is the                              

magnetic field (B).20 The rotation of the chemical shift tensors from their principal axis 

into the molecular frame is defined by the Euler angles (Φ and θ).20 When this frame is 

established, the chemical shift tensors parallel (σII and perpendicular (σ┴) to B can be 

calculated from Equations 3.1 and 3.2, respectively.16,19,20 If the assumption is made 

that the chemical shift tensor components of the principle axis coincide with the 

molecular frame, both Φ and θ are equal to 0.20  With this assumption, it is possible to 

theoretically predict the spectral linewidth (Δσ) without using the Euler angles; as a 

result, the difference of Equations 3.1 and 3.2 yields Equation 3.3.  

The magnitude of the chemical shift tensors can be measured using solid state 

31P NMR of lyophilized phospholipids and frequency dependent 31P NMR.22-24  Because 

single crystals of lipids are difficult to generate and are thermally unstable, lipid powders 

are typically used.24 Without single crystals, the Euler angles cannot be measured.  

Solid-state 31P NMR spectra of dry lyophilized lipid powders display an axially 

asymmetric spectrum having two broad shoulders and an isotropic peak in the middle.24,25   
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In this state, the lipids fully exhibit all possible orientations in the magnetic field, and all 

possible chemical shifts are observed. The three extremity regions correspond to the 

chemical shift tensors σ11, σ22, and σ33 (unitless) and have a magnitude of their spectral 

chemical shift values (x-axis, ppm).23, 26 

           Equation 3.1 
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3.3 Goals, Aims, and Objectives 

Prior to this work, our hypothesis was that the observed contents release of                    

QPA-DOPE vesicles after reduction was due to an induced Lα→HII phase change and 

not from vesicles with leaky bilayers. To confirm that QPA-DOPE has polymorphic phase 

behavior using 31P NMR spectroscopy, three objectives were proposed and then 

accomplished. First, a new buffer system lacking phosphorus was validated for                     

QPA-DOPE LUVs, and it was found to have a similar contents release profile for                   

QPA-DOPE LUVs in phosphate buffer, the main buffer used prior to this work.27,28  

Second, a new method was developed to prepare QPA-DOPE GUVs at a sufficiently 

high concentration so as to allow 31P NMR analysis. Lastly, QPA-DOPE                               

31P NMR lineshapes before and after reduction were successfully acquired. 
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Figure 3.2. The chemical shift tensors (σ11, σ22, and σ33) of a phosphorus atom in a 
phospholipid are depicted in the field of the magnet (Bo) where Bo lies in the z-axis of a 
three dimensional Cartesian coordinate system (Bo, x, y). σ11 lies between the two 
esterified oxygens O(1)-O(2) and is perpendicular to both σ22 and σ33.  σ22 bisects the 
two non-esterified oxygens O(3)-P-O(4), and σ33 lies in the plane of O(3)-P-O(4) bond 
angle perpendicular to both σ11 and σ22. Φ is the angle of rotation of σ33 placing σ11 in 
the x-y plane, and θ is the angle of rotation that brings σ33 to coincide with the                      
z-axis (B). 
 
3.4  Buffer Media 

In previous QPA-DOPE studies conducted in the McCarley group, a phosphate 

buffer system was used to characterize contents release.27,28 For the 31P NMR studies 

in this dissertation, a different buffer had to be used to avoid additional isotropic 

phosphate signals that would interfere with the spectra. Both                                                             

N-tris(hydroxymethyl)methyl-2-aminoethanesulfonate (TES) and N-2-hydroxy-

ethylpiperazine- N’-2-ethanesulfonate (HEPES) were tested for QPA-DOPE, contents 

release as they have been shown to have a good buffer capacity between pH 68 

(Figure 3.3).29 The phosphate buffer system yielded a total contents release of 98%, 

TES buffer gave 96% release, and HEPES led to 86% release; The t50 values were              
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29 min, 56 min, and 60 min, respectively. The difference in time is either to the 

Hofmeister nature of phosphate, TES, and HEPES or the known general acid/base 

catalysis of lactonization.30-32 QPA-DOPE LUVs exhibited a deformation feature in their 

calcein release curves in both TES and HEPES media, suggesting these buffer systems 

undergo the same mechanism for release. This data supports TES and HEPES are 

suitable as an alternative buffer for 31P NMR studies.  For this work, TES buffer was 

used.  

Figure 3.3. The calcein release curves of 100 M QPA-DOPE LUVs in 75 mM KCl and     
1.0 mM EDTA, pH 7.4 buffered with 50 mM phosphate (Black), 10.0 mM TES (Red), 
and 10.0 mM HEPES (Blue) at 25 °C. All three buffer systems exhibit the deformation 
then release; however, TES and HEPES are delayed relative to phosphate. 
 
3.5 Method to Prepare QPA-DOPE GUVs 

Liposomes are categorized on their size as either 0.115 m diameter 

multilamellar vesicles (MLVs), 2550 nm diameter small unilamellar vesicles (SUVs), 
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0.11.0 m diameter large unilamellar vesicles (LUVs), and >1.0 m diameter giant 

unilamellar vesicles (GUVs).33 The type of vesicle(s) present in a liposome solution 

depends on the preparation method used. In order to obtain the 31P NMR CSA 

lineshape of liposomes, the vesicle diameter must be > 1 m in order to minimize the 

dynamics affecting isotropic averaging of their chemical shift tensor components.1,15,34  

MLVs are commonly used to obtain 31P NMR CSA lineshapes for phospholipids being 

studied for their lipid phase characteristics, because the thermal trigger used to induce 

a phase change can affect internal layers of the vesicle.16,19,35-39 However, only the QPA 

head groups in the outer leaflets of QPA-DOPE vesicles exposed to the reducing agent 

are cleaved. If QPA-DOPE MLVs were used, the internal QPA-DOPE liposomes would 

stabilize the MLV structure, thereby preventing aggregation and contact from opposed 

vesicles.  This would inhibit contents release and any phase transition. For this reason, 

unilamellar vesicles that have a diameter > 1 m are needed to prevent isotropic 

averaging of its CSA and offer the ability to observe the QPA-DOPE phase transition 

with 31P NMR. 

There are several reported methods for the preparation of GUVs.40-43                               

For 31P NMR studies of QPA-DOPE, a modified procedure of the one reported by Hub 

et al. was used.40 The authors found when a lipid film was hydrated in low ionic strength 

buffer media at high temperatures, GUVs with 150 m diameters were generated, 

leading to formation of a large aggregate in the center of the liquid in the vessel.                      

The authors then agitated the vessel to generate a solution of well dispersed LUVs.      

In this work, the scale was increased 10-fold (~30 mg of lipid in 500 mL of buffer), the 

GUVs were harvested rather than agitated, and a centrifugation step (5 min at 10,000 

x g) was added in order to concentrate the GUVs for NMR analysis, as well as to 
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exchange the non-ionic buffer media used for vesicle growth with the TES/KCl buffer 

media validated earlier in this work. The centrifugation of LUVs and MLVs has been 

reported in literature, and it has been shown to not damage the vesicles at forces up to 

100,000 x g (Figure 3.4).33,44 The size of the QPA-DOPE GUVs produced range from 

120 m. GUVs were prepared in 1.40 x 10–2 mM sucrose buffered with 10.0 mM TES, 

pH 7.40 and after centrifugation resuspended in 75 mM KCl buffered with                                   

10.0 mM TES, pH 7.40. The release curve of QPA-DOPE LUVs (~120 nm) in this buffer 

system has a 96% contents release at 110 minutes and exhibits deformation prior to 

release (Figure 3.5).    

 
Figure 3.4. A wide-field optical micrograph of                
QPA-DOPE GUVs (Bar = 10 m).  The aqueous 
environment is buffered with 10.0 mM TES and 
contains 1.40 x 10–2 mM sucrose in the 
encapsulated volume and 75 mM KCl in the 
exterior space, pH 7.40 in 20% D2O. The smaller 
features seen are artifacts from the microscope 

 

 

Only phospholipid vesicles situated in the RF coil region (~1218 mm) of the 

NMR instrument produce signal. In order to obtain an adequate signal-to-noise ratio,                  

it is necessary to concentrate the vesicles into a region of the NMR tube comparable to 

that of the RF coil region. A 5-mm diameter Shigemi NMR tube made to have the same 

magnetic susceptibility as D2O was used to improve the signal-to-noise ratio                   

(Figure 3.5). In traditional NMR tubes, the sample at the bottom of the tube that lies 

below or above the magnetic coil does not contribute to the acquired signal; however, 

this loss in efficiency is necessary to provide sample homogeneity in the coil region.                         

A Shigemi NMR tube has a quartz plug at the top and bottom of the sample area so the 
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entire undiluted sample can be placed inside coil region. Moreover, because the tube 

is made to have the same magnetic susceptibility as D2O, there is no effect on the 

homogeneity of the magnetic field in the coil region.  

 

 

 

 

 

 

 

 

 

 

Figure 3.5. Calcein release curve of 100 M QPA-DOPE LUVs (~120 nm) buffered in 
10.0 mM TES with 1.40 x 10–2  mM sucrose in the encapsulated volume and pH 
7.40–75 mM KCl with 1.0 mM EDTA in the surrounding volume at 25 °C. The t50 for 
calcein release is 81 min, and 96% total release is observed at 110 min prior to lysis. 
 

 
Figure 3.6. A 5-mm Shigemi NMR tube matched to have the same magnetic 
susceptibility as D2O.  The bottom is plugged to maximize the amount of sample within 
the radio frequency (RF) coil region (red).  The sample region is bored to have a wider 
diameter, so as to increase the amount of sample in the RF coil region. 
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3.6     31P NMR Anisotropy Results and Discussion 
 

To demonstrate the ability to obtain the CSA lineshapes of phospholipid vesicles, 

31P NMR spectra of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphatidylethanolamine 

(POPE) MLVs were obtained at 30, 50, 65 and 80 ºC on a Bruker DPX-400 

spectrometer at a frequency of 161.975 MHz with 2048 scans using a proton-

decoupled, spin-echo pulse sequence (Figure 3.7). The TH of POPE is reported to be 

~70 ºC.45 The 31P NMR spectra at 30, 50 and 65 ºC indicate the presence of an                         

Lα phase with Δσavg= 40.4  2.6 ppm. At 80 ºC, the 31P NMR spectrum of POPE has a 

mirror image lineshape, in comparison to that of the L phase, and the spectrum exhibits                      

Δσ=21.3 ppm, both indicating the presence of an HII phase.  Kohler et al. modeled the 

phosphoethanolamine (PE) head group and reported the theoretical values of the 

chemical shift tensors to be σ11= –67, σ22= –13 and σ33= 69.22  If the principle axis of 

the chemical shift tensors coincide with the molecular frame and no Euler rotations are 

necessary, Equation 3.3 holds true, and the theoretical value of Δσ for PE is 42 ppm 

for Lα vesicles, 4.8% difference from the experimental value. This suggests the 

procedure used for sample preparation and 31P NMR spectra acquisition are accurate. 

To validate the GUV preparation method developed with 31P NMR anisotropy 

lipid phase measurements, 1,2-dioleoyl-sn-glycero-3-phosphatidylcholine (DOPC) 

GUVs were prepared using the method outlined in Chapter 2. DOPC is a bilayer-

forming lipid and does not favor the HII phase at any temperature when hydrated. After 

growth and harvesting of DOPC GUVs, the vesicles were resuspended in pH 7.40                                        

75 mM KCl/10.0 mM TES (20% D2O). The sample was transferred into a Shigemi NMR 

tube   and   analyzed  on  a   Bruker   Ascend-400   spectrometer  at  a   frequency  of                       
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161.975 MHz with 2,048 scans using a proton-decoupled, spin-echo pulse sequence 

(Figure 3.8). The acquired linewidth (49.5 ppm) and lineshape agree with previous             

31P NMR studies of DOPC MLVs.11,46 

Figure 3.7. 31P NMR lineshapes of POPE MLVs at 30 °C (A), 50 °C (B), 65 °C (C), and 
80 °C (D) acquired on a Bruker DPX-400 NMR spectrometer operating at 161.975 MHz 
with 2048 transient scans.  Spectra A, B, and C have lineshapes indicative of a lamellar 
phase and an average linewidth of 40.4  2.6 ppm. Spectrum D was obtained at a 
temperature above the transition temperature (TH =72 °C) of POPE and has a lineshape 
and linewidth (21.3 ppm) characteristic of an inverted hexagonal phase.  
 
 31P NMR spectra of QPA-DOPE vesicles were obtained on a Bruker DPX-400 

spectrometer at a frequency of 161.975 MHz with 40,960 scans using a proton 

decoupled spin-echo pulse sequence. In an attempt to minimize the isotropic averaging 

of the signal from vesicle tumbling, the spectrum of the Lα phase was obtained at 5 ºC.  

Because the TH of DOPE is reported to be around ~5 ºC, the sample was analyzed at 

15 ºC before and after Na2S2O4 reduction (Figure 3.9).47,48 The spectrum of the Lα phase 

of QPA-DOPE was Δσ=32.1 ppm and possesses a similar lineshape to the spectrum of  

A 

B 

C 

D 
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the Lα phase POPE. Akoka et al. investigated the 31P NMR linewidths of N-acyl-PE 

lipids and found that lipid head group modification led to a decrease in the measured 

linewidth of that lipid.49  Thayer et al. modeled the effect of altering the torsion angle of 

the head group and found that bending of the head group can narrow the linewidth of a 

lipid.17 A structural change in the polar region of a lipid can generate this torsion angle.                

Lipids in a bilayer can bend at the point where the polar and non-polar regions meet so 

as to find a lower free energy for chain packing when the area of the head group is 

larger than the cross-sectional area of the two hydrocarbon chains.50 Because                     

QPA-DOPE GUVs have a shorter linewidth than expected for PE lipids, this latter 

scenario is most likely the case. The spectrum of QPA-DOPE at 15 ºC after Na2S2O4 

reduction had a linewidth of Δσ=22.3 ppm. This is similar to the experimental value 

obtained for the HII phase of POPE and the theoretical value for PE lipids in the HII phase.22  

 

 

 

 

 

 

 

 

 

Figure 3.8. 31P NMR spectrum of DOPC GUVs acquired on a Bruker Ascend-400 
spectrometer operating at 161.975 MHz with 2048 transient scans at 25 °C.                          
The lineshape is indicative of a lamellar phase and has a linewidth of 49.5 ppm, which 
is in agreement with previously measured 31P NMR linewidths for DOPC MLVs. 
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Figure 3.9. 31P NMR spectra of QPA-DOPE GUVs before (A) and after (B) reduction with 
NaS2O4 acquired on a Bruker DPX-400 NMR spectrometer operating at 161.975 MHz 
with 40,960 transient scans. (A) Before S2O4

2- addition, the lineshape is indicative of a 
lamellar phase and has a linewidth 32.1 ppm; the narrower linewidth is due to QPA 
functionalization of the polar region. (B) After reduction, the lineshape and linewidth 
(22.3 ppm) are indicative of an inverted hexagonal phase. The co-existence of an 
isotropic state is also observed after reduction. Reprint (adapted) with permission from 
McCarley, R.L., Forsyth, J.C., Loew, M., Mendoza, M.F., Hollabaugh, N.M., Winter, 
J.E., Release Rates of Liposomal contents are controlled by Kosmotropes and 
Chaotropes. Langmuir. 2013, 29 (46), 13991-5. Copyright (2013) American Chemical 
Society. 

In addition to the HII line shape, the spectrum of QPA-DOPE after Na2S2O4 

reduction has a superimposed isotropic peak. The spectral line shape of the reduced 

QPA-DOPE spectrum did not change after being at room temperature for a week.                  

The isotropic state observed in this system can be either micelles, small unilamellar 

vesicles (SUVs), small lipidic particles, or cubic phase (QII).1,2,17 Unfortunately, an 

inability to further refine the isotropic state of lipid systems is one limitation of 31P NMR 

spectroscopy.  Based on the lipid geometry modeling done by Israelachvill et al., normal 

micelle vesicles are not probable for DOPE lipids, because the polar region is never 

A 

B 
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larger than the non-polar region.51  Recently, two different groups observed an isotropic 

state for DOPE MLVs with 31P NMR after repetitively cycling the lipid above and below 

its transition temperature.52,53  Shyamsunder et al. used X-ray diffraction to investigate 

the isotropic state of DOPE and found the presence of a cubic phase. This suggests 

the isotropic peak observed after QPA-DOPE reduction arises from the co-existence of 

HII and QII phases. 

3.7 Conclusion  

 31P NMR was used to probe the phase behavior of QPA-DOPE liposomes before 

and after Na2S2O4 reduction.  A new method to prepare large quantities of concentrated 

GUVs was successfully developed and implemented for multiple lipids. Both the 

linewidths and lineshapes confirm that QPA-DOPE undergoes an Lα → HII phase change 

after reduction. Numerous theoretical models have been published embodying the 

paths lamellar systems take as they undergo a phase transition to non-lamellar 

phases.54-60  The emergence of an isotropic state and possibly a cubic phase in           

QPA-DOPE liposomes after reduction is an example of how lipid phases and their 

transition processes are even more complex. Clearly, the release of contents entrapped 

by QPA-DOPE vesicles is due to a reduction-triggered phase change. The role of the 

cubic phase in this process, and what it means for this system, is still yet to be 

determined. The only method capable of making this measurement is X-ray diffraction; 

however, due to the dynamic nature of QPA-DOPE, a strong radiation source from a 

synchrotron is needed for the time required for temporal resolution. 
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CHAPTER 4 
A TRIGGERALBE RAPID CONTENTS RELEASE LIPOSMAL SYSTEM BASED ON 

A REDOX-SENSITIVE QPA-DOPE:POPE LIPID MIXTURE 
 
4.1 Introduction 
 

Liposomal delivery systems have potential for site-specific delivery of 

therapeutic agents to tumor sites. Of recent scientific interest is the development of          

3rd-generation liposomes whose contents are released by an endogenous stimulus 

unique to the targeted site. The McCarley lab has developed a redox-sensitive 

liposome, composed of a quinone propionic (QPA) trigger group bound to the polar head 

group of DOPE, to target NAD(P)H:quinone oxidoreductase type 1 (NQO1).                       

This reductase enzyme is upregulated in numerous cancer cells, and it catalyzes the 

reduction of quinones to hydroquinones.1-8 Upon reduction from a quinone to a 

hydroquinone in QPA-DOPE liposomes, the outer leaflet QPA is cleaved from the DOPE 

lipid, and the liposomal payload is released. QPA-DOPE liposomes faces two 

challenges: (1) the contents release of QPA-DOPE liposomes is lipid concentration 

dependent, which requires a minimum bioaccumulation concentration threshold to 

function properly; and (2) the time required for contents release is limited by the kinetics 

of QPA cyclization and cleavage.  To improve the application potential of QPA-DOPE 

liposomes, the mechanism of release must be manipulated by altering the nature of the 

bilayer. 

It is a characteristic of phospholipids to form either a lamellar or inverted 

hexagonal phase when hydrated in excess water.9 An intermediate phase that has 

recently received much attention is the cubic phase, which has isotropic state properties 

and has been identified as a possible intermediate in the fusion of opposed       

bilayers.10-12 The cubic phase is a closely packed spherical micelle existing in one of 

three possible 3-D arrays: (A) primitive cubic, (B) body-centered cubic, or                                   
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(C) face-centered cubic (Figure 4.1).13  Lipids can be mixed with one another to form a 

composition having a new phase different from either counterpart.14-16                              

Gruner et al. explained the phase identity of a lipid composition in terms of its intrinsic 

curvature.17 The radius of curvature (Ro) is large for a bilayer and small for non-bilayer 

structures.  Ro is determined from the geometry of the lipid, which dictates the packing 

of the non-polar region in the bilayer. As an example, if the temperature of a lipid system 

were to be increased, the lipid’s intrinsic Ro would decrease, due to an increase in the                 

cross-sectional area of the non-polar region. Likewise, if the area of the polar region 

were increased (e.g., methylation of a PE head group, (PC vs PE), or QPA 

functionalization), the lipid’s intrinsic Ro would increase.10,18-20  For a given lipid system 

where Ro is intermediate between Ro (Lα) and Ro (HII), Ro would be highly sensitive to 

lipid physical environment (i.e., ions, temperature, pH) or any change on the 

membrane’s surface (i.e., charge, hydration, head group size).21-24  

The phase exhibited by a lipid or lipid mixture is the one that has the lowest free 

energy.  When the free energy of two phases are equal, both phases can co-exist and 

be mesomorphic.13,25  Kirk et al. modeled the free energy of Lα, HII, and inverted cubic 

(QII) phases for unsaturated PE lipids using the sum of the local, packing, hydration, 

and electrostatic free energies.25 In the model, the Lα, HII, and QII free energy of a lipid 

mixture composed of 80% PS and 20% PE lipids exponentially decreased with 

increasing degrees of hydration (QII > HII > Lα).  At no point did the authors observe the 

QII phase to have a lower free energy than either the Lα or HII phase. Their reasoning 

for this was unsaturated PE lipids have a high chain packing energy, forbidding the QII 

phase.  
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Figure 4.1. (A) The inverted hexagonal phase (HII) is a two-dimensional array of inverted 
micelle tubes in a hexagonal packing arrangement.  The cubic phase is a closely 
packed spherical micelle in one of three three-dimensional arrays: (B) Primitive cubic, 
(C) Body-centered cubic, or (D) Face-centered cubic also known as the inverted cubic 
phase (QII). 

The cubic phase is exhibited by a lipid when it has a lower free energy than either 

the Lα or HII phase, which is due to competing Ro and packing constraints.26                                   

In any phase, the hydrocarbon chains must stretch to completely fill the non-polar areas 

of these geometries, which effects Ro of the lipid mixture.27  If the lipid is incapable of 

an increase in its nonpolar cross-sectional area, Lα (Ro) will be favored. Incorporating 

saturated and/or shorter acyl chains in the hydrocarbon region lowers the packing free 

energy.25,26 If this resulting Ro falls between HII (Ro) and Lα (Ro), the free energy of the 

cubic phase is at its lowest value. Tilcock et al. studied lipid mixtures of 1,2-dioleoyl-sn-

glycerol-3-phosphatidylethanolamine (DOPE, diacyl-18:1) and 1,2-ditetradecanoyl-sn-

glycerol-3-phosphatidylethanolamine (DTPE, diacyl-14:0) and found a mesomorphic 

lamellar-isotropic state in the 31P NMR lineshape over a wide range of temperatures. 

Both acyl chains in DTPE are unsaturated and are four carbon units shorter than those 

in DOPE, which suggests the inclusion of the 14:0 chains lowers the packing free 

energy of the bilayer and promotes the cubic phase.28 

In the work presented herein, large unilamellar vesicles (LUVs, 100-nm diameter) 

composed of 1-palmitoyl-2-oleoyl-3-sn-glycerol-phosphatidylethanolamine (POPE) and 

QPA-DOPE can be readily formed at 40 °C. Furthermore, the time required for                     
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50% release of the encapsulated contents (t50) after QPA-DOPE reduction was 

dramatically reduced with increasing molar quantities of POPE and was relatively 

unaffected at lower lipid concentrations. 31P NMR lineshapes of 20:80                              

QPA-DOPE:POPE giant unilamellar vesicles (GUVs, > 1-m diameter) are characteristic 

of a mesomorphic lamellar phase (Lα) and isotropic state before chemical reductive 

activation; a slow transition to an inverted hexagonal phase (HII) is noted after reduction. 

This work suggests QPA-DOPE:POPE vesicles undergo a charge destabilized Lα→HII 

transition with isotropic or possibly cubic phase intermediates that is kinetically slower 

than QPA-DOPE liposomes. I posit the growth of the observed isotropic state is 

associated with a bicontinuous cubic intermediate phase in the QPA-DOPE:POPE 

bilayer. The mesomorphic cubic-lamellar phase results in extensive and rapid liposomal 

contents release, caused by stress in the area around the cubic phase nucleation sites, 

upon the near instantaneous reduction of the QPA head groups to the hydroquinone 

(HQPA) version.  

4.2 Results  

QPA-DOPE:POPE LUVs having different molar amounts of QPA-DOPE were 

studied for payload release and phase properties. For contents release experiments, 

each sample came from a freshly prepared stock solution of 100 M total lipid as LUVs 

(100-nm diameter) prepared in PBS (pH 7.40) with 40 mM calcein encapsulated.                      

After equilibrating at 40 °C in the fluorometer for no less than 15 min, sodium dithionite 

(5:1 S2O4
2-:lipid, mol/mol) was added as a reducing agent to cleave the outer leaflet 

QPA from its DOPE lipid counterpart. The contents release profiles for the various 

QPADOPE:POPE systems are shown in Figure 4.2.  For a quantitative comparison of 

these systems, the time required for 50% of total calcein release (t50) is used as a tool 
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for comparison. The t50 values and the total percent release of the encapsulated 

contents are displayed in Table 4.1. There is an inverse correlation between the release 

rate of the liposome system and the QPA-DOPE molar concentration, as seen from the 

t50 values of the vesicles containing 100% and 15% QPA-DOPE; 9.5 ± 0.5 min and 2.5 

± 0.1 min, respectively.  Higher sodium dithionite concentrations had no effect on the 

observed release times and maximum percentage of contents release.  

After reduction, QPA-DOPE LUVs undergo contact-mediated release of opposing 

vesicle, which can be observed by an increase in light scattering. The single-trial light 

scattering profiles for varying ratios of QPA-DOPE:POPE LUVs are shown in            

Figures 4.3A-E overlaid with their respective contents release curves. An increase in 

light scattering is strongly correlated with an increase in fluorescent signal from calcein 

release for 100% QPA-DOPE LUVs after reduction. 

 

 

 

 

 

 

 

 

 

Figure 4.2. Contents release curves of QPA-DOPE:POPE (mol%) large unilamellar 
vesicles (LUVs, 100-nm diameter) prepared in 100 mM KCl and 0.1 mM EDTA buffered 
with 50 mM phosphate, pH 7.4 with 40 mM calcein encapsulated inside the vesicles at 
40 °C. A 5:1 molar ratio of sodium dithionite:lipid was injected at t=0 min. After no 
additional increase in fluorescent signal occurred, the remaining vesicles were lysed by 
the addition of 1.0% TritonX-100 detergent to determine the maximum fluorescent 
signal from encapsulated calcein 

QPA-DOPE:POPE 
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Table 4.1. The time required for 50% of the encapsulated contents to release (t50) and 
percent of total content release for the various QPA-DOPE vesicle systems at 40 °C. 
 

QPA-DOPE:POPE t50(min) Contents  Release (%) DLS Diameter (nm) 

100:0 9.5 ± 0.5 86.7 ± 5.8 114 ± 2 

90:10 7.3 ± 0.2 88.3 ± 2.5 96.7 ± 3 

80:20 6.4 ± 0.1 89.1 ± 0.3 100. ± 1 

50:50 5.8 ± 0.6 88.3 ± 2.6 109 ± 1 

20:80 3.0 ± 0.9 90.3 ± 3.4 108 ± 1 

15:85 2.5 ± 0.1 85.4 ± 1.1 118 ± 1 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4.3A-E QPA-DOPE:POPE Contents release curves overlaid with light scattering 
curves for 100:0 (A), 90:10 (B), 80:20 (C), 50:50 (D), and 20:80 (E) ratios at 40 °C are 
displayed. The 20:80 mixture shows the onset of light scattering after contents release 
is observed. 
 

A

B
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Figure 4.3 Continued 
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This property is also observed for QPA-DOPE:POPE lipid mixtures when               

QPA-DOPE is the more abundant lipid. In the 20:80 QPA-DOPE:POPE lipid mixture, an 

increase in light scattering is also observed, but its onset occurs after the encapsulated 

contents has already released (Figure 4.3E).  This suggests that the vesicles begin to 

release their contents prior to significantly aggregating. In such a case, the observed 

contents release time would be independent of vesicle concentration.   

To test this, the contents release properties of 100% QPA-DOPE and 20:80      

QPA-DOPE:POPE LUVs were assessed as a function of vesicle concentration        

(Figure 4.4A-B). The McCarley group has previously reported on the lipid concentration 

dependence of contents release from QPA-DOPE LUVs and found the ability of this 

system to release its contents after reduction was significantly hindered at lower 

concentrations; this evidence was used to support the argument that the release 

mechanism for  100%  QPA-DOPE  liposomes is based on  contact-mediated  process.23   

In that study, 100% QPA-DOPE LUVs showed a decrease in both the rate of release 

and total contents release with lower lipid concentrations, having < 10% release over 

40 min for 12.5 M lipid.  

In the work at hand, this trend was not seen with 20:80 QPA-DOPE:POPE LUVs.  

At 12.5 M, the 20:80 QPA-DOPE:POPE vesicles had a t50=3.3 min and 88.7% contents 

release, which is within the standard deviation reported in Table 4.1. There appears to 

be a threshold for which contents release is observed, namely, 7.5 M                           

20:80 QPA-DOPE:POPE.  This suggests that while the number of contact events from 

opposed bilayers does not affect the release kinetics, a low amount of bilayer contact 

is needed.  This is supported by the light scattering measurement in Figure 4.3E, where, 

it is found 20:80 QPA-DOPE:POPE LUVs are not dependent on extensive aggregation 
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in order to release their contents after reduction; the latter is the driving force for 

contents release from 100% QPA-DOPE liposomes. 

Figure 4.4A-B. Contents release curves for 100% QPA-DOPE (A) and a 20:80 (mol) 
mixture of QPADOPE:POPE LUVs at 40 °C (B) as a function of lipid concentration.           
QPA-DOPE LUVs are contact dependent and require aggregation to release their 
contents. The contents release profile of 20:80 QPA-DOPE:POPE LUVs does not show 
a significant dependence on lipid concentration; however, it does have a minimum 
threshold concentration (7.5 M) necessary for release. 
 

We have previously shown that the QPA-DOPE system undergoes an Lα→HII 

phase change upon reduction, with the final phase being a mesospheric inverted 

hexagonal-isotropic state.23 This is driven by the affinity of DOPE to exist in an inverted 

hexagonal phase above 5 °C; however, to our knowledge, the phase effect of mixing 

POPE with DOPE has yet to be studied.  Differential scanning calorimetry (DSC) 

measurements I performed are in agreement with the reported POPE TM and TH values 

of 24 °C and 72 °C, respectively (Figure 4.5).16   31P NMR anisotropy measurements of 

POPE MLVs at temperatures below and above the TH of POPE reveal lineshapes and 

linewidths characteristic of an Lα and HII phase, respectively (see Chapter 3).  

A B 
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Figure 4.5. Differential scanning calorimetry (DSC) spectrum of 18 mM POPE in           
140 mM sucrose buffered with 10 mM TES, pH 7.4.  The heat capacity profile of POPE 
reveals two peaks at 24 °C and 72 °C, corresponding to the Lβ→Lα phase transition 
(TM) and the Lα→HII (TH) phase transition, respectively. 

31P NMR anisotropy was also used to determine the phase behavior of 20:80 

QPA-DOPE:POPE vesicles after reduction (Figure 4.6A-E). Before reduction, 20:80                     

QPA-DOPE:POPE GUVs had a linewidth of 44 ppm and a lineshape profile supporting 

the presence of an Lα phase.  This is in agreement with the predicted linewidth of a PE 

lipid in the Lα phase (see Chapter 3).29,30  Unlike pure QPA-DOPE GUVs, which showed 

complete conversion from the Lα phase within such and such time after reduction, 

conversion of 20:80 QPA-DOPE:POPE GUVs was significantly slower, taking 84 hours 

for completion. Its final linewidth was 22.6 ppm, with a lineshape indicative of an                        

HII phase.  The spectra at intermediate times reveal the presence of both Lα and HII 

phases, in addition to an isotropic state.  The co-existence of an isotropic state with a 

lamellar phase prior to reduction could arise from contact of opposed bilayers during 

centrifugation or multi-lamellar structures. DSC measurements of 20:80                          

QPA-DOPE:POPE and 20:80 DOPE:POPE lipid mixtures exhibit a decrease in TH from 

64 °C to 55 °C when the QPA group is not attached to DOPE (Figure 4.7A-B).  
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Figure 4.6A-E. 31P NMR anisotropy spectra of QPA-DOPE:POPE GUVs (2:8 mol/mol) 
in 100 mM KCl buffered with 10 mM TES, pH 7.4 before and after the addition of S2O4

2- 
at 25 °C. (A, bottom) QPA-DOPE:POPE GUVs (2:8 mol/mol) before reduction, (B) 1 h, 
(C) 36 h, (D) 60 h, and (E) 84 hours after S2O4

2- reduction. An Lα phase is present in 
spectra A-E as evident by the lineshape and an average linewidth of 43.5 ppm. The 
appearance of an HII phase is first indicated by its lineshape in spectrum C (red arrow) 
and is co-existent with both an Lα phase and isotropic state until spectrum E, having a 
linewidth of 22.6 ppm and lineshape characteristic of only a HII phase. An isotropic state 
is seen in A-D, as evident by the signal at 6.5 ppm.  

Figure 4.7A-B. (A) The heat capacity profile of 20:80 QPADOPE:POPE MLVs reveals 
two peaks at 21 °C and 64 °C, corresponding to the Lβ→Lα phase transition (TM) and 
the Lα→HII (TH) phase transition, respectively. (B) The heat capacity profile of 20:80 
DOPE:POPE reveals two peaks at 21 °C and 55 °C, corresponding to the TM and TH, 
respectively. 

A B 
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4.3 Discussion 

The contents release from reduced 20:80 QPA-DOPE:POPE LUVs occurs after 

a slight increase in light scattering, but before extensive aggregation, and its mode of 

contents release is not dependent on the concentration of liposomes present. The rate 

of release is a function of the ratio of unsaturated POPE to QPA-DOPE in the bilayer. 

Moreover, 31P NMR data is indicative of a mesomorphic lamellar-isotropic state after 

reduction that diminishes as a HII phase is formed. DSC measurements of                        

QPA-DOPE:POPE and DOPE:POPE MLVs demonstrate a 9 °C decrease in TH  from                    

64 °C to 55 °C when QPA is not attached to DOPE. From these results, it is proposed 

the mechanism of contents release for 20:80 QPA-DOPE:POPE liposomes differs from 

that of pure QPA-DOPE LUVs, which relies on a contact mediated Lα→HII transition of 

opposed bilayers. Based on observation here and prior literature, the mechanistic 

difference arises from a difference in the packing free energy of the mixed acyl bilayer. 

An isotropic lipid state is complex, and it can be composed of micelles, small 

lamellar particles (<< 1-m diameter), or a cubic phase. In QPA-DOPE:POPE GUVs, 

the isotropic state signal decreases over time with the rise of a hexagonal phase.            

With this in mind, a more probable explanation of the isotropic signal is the temporal 

existence of a cubic phase. The cubic phase is an intermembrane intermediate (IMI) 

that gives rise to isotropic 31P NMR signal and has been observed in various lipid 

systems at temperatures between TM and TH.31,32 Two different research groups 

independently found an isotropic state in hydrated DOPE and DEPE membranes with 

31P NMR spectroscopy.33,34 Also, Shyamsunder et al. used X-ray diffraction to 

investigate the isotropic state of DOPE, and they found an inverted cubic phase when 

they repeatedly cycled the lipid above and below its TH.33   
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It is known that rapid formation of IMIs in a bilayer drives the lytic pathway of 

liposomal contents release, (Lα → HII), while fewer IMIs formed in a bilayer in a given 

time results in a kinetically slower contents release process from liposomes with cubic 

phase intermediates playing a major role; the latter path has been associated with 

vesical fusion.11,12,35-37 As the most stable phase is the one that has the lowest free 

energy, the cubic phase will only form when it has a lower free energy than either the 

Lα or HII phases, and this can only occur upon competition of intrinsic radius of curvature 

and packing constraints.25,26 Saturated lipids, such as POPE, can elastically stretch in 

the non-polar region of a lipid phase to fill the cross sectional areas, thereby lowering 

the packing free energy. 

No contents release or vesicle aggregation was observed for 100% QPA-POPE 

LUVs after QPA reduction (Appendix 23); therefore, the mechanism of contents release 

in 80:20 QPA-DOPE:POPE LUVs stems from mixed acyl chains in the bilayer. DOPE is 

an unsaturated lipid favoring the HII phase at temperatures above its TH of 8 °C.38,39  

POPE is a mixed acyl lipid that favors the Lα phase below 72 °C.                                

The DSC measurement of DOPE:POPE mixtures suggests the single 16:0 acyl chain 

in POPE lowers the packing free energy of the bilayer, in turn lowering the TH of the 

bilayer to 55 °C by relaxing the packing stress in the bilayer. Gruner and co-workers 

studied the change in HII free energy of PE and PC mixtures upon inclusion of 

tetradecane (14:0) and found three effects: (1) the spontaneous radius of curvature of 

the membrane was lowered; (2) the work necessary to dehydrate the polar head groups 

was decreased; and (3) the hydrocarbon stress in the non-polar bilayer was relaxed.40 

Tate et al. explored the lipid polymorphism of PE lipid mixtures with other PE lipids 

having varying chain lengths and saturation and confirmed the same effect.27  
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An identical light scattering profile to that of 20:80 QPA-DOPE:POPE                    

(Figure 4.2E) was reported by Wilschut et al. when studying Ca2+-induced fusion of 

phosphatidylserine (PS) LUVs.41 After inducing fusion, the authors observed a small 

initial increase in light scattering quickly followed by a subsequent decrease in light 

scattering that preceded a dramatic increase in light scattering. The initial increase 

followed by a decrease in light scattering correlates to contact of opposing vesicles that 

results in fewer particles scattering light. The large increase in light scattering that 

occurred after PS vesicles achieve maximum fusion suggests the signal increase arises 

from collapse of the internal aqueous space before extensive aggregation. 

 The only chemical difference in 20:80 QPA-DOPE:POPE LUVs after S2O4
2- 

addition and prior to contents release is the reduction of the quinone head groups in 

the outer leaflet of QPA-DOPE to hydroquinones (HQPA-DOPE). Therefore, it is 

proposed the contents release is triggered by a decrease in the repulsive hydration 

force of the outer leaflet polar region.  Akoka et al. studied the hydrogen-bonding effects 

of various N-acyl-PE lipids and noted that functional groups attached to the polar head 

of PE lipids may fold back into the membrane and hydrogen-bond with either the NH or 

phosphate oxygen in the polar region of the PE lipid.42 An increase in hydrogen-bonding 

in the polar region of PE lipids decreases the overall hydration force.43   

It is proposed the HQPA-DOPE formed in the outer LUV leaflet leads to changes 

in hydration that allow opposed bilayer surfaces to come into contact with each other 

so as to form isotropic IMIs. The unsaturated chain in POPE lowers the packing free 

energy in the bilayer by its stretching to fill the empty space in the non-polar region 

around IMI spaces.  This results in deformation of the bilayer, which generates local 

stress in the bilayer  at  the  deformation areas  around  the  IMIs.  Stress can be relieved  
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near these localized points in the bilayer in two ways: (1) fusion of the opposed bilayers 

occurs, resulting in contents and lipid mixing; and/or (2) fracturing of the bilayer occurs 

at the lipid-stress site, resulting in LUVs contents release into the interstitial volume               

(Scheme 4.1). 

Gruner et al. characterized the polymorphic phase behavior and properties of 

mono-, di-, and tri-methylated POPE lipids (DOPE, DOPE-Me, DOPE-Me2) mixed with 

DOPC.18 Functionalizing the polar head group of DOPE raised the TH of the lipid from 

~8 °C to ~65 °C for a single methylation (DOPE-Me).28 The authors also observed a 

cubic phase in the DOPE-Me system upon raising its temperature to a definitive point 

below its measured TH. A similar hydration effect is observed with QPA-DOPE; 

functionalizing the DOPE head group with QPA lowered the free energy of the lamellar 

phase, as observed by QPA-DOPE forming LUVs at temperatures above the TH of 

DOPE.  

Gangné et al. investigated the lipid mixing of opposed PS bilayers from            

Ca2+-induced fusion.32 They studied PS:DEPE-Me and PS:DEPE-Me2 liposomes and 

found that the more hydrated DEPE-Me2 lipids mixed better than DEPE-Me lipid.32      

This suggests the degree of hydration affects fusion (both contents and lipid mixing).     

It is worth mentioning that Gagné et al. also observed an isotropic 31P NMR lineshape 

for mono-methylated DOPE at temperatures above its TM; using freeze-fracture 

electron microscopy, they confirmed the isotropic state was associated with a cubic 

phase. After the internal contents of the 20:80 QPA-DOPE:POPE LUVs were released, 

massive aggregation of opposed bilayer membranes was observed by light scattering. 

At this point, the internal contents of the liposomes have mixed with the exterior volume, 

allowing S2O4
2- to reduce the inner leaflet QPA-DOPE lipids to HQPA-DOPE. Eventually,  
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the hydroquione cyclizes to form a lactone, which cleaved from DOPE, resulting in 

massive aggregation of opposed bilayers, as seen in the light scattering measurements 

of Figure 4.3. Rapid aggregation and IMI formation drive the lytic pathway and result in 

formation of the HII phase (Scheme 4.2). 

 

 

 

 

Scheme 
4.1.  

Scheme 4.1. Formation of a leaky mesomorphic bicontinuous cubic–lamellar bilayer 
structure. (1) Upon reduction of the outer leaflet QPA-DOPE lipids in the 20:80                 
QPA-DOPE:POPE vesicles, opposed bilayers approach one another and come into 
contact due to a change in hydration force. (2) At the contact site, cubic intermembrane 
intermediates (IMIs) form at the contact site and can have the geometry of a (A) 
primitive, (B) body-centered, or (C) face-centered cubic phase (see Figure 4.1). This 
cubic-isotropic phase is bicontinuous and co-exists with the lamellar-liquid crystal 
phase as a fusogenic system. (3) The acyl chains in the non-polar region around the 
cubic phase IMI stretch to fill the entire volume, causing deformation in the bilayer                       
(red arrows).  In a traditional fusion pathway (4a), the cubic phase IMI facilitate fusion 
of the opposed bilayers and mixing of both their encapsulated volumes and lipid 
bilayers. In the proposed lysis pathway (4b), the deformation sites stress the intrinsic 
curvature of the bilayer and serve as a nucleation site, which results in membrane lysis, 
extensive contents leakage, and eventually mixing of the internal contents with the 
exterior volume (contents release).   
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Scheme 4.2. Formation of the inverted hexagonal phase from a mesomorphic cubic-
lamellar bilayer after contents release. (1) Upon reduction of the outer leaflet QPA-DOPE 
lipids in the 20:80 QPA-DOPE:POPE lipid mixture, opposed bilayers approach one 
another and come into contact due to a change in the hydration force (Scheme 4.1).     
(2) After lysis of the membrane, the external volume mixes with the internal volume of 
the vesicle, allowing reduction of QPA-DOPE in the inner leaflet of the bilayer 
membrane. (3) After the hydroquinone forms a lactone and is cleaved from the DOPE 
lipid, the bilayer membranes become charge neutral.  The charge repulsion force is lost 
and the opposed PE bilayers aggregate extensively. (4) There is rapid IMI formation 
between opposed bilayers, following the lytic pathway reported by Ellens et. al. 
(Biochemistry 1989). (5) The lytic path phase change from the mesomorphic lamellar-
cubic bilayers into the inverted hexagonal phase.  
 
4.4 Conclusion  

 20:80 QPA-DOPE:POPE LUVs are chemically unique from other liposomal 

systems exhibiting inverted cubic (QII) phase properties, in that they require a redox 

stimulus to chemically trigger contents release rather than pH, temperature, or water 

content. The contents release mechanism for reduced QPA-DOPE:POPE LUVs is 

triggered by a change in surface structure of the outer membrane,  which  results  in  a  
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lowering of the repulsive hydration force of the outer membrane surface. The physical  

driving force responsible for rapid contents release is in the inclusion of an unsaturated 

lipid that lowers the packing free energy in the non-polar region surrounding the IMI.              

It is quite notable that the simple structural change of a quinone to a hydroquinone in 

20% of lipids on the outer leaflet of a liposome membrane can initiate rapid and 

extensive contents leakage. Because of the time improvement in contents release and 

its relative independence on liposome concentration, the 20:80 QPA-DOPE liposomal 

system has much potential as a carrier for drug delivery.   

The use of a reduction process to trigger rapid contents release based on 

altering the surface hydration force and not QPA cleavage (as is the case with 100% 

QPA-DOPE) is a significant advance in the realm of 3rd-generation liposomes.23             

While more work is needed to further investigate the isotropic state and suspected cubic 

phase, an exciting future path for similar systems is the engineering of new head groups 

that are sensitive to a larger array of chemical stimuli characteristic of various cancers 

or diseases.  
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CHAPTER 5 
SUMMARY, CONCLUSIONS, AND OUTLOOK 

 
5.1 Summary and Conclusions 
 
 The overall goal of this research was to develop analytical methods to study the 

phase properties of QPA-DOPE LUVs upon reduction and use this knowledge to 

manipulate the phase behavior of QPA-DOPE in order to improve its application 

potential.  The outcomes presented here have provided new insights into the nature of 

QPA-DOPE liposomes and have equipped the McCarley lab with a robust set of 

analytical methods to investigate this unique lipid.  Moreover, the results I obtained with 

QPA-DOPE:POPE lipid mixture-based LUVs is progressive in context of the field of       

3rd-generation liposomes, and they have significantly improved the application potential 

of QPA-DOPE. The scientific significance of this system both in real-world applications 

and in understanding the nature of the lipid bilayers will provide a new area of 

sustainable research in the McCarley lab. 

 In the second chapter, the protocols for a wide-array of analytical methods used 

to study QPA-DOPE liposomes were exhaustively reported. My hope in writing             

Chapter 2 in this manner was to provide future researchers with a set of methods that 

reproducibly work for QPA-DOPE and other lipids. Personally, two of the greatest 

challenges in working with QPA-DOPE were finding and/or modifying existing methods 

that were compatible with QPA-DOPE liposomes, and more often than not, reproducing 

methods previously reported for traditional lipids. To solve these problems, often the 

best approach was to break down the method and focus on the chemical role of each 

individual component. As an example, the first reproducibility challenge I faced in this 

research   was   that  of   acquiring   calcein   release   curves   for   QPA-DOPE   LUVs.                             
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Prior to this work, EDTA was not a component in the buffer media used to study          

QPA-DOPE liposomes. Calcein is an anionic fluorescent dye that can be quenched by 

forming chelation complexes with various transition metals.1 Upon my surveying 

liposomal systems in the literature, realizing that most of these aqueous systems 

contained EDTA, and then understanding its role, the calcein release curves of                   

QPA-DOPE vesicles were obtained in a reproducible fashion. 

 By far, the greatest challenge overcome in this work was consistently 

synthesizing QPA-DOPE that functioned properly (contents release upon Na2S2O4 

addition). When starting this project, I was given a procedure to synthesize QPA-DOPE; 

however, I would frequently obtain a QPA-DOPE product that had a correct 1H NMR 

spectrum and mass spectrum, but not the expected contents release after Na2S2O4 

addition. This was a problem that had occurred several times before in the McCarley 

lab, and the origin of this was never fully understood. It was not until I considered the 

influence of impurities on the nature of the lipid, and worked with organic chemists in 

the McCarley lab to break down the basics of the synthetic steps, that two impurities 

were being neglected in the synthetic protocol of QPA-DOPE: (1) hydrocarbon impurities 

and (2) the urea byproduct in QPA-NHS synthesis. Hydrocarbon impurities appear at 

0.09 (s) and 0.88 (m) ppm in the 1H NMR spectra of all products not containing            

QPA-DOPE, corresponding to silicon oil and vacuum-line grease, respectively. 

Hydrocarbon chain impurities intercalate into the non-polar regions of the bilayer and 

stabilize the lamellar phase; however, vacuum-line grease cannot be observed in the 

1H NMR spectrum of QPA-DOPE because the terminal acyl-chain methyl groups of 

DOPE overlap in this region. This impurity must be removed prior to QPA-NHS DOPE 

coupling. The second impurity, dicyclohexylurea, is a byproduct of coupling NHS to QPA-Acid.  
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Dicyclohexylurea is hydrophobic, and like hydrocarbon impurities, it stabilizes the              

non-polar region of lipid membranes. Prior to this work, multiple filtrations were used to 

collect and remove this impurity; however, trace amounts remained. To improve this 

method, and remove the urea impurity, normal-phase chromatography was used 

successfully to purify QPA-NHS with much success.      

 In Chapter 3, the phase behavior of QPA-DOPE after Na2S2O4 addition was 

discussed.  By developing a new method to prepare GUVs at high concentrations,             

I was able to confirm our hypothesis that QPA-DOPE undergoes an L→HII phase 

transition after Na2S2O4 reduction.  To my knowledge, this is the first and only instance 

that triggered phase studies of GUVs were used with 31P NMR spectroscopy.                 

GUVs have high void volumes, thus they are of inherently lower lipid concentration than 

those of other MLVs of comparable diameters. 3rd-generation, phase-sensitive 

liposomes relying on a chemical stimulus are a growing niche in liposomal DDS 

research.  This method could prove to be a significant analytical asset that is applicable 

to other chemically unique liposomal systems.  

 A new liposomal system, composed of QPA-DOPE:POPE lipid mixtures, was 

discussed in Chapter 4. The goal of this work was to improve the application potential 

of QPA-DOPE as a drug delivery system.  The mechanism of contents release for         

QPA-DOPE LUVs is dependent on contact from opposed bilayers triggered from 

reduction and cleavage of the outer leaflet QPA head groups from DOPE.  

Concentration-dependent release is not an ideal property for a liposomal DDS due to 

an intrinsically lower therapeutic index and the adverse side-effects at high doses of 

liposomes in the body.   
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In a serendipitous discovery, QPA-DOPE liposomes containing POPE released 

their contents faster than QPA-DOPE LUVs alone.  This was a surprising discovery, 

because POPE favors the lamellar phase at the temperatures being investigated.  

Conventional wisdom would suggest lipids that favor the lamellar phase would stabilize 

liposomes instead of promoting rapid destabilization.  The result of this work was new 

insight into the nature of bilayer mixtures and the role of chain length and saturation of 

bilayers stabilized by the hydration force of QPA-DOPE.  The mechanism for contents 

release of QPA-DOPE:POPE LUVs is unique from QPA-DOPE in that cyclization and 

cleavage of the head group is not necessary for contents release. Instead, the reduction 

of the outer leaflet quinones to hydroquinones lowers the hydration force and initiates 

destabilization and rupturing of the bilayer prior to the head group leaving DOPE. 

Moreover, this mechanism does not show a dependence on concentration like             

QPA-DOPE LUVs. This exciting development in the McCarley lab will provide a 

sustainable avenue for future research (5.2.1).    

5.2 Outlook 

5.2.1 New Class of PE-functionalized Lipids 

 The QPA-DOPE:POPE rapid release liposome developed in this project has 

potential for growth and is a sustainable research area.  Both this QPA-DOPE:POPE 

and pure QPA-DOPE GUVs exhibited an isotropic state that is believed to be caused by 

an inverted cubic phase. The only analytical method capable of elucidating this state is 

X-ray diffraction. In Figure 4.1, the geometries of three more common cubic phases 

were depicted: primitive-body cubic, body-centered cubic, and bicontinuous                                

face-centered cubic, which have a crystallographic space group of Im3m, Ia3d, and 

Pn3m, respectively.2,3  Seddon and Templer have authored an excellent book chapter  
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on lipid polymorphism and the cubic phase as it relates to intrinsic curvature, geometry, 

and crystalline space groups.4 Because of the temporal nature of the isotropic state 

observed in both QPA-DOPE and QPA-DOPE:POPE GUVs, a high energy X-ray source 

will be necessary to resolve the isotropic state.   

 An new era of 3rd-generation liposomal DDSs can be built utilizing the 

mechanism of QPA-DOPE:POPE LUVs.  While the QPA derivative used in this work is 

ideal for QPA-DOPE because it has faster kinetics of forming the lactone species                  

(i.e., cyclization and cleavage of the head group from DOPE), the mechanism of          

QPA-DOPE:POPE only requires reduction. A possible route to expand this system is 

derivatizing new quinone propionic functional groups that undergo a kinetically faster 

reduction or that are more easily reduced. Mendoza et al. reported the kinetics of 

various hNQO1-activated quinone propionic acid functional groups that reduced faster 

than the tri-methyl QPA group used in this work (Table 5.1).5 Any one of these head 

groups should theoretically decrease the t50 of contents release for this liposomal 

system.  

5.2.2  Redox-triggered Liposomal Nanoreactors 

 Opposed phosphatidylserine (PS) liposomes aggregate and fuse in the 

presence of Ca2+, undergoing mixing of both lipid membranes and entrapped 

volumes.7,8  Düzgünes et al. investigated liposomal mixtures of PS, PE, and PC lipids 

and found that PS:PE liposomes fused upon Ca2+ addition, and less so in PS:PE:PC 

mixtures, with no fusion being observed in PS:PC mixtures.7 

(Fusion)  PS > PS:PE > 2PS:PE:PC >> PS:PC  (No Fusion) 
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Table 5.1 Kinetic parameters for the reduction of quinone propionic acid derivatives by 
hNQO1. Reprint (adapted) with permission from (Mendoza, M.F., Hollabaugh, N.M., 
Hettiarachi, S.U, and McCarley, R.L., Human NAD(P)H:Quinone Oxidoreductase Type 
1 (hNQO1) Activation of Quinone Propionic Trigger Groups. Biochemistry 2012, 51 
(40), 8014-26) Copyright (2012) American Chemical Society.  

Quinone 
Vmax  

(µmol·          
min–1·mg–1) 

Km 
(µM) 

kcat  
(s–1) 

kcat/Km   

(M–1·s–1) 

E1/2 vs. 
SHE 
(V) 

van der 
Waals 
volume 

(Å3) 

 
 

88 
±7 

41 
±8 

45 
±4 

1.1±0.2 
× 106 

 

0.095 
±0.001 

251 

 

83 
±8 

50 
±11 

43 
±4 

8.5±2.0 
× 105 

 

0.117 
±0.002 

232 

 

42 
±5 

447 
±102 

22 
±3 

4.8±1.2 
× 104 

0.098 
±0.001 

258 

 

38 
±5 

158 
±41 

20. 
±3 

1.2±0.4 
× 105 

0.047 
±0.002 

249 

 

60 
±7 

132 
±32 

31 
±4 

2.3±0.6 
× 105 

0.041 
±0.001 

295 

 
 

14 
±1 

376 
±87 

7.2 
±0.5 

1.9±0.5 
× 104 

0.128 
±0.001 

282 

 
 

78 
±3 

20 
±3 

40. 
±2 

2.0±0.3 
× 106 

0.144 
±0.001 

232 

 
 
 

QBr-COOH 

QMeO-COOH 

QMe-

QMe-ETA 

QdiMeO-COOH 

Q'-COOH 

QH-COOH 
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Table 5.1 Continued 

Quinone 
Vmax  

(µmol·          
min–1·mg–1) 

Km 
(µM) 

kcat  
(s–1) 

kcat/Km   

(M–1·s–1) 

E1/2 vs. 
SHE 
(V) 

van der 
Waals 
volume 

(Å3) 

 
 

66 
±4 

5 
±1 

34 
±2 

6.8±1.4 
× 106 

0.143 
±0.002 

215 

aValues reported are the mean ± one standard deviation for three independent 
determinations. [NADH] = 1.00 X 104 M in all cases. The van der Waals volumes were 
calculated according to the literature.6 
 
 I had formulated a hypothesis based on these results that QPA-DOPE lipids could 

be utilized to inhibit fusion in mixtures with PS lipids and permit fusion after reduction 

and cleavage of the QPA head group.  This hypothesis was based on QPA-DOPE having 

a similar hydration nature to PC lipids, and as a result, its repulsive hydration force 

would inhibit fusion.  Once DOPE was expressed in the outer leaflet, the system would 

behave like PS:PE mixtures and fuse. To test this hypothesis, liposomes having                        

a 1:1 (mol/mol) lipid mixture of QPA-DOPE and Brain PS (Avanti Polar Lipids, 

Birmingham, AL) were prepared in the method outlined in Section 2.5.  It is believed 

that QPA-DOPE:PS LUVs fused in the presence of Ca2+ before reduction and that these 

liposomes fused at a higher efficiency than PS:PE lipid mixtures (Figure 5.1).     

Moreover, pure QPA-DOPE liposomes appear to have fused upon Ca2+ addition.          

This suggests that Ca2+ was able to charge screen opposed QPA-DOPE liposomes, 

forming dehydrated intermembrane complexes and inducing fusion. The reproducibility 

of this fusion assay has been problematic.  Düzgünes et al. have shown many fusion 

assays disagree and should be interpreted with caution, because the rise in signal of  

QnogemMe-COOH 
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these assays could be due to simple aggregation.9 Based on signal similarity in       

Figure 5.1 to light scattering previously observed (Figure 4B-D), this may very well be 

the case. 

Figure 5.1. The conditions of Tb3+/DPA2– fusion assay can be found in Section 2.5. 
Briefly, 50 M of liposomes containing 5 mM Tb3+ were added into a 3.0-mL fluorescent 
cuvette containing 50 M of liposomes containing 20 mM DPA2– (100 M total lipid 
concentration) in pH 7.40 100 mM KCl/10.0 mM TES buffer medium. 10.0 mM Ca2+ 
was added at t=0 min and fluorescence of Tb(DPA)3

3– observed (Excitation/Emission 
276/545 nm). The data was normalized by lysing 50 M of liposomes Tb3+ in a pH 7.40 
20.0 mM DPA2–/80 mM KCl buffer medium, absent EDTA.  
 

A control experiment in this study consisted of liposomes having 1:1 (mol/mol) 

lipid mixtures of QPA-DOPE:POPE. These liposomes exhibited an unexpected behavior 

of releasing their contents faster than pure QPA-DOPE LUVs. Investigation of this 

phenomenon afforded the work discussed in Chapter 4; however, investigations of the 

fusion behavior of QPA-DOPE were not continued. One potential application of these 

findings is engineering a new class of liposomal nanoreactor that responds to a redox 

— QPA-DOPE 

— QPA-POPE:PS 

— QPA-DOPE:PS 
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stimulus.  Like Brain PS liposomes, QPA-DOPE LUVs may have fused in the presence 

of Ca2+ because of the anionic charge on the bilayer surface.  Theoretically, a lipid that 

was anionic in nature, but is zwitterionic when functionalized with QPA would not fuse in 

the presence of Ca2+ but would fuse after Na2S2O4 reduction (Figure 5.2).  

  

 

 

 

 

Figure 5.2. The principle of the redox-triggered liposomal nanoreactor is to synthesize 
a QPA functionalized lipid that is zwitterionic when bound to the polar head group of the 
lipid (A and B) and anionic after the QPA headgroup has been cleaved after Na2S2O4 
reduction. The system should be stable in a Ca2+ environment so that upon a change 
in surface charge results in trans-membrane Ca2+ complexes that fuse opposed     
liposomes (C).  

5.2.3 Second Harmonic Generation Studies 

 Second harmonic generation (SHG) is a surface sensitive technique that can 

determine the surface electrostatic potential and surface charge density of colloidal 

particles.10-14 In SHG, incident electric field frequency E() excites an atom from its 

ground state to an excited state. During this process two photons absorb 

simultaneously. The electric field surrounding these atoms then emits energy E(2), 

Figure 5.3.15 SHG measurements of particle surface potential are possible, because 

there are two contributions to the SHG signal.  In terms of charge density, the intensity 

of SHG signal (ISHG) observed arises from two non-linear polarizabilties: (1) a         

second-order susceptibility from oriented chemical  species  that  are hyperpolarizable, 

 
 

 

 
 

+/- 
A B 

C 
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2; and (2) a third-order susceptibility from chemical species in the bulk solution that 

are aligned by the electric field of the charged particle, 3 (Equation  5.1).15                           

The 3 contributions to ISHG are a function of particle electric field, which decays with 

distance from the surface.15,16  

 

Figure 5.3. The principle of SHG. Incident light having frequency  polarizes the atoms 
at the surface of a particle and their electric fields coherently add with each other and 
the emitted light from this electric field has a frequency of 2.  The intensity of 2 light 
emitted is a function of the non-linear susceptibility tensor of the particle itself (2) and 
the non-linear susceptibility tensor of the water-surface interface (3). 
 

Equation 5.1      ISHG = EE2+ EE3 ∫E(r) dr  

 Liu et al. investigated the surface potential of charged DOPG liposomes 

dispersed in a sucrose medium with SHG.17  By titrating in different salts (i.e., NaCl and 

MgSO4), the authors were able to fit the decay curve of ISHG with salt concentration and 

calculate the charge density of the surface (Å2/charge). The goal of this work was to 

collaborate with Raju Kumal in Professor Louis Haber’s Lab to study SHG signal from 

QPA-DOPE liposomes and measure the change charge density with time. This would 

be the first direct in situ measurement of the reduction and lactonization of the QPA head 

group in a QPA-DOPE liposome.  It was discovered that this was not possible as 3 goes 

to zero at salt concentrations  > 10 mM,  and  the  ISHG  from  2  alone  did  not  produce  
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adequate signal.  Because QPA-DOPE lipids require salt to form LUVs and Na2S2O4 to 

reduce and cleave QPA, a different quinone propionic acid derivatized DOPE was 

synthesized, QBr-DOPE (8a); however, the non-ionic reducing agents used 

(dithiothreitol, hydrazine, and glutathione) were not capable of triggering contents 

release from QBr-DOPE LUVs.   

Malachite green (MG) is a cationic dye that can increase E3 in the presence of 

large salt concentrations.18-20 We attempted to use MG to investigate the reduction 

mechanism of QPA-DOPE LUVs in pH 7.4 PBS; however, we discovered that MG is 

reduced by Na2S2O4.  In a second publication, Liu et al. investigated transport kinetics 

of MG across POPG and POPE:POPC bilayers and found that the transport rate 

increased linearly with the percentage of charged lipid in the bilayer.21  Yan et al. studied 

the effect of cholesterol in the bilayer on the transport kinetics of MG and found that as 

the concentration of the cholesterol increased, the rate of transport decreased.22                    

The decrease in diffusion rates of MG was significantly slower in 50:50 (mol/mol) 

mixtures of DOPG:Cholesterol then POPG:POPC, which suggests that more rigid 

bilayers slow MG diffusion.   

Similarly, I prepared QPA-DOPE, DOPG, and DOPG:Cholesterol (80:20 mol/mol) 

LUVs in pH 7.4 PBS to study the diffusion of kinetics of MG with SHG.  MG diffusion 

decay curves were measured by adding 100 M of the lipid system (LUVs) into 1.5 mL 

(total volume) of 8 M MG in pH 7.40 PBS, which SHG signal was actively being 

measured (Figure 5.4). After the SHG signal had decayed and approached an 

asymptote, 100 M Na2S2O4 was added to the cuvette to quench MG that had not 

diffused into the bilayer.  My collaborator fit the decay curve to Equation 5.2, where a0 

is a baseline correction, a1 is a weighting parameter, t is the experimental time in min, 
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and  is a rate constant in min. The diffusion time and zeta potential measurements for 

the lipid systems studied are given in Table 5.2. The measured diffusion times of MG 

for DOPG/Cholesterol LUVs were 6x longer than DOPG LUVs, which agrees with the 

results published by Yan et al.22  Moreover, there was no significant change in zeta 

potential between these two systems; therefore, the longer diffusion time in 

DOPG:Cholesterol LUVs was due to bilayer effects and not surface charge.  QPA-DOPE 

LUVs have a slightly larger zeta potential than DOPG, but a longer diffusion time than 

DOPG.  This suggests that the QPA headgroup plays a role at inhibiting molecular 

transport across the bilayer. 

 

Equation 5.2  ISHG = a0 + a1 exp (t / ) 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.4. The SHG decay of MG signal in 100 M QPA-DOPE LUVs added to 1.5 mL 
of PBS (pH 7.4) containing 8 M MG.  After no significant change in ISHG had occurred, 
100 M Na2S2O4 was added to quench exterior MG. 
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Table 5.2. Zeta potentials and fitted molecular diffusion rates for the three lipid systems 
investigated using SHG at 25 °C. 

 

The preliminary SHG-diffusion rate data suggesting the QPA head group hinders 

molecular diffusion through the bilayer is significant progress not only in the 

development of new analytical method to study QPA-DOPE, but also in understanding 

the nature of QPA-DOPE liposomes. The unique chemistry of QPA-DOPE has made 

SHG studies challenging, and this preliminary data must be investigated further.  

Recent work in the McCarley lab suggests that Na2S2O4 does not cross the bilayer, thus 

the remaining ISHG signal after MG diffusion and subsequent Na2S2O4 addition is due to 

MG inside the liposome. Shang et al. determined the remaining ISHG from MG does not 

diffuse to zero because of counter ion electrostatic effects.23 MG is transported into the 

liposomes without its counter ion (Cl–), and therefore there is an increasing electrostatic 

potential across the bilayer that opposes the additional transport of MG. This does not 

explain why the signal is near its original after Na2S2O4 addition if indeed the reducing 

agent does not cross the bilayer. One possible explanation is that some ISHG signal from 

MG contains hyper-Rayleigh scattering, which is incoherent addition of Ea(2,3) and 

Eb(2,3).15,20 Knowing this, the contribution of ISHG from MG’s enhancement of E3 

should be investigated. 

 

 

Lipid (LUV)   Zeta Potential (mV)  Diffusion rate (min) 

DOPG -52.0 ± 2.57 6.8 ± 0.92 

DOPG/Cholesterol 
(8:2, mol/mol) 

-53.9 ± 2.83 36.8 ± N/A 

Q
PA

-DOPE -58.7 ± 2.30 23.9 ± 1.15 
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APPENDIX A LETTERS OF PERMISSION 

Appendix A-1. Reprint Permission Figure 3.3 
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Appendix A-2. Reprint Permission Figure 3.9 
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Appendix A-3. Reprint Permission Table 5.1 
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APPENDIX B LIPID CONCENTRATION ASSAYS 

Appendix B-4. QPA-DOPE UV-Vis Absorption Assay  

 

 

Appendix B-5. Bartlett Assay 
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Appendix B-6. Stewart Assay 
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APPENDIX C 1H NMR, 13C NMR, AND ESI-MS 

Appendix C-7. 1H and 13C NMR Spectra of Lactone (1c) 
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Appendix C-8. ESI-MS of Lactone (1c) 
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Appendix C-9. 1H and 13C NMR Spectra of Tri-methyl QPA (2b)  
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Appendix C-10. ESI-MS of Tri-methyl QPA (2b)  
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Appendix C-11. 1H and 13C NMR Spectra of QPA-NHS (3b)  
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Appendix C-12. ESI-MS of QPA-NHS (3b) 
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Appendix C-13. 1H NMR Spectra of QPA-DOPE (4b)  
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Appendix C-14. ESI-MS of Spectra of QPA-DOPE (4b) 
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Appendix C-15. 1H NMR and 13C Spectra of di-methyl Lactone (5c)  
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Appendix C-16. ESI-MS of di-methyl Lactone (5c) 
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Appendix C-17. 1H NMR and ESI-MS of QBr-Acid (6b)  
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Appendix C-18. 1H and 13C NMR Spectra of QBr-NHS (7a)  
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Appendix C-19. ESI-MS of QBr-NHS (7a)  
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Appendix C-20. 1H NMR Spectrum and ESI-MS of QBr-DOPE (8a)  
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APPENDIX D DLS and ZETA POTENTIAL 

Appendix D-21. DLS 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
DLS Mean Area

Type Sample Name T Z-Ave PdI Diff. Coeff. Pk 1 Pk 2 Pk 1 % Pk 2 % A. Count Rate

 °C d.nm  µ²/s d.nm d.nm kcps

Size 50 uM DOPG in PBS w/ EDTA 25 96.73 0.254 5.1 125.6 0 100 0 292

Size 50 uM DOPG in PBS w/ EDTA 25 106.4 0.188 4.64 128.1 0 100 0 251.4

Size 50 uM DOPG in PBS w/ EDTA 25 96.66 0.256 5.1 127.4 0 100 0 300

Mean 1-3 25 99.93 0.233 4.95 127 0 100 0 281.1

Std Dev 0 5.603 0.039 0.266 1.29 0 0 0 26.1

RSD % 0 5.61 16.6 5.37 1.02 0 0 0 9.27

Attenuator 8

Duration (s) 10

Duration Used (s) 60

Measurement Position 3
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Appendix D-22. Zeta Potential 



158 
 

APPENDIX E QPA-POPE 

Appendix E-23. QPA-POPE LUVs: Content Release and Light Scattering 

  

QPA-POPE Contents Release. Contents release curve of QPA-POPE LUVs dispersed in 
100 mM KCl and 0.1 mM EDTA buffered with 50 mM phosphate pH 7.4 with calcein        
(40 mM) encapsulated inside. 

 

QPA-POPE Light Scattering. Light scattering of QPA-POPE LUVs dispersed in                     
100 mM KCl and 0.1 mM EDTA buffered with 50 mM phosphate pH 7.4 with calcein         
(40 mM) encapsulated inside.   
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