
Louisiana State University
LSU Digital Commons

LSU Doctoral Dissertations Graduate School

2016

Thin Films of Semiconducting Polymers and Block
Copolymers by Surface-initiated Polymerization
Sang Gil Youm
Louisiana State University and Agricultural and Mechanical College, syoum1@lsu.edu

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations

Part of the Chemistry Commons

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It has been accepted for inclusion in
LSU Doctoral Dissertations by an authorized graduate school editor of LSU Digital Commons. For more information, please contactgradetd@lsu.edu.

Recommended Citation
Youm, Sang Gil, "Thin Films of Semiconducting Polymers and Block Copolymers by Surface-initiated Polymerization" (2016). LSU
Doctoral Dissertations. 1044.
https://digitalcommons.lsu.edu/gradschool_dissertations/1044

https://digitalcommons.lsu.edu?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F1044&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F1044&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F1044&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F1044&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/131?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F1044&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations/1044?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F1044&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu


THIN FILMS OF SEMICONDUCTING POLYMERS AND BLOCK 

COPOLYMERS BY SURFACE-INITIATED POLYMERIZATION 

 

 

 

 

 

A Dissertation 

Submitted to the Graduate Faculty of the 

Louisiana State University and 

Agricultural and Mechanical College 

in partial fulfillment of the 

requirements for the degree of 

Doctor of Philosophy 

in 

The Department of Chemistry 

 

 

 

 

 

 

 

 

 

 

 

 

by 

Sang Gil Youm 

B.S. Department of Chemistry, Hanyang University, Korea 2002 

M.S. Department of Chemistry, Hanyang University, Korea 2004 

August 2016 



ii 
 

ACKNOWLEDGMENTS 

Foremost and before starting my dissertation, I would like to say “family is all about”. 

Their unconditional love and support has been guiding me to finish my PhD course. Without 

them, my way at Louisiana State University would have been filled with doubt and regret. 

I also would like to acknowledge Prof. Evgueni E. Nesterov for his mentorship and 

leadership to make me pursue PhD course. His deep knowledge always inspired me in many 

ways, so that I can become a better scientist.  

I specially thank my committee members: Profs. Dave Spivak and Jayne Garno for their 

devotion to bring me fruitful knowledge, so that I could overcome what I couldn’t otherwise. 

To group members: Drs. Euiyong Hwang, Jinwoo Choi, Brian Imsick, Carlos A. Chavez, 

and Sourav Chatterjee; Chien-Hung Chaing, Chun-han Wang, Peter Kei, Gerard Ducharme, 

Fetemeh Khamespanah. Thank you all for your support. 

I want to convey my gratitude to Dr. Susan Verberne-Sutton for her support not only in 

science projects but also in many other aspects of my life in Baton Rouge. Dr. Lu Lu for her 

effort to make our research outcomes look beautiful with high-level AFM images. And I also 

would like to thank my neighbor Britney L. Hebert for making 4
th

 floor of CMB the most 

enjoyable work place.  

Special thank should be delivered to Drs. Xin Li and John F. Ankner for their fruitful 

advise and help with studies neutron scattering; Dr. Yaroslav Losovyj for carrying out XPS 

analysis; Dr. Joseph Strzalka for all X-ray scattering experiments. 

To my friends Yucheol Kim and Yumiko Kanke as well as all my friends who live in 

my home country.    

 

 



iii 
 

TABLE OF CONTENTS 

ACKNOWLEDGMENTS .............................................................................................................. ii 

 

ABBREVIATIONS AND ACRONYMS ...................................................................................... vi 

 

ABSTRACT .................................................................................................................................. vii 

 

CHAPTER 1.  A GENERAL OVERVIEW ................................................................................... 1 

1.1.  Introduction to Conjugated Polymers (CPs) ....................................................................... 1 

1.2.  Anisotropy of CP thin films and its effect on bulk morphology from nano- to 

        macroscale ........................................................................................................................... 4 

1.3. Conventional fabrication methods toward the ideal CP thin film for organic electronics . 11 

1.4. Development of bottom-up strategy for CP thin films ....................................................... 17 

1.4.1. Overview ...................................................................................................................... 17 

1.4.2. Electrochemical polymerization for the preparation of CP thin films ......................... 20 

1.4.3. Metal-catalyzed surface-initiated polymerization for the preparation of CP thin  

          films ............................................................................................................................. 23 

1.5. Research focus.................................................................................................................... 28 

1.6. References .......................................................................................................................... 30 

 

CHAPTER 2. POLYTHIOPHENE THIN FILMS BY SURFACE-CONFINED  

                       POLYMERIZATION: MECHANISTIC AND STRUCTURAL STUDIES ........ 39 

2.1. Introduction ........................................................................................................................ 39 

2.2 Results and Discussion ........................................................................................................ 44 

2.2.1. Preparation and characterization of the surface-immobilized catalytic initiator. ........ 44 

2.2.2. Development of surface-confined polymerization protocol and properties of  

          the resulting PT thin films. .......................................................................................... 51 

2.2.3. Experimental evidence of the controlled chain-growth mechanism of surface- 

          confined polymerization. ............................................................................................. 56 

2.2.4. Development of surface-confined polymerization – catalyst regeneration strategy  

          for the preparation of PT films with larger thickness. ................................................. 60 

2.2.5. Studies of molecular organization and morphology in surface-confined PT thin  

          films. ............................................................................................................................ 63 

2.2.6. Preparation of nanopatterned PT thin films by surface-confined polymerization. ...... 76 

2.3. Conclusions ........................................................................................................................ 80 

2.4. References .......................................................................................................................... 81 

 

CHAPTER 3. PREPARATION OF ALL-CONJUGATED DIBLOCK COPOLYMER FILMS  

BY SURFACE-INITIATED KUMADA CATALYTIC TRANSFER POLYMERIZATION  

(SI-KCTP) AND STUDY OF THEIR OPTOELECTONIC PROPERTIES ................................ 90 

3.1. Introduction ........................................................................................................................ 90 

3.2. Results and Discussion ....................................................................................................... 93 

3.2.1. Preparation of different sequence all-conjugated diblock copolymer thin films. ........ 93 

3.2.2. Optical and electrochemical properties of all-conjugated diblock copolymer  

          thin films ...................................................................................................................... 98 



iv 
 

3.2.3. XPS measurement: Evidence for “defect” free all-conjugated diblock copolymer  

          thin films. ................................................................................................................... 103 

3.3. Conclusions ...................................................................................................................... 106 

3.4. References ........................................................................................................................ 107 

 

CHAPTER 4. POLY(3,4-ETHYLENEDIOXITHIOPHENE) (PEDOT) THIN FILMS  

AS A HOLE TRANSPORTING LAYER FOR ITO-FREE DEVICES PREPARED  

BY SURFACE-INITIATED KUMADA CATALYST TRNASFER POLYMERIZATION .... 111 

4.1. Introduction ...................................................................................................................... 111 

4.2. Results and discussion ...................................................................................................... 114 

4.3. Conclusions ...................................................................................................................... 124 

4.4. References ........................................................................................................................ 125 

 

5.  EXPERIMENTAL SECTION ............................................................................................... 128 

5.1. General Procedures .......................................................................................................... 128 

5.2. Atomic Force Microscopy ................................................................................................ 129 

5.3. X-ray Photoelectron Spectroscopy (XPS) ........................................................................ 129 

5.4. Ultraviolet Photoemission Spectroscopy (UPS) .............................................................. 131 

5.5. Grazing Incidence X-ray Scattering ................................................................................. 133 

5.6. Neutron Reflectometry ..................................................................................................... 134 

5.7. Synthetic Details .............................................................................................................. 135 

5.7.1. Synthesis and preparation of the polymer thin films in Chapter 2 ............................ 135 

    5.7.1.1. 2-Triethoxysilyl-5-iodothiophene 2…………………………………………… 135 

           5.7.1.2. Bis[1,3-bis(diphenylphosphino)propane]nickel(0) (Ni(dppp)2)……………..... 135 

           5.7.1.3. Preparation of catalytic initiator 3...................................................................... 136 

           5.7.1.4. Cleaning and activation of substrates................................................................. 136 

           5.7.1.5. Preparation of surface-immobilized monolayer of catalytic initiator 3  

                         (Direct method) ................................................................................................. 137 

           5.7.1.6. Preparation of surface-immobilized monolayer of catalytic initiator 3  

                        (Indirect method)................................................................................................ 137 

           5.7.1.7. Surface-confined polymerization of Grignard monomer 4 ................................ 137 

           5.7.1.8. Surface-confined in situ polymerization with regeneration of Ni(II) catalytic 

                        center (a typical procedure)................................................................................ 138 

           5.7.1.9. Determination of surface coverage using ferrocene-functionalized  

                        monolayers......................................................................................................... 138 

           5.7.1.10. Spectroelectrochemical experiments................................................................ 139  

           5.7.1.11. Tetraiodothiophene........................................................................................... 139  

           5.7.1.12. Tetradeuterothiophene...................................................................................... 140  

           5.7.1.13. 2,5-Dibromothiophene-D2................................................................................ 140  

           5.7.1.14. Surface-confined polymerization..................................................................... 141  

           5.7.1.15. Preparation of nanopatterned PT film using combination of particle  

                          lithography and surface-confined polymerization............................................ 141  

5.7.2. Preparation of the diblock copolymer films in Chapter 3 ................. ........................ 142 

    5.7.2.1. Synthesis of diblock copolymer films................................................................ 142 

    5.7.2.2. Cyclic Voltammetry (CV) studies of diblock copolymer films.......................... 143 

    5.7.2.3. XPS measurement of diblock copolymer films.................................................. 144 



v 
 

5.7.3. Preparation of PEDOT thin films.............................................................................. 144 

        5.7.3.1. Preparation of isopropylmagnesium chloride lithum chloride complex (Turbo  

                    Grignard solution)............................................................................................... 144 

        5.7.3.2. PEDOT thin films prepared with 2,5-dibromoEDOT and 2,5-diiodoEDOT..... 145    

        5.7.3.3. Conductivity measurement of PEDOT films..................................................... 145 

5.8. References ................................................................................................................. .......146 

 

APPENDIX A: PERMISSIONS………………………………………………………………. 147 

APPENDIX B: NUCLEAR MAGNETIC RESONACE (NMR) SPECTRA……………........ 156 

VITA ....................................................................................................................................... 161 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



vi 
 

ABBREVIATIONS AND ACRONYMS 

 

CP 

BHJ 

oCVD 

UV/vis 

AFM 

XPS 

IR 

SEM 

CV 

NMR 

NR 

UPS 

OLED 

OFET 

OPV 

acac 

dppe 

dppp 

KCTP 

RAFT 

 

ATRP 

HOMO 

LUMO 

PT 

PPP 

P3HT 

P3AT 

HT 

PCBM 

PEDOT 

PPV 

THF 

rr 

 

Conjugated Polymer 

Bulk Heterojunction 

Oxidative Chemical Vapor Deposition 

Ultraviolet/visible 

Atomic Force Microscopy 

X-ray Photoelectron Spectroscopy 

Infrared 

Scanning Electron Microscopy 

Cyclic Voltammetry 

Nuclear Magnetic Resonance 

Neutron Reflectometry 

Ultraviolet Photoemission Spectroscopy  

Organic Light-emitting Diode 

Organic Field Effect Transistor 

Organic Photovoltaic 

Acetylacetonate 

1,2-bis(diphenylphosphino)ethane 

1,3-bis(diphenylphosphino)propane 

Kumada Catalyst Transfer Polymerization 

Reversible Addition-Fragmentation Chain-

Transfer 

Atomic-Transfer Radical Polymerization 

Highest Occupied Molecular Orbital 

Lowest Unoccupied Molecular Orbital 

Polythiophene 

Poly(p-phenylene) 

Poly(3-hexylthiophene) 

Poly(3-alkylthiophene) 

Head-to-Tail 

Phenyl-C61-butyric acid methyl ester 

Poly(3,4-ethylenedioxythiphene) 

Poly(p-phenylene vinylene) 

Tetrahydrofuran 

Regioregular

 

 

 

 

 



vii 
 

ABSTRACT 

The ability to control nanoscale morphology and molecular organization in organic 

semiconducting polymer thin films is an important prerequisite for enhancing the efficiency of 

organic thin-film devices, including organic light-emitting and photovoltaic devices.  The current 

“top-down” paradigm for making such devices is based on utilizing solution-based processing 

(e.g. spin-casting) of soluble semiconducting polymers.  This approach typically provides only 

modest control over nanoscale molecular organization and polymer chain alignment.  A 

promising alternative to using solutions of pre-synthesized semiconducting polymers pursues 

instead a “bottom-up” approach to prepare surface-grafted semiconducting polymer thin films by 

surface-initiated polymerization of small-molecule monomers.  This dissertation mainly focuses 

on development of an efficient method to prepare semiconducting polymer thin films utilizing 

surface-initiated Kumada catalyst transfer polymerization (SI-KCTP).  In chapter 2, we describe 

SI-KCTP with a new Ni(II) external catalytic initiator to prepare polythiophene (PT) thin films.  

We provided evidence that the surface-initiated polymerization occurs by the highly robust 

controlled (quasi-“living”) chain-growth mechanism.  Extensive structural studies of the 

resulting thin films revealed detailed information on molecular organization and the bulk 

morphology of the films, and enabled further optimization of the polymerization protocol.  

Achieving such a complex mesoscale organization is virtually impossible with traditional 

methods relying on solution processing of pre-synthesized polymers.  In addition to controlled 

bulk morphology, uniform molecular organization and stability, unique feature of SI-KCTP is 

that it can be used for the preparation of large-area uniformly nanopatterned polymer thin films.  

This was demonstrated using combination of particle lithography and surface-initiated 

polymerization. 
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We expanded scope of the surface-initiated polymerization towards all-conjugated 

diblock copolymer (polythiophene-b-poly(para-phenylene)) thin films, which is described in 

chapter 3.  In addition to the preparation of such films, we carried out detailed structural studies 

and investigated optoelectronic characteristics of the films. 

In chapter 4, we studied using SI-KCTP to prepare poly(3,4-ethylenedioxithophene) 

(PEDOT) thin films. PEDOT is a practically important highly conductive conjugated polymer.  

Our investigation of the properties of a surface-confined PEDOT film revealed that, after doping 

with iodine, the film became highly conductive, with conductivity comparable to that of 

inorganic semiconductors.  Therefore, surface-confined PEDOT films may find applications in 

replacing traditional inorganic electrode for the fabrication of flexible organic electronics.
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CHAPTER 1.  A GENERAL OVERVIEW 

1.1.   Introduction to Conjugated Polymers (CPs)      

Polymers – often called plastics – had long been considered typical insulating materials 

with no ability to conduct electricity. Their conductivity normally lies within the range from 10
-

16
 S m

-1
 to 10

-12
 S m

-1
. Indeed, polymers are used as an insulating coating material for electric 

wires to prevent them from short-circuits. The milestone discovery of conducting polymers (CPs) 

by Heeger, MacDiarmid, and Shirakawa in 1977,
1
 however, has overturned this concept. 

Originally, polyacetylene, the first generation conducting polymer (Figure 1.1), prepared by 

Shirakawa by polymerizing acetylene over Ziegler-Natta catalyst, was an unstable non-

conducting material. However, Shirakawa and MacDiarmid found that after exposing a neutral 

polyacetylene film to chlorine, bromine, or iodine vapor, it acquired 10
9
 greater conductivity 

than the original unexposed film. The principle behind this phenomenon is that the oxidizer 

(halogen) vapor takes one electron away from the -electron system of the polymer, creating a 

“hole” – that is p-doping – in the conjugated backbone. This “hole” causes the polymer to have 

positive charge and this charge can spread along the polymer backbone, the phenomenon which 

is called “delocalization” or “conjugation”, thereby giving the term “conjugated polymer”, and 

resulting in increasing conductivity. The conductivity increase can also be explained by using an 

approach derived from the band theory. 

Although the doped polyacetylene used to be called “organic metal” for it featuring a 

significant conductivity, it found very little practical applications because of the unstable nature 

of the polymer under ambient conditions and low processability due to extremely low solubility 

in any organic solvent. 
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Figure 1.1. Molecular structures of representative conjugated polymers.  

 

Further on, second generation conjugated polymers have been investigated extensively 

since 1980s to address the issues with polyacetylene by introducing a ring structure with more 

atoms having not only carbon but also sulfur or nitrogen in a repeating unit, and installing alkyl 

side chains as solubilizing groups.  Typical representatives of this generation of conjugated 

polymers, such as poly(akylthiophene) (PAT),
2
 polyaniline (PANI),

3,4
 or poly(p-phenylene 

vinylene) (PPV)
5
 derivatives are shown in Figure 1.1. Despite these polymers being not as highly 

conductive as doped polyacetylene (their conductivity lies within the range from 10
-2

 to 10
4
 S m

-

1
 for what they have been named “semiconducting polymers”), this is enough for the application 

of these polymers in organic devices. The third generation CPs, arguably the most important 

class nowadays, are very attractive to researchers and have more intricate structures (Figure 1.1). 

Donor-acceptor (DA) type copolymers have emerged in the recent years since Havinga and 

colleagues
6,7

 first introduced them in 1992. The DA copolymers are defined by alternating units 

with electron-rich and electron deficient properties along a polymer backbone.  Such architecture 
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lowers down the band gap through the so called “push and pull” effect, and results in shifting 

spectroscopic characteristics of the polymer towards the lower energy end of the spectrum.  This 

particularly benefits photovoltaic applications as it allows to increase the number of absorbed 

solar light photons and thus to improve the efficiency of the device. Besides investigation into 

new conjugated polymers in terms of molecular structure, further attempts to increase 

crystallinity of the known CPs became a major area of interest in the organic polymer materials 

field.
8-10

   

These days, applications of CPs are being extensively developed, ranging from compact-

size capacitors,
11,12

 electromagnetic shielding films, and antistatic coatings
13

 to high-performance 

organic electronic elements such as light-emitting diodes (OLEDs),
14-16

 organic field-effect 

transistors (OFETs),
17-19

 chemo- and biosensors,
20-22

 organic photovoltaic devices (OPVs)
23-27

 

holographic elements,
28-30

 and logic gates.
31

 Despite plethora of these remarkably promising 

applications, there are still numerous issues remaining to fully understand physical/chemical 

properties of CPs and to deliver large-scale commercialization of CP-based devices. For example, 

although development of OPVs has produced spectacular achievements in the past decade, total 

efficiency of organic polymer solar cells still remains around 10%, a relatively low value to 

allow effective commercialization. The minimum efficiency of a photovoltaic device to make it 

commercially successful should be approximately 15-20%. In addition to efficiency, mechanical 

and chemical stability of most organic electronic devices against external factors such as light, 

pressure, humidity, etc. is poor compared to inorganic devices, which mainly comes from the 

nature of the device fabrication processes or inherit properties stemming from the molecular 

structure of CPs. In the next sections of this chapter, the origin of those undesired issues will be 
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explained, and several suggested improvement solutions developed by the research community 

over the past years will be discussed. 

1.2. Anisotropy of CP thin films and its effect on bulk morphology from nano- to  

macroscale   

Before getting deeper into discussing those issues mentioned above, one must understand 

fundamental phenomena happening during opto-electronic processes in a device, and we will 

discuss them with a focus on OPVs. Below is the description of generally accepted processes 

happening in organic polymer solar cells (Figure 1.2). 

1) Absorption of incident light (typically in the donor layer) and generation of excitons. 

2) Diffusion of the excitons to the interface between donor and acceptor layers. 

3) Dissociation of the excitons into positive and negative charge carriers. 

4) Charge transport and charge collection toward electrodes. 

In addition to these principal steps, there may be other possible mechanisms,
27,32 

involving more complicated steps occurring during the exciton dissociation/charge transport 

events (e.g. formation of charge-separated state [CS state], ground-state charge transfer complex 

[CTC], etc.). We will not be discussing these mechanisms, as they are rather more complicated, 

and at the end lead to the same basic conclusions on the functioning of an organic solar cell. 

Therefore, it is reasonable to limit the discussion by the opto-electronic process with four 

elementary steps mentioned above. Particularly, exciton and charge transport property will be 

discussed here in terms of architecture of the CP active layer, called the donor-acceptor layer.           

Theoretically, one isolated CP chain (for example, polyacetylene chain) is a one-

dimensional material possessing a single electronic feature along backbone of the chain, -

conjugation. With multiple CP chains in a condensed system, however, interchain interactions  
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Figure 1.2. Simplified photoexcitation process in OPV. Reproduced with permission from Ref. 

32 Copyright ©  2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim. 

 

such as formation of weak bonds through -electron systems, van der Waals forces, and 

hydrogen bonding between the chains can occur. Since strength of intrachain -electron 

interactions within CPs is substantially different from that of interchain electronic interactions, 

with at least an order of magnitude difference, CPs in a bulk system inherently possess an 

anisotropic nature, with anisotropy extending to their physical/chemical properties, and 

electrical/optical properties as well.
33,34

 Due to such an anisotropy, intramolecular charge 

mobility along the polymer backbone, ‖, is substantially greater than intermolecular charge 
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mobility occurring by hopping between chains, , because associated intrachain bandwidth is 

comparably greater than interchain bandwidth.
35,36

 Polyacetylene crystal is a simple and well-

defined system to investigate anisotropy of the charge mobility in CPs, as polyacetylene is 

capable of forming a highly conjugated system with a nearly perfect single crystal structure. 

Bleier et al.
37

 determined in their research that charge mobility along the backbone of trans-

polyacetylene (intramolecular charge mobility) was 50 times higher than that of in a transverse 

direction (intermolecular charge mobility). Hoofman et al.
33

 studied anisotropic nature of charge 

mobility for polydiacetylene-(bis-p-fluorobenzene sulfonate) (pFBS) using pulse-radiolysis time-

resolved microwave conductivity (PR-TRMC) technique which revealed that mobility along the 

backbone was at least an order of magnitude higher than in the transverse direction. According to 

these anisotropy studies, it is well established that ideal molecular conformation and alignment 

of CP chains for a best-performing device are such that intramolecular pathways orient in the 

direction toward the electrodes for enhanced charge mobility (Figure 1.3C) rather than when 

intermolecular charge transfer pathways are respectively for bridging two electrodes (Figure 

1.3A and 1.3.B). Fabricating active layers fitting this ideal model with other CPs, however, has  

 

 

Figure 1.3. Schematic ideal architectures of a conjugated polymer in an OPV with different 

geometry (a) edge-on orientation, (b) face-on orientation, and (c) vertical orientation. Green 

color represents “intermolecular” direction. Red color shows “intramolecular” direction. 
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been highly challenging and remained subject of interest for over a few decades.  

For practical purpose, flexible CPs (as alluded above, most likely the first generation CPs 

shown in Figure 1.1) are easily made into an “ideal” single crystal by simple solid state 

topological polymerization or other simple practical methods,
32,37

 which can be a convenient 

experimental model for theoretical treatment of anisotropy measurements. More recently 

developed CPs have a more rigid and sophisticated molecular structures causing more 

complicated interactions between chains as well as along the backbone (for instance, poly(3-

alkyl-thiophene) (P3AT) or its derivatives that comprise second and third generation CPs). No 

methods can achieve a nearly ideal single crystal system with these CPs to measure absolute 

anisotropy of charge mobility but a number of studies were carried out utilizing indirect 

controlled crystallization, (e.g., high-pressure crystallization,
38,39

 mechanical blade/rubbing 

method,
40

 post-deposition procedures [thermal or solvent annealing],
41

 mechanical stretching,
42-

44
 formation of nanofibrils,

45
 or lithography technique, etc.

46
).  As a consequence of the inability 

of these indirect methods to achieve full control over crystalline organization, only partially ideal 

arrangement could be recorded; thus, the anisotropic nature of CPs including charge mobility can 

vary depending upon experimental conditions and measurement methods. In addition, due to the 

finite molecular weight of CPs and the intrinsic disorder disturbing linearity of the chain, charge 

transport through metal electrodes in a device is always limited by interchain transport process. 

Therefore, various factors, such as structure of repeating unit, molecular weight, chain 

conformation, and  crystallinity, which are fundamental features to control nano/mesoscale (even 

up to macroscale) morphology, have been thoroughly investigated with the goal to achieve high 

charge mobility.  
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In general, three primary features have major influence on morphology and charge 

transport of CPs based on bottom-up construction of a polymer architecture. First is the nanosca- 

le molecular assembly controlled by intermolecular interactions (Figure 1.4A).
47

 Each repeating 

unit in different chains can electronically overlap through intermolecular interacti ons  

to display distinct spatial arrangements depending on the angle between the interaction direction 

and transition moment of the chain direction; this can result in appearance of J-aggregation or H-

aggregation as can be assessed from absorption and emission spectra. These spatial arrangements 

are significantly affected by the shape of the repeating unit and a chain conformation which is 

caused by the side chain configuration (so called regioregularity); for instance, head-to-tail, 

head-to-head, or tail-to-tail poly(3-alkylthiophene) (HT-, HH-, or TT-P3AT). HH- and TT-

P3ATs display substantial steric repulsion between the neighboring repeating units due to close 

proximity between side chains causing torsional twisting of the polymer chain backbone.  

 

 

Figure 1.4. A general scheme of the three primary classes of the bottom-up construction of a 

conjugated polymer architecture. (A) nanoscale molecular assembly, (B) connectivity at meso-, 

microscale, and (C) macroscale alignment. Reproduced with permission from Ref. 47 Copyright 

©  2013 Elesvier 
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The twisted chain would disturb conjugation along the backbone introducing an energy barrier, 

and then eventually reducing intramolecular charge transport. It also causes intermolecular 

interaction to be less favorable and therefore decreases portion of crystalline region in a 

system.
47

            

Connectivity between polymer crystalline regions at the meso- or microscale is the 

second feature that contributes to the efficiency of charge transport. Since commonly used CPs 

are prone to have a polycrystalline or semicrystalline nature (with each crystalline region 

introducing distinct energy states), one must take into account connectivity between neighboring 

grain boundaries of the crystalline regions (Figure 1.4B). Different ways to connect crystalline 

domains result in formation of energy barriers, with larger barriers interrupting charge transport 

pathways and causing charge carriers to be trapped at the grain boundaries. A grain boundary of 

the crystalline regions may consist of three types of chains: chain ends, chain folding (sometimes 

called loop), and tie chain that interconnects two different boundaries.
47

 The chain end and 

folding induces the intermolecular charge transfer by hopping, which obviously decreases the 

transport efficiency. Meanwhile, in the case of the tie chain connection, charge can travel 

through the intramolecular pathway, thus resulting in the increased transport efficiency. In good 

agreement with this notion, the ratio between the chain end/folding and the tie chain was 

demonstrated to be associated with the average charge mobility. 

The final feature responsible for the charge transport is the total fraction of crystalline 

region and its alignment from microscale to macroscale (Figure 1.4C). It is clear that the higher 

total fraction of the crystalline region in a film corresponds to fewer grain boundaries and 

therefore the existence of more efficient charge transfer pathways; resulting in the overall better 

charge transport characteristics. Thus, an ideal system would be the one in which CP is 
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composed of a single crystal over an entire device (or at least, large crystalline fraction in the 

thin-film device). Kim et al.
9
 reported that a microdevice made of a high quality single crystal 

poly(3-hexylthiophene) (P3HT) wire prepared by a self-seeding method from a dilute polymer 

solution featured high-current sensing with a well-resolved gate modulation of the channel 

conductance and demonstrated higher field-effect mobility relative to a similar geometry device 

prepared using a crystalline 3-hexylthiophene oligomer.  The difference was mainly due to 

enhanced intramolecular charge transport along the aligned polymer backbone spanning across 

the electrodes.  

Li et al.
10

 fabricated an organic single crystal donor-acceptor heterojunction device 

utilizing pinned droplet of a mix solution, which crystallized in a sequential fashion introducing 

extended single-crystalline heterojunctions with consistent donor-top and acceptor-bottom 

structure over the device.  

In summary, CPs are intrinsically anisotropic, with the efficiency of charge transport 

along the conjugated backbone (intramolecular transport) being different than the efficiency of 

charge transport in between the neighboring chains (intermolecular transport). For an ideal case, 

intramolecular charge transport always overwhelms intermolecular charge transport, so that a 

best-performing ideal device must be composed of single crystalline CP chains aligned in a way 

that CP chains span the gap between two electrodes along with the electrode direction, so called 

“edge on”, in order to connect electrodes via intramolecular pathway. Unfortunately, due to 

inherent limit on the polymer molecular weight and disordered nature of CPs, anisotropic 

characteristics of CPs, including charge transport, are always limited by contribution from 

intermolecular pathway. Therefore, the bulk polymer morphology, ranging from nanoscale to 
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microscale, plays an important role in electrical properties of CPs, and controlling the 

morphology has remained challenging over several decades.   

1.3. Conventional fabrication methods toward the ideal CP thin film for organic electronics 

The first generation of OPVs was reported in 1980s and early 1990s using 

polyacetylene
48

 or poly(p-phenylene-vinylene) (PPV)
49

 as a component of a single layer. Their 

total efficiency was too low, typically from 0.001 to 0.01%, to be commercialized.
50

 From a 

physical standpoint, the lifetime of an exciton is less than 1 ns and therefore during the lifetime it 

can travel only a few nanometers (generally within 5 to 10 nm).
51

 This is substantially shorter 

than a thickness of CP layer required to absorb reasonable amount of photons for a single layer 

device; this issue equally affects a bilayer device shown in Figure 1.5A. Thus, only a low 

number of initially generated excitons are able to reach to the phase interface resulting in a low 

efficiency. In 1992, Sariciftci et al.
52

 discovered the ultrafast electron transfer (<100 fs) that 

occurred between poly(2-methoxy-5-(2-ethyl-hexyloxy)-1,4-phenylene vinylene) (MEH-PPV) as 

a donor component and buckminsterfullerene (C60) as an acceptor on a time scale considerably 

faster than time decay of the exciton. Then, a few years later, bulk heterojunction (BHJ) solar 

cell with bicontinuous phase segregation was demonstrated. Yu et al.
53

 first described a BHJ 

solar cell containing a mixed working layer with MEH-PPV and C60 derivative, PCBM, having a 

high energy conversion efficiency depending upon mixing ratio (maximum efficiency up to 2.9 % 

could be achieved). This value was at least two orders of magnitude higher than that of the 

previous single layer solar cell devices. A key factor in increased efficiency of this device was 

that the acceptor, MEH-PPV, and the donor, PCBM, formed continuous interpenetrating 

networks in an active layer derived by spontaneous phase separation. Consequently, it introduced 

relatively large interface area between the donor and the acceptor phases, which allowed charge 
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separation to occur, and gave a shorter distance for each charge to travel toward electrodes. This 

phase separation originates from reaching thermodynamic equilibrium as a result of interplay 

between interfacial energy, solubility, and crystallinity of each component. On the basis of 

morphology issues mentioned above and numerous theoretical/experimental studies of 

photoexcitation process, the ideal architecture of a BHJ solar cell device for the best performance 

has been suggested (Figure 1.5B).  

 

 

Figure 1.5. Schematic diagrams of solar cell devices and charge transport pathway in (A) single 

layer, (B) ideal bulk heterojunction layer, and (C) real bulk heterojunction layer.  

 

1) Phase separation between the donor and acceptor domains should be formed at the 10 - 20 nm 

length scale to allow for excitons traveling without non- or radiative decay. 

2) A columnar-like and continuous architecture through the working layer towards electrodes is 

needed for the fast and efficient charge transport; thus, highly ordered alternating donor-acceptor 

crystalline structures with continuous pathways, as close as possible to a perfect periodic 

structure, would be required.  

Since the initial introduction of the BHJ solar cell concept, there has been a rapid 

progress towards achieving the ideal morphology for enhancing the device performance. Indeed, 

a wide variety of device fabricating methods have been explored, but most common ways for 

OPVs remain solution-based spin casting,
54

 roll-to-roll casting,
55

 or inkjet printing,
56

 to target 
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control of weak intermolecular forces, leading to a large amount of disorder. Thereby, many 

parameters have been identified which can influence morphology of the working layer, such as 

choice of solvent,
57-59

 polymer molecular weight,
23,60

 various post-deposition treatment,
61

 etc.  

Solvents for each donor and acceptor component govern solubility of them, which affect 

domain size, miscibility, or crystallinity. For example, it is well known that using chlorinated 

aromatic solvents during device fabrication results in substantially better efficiency for a solar 

cell device prepared with PCBM as an acceptor than using non-polar solvents like toluene, 

hexane, or even THF.
62,63

  TEM images for an active layer with toluene revealed PCBM-rich 

domains with around 600 nm size, which was one order of magnitude larger than the size 

suggested for the ideal case. On the other hand, despite the similar crystalline structure of 

PCBM-rich domain (as confirmed by selected area electron diffraction (SAED)), chlorobenzene 

as a solvent provided PCBM-rich domains with 80 nm size, thus resulting in higher photovoltaic 

efficiency.  

The higher the molecular weight of CPs, the larger the fraction of the tie chains 

connecting the grain boundary, which increases charge mobility as was described in the previous 

section. However, since a long CP chain folds with more defects compared to a short CP chain, 

there is a certain limit on how much the optical and electronic properties of CPs can be changed 

by simple increasing the polymer chain length. In addition, -electron conjugation length along a 

polymer chain, in which photoexcitation can proceed without significant energy loss, is restricted 

by intrinsic nature of long-chain molecules, such as rotation of bonds, formation of kinks, or 

folding.  Therefore, increasing molecular weight of CPs beyond a certain point generally does 

not significantly influence optical/electronical properties of the CPs.  
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Annealing, the most widely used procedure for post-deposition treatment, is also a 

common method to control morphology. One can simply change a fraction of crystalline region 

or align direction of crystalline domains by heating the active layer up to the glass transition 

temperature of components, and allow kinetically slow phase separation to facilitate formation of 

crystalline architecture within the domains. Solvent annealing enables reorganization of crystal 

structure of the domains in the same way as the thermal annealing does. However, it is 

recognized that the efficiency of the annealing process in enhancing the device performance 

depends on the nature of constituents. For example, in poly[2-methoxy-5-(3′,7′dimethyloctyloxy) 

-1,4-phenylenevinylene]/PCBM (MDMO-PPV/PCBM) system, annealing always forces the 

 

 

polymer to form large domain aggregations therefore resulting in large PCBM single crystals, 

which causes low efficiency in a solar cell.
41

 This was explained by the different diffusion rates 

and crystallization kinetics for each component: PCBM can easily diffuse into MDMP-PPV 

domains forming single crystals and increasing domain size. In contrast, annealing for 

P3HT/PCBM system always improves device performance. A series of publications
64,65

 have 

revealed that the annealing process introduced and stabilized a nanoscale interpenetrating 

network with crystalline order of components by rearranging long and thin single crystal P3HT 

nanowires into PCBM domains therefore resulting  in improving total crystallinity of the layer. 
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In addition to the several important factors mentioned above, other parameters have been 

also elucidated as having a major influence on morphology and device performance.  Among 

these parameters are compound ratio,
66,67 

 polymer regioregularity,
68

 and the presence of various 

impurities.
69

 However, most procedures produce rather random crystal structures and greatly 

mixed morphologies of the active layer, which leads to disconnection of exciton or charge 

transport, appearance of energy barriers between domains, energy loss, and eventually low 

efficiency of a device, as depicted in the previous sections. No method to date can deliver a 

simple way to make the intramolecular pathway for charges and excitons through electrodes over 

an entire active layer, instead, the semi-crystal structure is dominated across the films, because of 

the lack of ability to precisely control CPs on the surface (Figure 1.5C). Therefore, in order to 

accomplish an optimized morphology, further study is required for direct control of the CPs 

structure and thin-film morphology. 

Another drawback of the previously mentioned approaches is low thermal and 

photostability of an active layer composed of organic CPs. Various structural factors such as 

rigidity of molecular structure, high molecular weight, strong inter/intramolecular interactions of 

CPs, etc. render significant aggregations, therefore solubility of CPs can dramatically drop 

without the presence of solubilizing substituents. Thus, the presence of long solubilizing side 

chains for enhancing solubility of CPs is inherently necessary for classical solution-based 

fabrication methods (e.g. spin-coating, roll-to-roll, or inkjet printing). A fundamental problem 

with solubilizing substituents is that they are a potential site for photodegradation, either with or 

without presence of moisture and oxygen. It has been shown that, for PPV or MEH-PPV systems, 

photo-oxidation occurring not only on the phenylene part but also on the vinylene part and side 

chains contributes to the degradation process.
70

 Despite P3AT being more stable than MEH-PPV 
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system against photodegradation (P3HT can last around 700 h before complete 

photobleaching
71

), it also undergoes photo-oxidation reaction that would occur on the -

hydrogen of an alkyl chain via superoxide oxygen anion formation turning the chain into an acid 

or aldehyde group (Figure 1.6A).
72

 This process also induces chain scission to break the CPs 

backbone; this is reflected in the gradual decreasing intensity of the P3AT 600 nm band in 

UV/vis spectra. Thermo-cleavage of the alkyl side groups is another possible pathway for the 

degradation during thermal annealing. Frechet and coworkers
54

 found that, in poly-(3-(2-

methylhexyloxycarbonyl)dithiophene) (P3MHOCT)/PCBM system, carboxylic ester group of 2-

methyl-2-hexanol side chains underwent cleavage into carboxyl groups upon heating at around 

200°C. Further heating up to 300°C resulted in complete degradation leaving unsubstituted 

polythiophene that formed an insoluble component. This dramatic degradation altered the 

morphology of the active layer and ultimately changed the optical properties of the device 

(Figure 1.6B).  

 

 

Figure 1.6. Examples of possible degradations (A) photodegradation pathway of P3AT. 

Reproduced with permission from Ref. 72 Copyright ©  2010 Elsevier (B) thermal pathway with 

annealing on P3HMOCT layer. Reproduced with permission from Ref. 54 Copyright ©  2007 

American Chemical Society 
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In conclusion, through consideration of the morphology and the stability issues, it 

becomes clear that even though the classical device fabrication approaches based on solution 

processing of CPs (“top-down” paradigm) have been rapidly growing over the last few decades 

and remain the most accessible ways to prepare CP-based devices, there is still a substantially 

large gap between the perfectly controlled ideal system and the real world. Consequently, 

“bottom-up” paradigm (e.g., surface-initiated polymerization via an electrochemical or chemical 

reaction) has been an attractive emergent field offering an alternative approach for device 

fabrication
54

 which can enable precise and simple control over the CP’s structure depending 

upon the polymerization reaction conditions. In the following section, I will briefly cover a 

general concept of the “bottom-up” approach and go into details of surface-initiated 

polymerizations. 

1.4. Development of bottom-up strategy for CP thin films          

1.4.1. Overview 

The “bottom-up” approach (Figure 1.7.B) is a counter strategy to the “top-down” method 

(Figure 1.7.A), and it aims to directly grow polymer brushes on the surface via electrochemical 

or chemical reactions of monomer molecules. For surface-initiated polymerization, the process 

begins from a catalytic initiator molecule attached on the target inorganic solid substrate (it could 

be a flat surface or nano- to microparticle of any shape) through physisorption or chemical 

bonding with an anchoring group (it can be a polymerization monomer itself or a particular 

external initiator depending on the reaction system), and therein the entire polymer chain 

connects to the surface by a physical or chemical link. Due to this feature, the surface-initiated 

polymerization has several advantages over the top-down methods.
73
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The most impressive aspect is the improved physical/chemical properties of the polymer 

thin-film system. Since the polymerization starts from the sterically crowded surface, this forces 

the growing polymer chains to end up as conformationally stretched molecules uniformly 

oriented at a certain angle with respect to the surface normal. This uniform organization would 

be very hard to accomplish using any of the top-down procedures. Although some adjustments 

and modifications to this general model (as was proved in our study of thin films described in a 

later chapter) may be required, it is clear that at least transition moment of CP chains (which is a 

preferred intramolecular transport pathway) shows an upward overall orientation. This unique 

 

 

 

Figure 1.7. Schematic of “top-down” and “bottom-up” approaches for fabricating CP films. (A) 

Top-down approach. (B) Bottom-up approach. Black rods and green balls are anchoring groups 

and initiators, respectively. Reproduced with permission from Ref. 75 Copyright ©  2009 

American Chemical Society 

 

chain architecture would particularly benefit applications requiring charge transport across the 

film, such as OPV applications.
74

 In addition, if one can grow polymer chains long enough to 

form relatively thick films (i.e. beyond 100 nm thickness) in order to absorb large amount of 
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photons, it could enable charges or excitons to travel along the chains to the electrodes without 

disconnection, yielding significantly improved charge transport characteristics.  

Another important characteristic of a thin film prepared using bottom-up procedure is 

substantially increased stability relative to the films obtained using solution-based traditional 

fabrication procedures. As mentioned above, the solution-based methods inherently require 

conjugated polymers to possess long alkyl substituents to increase solubility of CPs, which 

would increase the possibility of photo- and thermal degradation under the device operating 

conditions. On the other hand, surface-initiated polymerization which occurs at the interface 

between the substrate and monomer solution, i.e. in heterogeneous conditions, does not require 

having solubilizing substituents unless a reactive monomer used in the polymerization itself has 

low solubility. Hence, one would expect that thin films prepared by surface-initiated 

polymerization would be substantially more stable against environmental factors such as light 

and oxygen, but also will resist mechanical actions such as sonication; these important 

characteristics will be considered in the later chapters. Moreover, from a geometrical standpoint, 

the bulky solubilizing substituents can cause steric repulsion between the chains resulting in low 

surface coverage with CPs on the surface as well as slowing down the polymerization rate. Thus, 

when surface-initiated polymerization is carried out with substituent-free monomers, one can 

expect higher density of surface coverage by CPs.  

Currently, most common surface-initiated polymerizations include either electrochemical 

polymerizations, or various controlled radical polymerizations. Monomers of CPs, indeed, can be 

potentially polymerized by electrochemical methods because they easily produce stable radical 

cations/anions via simple application of proper oxidation/reduction potential on the monomer, 

and can stabilize these species by conjugation with their -electrons. Controlled radical 
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polymerization has little application towards CP preparation, unless CPs are components of a 

side chain.  Instead, a number of transition metal-catalyzed coupling reactions has been widely 

employed towards surface-initiated polymerization. Until Surface-Initiated Kumada Catalyst 

Transfer Polymerization (SI-KCTP) had been developed,
75,76

 preparation of surface-confined CP 

thin films by chemical (rather than electrochemical) surface-initiated polymerization remained a 

challenge in the materials field. In the following sections, we will briefly discuss the 

electrochemical polymerization and review recent developments along SI-KCTP. 

1.4.2. Electrochemical polymerization for the preparation of CP thin films 

The first electrochemical synthesis of CPs was carried out in 1862 by Letheby
77

 who 

reported insoluble blue-black shiny powder of polyaniline. At that time, scientists did not 

understand the nature and structure of this material (or only partially understood it) due to its 

insolubility and lack of general knowledge of polymer field, as well as unavailability of suitable 

analytical tools for structural characterization. Before Heeger, MacDiarmid, and Shirakawa 

discovered doped polyacetylene in 1977
1
 and a few attempts for CP films at the electrode surface, 

the electrochemical polymerization had not been considered as a general synthetic way. 

Nowadays, various CP films resulting from the electrochemical polymerization of pyrrole,
78

 

aniline,
79 

 thiophene,
80

 and fluorene,
81 

among other monomers, have been prepared and 

thoroughly investigated. 

While a number of applications of electrochemically prepared CP films, such as stimuli-

responsive surfaces,
82

 charge transport layers,
83

 and sensors,
84

 have been accomplished recently, 

several aspects including better understanding of mechanistic details must been considered for 

further utilizing electrochemical polymerization in preparation of thin films for organic 

electronics as they decisively affect the quality of the fabricated thin-film materials. Unlike 
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controlled radical polymerization, the mechanism of electrochemical polymerization does not 

follow a simple chain propagation, but it more likely goes in a step-growth fashion
85

 involving 

initial formation of -oligomers, radical-radical (RR) coupling between the oligomers, proton 

elimination, followed by nucleation and growth. Additionally, the debates about involvement and 

role of -mers, radical-radical (RR) coupling, or Coulombic repulsion still remain open. Despite 

the -mers intermediate has been generally accepted, some evidence obtained by UV/vis, NMR 

spectroscopies, ESR, and cyclic voltammetry (CV) confirm that -mers can also exist during 

electropolymerization and decay very quickly, and therefore would not be able to participate in 

the subsequent polymerization step.
86-88

 Radical-radical (RR) coupling is another factor to be 

considered due to the presence of Coulombic repulsion. Although theoretical analysis including 

Debye-Smoluchovski theory
89

 and kinetic experiments
90

 state that even small charged molecules 

could be coupled to make dimer, it is clear that Coulombic repulsion is a retarding factor for the 

polymerization. Indeed, kinetic rate is increased during electrochemical polymerization carried 

out at low temperature due to the reduced Coulombic repulsion.  

Besides several ambiguous mechanistic issues, many reaction conditions crucially impact 

properties of the fabricated materials. Based on a way to apply electric potential to the reaction, 

one can distinguish three polymerization methods: potentiodynamic, potentiostatic, and 

galvanostatic polymerization. Potentiodynamic polymerization utilizes sweep of potential 

ranging between oxidation and reduction potentails so that a final product would be neutral. 

Meanwhile, potentiostatic and galavnostatic polymerizations are carried out at a constant 

potential so that the material ends up doped at the end of the polymerization. In case of 

potentiodynamic method, due to successive sweeping within the range of redox states, solvent 

molecules can be entrapped into a polymer matrix or incorporated with the oligomers. Then, 
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volume of the polymer matrix would be expanded or impure polymer chains can be produced.
85

 

From a mechanism standpoint, the electrochemical coupling reaction can lead to rather 

disordered polymers instead of polymers with a perfect chain structure as different positions in a 

monomer molecule, particularly for monomers with no substituents, can be available for the 

coupling reaction (see Figure 1.8, where three possible sites, i.e., para- and two meta- positions, 

are available for the coupling at the beginning of polymerization
91

), or isomeric radicals can be 

formed. Another important feature is the difference in electrochemical potentials between mono- 

mer, oligomer, and polymer molecule, meaning that each monomer addition step has its own 

 

 

Figure 1.8. Possible reaction pathway for electrochemical polymerization to afford disordered 

polyphenylene films on the metal electrode. In this polymerization, three possible C-C couplings 

can occur: one through para- and two through meta-positions. Coupling at the ortho-position is 

less favorable due to steric hindrance. But as polymer chains grow, coupling at the ortho-position 

also becomes possible. Reproduced with permission from Ref. 90 Copyright ©  2006 American 

Chemical Society 
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potential barrier as polymerization propagates.
85

 Therefore, the kinetic rate is continuously 

altered through the polymerization. This kinetic rate change results in different length and 

structure of polymer chains at the end of the polymerization, thus hindering precise control of the 

reaction. The last factor to be considered is temperature. The monomer coupling reaction rates 

and proton elimination rates, which are chemical processes, are changed with temperature, and 

therefore affect the reaction in an opposite way of Coulombic repulsion.
85

 Generally, the 

Coulombic repulsion increases as raising temperature, hence, at higher temperature, -

intermediates are either decayed quickly or cannot form at all. This feature would hamper the 

coupling reaction. On the other hand, increasing temperature generally renders high kinetic rates, 

which affords long polymer chains. As a result of interplay between all these factors, 

electrochemical polymerization is mechanistically very complicated, and strongly dependent on 

even small experimental condition changes, which generally results in low reproducibility. 

1.4.3. Metal-catalyzed surface-initiated polymerization for the preparation of CP thin films 

As stated in the overview section, surface-initiated polymerization is to grow polymers 

from polymerization initiators pre-anchored on the surface using a certain appropriate 

polymerization protocol such as ATRP,
92

 or RAFT.
93

 Since, in this approach, one can implement 

the same polymerization techniques as in solution, accurate control over a polymerization 

process would be conveyed by various factors (e.g. reaction time, temperature, monomer to 

initiator feed ratio, etc.) so that not only nanoscale organization but also macroscale ordering 

would be implemented precisely. However, it is worth noting that, in the “bottom-up” paradigm, 

not all polymerization methods mentioned above can be applied to prepare CP films, because 

most of the available polymerization techniques for CPs (based on Suzuki, Heck, or Stille 

coupling, etc.) follow a “step-growth” mechanism. Polymerization processes following step-
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growth mechanism generally cannot be used for surface-initiated polymerization as most of 

monomer quickly proceeds to react in the solution rather than on the surface. Thus, it remained a 

challenge for some time, until McCullough and Yokozawa recently developed Kumada catalyst-

transfer polymerization (KCTP) that follows “living” (or controlled) chain-growth mechanism, 

and Kiriy first introduced surface-initiated KCTP (SI-KCTP) concept.
94,95

           

The first attempt for SI-KCTP was carried out by Kiriy’s group
75

 using photo-crosslinked 

poly(4-bromostyrene) films on solid substrates which were treated with a solution of Ni(PPh3)4 

to form surface tethered external Ni(II) catalytic initiators. Due to low reactivity of the external 

initiator, and interplay with undesirable side reactions such as chain termination, reinitiation, and 

extensive homocoupling during the oxidative addition of Ni(PPh3)4 to surface-immobilized 

bromobenzene precursor, only relatively short P3HT brushes, up to 10 nm long, could be grown 

on the surface, and the polymerization was accompanied with large amount of precipitation 

indicating abundance of chain-transfer steps and therefore less robust chain-growth mechanism. 

Also, the P3HT brushes ended up grafted not only at the film-solution interface but also deeply 

inside of the interpenetrating poly(4-bromostyrene) network.    

Locklin’s group
96

 has developed a further modified SI-KCTP method to fabricate 

polythiophene and poly(p-phenylene) thin films using Ar-Ni(COD)(PPh3)2 external catalytic 

initiator covalently immobilized on a gold surface (Figure 1.9). This Ni(II) initiator is more 

effective and robust than the Ar-Ni(PPh3)2Br initiator, resulting in a somewhat higher thickness 

of the polymer films (14 nm for polythiophene and 42 nm for poly(p-phenylene)) and less 

precipitation in the monomer solution. This indicates that the polymerization takes place on the 

surface rather than in solution. In order to improve the external initiator’s efficiency and increase 

thickness of the polymer films, Kiriy’s group
97

 has employed the ligand exchange step with 
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bidentate ligands to convert Ar-Ni(Bipy)-Br functional group on the Ni center into Ar-Ni(dppp)-

Br or Ar-Ni(dppe)-Br, where dppp is 1,2-bis(diphenylphosphino)propane and dppe is 1,3-

bis(diphenylphosphino)ethane, which has been proven to be more efficient as external catalytic 

initiator than Ar-Ni(PPh3)2-Br or Ar-Ni(Bipy)-Br functional groups (Figure 1.10). In order to do 

 

 

Figure 1.9. Preparation of surface-confined PT and PPP films using surface-initiated 

polymerization and AFM image of the PPP film prepared by Locklin group. Reproduced with 

permission from Ref. 96 Copyright ©  2009 Royal Society of Chemistry 

 

this, they anchored bromobenzene on silica microparticles using silane chemistry and then 

reacted it with a Et2Ni(Bipy) solution to activate end groups followed by a dppp or dppe ligand 

exchange step to produce Ar-Ni(dppp or dppe)-Br external catalytic initiators covalently 

immobilized on the surface of the particles.  This was followed by polymerization using 5-

bromo-3-hexyl-2-thienylmagnesium chloride. Based on SEM, TGA, and GPC studies, they 

demonstrated thickness of CPs shell to be about 20 nm and determined (after dissolving the silica 

particles with HF) that the polymer molecular weight was around 40,000 g/mol, with high 

regioregularity of the P3HT chain. These results revealed significantly improved performance in 
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surface-initiated polymerization compared to previous methods. However, in terms of overall 

process, ligand exchange step was a relatively complicated procedure, especially considering that 

Et2Ni(Bipy) is unstable, air-sensitive, and not an easily available compound. The limited degree 

of freedom on the surface can possibly cause steric hindrance between dppp or dppe during the 

ligand exchange step leaving defects on the surface and low density of the polymer thin films. 

 

 

Figure 1.10. Procedure for surface-initiated polymerization utilizing a ligand exchange step as 

developed by Kiriy group. Reproduced with permission from Ref. 97 Copyright ©  2009 

American Chemical Society 

 

Moreover, “step-growth” polymerization initiated by Et2Ni(Bipy) itself was observed to hinder 

polymerization on the surface and instead prompted polymerization in the monomer solution.  

Later, Luscombe group
98

 developed another way to prepare an external catalytic initiator 

for SI-KCTP. They surface-immobilized an aryl halide precursor using a phosphonic acid 

anchoring group on ITO, then converted it to Ni(II) catalytic species, Ar-Ni(PPh3)2-X, by the 

reaction with bis(1,5-cyclooctadiene)nickel(0)/4PPh3 (Ni(COD)2/4PPh3). The ligand exchange 

step was conducted by immersing the surface-modified ITO slide into a solution of 1,3-

bis(diphenylphosphino)propane (dppp) to afford Ar-Ni(dppp)-X as an external initiator (Figure 
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1.11). As a result, the kinetic of polymerization followed, to a certain level, controlled chain-

growth polymerization mechanism, as was confirmed by a reproducible profilometry 

measurements, and allowed to prepare poly(3-methylthiophene) (P3MT) films with up to 200 nm 

thickness. The polymer thin film was stable under doping conditions, indicating that it could be 

used as a potential organic electronic device. Nevertheless, the surface-initiated polymerization 

rate was slow compared to the similar reaction in solution, and it took more than 1 day to obtain 

P3MT film with 80 nm thickness.  This procedure also required a complicated ligand exchange 

step, which likely left defects on the surface due to the steric hindrance between bulky ligands. 

 

 

Figure 1.11. Surface-initiated polymerization for poly(3-methylthiophene) film developed by the 

Luscombe group. Reproduced with permission from Ref. 98 Copyright ©  2012 American 

Chemical Society 

 



28 
 

1.5. Research focus 

Controlling bulk morphology and chain organization of CPs, and preparing thin films 

with continuous and highly ordered architecture is the key factor for the availability of better 

performing, robust and reliable organic electronic, optoelectronic, and sensing devices. 

Numerous and broad research efforts have been carried out to achieve this goal with different 

approaches ranging from the top-down paradigm (e.g., traditional solution-based spin coating, 

inkjet printing, or nanolithography) to the bottom-up methods, such as electrochemical 

polymerization, click reaction, or surface-initiated metal-catalyzed polymerization. 

Unfortunately, to date, very few processes have been able to achieve the desired structure and 

morphology with accurate controllability and wide accessibility to fabricate organic devices. 

There is still a large room to be filled with further research. One of the most attractive 

approaches, as mentioned in the preceding section, is SI-KCTP. Recent development of SI-

KCTP showed potentially great promise to fabricate well-controlled and ordered CP thin-film 

structures. In principle, this method allows one to grow polymer chains in the general direction 

along the surface normal, and to precisely control molecular structure and bulk morphology of 

the resulting thin films.  This dissertation research was focused on the development of SI-KCTP 

with the purpose both to improve this method, and to better understand structural and 

mechanistic aspects of the surface-initiated polymerization, and of the resulting thin films. 

In chapter 2, I discuss a new approach for SI-KCPT using an external catalyst system 

developed in our laboratory. In particular, we recently developed a simple and efficient way to 

obtain a highly reactive external initiator, Ar-Ni(dppp)-X, via direct oxidative addition of 

Ni(dppp)2 to an aryl halide precursor. In the solution polymerization catalyzed by this initiator, 

we demonstrated that this catalytic initiator can efficiently polymerize thienylmagnesium 
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monomers in a well-controlled chain-growth fashion to afford polythiophenes with high 

molecular weight and low polydispersity index (PDI). In this project, I exploited this system for 

surface-initiated polymerization to afford surface-confined CP thin films. With this method, a 

thick (up to 100 nm) and uniform polythiophene (PT) film could be obtained within an hour, 

which is substantially faster than with any other previous methods. Detailed structural studies of 

the surface-confined PT films using neutron reflectometry (NR), grazing incidence small/wide 

angle X-ray scattering (GISAXS/GIWAXS), ultraviolet photoelectron spectroscopy (UPS), and 

other methods revealed a complex and unique structure and morphology of the films. In addition, 

nanopatterned columnar PT films were prepared by combining surface-initiated polymerization 

with particle lithography.    

One of the major advantages of controlled chain-growth polymerization is that it can be 

used to prepare structurally well-defined block copolymer thin films. Although many examples 

of the preparation of block copolymers using KCTP have been demonstrated in solution, no 

previous attempts have been made using surface-initiated polymerization. Chapter 3 describes 

our new successful approach for all-conjugated diblock copolymer thin films: polythiophene-b-

poly(p-phenylene) and poly(p-phenylene)-b-polythiophene films. Using state-of-the-art 

characterization methods, I confirmed that both the polymerization rate and the photophysical 

properties of the resulting thin films strongly depends upon the sequence in the block copolymers. 

I demonstrated that surface-initiated polymerization is a superior method toward CP thin films 

with complex and well defined molecular architectures for future applications.  

In Chapter 4, I applied surface-initiated polymerization to directly prepare a poly(3,4-

ethylenedioxythiophene) (PEDOT) film as a hole transporting layer on the surface, without the 

need to use poly(styrene sulfonate) (PSS) as an additive (which is normally required to enhance 
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solubility and processability of PEDOT).  I used various techniques (such as IR spectroscopy, 

CV, and AFM studies) to confirm structure and bulk mesoscale organization of the PEDOT films 

on the surface. Using 4-point probe measurement I demonstrated that oxidative doping of the 

surface-confined PEDOT film with iodine vapor made conductivity 100 times higher than that of 

the neutral undoped films.  
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CHAPTER 2. POLYTHIOPHENE THIN FILMS BY SURFACE-CONFINED 

POLYMERIZATION: MECHANISTIC AND STRUCTURAL STUDIES* 
 

2.1. Introduction 

One of the persistent challenges in designing reliable electronic and optoelectronic 

devices based on thin films of semiconducting polymers remains the ability to effectively control 

mesoscale organization and molecular structure of the polymers in the bulk of the films.  This 

control is important for improving device performance, for example, in enhancing the efficiency 

of organic polymer solar cells where low carrier mobility due to less than optimal convoluted 

charge transfer pathways in thin films represents one of the essential bottlenecks to achieving 

high light to current conversion efficiencies.
1-6

  Similarly, controlling molecular organization in 

thin films of fluorescent and electroluminescent semiconducting polymers can improve the 

performance of polymer-based light-emitting and chemosensing devices.
7-11

  Currently, almost 

all successful approaches to prepare thin-film semiconducting polymer devices utilize solution-

based processing of soluble polymers, e.g. spin casting.  In such processing schemes, some 

control over molecular organization and phase separation can be achieved indirectly, through the 

variation of experimental fabrication conditions, post-deposition thermal annealing, using low 

molecular weight additives, etc.  These traditional approaches, however, offer limited options to 

precisely control over nanoscale molecular organization and alignment of semiconducting 

polymers in thin layers.  Some improvement in controlling the organization and alignment in thin 

films can be achieved by utilizing the tools of supramolecular chemistry, but this approach is  

________________ 

*
 “Reproduced in part with permission from Youm, S. G.; Hwang, E.; Chavez, C.A.; Li, X.; 

Chatterjee, S.; Lusker, K. L; Lu, L.; Strzalka, J.; Ankner, J. F.; Losovyj, Y.; Garno, J. C.; 

Nesterov, E. E. Chem. Mater., DOI: 10.1021/acs.chemmater.6b01957, Copyright 2016 American 

Chemiscal Society”  
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also limited.  A viable alternative to using solutions of pre-synthesized semiconducting polymers 

employs a “grafting from” approach to prepare surface-attached polymer thin films using 

surface-confined (also often called surface-initiated) polymerization of monomers.
12

  This 

approach allows in situ preparation of continuous as well as nanopatterned semiconducting 

polymer thin films and devices based on them directly from small-molecule monomers.  In such 

a case, the monomers are not required to be functionalized with bulky solubilizing substituents, 

and this approach affords greater control over mesoscale organization in the films.  In addition to 

better controlled mesoscale organization and molecular composition, the polymer films produced 

by surface-initiated polymerization benefit from greater mechanical, thermal, and chemical 

stability, relative to traditional spin-cast thin films.  With all of these potential advantages, and 

despite some recent increase in interest in this area,
13-22

 surface-confined in situ preparation of 

semiconducting polymer films remains largely unexplored, still lacking both efficient practical 

methods and fundamental knowledge of essential details of the polymerization process as well as 

detailed information on the structure of the resulting thin films.  In this study, we attempted to 

fill this gap by carrying out an extensive development and optimization of the surface-initiated 

polymerization process, gaining better understanding of the polymerization mechanism, as well 

as detailed investigation of the structure and morphology of the produced surface-attached thin 

films. 

Among various classes of semiconducting polymers, polythiophene (PT) and its various 

derivatives are among the most important organic electronic materials.
23, 24

  These polymers 

show substantial charge transport efficiency, as well as good thermal stability and photostability.  

In addition, PT properties can be readily modified through chemical functionalization, and there 

are numerous synthetic approaches to preparation of polythiophenes and their analogs.  One of 



41 
 

the most commonly used PT representatives is regioregular poly(3-hexylthiophene) (P3HT).
25, 26

  

This solution-processable polymer forms thin films which display good charge mobility and are 

relatively stable to thermal and photodegradation.  Not surprisingly, extensive research efforts 

have been directed towards improving the molecular organization of P3HT in thin films with the 

goal of enhancing charge mobility and increasing the efficiency of the resulting devices.
27-33

  

While the majority of these efforts have targeted controlling morphology and organization in thin 

films of the pre-synthesized polymer, fewer attempts have been made to achieve such control by 

in situ surface-initiated polymerization of a suitable monomer.
20-22

  Such polymerization has a 

number of advantages, including the possibility to prepare densely packed films of unsubstituted 

PTs.  Functionalizing the PT backbone with bulky solubilizing substituents is required for 

solution processing as an unsubstituted polymer would be completely insoluble.  Whereas it has 

been shown that interdigitation of solubilizing side groups can improve molecular ordering in 

thin films, such bulky side groups also disrupt close interchain packing and reduce the molecular 

organization and co-planarity of the polymer chains in the film, especially if the synthetic 

chemistry used to prepare the polymer does not afford 100% regioregularity (as the percentage of 

“head to tail” coupling of thienyl repeating units).
34-36

  The solubilizing side groups may also 

reduce charge-transport in polymer thin film materials by effectively “diluting” the -conjugated 

backbone.  In addition, the -carbon of the alkyl side chains has been shown to act as a reactive 

site for initiation of photo- and thermal degradation of semiconducting polymers.
37-38

  Lacking 

these drawbacks, in situ prepared thin films of unsubstituted PT are expected to exhibit improved 

molecular organization as well as to show better stability than spin-cast films of alkyl-substituted 

pre-synthesized PTs.  In addition to preparation of stable surface-confined polymer films, such 
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polymerization can serve as a convenient method for surface modification with organic 

semiconducting polymers for optoelectronic, sensing, and biomedical devices.
39-41

 

Many earlier attempts at in situ preparation of PT thin films involved electrochemical 

polymerization.
42

  However, electrochemical method is limited by the availability of the 

monomers (as not every monomer can be efficiently electropolymerized), and the strong 

dependence of the properties of the final polymers on subtle variations of experimental 

conditions (and the related poor reproducibility of the results).  In contrast to electrochemical 

polymerization, using transition metal-catalyzed chemical polymerization to form various 

derivatives of regioregular PTs is highly versatile.  With the availability of various 

methodologies (of which the most prominent are McCullough’s Grignard metathesis 

polymerization
43, 44

 and Rieke’s organozinc derivatives coupling
45

) and highly efficient catalytic 

systems, and with proper choice of protecting groups, chemical polymerization can be carried 

out with a wide variety of suitably functionalized monomers, and delivers highly reproducible 

results.  With all of these advantages, chemical polymerization appears to be a method of choice 

for the “grafting from” preparation of surface-confined thin-layer PT films.  Surprisingly, until a 

few years ago this was almost an unexplored area.  The groundbreaking discovery 

simultaneously by McCullough
46, 47

 and Yokozawa
48, 49

 that Ni-catalyzed regiocontrolled 

Kumada polymerization of 5-bromo-2-thienylmagnesium monomers follows a quasi-“living” 

chain-growth mechanism, opened up the possibility of surface-confined chemical 

polymerization.  Up to now, a few independent research groups, most notably that of Kiriy, have 

carried out surface-initiated in situ preparation of regioregular poly(3-alkylthiophene) brushes 

through Kumada polymerization using surface-immobilized Ni(II) catalytic initiators.
50-52

  This 

approach has produced mechanically stable surface-grafted PT thin films, however with an 
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apparently low surface density, and a limited degree of polymerization, possibly due to 

instability and lower activity of the metal catalytic site and the dominance of side reactions.
53, 54

  

Using Kiriy’s methodology and a modified Ni catalyst to improve the “living” nature of the 

polymerization process, Locklin has demonstrated preparation of relatively thick (up to 42 nm) 

surface-attached poly(3-methylthiophene) films.
55

  Nevertheless, all of the reported systems 

suffer from low activity and relative instability of the surface-immobilized Ni(II) catalyst, as well 

as from the complexity of the catalyst preparation; therefore, practical implementation of 

surface-initiated polymerization still remains a challenge.
13-15

  Even more importantly, very little 

is known about the molecular organization and bulk morphology of surface-confined PT thin 

films and the ways that can be used to control these parameters.   

Recently, we have found that the reaction of aryl bromides or aryl iodides with Ni(0) 

complex Ni(dppp)2 (where dppp is 1,3-bis(diphenylphosphino)propane) at moderate 

temperatures produces a stable Ni (II) complex 1 that can be used as a highly efficient catalytic 

initiator of Kumada catalyst transfer polymerization (KCTP)
53, 56

 of 5-bromo-2-

thienylmagnesium monomers (Scheme 2.1).
57

  The polymerization efficiently yields highly regi-  

 

 

Scheme 2.1.  Preparation of Ni(II) external catalytic initiator 1 and its use in preparing 

regioregular poly(3-alkylthiophene)s by controlled chain-growth Kumada catalyst transfer 

polymerization. 
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oregular (regioregularity, as a fraction of head-to-tail (HT) coupled 3-alkylthienyl units, is close 

to 100%) P3HT with the number average molecular weight (Mn) being linearly dependent on the 

monomer/catalyst 1 ratio.  These and other experimental findings have pointed out on the 

controlled chain-growth mechanism of the polymerization initiated/catalyzed by 1.  In good 

agreement with this mechanism, each polymer chain was found to be terminated with the aryl 

group from catalyst 1 at one end, and (somewhat unexpectedly) predominantly with Br at the 

other end (Scheme 1).  The experimental simplicity of preparation of the catalytic initiator 1 and 

the efficiency of the 1-catalyzed KCTP prompted us to systematically investigate using this 

complex for the preparation of surface-attached PT thin films via surface-confined in situ 

polymerization.  This chapter describes our studies of preparation of the surface-immobilized 

catalyst, mechanistic details of the polymerization process, and structural characteristics and 

properties of the resulting surface-confined PT thin films, as well as the use of this method for 

the preparation of nanopatterned PT films through particle lithography. 

2.2 Results and Discussion 

2.2.1. Preparation and characterization of the surface-immobilized catalytic initiator.   

For the current study, we selected 2-(triethoxysilyl)-5-iodothiophene 2 as a precursor for 

the KCTP catalytic initiator (Figure 2.1).  Reacting the triethoxysilyl group with activated 

inorganic oxide surfaces is a convenient method for the covalent surface immobilization of 

organic molecules.
58, 59

  Direct, without a flexible aliphatic spacer, attachment of the anchoring 

silyl group to the thiophene unit was chosen in order to provide a tighter connection between the 

surface-attached semiconducting polymer brush and the supporting substrate to facilitate charge 

transfer in the eventual thin-film devices.  Furthermore, we expected the short surface linker to 

help reduce the possibility of a homocoupling (disproportionation) reaction between adjacent 
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surface-immobilized Ni(II) initiator molecules – a catalyst-degradation process which had been 

previously demonstrated to efficiently occur with flexible long alkyl chain surface-attachment 

linkers.
54, 60

  First, we studied the solution reaction between the iodothienyl precursor 2 and 

Ni(dppp)2.  The reaction of 2 with 2 equivalents of Ni(dppp)2 to form catalytic initiator 3 was 

carried out in toluene at 45 °C, and monitored by 
31

P NMR.  We chose to use a two-fold excess 

of Ni(dppp)2 in order to accelerate conversion of 2 to the active catalytic initiator 3.  Indeed, 

from a practical standpoint, the presence of unreacted Ni(dppp)2 when it was taken in excess 

could not affect the surface immobilization of the catalytic initiator 3, whereas the presence of 

unreacted iodothienyl precursor 2 (in case of its incomplete conversion to the catalytic initiator 

3) could undesirably result in incorporating unreactive 2 in the monolayer and therefore 

diminishing the surface density of catalytic initiator 3.  The main feature in tracking the reaction 

progress by 
31

P NMR was a gradual intensity decrease of the singlet at 12.8 ppm corresponding 

to Ni(dppp)2.  After 24 h reaction time, this signal intensity decreased to 50% of the initial 

intensity, whereas no new signals could be observed in the 
31

P NMR spectrum of the reaction 

mixture, indicating complete conversion of the iodo precursor 2 to the Ni(II) catalytic initiator 3 

(Figure 2.1, Direct method).  The lack of observable 
31

P NMR signals from the Ni(II) square-

planar complex 3 in toluene was in agreement with our previous findings.
57

  When toluene was 

removed in vacuo, and the residual product was redissolved in THF, formation of the square-

planar Ni(II) catalytic initiator 3 was then clearly evidenced by the presence of a pair of broad 

doublets (at approximately 18.9 and –1.3 ppm) in the 
31

P NMR spectrum (Figure Appendix B.1).  

The as prepared solutions of catalytic initiator 3 were found to be relatively stable with respect to 

thermal degradation (e.g. they could be stored at –30 °C for up to three months without losing 

catalytic activity).  Therefore, a toluene solution of 3 can be prepared in advance, and used for 
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surface immobilization when needed. 

To prepare a surface-attached monolayer of the catalytic initiator, one can use either of 

two alternative procedures.  In a more conventional approach (previously established by Kiriy,
50-

52
 Locklin,

55
 et al.), a substrate with a surface-immobilized monolayer of an aryl halide precursor 

is converted to an active Ni(II) catalytic initiator via a suitable chemical reaction on the surface.  

In our case, this required reacting a substrate-immobilized monolayer of the iodothienyl 

precursor 2 with Ni(dppp)2 (Figure 2.1, Indirect method).  Alternatively, considering the 

preparation simplicity and relative stability in solution of the catalytic initiator 3, it would be 

conceivable to prepare a monolayer of catalytic initiator by direct immobilization of 3 to a solid 

substrate (Figure 2.1, Direct method).  Although both procedures are supposed to deliver the 

same surface-immobilized monolayer of catalytic initiator 3, it could be possible that the lower 

efficiency and slow rate of the heterogeneous reaction between surface-bound iodothienyl 

precursor 2 and Ni(dppp)2 could hinder the conversion of surface-immobilized iodothienyl 

precursor 2 to the active initiator 3, and therefore might result in only partial conversion to 3 in 

the Indirect method.  In this sense, Direct method, involving solution synthesis of 3, looked more 

advantageous as it would offer complete surface coverage with catalytic initiator 3.  Since the 

latter approach has not been previously investigated, we decided to study both procedures in 

more detail, and compare their outcomes. 

For this study, the immobilized monolayers of the iodo-precursor 2 and Ni(II) catalytic 

initiator 3 were prepared on quartz substrates by immersing the freshly activated substrates in 

solutions of 2 and 3, respectively, in toluene at 55 °C for 60 h.  After monolayer deposition, the 

substrates were thoroughly rinsed with toluene, and the composition of the monolayers was 

analyzed using high-resolution X-ray photoelectron spectroscopy (XPS).  We found it 
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convenient to look at the iodine signal as it is characterized by two well-resolved peaks in the 

XPS spectrum, and the peak position is highly sensitive to the chemical state of iodine.
61, 62

 The 

monolayer of iodothienyl precursor 2 showed two signals at approximately 633 and 622 eV 

which can be attributed to the I 3d5/2 and I 3d3/2 peaks (Figure 2.2A).  The monolayer of Ni(II) 

 

 

Figure 2.1.  Two alternative methods for the preparation of surface-confined Ni(II) catalytic 

initiator of controlled chain-growth polymerization, and subsequent surface-initiated Kumada 

catalyst-transfer polymerization to yield surface-attached polythiophene thin films.  In the 

Indirect method (on the left) the surface-immobilized Ni(II) catalytic initiator is prepared by a 

heterogeneous reaction between the monolayer of iodo-precursor 2 and Ni(dppp)2.  In contrast, 

the Direct method (on the right) relies on direct surface immobilization of the solution-prepared 

Ni(II) catalytic initiator 3.  The polymer chain alignment normal to the substrate surface is shown 

only for illustrative purpose, and does not reflect the actual morphology and mesoscale structure 

of the film. 

 

catalytic initiator 3 (prepared via Direct method) displayed similar iodine signals but shifted 

toward lower binding energies (at approximately 629 and 618 eV).  Indeed, one would expect a 

lower binding energy for the I
–
 anion attached to the Ni(II) center in 3 relative to the iodine 

covalently connected to an aromatic carbon atom in 2 (similar lower binding energies were found 
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for the ionic salts CsI and NaI
63

).  Within the XPS sensitivity, no signals for the iodothienyl 

precursor 2 were observed in this monolayer, therefore indicating completeness of the solution 

conversion of 2 to 3 (as was already evidenced by 
31

P NMR spectroscopy).  For the Indirect 

method, chemical conversion of the monolayer of iodothienyl precursor 2 to the catalytic initiator 

3 was monitored by XPS and showed that even prolonged (60 h) exposure of a monolayer of 2 to 

Ni(dppp)2 solution at 55 °C resulted only in partial conversion to 3, and approximately 70% of 

the surface-immobilized iodothienyl precursor 2 remained unreacted, as could be determined 

from integration of the deconvoluted XPS peaks characteristic of 2 and 3 (Figure 2.2A).  The 

observed incomplete conversion was in line with the previous observations by Locklin,
54

 and 

was likely related to steric effects in the densely packed monolayer.  Therefore, the monolayer of 

catalytic initiator prepared by the Indirect method would be expected to have a lower surface 

density of Ni(II) catalytic molecules thus resulting in lower-density polymer films compared to 

the Direct method.   

To better understand the chemical nature of the surface-immobilized catalytic initiator 3, 

we also analyzed Ni 2p XPS peaks (Figure 2.2B).  Although the structure of the signals in this 

region was relatively complex, they could be unambiguously attributed to Ni(II).  Indeed, in the 

substrate prepared following the Indirect method, the center of gravity of the nickel main (2p3/2) 

peak was found at a binding energy of 856.1 eV, with the second satellite peak positioned at 

874.2 eV, which was consistent with values reported for divalent nickel in NiO and Ni(OH)2.
64-66

   

The first satellite peak at 861.4 eV and the 2p1/2 peak at 873.9 eV also appeared close to values 

previously reported for divalent nickel. Overall, the intensity of the XPS signals was 

significantly higher for the substrates prepared following the Direct method compared to those 

prepared via Indirect method, which was consistent with substantially lower Ni(II) surface 
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Figure 2.2  (A) High-resolution I 3d XPS spectra of monolayers of the surface-immobilized 

Ni(II) catalyst prepared by the Direct method (top violet trace) and by the Indirect method 

(middle red trace, deconvolution into two I 3d components is also shown), as well as of a 

monolayer of iodothiophene precursor 2 (bottom green trace).  (B) High resolution Ni 2p XPS 

spectra for the surface-immobilized Ni(II) catalyst prepared by the Direct method (top violet 

trace) and by the Indirect method (bottom red trace).  Shirley background (cyan traces) was 

applied to all spectra.  Fitting parameters and deconvolution details are listed in Table 5.1 in the 

Experimental section.   

 

coverage in the latter case.   

Since XPS experiments could only provide qualitative information on the surface 

composition, we attempted to quantify the initiator surface coverage, in order to compare with 

previous results as well as to establish the superiority of the Direct method in the preparation of 

the surface-immobilized polymerization catalyst.  Surface coverage by catalytic initiator 3 was 

quantitatively estimated in electrochemical studies using the approach described by Locklin.
54

  

For this purpose, the monolayers of catalytic initiator 3 were prepared following either Direct 

method or Indirect method using semiconducting indium tin oxide (ITO) substrates.  The 
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substrates were than treated with an excess of the ferrocene-functionalized Grignard reagent 5 to 

convert active Ni(II) sites into electrochemically active ferrocene sites (Figure 2.3A).  With an 

assumption that such a transformation happened quantitatively (which is justified considering the 

large excess of Grignard reagent 5 relative to the surface-immobilized Ni(II) centers), one could 

determine ferrocene surface coverage from cyclic voltammetry (CV) studies of the ferrocene-

functionalized substrates using the well-defined ferrocene redox wave (Figure 2.3B).  From the  

CV experiments, we estimated active catalytic initiator 3 surface coverage in the substrates  

prepared via Indirect method as 0.57×10
13

 molecules cm
–2

, whereas the coverage in the 

substrates prepared via Direct method was 2.42×10
13

 molecules cm
–2

.  These results showing 

 

 

Figure 2.3.  (A) Ferrocene functionalization of ITO surface immobilized Ni(II) catalytic initiator, 

and (B) cyclic voltammograms of the prepared ferrocene-coated substrates acquired in 0.1 M 

Bu4NPF6 in CH2Cl2, with sweep rate 0.1 V s
–1

. Dashed trace shows CV data for a substrate 

prepared following the Indirect method, and solid trace – CV data for a substrate prepared by the 

Direct method.   
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approximately 4 times lower surface coverage in the substrates prepared via Indirect method 

were consistent with the results from XPS studies and showed that direct surface immobilization 

of the solution-prepared catalytic initiator 3 (Direct method) was a superior method to achieve 

high-density surface coverage by the catalytic initiator.  The absolute value of the initiator 3 

surface coverage on the ITO substrate was somewhat lower than the number previously reported 

by Locklin,
54

 which might reflect differences in the measurement conditions or variations in ITO 

substrates, however we found our value of surface coverage to be quite reproducible and not to 

vary from sample to sample.  Therefore, for the rest of this study we chose the Direct method as 

the procedure to prepare surface-immobilized catalytic initiator for surface-confined 

polymerization.   

2.2.2. Development of surface-initiated polymerization protocol and properties of the resulting  

PT thin films.   

Although the surface-immobilized polythiophene thin films are generally intended for use 

in electronic devices (and therefore should be deposited on conducting surfaces such as indium 

tin oxide (ITO)), we performed most of our studies on quartz substrates, as this enabled simple 

monitoring of reaction progress by UV/vis absorption spectroscopy, and the lower surface 

roughness of quartz substrates would enable measurements of the structural features of polymer 

films without accounting for the large surface roughness of commercial ITO substrates.  After 

rinsing with a copious amount of toluene, the quartz slides with surface-immobilized Ni(II) 

catalytic initiator were immersed in a solution of 5-bromothiophen-2-yl magnesium chloride 

monomer 4 at room temperature to start controlled chain-growth polymerization yielding 

surface-attached polythiophene thin films (Figure 2.1).  Monitoring of polymer film growth was 

performed using UV/vis absorption spectroscopy, and the uniformity of the film surface 

morphology was confirmed in AFM studies.   
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Carrying out polymerization for 6 h afforded a uniform PT film of approximately 20 nm 

thickness (determined by stylus profilometry).  The UV/vis absorption spectrum of the PT film 

showed a vibronically structured broad band with a maximum at around 500 nm (Figure 2.4).  

  

 

Figure 2.4.  UV/vis absorption spectra of a PT thin film prepared by surface-initiated 

polymerization (red trace) and of a PT thin film prepared by electrochemical polymerization of 

bithiophene (black trace).  Insert shows a photograph of the PT sample prepared by surface-

initiated polymerization. 

 

The presence of pronounced vibronic features in the absorption spectra of conjugated 

polymer films typically indicates better molecular organization and the presence of a certain 

level of molecular uniformity in the polymer chains alignment.
67-69

  To highlight the advantage 

of our protocol, we also prepared a PT thin film using electrochemical polymerization of 

bithiophene on an ITO substrate.  This approach is known to produce amorphous PT films with a 

low degree of molecular organization.
70, 71

 Indeed, the UV/vis absorption spectrum of the 

electropolymerized PT thin film exhibited an absorption band with no vibronic features (Figure 

2.4).  Another striking difference between the chemically polymerized surface-confined and 

electropolymerized PT films was the remarkable stability of the former in the presence of 

organic solvents.  Indeed, ultrasonicating slides modified with surface-confined PT films placed 
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in various organic solvents (such as chloroform, toluene, etc.) for extended periods (up to 6 h) 

resulted in no noticeable film degradation or delamination.  This behavior becomes even more 

striking when one compares chemically polymerized surface-confined PT films with their spin-

cast analogues (e.g. spin-cast P3HT films) as the latter can be completely washed off by organic 

solvents (even without ultrasonication).  This particularly high solvent stability of the surface-

confined thin films would be highly advantageous for the preparation of complex multilayer 

architectures as the next polymer layer can be solution-deposited over the surface-confined film 

without any solvent-related damage to the underlying layer; this property also would make 

surface-confined polymerization particularly suitable for surface modification of inorganic 

electrodes with organic semiconducting polymers.   

 

 

Figure 2.5.  Morphology of a PT film prepared by surface-initiated polymerization on a quartz 

substrate viewed with contact mode AFM images. (A) Wide view topography (6 × 6 µm
2
); (B) a 

simultaneously acquired lateral force image; (C) close-up topography view (2 × 2 µm
2
); (D) 

corresponding lateral force image. 
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An AFM study revealed uniform coverage of the polythiophene thin films with low 

surface roughness (RMS roughness 1.4 nm).  Representative AFM images are shown in Figure 

2.5.  The uniformity of the film surface was highly reproducible throughout the various samples 

prepared in this study.  The film surface consisted of a few large circular domains of 

approximately 65 nm in diameter surrounded by smaller (about 40 nm) circular-shaped domains.  

We observed formation of a similar surface domain morphology throughout all surface-confined 

PT samples, and therefore infer that circular domain formation is related to the structure and 

mesoscale organization of the surface-confined polymer in the bulk thin films.  More detailed 

studies of the structure and morphology of the polymer films are discussed below. 

Cyclic voltammetry (CV) data on the PT film prepared by surface -initiated 

polymerization on an ITO substrate is shown in Figure 2.6A.  The surface-confined PT film was 

found to be electrochemically stable and did not experience noticeable changes upon successive 

CV scanning.  As expected for a covalently attached electroactive film, the peak current 

exhibited a linear dependence on the scan rate.  The film showed a quasi-reversible anodic 

oxidation wave at Epa ~0.6 V (vs. Fc/Fc+ reference electrode), and a corresponding main 

cathodic wave at Epc ~–0.15 V.  These two waves were centered at E1/2 ~0.38 V – a value 

similar to that reported for electropolymerized PT films (~0.35 V vs. Fc/Fc
+
 reference 

electrode
72

), however, two features in the CV data were quite unusual.  First, unlike 

electropolymerized PT films which typically show broad redox peaks, surface-confined PT film 

displayed rather narrow and sharp peaks.  This could be explained by a much more uniform 

distribution of conjugation lengths in the surface-confined film.  Second, the electrochemical 

data displayed large hysteresis – a separation between forward anodic and backward cathodic 

peaks.  Hysteresis is normally observed in crystalline electroactive films and reflects strong  
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Figure 2.6.  (A) Cyclic voltammogram of the PT film prepared by surface-initiated 

polymerization for 6 h.  Data were acquired in 0.1 M Bu4NPF6 in CH2Cl2, with sweep rate 0.1 V 

s
–1

.  (B) Spectroelectrochemical studies of the PT film in A.  The potentials were referenced to 

Fc/Fc
+
 reference electrode. 

 

attractive interactions between the crystal-packed molecules which oppose counterion ingress 

into the bulk structure.
73

   

For electropolymerized PT films, hysteresis is normally not observed, in agreement with 

their amorphous nature.  Further analysis of the CV curve in Figure 2.6A revealed that it looked 

quite similar to the CV data previously reported for thin films of thiophene oligomers (in 

particular, octamer and decamer) which also displayed significant hysteresis between sharp 

narrow anodic and cathodic waves.
74

  As a preliminary conclusion, the electrochemical data of 

the surface-confined PT film were consistent with substantial crystallinity, with crystalline 
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domains formed by packing polymer chain segments with 8 to 10 thienyl repeating units.  

Further structural evidence in favor of this hypothesis is provided later in this chapter. 

In spectroelectrochemical studies, absorption spectra of the surface-confined PT film 

were first obtained in the fully reduced (undoped) state of the polymer, and then were recorded 

as the potential was gradually stepped up toward oxidized (polaron and bipolaron) states (Figure 

2.6B).  In the electrochemically undoped, insulating state, the polymer film showed a 

vibronically structured -* transition in the range of 350–650 nm, with the optical bandgap 

determined from the onset of absorption estimated at 2.0 eV.  As the potential was stepped up, 

the * transition band of the neutral state was observed to gradually decrease, and was 

replaced with a broad band centered around 750 nm corresponding to a polaronic transition, as 

well as with an intense bipolaronic band positioned in the near-IR region (maximum at around 

1400 nm).  Although the bandgap value and spectroelectrochemical behavior of the surface-

confined PT film were consistent with those of typical conventionally prepared PT thin films,
72

 

the surface-confined film did not show complete transition between neutral (undoped) and 

oxidized (polaronic/bipolaronic) states.  Even at high positive potential, there was still a 

significant presence of the short-wavelength electronic band corresponding to the neutral state.  

This resistance of the surface-confined PT film to complete oxidation might again reflect its high 

crystallinity, and was consistent with the unusual features observed in the CV experiments (vide 

supra).   

2.2.3. Experimental evidence of the controlled chain-growth mechanism of surface-initiated  

polymerization.   

Although AFM studies revealed the relatively uniform surface morphology of the PT thin 

films, the advantages of surface-initiated polymerization could be fully implemented only if it 

indeed followed the controlled chain-growth mechanism.  Although we previously showed 
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strong evidence for such a mechanism when 1-initiated KCTP was carried out in homogeneous 

solution (Scheme 2.1), it was important to demonstrate that the robust controlled chain-growth 

mechanism remains operational in the case of heterogeneous surface-confined polymerization.  

This confirmation required monitoring both the rate of polymerization and the polymer structure 

and molecular weight distribution (polydispersity) in the surface-confined thin film.  Due to 

complete insolubility of unsubstituted PT, we could not analyze structure, molecular weight, and 

polydispersity of the polymer upon its detachment from solid substrate, and thus could only rely 

upon studies of pristine films.  A number of methods could be used for studies of organic thin 

films, however we specifically chose neutron scattering.  Neutron scattering is an attractive tool 

for the structural characterization of soft organic materials due to the high neutron scattering 

cross section for light elements and the ability to tune contrast through isotopic labeling.  

Hydrogen and deuterium have differing scattering cross sections for neutrons so that site-

selective deuteration can make some parts of the materials more visible than others without 

greatly altering other physical properties.  Neutron reflectometry (NR) is a particularly suitable 

tool to study organic thin films.
75-79

  The unique sensitivity of NR to the distribution of the 

deuterated material across the film could be used both to assess the kinetics of polymerization 

and the controlled (i.e. quasi-“living”) character of the polymerization mechanism.   

To evaluate both features, we prepared a PT thin-film sample consisting of stratified 

sublayers of deuterated PT (polydeuterothiophene, PDT) and “regular”, non-deuterated PT.  To 

prepare such a sample, we first immersed a quartz substrate with a surface-immobilized 

monolayer of catalytic initiator 3 in a solution of fully deuterated Grignard monomer 4 (i.e. 4-D2) 

and carried out surface-confined polymerization for 1 h.  Then, in oxygen- and moisture-free 

conditions, we transferred the active substrate with an initially formed PDT film to a solution of 
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non-deuterated Grignard monomer 4 and kept it there for 6 h to allow for the PT outer layer to 

form (Figure 2.7A). The film was then treated with methanol to quench the active Ni(II) catalytic 

sites, and dried in nitrogen.   

The NR studies of the resulting partially deuterated thin film produced a reflectivity 

pattern which was modeled using a two-layer slab model fitting approach to achieve the best fit 

 

 

Figure 2.7.  (A) Preparation of a stratified deuterated PT thin film on a quartz substrate by 

carrying out polymerization in a solution of fully deuterated monomer 4-D2 followed by 

polymerization in a non-deuterated monomer 4.  (B) Neutron reflectivity data for the resulting 

film (red circles) and the best fit to the data (blue solid line).  (C) Scattering length density (SLD) 

profile based on the best-fit data presented in B shows the sharp interface between deuterated 

(PDT) and non-deuterated (PT) laterally stratified sublayers in the film. 
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of the experimental data (Figure 2.7B).  Fitting the reflectivity vs. wavevector transfer data to a 

model calculated from the scattering length density (SLD) profile delivered an accurate 

distribution of the deuterated monomer/polymer as a function of film depth (Figure 2.7C).  In 

agreement with the controlled chain-growth (quasi-“living”) mechanism of surface-confined 

polymerization, the thin-film sample showed highly stratified distribution of the deuterated PDT 

and non-deuterated PT parts of the film.  The PDT sublayer was clearly visible in the SLD 

profile due to the higher neutron scattering cross section of deuterium.  The thickness of the PDT 

sublayer was about 6 nm (which corresponded to a growth rate of 6 nm h
–1

), and it sharply 

transitioned to a non-deuterated PT sublayer of approximately 24 nm thickness.  The almost 

constant SLD values within each constituent sublayer indicated uniform mass density of the 

polymer across the film thus revealing the persistence and high catalytic activity of reactive 

Ni(II) centers during polymerization.  Even more important was the observation of a sharp 

interface between the deuterated PDT and non-deuterated PT sublayers.  This indicated the 

robustness of controlled chain-growth polymerization in the surface-confined film as transferring 

the substrate from fully deuterated Grignard monomer 4-D2 to non-deuterated monomer 4 kept 

the initially formed active polymer chains alive and able to continue further polymerization – an 

important characteristic feature of truly quasi-“living” polymerization.  It also indicated that 

polymerization front generally propagated in the direction normal to the quartz substrate.  

Although limited sensitivity of NR experiments could not guarantee that 100% of surface-

confined polymer chains followed quasi-“living” polymerization, it is obvious, that any severe 

deviation from the sharp interface between the deuterated and non-deuterated sublayers would 

have indicated that different individual surface-attached polymer chains had grown at different 

kinetic rates throughout the film, and that further growth of some chains had terminated 



60 
 

prematurely by the time of substrate transfer (either due to degradation of the Ni(II) active sites 

or due to chain transfer to the monomer solution) – thus indicating a less robust, or even not 

quasi-“living” polymerization mechanism.  Similarly diffuse interface would have resulted from 

random orientation (lack of uniform alignment) of growing polymer chains during surface-

initiated polymerization.  Therefore, within the sensitivity of NR experiments, our finding both 

of a sharp interface between sublayers, and a constant, non-changing SLD (and therefore 

constant polymer mass density) across each sublayer emphasized the controlled (quasi-“living”) 

chain-growth character of the surface-initiated polymerization, as well as uniform orientation of 

the polymer chains in the film.  

2.2.4. Development of surface-initiated polymerization – catalyst regeneration strategy for the  

preparation of PT films with larger thickness.   

The controlled chain-growth mechanism of surface-initiated polymerization allows one to 

manipulate the thickness of the resulting PT films simply by varying polymerization time.  We 

found that immersing a slide with surface-immobilized Ni(II) initiator in a 50 mM solution of 5-

bromothiophen-2-yl magnesium chloride monomer 4 at room temperature for 6 h produced films 

with an approximately 20 nm thickness.  Carrying out polymerization for 12 h afforded PT films 

with approximately 50 nm thickness.  The roughly linear dependence of PT film thickness on the 

polymerization time reflected the quasi-“living” chain-growth character of the surface-confined 

polymerization.  However, extending polymerization time for a period of longer than 12 h did 

not result in a further substantial increase in the film thickness, possibly due to eventual 

degradation of the active surface-bound Ni(II) catalytic sites.  This degradation may involve 

Ni(II) center transfer to Grignard monomer 4 in solution (depicted as chain transfer degradation 

in Figure 2.8).  Such an active center transfer would terminate further growth of a surface-

immobilized polymer chain, and result in starting a new polymer chain in solution.  An 
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alternative degradation pathway could involve disproportionation between two adjacent PT 

chains as also shown in Figure 8.  The disproportionation pathway requires significant torsional 

bending of the surface-attached chains, and was shown by Locklin to be essential in the case of 

initiation with Ni(II) active catalyst attached to the surface via flexible alkyl linkages where such 

bending can be better accommodated.
54

  The disproportionation releases the Ni(dppp)Br2 

catalytic species into solution, where it can initiate solution polymerization of a new PT chain.  

Although using rigid linkers in our case should diminish this pathway at early stages of surface-

confined polymerization, it cannot be completely ruled out. Degradation of surface-bound Ni(II) 

catalytic initiator was supported by our observation of the formation of a noticeable amount of 

insoluble PT precipitate in solution upon extended polymerization times, although it would not 

be possible to determine which way (Ni(II) transfer to Grignard monomer, disproportionation, or 

both) this degradation has occurred. 

 

 

 Figure 2.8.  Schematic illustration of active surface catalyst degradation through chain transfer 

and disproportionation, as well as regeneration of the active Ni(II) catalytic initiator for the 

preparation of thicker polythiophene (PT) films by surface-initiated polymerization.  The PT 

chain alignment normal to the substrate is shown only for illustrative purpose and does not 

describe the actual complex morphology in the film. 



62 
 

In order to further improve the versatility of surface-confined in situ polymerization for 

preparation of PT films of greater than 50 nm thickness, we have developed a protocol involving 

intermediate regeneration of the Ni(II) active catalytic center during surface-initiated 

polymerization.  Indeed, if we assume that premature termination of surface-initiated 

polymerization predominantly occurs by Ni(II) transfer to monomer 4 in solution (chain transfer 

degradation, as discussed above), this process should terminate the affected surface-attached PT 

chains with a Br end group from the monomer (Figure 2.8).  In such a case, the Ni(II) active 

catalytic site could be regenerated by reaction of the surface-confined film with a fresh solution 

of Ni(dppp)2 as used in the Indirect method (Figure 2.8).  Obviously, such “reactivation” cannot 

happen at sites that underwent degradation through a disproportionation mechanism.  This 

“reactivated” polymer thin film can be subsequently exposed to Grignard monomer 4 to continue 

the surface-initiated polymerization.  Since such polymerization should mainly happen at the 

sites on the film surface formed due to the premature termination of polymerization, the overall 

process is expected to result in a more uniform surface (and bulk) morphology of the resulting 

PT film.
80

  Based on results from the optimization experiments, we developed a general protocol 

to achieve the best quality (and high thickness) of PT films produced by surface-initiated in situ 

polymerization.  The protocol includes initial surface immobilization of Ni(II) catalytic initiator 

3 followed by controlled chain-growth polymerization combined with periodic regeneration of 

the Ni(II) active catalytic center (by immersing the intermediate polymer film in a solution of 

Ni(dppp)2 at 40 °C for 20 h).  This protocol allowed us to prepare uniform PT thin films with up 

to 100 nm thickness (Figure 2.9).  A very important finding was that an increase in the film 

thickness (tracked by an increase of optical absorbance in the UV/vis spectra) was not 

accompanied by a hypsochromic shift of the absorption band or a loss of vibronic fine structure 
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of the band, which indicated that initial molecular order and uniform chain orientation remained 

preserved even in the thicker films.   

 

 

Figure 2.9.  UV/vis absorption spectra of PT thin films prepared by surface-initiated 

polymerization on quartz substrates using intermediate regeneration of active surface catalytic 

initiator.  Black trace corresponds to a PT film prepared by polymerization for 12 h without 

intermediate regeneration (film thickness ~30 nm), red trace corresponds to a PT film prepared 

by polymerization for 6 h followed by catalytic initiator regeneration (for 20 h), and with 

subsequent polymerization for another 6 h (film thickness ~50 nm).  Blue trace corresponds to a 

PT film prepared with three intermediate regenerations (film thickness ~100 nm).   

 

2.2.5. Studies of molecular organization and morphology in surface-confined PT thin films.   

Although efforts to use surface-confined polymerization have resulted in substantial 

improvement of the efficiency of the polymerization as well as the surface density and thickness 

of the resulting thin films, little was known about bulk mesoscale structure and organization of 

the polymer in such films.  In order to gain a deeper understanding of the possible anisotropic 

organization and chain alignment of polymer molecules in surface-confined thin films, as well as 

the influence of polymerization conditions on this organization, we carried out detailed structural 

investigation of the PT thin films using a variety of techniques.  First, we carried out 

polarization-dependent ultraviolet photoemission spectroscopy (UPS) with linearly polarized 
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light from a synchrotron source.  In order to increase the probing depth, photons with increased 

energy (85 eV) were used in this study, which allowed probing the layer of about 3 nm deep 

from the film surface.   

For the UPS studies, two samples of PT thin films were prepared on semiconducting 

indium tin oxide (ITO) substrates.  Sample 1 (approximately 20 nm thick based on the stylus 

profilometry measurements) was prepared using a 6 h polymerization time, and sample 2 

(thickness approximately 40 nm) was polymerized for 72 h; in both cases, in order to simplify 

the data analysis, no surface Ni(II) catalytic initiator regeneration (as described above) was used.  

In the UPS experiments, the incidence angle of the synchrotron light was changed while the 

emission was collected normal to the surface (Figure 5.3A in the Experimental Section).  In 

sample 1, the intensity enhancement of the PT valence band (maximum at ~7 eV) in the p-

polarized light was indicative of anisotropic orientation of the polymer’s transition dipole which 

coincides with the direction of the PT conjugated backbone (Figure 10A, left graph).  

Considering the high anisotropy of the stretched polymer molecule, the observed intensity 

enhancement in the p-polarized light revealed some degree of alignment of the surface-

immobilized PT brushes.  To determine the preferred orientation angle of the anisotropically 

aligned polymer chains, we studied the dependence of the intensity of the PT valence band on 

the emission angle  upon irradiation with (s+p)-polarized light (Figure 5.3B shows a schematic 

experimental setup, and central graph in Figure 2.10A shows actual experimental data).  A plot 

of the intensity of the valence band maximum vs.  showed a broad maximum between 10° and 

20°, and a peak at 30° (Figure 2.10A, right graph).  Considering the significant contribution of 

the PT valence band orbitals into the averaged photoemission intensities (the photoemission 

direction coincides with the molecule’s transition dipole), the presence of a signal between  10° 
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and 20° indicated that the film contained some fraction of the stretched PT chain segments with a 

tilt angle between 10° and 20° to the surface normal, i.e. very close to the upright orientation.  

However, presence of the additional peak at higher value of the angle  clearly indicated that a  

 

 

Figure 2.10.  Polarization-dependent UPS studies of PT thin-film samples 1 and 2.  (A) UPS data 

for sample 1 (from left to right): UPS spectra acquired at different light polarizations; angular-

dependent UPS spectra collected for (s+p)-polarized incident light (beam energy 85 eV, the 

emission angle  was changed in 5° increments from 0 to 45°); and integrated intensity of the PT 

polymer valence band maximum (at ~ 7 eV binding energy) vs. emission angle  (the area was 

determined by integration of the valence band peak between Fermi level and 14 eV, with Shirley 

background subtraction).  (B) Data with the same as in (A) experimental setup collected for 

sample 2. 

 

significant fraction of the PT chain segments was tilted further away from the upright position, 

closer to the in-plane orientation.  The technical limitation of the UPS setup precluded us from 

looking at the values of the angle  above 45°, but one could not exclude possibility of the 

presence of even more tilted conjugated segments, especially considering overall large upward 
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slope of the plot of photoemission intensity vs. .  It is important to keep in mind that the photon 

beam in UPS experiments could only probe relatively low depth near the film surface (about 3 

nm), and thus contribution of the deeper layers positioned further away from the film surface to 

the observed signal would be much smaller.  From the initial analysis of these UPS data, it 

appears that in the sample 1 thin film, some fraction of the PT chain segments showed close to 

upright orientation (in agreement with the strong signals at  10-20°), but, at the same time, a 

large fraction of the chain segments was gradually bending and tilting away from the upright 

orientation.   

In agreement with this structural picture, the thicker sample 2 (thickness approximately 

40 nm by stylus profilometry) exhibited a smaller polarization dependence with the p-polarized 

light (Figure 2.10B).  The signal at lower values of angle  (corresponding to the near-upright 

orientation of the polymer segments) was much weaker compared to sample 1; instead, an 

intense peak was found between 20 and 45°.  As UPS data predominantly reflected the structure 

and composition of the near-surface layer of the film, it appears that a large fraction of the -

conjugated polymer segments near the surface of the thicker film were oriented along the 

direction at approximately 40° to the surface normal.  Furthermore, considering high-angle 

limitation of the UPS experimental setup, it is possible that some polymer segments were 

oriented at even larger angles, closer to the in-plane alignment.  Taking into account low probing 

depth of UPS, and comparing data for the samples 1 and 2, it appears likely that a relatively 

small fraction of the PT chain segments showed predominantly upright orientation, however, 

majority of the polymer chains experienced significant tilting and deviation from the upright 

orientation, with predominant orientation closer to in-plane direction.  As UPS could not probe 

the entire cross-section of the films, it was impossible to determine if there was any uniformity in 
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the alignment of surface-confined polymer chains (i.e. formation of crystalline domains) or the 

polymer chains in the bulk of the film were completely randomly oriented, forming a disordered 

amorphous film.   

In the previous experiments on revealing quasi-“living” character of surface-confined 

polymerization using neutron reflectometry (NR) on selectively deuterated PT film, we 

concluded that those data supported both the general propagation of the growing polymer chains 

in the direction normal to the film surface, and uniformity of the resulting polymer chains 

alignment (vide supra).  Thus, we decided to carry out additional NR measurements as it can 

deliver across-the-film profile and thus perfectly supplement UPS studies.  A surface-confined 

PT thin film with an approximate thickness of 50 nm was prepared on a quartz substrate by 

polymerization of non-deuterated Grignard monomer 4 for 24 h without intermediate Ni(II) 

surface catalyst regeneration, and the neutron reflectivity data were acquired upon reflecting 

neutron beam from the polymer/air interface.  Figure 2.11A shows the experimental neutron 

reflectivity curve along with the theoretical model curve which gave the best fit.  The scattering 

length density (SLD) profile based on the fitting model is shown in Figure 2.11B.  Remarkably, 

we found that the film was characterized by constant scattering length density (SLD) of 

approximately 2.2×10
–6

 Å
–2

 across almost the entire film thickness, spanning from quartz 

substrate to approximately 70% of the film thickness.  The mass density of this high-density part 

of the film calculated from this SLD value was 1.35 g cm
–3

, which was higher than the density 

reported for bulk PT prepared by chemical oxidation of thiophene (1.18 g cm–3),81 but lower 

than the density obtained from single-crystal X-ray data of octhithiophene (1.58 g cm
–3

).
82

  Since 

it is expected that mass density of “crystalline” polymer would always be lower than the density  
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Figure 2.11.  Neutron reflectometry study of a 50 nm thick PT film prepared by surface-initiated 

polymerization on a quartz substrate.  (A) Reflectivity data for the film (red circles) and best fit 

to the data (blue solid line).  (B) Scattering length density (SLD) profile based on the best-fit data 

(single-layer model) presented in A shows two-sublayer stratification in the PT film. 

 

of the corresponding small-molecule crystal, one can safely assume that the bulk of the surface-

confined PT film showed uniform morphology and was predominantly formed by closely packed 

PT chains forming crystalline domains with uniform alignment of the polymer chain segments 

within each individual domain.  NR experiments could not provide information on predominant 

orientation of these crystalline domains; however, based on the results of the polarized UPS 

experiments, the polymer chains in the bulk of the film were apparently predominantly oriented 

along the direction with the tilt angle of at least 40° with respect to the surface normal.  In 

contrast, the outermost layer of the film (approximately 15 nm thick) was characterized by SLD 

gradually decreasing towards the film surface, with a diffuse film-air interface.  Lower SLD 
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values reflected decreasing mass density in this part of the film, possibly due to the less tight 

packing of the PT domains and increasing amorphous character near the film surface.   

Grazing incidence wide-angle and small-angle X-ray scattering (GIWAXS and GISAXS, 

respectively) are powerful techniques to study the structure and morphology of thin films of 

semiconducting polymers, and have been widely used in research of P3HT and related polymers 

and their blends for photovoltaic applications.
83

  The GIWAXS data in Figure 2.12A were 

acquired using an approximately 40 nm thick PT film prepared on a quartz substrate by surface-

initiated polymerization for 72 h without intermediate Ni(II) surface catalytic initiator 

regeneration (similar to PT sample 2 in the UPS studies, and the sample used in the NR studies 

described above).  The sample showed three distinct arcs at qz = 1.41 Å
–1

 (d = 4.47 Å ), qz = 1.61 

Å
–1

 (d = 3.90 Å ), and qz = 1.94 Å
–1

 (d = 3.24 Å ) (Figure 2.12B). The intensity of the arcs 

maximized in the qy = 0 plane which clearly indicated the anisotropic nature of the film.  The 

observed GIWAXS pattern was very similar to the previously reported X-ray diffraction pattern 

of crystalline PT
84, 85

 as well as of unsubstituted thiophene oligomers,
86-89

 and indicated a highly 

planar, predominantly extended conformation of the tightly packed surface-confined PT chains.  

In particular, the observed d-spacing pattern was almost identical to the pattern reported by 

Lahav et al. for -polymorph of crystalline sexithiophene in Langmuir film (qxy 1.38, 1.63, and 

1.97 Å
–1

).
89

  In Lahav’s work, using Langmuir technique resulted in uniform alignment of the 

sexithiophene long molecular axes along the direction normal to the film surface.  Similar 

upright alignment of PT chains in our case would produce Bragg diffraction rods extending 

along the qz direction, however experimentally we observed diffraction arcs with a maximum in 

intensity near the qz axis (i.e. with the maximum at qy = 0).  The only way to explain this 

observation was to suggest that the PT chains in the film were packed in the same way as in the 
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Figure 2.12.  (A) Two-dimensional GIWAXS image of a 40 nm thick PT film prepared by 

surface-initiated polymerization on a quartz substrate.  (B)  Vertical linecut of the GIWAXS data 

of the film in A.  (C) GISAXS horizontal line trace for the 40 nm thick PT film in (A) (red 

circles) and fitting these data using a modified Guinier-Porod model (blue trace).  (D) Tapping-

mode AFM images for the PT film in (A) (left image – topography, right image – phase), scale 

bars correspond to 100 nm. 

 

-phase of crystalline sexithiophene, but aligned predominantly parallel to the film surface with 

herringbone (face-to-edge) packing of the neighboring planarized PT chains within individual 

crystalline domains.  The herringbone molecular packing of unsubstituted PT stays in stark 

contrast to 3-alkyl-substituted PTs where the alkyl substituents induce face-to-face -stacking of 

the conjugated chains
90

 but is rather common for unsubstituted oligomeric thiophenes.   

The predominantly in-plane alignment of the PT chain segments in GIWAXS 

experiments was in agreement with the conclusions from UPS experiment.  Whereas, due to 

technical limitations of the UPS experimental setup, we could not observe features originating 

from the in-plane polymer chain orientation (i.e. tilt angle about 90° to the surface normal), we 
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did observe in those experiments significant deviation of the polymer chains from the out-of-

plane (i.e. normal to surface) orientation, especially in the thicker sample similar to the one 

studied in the X-ray scattering experiments.  Importantly, the broad intensity distribution along 

the diffraction arcs in GIWAXS experiments indicated that, despite some predominance of the 

in-plane orientation, the overall pattern was consistent with presence of a full spectrum of 

crystalline orientations, ranging from out-of-plane to in-plane.  This distribution of orientations 

appeared the same throughout the thickness of the film, and did not change with the angle of 

incidence.  We acquired GIWAXS data at various incidence angles (ranging from 0.16° to 0.22°, 

both below and above the critical angle for PT) which allowed tunable depth analysis across the 

film (Figure 5.4 in the Experimental Section).  We found that incidence angle variation changed 

only total intensity of the diffraction profile, but produced no significant variation in the position 

and relative intensity of the individual diffraction peaks.  Therefore, it was reasonable to 

conclude that the film showed relatively uniform mesostructure and polymer chain packing 

across almost the entirety of its thickness, in agreement with the constant density across the film 

revealed in the NR studies. 

Further information on the structure and morphology of the surface-confined PT film was 

obtained from GISAXS studies.  The horizontal linecut showed a “Guinier knee”
91

 feature 

indicating formation of lateral nanoscale domains within the film (Figure 2.12C).  Fitting the 

scattering data using a combined Porod plus Guinier model (this model assumes that the Porod 

region extending from the larger-size domains overlaps with the Guinier region of the smaller-

size domains,
92

 whereas the corresponding Guinier region corresponding to the large domains 

could not be observed due to the low q-range limitation of the GISAXS instrumental setup), 

allowed us to estimate the diameter of small-size lateral domains as approximately 3.2 nm.  This 
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value was much smaller than the average size of lateral surface features (40-60 nm) observed 

upon subsequent AFM studies carried out on the same film (Figure 2.12D).  On the other hand, 

AFM provides information on size and morphology of the surface features of the film whereas 

the GISAXS study is characteristic of the average size of the well-defined high-density 

crystalline segments within the bulk of the film.  Therefore, GISAXS data likely reflected the 

average size of individual lateral crystalline domains within the bulk of the film whereas AFM 

imaging showed surface features resulting from combination of these multiple crystalline 

domains into larger surface domains.   

Combining together the experimental data and conclusions discussed in this section, we 

propose a working hypothesis on the structure of thin PT films prepared by surface-initiated 

polymerization.  The polymerization occurs as a controlled chain-growth process, with overall 

propagation of the front of the growing polymer film in the direction normal to the surface, as 

was demonstrated using polymerization of the deuterium-labeled Grignard monomer discussed 

above.  Although the requirement to accommodate multiple simultaneously growing surface-

attached polymer chains might invoke the chain alignment in the direction normal to the surface 

(as, for example, schematically shown in Figures 2.1 and 2.8), the results of our experiments 

completely disagree with this conjecture.  Instead, surface-confined polymer chains form densely 

packed crystalline domains with predominant chain orientation close to the in-plane direction, 

and in addition showing a continuum of different orientations ranging between in-plane and 

normal to the surface.  Although, at first glance, it may appear impossible to combine both 

experimentally observed controlled quasi-“living” mechanism of surface-initiated 

polymerization, and the predominant in-plane alignment of the resulting polymer chains, they 

could be accommodated if one assumes that the polymer chains start initial growing in the in-
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plane direction.  Indeed, relatively low Ni(II) catalytic initiator surface density (with each 

molecule of surface-immobilized initiator 3 occupying an area of about 400 Å
2
) makes it 

unfavorable for the polymer chains to align in the normal, out-of-plane direction as they would 

not be able to achieve close interchain packing.  Instead, the attractive van der Waals interactions 

between the surface-confined polymer chains promote chain tilting which allows to achieve close 

crystalline packing in the in-plane direction and form a high-density polymer film.  However, the 

clusters cannot grow indefinitely in the initial in-plane direction as they will necessarily start 

interfering with other neighboring surface-growing clusters.  Thus, all of the in-plane growing 

clusters on the surface can only be mutually accommodated if, at some point, the ensembles of 

polymer chains gradually twist, eventually forming folded loops allowing to continue the in-

plane growth in the opposite direction, without interfering with neighboring growing clusters.  

The schematic structure of the surface-confined PT film according to this model is illustrated in 

Figure 2.13.  As the result of in-plane growth and polymer chain folding, the polymer film is 

composed of laterally packed crystalline clusters with an average size of 3.2 nm (as was found in 

the GISAXS experiments) which protrude through the entire cross-section of the film.  Each 

cluster is formed from a few folded polymer chains which show predominant in-plane 

“herringbone” (edge-to-face) packing of the chain segments between the folds.  Indeed, 

considering the lateral size of such clusters at 3.2 nm, the average polymer segment between two 

folds must consist of about 7-8 thiophene repeating units.  This explains why crystal structure of 

the polymer found in GIWAXS experiments strongly resembled that of -phase of 

sexithiophene.  Furthermore, such a structure would be consistent with the electrochemical data 

on the surface-confined PT film.  Indeed, due to sufficient disruption of -electron conjugation at 

the sites where an individual polymer chain twists and folds, folding of the polymer chain every 
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7-8 repeating units would create electronically isolated crystalline packed “oligothiophene” 

segments (7 or 8 thiophene units each) – which was actually observed in the cyclic voltammetry 

(CV) studies (where the CV data of PT film resembled that of thin-film thiophene octamer with a 

large hysteresis, vide supra).  The formation of folded packed structure also explains the broad 

range of other orientations found in GIWAXS data, as the wide range of orientations was 

produced by the out-of-plane fragments of the polymer chains within the folds.   

 

 

Figure 2.13.  Schematic illustration of the proposed PT thin film structure as based on the 

experimental evidence in this chapter.  Surface-confined PT chains bundle together to form 

folded in-plane packed crystalline domains about 3.2 nm in lateral size.  The film consists of 

these primary domains protruding through the film thickness and densely packed side-by-side.  

The elements in the image are not up to scale. 

 

The reason for the PT chain to pack in segments of 7-8 repeating units is not clear at this 

time.  It can be simply related to solubility of oligothiophene in the polymerization solvent 

(THF) as, once the growing chain fragment reaches this critical length, its solubility becomes so 

low that it has to “crystallize” out of solution.  More studies are required to definitely explain 

this.  Overall, this structural model is consistent with controlled, quasi-“living” mechanism of the 

surface-initiated polymerization, and the relatively smooth surface morphology of the resulting 

thin films; this is also consistent with finding a sharp deuterated PDT – PT interface in the NR 

experiments with selectively deuterated films (vide supra).  On the larger scale, the primary 
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lateral clusters group in larger size circular domains (40-60 nm in size), which were the typical 

characteristic of the surface morphology found in AFM experiments (Figure 2.5 and 2.12D).  

Considering predominantly close to in-plane orientation of PT molecules in this model, the 

surface-initiated polymerization has to be highly robust and efficient.  Indeed, routine 

preparation of a 40 nm thick PT film would require producing polymer chains in a controlled 

chain-growth fashion with a degree of polymerization corresponding to a few thousand of 

thiophene repeating unit – a difficult to accomplish task even for a homogeneous solution 

polymerization.  It may be possible, however, that carrying out externally initiated KCTP in 

surface-confined fashion somehow increases robustness and controlled character of the 

polymerization relative to solution polymerization.  Clarifying this issue will certainly require 

additional studies. 

Although this working model reasonably explains many of the experimental findings, it 

remains less certain if formation of the lower-density (and seemingly more amorphous) 

outermost layer found in the NR experiments happens during surface-initiated polymerization as 

a result of sufficient lengthening of polymer chains (so the increased entropic contribution can 

overcome attractive interchain interactions resulting in polymer folding), and thus would be 

dependent on the total film thickness, or it happens after completion of the polymerization, as a 

result of stabilizing polymer-solvent interactions.  In the latter case, the surface-confined 

polymer film should always possess a lower-density outer sublayer, whereas in the former case 

one would expect that lower-thickness surface-confined polymer films would consist of only a 

single higher-density crystalline layer.  Our preliminary GIWAXS and NR studies pointed on the 

formation of the outer lower-density layer even in thinner films, thus indicating the solvent-

affected post-polymerization formation of the outer layer.  Also, at this point the success of the 
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strategy involving combination of surface-initiated polymerization with intermediate 

regeneration of the Ni(II) surface catalytic initiator in obtaining thicker PT films (vide supra) 

seems to point on this mechanism as well.  It appears (at least from the UV/vis absorption 

spectroscopy data in Figure 2.9) that using a repeated “regeneration” approach can furnish thin 

films with up to 100 nm thickness which still preserve vibronic features typical for a highly 

organized polymer film.  Additional studies are required to further refine the proposed bulk 

structural model, and to provide better understanding of the polymerization process and its 

relation to thin-film structure, as well as to determine other ways to improve control over surface 

morphology and molecular organization in surface-confined PT thin films.   

2.2.6. Preparation of nanopatterned PT thin films by surface-initiated polymerization.   

A unique advantage of surface-initiated polymerization is that it allows preparation of 

nanopatterned surface-immobilized semiconducting polymer thin films.  Preparation of 

uniformly nanopatterned polymer thin films is virtually impossible with current “top-down” 

paradigm relying on solution processing of pre-synthesized polymers.  On the other hand, 

preparation of such nanopatterned thin films should be relatively straightforward using our 

surface-initiated in situ polymerization approach combined with an appropriate protocol to 

prepare nanopatterned monolayer of polymerization catalytic initiator 3.  In a proof-of-concept 

study, we selected particle lithography as a convenient method to prepare such a monolayer.  

Particle lithography
93

 has previously been applied to pattern metals, inorganic materials, 

alkanethiol self-assembled monolayers (SAMs), organosilane films and polymers.
94-100

  Millions 

of nanostructures can be prepared on surfaces with relatively few defects and high 

reproducibility to enable patterning large surfaces with well-defined nanostructures.
101-103

  Our 

approach is illustrated in Figure 2.14.  First, a close-packed periodic hexagonal array of 
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monodisperse latex mesoparticles (300 nm diameter) was prepared on the atomically flat Si(111) 

surface using solution-based assembly.  The mesoparticle array served as a surface mask, and the 

uncovered areas on silicone surface were functionalized with octadecyltrichlorosilane (OTS) 

using PDMS stamping transfer followed by washing out the latex particles.  An example of 

nanopores produced by particle lithography is shown in Figure 5.1 in the Experimental Section.  

Although the local roughness of mechanically polished silicon wafers prevented us from 

distinguishing the pore structures in AFM topography views, the simultaneously acquired lateral 

force images clearly resolved the circular shapes and hexagonal arrangement of the nanopores.   

 

 

Figure 2.14.  Schematic outline of the optimized approach to prepare hexagonally nanopatterned 

PT thin films via combination of particle lithography and surface-initiated in situ polymerization. 

 

Covalent immobilization of the Ni(II) catalytic initiator 3 in the uncovered with OTS 

areas produced nanopatterned catalytic surface which was used for surface-initiated 

polymerization of Grignard monomer 4 for 24 h total time to yield hexagonal arrays of PT 

nanopillars (Figure 2.15).   

Covalent immobilization of the Ni(II) catalytic initiator 3 in the uncovered with OTS 

areas produced nanopatterned catalytic surface which was used for surface-initiated 

polymerization of Grignard monomer 4 for 24 h total time to yield hexagonal arrays of PT 

nanopillars (Figure2.15). The long-range order of the PT nanopillars (bright dots in Figure 2.15A) 
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Figure 2.15.  Arrays of PT nanocolumns on Si(111) produced by combination of particle 

lithography and surface-initiated in situ polymerization. (A) AFM topography image of the PT 

surface patterns.  (B) Corresponding lateral force image.  (C) Two-dimensional FFT spectrum 

generated from the topograph in A.  (D) Zoom-in view (3×3 µm
2
) topograph.  (E) Corresponding 

lateral force image for D.  (F) Cursor plot for the line in D.  (G) High-resolution topograph (1×1 

µm
2
).  (H) Lateral force image for G.  (I) Height profile for the line in G. 

 

is shown with a representative 8×8 µm
2
 topograph and lateral force image (Figure 2.15B).  The 

regular arrays of PT nanostructures were evident throughout areas of the entire surface, 

indicating the high-throughput capabilities of particle lithography.  The ability to produce large-

area PT nanopatterns was also evident from the SEM images of this sample (Figure 5.2 in the 

Experimental Section).  A plot acquired from two-dimensional fast Fourier transform (FFT) 
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analysis of the 8×8 µm
2
 AFM topography image displayed the reciprocal space and periodicity 

of the nanostructures (Figure 2.15C).  The symmetric arrangement of the PT patterns can be 

viewed more clearly in the successive zoom-in views (3×3 µm
2
) of topography and 

simultaneously acquired lateral force images shown in Figures 2.15D and E, respectively.  A line 

profile (Figure 2.15F) across ten PT nanostructures showed heights ranging from 16 to 38 nm.  

The center-to-center spacing between nanopatterns measured 289+3 nm, closely matching the 

periodicity of the initial latex mesoparticle mask.  To obtain perfect nanoscale geometries would 

require an absolutely flat surface at the atomic level and perfectly symmetric monodisperse latex 

spheres.  In a real situation there are few surfaces that are atomically flat, and the variation in the 

sizes of latex spheres ranges from 1 to 5%.  These small imperfections lead to different pore 

sizes, which produced the observed variations in height for the nanopillars.  Due to the covalent 

immobilization on the Si surface, the nanopatterned films demonstrated unique stability towards 

organic solvents.  Thus, prolonged ultrasonication of the patterned PT films in commonly used 

organic solvents such as chloroform and chlorobenzene did not result in any degradation of the 

nanostructures.  This remarkable solvent stability would be particular suitable for further 

processing of the nanopatterned films, e.g. for spin-casting using solutions of other polymers to 

make more complex organic devices.  This example demonstrated the principle capacity of the 

combination of particle lithography with efficient surface-initiated polymerization to produce 

large-area periodically patterned stable PT nanostructures.  Further studies on the possibility to 

control the size of the nanostructures in the surface-confined PT thin films are currently 

underway.  
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2.3. Conclusions 

Controlled Kumada catalyst transfer polymerization occurring by the chain-growth 

mechanism became an established method for the synthesis of a wide variety of semiconducting 

polymers in solution.  A possibility to carry out this reaction in heterogeneous fashion on 

surfaces could make it a valuable tool for the preparation of surface-confined semiconducting 

polymer films directly from small-molecule monomers.  We developed and described a simple 

and efficient approach to the preparation of surface-immobilized monolayer of catalytic Ni(II) 

initiator, and demonstrated using it for efficient surface-initiated polymerization to form 

covalently attached PT thin films with thicknesses up to 100 nm.  Our demonstration that this 

reaction occurs by controlled (quasi-“living”) chain-growth mechanism can, in principle, open 

venues toward controlled preparation of various copolymer and block copolymer thin films with 

precisely defined molecular composition.  The surface-initiated polymerization is also not 

limited to polythiophenes but can be used to prepare surface-attached thin films of other 

important semiconducting polymers.  We are currently studying using this method to prepare a 

broader variety of semiconducting polymer and block copolymer films.  What makes the surface-

confined polymerization truly unique is that it allows preparation of thin films with ordered 

morphology and uniform alignment of the polymer chains in the bulk of the crystalline polymer 

film – a property which may result in performance improvement of electronic and optoelectronic 

devices based on these films.  Our extensive structural studies utilizing polarized UPS and X-ray 

and neutron scattering techniques revealed complex structure and organization of the surface-

confined PT thin films; further experiments are still needed to gain better understanding of the 

film structure, as well as its dependence on various experimental factors.  Finally, we 

demonstrated how the efficient surface-initiated polymerization, combined with nanoscale 
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surface lithography, can be used in the preparation of large-area uniformly nanopatterned PT thin 

films.  Overall, this initial study will help in further development of surface-confined controlled 

chain-growth polymerization as a unique synthetic tool for engineering of new electronic and 

optoelectronic materials based on thin films of semiconducting polymers.  
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CHAPTER 3. PREPARATION OF ALL-CONJUGATED DIBLOCK 

COPOLYMER FILMS BY SURFACE-INITIATED KUMADA CATALYST 

TRANSFER POLYMERIZATION (SI-KCTP) AND STUDY OF THEIR 

OPTOELECTONIC PROPERTIES 
 

3.1. Introduction 

All-conjugated polymers, which are composed of dissimilar blocks (e.g. electron rich or 

electron deficient blocks), have been an important subject of research because of the potentieal 

possibility to control optoelectronic properties (such as absorption, emission, and charge 

transport, etc.), phase separation, and crystallinity.
1-7

 Particularly, in organic photovoltaics 

(OPVs), controlling optical characteristics of an active layer plays a crucial role. For instance, 

alternating copolymers composed of donor and acceptor moieties can create a new electronic 

transition that extents absorption band up to the near IR region, thus increasing number of 

absorbed photons and therefore improving device’s performance.
6,8,9

 In addition, donor-acceptor 

type all-conjugated block copolymers can be used to disign ITO-free or all-polymer solar cells 

by replacing inorganic oxide or/and metal electrodes. This could deliver a potential platform for 

future flexible devices.
10-12

 Another important key feature of the block copolymers is 

distinguishable phase separation on the surface, which originally arises from immiscibility or 

crystallizability difference between the blocks. As explained in the chapter 1.3, manipulating the 

exciton pathway to have minimum diffusion length is associated with BHJ solar cell 

performance. If one can fabricate a periodic nanostructured morphology using the phase 

separation ability of block copolymers, which displays a certain interface distance of less than a 

few tens nanometer (maximum diffusion length of excitons generated by light is around 10 nm
13

, 

see Figure 1.5B in the chapter 1.3 for the ideal case) as well as a proper direction,
2,14

 high total 

efficiency of OPV would be achieved through by reducing migration length of photogenerated 

exitons and diminishing rate of nongeminate exciton recombination.
15-18

 However, to date, 
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tremendous amount of efforts to achieve an effective phase separation with the block copolymers 

for OPVs utilized simple solution-based processing, such as spin castings, roll-to-roll castings, or 

inkjet printings, the methods that only target control of weak intermolecular forces between 

polymer chains, leading a large amount of disorder (see Figure 1.5C in the chapter 1.3 for the 

real structure of device). Although a few attempts have succeeded to design the required 

structures with some degree of control,
19-21

 accurate control of the phase separation in order to 

achieve the ideal structure for high device performance still remains the most difficult challenge.  

On the other hand, surface-initiated polymerization can be an alternative method to try to 

tackle these issues. Covalently attached polymer chains that stretch from the bottom to the top 

electrode under a certain angle to the surface normal can potentially minimize migration length 

of excitons and also possibly reduce recombination rate to increase total efficiency.
22,23

  In 

addition, polymer thin films covalently anchored on the surface can show superior in 

physical/chemical stability over traditional films made by solution-based methods.
24

 Moreover, 

from a synthetic standpoint, well-established polymerization techniques for CPs can be simply 

implemented for the surface-initiated polymerization, so a proper molecular organization to 

optimize internal optoelectronic process (e.g. exciton separation, light absorption or charge 

transport) can be easily delivered via controlling molecular weight, polydispersity or molecular 

structure of repeating units. In this sense, despite a few recent attempts using other metal-

catalyzed reactions (e.g., Suzuki
25

, Sonogashira
26

, and Negishi polymerization
27

) for the surface-

initiated polymerization, SI-KCTP remains the most developed method for preparation of CP 

thin films due to the well-defined nature of the living chain-growth mechanism stated in the 

chapter 1. 
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Many impressive achievements have been demonstrated to develop synthetic protocols 

for SI-KCTP. Kiriy have successively reported preparation of P3HT thin films using a surface 

bound initiator, Ar-Ni(PPh3)2-Br.
28,29

 Locklin’s group introduced a new initiator, Ar-

Ni(COD)(PPh3)2, to build polythiophene (PT) and poly(p-phenylene) (PPP) thin film on the gold 

surface, and investigated an opportunity to use these films in replacing a hole-transporting layer 

for OPV.
23

 These early attempts revealed that the initiators were not efficient in effecting 

surface-initiated polymerization by chain-growth fashion due to undesired side reactions, 

resulting in low degree of polymerization as well as lower surface density. Later, Kiriy group 

introduced a ligand exchange step to afford Ar-Ni(dppp)Br as an initiator,
30

 and prepared 

conjugated microporous polymer thin film to increase specific surface area for potential 

applications in adsorption or separation.
31

 Luscombe group introduced a different approach 

based on a ligand exchange step to make poly(3-methylthiophene) (P3MT) film on ITO and 

demonstrated controlled chain-growth mechanism in that case. Interestingly, all these examples 

have involved homopolymers and no diblock copolymer or more complex polymer thin film has 

been described to date.  

In chapter 2, we described a simple anf efficient preparation of an external catalytic 

[Ni(0)] initiator. This method does not require complicated ligand exchange step process, that 

may cause side reactions forcing the polymerization away from the chain-growth way. We used 

state-of-the-art experiments to demonstrate that our system was very efficient in preparation of 

relative thick film in a short reaction time, with well-controlled chain-growth mechanism. We 

also proposed a model structure of the thin film, which included densely packed domains with 

predominantly in-plane “herringbone” (edge-to-face) packing of the folded PT chains. Another 

important characteristic of our method was using reactivation with a Ni(dppp)2 solution to 
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regenerate prematurely terminated catalytic sites, which allowed increase overall efficiency of 

surface-initiated polymerization. This result prompted us to investigate possibility of fabricating 

all-conjugated diblock copolymer thin films in order to take advantage of the unique properties 

of diblock copolymers. Herein, we report an easy and efficient synthetic protocol for the 

preparation of all-conjugated polythiophene-b-poly(p-phenylene), PT-b-PPP, copolymer thin 

film, as well as opposite sequence copolymer, poly(p-phenylene)-b-polythiophene, PPP-b-PT, 

and their optoelectronic properties and structureal characteristics investigated by UV/vis, PL 

spectroscopy, cyclic voltammetry (CV), X-ray photoelectron spectroscopy (XPS), atomic force 

microscope (AFM), and stylus profilometry. To the best of our knowledge, there have been no 

previous reports on preparation of all-conjugated diblock copolymer thin films by surface-

initiated polymerization. This method promises to open an efficient synthetic route for a new 

structural platform for electronic and optoelectronic applications. 

3.2. Results and Discussion 

3.2.1. Preparation of all-conjugated diblock copolymer thin films.  

To prepare a surface anchored external Ni(II) initiator, we used 2-(triethoxysilyl)-5-

iodothiophene as a precursor which was reacted with Ni(dppp)2 to yield (EtO)3Si-Th-Ni(dppp)I 

catalytic initiator (Figure 3.1). Covalent immobilization of this external initiator on quartz 

surface at 55 °C for three days yielded an external initiator for SI-KCTP, as was confirmed in 

XPS measurement and CV analysis as described in chapter 2. Polymerizations were conducted 

by adding a required Grignard monomer solution to get a desired block. Scotch tape test and 

extensive ultrasonicating with various solvents (such as toluene, chloroform, acetone, methanol, 

and water) were carried out after polymerization to remove physisorbed polymer residues from 

the film surface. Before carrying out a second polymerization step, the substrate functinalized 
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with the first block was immersed into a solution of Ni(dppp)2 for “reactivation” in order to 

regenerate prematurely terminated catalytic sites (Figure 3.1).  

An AFM study was undertaken to confirm the formation of surface-initiated conjugated 

polymer thin films. The AFM image of polythiophene homopolymer (PT) film was obtained 

after 5 min polymerization time and poly(p-phenylene) homopolymer (PPP) film was obtained 

after polymerization for 12 h. Surface morphologies by topography (Figure 3.2A for PT and C 

for PPP) for both PT and PPP homopolymer films showed globular features, which were a 

 

 

Figure 3.1. The general scheme of SI-KCTP for all-conjugated diblock copolymer thin films 

with different sequences. 

 

typical morphology of surface-initiated polymer films (as described in chapter 2). Scale range of 

height in topography mode for each homopolymer film was lower than the thickness of the film 

measured by the stylus profilometer (thickness of PT was 36 nm and 65 nm for PPP by 

profilometry.), because holes (dark areas in the topographies) did not actually represent quartx 

substrate, as was proved by corresponding phase modes. In the case of PT-b-PPP diblock  
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Figure 3.2. AFM images for homopolymer and all-conjugated diblock copolymer thin films. The 

left column is corresponding to topographies of (A) PT, (B) PT-b-PPP, (C) PPP, and (D) PPP-b-

PT thin film, repectively. The right column represents phase modes for (E) PT, (F) PT-b-PPP, (G) 

PPP, and (H) PPP-b-PT thin film. All images are 1 × 1 m scale. 
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copolymer film, it displayed morphology similar to the previous homopolymers (Figure 3.2B). 

Thickness of the film obtained by profilometer was around 77 nm that was also larger than the 

scale range of the corresponding topography image, meaning that substrate was covered with 

continuous copolymer film. For PPP-b-PT diblock copolymer film, reaction time was slightly 

different. In order to avoid side reactions or undesired effects, polymerization time to prepare the 

first block, PPP, was limited in time 1.5 h, in which the polymerization was assumed to remain a 

“living” chain-growth process. Subsequent reactivation was carried out, followed by second 

polymerization for PT with reaction time 1 h (see details in the Experimental section). The 

surface morphology of the PPP-b-PT showed similar features as PT-b-PPP film pointing out a 

densely covered surface-initiated polymer film. Scale range of height for the both diblock 

copolymer thin films significantly increased relative to each corresponding homopolymer film, 

thus indicating that the second polymerization was indeed successful. 

Based on film thinkness vs. polymerization time profile (Figure 3.3), polymerization for each 

homopolymer proceeded in controlled chain-growth fashion with first order kinetic rate until 

consuming most of monomers. The polymerization for PT occurred rapidly, finishing in 20 min 

and yielding 66 nm thick film. In the case of PPP, although polymerization followed chain-

growth mechanism until 2 h, the rate of polymerization was significantly slower than that of PT. 

It should be noticed that the optimized polymerization condition to prepare poly(p-phenylene), 

PPP, involve using dppe as a ligand for Ni(II) catalytic initiator and LiCl as an additive to 

suppress homocoupling reaction.
32

 With our reaction condition (using dppp as a ligand instead of 

dppe and no LiCl as an additive), extensive homo-coupling between monomers and chain-

transfer reactions could happen during the polymerization for PPP, introducing precipitations 

over the substrate. As polymerization proceeded, this precipitation would cover the substrate by 
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physisorption, which would hamper both the initial surface-initiated polymerization as well as 

the subsequent polymerization (for polythiophene, PT). This phenomenon could result in more 

unreacted homopolymer thin film, PPP, over the formation of all-conjugated diblock copolymer 

film, PPP-b-PT. In order to minimize the drawback, we used 1-bromo-4-iodobenzene to prepared 

Grignard monomer for PPP, due to the lower reactivity of aryl bromides in the homocoupling, 

followed by successively added thiophene Grignard monomer solution to prepare the second 

block with 1.5 h polymerization time. However, despite this attempt, we still observed small 

amount of precipitation of PPP which affected its optoelectronic properties (see below) as well as 

slow reaction rate. On the other hand, in the PT case, no precipitation was found even after 

extended polymerization time, implying that polymerization predominantly occurred on the 

surface.      

 

 

Figure 3.3. Thickness of each homopolymer thin film with reaction time measured by 

profilometer. (A) polythiophene thin film and (B) poly(p-phenylene) thin film prepared by SI-

KCTP. Red lines represent linear fitting for each homopolymer thin film in a time range of 

controlled-living growth polymerization. 
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3.2.2. Spectroscopic and electrochemical properties of all-conjugated diblock copolymer thin  

films.  

Figure 3.4 shows UV/vis spectra of homopolymer and diblock copolymer thin films. In order to 

make clear quantitative comparison, polymerization time for all first blocks in the diblock 

copolymer films was same as the time for the homopolymers (e.g., 5 min for PT and 1.5 h for 

PPP). Polymerization time for the PPP block in PT-b-PPP film was also 1.5 h, however 

preparation of the PT block in the PPP-b-PT film was extended to 1 h. PT homopolymer film 

absorption was represented by a band with a maximum at around 505 nm, with well-defined 

vibronic structures at around 550 nm and 600 nm that typically originate from increased 

molecular organization.
33,34

 λmax of the PPP homopolymer film absorption band was at 390 nm 

with a vibronically structured shoulder. UV/vis spectra for both block copolymer films resulted 

from a simple summation of each constituent homopolymer with similar characteristic λmax and 

well-defined vibronic structures of the absorption band. However, λmax corresponding to the PPP 

part of the PT-b- PPP block copolymer film showed a hypsochromic shift. This indicated the 

  

Figure 3.4. UV/vis spectra of homopolymer and all conjugated diblock copolymer thin films.  
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PPP block was likely less extended than in the homopolymer film, PPP, obtained in the same 

time, indicating possible oliogomeric nature of this block. Miyakoshi et al.
32

 and Wu et al.
35

 

previously reported that sequence of polymerization was a key factor for the block 

copolymerization. They mentioned that Ni catalytic initiators had tendency to stay on a more 

electron rich moiety relative to the less electron-rich one. Since thiophene ring is slightly more 

electron rich than p-phenylene ring, Ni initiators would form a complex with poly thiophene 

block, and it would be difficult for the Ni active center to migrate toward the second block, 

resulting either in slow or no polymerization. Thus, the polymerization to form the second, PPP, 

block might be impeded. Although this tendency might have existed in this polymerization, the 

polymerization to form the PT-b-PPP film seemed to be reasonably successful confirmed by 

futher characterization experiments (CV, PL, and AFM). On the other hand, the PPP-b-PT thin 

film displayed the same λmax while retaining vibronic structure in the region corresponding to the 

PPP absorption band.. Meanwhile, the PT absorption band showed substantially lower optical 

density as well as suppressed λmax at around 505 nm. As mentioned above, small amount of 

precipitation of PPP at the end of polymerization could have hampered polymerization of PT by 

blocking access to the active sites. In addition, this could be also due to steric issue, as upon first 

block formation on the surface, aggregation of the polymer chains would make active centers 

less accessible for subsequent polymerization, thus further decreasing the polymerization rate 

down. Indeed, the effect of this factor could explain oligomeric nature of the second block, PPP, 

in PT-b-PPP, because we could observe higher optical density and thickness (not shown here) by 

increasing reaction time for the second polymerization.  

These trends were consistent with the result of CV studies. CV data for the diblock 

copolymer films are presented in Figure 3.5A (for CV data for homopolymer films, see Figure 
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5.5 in the Experimental Section). Oxidation and reduction peaks for the copolymer films could 

be represented by simple summation of similar peaks for each homopolymer film as were UV/vis 

spectra. Oxidation peak at 0.8 V and reduction peak at 0.15 V were associated with PT block, 

indicating irreversible redox process. PPP block contributed at 1.3 V for oxidation peak and 0.8 

V for reduction peak that also pointed on irreversible redox process. Oxidation and reduction 

peaks corresponding to PT block in the PPP-b-PT film were significantly depressed compared to 

those of PT-b-PPP film, likely because of the slow or impeded polymerization of PT block 

caused by the factors mentioned above. The oxidation and reduction peak current as a function of 

scan rate was recorded in Figure 5B. The linearity was expected of conjugated polymer films 

covalently bound to an electrode.  

Since all-conjugated diblock copolymers consisted of two distinct blocks in close 

proximity, Photoexcitation energy transfer (including through space Förster energy transfer by 

 

 

Figure 3.5. (A) Cyclic voltamograms of all-conjugated diblock thin films on ITO acquired in 

0.1M Bu4PNF6 in acetonitrile with sweep rate 0.1 Vs
-1

. Red trace represents PT-b-PPP and blue 

trace shows PPP-b-PT. (B) Scan rate vs. current density of homopolymer and all-conjugated 

diblock copolymer thin films. For diblock copolymer films, reduction peaks (rather than 

oxidation peaks) were used for plotting. 
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dipole-dipole induced mechanism along with the intrachain FRET) was dominated.
33,36,37

 Thus, 

PL study could offer deeper insight of the structure of polymers to support formation of diblock 

copolymer. All PL spectra were normalized to make clear quantitative comparison (Figure 3.6). 

Homopolymer PPP film was excited at 380 nm and showed characteristic vibronically structured 

PL in the range of 400 - 550 nm, and PT film was excited at 530 nm showed PL band between 

600 ~ 800 nm (PL of PT homopolymer film excited at 380 nm presented nearly no 

luminescence). These PL band for both homopolymers exhibited clear vibronic structure due to 

well-defined ordered morphology of polymer chains on the surface in spin-cast films fo 

conjugated polymers.
33,37

  

In the case of PT-b-PPP film, there was a strong decrease of the PL intensity of the PPP 

band because of energy migration from PPP to PT, while simultaneously resulting in PT PL band 

with broad emission in the range of 500 - 740 nm. The PPP-b-PT block copolymer exhibited 

similar tendency with ever stronger decrase iin PL intensity of PPP band. We assumed that 

regular morphology of PPP block on the surface increased Förster energy transfer efficiency due 

to three-dimensional nature of the rough surface. Such aggregation provided an efficient energy 

transfer by separate overlap of similar energy levels along polymer chains (intrachain) as well as 

interchain.
4
 Besides FRET associated with diblock copolymer chains on the surface, mixed 

homopolymer chains on the surface could also contribute to Förster energy transfer due to the 

proximity between homopolymer chains. This mixed homopolymer film can be a result of some 

side reactions. Locklin group
38

 suggested that dispropotionation reaction between adjacent Ni(II) 

catalytic centers could happen during polymerization, which would leave dormant chains for 

further polymerization (Figure 3.7B). Even though we did not use a long alkyl linker at the 

catalytic initiator, it is obvious that formation of long polymer chains provides enough flexibility 
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Figure 3.6. Photoluminescence spectra of homopolymer and all-conjugated diblock copolymer 

thin films. PT film was exited at 530 nm, other films were excited at 380 nm. 

 

for the chains to tilt toward each other for dispropotionation to occur. This undesired side 

reaction can generate a mixed block within the block copolymer film with dormant 

homopolymer chains.  

The other possible reaction to form dormant chains is chain transfer reaction that transfers 

Ni(II) catalytic initiator to a Grignard monomer in solution, leaving halogen atom at the end of 

surface-immobilized chain (Figure 3.7A). This side reaction would generated insoluble 

oligomers or polymers, which were not observed in the case of PT and PT-b-PPP thin film 

polymerization, but were detected in the case of PPP for both homopolymer and diblock 

copolymer films. Although we tried to limit polymerization times to where the reaction would 

remain within a range of robust chain-growth mechanism and produced very small amount of 

precipitations, we still should consider the chain transfer that could create “imperfect” (or 

“defecteus”) diblock copolymer films. Thus, we immersed the substrate after the first block 

polymerization into a Ni(dppp)2 solution for “reactivation” step to regenerate active Ni(II) 
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catalytic sites (Figure 3.1). In chapter 2, we demonstrated that reaction of halide terminated 

chains with a Ni(dppp)2 solution allowed conversion of halogen group back to Ni(II) catalytic 

initiator which allowed to prepared PT films with the high thickness relative to the films 

prepared without regeneration step.  

The last process (Figure 3.7C) can happen due to steric congestion leaving active sites 

imbedded within the first polymer block and available for the second polymerization. All three 

processes may happen either at same time or independently but since we did not introduce 

solubilizing groups to the monomers. A simple solution based analysis after degrafting polymer 

from the substrate was not possible. Therefore, we decided to use XPS to study interface 

between the block in more detail. 

3.2.3. XPS measurement: Evidence for “defect” free all-conjugated diblock copolymer thin films.   

          XPS is the most widely used analytical tool for surface chemistry due to its surface-

sensitivity, relative simplicity in use and rather straightforward data interpretation.
39

 Based on 

the mechanism of KCTP elucidated in our previous studies, polymer chains would be terminated 

either with hydrogen or halogen atoms after quenching with methanol.
40

 This halogen atom is 

easily detectable by XPS. In order to discern each homopolymer chains, we used differently 

halogenated monomers for each polymerization. In particular, we used 2,5-dibromothiophene to 

generate Grignard monomer for PT and 1,4- diiodobenzene to generate Grignard monomer for 

PPP. As expected, XPS spectrum ought to show only one corresponding signal for homopolyer 

films and, if copolymerization was successful in complete overage of the preceding block, 

diblock copolymer films as well. Otherwise, diblock copolymer films might display both signals, 

Br and I, because we used different aryl halide monomers for each block. We limited reaction 

time to less than 5 min for PT and 30 min for PPP in both diblock copolymer film preparations 
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Figure 3.7. Possible pathways to form a mixed polymer thin film. (A) Chain transfer reaction 

occured by migration of a Ni(II) active center to a monomer solution. (B) Dispropotionation path 

observed by coupling reaction between adjacent chains. (C) In-block polymerization due to steric 

congestion during the first polymerization. 

 

because detectable depth limit of ejected photon in XPS without energy loss is usually no more 

than 10 nm.
41

 In order to simplify the study, we did not use reactivation for this experiment. 

Upon completion fo surface-initiated polymerization, we quenched the substrates by sonicating 

with methanol. Figure 3.8 shows high-resolution XPS spectra of the thin films. PT and PPP 

homopolymer films display only bromine and iodine signals, respectively. Only I 4d3/2 and I 

4d5/2 peaks but no Br 3d peak were detected for PT-b-PPP in XPS spectra. This indicates that all 
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Figure 3.8. High-resolution XPS spectra presenting (A) Br 3d and (B) I 4d regions of PT (red), 

PT-b-PPP (orange), PPP (blue), and PPP-b-PT (green) thin films. (C) is a wide range XPS 

spectrum of PPP-b-PT to show the presence of I 4d peak. 

  

PT polymer chains (at least all the chains that had active sites, Ni(II)) have been converted to PT-

b-PPP diblock copolymer chains after second polymerization with 4-iodophenylmagnesium 

chloride monomer solution. However, in the case of PPP-b-PT diblock copolymer, Br 3d3/2 and 

Br 3d5/2 peaks were observed as well as a small peak corresponding to I 4d (see Figure 3.8C). We 
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could not determine how many PPP homopolymer chains remained on the surface because 

absolute quantitative analysis in XPS was not possible without internal or external standard, 

however, at least, we could conclude that some PPP chains remained as unreacted 

homopolymers due to side reactions mentioned above. This imperfection of diblock 

copolymerization in the synthesis of PPP-b-PT was consistent with the findings from UV/vis, PL, 

and CV experiments.  

3.3. Conclusions  

For the first time, we developed an efficient synthetic protocol for all-conjugated diblock 

copolymer thin films by SI-KCTP with a new Ni(II) catalytic initiator. The order of 

polymerization was found to affect the structure of diblock copolymer films. The polymerization 

for PT-b-PPP produced relatively short chains of PPP block compared to homopolymerization 

because Ni(II) catalytic initiator tended to form complex with a thiophene ring, reducing reaction 

rate for the subsequent polymerization. In contrast to PT-b-PPP film, some PPP chains from the 

first block did not converted into diblock copolymer chains by subsequent polymerization in the 

case of PPP-b-PT film. We assumed this imperfection might originate from steric hindrance 

issues. As expected for all-conjugated diblock copolymers in solution, our block copolymer thin 

films displayed efficientenergy transfer from PPP block to PT block. However, the order of 

blocks significantly affected energy transfer and PL spectra. The new approach could offer a 

valuable platform to control optical and electrochemical properties of polymer thin films for 

future applications.  
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CHAPTER 4. POLY(3,4-ETHYLENEDIOXITHIOPHENE) (PEDOT) THIN 

FILMS AS A HOLE TRANSPORTING LAYER FOR ITO-FREE DEVICES 

PREPARED BY SURFACE-INITIATED KUMADA CATALYST TRNASFER 

POLYMERIZATION 
 

4.1. Introduction 

          Poly(3,4-ethylenedioxithiophene) (PEDOT) has been attracting significant attention of the 

researchers in organic electronics field because of its unique optoelectronic properties. 

Conductivity of the pristine bulk PEDOT, which is a black and insoluble powder, lies in the 

range from 1 to 100 S cm
–1

,
1
 depending on the preparation conditions. The PEDOT films 

prepared by electropolymerization on the metal electrodes display much higher conductivity 

ranging from 100 to 400 S cm
–1

, with exact value of conductivity depending on the particular 

dopant.
2
 Temperature dependence of the conductivity places PEDOT somewhat on the metallic 

side, and it is often referred to as “synthetic metal”.
3
 A number of applications based on the 

PEDOT’s high conductivity have been reported, such as antielectrostatics,
3,4

 bio/chemo 

sensors,
5,6

 organic capacitors,
7,8 

etc. Meanwhile, neutral PEDOT has a moderate band gap energy 

of around 1.7 eV. The band gap value can be readily manipulated by adding substituents, or 

modifying the ethylene dioxide unit and/or thiophene unit.  Among the most common derivatives 

are 3,4-propylenedioxithiophene (ProDOT),
2,9

 3,4-butylenedioxithiophene (BuDOT),
10,11

 3,4-

butanesulfonic acid functionalized EDOT (EDOTS),
12

 3,4-ethylenedithiathiophene (EDTT),
13

 etc. 

(Figure 4.1). These derivatives would be potential candidates for electrochromic and other 

electronic applications.
14,15

  

Like other CPs, bulk PEDOT powder is nearly insoluble in any organic or aqueous 

solvents, which limits further detailed structural and properties studies, as well as potential 

applications. In addition, PEDOT has a low oxidation potential, which facilitates turning the 
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Figure 4.1. Representative examples of EDOT derivatives studied in literatures. 

 

polymer into an oxidized state and significantly reduces stability of any devices based on the 

polymer. Consequently, many efforts have been attempted to increase solubility of PEDOT. One 

of the most popular methods to address the solubility issue is to polymerize EDOT with a 

counteranion monomer, resulting in a dispersion solution with a polymeric counteranion, such as 

polystyrene sulfonate (PSS),
16,17

 or sulfated poly(b-hydroxyether) (S-PSE).
18

 Particularly, to date, 

PEDOT:PSS is one of the most well-known and commercially available semiconducting 

polymers. The aqueous PEDOT:PSS dispersion dramatically alters mechanical/chemical 

properties as well as opto-electronic nature of a spin-casted film. For example, the dispersion 

itself has a dark blue color, but the casted film is transparent with high transmissivity, i.e., more 

than 90% transmittance is in the visible range. The spin-casted film shows high thermal stability 

up to 1000 °C for several hours, and displays moderate conductivity, ranging from 1 to 10 S cm
–

1
.
19

 The work function of the PEDOT:PSS film matches well to organic donor materials, bridging 

energy barrier between the metal anodes and the donor components.
20

 Additionally, PEDOT:PSS 

spin-casted film on ITO can improve smoothness of the rough surface and therefore diminish 

possibility of local shorting in the ultrathin layer, thus enhancing overall device performance.
20,21
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Figure 4.2. PEDOT:PSS molecular structure (BAYTRON P). The dash lines indicate ionic 

interaction between PEDOT and PSS. 

 

Considering all these advantages, it is not surprising that PEDOT:PSS has become the most 

widely used component as a hole transporting layer for organic electronic applications. 

          Despite the excellent features of PEDOT:PSS, inherent acidic nature of this material is a 

substantial drawback because it renders degradation of the ITO or the organic donor layers. The 

typical molar ratio in PEDOT:PSS is about 0.8:1, i.e. there are excessive sulfonic acid groups to 

provide negative charge to make it as an non-stoichiometric soluble polymer electrolyte 

system.
22

 The presence of free sulfonic acid groups makes PEDOT:PSS rather corrosive, which 

often leads to problems associated with destructive action of PSS on ITO or other donor 

materials.  In addition, the overall excessive negative charge can facilitate quenching the holes 

generated by absorption light, i.e. the film can display unfavorable hole-blocking ability, 

resulting in decreasing the overall device performance. Consequently, general lifetime of organic 

electronic devices made with PEDOT:PSS as a hole transporting layer could be as little as 600 

h,
23

 which is too low for most applications. And the moderate conductivity further lowered by 

the PSS component would be another drawback. Therefore, a large number of studies have 

attempted to circumvent this issue by carrying out direct deposition of the PEDOT layer on a 
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target surface, using electrochemical polymerization,
24

 oxidative chemical vapor deposition 

(oCVD),
25

 and radical polymerization.
26

 Unfortunately, none of these methods can provide 

accurate control over PEDOT film deposition, due to uncertain mechanism, variable kinetics,
27

 

which all resulted in low film quality and insufficient transporting characteristics. Additionally, 

some of the suggested reactions require harsh or difficult to achieve conditions such as ultra-high 

vacuum, high temperature,
25

 etc.  

          On the other hand, surface-initiated Kumada catalyst transfer polymerization (SI-KCTP) 

of EDOT monomer is an alternative approach to grow PEDOT film on surfaces for using it as a 

hole transporting layer. Indeed, a similar concept has been investigated by the Locklin group
28

 

who prepared poly(3-methylthiophene) (P3MT) film on ITO as a hole transporting layer 

(P3MT/ITO) using SI-KCTP. They demonstrated that P3MT/ITO system was stable against air, 

moisture, and light for over one month, with only slightly less efficiency than a device made with 

using traditional PEDOT:PSS. In this chapter, we describe our concept to implement SI-KCTP 

with an external catalytic initiator developed in our lab to prepare a surface-confined PEDOT 

layer, and investigate the possibility to use surface-confined PEDOT to replace PEDOT:PSS for 

a hole transporting layer in electronic devices, as well as replacement of ITO as anode material 

(Figure 4.3).  

4.2. Results and discussion 

We chose to use 2,5-dibromo-EDOT as a starting monomer to synthesize PEDOT polymer brush 

on the surface. (EtO)3Si-Th-Ni(dppp)I, a Ni(II) external catalytic initiator complex, was first 

immobilized on quartz surface. In order to prepare the required Grignard monomer for surface-

initiated polymerization, the turbo Grignard reagent (i-PrMgCl·LiCl) was used because of low 

reactivity of 2,5-dibromo-EDOT towards Mg-halogen exchange (see Experimental section for  
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Figure 4.3. General scheme of using SI-KCTP to prepare surface-confined PEDOT films. 

 

details). Then, the surface-initiated polymerization was carried out at a relatively high 

temperature, 60 °C, with vigorous stirring for 3 days, resulting in a dark blue color film of 

PEDOT on the quartz surface. A sequential sonication with different solvents (chloroform, 

acetone, methanol, and water) over 50 min was performed to remove physisorbed polymers or 

other organic by-products. Although using high temperature might likely result in less robust 

chain-growth mechanism of surface-initiated polymerization (which was reflected in the 

relatively large amount of solution-formed insoluble PEDOT), our attempts to perform 

polymerization at lower temperature, below 60 °C, were not successful.  

          Infrared (IR) spectroscopy was used to confirm formation of the surface-confined PEDOT 

film (Figure 4.4). Major features in the IR spectrum were consistent with the characteristic peaks 

attributed to PEDOT film described in literature.
29

 The band at 1460 cm
-1

 was assigned to C=C 
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Figure 4.4. IR spectrum of the PEDOT film prepared by surface-initiated polymerization on 

quartz at 60 °C for 3 days.  

 

stretching of the thiophene ring. The band corresponding to C-O stretching on the 

ethylenedioxide fragment appeared at 1051 cm
-1

 and 1165 cm
-1

. Presence of CH2 bending of the 

ethylene part was confirmed by the bands at 1300 cm
-1

 and 1491 cm
-1

. Most of these peaks were 

very sharp, and some strong peaks at around 900 - 800 cm
-1

 were overlapped with the peaks 

which could be assigned to the EDOT monomer or oligomer. Hence, it was likely that a 

substantial fraction of the EDOT oligomers or even the monomers might be present in the film, 

implying overall low degree of polymerization. However, due to the limitation of IR 

spectroscopy and the inconsistency of the obtained IR spectrum with those previously reported 

for PEDOT, additional structural evidence was required to confirm formation of the PEDOT 

polymer brush.  

UV/vis spectrum in Figure 4.5A (black trace) shows spectrum of the PEDOT film 

prepared by surface-initiated polymrization. The broad absorption band with max 550 nm and 
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spanning to 720 nm is a typical UV/vis spectral band characteristic of an undoped PEDOT film 

fabricated by electrochemical polymerization, but with roughly 50 nm blue shift relative to the 

max reported in literature.
29

 The bandgap Eg
opt

 of 1.7 eV determined by the onset of an 

absorption band was in the range of a typical PEDOT bandgap values. However, we found no 

fine vibronic structure of the absorption band which is typically expected for the undoped 

PEDOT film and other CP films. Furthermore, the optical density of the film was very low 

compared to that of PT films prepared by surface-initiated polymerization in similar 

experimental conditions (generally showing optical absorbance of more than 0.8). We suggested 

that both features indicated low degree of polymerization as well as lower surface density and 

poor chain alignment in the film. In addition, a noticeable shoulder at around 350 nm could also 

indicate presence of relatively short oligomers in the film.
29

 The procedure involving  

 

Figure 4.5. UV/vis spectra of PEDOT films on quartz substrate. (A) black trace: a PEDOT film 

prepared by surface-initiated polymerization using Grignard monomer obtained from 2,5-

dibromo-EDOT (the polymerization was carried out at 60 °C for 3 days), red trace: the film 

prepared using Ni(II) catalytic initiator regeneration procedure applied to the previous PEDOT 

film, blue trace: the film made starting with 2,5-diiodo-EDOT to prepare Grignard monomer (the 

surface-initiated polymerization was carried out at 60 °C for 3 days). (B) temperature 

dependence of the polymerization utilizing Grignard monomer prepared from 2,5-diiodo-EDOT: 

the polymerization carried out at 50 °C for 3 days (black trace), and at 40 °C for 1 day (blue 

trace). 
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intermediate regeneration of the active Ni(II) catalytic initiator (described in detail in Chapter 2) 

was tested to support these assumptions. After the initial surface-initiated polymerization, the 

polymer film was immersed into a Ni(dppp)2 solution to reactivate Br-terminated polymer chains, 

which was followed by further polymerization in the same conditions. As shown in figure 4.5A 

(red trace), the intensity of both absorption bands at 350 nm and 550 nm increased approximately 

twice relative to the original spectrum. As it was discussed in chapters 2 and 3, it is clear that 

several side reactions, such as disproportionation or chain transfer reaction, can readily happen, 

especially at the high temperature used for surface-initiated polymerization in the PEDOT 

preparation. These side reactions likely caused early termination of the polymerization and 

therefore resulted in a low degree of polymerization, leaving a mixture of surface-confined 

polymer brushes of different lengths.  

          AFM studies of the PEDOT surface-confined film revealed a non-uniform rough surface 

morphology (Figure 4.6). The surface consisted of small globular-like domains that represenedt a 

typical surface morphology of polymer films prepared by surface-initiated polymerization (see 

Chapter 2). However, the height of the surface features showed very broad variation, with an 

average height of the features at around 40 nm and with large RMS value of 9.5 nm meaning a 

highly uneven surface. 

          To better understand electrochemical characteristics of the PEDOT films, we carried out 

CV studies (Figure 4.7). One quasi-reversible redox peak was observed at E1/2 -0.75 V, and an 

intense non-reversible oxidation peak -0.3 V (vs. Fc/Fc
+
 reference electrode). The CV curve did 

not show significant change during several voltage sweepings, implying that the PEDOT film 

was stable towards electrochemical processes. The intense non-reversible oxidation peak  
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Figure 4.6. (A) AFM topography of the PEDOT film; (B) and (C) – line analysis using 

nanoshaving procedure. Each profiles in (C) correspond to the indicated lines in (B). All images 

are 5 × 5 m in size. 

 

indicated faster electron transfer process than could be observed in an oligomer film, due to the 

presence of well-defined PEDOT chains, whereas a less intense corresponding reduction peak 

spanned over more broad potential range therefore indicating a slow reduction process. This slow 

reduction process pointed out that the doped PEDOT film could act as a potential hole 

transporting layer. The presence of a quasi-reversible redox peak at -0.75 V might be an 

indication of a long range molecular ordering of the PEDOT chains. Unlike the broad reduction 

peak at -0.1 V, the smaller reduction peak at -0.75 V was observed as a rather sharp peak. On the 

basis of the bandgap energy obtained from the onset of UV/vis spectral band (1.7 eV) and 
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HOMO level from the intense irreversible oxidation peak in the CV, calculated HOMO (EHOMO 

= -[Eoxi, onset + 5.1]eV)
30

 and LUMO (ELUMO = Eg
opt

 + EHOMO) energy levels of the film were -4.8 

eV and -3.1 eV, respectively. The HOMO energy of the film was substantially close to the work 

function value of the O2 plasma treated ITO, -5.0 eV,
21

 which also suggested that the film could 

be a good replacement for ITO as an organic electrode.           

 

Figure 4.7. Cyclic voltammetry (CV) studies of the surface-confined PEDOT film on ITO 

surface. Data were acquired versus ferrocene external standard in 0.1 M Bu4NPF6 in CH2Cl2, 

with sweep rate 0.1 V s
–1

. Black trace is the first scan. Red and blue traces represent second and 

third scan, respectively.   

 

          In order to further optimize polymerization condition, we tested a different monomer and 

attempted temperature variation. To increase reactivity of the Grignard monomer, we used 2,5-

diiodoEDOT to prepare the corresponding Grignard monomer, and carried out surface-initiated 

polymerization at the same temperature, 60 °C. As can be seen in figure 4.6A (blue line), even 

with less polymerization time, optical absorbance of the polymer film prepared using iodo-

Grignard monomer was substantially higher than that of the PEDOT film prepared using 2,5-

dibromoEDOT-based monomer, even with using the Ni(II) catalyst regeneration procedure, 
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while the small blue shift of max was also noticed. This substantial increase in the optical 

absorbance along with the blue shift might indicate that more polymeric chains existed on the 

surface, although with lower conjugation length of the individual chains. Simultaneously, the 

absorbance at the shorter wavelength also increased, possibly indicating that the polymerization 

produced higher fraction of oligomeric chains. We assumed that this was due to the high 

reactivity of iodo-monomer towards both propagation and disproportionation in the surface-

initiated polymerization. The higher reactivity in propagation resulted in increasing polymer 

chain length, and possibly higher polymer surface density, whereas the higher efficiency in 

disproportionation reaction resulted in higher polydispersity of the surface-confined polymer 

chains, which could be responsible for the lower effective conjugation length.            

          We found that surface-initiated polymerization showed strong temperature dependence 

(figure 4.5B). Although one would predict lower polymerization reaction rate at lower 

temperature, lowering temperature would also result in the decrease of the rate of side reactions 

(such as disproportionation and chain-transfer) which could potentially lead to the higher degree 

of polymerization at longer reaction time. The surface-initiated polymerization with iodo-EDOT 

Grignard monomer at 50 °C for 3 days produced PEDOT films with slightly higher optical 

absorbance. Interestingly, carrying out the same reaction at 40 °C for only one day yielded 

PEDOT film with more than twice higher optical absorbance at max, supporting our assumption 

of more robust chain-growth polymerization at lower temperature. However, we also observed 

increasing the optical absorption of the short wavelength band corresponding to EDOT 

oligomers. This proved that formation of oligomeric chains was still occurring on the surface 

because of the disproportionation and chain-transfer side reactions. It appears that optimizing 

reaction conditions in order to obtain high-quality PEDOT film requires fine balancing between 
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various factors responsible for the polymerization and disproportionation processes, and 

currently we are further investigating these factors. 

Doping with halogens has been generally used to increase conductivity of CPs. As it was 

mentioned above, one of the reasons for the popularity of PEDOT:PSS for organic electronics is 

high conductivity in the doped state resulting from the presence of PSS. Thus, we conducted a 

doping test for the surface-confined PEDOT film using iodine vapor, upon monitoring both 

spectroscopic and conductive properties of the film. UV/vis absorption spectra were acquired 

before and after iodine doping (Figure 4.8). After exposure of the film to iodine vapor for one 

day, both near-IR polaron and bipolaron absorption bands became dominant, and the film turned 

to transparent sky-blue color. In good agreement with previous studies, formation of polaron and 

bipolaron states upon iodine doping was an indication of high conductivity of the sample. In 

addition, high transmittance in the visible region was an essential requirement for using this film 

 

Figure 4.8. UV/vis spectra of the PEDOT films before (black trace) and after (blue trace) doping 

by exposure to iodine vapor for 1 day. 
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for light-transparent organic electrodes. 

 

          Electrical conductivity 4-point probe measurements (table 4.1) for the PEDOT films were 

carried out to test conductivity which was determined assuming 40 nm thickness of the film as 

derived from nanoshaving experiment (figures 4.6B and C). Before doping, average conductivity 

of the film was 1.66×10
-4

 S cm
-1

. After the iodine doping, conductivity became two orders of 

magnitude higher, up to 3.47×10
-2

 S cm
-1

. This value was very similar to the conductivity of 

germanium. 

 

Table 4.1. 4-point probe conductivity measurements of the PEDOT films on quartz substrate 

before and after doping with iodine vapor.
a, b

  

 

before exposure to I2  

R (ohm) 
Resistivity  

(Ω cm)
c
 

Conductivity 

(S cm
-1

)
d
 

Thickness 

(m)
e
 

Average 

conductivity 

(S cm
-1

) 

STD 

2.80E+09 1.12E+04 8.93E-05 

0.04 1.66E-04 0.003866 

1.25E+09 5.00E+03 2.00E-04 

1.51E+09 6.04E+03 1.66E-04 

1.32E+09 5.28E+03 1.89E-04 

1.31E+09 5.24E+03 1.91E-04 

1.24E+09 4.96E+03 2.02E-04 

1.71E+09 6.84E+03 1.46E-04 

2.14E+09 8.56E+03 1.17E-04 

1.25E+09 5.00E+03 2.00E-04 

1.54E+09 6.16E+03 1.62E-04 

after exposure to I2  

R (ohm) 
Resistivity  

(Ω cm)
c
 

Conductivity 

(S cm
-1

)
d
 

Thickness 

(m)
e
 

Average 

conductivity 

(S cm
-1

) 

STD 

5.63E+06 2.25E+01 4.44E-02 

0.04 3.47E-02 1.19649 
1.03E+07 4.12E+01 2.43E-02 

1.16E+07 4.64E+01 2.16E-02 

5.60E+06 2.24E+01 4.46E-02 
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Table 4.1. continue 

R (ohm) 
Resistivity  

(Ω cm)
c
 

Conductivity 

(S cm
-1

)
d
 

Thickness 

(m)
e
 

Average 

conductivity 

(S cm
-1

) 

STD 

4.76E+06 1.90E+01 5.25E-02 

0.04 3.47E-02 1.19649 

6.02E+06 2.41E+01 4.15E-02 

9.65E+06 3.86E+01 2.59E-02 

7.75E+06 3.10E+01 3.23E-02 

5.84E+06 2.34E+01 4.28E-02 

1.44E+07 5.76E+01 1.74E-02 
a
 the film was prepared on quartz using polymerization at 40 °C  for 1 day of Grignard monomer 

synthesized from 2,5-diiodo-EDOT; 
b
 10 random measurements on each film was performed; 

c
 

resistivity (Ω cm) = R × thickness; 
d
 conductivity (S cm

-1
) = 1/resistivity; 

e
 The thickness was 

determined from the line analysis of AFM nanoshaving experiments (figure 4.6B and C) for all 

measurements. 

 

4.3. Conclusions 

          Using surface-initiated KCTP, we prepared PEDOT thin films on quartz and ITO 

substrates. Due to the low reactivity of 5-bromo-2-(3,4-ethylenedioxythienyl)magnesium 

chloride monomer, high temperature and long reaction time were required for the polymerization, 

which resulted in less robust chain-growth mechanism, and dominance of chain-termination 

processes, essentially leading to low degree of polymerization. Various experiments pointed out 

that the surface-confined PEDOT film was composed of a mixture of oligomeric and polymeric 

chains of various length, with rather high polydispersity. Despite the seemingly disordered nature 

of the surface-confined PEDOT film, experimentally determined energy levels (HOMO, LUMO, 

and bandgap) and electrochemical studies (CV and 4-probe conductivity) suggested that the 

iodine-doped film could potentially replace PEDOT:PSS in various electronic devices. To further 

optimize surface-initiated polymerization conditions, polymerization of a Grignard monomer 

derived from 2,5-diiodo-EDOT was studied at different temperatures. Although this monomer 

showed some promise in achieving higher degree of polymerization, detrimental side reactions 
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were still not completely suppressed resulting in the formation of a substantial amount of 

oligomeric EDOT chains as was reflected in the optical and electrochemical properties of the 

polymer film. At the moment, we are attempting further optimization of the polymerization 

process to improve the quality of PEDOT thin films. In addition, we will study formation of the 

PEDOT thin films on flexible polymeric substrates, as required for the preparation of flexible 

organic electronic devices.  
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5.  EXPERIMENTAL SECTION 

 
5.1. General Procedures 

All reactions were performed under an atmosphere of dry nitrogen (unless mentioned 

otherwise). Melting points were determined in open capillaries and are uncorrected. Column 

chromatography was performed on silica gel (Sorbent Technologies, 60 Å , 40-63 m) slurry 

packed into glass columns. Tetrahydrofuran (THF), ether, dichloromethane, toluene, acetonitrile, 

and hexanes were dried by passing through activated alumina using a PS-400 Solvent 

Purification System from Innovative Technology, Inc. The water content of the solvents was 

periodically controlled by Karl Fischer titration (using a DL32 coulometric titrator from Mettler 

Toledo). All other solvents (HPLC or anhydrous grade) were used as received.  

Tetrabutylammonium hexafluorophosphate for electrochemical measurements was obtained 

from Aldrich and used after recrystallization from ethanol. Isopropylmagnesium chloride (2.0 M 

solution in THF) was purchased from Acros Organics, all other reagents and solvents were 

obtained from Aldrich and Alfa Aesar and used without further purification. Organometallic 

reagents were titrated with salicylaldehyde phenylhydrazone prior to use.
1
 Indium tin oxide (ITO) 

coated glass slides (25×75×1.1 mm polished float glass, 8-12 Ohm/sq. surface resistivity) were 

purchased from Delta Technologies, Ltd.  75×25 mm
2
 sized polished rectangular quartz slides 

were purchased from Chemglass. Silicon (111) wafers were purchased from Virginia 

Semiconductor Inc. Monodisperse latex mesospheres (300 nm diameter) were supplied by 

Thermo Scientific. UV-Visible spectra were recorded on a Varian Cary 50 and Agilent Cary 

5000 spectrophotometers. Thickness of polymer films on quartz substrates was determined by 

scratching the film surface with a razor blade, and acquiring an across-the-scratch depth profile 

using Bruker Dektak XT stylus profiler. Scanning Electron Microscopy images were acquired 
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with Hitachi S-3600N microscope.  
1
H NMR spectra were recorded at 400 MHz , and 

13
C NMR 

– at 100 MHz, and are reported in ppm downfield from tetramethylsilane; 
31

P NMR spectra were 

obtained at 162 MHz and are reported in ppm relative to 80% aqueous H3PO4 as external 

standard.  Electrochemical and spectroelectrochemical measurements were performed using an 

Autolab PGSTAT 302 potentiostat from Eco Chemie.  The experiments were carried out using a 

three-electrode system with a thin polymer film on ITO as a working electrode, Ag/AgNO3 non-

aqueous reference electrode, and a Pt gauze counter electrode.  The reference electrode was 

checked against ferrocene standard every time before and after the experiments were performed, 

and the measured potentials were reported against the Fc/Fc
+
 redox potential value.  All 

experiments were carried out in 0.1 M Bu4NPF6 solution in CH2Cl2 as supporting electrolyte.  

High resolution mass spectra were obtained at the LSU Department of Chemistry Mass 

Spectrometry Facility.   

5.2. Atomic Force Microscopy 

Samples were characterized with a model 5500 atomic force microscope (AFM) 

equipped with Picoscan v5.3.3 software (Agilent Technologies, Chandler, AZ).  Images were 

acquired using contact mode in ambient conditions.  Oxide-sharpened silicon nitride cantilevers 

with force constants ranging from 0.1 to 0.5 N/m were used for imaging (Veeco Probes, Santa 

Barbara, CA).  Digital images were processed with Gwyddion open source software (version 

2.9), which is supported by the Czech Metrology Institute.
4
 

5.3. X-ray Photoelectron Spectroscopy (XPS) 

The XPS experiments were carried out using PHI VersaProbe II instrument equipped 

with a monochromatic Al K(alpha) source.  Instrument base pressure was ca. 8×10
–10

 Torr.   
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Figure 5.1. By combining particle lithography with contact printing, an array of circular pores of 

uncovered Si/SiO2 substrate was prepared within an OTS film using 300 nm latex masks. (A) In 

a wide area AFM topograph (8×8 µm
2
) the pores cannot be resolved.  (B) The corresponding 

lateral force image clearly reveals the periodic array of pore nanostructures. (C) At higher 

magnification (1×1 µm
2
) the topography image still does not resolve the nanopatterns.  (D) The 

spacing and dimensions of the pores can be clearly viewed in the lateral force frame.   

 

 

 

Figure 5.2.  Scanning Electron Microscopy image of nanopatterned PT thin film on Si(111) 

substrate showing large-area hexagonal patterning with PT nanopillars.   

 

B 

D 

A 

C 
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The X-ray power of 50 W at 15 kV was used for all experiments with 200 micron beam size at 

the X-ray incidence and take off angles of 45°.  The instrument work function was calibrated to 

give a binding energy (BE) of 84.0 eV for Au 4f7/2 line for metallic gold and the spectrometer 

dispersion was adjusted to give a BE’s of 284.8 eV, 932.7 eV and of 368.3 eV for the C 1s line 

of adventitious (aliphatic) carbon presented on the non-sputtered samples, Cu 2p3/2 and Ag 3d5/2 

photoemission lines, respectively.  The patented PHI dual charge neutralization system was used 

on all samples.  The high resolution I 3d and Ni 2p spectra were taken with a minimum of 10-60 

s scans using 0.1 eV steps and 23.5 eV pass energy.  Signal above background measurement and 

Shirley background subtraction was made using MultiPak v9.0 PHI software.  At the ultimate 

Versa Probe II instrumental resolution the temperature spread (at 14/86%) of the metallic silver 

Fermi edge was less than 120 meV.  All XPS spectra were recorded using PHI software 

SmartSoft –XPS v2.0 and processed using PHI MultiPack v9.0 and/or CasaXPS v.2.3.14.  The 

relative sensitivity factors from MultiPack library were used to determine atomic percentages.  

Peaks were fitted using GL line shapes a combination of Gaussians and Lorentzians.  Wherever 

possible, conclusions were drawn from the number of resolved signals for a given element, so as 

to minimize reliance on absolute binding energies for the nonconductive molecular materials.  A 

given sample was examined at 5-6 different spots on the mounted specimen to assure that 

consistent, reproducible results were obtained. 

5.4.Ultraviolet Photoemission Spectroscopy (UPS) 

The UPS measurements were performed at the LSU Center for Advanced Microstructures 

and Devices (CAMD) using the 3 m toroidal grating monochromator (3 m TGM) beamline.  The 

UHV chamber was equipped with an energy analyzer with an angular acceptance of ±1° and a 

combined (including the monochromator) energy resolution of 150 meV or better. The base 
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Table 5.1.  Fitting parameters for I 3d and Ni 2p high-resolution XPS spectra in Figure 2.2. 

Trace/

Sample 
Transitions 

Position

, eV 

Position 

separa-

tion, eV 

FWHM, 

eV 

% 

Gauss 
Area 

% 

Area 

Chi 

Square

d 

Violet 

trace in 

Figure 

2.2A 

I 3d5/2 618.64 0.0 1.81 80 1986 46.51 
2.32 

 
I 3d3/2 630.07 11.42 2.03 

 

80 
1701 39.84 

Red 

trace in 

Figure 

2.2A 

I 3d5/2 Dark 

yellow 

trace 

618.95 0.0 1.78 80 1916 26.53 

1.36 

I 3d3/2 630.36 2.00 1.5 100 2320 32.12 

I 3d5/2 
Purple 

trace 

620.97 11.5 1.75 92 1193 16.51 

1.13 

I 3d3/2 632.46 13.5 1.54 82 1794 24.84 

Green 

trace in 

Figure 

2.2A 

I 3d5/2 621.36 0.00 1.54 83 4099 57.99 

2.69 

I 3d3/2 632.85 11.49 1.49 81 2970 42.01 

Red 

trace in 

Figure 

2.2B 

Ni 2p3/2 

 

Blue 

trace 
855.74 0.00 2.96 80 3999 22.99 

1.48 

Shake 

up 

Green 

trace 
861.04 5.3 6.96 95 4506 23.9 

Ni 2p1/2 
Blue 

trace 
874.50 18.76 4.05 100 2652 14.00 

Shake 

up 

Green 

trace 
876.58 20.85 8.47 80 7940 42.00 

Violet 

trace in 

Figure 

2.2B 

Ni 2p3/2 
Blue 

trace 
856.05 0.00 2.58 80 

1442

3 

31.54

9 

2.18 

Shake 

up 

Green 

trace 
861.40 5.35 5.96 80 

1424

8 
31.16 

Ni 2p1/2 
Blue 

trace 
873.82 17.77 3.12 100 7406 16.2 

Shake 

up 

Green 

trace 
879.72 23.68 5.99 100 9648 21.1 
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pressure of the UPS chamber was ~5×10
–10

 mbar.  All the photoemission spectra were taken with 

incident photon energy of 85 eV.  The emitted photoelectrons were collected with an analyzer 

movable in-plane with surface normal and the incident photon beam.  The Fermi level position 

was established from a copper piece in electrical contact with the sample.  The valence band 

features binding energies are reported with respect to this Fermi level.  All the measurements 

were carried out at ambient temperature. 

 

Figure 5.3. Schematics of polarization-dependent UPS studies of PT thin-film samples. (A) 

Normal emission geometry setup for (s+p)- and p-polarized light in the UPS studies. (B) 

Experimental setup for emission angle-dependent UPS spectroscopy utilizing (s+p)-polarized 

incident light.  

 

5.5. Grazing Incidence X-ray Scattering 

Grazing incidence X-ray scattering measurements were performed at beamline 8-ID-E of 

the Advanced Photon Source at Argonne National Laboratory.
5
  An X-ray wavelength of λ = 

1.6868 Å  was used.  The area detector, a Pilatus 1M (Dectris, Switzerland) pixel array detector, 

was positioned 204 mm from the sample for GIWAXS and 2165 mm from the sample for 

GISAXS.  In both geometries, the sample was measured under ambient conditions and the 

scattering measured at two different detector heights for a range of incident angles, θ = 0.16° to 

0.22° and exposure times of 10 s (GIWAXS) or 20 s (GISAXS).  Combining corresponding 

images eliminated rows of inactive pixels between the detector modules and verified that the 

samples were not damaged by the synchrotron beam.  The acquired data (as two-dimensional 
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images) were further treated and analyzed using GIXSGUI software package.
6
  Fitting of the 

GISAXS data using a combined Porod plus Guinier model was performed with MATLAB. 

 

 

Figure 5.4. One-dimensional linecuts of GIWAXS images (integrated along the arcs between 

angle0 to 90°) acquired at various incidence angles of X-ray beam for the surface-confined 

PT thin film in Figure 2.12. 

  

5.6. Neutron Reflectometry 

Neutron reflectivity measurements were performed at the Spallation Neutron Source 

Liquids Reflectometer (SNS-LR, Beamline 4B) at the ORNL.  The reflectivity data were 

collected using a sequence of 3.25-Å -wide continuous wavelength bands (selected from 2.63 Å  < 

λ < 16.63 Å ) and incident angles (ranging over 0.60° < θ < 2.71°), where λ is the neutron 

wavelength and θ is the scattering angle.  Using these settings, the momentum transfer, 

q = (4π sin θ/λ), was varied over a range of 0.008 Å
–1

 < q < 0.22 Å
–1

.  Reflectivity curves were 

assembled by combining seven different wavelength and angle data sets together, maintaining a 

constant sample footprint and relative instrumental resolution of  δq/q = 0.023 by varying the 

incident-beam apertures.   
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The reduced data consisted of absolute neutron reflectivity (R) vs. neutron momentum 

transfer q.  Layers
7
 and Motofit

8
 software were used to fit the measured reflectivity curves, 

providing the reflectivity of a model scattering length density profile, which can be analyzed to 

determine the structure of the thin films.  One or two layers were used to model the depth 

profiles of the films.  The scattering length density, thickness, and roughness of each layer was 

freely varied in the fitting procedure.  The quality of fit was gauged by minimizing χ
2
 between 

data and model reflectivity curves. 

5.7. Synthetic Details 

5.7.1. Synthesis and preparation of the polymer thin films in Chapter 2 

5.7.1.1. 2-Triethoxysilyl-5-iodothiophene 2  

A solution of isopropyl magnesium chloride (3.3 ml of 2.0 M solution in THF, 6.6 mmol) 

was added dropwise to a stirred solution of 2.0 g (6.0 mmol) of 2,5-diiodothiophene in 20 ml of 

THF at 0 °C. The reaction mixture was stirred for 1.5 h at this temperature and then the 

temperature was lowered to –78 °C, and 1.8 g (1.8 ml, d = 1.01 g ml
–1

, 9.0 mmol) of 

chlorotriethoxysilane was added dropwise, and the reaction mixture was allowed to warm to 

room temperature overnight.  The resulting solution was precipitated into hexanes, the solids 

were filtered, and the filtrate was concentrated in vacuo, and subjected to Kugelrohr distillation 

(ca. 85 °C at 10 mTorr,) to afford 2 as a colorless oil (1.1 g, 50%).  It was dissolved in 15 ml of 

toluene to make a 0.2 M stock solution which was kept at –30 °C in an inert atmosphere 

glovebox.  
1
H NMR (CDCl3) δ 7.28 (d, J = 4 Hz, 1H), 7.1 (d, J = 4 Hz, 1H), 3.84 (q, J = 8 Hz, 

6H), 1.21 (t, J = 8 Hz, 9H).    

5.7.1.2. Bis[1,3-bis(diphenylphosphino)propane]nickel(0) (Ni(dppp)2)  

It was prepared following the literature procedure.
2
   



136 
 

5.7.1.3. Preparation of catalytic initiator 3  

A mixture of 44.2 g (0.05 mmol) of Ni(dppp)2 and 0.125 ml of 0.2 M solution of 2 (0.025 

mmol) in 10 ml of toluene was stirred at 45 °C for 24 h to afford a nominally 2.5 mM solution of 

the catalytic initiator 3. Due to the air-sensitive nature of compounds involved, all procedures 

were performed inside an inert atmosphere glovebox. 

5.7.1.4. Cleaning and activation of substrates 

Quartz substrates Rectangular quartz slides (approx. 1.1×2.5 cm
2
) were ultrasonicated 

sequentially for 10 min in acetone, chloroform, methanol, and deionized water. The pre-cleaned 

slides were placed into Piranha solution (a mixture of conc. H2SO4 and 30 % H2O2 (7:3)) and 

ultrasonicated for 30 min.  After rinsing with copious amount of deionized water, substrates were 

dried in N2 flow at room temperature for 24 h, and then activated using mild O2 plasma for 5 min 

just before using.  (NOTE: extreme care must be taken when dealing with piranha solutions as 

they can detonate when contacted with organic compounds!)   

ITO-glass substrates Rectangular ITO-covered glass slides (approx. 1.1×2.5 cm
2
) were 

ultrasonicated for 10 min in chloroform, acetone, methanol, and deionized water.  The pre-

cleaned slides were subjected to an RCA-type cleaning procedure by keeping in a water – 30% 

H2O2 – 30% aqueous NH3 (5:1:1) mixture at 70 °C for 1 h.  The substrates were then rinsed with 

copious amount of deionized water and dried in N2 flow at room temperature for 12 h, and then 

activated using mild O2 plasma for 5 min. 

Si(111) wafer Pieces of boron-doped polished wafers of Si(111) were cut into 1×1 cm
2
 

squares and placed in Piranha solution (a mixture of conc. H2SO4 and 30 % H2O2 (7:3)).  Next, 

silicon substrates were rinsed with copious amount of deionized water and dried in ambient air.  
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(NOTE: extreme care must be taken when dealing with piranha solutions as they can detonate 

when contacted with organic compounds!)  

5.7.1.5. Preparation of surface-immobilized monolayer of catalytic initiator 3 (Direct method) 

 Activated substrate slides were immersed into a 2.5 mM solution of 3 placed in 20 ml 

scintillation vials and kept at 55 °C for 60 h followed by gentle rinsing with toluene, and then 

used for surface-confined polymerization.  Due to the air-sensitive nature of compounds involved, 

all procedures were performed inside an inert atmosphere glovebox.   

5.7.1.6. Preparation of surface-immobilized monolayer of catalytic initiator 3 (Indirect method)  

Activated substrate slides were immersed into a 2.5 mM solution of 2 in toluene (placed 

in 20 ml scintillation vials) and kept at 55 °C for 60 h followed by gentle rinsing with toluene.  

Then, the substrates with monolayer of 2 were transferred to another 20 ml vial with a 5 mM 

solution of Ni(dppp)2 in toluene and kept at 40 °C for 1 day.  The resulting substrates were rinsed 

with toluene and then used for surface-confined polymerization.  Due to the air-sensitive nature 

of compounds involved, all procedures were performed inside an inert atmosphere glovebox. 

5.7.1.7. Surface-confined polymerization of Grignard monomer 4   

Due to sensitivity of the polymerization process to moisture and oxygen, the entire 

polymerization procedure should be carried out in an inert atmosphere glovebox.  A solution of 

isopropylmagnesium chloride (0.26 ml of 2.0 M solution in THF, 0.525 mmol) was added 

dropwise to a stirred solution of 0.121 g (0.5 mmol) of 2,5-dibromothiophene in 10 ml of THF at 

0 °C, and the resulting solution was stirred for 1 h to yield a nominally 50 mM solution of 

Grignard monomer 4.  A substrate with a monolayer of catalytic initiator 3 (prepared either by 

method B or by method A as described above) was then placed in the Grignard monomer 4 

solution (in a 20 ml scintillation vial) and kept at room temperature for the specified amount time 
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(6-72 h) to allow for polymerization.  The substrate with the surface-confined PT film was then 

quenched with methanol and then cleaned by subsequent ultrasonication in chloroform, acetone, 

methanol, and water, and dried in flow of nitrogen. 

5.7.1.8. Surface-confined in situ polymerization with regeneration of Ni(II) catalytic center (a 

typical procedure)  

The initial surface-confined polymerization was performed as described above, with the 

polymerization time varying between 6 and 12 h.  The substrates were then rinsed with toluene, 

and placed in a 5 mM solution of Ni(dppp)2 in toluene (10 ml in 20 ml scintillation vials) where 

they were kept at 40 °C for 20 h.  The regenerated substrates were rinsed with copious amount of 

toluene, and placed in a 50 mM solution of Grignard monomer 4 where they were kept at 40 °C 

for subsequent polymerization (polymerization time varied between 6 and 12 h).  This sequence 

(surface-confined polymerization and catalyst regeneration) can be repeated as many times as 

required (up to 3).  At the end, the substrates were immersed in methanol and ultrasonicated for 

10 min.  The PT thin films were further washed by subsequent ultrasonication in chloroform, 

acetone, methanol, and water, and dried in flow of nitrogen. 

5.7.1.9. Determination of surface coverage using ferrocene-functionalized monolayers  

A solution of isopropylmagnesium chloride (0.21 ml of 2.0 M solution in THF, 0.42 

mmol) was added dropwise to a stirred solution of 0.144 g (0.4 mmol) of 2-ferrocenyl-5-

bromothiophene (prepared as described in ref. 3) in 10 ml of THF at 0 °C.  The resulting solution 

was additionally stirred for 1 h.  ITO/glass substrates with the monolayer of initiator 3 were 

placed in the resulting solution of Grignard compound 5 at 60 °C and kept there for 20 h.  The 

resulting substrates were then immersed in methanol and washed subsequently with chloroform 

and acetone upon ultrasonication for 10 min.  The cyclic voltammetry studies were carried out 
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using a three-electrode set up described in General Procedures section with monolayer-modified 

ITO/glass working electrode (electrode area ~1.13 cm
2
), Ag/AgNO3 non-aqueous reference 

electrode, and a Pt gauze counter electrode in 0.1 M Bu4NPF6 solution in CH2Cl2 as supporting 

electrolyte.   

The surface coverage density was estimated based on the measured area of the redox peak 

of ferrocene.  The value was corrected by the corresponding data for the bare ITO electrode.  

Assuming the ferrocene oxidation/reduction being a one-

was estimated using the formula: 

F

Q
  

where Q is the redox peak area (C cm
–2

), and F is Faraday constant (96500 C mol
–1

).   

5.7.1.10. Spectroelectrochemical experiments  

These were conducted using a rectangular quartz cuvette (path length 1 cm) with a PT-

modified ITO/glass working electrode placed inside the cuvette, Pt gauze counter electrode 

attached around the walls inside the cuvette with a rectangular hole against the sample, and 

Ag/Ag
+
 non-aqueous working electrode which was checked against Fc/Fc

+
 standard immediately 

before and after measurements.  The supporting electrolyte was 0.1 M Bu4NPF6 in CH2Cl2.  

Absorption spectra were recorded in 0.1 V potential increments using Agilent Cary 5000 

spectrometer.   

5.7.1.11. Tetraiodothiophene  

A solution of thiophene (16.8 g, 0.2 mol), iodine (89.4 g, 0.35 mol), and iodic acid (31.0 

g, 0.18 mol) in a mixture of water (80 ml), acetic acid (170 ml), carbon tetrachloride (65 ml), and 

sulfuric acid (4.5 ml) placed in a 1 L flask was stirred upon reflux at 120 °C for one week.  After 

the mixture was cooled down to room temperature, the red solid was filtered and washed 



140 
 

successively with water and 5% aqueous Na2S2O3 solution until the color of the solid turned to 

yellow.  Then, the solid was dried in air and recrystallized from 1,4-dioxane to give 103.0 g 

(88%) of tetraiodothiophene as yellow crystalline material.  
13

C NMR (DMSO-d6) δ 108.04 (s, 

2C), 90.78 (s, 2C). 

5.7.1.12. Tetradeuterothiophene  

Tetraiodothiophene (110.5 g, 0.188 mol) was added to a mixture of D2O (137.7 g, 6.88 

mol), acetic anhydride (78.0 g, 0.76 mol), and zinc dust (89.6 g, 1.37 mol), and the mixture was 

briefly stirred at 0 °C, allowed to warm to room temperature, and then the mixture was refluxed 

at 120 °C for one day.  After allowing to cool to room temperature, the resulting mixture was 

distilled at reduced pressure (10 mm Hg) at room temperature, and the distillate was collected in 

an externally cooled receiving flask.  The distillate formed two layers, and the top aqueous layer 

was removed using a pipet, and organic layer was neutralized with Na2CO3 and dried over 

Na2SO4.  This produced 12.8 g (78%) of tetradeuterothiophene as a colorless liquid.  
13

C NMR 

(CDCl3) δ 126.64 (t, J = 26 Hz, 2C), 124.94 (t, J = 26 Hz, 2C).   

5.7.1.13. 2,5-Dibromothiophene-D2  

A solution of NBS (60.0 g, 0.337 mol) in 25 ml of DMF was added dropwise over a 10 

min period to a stirred solution of tetradeuterothiophene (12.0 g, 0.135 mol) in 100 ml of DMF at 

room temperature, and the resulting solution was heated to 75 °C for 1 day.  The reaction 

mixture was quenched with ice water and extracted with chloroform. The organic extract was 

neutralized with Na2S2O3 and washed with water.  The organic phase was dried over Na2SO4, 

concentrated in vacuo, and the crude product was purified by column chromatography on silica 

gel with hexanes as an eluent to give 26.5 g (80%) of 2,5-dibromothiophene-D2 as a colorless 

liquid.  
13

C NMR (CDCl3) δ 130.28 (t, J = 26 Hz, 2C), 111.65 (s, 2C). 
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5.7.1.14. Surface-confined polymerization  

Due to sensitivity of the polymerization process to moisture and oxygen, the entire 

polymerization procedure was carried out in an inert atmosphere glovebox.  A solution of 

isopropylmagnesium chloride (0.26 ml of 2.0 M solution in THF, 0.525 mmol) was added 

dropwise to a stirred solution of 0.121 g (0.5 mmol) of 2,5-dibromothiophene in 10 ml of THF at 

0 °C, and the resulting solution was stirred for 1 h to yield a nominally 50 mM solution of 

Grignard monomer 4. A solution of Grignard monomer 4-D2 was prepared following the same 

procedure starting with 0.123 g (0.5 mmol) of 2,5-dibromothiophene-D2.  A substrate with a 

monolayer of catalytic initiator 3 was then placed in a solution of Grignard monomer 4-D2 (in a 

20 ml scintillation vial) and kept at room temperature for 1 h.  The substrate was then gently 

rinsed with toluene, and placed in a solution of Grignard monomer 4 (in a 20 ml scintillation vial) 

where it was kept 6 h to afford stratified PDT/PT thin film.  The film was then quenched with 

methanol and cleaned by successive ultrasonication with chloroform, acetone, methanol, and 

water, and dried in flow of nitrogen.   

5.7.1.15. Preparation of nanopatterned PT film using combination of particle lithography and 

surface-confined polymerization  

Monodisperse latex mesospheres (300 nm diameter) were washed with deionized water to 

remove surfactants by centrifugation.  A small volume (300 µL) of aqueous latex suspension (1 

wt%) was centrifuged at 14000 rpm for 15 min, and the supernatant was decanted.  The pellet of 

latex was resuspended in 300 µL of deionized water.  A drop of the latex suspension (30 µL) was 

deposited on the freshly cleaned Si(111) substrate and dried in air for 2 h.  During the drying step, 

as water was evaporating, the monodisperse latex spheres formed crystalline layers on the 

substrate, which provided a lithographic mask for patterning organosilanes.  Next, a 2×2 cm
2
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block of polydimethylsiloxane (PDMS, Sylgard 184, Dow Corning) was prepared for patterning 

octadecyltrichlorosilane (OTS).  A 30 µL volume of a 30% v/v solution of OTS in bicyclohexyl 

was deposited on the surface of the PDMS block and then dried quickly with a stream of 

nitrogen.  The “inked” PDMS block was placed on top of the masked silicon substrate.  The 

areas of contact between the latex mesospheres and substrate were protected from deposition of 

OTS.  After 1 h, the PDMS block was removed from the sample and the surface was rinsed with 

deionized water.  The mask of latex particles was removed completely by rinsing with ethanol 

and deionized water several times, using sonication.  After removal of the latex mask, a layer of 

OTS persisted on the surface to define periodic circular pores of uncovered substrate.  Surface-

immobilization of the Ni(II) catalytic initiator 3 within the uncovered surface was carried out as 

described above (method B).  Subsequent surface-initiated polymerization of Grignard monomer 

4 was performed following the procedure described above, with polymerization time 24 h.   

5.7.2. Preparation of the diblock copolymer films in Chapter 3 

5.7.2.1. Synthesis of diblock copolymer thin films  

Due to sensitivity of the polymerization process to moisture and oxygen, the entire 

polymerization procedure was carried out in an inert atmosphere glovebox.  All substrates and 

surface-immobilized monolayer of catalytic initiator 3 were prepared following the previous 

procedures in Chapter 2. A solution of isopropylmagnesium chloride (0.26 ml of 2.0 M solution 

in THF, 0.525 mmol) was added dropwise to a stirred solution of 0.121 g (0.5 mmol) of 2,5-

dibromothiophene in 10 ml of THF at 0 °C, and the resulting solution was stirred for 1 h to yield 

a nominally 50 mM solution of thiophene Grignard monomer. In order to prepare phenylene 

Grignard solution, 0.071g of 2-bromoiodobenzene was dissolved in anhydrous THF (0.25 mmol, 

10 mM) and stirred at 0 °C. Then, 0.13 ml isopropyl magnesium (2 M solution in THF, 0.26 
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mmol) was added by dropwise and stirred for 1 h to prepare a nominally 25 mM solution of 

phenylene Grignard monomer. For PT-b-PPP thin film, a surface-immobilized substrate with the 

catalytic initiator 3 was immersed into a solution of thiophene Grignard and kept at room 

temperature for time varying depending on the reaction conditions described in Chapter 3 to 

produce a polythiophene thin film (except for the kinetic study of homopolymer, all 

polymerizations to form polythiophene as the first block were carried out for 5 min). After 

polymerization, the substrate was rinsed with toluene and moved to a 5 mM solution of 

Ni(dppp)2 in toluene (10 ml in 20 ml scintillation vials) where they were kept at 40 °C for 20 h 

for reactivation. Then the substrate was washed with toluene and placed in a solution of 

phenylene Grignard monomer for 1 h (for the AFM images, reaction time was overnight). After 

completing polymerizations, the substrate was quenched by methanol and cleaned by sequential 

sonications with various solvent (chloroform, acetone, methanol, and DI-water) for 10 min each 

followed by drying under N2 atmosphere. To prepare PPP-b-PT thin film, a substrate with 

surface-immobilized monolayer of catalytic initiator 3 was immersed in a prepared solution of 

phenylene Grignard monomer (10 ml in 20 ml scintillation vials), and kept at room temperature 

for less than 1.5 h. After polymerization, “reactivation” was carried out. After reactivation, the 

PPP thin film substrate was rinsed with toluene and immersed in a solution of thiophene 

Grignard monomer for 1 h to yield PPP-b-PT thin film. Quenching and cleaning procedure was 

same with PT-b-PPP thin film mentioned above.  

5.7.2.2. Cyclic Voltammetry (CV) studies of diblock copolymer thin films  

The cyclic voltammetry studies were carried out using a three-electrode set up described 

in General Procedures section with a monolayer-modified ITO/glass working electrode,  
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Figure 5.5. Cyclic Votammetry (CV) studies of PT homopolymer thin film (red trace) and PPP 

homopolymer thin film (blue trace). 

 

Ag/AgNO3 non-aqueous reference electrode, and a Pt gauze counter electrode in 0.1 M Bu4NPF6 

solution in CH2Cl2 as supporting electrolyte. The sweep rate was 0.1 V s
-1

. 

5.7.2.3. XPS measurement of diblock copolymer thin films  

The XPS studies were conducted following the procedure described in the General 

Procedures section. All diblock copolymer thin films were prepared by the same procedure 

described above except for using 1,4-diiodobenzene to prepare solution of phenylene Grignard 

monomer.  

5.7.3. Preparation of PEDOT thin films 

5.7.3.1. Preparing isopropylmagnesium chloride lithium chloride complex (Turbo Grignard  

solution) 

1.7 g of lithium chloride (0.04 mol) was dissolved in 20 ml of isopropylmagnesuim chloride 

solution (2.0 M solution in THF) with vigorous stirring at room temperature and transferred to a 

schlenk flask to make 2.0 M solution of “Turbo Grignard”. 
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5.7.3.2. PEDOT thin films prepared with 2,5-dibromoEDOT and 2,5-diiodoEDOT  

Due to sensitivity of the polymerization process to moisture and oxygen, the entire 

polymerization procedure was carried out in an inert atmosphere glovebox. All substrates and 

surface-immobilized monolayer of catalytic initiator 3 were prepared following the previous 

procedures in Chapter 2. A solution of isopropylmagnesium chloride lithium chloride complex 

(Turbo Grignard, 0.26 ml of 2.0 M solution in THF, 0.525 mmol) was added dropwise to a 

stirred solution of 0.150 g (0.5 mmol) of 2,5-dibromoEDOT in 10 ml of THF at 0 °C, and the 

resulting solution was stirred for 1 h to yield a nominally 50 mM solution of 5-bromo-2-(3,4-

ethylenedioxithienyl)magnesium chloride monomer. To make a solution of 5-iodo-2-(3,4-

ethylenedioxithienyl)magnesium chloride monomer, 0.197g of 2,5-diiodoEDOT was dissolved 

in anhydrous THF (0.5 mmol, 10 mM) and stirred at 0 °C. Then, 0.26 ml isopropylmagnesium 

chloride (2 M solution in THF, 0.525 mmol) was added dropwise and stirred for 1 h to prepare a 

nominally 50 mM solution of Grignard monomer. A substrate with surface-immobilized catalytic 

initiator 3 was immersed into a solution of EDOT Grignard and kept at different temperatures for 

the time varying depending on the reaction conditions described in Chapter 4 to produce a 

PEDOT thin film. Quenching and cleaning procedure was followed the same as for the other 

surface-initiated olymer films describe above. 

5.7.3.3. Conductivity measurement of PEDOT films  

Conductivity of the PEDOT films was measured by a 4-point probe with Keithley 2400 

Sourcemeter. To test conductivity of iodine doped PEDOT thin film, a substrate with PEDOT 

thin film was kept under iodine vapor in a 20 ml scintillation vial for one day, before carrying 

out the measurement.    
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APPENDIX B: NUCLEAR MAGNETIC RESONACE (NMR) SPECTRA 

 

Figure Appendix B.1. 
31

P NMR spectrum of the reaction between compound 2 and 2 equivalents of Ni(dppp)2 to form Ni(II) catalytic 

initiator 3.  The reaction was carried out for 24 h in toluene at 45 °C, followed by removing toluene by evaporating in vacuo and 

redissolving the residue in THF to acquire the NMR spectrum.   
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Figure Appendix B.2.  
1
H NMR spectrum (400 MHz, THF-D8) of 2-triethoxysilyl-5-iodothiophene 2.   
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Figure Appendix B.3. 
1
H NMR spectrum (400 MHz, THF-D8) of the catalytic initiator 3 prepared as described on page 134. Due to 

the preparation procedure, in addition to 3, the sample contains ~1 eq. of Ni(dppp)2, and ~1 eq. of dppp.  
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Figure Appendix B.4.  
13

C NMR spectrum (100 MHz, CDCl3) of thiophene-D4.  
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Figure Appendix B.5.  
13

C NMR spectrum (100 MHz, CDCl3) of 2,5-dibromothiophene-D2.
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