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ABSTRACT 

 

 The main purpose of the research presented in this dissertation was to further understand 

the intricate and convoluted interactions between natural organic material, biological entities, 

and pollutants. This was achieved by utilizing humic acids (HAs) from differing sources, 

chemically modified humic acid, two biological entities (model biomembranes and Artemia 

Franciscana), and three types of pollutants (cations, surfactants, and carbon nanotubes).  

 Fluorescence spectroscopy and model biomembranes were used to measure the change in 

HA’s ability to interact with the biomembranes in the presence of cations. Three differently 

sourced HAs, chemical modified HAs, and a range of cations were studied to elucidate specific 

interactions that can occur in the environment. It was determined that the cations limited the 

ability of humic acids to interact with the biomembranes, which was attributed to humic acid 

conformation changes in the presence of cations, and the protection capacity increased as the 

softness of the cation increased.  

 Artemia Franciscana (Artemia) was utilized as an analytic tool to determine the changes 

in toxicity of surfactants in the presence of humic acid. Artemia were exposed to three different 

surfactants, Triton X-100 (Tx-100), cetylpyridinium chloride (CPC), and sodium dodecyl sulfide 

(SDS), for both hatching studies and in vivo 31P NMR. It was determined by hatching assays that 

Tx-100 caused mortality after hatching while CPC and SDS inhibited hatching. 31P NMR 

corroborated these findings by showing an increase in phosphodiester bonds in saline water and 

in the Tx-100 exposure while there was no increase in the presence of the other two surfactants. 

HAs from three different sources were added to the surfactant exposures which showed that HAs 

played a mediation role in terms of toxicity and the extent of mediation was dependent on the 

type of HA and surfactant.  
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 Artemia was also utilized to measure the toxicity of carbon nanotubes under a variety of 

conditions. Both single-walled and multi-walled carbon nanotubes that were either in the 

presence of humic acid or had been sonicated were studied. Overall, there was no significant 

carbon nanotube toxicity to the Artemia.  
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CHAPTER 1 

INTRODUCTION 

 

1.1 Over land and sea – our dependence on the environment 

 Both land and sea are becoming hot commodities in a world that has an increasing 

population size. The number of people occupying the globe in 2015 was ≈ 7.4 billion, which is 

more than double that of 1959 (≈ 3 billion) (Nations 2015). The population is expected to continue 

increasing so that by 2050 it will be ≈ 9 billion. The result of this extensive growth in population 

is a significant decrease in land area and water per person. This decrease is coupled with increasing 

demands for food, water, materials, energy, and waste deposits. These stressors on land and 

aqueous environments are a detriment to the quality of soils, water, biological organisms and 

human life. 

 A healthy ecosystem successfully provides habitats for all species, food, fresh water, fuel, 

raw materials, recreational and educational opportunities, cycling of nutrients, and many more 

important processes (Manahan 1994). Soil and water are necessary as they both play essential roles 

in keeping the ecosystem healthy. Considering the necessity of soil and water and the increasing 

demand and inevitable contamination of them, it is imperative to understand their roles in regards 

to pollutant and biological interactions. 

1.2 Aquatic environments  

 Approximately 71% of the Earth is covered in water and it is essential for living organisms 

for both biological survival and as habitats (USGS 2016). There are a wide variety of aquatic 

environments: swamps, rivers, lakes, and oceans. Saline water makes up 96% of the Earth’s 

surface water and can be found in oceans, bays, seas, lakes and estuaries (Shiklomanov 1993, 

USGS 2016). Humanity relies on these aquatic environments for not only the water itself but also 

the aquatic organisms they contain. Water is vital to aquatic organisms and the surrounding 
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environments, including plant life. Healthy aquatic environments rarely contain only pure water 

as there are a variety of other inputs to the system such as, but not limited to, gases, dissolved 

natural organic matter, biological waste, minerals and nutrients (Ibanez et al. 2007). These healthy 

aquatic ecosystems can be easily damaged by contamination either directly or through land 

drainage. 

1.3 Soils and natural organic material 

 Soils play essential roles in sustaining a healthy ecosystem. It is a medium for plant growth, 

a regulator of raw materials, it functions as a habitat for soil organisms, it cycle’s nutrients, stores 

organic carbon, and regulates water supplies and purification (Manahan 1994, Krumins et al. 

2013). Soils are composed of a complex system of clays, minerals, and organic carbon. In soils, 

natural organic matter (NOM) is a major source of organic carbon as it is composed of ≈ 50% 

carbon and it is important in many environmental processes in both land and water (Stevenson 

1994). NOMs are created by the degradation of plant, animal, and microbial matter and is thus 

omnipresent in both terrestrial and aquatic environments (Frimmel 1998). NOM and its 

interactions with other soil components lend to the quality of the soil as it creates good soil 

structure, provides pH buffering, and contributes to nutrient uptake and release (Stevenson 1994).   

 There are two classifications of NOM: non-humic substances and humic substances (HSs) 

(Stevenson 1994). Non-humic substances consist of things such as carbohydrates while HSs are 

polydisperse organic molecular assemblies that make up the majority of NOM.  

 Due to the origin of NOM, HSs’ composition is based on its geochemical origin and is 

incredibly complex. Its intricate chemical composition and polydisperse nature allows for HSs to 

interact with a variety of components in the environment such as biomembranes and pollutants 

(Koopal et al. 2004, Lamelas and Slaveykova 2007, Ojwang' and Cook 2013, An et al. 2015). 
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Pollutant interactions with HSs can influence their bioavailability which, in turn, will influence 

the fate and bioaccumulation of contaminants. However, these interactions and changes in 

bioavailability will be dependent on the type of HS, the chemical functionalization of the HSs, and 

the type of pollutant.  

 By studying different types of pollutants and different HSs, a greater understanding of the 

overall health of the environment can be achieved; which is the overall purpose of the studies 

presented in this dissertation.  

1.4 Aquatic organisms 

 As mentioned previously, NOM is known to interact with components in the environment, 

including organisms. Studies have shown that NOM can play both a toxic role as it can perturb 

biomembranes and a protection role as it can decrease toxicity of pollutants, depending on the 

environment (Lamelas and Slaveykova 2007, Ojwang' and Cook 2013, An, Jho et al. 2015, Deese 

et al. 2015).  

The aquatic environment is home to a large variety of species with a wide range of 

metabolisms and biochemistries. These organisms include algae, bacteria, small crustaceans, fish, 

and many more. Biodiversity is a very important aspect of the ecosystem and is an indicator of 

overall environmental health (Manahan 1994). Pollutants that are introduced into the aquatic 

environment may affect the biodiversity of the environment because they can affect different 

organisms in different ways depending on the biochemistry of a specific organism. 

Because of the complexity of NOM-pollutant interactions, model biological organisms 

have the ability to act as an indicator for any changes associated with the interactions such as 

reduced or increased bioavailability of the toxins.    
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1.5 Pollutants 

 With the increase in population, rapid industrialization, new technologies, and the 

widespread use of xenobiotic chemicals, it is inevitable that an increase in pollution will occur 

throughout the world. Even if chemicals are well characterized, complete interactions once in the 

environment will be questionable. The environment is complex and there are numerous 

components that the xenobiotic pollutants can interact with including soils, water, biological 

organisms, and other pollutants (Manahan 1994).  

 There are many concerns about the introduction of pollutants into both soil and aquatic 

environments as pollutants can be toxic and threaten the health of certain organisms, they can 

change the environment to become inhospitable to certain organisms, and they can bio-accumulate 

up the food chain and threaten the health of larger organisms and humans. The pollution of soil 

can lead to pollution of aquatic environments by leaching of pollutants into groundwater or through 

runoff (NRC 1997).  

 It is important to understand as many pollutants in as many environments as possible so 

we can understand the entire chemistry behind what is occurring in a contamination event. By 

studying the fundamentals of pollutant interactions in the environment, further studies can be done 

to either prevent contamination from occurring or to remediate the pollutant if necessary.  

1.6 Overview of studies presented 

The overall objective of the studies presented in this dissertation is to further understand 

the complex interactions between humic acids, pollutants, and biological organisms in an aquatic 

environment. 

When investigating environments such as real-life aqueous systems, there is always the 

problem of complexity due to interactions of the many different components available. Using a 
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systematic approach and creating a model environmental system with four “simple” components 

one can start to address the issue of complexity while still maintaining environmental relevancy. 

The four components are as follows: 1) water, 2) natural organic material, 3) biological entity, and 

4) pollutants. This method allows for the variation of the individual components in a systematic 

manner to better understand specific interactions occurring within the environment. 

Since these studies model an aquatic environment, water is the necessary first component. 

The second component, natural organic material (NOM) is omnipresent in environmental systems 

and thus it is important to consider the interaction between pollutants and NOM. The NOM chosen 

for these studies was humic acid (HA). Humic acid is a type of HS that dissolves in water at a pH 

2 or above. 

 The third component is the biological component, which includes model biomembrane 

systems and an aquatic crustacean Artemia Franciscana. These biological systems are considered 

to be the reporting system of the pollutant and HA interactions under different conditions. These 

interactions were measured using model biomembranes and fluorescence spectroscopy, Artemia 

hatching and viability assays, and by changes in Artemia embryo’s phosphometabolite profile as 

measured by 31P NMR.  

The final component is the pollutants. The pollutants studied and presented in this 

dissertation are a variety of cations, surfactants, and carbon nanotubes.  

Because of these four separate components, the experimental approach can be made 

increasingly complicated depending on which of the components are removed, added or varied.  

1.6.1 Biomembrane study with humic acids and cations 

Previous studies have shown that HAs perturb biomembranes under certain water 

conditions and those perturbations can be changed based on pH and temperature (Samson and 
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Visser 1989, Vigneault et al. 2000, Elayan et al. 2008, Ojwang' and Cook 2013). These studies 

were performed in “clean” conditions so there is little information about how those HA-

biomembrane interactions changes based on any other environmental constituents such as 

pollutants. The study in chapter 3 was performed to study the changes in the perturbation of 

biomembranes by HAs under environmental conditions containing metal cations and elucidate the 

driving forces or interactions behind any changes. The concentrations of metal cations found in 

aqueous environments are increasing due to water acidification by both natural and human sources 

so it is necessary to understand how they can affect HA interactions since cations can interact with 

humic substances by both electrostatic and chelating mechanisms(Schindler et al. 1980, Tipping 

2002, Tipping et al. 2002).  

It is important to understand how humic acids interact with cellular membranes in the 

presence of cations. By using this phenomena and fluorescence spectroscopy the passive 

interaction of humic acid with 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) large 

unilamellar model biomembranes in the presence of cations can be studied. The chosen cations 

had a range of charges and affinities for different humic acid components. The cations studied 

were: K+, Na+, Mg+2, Ca+2, Mn+2,  Co+2, Cd+2, Fe+3, and Al+3.  

Humic acids can be chemically modified in order to determine which functional groups 

were responsible for the permeation of biomembranes and the binding of the cations (Wise et al. 

1946, Almendros 1994, Chilom and Rice 2009). The chemical modifications performed were: (i) 

bleaching to remove aromatics, (ii) Soxhlet extraction to remove lipids, and (iii) acid hydrolysis 

to reduce O – and N- alkyl groups.  
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1.6.2 Surfactants and Artemia Franciscana 

Surfactants are amphiphilic compounds that are heavily used in both industry and 

households, inevitably ending up in the environment, and many are known to be toxic to aquatic 

species (Stalmans et al. 1991, Zoller 2004, Ostroumov 2006). Studies presented in Chapter 4 and 

5 were performed not only to better understand the toxicity of different surfactants to Artemia 

francsicana (Artemia) but also to better understand how HAs can influence that toxicity. 

In this work, Artemia was utilized as the biological component for measuring toxicity of 

three different surfactants, cetylpyridinium chloride (CPC, cationic), Triton X-100 (Tx-100, non-

ionic) and sodium dodecyl sulfate (SDS, anionic) in the presence of HAs from three different 

sources. To further understand which HA moieties interact with the surfactants, chemical 

modification was done to remove individual components, as listed above.  

 Artemia embryos were also used with in vivo 31P NMR and a peristaltic pump system in 

order to determine whether the surfactants change the Artemia’s phosphometabolite profile. By 

utilizing in vivo 31P NMR, near “real time stress” on the embryos and embryo development was 

measured. The Artemia were exposed to the three surfactants. These results were verified with 

HPLC on Artemia embryo phosphometabolite extractions. Humic acid was added to the toxic 

surfactant solutions and the phosphometabolite embryonic profile of Artemia was measured and 

compared to the profile under toxic conditions to further elucidate any interactions occurring 

between the surfactants and the HA.  

1.6.3 Carbon nanotubes and Artemia  

 Carbon nanotubes are a fairly new technology that is becoming widely produced and used 

in areas such as medical science, electronics, composites, and even clothing. They are hollow 

graphite cylinders with high thermal conductivity, high mechanical strength, and low mass density 
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(Thomsen et al. 2007, Kessler 2011). Since they are a relatively new technology, there are limited 

and opposing studies on their impact on aquatic environments (Wang et al. 2009, Mwangi et al. 

2012, Jackson et al. 2013, Allegri et al. 2016, Kalid et al. 2016). The study presented in chapter 6 

is an attempt to understand the toxicity of carbon nanotubes to Artemia and how HAs might 

influence their behavior in the environment. 

 Hatching assays were performed with Artemia under varying CNT conditions including 

CNTs of different concentrations, diameter and type. HA was added in varying concentrations to 

determine any affect they might have on the interactions of CNTs with the Artemia. Finally, 

sonication was performed to the CNTs to see if any physically changes could change the chemical 

properties or toxicity of the CNTs.  

 To conclude, the work presented in this dissertation is a systematic initial attempt at 

studying and explaining a multitude of HA-pollutant-biological interactions that are occurring 

within aquatic environments. 
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CHAPTER 2 

REVIEW OF RELATED LITERATURE 

 

2.1 Humic substances 

Humic substances are molecular assemblies of low molecular weight compounds that are 

created by the decomposition of natural matter and are highly resistant to further decomposition 

(Stevenson 1994). Humic substances can be found in soils and waters in both particulate and 

dissolved forms. They are split into three fractions based on their ability to dissolve in water under 

certain pH conditions: humin, fulvic acid, and humic acid. Humin is completely insoluble in water, 

fulvic acid is water soluble at all pHs, and humic acid is water soluble when pH is greater than 2.  

The complexity of humic substances should not be underestimated. A detailed study by 

Hertkorn et al. on a single humic substance (Suwannee river fulvic acid) utilizing Fourier transform 

ion cyclotron (FTICR) mass spectrometry revealed that the C,H,O-compositional space has 100% 

coverage of all theoretical space (Hertkorn et al. 2008). Stated differently, all theoretically possible 

C-H-O combinations were measured by different modes of ionization and there is evidence to 

suggest that the observed spectra only represent a simplified picture of the complex molecular 

assemblies. This complexity leads to a polydisperse environmental system that plays a role in 

distinct interactions with a variety of other environmental components, which lends to the 

necessity that HSs and their interactions are studied in detail when considering an environmentally 

relevant system. 

2.1.1 Sources, isolation and characterization of humic acids 

As a fraction of HSs, humic acids are considered a polydisperse, heterogeneous, and 

complex mixture of organic molecules that are combined by interactions between the functional 

groups to create supramolecular structures. It is estimated that the weakly associated molecular 
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assemblies range between 200 and 6100 Da (Sutton and Sposito 2005). The hypothetical structure 

of HAs, seen in Figure 2.1, illustrates just some of the complexity and the variety of functional 

groups that HAs can have; however, it is now the consensus that HAs are molecular assemblies 

rather than a single macromolecule.  

Aquatic humic acids can be found both in the solid phase (sediment) and dissolved in the 

liquid phase (water). Degraded microbial matter, plant matter, and animal matter in the aqueous 

phase can degrade until they become recalcitrant and form humic material (humification). The 

solubility of HA also allows it to be transported into aquatic environments from terrestrial sources. 

It is estimated that approximately 2 x 108 tons per year of organic carbon is transported to the 

ocean (Frimmel 1998). 

The concentrations of natural organic material in aqueous environments typical range is 

0.5 – 100mg organic carbon/L (OC/L) (Frimmel 1998). The concentration for humic acid is 

reported by mg OC/L or parts-per-million (ppm) rather than molarity because the complexity of 

HA does not allow for an exact molecular weight to be known.  

The isolation of humic substance fractions is performed on source materials of terrestrial 

or aquatic origin. Terrestrial sources of humic acid can include soil, peat and lignite while aquatic 

sources include lakes, rivers, swamps, and marshes.  Humic substance fractions are isolated from 

terrestrial sources via an alkaline extraction with aqueous NaOH. 

The extract contains humic and fulvic acid along with dissolved contaminates such as 

cations. Humic acids are precipitated by lowering the pH of the extract to below 2 and then 

removing any salts by cation exchange, dialysis or other purification techniques. This results in 

the three separate fractions that further purified and finally freeze-dried for storage and 

characterization (IHSS). 
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Figure 2.1 Hypothetical structure of humic acid (Schulten and Schnitzer 1993) 

 

There are two methods to isolate humic and fulvic acids from aquatic sources: using an 

XAD-8 resin or reverse osmosis. The dissolved organic matter in the aqueous phase is fractionated 

via the XAD-8 resin into hydrophobic and hydrophilic fractions, with the hydrophobic fraction 

being further fractionated into humic and fulvic acid by pH adjustment as described above. Reverse 

osmosis has also been used to separate and concentrate dissolved natural organic matter from 

water. For example, in 2013, a team from the International Humic Substance Society (IHSS) 

coupled the reverse osmosis method to an electrodialysis method to separate the dissolved NOM 

and subsequently remove the problematic salts from the Mississippi River in Minneapolis, MN 

(IHSS 2013).  

Because of the complexity of HAs, a variety of characterization techniques are used. One 

important characteristics of HAs is the elemental composition and, by statistical analysis, certain 

attributes can be elucidated for different HS fractions (Rice and MacCarthy 1991).  Total carbon 
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is determined by measuring both the total carbon (TC) and inorganic carbon (IC) and then 

determining the amount of total organic carbon (TOC) by calculating the difference between TC 

and IC. Other elements are quantified by elemental analyses such as inductively coupled plasma 

atomic emission spectroscopy (ICP-AES), ICP-mass spectrometry, or flame atomic absorption 

spectroscopy (AAS). By comparing the elemental percentages of C, H, N, O, S, and P of ash-free 

HAs and FAs, Rice and McCarthy determined that there are statistical differences between the 

composition of different HS fractions and that the elemental composition was dependent on the 

source of the HS. 

Other important characterization techniques for HSs are fluorescence and UV spectroscopy 

measurements. These types of measurements give information regarding the functional groups of 

the HAs. UV analysis has been used to estimate aromatic carbon content by measuring absorbance 

at 254 or 280 nm, which was further validated by other techniques (Chin et al. 1994, Kalbitz et al. 

1999, Weishaar et al. 2003). Fluorescence spectroscopy, being that it is more sensitive than UV 

spectroscopy, is a widely used technique to provide detailed information on the fluorophores of 

HAs (Chen et al. 2003, Coble 1996, Cook et al. 2009, Stedmon et al. 2003). Fluorescence studies, 

especially excitation-emission studies, of dissolved organic matter have shown that they contain 

two major fluorophores that are attributed to moieties that are both protein-like (emissions 

characteristic to that of tyrosine and tryptophan) and humic-like molecules. Emission-excitation 

matrices (EEMs) have the ability to characterize HAs as either aquatic or terrestrial sourced based 

on the wavelength of excitation and emission of their fluorophores(Cook et al. 2009). These 

differences are attributed to higher heterotrophic activity during degradation of organic matter in 

aquatic environments versus terrestrial (Coble 1996).  
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An important characterization technique for HAs is nuclear magnetic resonance 

spectroscopy (NMR). Specifically, solid state ramp cross polarization magic angle spinning (CP-

MAS) 13C NMR. Unlike the other techniques mentioned previously, CP-MAS 13C NMR requires 

solid and pulverized HA samples, so aquatic samples must be freeze dried before characterization. 

However, solid state 13C NMR obtains qualitative information on the different carbons present in 

certain moieties such as aliphatics, carbohydrates (O-alkyl, N-alkyl), aromatic and carboxyl. It also 

quantifies the percent composition of those functional groups (Cook 2004, Mao et al. 2000).  

2.1.2 Composition of humic acids  

Since humic acids are created by the degradation of organic matter (e.g. plant materials), 

they are comprised mostly of carbon (45-64%), oxygen (31-46%), hydrogen (3.2-5.7%), nitrogen 

(0.6-3.8%) and small amounts of sulfur (0.3-1.3%) and phosphorous (<0.01-0.6%) (Thorn et al. 

1989). The compositions of humic acids are dependent on their biogeochemical origin. For 

example, HAs extracted from a terrestrial source will contain a higher concentration of aromatic 

moieties (many sourced from lignin) while those from an aquatic source will have higher aliphatic 

concentrations (Gauthier et al. 1987, Stevenson 1994).  

 The main functional components in any HA are aliphatics, aromatics, and carbohydrates. 

It also has hydrophobic and hydrophilic domains.  These different characteristics enable HA to 

have interactions with many different components in the environment.  

2.1.3 Chemical modification of humic acids 

Chemical modification (or chemical editing) can be utilized to change the composition of 

HA by removing or reducing certain components by chemical processes.  The main techniques can 

reduce the lipid, carbohydrate or aromatics components of the HA. By reducing one of the 
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components of the HA, it can be determined what role that component may be playing in the 

interactions between the HA and its environment.  

 The lipids found in HA are mainly derived from plant matter. They can come from plant 

cuticlar materials that make up the waxy protective coating on leaves. The lipid extraction method 

is a Soxhlet extraction with a benzene:methanol azeotrope. After extraction, the solvent is simply 

removed by evaporation (Chilom et al. 2009). 

 The carbohydrate components are primarily found in cellular walls, lignins and stored 

starches. The method for removing the carbohydrates from the HA is acid hydrolysis by refluxing 

with 6M HCl (Almendros 1994). The acid hydrolysis breaks the carbon-oxygen bonds of the 

carbohydrates as well as the carbon-nitrogen bonds of the peptides. The chemical editing process 

also severs peptide linkages that originate from plant and microbial proteins. 

 Aromatics make up a large portion of the humic material because of the photosynthetic 

protein complexes of plants that are mainly aromatic as well as lignin-based materials. The 

aromatic components are removed by a bleaching procedure in which the HA is bleached in a 

solution of NaClO2 and acetic acid for three days. The original procedure, by Wise et al, was 

originally used to isolate wood cellulose; however it was modified by increasing the bleaching 

time (Gunasekara et al. 2003, Wise et al. 1946). 

2.1.4 Types of possible humic acid interactions 

Because of the diversity and complexity of HA, it can engage in many different types of 

interactions with a variety of substances. Interactions occur because HA contains hydrophilic and 

hydrophobic moieties, strong metal binding sites, a variety of functional groups, and have charged 

functional groups (Tipping 2002).  
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An important intermolecular force that plays a role in interactions between HAs and other 

environmental components is hydrogen bonding (H-bonding). H-bonding is typically defined as a 

special type of dipole-dipole interaction that takes place between a hydrogen attached to a highly 

electronegative atom or “proton donor” (e.g. F, N, O, S, and C) and a proton acceptor (e.g. N, P, 

O, S, and Se or multiple π-bonds) (Gilli and Gilli 2000). Hydrogen bonding can be classified intro 

five types: ordinary, double charge assisted, negative or positive charge assisted, resonance 

assisted, and polarization assisted (Gilli et al. 2009). Ordinary H-bonding is an electrostatic bond 

and is, thus, relatively weak. It has been postulated that the other types of H-bonds, listed above, 

have covalent characteristics in addition to the electrostatic interactions (Gilli and Gilli 2000, Gilli 

et al. 2000). Since HAs contain functional components such as carbohydrates, amino acids and 

lignin, it also has the ability to H-bond. For xenobiotic pollutants, H-bonding likely involves N, 

O, and S donors and acceptors (Pignatello 2011). It has also been postulated that H-bonding plays 

a major role in the interactions between HAs and cellular biomembranes (Ojwang' and Cook 2013).  

 H-bonding is also an important phenomenon to discuss when considering an aquatic 

environment because hydrophobic and hydrophilic interactions are dependent on it. Water has 

unique properties that are attributed to H-bonding. Each water molecule consists of two hydrogen 

atoms and one oxygen atom with two lone pairs of electrons. This specific molecular structure 

allows for significant H-bonding between water molecules (Dunnivant and Anders 2006). In an 

aqueous medium, the H-bonding between water molecules will be thermodynamically favored 

over other interactions. Hydrophobic interactions are formed when a hydrophobe is introduced 

into an aqueous medium and the water molecules re-arrange and force hydrophobic entities 

together so that the energy of the system is still as low as possible. These hydrophobic/hydrophilic 

interactions are considered to be slightly strongly than Van der Waals forces (Atkins and de Paula 
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2011). The molecular assemblies of HAs, biomembrane-HA interactions and HA-pollutant 

interactions can all be affected by the phenomenon of hydrophobic/hydrophilic interactions 

(Ghabbour and Davies 1999, Ojwang' and Cook 2013, Tan et al. 2009). 

 Another important type of interaction between HAs and other environmental components 

is Coulombic, or “electrostatic”, interactions. Adsorption of certain compounds, such as metal 

cations, has been attributed to electrostatic interactions (Vermeer et al. 1998). HAs tend to be 

anionic at environmentally relevant pH due to moieties such as carboxylic acid groups.  The 

electrostatic interactions of HAs can both attract and repel pollutants or biomembranes depending 

on the overall charge and the pH of the environment (Ojwang' and Cook 2013, Tipping 2002, 

Tipping et al. 2002).  

 Many HAs contain aromatic ring structures that can be polar, nonpolar, or have 

characteristics of both depending on their substituents (Brown 1975). Because aromatic moieties 

are present in HA, there is the ability of HAs to undergo π-π interactions between other aromatic-

containing environmental constituents. Pi-stacking (or π-π stacking) are noncovalent interactions 

between aromatic π-bonds. These π-bonds have been modelled and found to take three different 

conformations: the sandwich, T-shaped, and parallel displaced (see Figure 2.2). These interactions 

are due to the alignment of the positive electrostatic potential on one ring with the negative 

electrostatic potential on the other ring. Through computations, it has been determined that the 

most stable conformations are likely the parallel displaced and the T-shaped (Sinnorkrot and 

Sherrill 2004).  

Pi-stacking or π-π interactions are known to play major roles in the tertiary structure of 

proteins and other macromolecular structures, the stabilization of the double helical structure of 
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DNA and complexation in systems containing two compounds with π-containing moieties (Hunter 

and Sanders 1990). 

 

 
Figure 2.2 Schematic of π-π stacking 

 

It stands to reason that HAs, being molecular assemblies of molecules containing as much 

as 20-60% total carbon as aromatic moieties (Mao et al. 2000, Schnitzer 1991, Simpson et al. 

2001), would also take advantage of the π- π interactions for conformation as well as interactions 

with other environmental constituents.  

2.2 Biological component 

2.2.1 Model biomembranes 

In every organism, the cellular membrane plays an essential role in biological processes so 

it is important to understand how other environmental constituents can affect the integrity of the 

membranes as it can also affect the health of the organism. Cell membranes consist of 

phospholipids, carbohydrates and proteins (Koster and van Leeuwen 2004). The role of the 

membrane is to separate the cell’s interior from its external environment as well as control 

transport of selected compounds in and out of the cell. There are two processes by which species 

can enter or exit the cell: passive and active transport. Passive transport occurs through the 

phospholipid bilayer while the proteins and carbohydrates in the membrane regulate active 
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transport. The complexity of real cells can have drawbacks when trying to mechanistically study 

the passive membrane perturbation by environmental pollutants. Lipid vesicles, or liposomes, have 

been used extensively in xenobiotic toxicological assessment studies as model biological 

membranes (Zepik et al. 2008). Membrane perturbation can be studied with a model cell membrane 

give insight into the fundamental processes of passive transport and reduce the complexity added 

by a real cell system. 

These model biomembrane systems can be created by amphiphilic phospholipids that 

mimic the natural bi-layered spherical-shaped structures of real cell membranes. The phospholipid 

bilayer is two layers of the phospholipid arranged such that the hydrophilic phosphate head groups 

are aligned with the center of the vesicle (containing an aqueous buffer solutions) or towards the 

external aqueous matrix. The hydrophobic lipid chains are arranged stacked in the center of the 

bilayer and vesicle formation is driven by hydrophobic and hydrophilic interactions.  

The lipid chains of the phospholipid are “packed” within the bilayer and the tightness of 

that packing is based on the saturation of the lipid as well as the temperature of the environment. 

Phospholipids have two crystalline phases: liquid and gel (solid). The phase change between the 

two is at a specific transition temperature (Tm) that is dependent on the degree of lipid saturation. 

The more saturated the lipid chains, the higher the phase transition temperature. The packing of 

the lipids is also prone to packing defects. The number of packing defects will increase the closer 

the temperature is to the transition temperature. Permeability of the membrane will also increase 

as the temperature nears the transition temperature because of packing defects. 

The permeation of the membranes can be investigated by fluorescence spectroscopy by 

encapsulating a fluorescent dye within the liposome and measuring the changes in fluorescence 

intensity as the membrane is exposed to different compounds (Vigneault et al. 2000). As 
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mentioned briefly above, HAs have been shown to interact with biomembranes and have the ability 

to permeate them. The mechanism of HA-biomembrane interactions was determined through a 

number of different studies, all leading to the conclusion that the permeation of biomembranes by 

HA is a two-step process. First, studies by Maurice et al. discovered that fulvic acid (FA) had a 

preferential adsorption to biomembranes at an acidic pH (Maurice et al. 2004). This work was 

corroborated by Campbell et al – who also discovered that once the HS was adsorbed to 

biomembranes, the HSs increased permeability with HAs having the greatest effect out of all the 

HS fractions (Campbell et al. 1997, Vigneault et al. 2000). Further studies by the Cook research 

group determined that HAs perturbed biomembranes at acidic pHs, increased temperature 

increased permeation, and that there was a slow-step and fast-step to the permeation process 

(determined by kinetics) (Elayan et al. 2008, Ojwang' and Cook 2013). These studies led to the 

mechanism by which HAs interact with biomembranes which can be seen in Figure 2.3. 

 

  
 

Figure 2.3 Proposed adsorption/absorption HA-biomembrane interactions at acidic pH 

The first step is an H-bonding adsorption step between the HAs and the phospholipids; 

which was determined by the fact that an acidic pH was necessary for the initial adsorption. At an 
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acidic pH, the HAs carboxylic acid groups are protonated, allowing for H-bonding or bridging. 

The second step of the interaction is an absorption step, which is the permeation of HA into the 

biomembrane bilayer. This occurs due to hydrophobic interactions in which the hydrophobic 

moieties of the HA penetrate to the hydrophobic inner-layer of the lipid biomembranes (see Figure 

2.3). Kinetics determined that the second step had both fast and slow aspects to the absorption 

mechanism. This was determined to be caused by different types of hydrophobic moieties within 

the HA.  

2.2.2 Artemia Franciscana 

 Aquatic toxicology is a large field of study in which the toxicity of a compound is tested 

with aquatic organisms from a variety of aquatic environments such as fresh water, saline water, 

and sediment environments. Usually these studies are performed to determine specific toxicity 

levels of a compound for a particular organism - usually ones that are ecologically relevant - for 

risk assessments and greater understanding of toxicity mechanisms. However, in the studies 

presented here, the aquatic organism, Artemia franciscana (Artemia), and the aquatic toxicology 

methods were used as indicators to measure interactions between HAs and pollutants known to be 

toxic to the Artemia.  

Artemia (commonly known as brine shrimp) are aquatic bisexual micro-crustaceans that 

have been used extensively in toxicity studies. Artemia have been widely used in laboratories 

because they are commercially available, the cysts (eggs) can stay dormant for long periods of 

time, they are easy to hatch, they have a short life span and their embryogenesis is well known. In 

addition to the simplicity of the procedures, lower volumes of toxicants and solutions are needed 

because of their small size. An unexhausted list of contaminants studied with Artemia includes 

metals, trace elements, toxic cyanobacteria, pharmaceuticals, organic solvents, oil dispersants, and 
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silver nanoparticles (Arulvasu et al. 2014, Barahona and Sánchez-Fortún 1999, Cotou et al. 2001, 

Kokkali et al. 2011, MacRae and Pandey 1991, Matthews 1995, Rodd et al. 2014). An interesting 

study by Parra el al. determined that there were significant correlations between Artemia and mice 

toxicity of autochthonous plant extracts (Parra et al. 2001). By being able to correlate Artemia 

toxicity with mammals, it reduces the need for expensive and time-consuming bioassays with 

mammals. Artemia have even been sent to space to study their development in a microgravity 

environment (there were no measurable alterations in development during spaceflight) (Spooner 

et al. 1994). 

Artemia belong to the class Branchiopoda that also includes another common test 

organism, Daphnia. They are found in hyper-saline environments such as coastal lagoons, man-

made saltpans and permanent salt lakes. There are two main bioassays using Artemia: hatchability 

assays and mortality of nauplii. The viability of cysts after exposure and the mortality of the nauplii 

can assess differences in sensitivity of the Artemia for a certain pollutant at different stages of their 

life cycle. Hatchability assays measure the ability of Artemia to hatch from their cysts under certain 

pollutant or environmental conditions as a decrease in hatching can indicate a toxic response. 

Mortality assays measure the viability of the Artemia after they have hatched. 

The stages of growth are well defined for Artemia and is illustrated in the Figure 2.4. The 

“zero” time point is the point in which the Artemia are introduced into their saline hatching 

medium. The first stage (A in Figure 2.4) is when the Artemia embryo is encapsulated in a hard 

shell or “cyst”. After approximately 18 hours within the hatching medium, the cyst begins to break 

open and the embryo begins to emerge. The embryo will completely remove its self from the cysts 

but still be encased in an inner, flexible, membrane – this is known as the “umbrella stage” based 

on the shape of the Artemia embryos at this time. At approximately 24 hours, they will completely 
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hatch into the juvenile stage (instar I) and then, between 36 and 48 hours, they will molt into their 

first adult stage (instar II).  

The embryonic and juvenile Artemia get their energy (food) from their yolk but after they 

molt into the adult stage (instar II) they begin to feed on particulate matter such as algae. Under 

good conditions, the Artemia will continue to molt several more times to a breeding stage where 

the process begins again with a new generation (Neumeyer et al. 2015, Stappen). 

 
Figure 2.4 Artemia stages of growth (Neumeyer et al. 2015): A: Encapsulated cyst; B: emergence; 

C: “umbrella stage”; D: juvenile (instar I); E: adult (instar II) 

 

As mentioned previously, not only is the stages of growth of Artemia well characterized, 

but so is their embryogenesis; which is the formation and development of the embryos. A multitude 

of studies have been performed on Artemia embryos. These embryogenesis studies include, but 

are not limited to, enzymatic processes during development (many different enzymes), gene 

expression, ribosomal RNA structure and expression, histone roles and structures, trehalose and 

its role in resumption of metabolic processes, intracellular pH changes, protease inhibitors, and 

respiratory and osmotic pressure changes (Busa et al. 1982, Chen et al. 2009, Clegg 1997, Covi et 
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al. 2005, Kwast et al. 1995, Spooner et al. 1994, Stappen , Wang et al. 2007, Warner and Clegg 

2001, Warner et al. 1989, Warner et al. 1995, Zhu et al. 2009).   

 Of particular interest for the studies in this dissertation is the ATP cycle (Figure 2.5), 

guanosine triphosphate usage and the gene expression of Artemia embryos during development.  

 

Figure 2.5 Adenosine triphosphate (ATP) cycle 

The ATP/ADP cycle is an important biochemical phenomenon that provides short-term 

energy storage and use for cells. Adenosine triphosphate (ATP) consists of an adenosine (a purine 

nucleoside) and three phosphates. ATP is converted to adenosine diphosphate (ADP) by removal 

of a phosphate group, during which energy is released to the cells for use in processes such as 

development, synthesis, and transport. The major bi-product of this conversion is inorganic 

phosphate (Pi). During times of stress, cells require energy in order to combat the stress on the 

organism. This results in a depletion of ATP in the cells as the demand of energy increases, while 

also increasing the concentrations of both ADP and Pi. Since ATP/ADP concentrations can change 

during stress, monitoring them can indicate how a cell is handling certain stressors. Because they 

contain phosphorous, ATP, ADP, and Pi can all be monitored by 31P NMR (discussed later). Pi is 

also an indicator of intracellular pH within cells as the 31P NMR chemical shift of the Pi peak is 

dependent on pH (Moon and Richards 1973).  
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Guanosine triphosphate (GTP) is known to also play a role in providing energy to an 

organism as well as acting as a substrate in the synthesis of RNA and DNA. It has been established 

that [GTP] increases over time during the embryogenesis of Artemia; which indicates a growth in 

the system (Warner and Finamore 1967). Artemia embryos have a high concentration of guanosine 

diphosphate before any development occurs and this concentration decreases over time. Warner 

and Finamore postulated the following mechanism (GMP = guanosine monophosphate): 

GMP + GDP             [guanosine – 5’ – P-P-P-5’-guanosine]      guanosine + GTP       (1) 

 The opposite was also found to be true: when there is stress on the system, [GTP] 

decreases. Warner and Clegg performed a study on Artemia embryos during diapause that 

measured the concentration changes of some nucleotides, metabolites, and proteins over long-term 

stress (years) (Warner and Clegg 2001). Their results indicated that [ATP] stayed fairly steady 

during the first stage of stress while guanosine triphosphate [GTP] declined slowly throughout the 

process. Although the total processes are still unclear, they came to the conclusion that GTP plays 

a role in supplying energy as the embryos undergo stress which led them to the theoretical 

mechanism shown in Figure 2.6.  

2.3 Pollutants 

2.3.1 Cations 

 Metal cations are abundant in aquatic environments due to both natural and unnatural 

sources. Common cations such as Na+, K+, and Ca2+ are found in large quantity in aquatic 

environments. Sodium and calcium can be found in areas where fresh water and salt water meet 

or in areas where there is run-off from mineral deposits or industrial sites. Other cations like less 

abundant metals: Al3+, Fe3+, Mn2+, Mg2+, Co2+ and Cd2+ can also be found in aquatic environments. 

These cations are becoming more abundant because of fresh water acidification. As water becomes 
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more acidic, these cations can be released from bedrock and sediment. This acidification is 

especially concern with Al3+ because of its high toxicity, as the Al3+ species is more readily 

available in acidic waters.  

 It is well established that cations and HAs undergo binding interactions and Tipping 

characterized the binding sites of HAs for cations in three categories: 1) non-specific binding, 2) 

abundant weak sites, and 3) less-abundant strong sites (Tipping 2002). The non-specific binding 

sites are defined as sites that likely engage in electrostatic interactions but are not specific to a 

certain type of cation. Abundant weak sites are those that can engage in binding or chelation with 

a large number of cations – such as carboxyl acid functional groups. Finally, the less-abundant 

strong binding sites are those sites that contain atoms such as N or S that will only interact with 

some cations. A variety of both sorption studies and toxicity studies have shown that cations 

interact with HAs (Van Dijk 1971). The toxicity studies have shown that some toxic cations, in 

the presence of HA, become less bioavailable to the organisms in question (Kalis et al. 2006, 

Lamelas and Slaveykova 2007). The study by Kalis showed that although some the bioavailability 

of cations could be reduced by HA, in the presence of multiple cations, other cations were more 

bioavailable. They determined this to be due to competition of the cations to the binding sites of 

the HAs and those with higher affinities to HA (Cu, Pb, and Fe) bound to the organic matter while 

cations with lower affinities (e.g. Cd, Zn, Mn) were more available for organism uptake. This 

further illustrates that HA has different binding sites and affinities for different cations. 

 Unlike the cation toxicity studies, the study presented in Chapter 3 of this dissertation 

reports the changes in the ability of HAs to permeate biomembranes (as mentioned above) when 

different cations are in the environment. This allows for the determination of not only how cations 
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bind to HAs but also how binding can change the conformation of the HAs in a way that may 

affect other environmental interactions.   

2.3.2 Surfactants 

Many surfactants are commercially available and used widely in every-day life. They are 

found in household cleaning products, personal care products (soaps), paints, pesticide solutions, 

polymers, oil recovery, paper industries, and more. Because of this wide usage, they are commonly 

introduced into the environment. These compounds are amphiphilic and fall into four main 

categories: nonionic, zwitterionic, cationic and anionic. Nonionic surfactants have no net charge 

while zwitterionic have both cationic and anionic moieties. Cationic surfactants have a cationic 

head-group and anionic surfactants have an anionic head-group (Kosswig 2012).   

Surfactants can make their way into the environment through a variety of pathways as 

illustrated in Figure 2.6. One is through household and industry because although wastewater 

treatment centers may remove some of the surfactants that enter the water system, it has been 

shown that detectable levels still persist (Rogers 1996, Stalmans et al. 1991, Waters and Feijtel 

1995). In addition, some surfactants are deliberately introduced into the environment to remediate 

contamination by other pollutants or they simply run-off from industry sources. Surfactants are 

also added into pesticide and herbicide solutions to increase their solubility. All of these sources 

eventually lead the surfactants into the aquatic environment. 

Most surfactants have a hydrophilic (polar) head group and hydrophobic (nonpolar) tail. 

Because of this amphiphilic nature, surfactants form micelles (spherical assemblies) at a defined 

concentration known as the critical micellar concentration (CMC). When the concentration of the 

surfactant is below the CMC, the surfactant exists as its monomers (Luckey 2008).  
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Figure 2.6 Environmental pathways of surfactants into the aquatic environment (Rogers 1996, 

Stalmans et al. 1991)  

 

Triton-X 100 (TX-100; C14H22O(C2H4O)n where n = 9 or 10) is a common nonionic 

surfactant used extensively in laboratories and it contains a hydrophilic polyoxyethylene head-

group (with approximately 9 – 10 repeats) and octylphenol, seen in Figure 2.7. It tends to be mild, 

but it can be toxic and will disrupt model biomembranes (liposomes). The CMC for Tx-100 is 0.22 

– 0.24 mM or approximately 142.34 – 155.02 ppm (Triton surfactants: FDA status of triton 

surfactants  2010). 

 
Figure 2.7 Molecular structure of Triton X-100 
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Cetylpyridinium chloride (CPC; C21H38NCl) is a cationic surfactant that is used as an 

antiseptic in household items such as mouthwashes and navel sprays (Witt et al. 2005), its structure 

can be seen in Figure 2.8. It is, however, known to be toxic to animals and aquatic organisms. The 

CMC for CPC is approximately 0.12mM or 40.8 ppm (Safety data sheet: Cetylpyridinium chloride  

2015). 

 
Figure 2.8 Molecular structure of cetylpyridinium chloride 

 

An example of a common anionic surfactant is sodium dodecyl sulfate (SDS;  

NaC12H25SO4), Figure 2.9. It is found in many domestic cleaning products because of its low-cost 

synthesis from coconut and palm oils and its effectiveness at dissolving oils and lipids. It is also 

used commonly to lyse cells in laboratories. The CMC for SDS is approximately 8.2 mM or 23.6 

ppm (Moroi et al. 1974). 

 
Figure 2.9 Molecular structure of sodium dodecyl sulfate 

There have been a variety of studies to determine the interactions and binding of surfactants 

by HA. Ionic surfactants are expected to interact with HAs through both electrostatic interactions 

and hydrophobic interactions. Surfactants and HA interactions have been determined in previous 

studies by monitoring the free concentration of surfactants using surfactant-selective electrodes 
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and precipitation of the surfactant-HA complex. Because of the anionic nature of surfactants at 

environmental pHs, it is generally believed that cationic surfactants will interact much more with 

HA than anionic surfactants – especially in fresh water environments. A study by Koopal et al. 

between several ionic surfactants showed that there is little to no interaction between a humic acid 

(purified Aldrich HA; PAHA) and SDS (Koopal et al. 2004); however, there were strong binding 

interactions between the cationic surfactants CPC and dodecylpyridinium chloride (DPC) (Koopal 

et al. 2004). They determined the binding to be by both electrostatic and hydrophobic interactions. 

The affinity for cationic surfactants and HA increased as pH increased (resulting in an increasing 

negative charge on the HA) which indicated strong electrostatic binding. This study also illustrated 

that HA can precipitate when bound with a cationic surfactant to the point that the HAs charge is 

neutralized. This could have implications for other HA interactions in the environment. A further 

study into cationic surfactants and humic acid binding using iso-electric-points (IEP) showed that 

surfactants could change the physicochemical characteristics of humic acid (charge density, 

hydrophobicity and internal structure) as they bound (Ishiguro et al. 2007). A study by Klocking 

et al. that included cation, anionic and nonionic surfactants, studied the changes in cytotoxicity of 

the surfactants to cells in the presence of HAs. They found that although HA could reduce the 

cytotoxicity of cation surfactants, there was no change with the nonionic and anionic surfactants 

(Klocking et al. 2008). It is believed that anionic surfactants do not interact strongly with HAs 

because of electrostatic repulsions.   

Although the previously mentioned studies did not show any significant interactions 

between a nonionic surfactant and HA, it has been shown that nonionic surfactants do, in fact, 

interact with HA. A study by Guangzhi et al. measured the binding of Triton X-100 to HA, soil, 

humin, and base-extracted soil (Guangzhi et al. 2009). Their results indicated that Triton X-100 
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not only interacted with all the constituents but that HA had the highest equilibrium binding 

capacity for the surfactant.  

 Surfactants are also known to interact with biomembranes. Surfactants are commonly used 

with biomembranes to extract membrane lipids and proteins or to completely disrupt the 

membranes. When the concentration of the surfactant is much lower than it’s CMC (critical micelle 

concentration), it can intercalate into the biomembrane’s bilayer. As the concentration is increased, 

the surfactant will completely disrupt the biomembranes bilayer and form mixed micelles (Luckey 

2008).   

The toxicity of surfactants are dependent on the molecular structure, the type of organism 

and the way the surfactant is ingested or taken-up by the cell(Abel 1974). The mechanism(s) of 

toxicity is not well understood and likely has many different pathways. In aquatic species, there 

has been shown a change in liver and kidney function, gill damage, and enzyme inhibition 

(Cserháti et al. 2002, Ivanković and Hrenović 2010, Lechuga et al. 2016, Lewis and Wee 1983). 

Toxicity is also contributed to the disruption of cellular membranes by the surfactant (Abel 1974, 

Partearroyo et al. 1990). Studies have shown that, in general, nonionic and anionic surfactants tend 

to have similar toxic concentration ranges (Abel 1974) while cationic surfactants are more toxic 

to aquatic species (Lewis and Wee 1983, Singh et al. 2002). However; there is no clear relationship 

between type of surfactant and relative toxicity because the toxicity can also depend on the type 

of organism (Ivanković and Hrenović 2010, Lechuga et al. 2016, Lewis and Wee 1983).   

2.3.3 Carbon nanotubes 

 Since their discovery in 1991, the use of carbon nanotubes (CNTs) in everyday life has 

been increasing (Jackson 2013). CNTs are graphene nano-cylinders that can be either single-

walled (SW) or multi-walled (MW) where SWCNTs consist of only one cylinder while MWCNTs 
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consist of two or more cylinders (see Figure 2.10). They are synthesized using chemical vapor 

deposition, carbon arc discharge, laser ablation or electrolysis methods (Tasis et al. 2006). They 

have a variety of uses in medical science, electronics, and material sciences because of their unique 

properties including high mechanical strength, low mass density, and high thermal conductivity 

(Eklund et al. 2007). Another appeal of CNTs is their ability to be functionalized to change their 

physical and chemical properties based on the desired use of the CNTs (Kuzmany et al. 2004). 

 The increasing and extensive use of CNTs in everyday products such as clothing, sporting 

goods, and batteries, means that they are increasingly likely to enter aquatic environments. 

 
Figure 2.10 Schematic of single walled carbon nanotubes and multi-walled carbon nanotube  

(Choudhary and Gupta 2011) 

 

 CNTs are both hydrophobic and non-biodegradable which creates the concern that they 

will accumulate in soils, sediments, or organisms when they enter the aquatic environment 

(Edgington et al. 2010, Jackson et al. 2013).  

 Carbon nanotubes have been studied extensively and they have been shown to have 

interactions with both natural organic material and biological organisms (Edgington et al. 2010, 

Nowack and Bucheli 2007, Ferguson et al 2008, Kwok et al. 2010). Although there are many 

studies about how CNTs interact with environmental components, there are many conflicting 
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results and inconclusive data. NOM has been shown to sorb CNTs by hydrophobic interactions 

(Hyung and Kim 2008). This sorption was shown to allow CNTs to disperse stably in water. 

Greater dispersion of CNTs have been related to higher toxicity to aquatic organisms. Studies by 

Edgington et al. and Nowack and Bucheli have shown that the addition of NOM increases the 

toxicity of CNTs to aquatic organisms (Edgington et al. 2010, Nowack and Bucheli 2007).  

 There is inconclusive data on the toxicity of CNTs to a variety of organisms. There is not 

only conflicting data on if they are toxic or not, but there is also conflicting data on how their 

physical attributes effect toxicity (Allegri et al. 2016, Cheng and Cheng 2012, Du et al. 2013, 

Edgington et al. 2010, Jackson et al. 2013, Kalid et al. 2016, Lukhele et al. 2015, Mwangi et al. 

2012). These physical attributes include whether they are single walled or multi walled, their 

diameter, and their functionalities.  Toxic effects can also vary for different organisms. For 

example, studies on two different crustaceans showed that one had the ability to intake the CNTs 

and subsequently eliminate them which caused no toxicity while another crustacean could not 

eliminate them, causing death (Ferguson et al. 2008, Kwok et al. 2010). Because of this variability, 

it is necessary to further investigate CNTs, their toxicity, and the role of other environmental 

constituents such as NOM on their bioavailability. 

2.4 Techniques 

2.4.1 Fluorescence spectroscopy 

Fluorescence spectroscopy is a non-destructive, relatively inexpensive, and sensitive 

technique that can be used to study HAs and model biomembrane perturbation (Ojwang' and Cook 

2013, Vigneault et al. 2000). The fluorescence phenomenon occurs when a fluorophore’s (a 

species that can re-emit light upon light excitation) electron is excited to a higher energy level 

(excited state) with a photon of appropriate wavelength. After internal conversion to the lowest 
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excited vibrational state, the electron relaxes back to the excited state by emitting a photon. The 

emitted photon from fluorescence occurs at a longer wavelength that the excitation wavelength 

because it loses energy during the internal conversion. Internal conversions can consist of 

molecular rearrangement to minimize the energy of the excited and ground states as well as 

vibrational losses.   

A simplified illustration of the electronic and vibrational states involved in the process of 

absorption and fluorescence can be seen in the Jablonski diagram (Figure 2.11) (Lakowicz 2006). 

 
Figure 2.11 Jablonski diagram 

 

By encapsulating a fluorophore in the form of a fluorescent dye within a lipid vesicle 

(model biomembrane), fluorescence spectroscopy can be utilized to study the leakage of dye from 

the membrane as induced by humic acids or other environmental factors by taking advantage of 

the inner filter effect. The inner filter effect is the phenomenon where the fluorescence intensity is 

not proportional to the concentration of fluorophores because there is an absorbing component in 

the matrix that absorbs the emitted radiation before reaching the detector. The absorbing 

component can be the fluorophore itself, which is known as being “self-quenching”. Self-

quenching dyes, such as sulforhodamine B (Figure 2.12), have low fluorescence intensity at high 

dye concentrations while having high fluorescence intensity at low concentrations. By 
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encapsulating high concentrations of dye in lipid vesicles, there is a low fluorescence intensity 

until the vesicle is perturbed and dye released, thus diluting the dye, and the fluorescence intensity 

increases. For example, Campbell et al. used fluorescence spectroscopy as a method to measure 

biomembrane perturbation caused by HAs and determine the ability of toxins to change these 

interactions (Campbell et al. 1997).  

 

Figure 2.12 Structure of sulforhodamine B fluorescent dye 

Fluorescence spectroscopy was used in the studies presented in this dissertation as a way 

to measure the changes in membrane perturbation by HAs and surfactants in a variety of conditions 

to elucidate different interactions of HA and its chemical components. 

2.4.2 Dynamic light scattering 

When light is directed towards a small particle, it is scattered in all directions by the 

phenomena known as Rayleigh scattering. The DLS instrumentation measures fluctuations in the 

intensity of scattered light at a particular angle and utilizes an autocorrelation function to determine 

“time of decay” (Г) – or the time it takes for the same particle to move to a new point in space. 

From this, a diffusion coefficient (D) can be calculated:  

Г = q2D          (2) 

Where q is the scattering vector magnitude that is based on experimental conditions.  

From this, the size of the particles can be measured through the following calculation: 
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Rh = KT/6πηD          (3) 

 Where Rh is the hydrodynamic ratio, K is is the Boltzmann constant, T is the temperature, 

and η is the viscosity. Dynamic light scattering is a conventional technique that uses these 

parameters to determine the average size distribution of particles. In the model biomembrane 

studies presented in this dissertation, DLS was utilized to verify that the model biomembranes 

were 100 nm in diameter and monodisperse so to have consistent results. 

2.4.3 Nuclear magnetic resonance spectroscopy 

When a certain type of atomic nuclei (i.e. magnetizable) is placed into a magnetic field, it 

can absorb energy in the range of 10 to 900 MHz (and higher) that are considered radio frequency 

(RF) waves (Keeler 2010). As the RF photon is absorbed, the magnetic moment of the nuclei is 

tilted away from the external magnetic field (Bo) and it precesses around at the specific resonance 

frequency (the Larmor frequency). It then relaxes back to the Bo direction, emitting radiation. The 

Larmor frequency is dependent on the type of magnetic nuclei as well as the strength of the external 

magnetic field.  

Larmor frequency (ω) = − γBo       (4)  

Where γ is the gyromagnetic ratio. NMR spectroscopy takes advantage of this physical 

phenomenon to obtain a spectrum of absorption vs. frequency. The positions of the peaks in an 

NMR spectrum, or “chemical shifts”, are caused by nuclear shielding by surrounding electrons, 

which causes a change in the precession frequency of the nuclei. Because this shift is dependent 

on the electron density distribution of corresponding molecular orbitals, the environment of the 

nuclei can be determined. 

 Solid state 13C NMR does not typically yield as high of resolution spectra as liquid 1H 

NMR because the chemical shift anisotropy and dipole-dipole interactions. Anisotropy problems 
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occur in molecules (e.g. aromatic rings and carbonyls) that contain non-spherical electron densities 

that, in liquid, are allowed to freely rotate so the signals average while in solid, they are not allowed 

to rotate. Dipole-dipole interactions in solids cause line broadening as well because of molecules 

effecting local fields of neighboring nuclei. In order to resolve the two main issues in solid-state 

13C NMR, samples are spun at high rates and at the “magic angle” (β = 54.7º) which simulates 

liquid-like conditions.  

 Another major issue with solid state 13C NMR is that 13C is a nucleus with low sensitivity 

because of its low isotopic abundance and γ compared to 1H. In order to obtain a spectrum with an 

appropriate signal-to-noise ratio, many measurements must be taken in order to get enough signal. 

This problem is diminished by use of a ramped amplitude cross polarization technique (Ramp-CP) 

which occurs when a pulse is applied simultaneously on an I and S spin (Schaefer et al. 1977). 

This is done by targeting an abundant nucleus such as 1H and magnetizing its spins by applying a 

π/2 pulse followed by transferring the magnetization to the 13C nuclei during cross polarization. 

The cross polarization program is summarized in Figure 2.13. 

To successfully obtain efficient cross polarization, the Hartmann-Hahn match must be set 

properly where the RF fields of the low sensitive spin (13C) is set equal to that of the abundant spin 

(1H) which is achieved by adjusting the power of both channels: 

γc-13ωC-13 = γH-1ωH-1         (5) 

The amplitude must be ramped because each unique carbon has a different Larmor frequency (ω) 

(Cook 2004). The 1H protons are decoupled from the 13C signals by a strong RF field after the 

magnetization is transferred.  

In vivo phosphorous nuclear magnetic resonance (31P NMR) spectroscopy has the ability 

to determine an organism’s cellular metabolic processes in real time by monitoring phosphorous 
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metabolites such as adenosine triphosphate (ATP), adenosine diphosphate (ADP) and inorganic 

phosphate (Pi). 
31P is a highly receptive nucleus and is also more selective than 1H since 31P is 

found in far fewer molecular entities, and even fewer that are highly mobile, and thus yield easily 

discernible NMR signals. 

 
Figure 2.13 Schematic of the basic ramp cross-polarization program 

 

 Because it is noninvasive and can give information on the energy cycle of the organisms, 

in vivo 31P NMR can be a valuable tool to gain insight into how living organisms respond to a 

range of environmental factors, such as pollutants and changes in ionic strength, pH, temperature, 

etc. These in vivo 31P NMR studies are a type of metabolic profiling.  

Metabolic profiling is a powerful method in determining biological responses to toxins, 

stressors and disease in living systems. Because of the complexity of an organism’s metabolism, 

multiple metabolites and biomarkers must be monitored simultaneously. A change in metabolites 

or biomarkers can signal that a living system is under stress and the organism is trying to adjust 

for that stress. 

The use of the term metabolite profiling and metabolomics should be addressed. The term 

metabolomics refers to the study of small molecule metabolite profiles that cellular processes leave 

behind. This should not be confused with the genome which is constant for an individual organism 

throughout its life - the metabolic profile of an organism changes depending on its environment 
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and stressors therein. In particular, the use of in vivo 31P NMR allows for the study of the 

phosphometabolite profile; the metabolite profile of only metabolites containing phosphorus.   

Environmental metabolite profiling applications fall into two main categories: 

ecophysiological and ecotoxicogenomics. Ecophysiological studies include natural stressors (e.g. 

temperature, salinity, pH changes) while ecotoxicogenomics is the study of an organism’s 

metabolic response to xenobiotic pollutants. The NMR work presented in this dissertation would 

fall under the category of “ecotoxicogenomics”.  

  Tjeerdema and coworkers have done extensive metabolomics studies with in vivo 31P 

NMR and have a series of publications dedicated to this type of study with different organisms 

under a variety of environmental conditions (Tjeerdema et al. 1993, Viant et al. 2006, Viant et al. 

2002). The organisms studied were red and black abalones as well as medaka (Oryzias latipes) 

embryos. They studied changes in metabolomics when varying conditions such as pH, oxygen 

levels, and temperature. They also studied organisms under the pollutant stressors 

pentachlorophenol, copper, and dinoseb.  

Decapsulated Artemia embryos have also been used in previous 31P NMR studies to 

determine the metabolism changes under anoxia and to show the recovery of the organisms once 

the anoxic conditions were reversed. A study by Covi, Treleaven, and Hand studied the dissipation 

of proton gradients of Artemia under anoxic conditions and with the antibiotic bafilomycin using 

31P NMR (Covi et al. 2005). They determined that the data could be used to detail the proton 

gradients within the Artemia embryos to elucidate the metabolic processes when the organism was 

under stress (Covi et al. 2005).  

 In vivo 13P NMR for metabolomics has advantages over 1H NMR because of its simplicity. 

The 1H NMR studies for metabolomics are complex and require multivariate analysis while 31P 
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NMR is more straightforward because it limits the number of metabolites measured while still 

providing important information about the organism. Often 1H NMR metabolomics studies, as 

well as other metabolomics methods (e.g. HPLC, mass spectrometry) requires extraction and 

purification of the metabolites before analysis. In vivo 31P NMR allows for the measuring the 

organism phospho-metabolites without extraction and while they are still viable; which allows for 

further studies on “real-time” stressors. 

2.4.4 High performance liquid chromatography 

 High performance liquid chromatography (HPLC) is a separation technique that can be 

used to separate and quantify multiple components in a mixture. It uses a separation column filled 

with an adsorbent material (the stationary phase) and a pump that passes pressurized liquid sample 

though the column. The solvent that carries the sample through the column is known as the mobile 

phase. Depending on the type of column and the composition of the mobile phase, the analytes 

will absorb onto the stationary phase for a period of time based on the physical nature of the 

different sample compounds. The time that it takes for a specific compound, or analyte, to pass 

through the pressurized column is known as the retention time. The retention time is characteristic 

for certain compounds so the analyte can be identified. Common detectors for HPLC include 

UV/Visible spectrometers and mass spectrometers. These detectors can further help to identify and 

quantify the analyte.  

Metabolomic studies require parallel analytical techniques such as mass spectrometry, 

HPLC, and NMR spectroscopy (Sumner et al. 2007). HPLC can be used to separate and quantify 

different metabolite after they have been extracted from the organism in question. Extraction of 

the metabolites generally consists of death of the organism, lyophilization, homogenization, lysis, 

and purification in order to accurately measure multiple metabolites. It is labor intensive and has 
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a high degree of error associated with it. However, it can provide verification for other 

metabolomics techniques such as NMR.  

2.5 Overview 

 The techniques and theories presented above laid the groundwork for the studies presented 

in this dissertation. The overall goal of this work is to study the HA-pollutant interactions and how 

those interactions influence biological organisms. These techniques allow for a systematic study 

of the incredibly complex aquatic environments to lead to a better understanding the role of 

different constituents in the environment.  
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CHAPTER 3 

INTERACTIONS OF HUMIC ACIDS AND CATIONS AND THE INFLUENCE OF 

BIOMEMBRANE PERTURBATION 

 

3.1 Introduction  

 Decomposition of organic matter in the environment creates assemblies of organic 

molecules that are also referred to as humic substances (Stevenson 1994). These substances are 

further classified into three fractions: humin (completely insoluble in water), fulvic acid (FA – 

water soluble at all pH levels), and humic acid (HA – water soluble at pH >2). The organic matter 

discussed in this chapter is HA because of its omnipresence in water and terrestrial environments, 

because standards are commercially available, and it has been shown to have greater membrane 

permeation than FA (Elayan et al. 2008, Vigneault et al. 2000).  

 HAs have different physical and chemical properties depending on their biogeochemical 

origin. They are best viewed as complex, heterogeneous, amphiphilic and polydisperse mixture of 

organic molecules that create supramolecular structures attributable to the weak interactions 

between functional groups (Lattao et al. 2008). The main functional groups are aliphatics, 

aromatics, and carbohydrates (Schulten and Schnitzer 1993, Stevenson 1994). These 

characteristics enable HA to have many types of interactions in aquatic systems with both 

pollutants and biomembranes (Elayan et al. 2008, Ojwang' and Cook 2013). There are three types 

of binding sites in HA: 1) non-specific sites, 2) abundant weak sites and 3) stronger, less abundant 

sites (Tipping 2002). The non-specific sites are the functional groups with a net negative charge 

and can attract any positively charged group. This electrostatic interaction can change the 

conformation of the humic materials as well as its ability to interact with other components. The 

abundant weak sites are typically made up of carboxyl groups and they can play a chelation role. 

The stronger, less abundant, sites have differing affinities for different environmental components. 
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These sites contain the soft donor atoms such as nitrogen, sulfur and phosphorous. It is important 

to understand how the varying characteristics of HAs can influence the ability of HAs to bind and 

transport pollutants as well as interact with cellular membranes. By studying both HAs of different 

biogeochemical sources as well as chemically modified the HAs certain types of interactions can 

be elucidated.  

 In every organism, the cellular membrane plays an essential role in biological processes. 

The membrane separates the cell’s interior from the external environment while controlling the 

transport of selected species in an out of the cell. These biomembranes usually consist of 

phospholipids, carbohydrates, and proteins (Koster and van Leeuwen 2004). In many cases, the 

complexity of real cells can have major drawbacks when mechanistically studying interactions in 

the environment. Model biomembranes created from amphiphilic phospholipids can be studied to 

reduce this complexity (Lasic 1997, Zepik et al. 2008).  

 Previous studies have shown that HAs can interact with biomembranes by adsorption and 

perturbation (Ladokhin et al. 1995, Parent et al. 1996, Samson and Visser 1989, Zhou and Banks 

1993). Vigneault et al. investigated model biomembrane and phytoplankton cell permeation by 

both humic and fulvic acids and found that humic acids will have a higher amount of permeation 

into the cell than fulvic acid (Vigneault et al. 2000). They determined that pH has a strong influence 

on the ability of HA and FA to perturb biomembranes, which led them to propose that electrostatic 

interactions play a role in permeation. Studies by Elayan et al. showed that HA decreased the 

structural integrity of model biomembranes at low pH using 31P NMR (Elayan et al. 2008). Further 

studies by the Cook group used fluorescence spectroscopy to investigate the permeation of model 

biomembranes in the presence of HA at different pH, different HA concentrations, and the kinetics 

of permeation (Ojwang' 2012, Ojwang' and Cook 2013).  
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 These studies all led to the proposal that there is a two-step process by which the HA 

permeates biomembranes: Step 1) adsorption and Step 2) absorption. The adsorption step is one in 

which the HA adsorbs onto the surface of the biomembrane by hydrogen bonding between the 

negatively charged carboxyl groups of the HA and the phosphate head groups on the membrane. 

The absorption step is attributed to the ability of hydrophobic moieties in HA to permeate into the 

hydrophobic layer of the membrane at the packing defect sites. Kinetics studies determined that 

the absorption step has both a fast and slow component. This is attributed to the different 

hydrophobic functional groups of the HA interacting with the biomembranes and their different 

times of diffusion throughout the bilayer.  

The interactions between HAs and biomembranes are dependent on two factors: the 

composition and the conformation of the HA. The composition of the HA is determined by the 

geochemical source of the HA and any chemical modifications that occur. The conformation of 

the HA changes depending on the environment, changes in composition, or interactions with 

different compounds such as cations. 

 Cations such as Na+, K+, and Ca2+ are naturally abundant in aquatic environments while 

other less abundant metals such as Al3+, Fe3+, Mn2+, Co2+, and Cd2+ can be naturally occurring as 

well as introduced via urban runoff (Urban runoff quality control guidelines for the province of 

British Columbia  1992). Because of freshwater acidification, there is concern over an abundance 

of these cations being released from the bedrock and sediments (Schindler et al. 1980). 

Cation and humic acid interactions are well established in the literature in terms of binding 

sites and conformation changes (Tipping 2002). For example, an early study by Gamble examined 

electrostatic interactions of natural organic matter (NOM) with Na+ and K+ and determined that 

Na+ bound to the NOM stronger than K+(Gamble 1973). Bonn and Fish continued this research by 



56 

 

investigating the possible binding sites of the +1 cations (Bonn and Fish 1993). Di-cations such as 

Ca2+ were shown to have the ability to complex with HA and cause the molecular assemblies to 

become more compact.  

Also, there are a multitude of studies that illustrate the ability of HAs to change the 

bioavailability of metal ions in the environment (Alstad et al. 2005, An et al. 2015, Guo et al. 2001, 

Lamelas and Slaveykova 2007, Lamelas et al. 2005, Matsuo et al. 2004, Sanchez-Marin and Beiras 

2011). Elkins and Nelson as well as Parent, Twiss, and Campbell investigated the effect of the 

binding Al3+ with HA on the overall toxicity (Elkins and Nelson 2001, Elkins and Nelson 2002, 

Parent et al. 1996). Tipping el al. also studied Fe3+ as well as Al3+ and the binding ability of HA 

(Tipping 2002, Tipping et al. 2002). These studies agreed that Al3+ toxicity decreased when HA is 

added to the system, which suggests that HA’s metal binding protects the organisms from up-

taking the pollutant.  

 Cations can interact with humic acid by electrostatic interactions or with covalent 

interactions at HA binding sites. The diagrams in Figure 3.1 illustrates some of the possible 

scenarios that could occur when cations and HAs interact. Figure 3.1A demonstrates possible 

outcome of electrostatic interactions between the non-specific sites of the HA and the positively 

charged cations and how that affects the HA-biomembrane interactions.  

Figure 3.1B illustrates how the electrostatic repulsion of HA groups can be mitigated by 

cations and thus altering the conformation of the HA. Humic acid has a net negative charge at pH 

4.8 and the negative groups will repulse one another and “stretch out” the HA assemblies. As the 

cations are electrostatically attracted or chemically bound to these negative groups, the 

electrostatic repulsion will decrease and the HA will become more compact. 
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Figure 3.1 Possible humic acid conformation changes in the presence of cations  

The final illustration in Figure 3.1C shows how cations can complex with HA functional 

groups which causes further conformational changes of the HA. This type of complexation can 

have two different mechanisms: 1) intra-molecular bridging and compaction and 2) inter-

molecular bridging and aggregation. Since cations and HAs interact through both electrostatic and 

complexation, these interactions may cause conformation changes in the HA. These conformation 

changes can further change how HAs interact with other entities in the environment such as 

biomembranes. This study aims to investigate the result of conformation changes by cation-HA 

interactions and how it effects biomembrane-HA perturbation. This will allow for a better 

understanding of HA interactions in the environment. 

3.2 Materials and Methods 

3.2.1 Materials  

The metal salts were purchased from Sigma Aldrich (Piscataway, NJ) with the exception 

of cadmium chloride, which was purchased from Fischer Scientific (Somerville, NJ). 

Sulforhodamine-B dye (SRB), t-octyl-phenoxy polyethoxy ethanol (Triton TX-100), sodium 
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acetate, and sodium chlorite were purchased from Sigma Aldrich. The 1-palmitoyal-2-oleoyl-sn-

glycero-3-phosphocoline (POPC) was purchased from Avanti Polar Lipids (Alabaster, AL) and 

the Sephadex G-50 gel for the size exclusion columns was from Healthcare Biosciences 

(Piscataway, NJ). The humic acid standards (Leonardite HA, Florida peat HA, and Suwanne River 

HA) were obtained from the International Humic Substances Society (Georgia, USA). Benzene, 

methanol, and hydrochloric acid were purchased from Fischer Scientific. The nitrogen gas was 

supplied by the LSU chemistry department, originally sourced from Capital Welders Supply 

Company (Baton Rouge, LA). Sterile 18 MΩ deionized water was sourced from an apparatus by 

US filter. All fluorescence measurements were made on a Horiba Jobin Yvon Fluorolog 3 

spectrofluorimeter with a FL1073 detector, Spectra Acq computer and a model LF13751 

temperature control. A Malvern Zetasizer nano (Worchester, UK) was utilized for dynamic light 

scattering of the liposomes. Solid state ramp cross-polarization magic angle spinning (CP-MAS) 

13C NMR by a Bruker Advance 400 MHz NMR spectrometer with a ramped-amplitude cross-

polarization pulse program and magic angle spinning was used to characterize the chemically 

modified HA. 

3.2.2 Experimental design 

For this study, 1-palmitoyl-2-oleoyl-sn-glycerol-3-phosphocoline (POPC) was chosen for 

the model biomembranes because phospholipids make up 50 – 60% of eukaryotic cell membranes 

(Cooper 2000). Also, the transition phase temperature of Tm = −2.5 ± 2.4°C is well below room 

temperature so the lipids are completely in the liquid crystalline phase and has minimum packing 

defects.  

Three different humic acids were investigated with solutions of Na+ and Ca2+: Leonardite 

humic acid (LAHA), Florida peat humic acid (FPHA) and Suwannee river humic acid (SRHA). 
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LAHA is a coal source, SRHA is an aquatic source, and FPHA is a peat source. These humic acids 

have different components based on their sources and the different components have a different 

propensity to perturb the biomembranes, as shown in previous studies (Ojwang' and Cook 2013). 

The cations studied were: K+, Na+, Ca+2, Mn+2, Mg+2, Co+2, Cd+2, Al+3, and Fe+3. These 

cations were chosen for their range of charges, chemical “hardness”, and affinities for different 

functional groups.  

3.2.3 Model biomembrane preparation 

All biomembranes, humic acid solutions, and cation solutions are in a 0.01 M acetate buffer 

at pH 4.8. The model biomembranes with encapsulated sulforhodamine B dye were prepared in a 

similar method to Ladokhin et al. (Ladokhin and Holloway 1995) To create the model 

biomembranes (or bilayer liposomes), first, a lipid film was created in the bottom of a round bottom 

flask by dissolving POPC in 66 μL methanol and 132 μL chloroform (1:2 solution). The mixture 

was stirred for 30 minutes using a rotary evaporator without any pressure applied. The solvent was 

then evaporated under nitrogen gas for 24 hours resulting in a thin lipid film.  

The lipid film was hydrated with 5 mL of 50 mM SRB dye in acetate buffer. 

sulforhodamine B dye was chosen as the fluorophore because humic acids do not quench it. The 

dye and lipids were vortexed (Vortex Genie series G560) until the lipid had completely suspended 

into the dye solution. The common freeze-thaw procedure for creating large multilamellar 

liposomes was then applied: heat in 80ºC water bath, vortex, and freeze in dry ice and acetone 

bath. This cycle was repeated three times. Once the cycles were completed, the frozen liposome 

solution was then thawed in the water bath and extruded under pressure using a Lipex Lipid 

Extruder (North Lipid, Vancouver, BC, Canada) through a 100 nm pore Whatman Nuclepore 

polycarbonate track-etched membrane to create large unilamellar liposomes (model 
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biomembranes) of 100 nm in diameter. After the extrusion, the liposomes were put through two 

consecutive Sephadex G-50 columns to remove any non-encapsulated (free) dye from the solution. 

For fluorescence measurements, the liposomes were diluted 2.144 mL per 100mL. Dynamic light 

scattering (DLS) was used to verify the size and monodispersity of the model biomembranes. The 

DLS measurements were made with a scattering angle of 90° and a wavelength of 6471 Å.  

3.2.4 Stock solution preparation 

The humic acid (HA) stock solutions were prepared by dissolving 7 mg of reference HA 

in NaOH. The HA solution’s pH was adjusted with HCl and NaOH until it reached pH 4.8. Then, 

15 mL of prepared acetate buffer was added, the vial covered with foil, and the solution was 

allowed to stir overnight. Once equilibrated, the solution was diluted with acetate buffer to the 

desired concentration and the pH re-adjusted as needed. 

Cation solutions were prepared using chlorine salts of each cation and then serial diluted 

with acetate buffer to the desired ionic concentrations.  

3.2.5 Chemical modification of humic acids 

Three procedures for chemical modification were performed on the humic acids 

(Leonardite HA, Suwannee River HA and Florida Peat HA): acid hydrolysis (Almendros 1994), 

Soxhlet lipid extraction (Chilom and Rice 2009) and bleaching (Wise et al. 1946). The HAs were 

characterized by solid state CP-MAS 13C NMR after chemical modification. 

The acid hydrolysis reduced the carbohydrate components of the humic acid. To achieve 

this, 300 mL of 6 M HCl per gram of HA was mixed together and maintaining under reflux for 6 

hours. The acid was removed from the HA by dialysis. The modified HA was freeze dried for 24 

hours (until completely dry) and then stored in the freezer.  



61 

 

The Soxhlet extraction was used to reduce the lipid components. The HA was placed into 

the thimble of the assembly and inserted into a Soxhlet extractor fitted with a condenser. 

Approximately 200 mL of benzene: methanol (3:1) azeotrope was put in a round bottom flask 

fitted onto the Soxhlet extractor. It was then heated in a sand bath and refluxed for at least 72 

hours. Once complete, the thimble was removed from the extractor and the solvent allowed to 

evaporate in the hood. The modified HA was stored in the freezer.  

Bleaching was performed to reduce aromatic components. The original procedure, by Wise 

et al., was used to isolate wood holocellulose; however, it was modified by increasing the bleaching 

time. The bleach solution for one gram of HA was as follows: 10 g sodium chlorite, 10 mL glacial 

acetic acid, and 100 mL deionized water. The HA and the bleach solution was stirred overnight in 

the hood. It was then centrifuged at 3500 g for 15 min and the bleach solution decanted from the 

HA. This was repeated 3 times with fresh bleaching solution. The final HA residue was separated 

by centrifugation followed by dialysis. It was then freeze dried for 24 h or until dry. The modified 

HA was stored in the freezer.  

All chemically modified HA sample solutions were prepared the same as the un-modified 

HA (previously stated).  

3.2.6 13C NMR Ramp CP-MAS 

 The LAHA and the freeze-dried chemically modified LAHA samples were ground with a 

mortar and pestle to ensure a homogeneous sample before the 13C NMR experiments. The 

chemically modified HA sample was tightly packed into a 2.5 mm high-resolution magic angle 

spinning zirconium rotor (Bruker). Spectra were acquired at 100 MHz with a spinning rate of 5 

kHz and a ramp cross-polarization contact time of 2 ms. The recycle delay time was 1 s and a total 

of 4096 scans were collected per experiment. The 13C NMR spectra are shown in Figure 3.6. 
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3.2.7 Fluorescence leakage measurements 

The blank for all fluorescence measurements was a 1:3 solution of liposomes and the 

acetate buffer. Because of inner filter effects, the dye encapsulated in the model biomembrane did 

not give a strong fluorescence intensity. A control of liposome, buffer, and detergent (Triton X – 

100) solution was used as 100% dye release. Triton X-100 is a non-fluorescent detergent that 

completely lyses the liposomes, causing all the encapsulated dye to be released (Luckey 2008). 

Once diluted (inner filter effects removed), the dye fluoresces strongly. All measurements from 

the humic acid and cation samples was compared to the 100% dye release. The fresh water 

reference was a 1:2:1 solution of liposomes, buffer, and the humic acid solution. The humic acids 

had a final concentration of 20 ppm in all samples. The cation samples were a 1:2:1 solution of 

liposomes, cation solution (in buffer) and humic acid. 

Fluorescence spectroscopy was utilized to determine the amount of dye released from the 

liposomes after 10 min. All samples were done in triplicate. The excitation wavelength was 565 

nm, and the emission was measured between 575 nm and 700 nm. The maximum intensity used 

for the percent dye release calculations was the emission at 585 nm. The following equation was 

used to calculate the percent dye release from the liposomes relative to the lysed membranes: 

Percent dye release = 100 % x (IH – IB)/(IT – IB)     (1) 

Where IH is the fluorescence intensity of liposomes in the presence of HA sample, IB is the 

fluorescence intensity of the blank (liposomes only), and IT is the fluorescence intensity of the dye 

after the liposomes are ruptured. 
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3.3 Results and Discussion 

Dynamic light scattering (DLS) was performed on the unperturbed liposomes in order to 

verify the size. The DLS data seen in Figure 3.2 illustrates the z-average mean of the liposomes as 

100 ± 2 nm and that the size distribution is homogeneous. 

3.3.1 Interaction of Na+ and Ca2+ with different humic acids   

The change in membrane perturbation by LAHA, FPHA and SRHA were studied with 

increasing ionic strength of Na+ and Ca2+ in order to determine any binding trends based on 

changes in dye released from the model biomembranes. 

 
Figure 3.2 Dynamic light scattering of the POPC liposomes. Size: 100 ± 2 nm 

 

 Three HAs were utilized to determine if any changes in membrane perturbation were 

similar for HAs of different sources. Previous studies with these three HAs showed that all of them 

perturbed the biomembranes via the previously described two-step mechanism. At 20 ppm HA, all 

three HAs had similar perturbation of the model biomembranes (within 10% dye release of each 

other) (Ojwang' 2012).  
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 Figure 3.3 and Table 3.1 illustrates the normalized percent dye release from the 

biomembranes with LAHA, FPHA, and SRHA with increasing ionic strength of Na+ and Ca2+.  

The decrease in percent dye release indicates that the ability of HAs to perturb the model 

biomembranes has decreased. For all three HAs, both Na+ and Ca2+ reduced their membrane 

perturbing ability, suggesting that the cations bind with the HAs and limit the availability of the 

HAs to the biomembranes. It can be seen that Ca2+ hindered the HAs perturbation more so than 

Na+. It is likely that Na+ is inhibiting some of the initial adsorption of the negatively charged 

moieties with the surface of the biomembrane while Ca2+ is involved in more complicated binding 

and complexation (see Figure 3.3). 

This is consistent with previous studies that showed that Na+ generally associates only with 

humic acids via electrostatic interactions with ionized functional groups (Bonn and Fish 1993, 

Gamble 1973). Unlike Na+, Ca2+ can create inter- and intra- molecular bridges with the negatively 

charged carboxylic and phenolic groups with the humic acids – causing the HA conformation to 

change (see Figure 3.3). The HA molecular assemblies can become more tightly packed and 

aggregated because of this bridging (Tipping 2002, Wang et al. 2001). The hydrophobic moieties 

that are responsible for permeation of the model biomembranes become less accessible as the HA 

molecular assemblies become more compacted – thus, less leakage of the encapsulated dye. The 

more bridging and compaction that occurs because of the Ca2+ binding, the less permeation of the 

biomembrane.   

When comparing the differently sourced HAs, it can be seen that the difference in dye 

release with Na+ compared to the fresh water is less with LAHA than FPHA and SRHA – which 

can be attributed to the composition of the HAs. 
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Figure 3.3 Percent leakage of SRB dye as induced by 20 ppm a) LAHA, b) FPHA, and c) SRHA 
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Table 3.1 Percent dye release as induced by 20 ppm LAHA, FPHA, and SRHA in the presence of 

Na+ and Ca2+ 

  Na+ Ca2+ 

Ionic strength 0 M 0.29 M 0.58 M 0.29 M 0.58 M 

20 ppm 

LAHA 

45.93 ± 

0.05% 

39.10 ± 

1.2% 

34.59 ± 

1.9% 

17.48 ± 

0.35% 

11.33 ± 

0.91% 

20 ppm 

FPHA 

30.09 ± 

0.88% 

14.17 ± 

0.32% 

15.09 ± 

0.64% 

10.90 ± 

0.47% 

5.24 ± 

0.39% 

20 ppm 

SRHA 

22.13 ± 

1.41% 

8.71 ± 

0.43% 

13.69 ± 

0.98% 

9.52± 

0.15% 

6.39 ± 

0.03% 

 

LAHA has less carboxyl and carbohydrate groups than FPHA and SRHA; moieties that 

attracts Na+ ("International humic substances society"  2015, Thorn et al. 1989). The addition of 

Na+ to those sites limits the adsorption step by hydrogen bonding and thus limits the dye release.  

3.3.2 Interaction of mixed solutions of Na and Ca with LAHA   

To further corroborate the proposed interactions between Na+, Ca2+ and HAs,  mixed 

solutions of Na+ and Ca2+ with a total ionic strength of 0.29 M were tested with 20 ppm LAHA 

and the model biomembranes. Figure 3.4 shows that as the percentage of Ca2+ in the solution 

increased, the perturbation of the membranes decreased. This trend gives further support to the 

model proposed in regards to Ca2+’s ability to reduce HA’s biomembrane perturbing potential by 

inducing inter- and intra-molecular bridging and thus, conformational changes. Tables 3.2, 3.3, 

and 3.4 provide percent dye release and standard deviations for all dye leakage studies. There was 

a 2.5% dye release increase when only Ca2+ is present compared to the 75% Ca2+ solution. It can 

be assumed that in the mixed solution (75% Ca2+ and 25% Na+), the Na+ is still electrostatically 

attracted to some moieties of the humic acid where Ca2+ may not be able to bind efficiently.  
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Figure 3.4 Percent leakage of SRB dye as induced by 20 ppm LAHA combined with mixtures of 

sodium and calcium with a total ionic strength of 0.29 M at pH 4.8 

 

Table 3.2 Percent dye release of SRB dye as induced by 20 ppm LAHA in the presence of Na+ and 

Ca2+ mixtures 

Fresh water 
100 % Na+, 

0% Ca2+ 

75 % Na+, 

25% Ca2+ 

50% Na+, 

50% Ca2+ 

25 % Na+, 

75 % Ca2+ 

0% Na+, 

100% Ca2+ 

63.58 ± 

0.14% 

60.63 ± 

0.33% 

53.42 ± 

1.71% 

47.2 ± 

2.51% 

44.53 ± 

0.74% 

47.03 ± 

0.25% 

 

Thus, the Na+ is giving some protection to the membrane in addition to the Ca2+ bridging 

and complexation. Since HA is complex, different binding affinities may allow different cations 

to interact with it at different areas; therefore, the HA permeation of the model biomembranes 

may be decreased even more when two or more cations are involved in binding.  

3.3.3 Interaction of cations with LAHA  

To further investigate the interaction of LAHA with cations, an expanded set of cations 

was used: K+, Na+, Ca2+, Mg2+, Mn2+, Co2+, Cd2+, Al3+, and Fe3+. The ionic strength of each 
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solution (2.03 and 4.11 mM) was less than previously explored so to be more environmentally 

relevant for fresh water.  

Table 3.3 Percent dye release as induced by 20 ppm LAHA in the presence of cations 

 Ionic strength of cation 

 0 2.03 4.11 

K+ 60.61 ± 2.70% 59.13 ± 3.41% 60.53 ± 1.27% 

Na+ 60.61 ± 2.70% 59.60 ± 1.96% 55.31 ± 3.27% 

Ca2+ 60.61 ± 2.70% 53.91 ± 1.50% 52.69 ± 1.69% 

Mg2+ 60.61 ± 2.70% 58.45 ± 0.78% 55.57 ± 0.13% 

Mn2+ 60.61 ± 2.70% 54.10 ± 2.08% 51.24 ± 1.64% 

Co2+ 60.61 ± 2.70% 53.71 ± 1.78% 51.23 ± 4.07% 

Cd2+ 60.61 ± 2.70% 53.63 ± 2.50% 29.19 ± 1.39% 

Al3+ 60.61 ± 2.70% 7.14 ± 2.90% 4.75 ± 2.24% 

Fe3+ 60.61 ± 2.70% 14.98 ± 5.16% 21.20 ± 6.37% 

 

It can be seen in Figure 3.5 that K+ does not reduce dye release caused by the LAHA to the 

extent of Na+, which suggests limited interactions between K+ and LAHA. Na+- favored binding 

with HAs has been previously reported and attributed to the size difference of the ions (Gamble 

1973). The smaller Na+ atoms can more easily bind to the negatively charged moieties within the 

complex structure of the HA than the larger K+ ion.  

For the +2 cations, the order of leakage reduction is as follows: Mg2+ < Ca2+ < Mn2+ ≈ Co2+ 

<< Cd2+. The binding and resulting hindrance of the HA’s ability to perturb the biomembranes 

follows the scheme of hard and soft acids and bases (HSAB) with reduced leakage in the order of 

hard < intermediate < soft cations. The cations that are classified as “hard” are Mg2+, Ca2+, and 

Mn2+; Co2+ is considered intermediate and Cd2+ is considered a soft cation (Huheey 1978).  
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Since the softer cations limit the permeation of the biomembranes by the HA, it suggests 

that the less abundant binding sites of the HA must be playing a strong role in chelation with the 

cations or that the strong binding sites are a main source of membrane permeation.  

 

 
Figure 3.5 Percent leakage of SRB dye as induced by 20 ppm LAHA combined with different 

cations at pH 4.8 

 

Both Fe3+ and Al3+ are considered to be hard acids, but there is evidence that they bind 

much more than the other hard cations studied (Tipping et al. 2002). Both of these +3 cations have 

been previously shown to complex with HAs with Al3+ having a higher affinity with HA than Fe3+ 

(Elkins and Nelson 2002). In this study, the +3 cations followed this trend, with Fe3+ reducing the 

leakage less than Al3+. It can be seen that there is a slight increase in dye release as the 

concentration of Fe3+ increases, which is different than the trend of the other cations studied. This 

is due to the iron forming FeOH2+ in the aqueous solutions and FeOH2+ molecules tend to coagulate 

with each other, thus limiting the iron available to bind with the HA (Elayan et al. 2008).  
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3.3.4 Interaction of cations with chemically modified LAHA  

The composition of HAs plays a role in both biomembrane perturbation and how the HAs 

interact with various cations. In order to determine how composition changes could influence HA 

interactions within the environment, chemical modification was performed on LAHA.  

 
Figure 3.6 Solid-state 13C NMR spectra of chemically modified Leonardite humic acid (LAHA) 

 

 Figure 3.6 shows the 13C NMR spectra of the chemically modified HAs. The spectra verify 

that the chemical modifications designed to reduce certain moieties were successful. The peak 

percentages of the modified HAs can be visualized in Figure 3.7 and are listed in Table 3.1. These 

chemical modifications allowed for the study of cation interactions based on different moiety 

composition; specifically aromatics, carbohydrates, and aromatics. 

Bleaching of the LAHA was done to reduce aromatic moieties. The 13C NMR spectrum 

illustrates the significant reduction in aromatic moieties by the reduction of the relative peak area 

in the 112-145 ppm chemical shift regions. The low aromatic signal that was measured (30%) can 

be attributed to aromatic groups from charcoal-like compounds in the HAs that are resistive to 

oxidative cleavage by the chemical modification (Chefetz et al. 2002). 
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The acid hydrolysis chemical modification was performed to reduce carbohydrate 

components. The chemical shift range of 50 – 112 ppm includes the different types of carbohydrate 

(O-alkyl) carbons. The hydrolyzed LAHA had a peak percentage decrease in that region, indicating 

successful reduction of carbohydrate moieties. Percent dye releases by these HAs are seen in 

Figure 3.8. 

 
Figure 3.7 13C NMR relative peak area percentages of unmodified and modified LAHA for 

aromatic, carbohydrate, and lipid moieties  

 

  

Table 3.4 13C NMR relative percent areas of unmodified and modified LAHA 

HA Carboxyl Aromatic 
Aldyhyde

/Ketone 
N- or O- Alkyl Alkyl 

Bleached 

LAHA 
4.03% 29.86% 0.0% 9.43% 38.44% 

Lipid 

Extracted 

LAHA 

9.99% 60.71% 0.47% 6.28% 22.56% 

Hydrolyzed 

LAHA 
9.08% 62.38% 0.71% 1.78% 26.05% 

LAHA 

Reference 
11.18% 52.89% 0.07% 7.11% 37.74% 
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Figure 3.8 Percent leakage of SRB dye as induced by 20 ppm a) hydrolyzed, b) lipid-extracted and 

c) bleached LAHA combined with different cations at pH 4.8 
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 The lipid extraction was performed to reduce any lipid moieties of the LAHA. The signal 

within the region 22 – 33 ppm is indicative of lipids, or polymethylene chains. Because of the 

nature of HA, the majority of lipids they contain are aliphatic. The 13C NMR spectra verifies that 

the lipid moieties in the lipid-extracted LAHA are reduced relative to the reference LAHA. 

Previous studies have been performed to determine the changes in membrane perturbation 

when the HA is modified (Ojwang' 2012). For LAHA, it was determined that the hydrolyzed and 

lipid-extracted LAHA had a slightly greater ability to perturb the biomembranes relative to the 

reference LAHA. This was believed to be caused by the relative increase and availability of 

membrane-perturbing moieties such as aromatics. It was concluded that the aromatic moieties play 

a major role in the absorption step of the proposed model for HA-biomembrane interactions. The 

hydrophobic nature of the aromatics is what allows for membrane perturbation via hydrophobic 

interactions.  

This mechanism was further verified by the fact that the bleached LAHA had a 29% lower 

percent dye release than the un-modified LAHA. The percent dye release and standard deviations 

are presented in Table 3.5. 

Six cations were investigated with the chemically modified LAHA: a +1 cation (Na+), a 

hard +2 cation (Ca2+), a soft +2 cation (Cd2+) and the two +3 metal cations of interest (Al3+ and 

Fe3+). 

The bleached LAHA showed a very different trend than the other modified HAs. As can 

be seen in Table 3.5, when the aromatics were reduced, there was a significant loss in membrane 

permeation in fresh water as seen by the decreased dye release. However, with the addition of 

cations, the ability of the bleached LAHA to permeate the membranes was significantly increased. 
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The percentage of dye release due to the bleached LAHA with Ca2+ and Co2+ binding is more than 

that of the unmodified LAHA. 

 

Table 3.5 Percent dye release as induced by chemically modified LAHA in the presence of cations 

 Ionic strength of cation 

 0 2.03 4.11 

 Hydrolyzed LAHA 

Na+ 65.26 ± 2.42% 63.68 ± 2.11% 64.06 ± 0.92% 

Ca2+ 65.26 ± 2.42% 59.09 ± 1.77% 58.41 ± 2.34% 

Co2+ 65.26 ± 2.42% 59.44 ± 1.32% 37.70 ± 4.55% 

Cd2+ 65.26 ± 2.42% 59.87 ± 0.76% 53.78 ± 4.76% 

Al3+ 65.26 ± 2.42% 7.94 ± 0.92% 4.80 ± 2.08% 

Fe3+ 65.26 ± 2.42% 10.05 ± 7.48% 32.10 ± 3.37% 

 Lipid extracted LAHA 

Na+ 59.00 ± 5.10% 61.70 ± 1.32% 61.74 ± 3.00% 

Ca2+ 59.00 ± 5.10% 56.93 ± 3.04% 55.33 ± 2.14% 

Co2+ 59.00 ± 5.10% 56.69 ± 2.03% 52.41 ± 1.15% 

Cd2+ 59.00 ± 5.10% 56.74 ± 2.91% 31.20 ± 5.90% 

Al3+ 59.00 ± 5.10% 11.61 ± 1.25% 8.21 ± 1.04% 

Fe3+ 59.00 ± 5.10% 20.40 ± 3.69% 32.52 ± 2.72% 

 Bleached LAHA 

Na+ 36.07 ± 1.22% 32.36 ± 0.06% 34.90 ± 1.11% 

Ca2+ 36.07 ± 1.22% 70.85 ± 3.65% 74.48 ± 3.44% 

Co2+ 36.07 ± 1.22% 67.58 ± 2.36% 75.00 ± 6.77% 

Cd2+ 36.07 ± 1.22% 69.73 ± 1.55% 61.12 ± 1.54% 

Al3+ 36.07 ± 1.22% 17.06 ± 3.66% 14.39 ± 2.75% 

Fe3+ 36.07 ± 1.22% 10.47 ± 4.73% 44.01 ± 6.17% 

 

The Na+ cation has the same trend as the other modified and unmodified LAHA, which 

suggests that the complexation of the HAs with the cations is the reason for the increased 

permeation rather than any electrostatic interactions. 

 The two main components of the bleached LAHA (aromatics removed) are carbohydrate 

and aliphatic moieties, which may compete for access to the surface of the biomembrane. The 

hydrophilic carbohydrates will not absorb into the biomembrane because they are repulsed by the 

hydrophobic bilayer – this gives the biomembrane protection from permeation. The cations will 
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bind to the carbohydrate (O- and N- alkyl groups) (Gyurcsik and Nagy 2000), which may remove 

the competition of the carbohydrates. The hydrophobic aliphatic moieties will then have an 

increased ability to absorb into the biomembrane, thus having increased permeation. 

3.4 Conclusions 

This study illustrated that the ability of HAs to passively permeate biomembranes can be 

mitigated by cation interactions. Changes in the conformation of HAs are caused by cation binding 

and interactions which limit the availability of certain moieties to the biomembranes. The soft acid 

was shown to decrease membrane perturbation more successfully than the hard +2 acids, which 

suggests that the interaction of HAs by bridging for the less abundant binding sites limits the ability 

of HA to interact with the model biomembrane.  

 Chemically modified HAs in the presence of cations showed that the carbohydrates and 

lipids did not play a major role in HA-cation interactions. The aromatic-reduced (bleached) HA 

with bound cations showed an increase in the ability to permeate the model biomembrane, which 

may be possible because the +2 cations bind the carbohydrates and allow the aliphatic components 

to absorb into the bilayer of the membrane. 
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CHAPTER 4 

SURFACTANT TOXICIY TO ARTEMIA FRANCISCANA AND THE INFLUENCE OF 

HUMIC ACID AND CHEMICAL COMPOSITION* 

 

4.1 Introduction 

Humic acids (HAs) are polydisperse, heterogeneous, amphiphilic and complex mixtures of 

organic molecules. They are created by the decomposition of mainly dead plant matter and 

combined by a range of interactions, mainly between the functional groups, to create 

supramolecular structures (Stevenson 1994, Sutton and Sposito 2005). The specific chemical 

composition of HAs varies and is dependent on their biogeochemical origin, but the major 

chemical constituents are aliphatics, aromatics, and carbohydrates (Stevenson 1994). Because of 

the high diversity of functional groups and their amphiphilic nature, HAs can interact with a variety 

of environmental components, including a wide range of pollutants and biological membranes 

(Campbell et al. 1997, Elayan et al. 2008, Ojwang' and Cook 2013, Stevenson 1994, Tipping 2002, 

Vigneault et al. 2000). Such interactions play an important environmental role in the transport and 

bioavailability of pollutants through the environment (McCarthy et al. 1985, Parent et al. 1996, 

Twiss et al. 1999, Vigneault and Campbell 2005, Wilkinson et al. 1993). 

 One class of pollutants with which HAs commonly interact are surfactants.  Surfactants 

can enter the environment by a number of pathways including 1) waste water treatment (Rogers 

1996, Stalmans et al. 1991), 2) a number of remediation practices (Mulligan et al. 2001), 3) as 

additives in the application of pesticide and herbicide formulations (Czarnota and Thomas , Song 

et al. 2012), and 4) urban and industrial run- off (Zoller 2004). 

 

 

*This chapter previously appeared as Deese, LeBlanc, and Cook, Surfactant toxicity to Artemia 

Francsicana and the Influence of Humic acid and Chemical Composition, Environmental 

Chemistry 2015. It is reprinted by permission of Environmental Chemistry’s License to Publish 

(see Appendix C). 
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Surfactants are amphiphilic compounds and may be nonionic, zwitterionic, cationic and 

anionic. Surfactants are designed to reduce the surface tension of water and, as a consequence, can 

affect biological processes, (Ostroumov 2006) justifying a closer look into their fate in the 

environment.  

A surfactant’s toxicity is dependent on its molecular structure, the type of organism, (Chen 

et al. 2014, Pavlić et al. 2005, Ying 2006) and the way the surfactant is ingested or taken-up by 

the cells (Abel 1974). The mechanism of toxicity is not well understood and likely adopts many 

different pathways. In aquatic species, a change in liver and kidney function, gill damage (Abel 

1974) and enzyme inhibition have been shown (Cserhati et al. 2002). Toxicity can also be 

attributed to the disruption of cellular membranes by the surfactant (Abel 1974). In general, 

nonionic and anionic surfactants tend to have similar toxic concentration ranges (Abel 1974), while 

cationic surfactants are more toxic to aquatic species (Lewis and Wee 1983, Singh et al. 2002). 

However, there is no clear relationship between the type of a surfactant and relative toxicity. This 

situation becomes even more complex when surfactants associate with HAs (Chen et al. 2014, 

Pavlić et al. 2005, Ying 2006) under a variety of conditions. This association can be relevant to 

the bioavailability and toxicity of surfactants (Ishiguro et al. 2007, Koopal et al. 2004, Otto et al. 

2003, Traina et al. 1996), including the ability of surfactants to perturb cellular biomembranes 

(Abel 1974, Luckey 2008). 

The association between HAs and surfactants has been previously studied in terms of 

binding isotherms. The amphiphilic nature of HAs and surfactants may cause an attraction that 

both decreases the free concentration of the surfactants and alter the properties of the HAs in 

solution (Ishiguro et al. 2007, Koopal et al. 2004, Otto et al. 2003). This association between HAs 

and surfactants could cause the toxicity of the surfactants to be mitigated significantly. The 
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association of HA with surfactants has been attributed to hydrophobic interactions (Tan et al. 

2009), electrostatic interactions (Ishiguro et al. 2007, Koopal et al. 2004), mixed micelle formation 

(Lippold et al. 2008) and forced aggregation of the surfactant micelles (Otto et al. 2003). Because 

HAs are complex and often contain aromatic systems, there is also the possibility for other more 

specific interactions, such as π-π interactions between π-donor and π-acceptor moieties of both the 

surfactant and the HA (Keiluweit and Kleber 2009, Pignatello 2011). 

It is well known that surfactants can disrupt cellular membranes (Abel 1974, Luckey 2008); 

however, the complexity of real cellular membranes limits the scope of mechanistic studies into 

how such a disruption changes when humic acid is added to the system. Lipid vesicles, or 

liposomes, have been used extensively as model biological membranes in xenobiotic toxicological 

assessment studies (Zepik et al. 2008). Membrane perturbation can be studied with a model cell 

membrane to give insight into the fundamental processes of passive transport while removing the 

inherent complexity of a real cell system. The permeation of the membranes by the surfactants can 

be investigated by fluorescence spectroscopy by encapsulating a fluorescent dye within the 

liposome and measuring the changes in fluorescence intensity as the membrane is exposed to 

different environments (Elayan et al. 2008, Ojwang' and Cook 2013, Vigneault et al. 2000). 

Consequently, two main questions emerge: 1) how do HAs affect the biomembrane 

perturbing potential and toxicity of different surfactants and 2) what is the role of different 

chemical components within HAs? This study is an initial step in addressing these questions by 

combining model biomembrane fluorescence leakage studies, Artemia hatching and mortality 

assays, and HAs with a range of chemical compositions. 
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4.2 Materials and Methods 

4.2.1 Materials  

The humic acid standards (Leonardite HA, Florida peat HA, and Suwannee River HA) 

were obtained from the International Humic Substances Society (IHSS, Georgia, USA). More 

details on each of these HAs, including chemical composition, are available in Tables 4.1-4.3, with 

further details available on the IHSS website (www.humicsubstances.org, accessed on Aug 8th, 

2015).  

 

Table 4.1 Elemental compositions and stable isotopic ratios of IHSS samples ("International humic 

substances society"  2015) 

Standard HA H2O Ash C H O N S P Σ13C Σ15N 

Suwannee River 

(SRHA) 
20.4 1.04 52.63 4.28 42.04 1.17 0.54 0.013 nd nd 

Pahokee Peat 

(FPHA) 
11.1 1.12 56.37 3.82 37.34 3.69 0.71 0.03 -26.0 1.29 

Leonardite 

(LAHA) 
7.2 2.58 63.81 3.70 31.27 1.23 0.76 <0.01 -23.8 2.13 

(% weight) 

 

 

Table 4.2. 13C NMR estimates of carbon distribution in IHSS samples ("International humic 

substances society"  2015) 

Standard 

HA 

Carbonyl Carboxyl Aromatic Acetal Heteroapliphatic Aliphatic Σ15N 

Suwannee 

River 

(SRHA) 

6 15 31 7 13 29 nd 

Pahokee 

Peat 

(FPHA) 

5 20 47 4 5 19 1.29 

Leonardite 

(LAHA) 

8 15 58 4 1 14 2.13 

(Electronically integrated peak area percentages) 

 

 

http://www.humicsubstances.org/
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Table 4.3. Metal concentrations of HAs as determined by ICP-OES 

Standard 

HA 

Al 

mg/k

g 

Ca 

mg/k

g 

Cr 

mg/k

g 

Cu 

mg/k

g 

Fe 

mg/k

g 

Mn 

mg/k

g 

Ni 

mg/k

g 

Si 

mg/k

g 

Sr 

mg/k

g 

Zn 

mg/k

g 

Leonardite 

HA 

2270 3482 48.8 15.4 1535 Belo

w det. 

26.6 113 42.3 Belo

w det. 

Suwannee 

River HA 

346 381 40.7 20.8 1171 Belo

w det. 

Belo

w det. 

62.4 1.46 213 

Pahokee 

Peat HA 

139 546 Belo

w det. 

1.54 1844 Belo

w det. 

Belo

w det. 

Belo

w det. 

12.36 151 

(Samples were digested in nitric acid for 16 h at 110° C in pyrex digestion tubes) 

 

The surfactants Triton X-100, cetylpyridinium chloride and sodium dodecyl sulfate were 

all purchased from Sigma Aldrich (Piscataway, NJ). Sodium chloride and sodium hydrogen 

carbonate for the saline solution were purchased from Sigma Aldrich. Sterile 18 MΩ deionized 

water was sourced from an apparatus by US filter. Artemia Franciscana was purchased from Brine 

Shrimp Direct (Ogdon, UT). Fisherbrand 100  15 mm petri dishes were purchased from Fisher 

Scientific (Somerville, NJ).  A VWR mini shaker was used during the hatching assays. An 

AmScope SE305R-PZ stereoscopic microscope was utilized for observing and counting the 

Artemia.  

Sulforhodamine-B dye (SRB), t-octyl-phenoxy polyethoxy ethanol (Triton TX-100), 

sodium dodecyl sulfate (SDS), and cetylpyridinium chloride (CPC) were purchased from Sigma 

Aldrich. Sodium dihydrogen phosphate (NaH2PO4H2O) was purchased from Fisher Scientific 

while sodium hydrogen phosphate dihydrate (Na2HPO42H2O) was purchased from Sigma-

Aldrich. The 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocoline (POPC) was purchased from 

Avanti Polar Lipids (Alabaster, AL) and the Sephadex G-50 gel for the size exclusion columns 

was obtained from Healthcare Biosciences (Piscataway, NJ). Benzene, methanol, and hydrochloric 

acid were purchased from Fischer Scientific. The nitrogen gas was supplied by Capital Welders 
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Supply Company (Baton Rouge, LA). All fluorescence measurements were made on a Horiba 

Jobin Yvon Fluorolog 3 spectrofluorimeter with a FL1073 detector, Spectra Acq computer and a 

model LF13751 temperature control. A Malvern Zetasizer nano (Worchester, UK) was utilized for 

dynamic light scattering of the liposomes.  

4.2.2 Experimental design 

Humic acid (HA) was chosen because it is a major portion of humic substances, is highly 

amphiphilic, i.e., contains both hydrophilic and hydrophobic functional groups (Thorn et al. 1989), 

and there are several well-characterized HA standards commercially available. Three humic acids 

of different sources were chosen to sample a range of HA chemical compositions: Suwanne River 

HA (SRHA; aquatic source), Pahokee peat HA (FPHA; peat source) and Leonardite HA (LAHA; 

lignite coal source). Comparing three HAs of different origins can provide only a limited amount 

of information about the components of HAs that are involved with toxicity mitigation of 

surfactants. Therefore, to gain deeper insight into the roles played by each specific HA component 

in the binding of surfactants, three chemical modifications were performed on LAHA: bleaching 

(reduced aromatics), Soxhlet lipid extraction (reduced lipids), and hydrolysis (reduced 

carbohydrates).  LAHA was chosen as it gives the same trends as the other two HAs and is 

economically viable. 

Triton X-100 (Tx-100), cetylpyridinium chloride (CPC) and sodium dodecyl sulfate (SDS), 

represent three different classes of surfactants: the non-ionic, cationic, and anionic, respectively 

(see Figure 4.1 for structures) and were chosen for their extensive use (Coleman and Waldroup 

1999, SIDS initial assessment profile: Sodium dodecyl sulfate, Triton surfactants: FDA status of 

triton surfactants 2010). The structures of these surfactants can be seen in Figure 4.1. 
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The concentration chosen was one that showed a dramatic difference in either the hatching 

or mortality percentages compared to the saline water control (> LC50). The Tx-100, CPC, and 

SDS were found to have significant toxicity levels at 100, 3.5, and 25 ppm, respectively. Therefore, 

these concentrations were also used when testing the toxicity of each surfactant when associated 

with the HAs. 

 

Figure 4.1 Chemical structures of A) Tx-100, B) CPC, and C) SDS 

 

All hatching assays were performed in triplicate and repeated at least three different times 

to verify reproducibility. 

 The surfactant concentrations chosen for the model biomembrane were below the critical 

micelle concentration (CMC) but also high enough to cause significant perturbation of the 

biomembranes. For Tx-100 (CMC ≈ 150 ppm) (Triton surfactants: Fda status of triton surfactants  

2010) and CPC (CMC = 40.8 ppm) (Safety data sheet: Cetylpyridinium chloride  2015), the 

concentrations was ≈ 70% of the CMC while the SDS (CMC ≈ 2365 ppm) (Moroi et al. 1974) was 

≈ 5% of the CMC due to the high percentage dye release in the presence of NaCl. SDS 

concentration was also limited by humic acid concentrations because a 1:1 ratio of HA to SDS was 
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desired. Artemia Franciscana, or brine shrimp, were chosen as model living organisms as they are 

commercially available, the cysts (eggs) can stay dormant for long periods of time, they are easy 

to hatch, and have a short life span. 

In addition to the simplicity of the procedures, lower volumes of toxins and solutions are 

needed relative to other species because of their small size (0.4 – 10 mm in length, depending on 

age – see Figure 4.2) (Nunes et al. 2006). 

Figure 4.2 Artemia Franciscana at a) 24 h and b) 48 h in 35 ppt NaCl at pH 7.8 

 

Artemia Franciscana have been previously utilized for three different types of toxicology 

assessments: hatching (MacRae and Pandey 1991, Nunes et al. 2006), short-term mortality (≤ 48 

h) (Arulvasu et al. 2014, Nunes et al. 2006), and long-term mortality (> 48 h) (Manfra et al. 2012, 

Nunes et al. 2006). Various pollutant toxicity mechanisms can inhibit hatching or be lethal to the 

hatched Artemia. For this study, only hatching and short-term mortality assays were used because 

long-term mortality assays would require feeding the Artemia algae, which would add another 

level of complexity when determining toxic effects of surfactants in the presence of humic acids. 
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 Fluorescence experiments with model biomembranes experiments were designed to give 

further credence to the effects of surfactant-HA associations observed in the Artemia hatching 

assays with a simpler system.   

4.2.3 Sample preparation  

Humic acid stock solutions were prepared by dissolving approximately 20 mg of HA, 

including chemically modified HAs, in 18 MΩ deionized water (if HA solubility issues arose at 

low pH, a small amount of NaOH was added). The pH was adjusted to the desired value by HCl 

and NaOH. The solutions were diluted with sterile 18 MΩ deionized water and stirred overnight. 

When necessary, the pH was re-adjusted after the equilibration period.   

4.2.4 Humic acid chemical modification 

Three procedures for chemical modification were performed on LAHA: acid hydrolysis 

(Almendros 1994), Soxhlet lipid extraction (Chilom et al. 2009) and bleaching (Wise et al. 1946).  

Acid hydrolysis: 300 mL of 6 M HCl per gram of HA were mixed together and maintained 

under reflux for 6 h. The acid was removed from the HA by dialysis. The modified HA was freeze-

dried for 24 h or until completely dry.  

Soxhlet extraction: The HA was placed into the thimble of the assembly and inserted into 

a Soxhlet extractor fitted with a condenser. Approximately 200 mL of benzene: methanol (3:1) 

azeotrope was placed in a round bottom flask fitted onto the Soxhlet extractor. It was then heated 

in a sand bath and refluxed for at least 72 hours. Subsequently, the thimble was removed from the 

extractor and the solvent was allowed to evaporate in the hood.  

Bleaching: The original procedure by Wise et al., (Wise et al. 1946) was used to isolate 

wood holocellulose; however, it was modified in this work by increasing the bleaching time. The 

bleach solution for one gram of HA contained 10 g sodium chlorite, 10 mL glacial acetic acid, and 
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100 mL deionized water. The HA and the bleach solution was stirred overnight in the hood. It was 

then centrifuged at 3500 g for 15 min and the bleach solution was decanted from the HA. This was 

repeated 3 times with fresh bleaching solution. The final HA residue was separated by 

centrifugation and followed by dialysis.  

The dialysis waste was tested with AgNO3 to verify that all chlorine had been removed 

before freeze-drying the modified HA. It was then freeze-dried for 24 h or until dry. 

The chemically modified and unmodified HAs were characterized by solid state CP-MAS 

13C NMR. Homogenized HAs were tightly packed into a 2.5 mm high-resolution magic angle 

spinning zirconium rotor (Bruker). Spectra were acquired at 100 MHz with a spinning rate of 5 

kHz and a ramp polarization contact time of 2 ms. The recycle delay time was 1 s and a total of 

4,096 scans were collected per experiment. 

4.2.5 Surfactant stock solutions 

Stock solutions of 10,000 ppm (1%) of Tx-100, CPC, and SDS were prepared by dissolving 

1 g of the surfactant into 100 mL of 18 MΩ water. Final dilutions and pH adjustments were made 

for the final sample solution. 

4.2.6 Humic acid and surfactant mixture solutions 

Humic acid and surfactant solutions were prepared by adding appropriate amounts of a 70 

parts-per-thousand (ppt) NaCl solution for a final concentration of 35 ppt NaCl (to mimic saline 

environments), humic acid stock solution and surfactant stock solution into 50 mL volumetric 

flask. The samples were diluted to 50 mL and the pH was adjusted to 7.8 with sodium hydrogen 

carbonate. The sample solutions were allowed to equilibrate overnight. The control solution was 

35 ppt NaCl adjusted to pH 7.8 with sodium hydrogen carbonate for all sample series.  
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4.2.7 Model biomembrane preparation 

For liposome fluorescence measurements, all model biomembranes, humic acid solutions, 

and surfactant solutions were in a 0.01 M phosphate buffer at pH 7.0.  

The sulforhodamine-B (SRB) vesicles were prepared as previously described.[5] In short, a 

lipid film was created in the bottom of a round bottom flask by dissolving POPC in 66 μL methanol 

and 132 μL chloroform (1:2 solution), stirring the solution for 30 minutes and then evaporating 

under nitrogen gas for 24 hours resulting in a thin lipid film. The lipid film was hydrated with 5 

mL of 50 mM SRB dye in phosphate buffer and the solution was vortexed until the lipid was fully 

suspended in solution. The solution then underwent three freeze/thaw cycles (placed in dry ice and 

acetone until the mixture was completely frozen and then heated to 80°C) to yield large 

multilamellar vesicles. The thawed vesicles were then extruded utilizing a Lipex Lipid Extruder 

(North Lipid, Vancouver, BC, Canada) through a 100 nm-pore Whatman Nuclepore polycarbonate 

track-etched membrane to create large unilamellar liposomes (model biomembranes). Size 

exclusion chromatography was used to remove the non-encapsulated dye from the dye-loaded 

liposome solution by passing the liposome solution through three consecutive columns packed 

with Sephadex-G 50 resin with phosphate buffer as the elution buffer. Dynamic light scattering 

(DLS) was used to verify the size and monodispersity of the model biomembranes. The DLS 

measurements were made with a scattering angle of 90° and a wavelength of 6471 Å. The DLS 

results confirmed the formation of vesicles with a diameter of 100 nm. 

4.2.8 Fluorescence measurements 

The blank for all fluorescence measurements was a solution of liposomes and the phosphate 

buffer. Excitation and emissions wavelengths of 565 nm and 585 nm, respectively (the excitation 

and emission maximum for SRB), were used for all fluorescence measurements. Ten minutes after 
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introducing the surfactants and humic acids to the liposomes, fluorescence spectroscopy was 

utilized to determine the amount of dye released from the liposomes due to membrane perturbation. 

Triplicates were made of each sample and measured by fluorescence to verify reproducibility. The 

following equation was used to calculate the percent dye release from the liposomes relative to the 

lysed membranes: 

 

Percent dye release = 100 % x (IH – IB)/(IT – IB)            (1) 

 

where IH is the fluorescence intensity of liposomes in the presence of HA sample, IB is the 

fluorescence intensity of the blank, and IT is the fluorescence intensity of the dye after the 

liposomes are ruptured with the surfactant alone.  

4.2.9 Artemia hatching assay 

The hatching and mortality assay procedures used in this study are based on previous 

Artemia toxicity studies (Arulvasu et al. 2014, Distribution, life cycle, taxonomy, and culture 

methods: Brine shrimp (artemia salina), Sorgellos et al. 1978). The Artemia cysts were first 

hydrated for two hours in 18 MΩ water kept at 5 °C. Once hydrated, 25 to 28 Artemia cysts were 

placed into individual 100 mm   15 mm petri dishes and the total amount of cysts was recorded. 

To each sample, 10 mL of the saline/pollutant solution was added. Three replicates were used for 

the control and all samples. The petri dishes were placed on a shaker at 100 rpm. The shaker was 

used to keep the samples aerated to limit anoxia. The Artemia were not fed during the 48 h hatching 

assays. The number of Artemia hatched and the number of dead-hatched were counted at 20, 24, 

32, 44, and 48 h using a stereomicroscope. Healthy Artemia are highly active so individual Artemia 
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were considered dead if there was no movement within five seconds (Matthews 1995, Rodd et al. 

2014). 

Hatching percentage = 100 %  [# of hatched Artemia]/[total Artemia]         (2) 

 

Mortality percentage = 100 %  [# of dead Artemia]/[# of hatched Artemia]        (3) 

 

4.3 Results  

4.3.1 Fluorescence results and discussion 

Fluorescence spectroscopy was used to determine the changes in surfactant permeation of 

the model biomembranes in the presence of aquatic Suwannee River humic acid (SRHA, as it was 

found that SRHA did not quench the release fluorescent dye, under conditions used in this study) 

by measuring the intensity of fluorescent dye released relative to the surfactant alone. The SRHA 

concentration was varied while maintaining a constant concentration of surfactants. Since the 

Artemia hatching assays required a salt-water environment, the leakage studies were performed in 

both fresh water and saline water (35 ppt NaCl). The data presented in Figure 4.3 are the percentage 

of the dye released from the liposomes relative to the surfactant and liposomes alone in fresh water. 

SRHA has no effect on the Tx-100’s ability to perturb the liposomes in either the fresh water or in 

35 ppt NaCl solution. The SRHA did not interact enough with the non-ionic surfactant to cause 

any changes in the perturbation. The cationic surfactant, CPC, showed a decrease in liposome dye 

release as SRHA was added except for the 30 ppm SRHA, which had an increase in perturbation 

relative to the two lower concentrations of SRHA. This was unexpected but may be caused by 

aggregation of the SRHA at the higher concentration. In 35 ppt NaCl, the CPC alone caused a 

decreased perturbation of the liposomes relative to the fresh water environment. The salt likely 
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plays a protective role by surrounding the negatively charged liposomes with positively charged 

sodium ions and thus either repelling the positively charged CPC or limiting CPC’s access to the 

liposome. As SRHA was added to the CPC and saline water solution, there was a slight decrease 

in membrane perturbation, which suggests some interaction between the SRHA and CPC, but the 

percent dye release was still greater (meaning more perturbation) than that at the low 

concentrations of SRHA and CPC in fresh water. The sodium ions were likely interacting with the 

negatively charged moieties of the SRHA and not allowing CPC as much access to the binding 

sites as in fresh water. This evidence suggests that much of the CPC-SRHA interactions are 

electrostatic. The anionic surfactant, SDS, had less of an interaction with the liposomes than the 

other two surfactants, which was exhibited by lower fluorescence intensity (not shown).  

The SDS has a much greater dye release in the saline water solution than in the fresh water 

solution. This constitutes further evidence that the sodium ions surround the negatively charged 

liposomes, decreasing the repulsion between the liposomes and the SDS, which allows the SDS to 

permeate the liposome.  

Figure 4.3 Percent liposome SRB dye release induced by a) Tx-100, b) CPC and c) SDS with 

varying concentrations of SRHA and salinity. 
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There is little interaction between the SDS and SRHA in the fresh water environment 

because of the electrostatic repulsions. However, in 35 ppt NaCl solution, there is a significant 

decrease in liposome perturbation when SRHA is added to the system.  

Again, the sodium ions must be playing a role in limiting the electrostatic repulsion and 

allowing the SRHA to interact with the SDS.  

4.3.2 Chemically modified humic acid 

The 13C NMR spectra for the modified HAs are presented in Figure 4.4. For the hydrolyzed 

LAHA, there is a decrease in the O- and N- alkyl region (90-65 ppm) and an increase in relative 

percentage area of the aromatic region. 

  

Figure 4.4 13C NMR spectra of the chemically modified Leonardite humic acid (LAHA) 

 

This indicates a reduction of the carbohydrate moieties versus the other chemical moieties 

within the sample. In the lipid-extracted LAHA, there is a decrease in the region corresponding to 

the polymethylene chains and an increase in the relative percent area of the aromatic region, which 

is consistent with the reduction of lipid moieties versus the other chemical moieties within this 

sample.  
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Finally, the bleached LAHA spectrum shows a significant decrease in the relative percent 

area of in the aromatic region (165 – 90 ppm), and hence, a reduction in aromatic moieties versus 

the other chemical moieties within this sample. Tables 4.4 and 4.5 provide detailed information on 

the chemically modified humic acids. 

Table 4.4 13C NMR relative percent areas of unedited and edited LAHA 

Standard HA Carboxyl Aromatic Aldyhyde/K

etone 

N- or O- Alkyl Alkyl 

Bleached 

LAHA 

4.03% 29.86% 0.0% 9.43% 38.44% 

Lipid 

Extracted 

LAHA 

9.99% 60.71% 0.47% 6.28% 22.56% 

Hydrolyzed 

LAHA 

9.08% 62.38% 0.71% 1.78% 26.05% 

LAHA 

Reference 

11.18% 52.89% 0.07% 7.11% 37.74% 

(Electronically integrated peak area percentages) 

 

Table 4.5 Metal concentrations of chemically modified HAs as determined by ICP-MS 

Modified  

HA 

Al 

mg/ 

kg 

Ca 

mg/ 

kg 

Cr 

mg/ 

kg 

Cu 

mg/ 

kg 

Fe 

mg 

/kg 

Mn 

mg/kg 

Ni 

mg/ 

kg 

Si 

mg/ 

kg 

Sr 

mg/

kg 

Zn 

mg/kg 

Bleached 

LAHA 

393 1856 21.0 62.0 582 12.8 104 362 11.

8 

38.6 

Hydrolyzed 

LAHA 

76.5 157 22.9 7.91 168 Below 

det. 

12.7 17.7 1.1

1 

Below 

det. 

Lipid 

extracted 

LAHA 

3231 5094 62.6 23.7 3134 2.57 37.6 227 59.

9 

Below 

det. 

(Samples were digested in nitric acid for 16 h at 110° C in pyrex digestion tubes) 

 

The data in Figures 4.5 and 4.6 clearly show that none of the HAs studied were toxic to the 

Artemia Franciscana for the conditions used. In regards to HAs being toxic, we have previously 

studied (Elayan et al. 2008, Ojwang' and Cook 2013) this phenomenon extensively with model 

systems by a range of techniques including 31P NMR and fluorescence leakage assays and have 
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found that HAs can induced passive membrane perturbation at acidic pH, but induce little to no 

perturbation at pHs of 7 or higher, as used in this study.  

 

 

Figure 4.5 Artemia hatching and mortality assays with A) LAHA, B) FPHA and C) SRHA 
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Figure 4.6 Chemically modified LAHA Artemia hatching and mortality assays 
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Thus, the finding here in terms of HAs toxicity is consistent with our previous study on 

model membrane systems. This is comforting and illustrates the usefulness of model systems as 

well as living organisms in toxicity studies. 

4.3.3 Hatching assays with a non-ionic surfactant – Tx-100 

Triton-X 100 (Tx-100), a non-ionic surfactant, showed no effects on the Artemia’s hatching 

percentage but it did have a significant effect on mortality at a concentration of 100 ppm and above. 

The influence of the different HAs at concentrations of 25, 50, and 100 ppm is shown in Figure 

4.7. The data presented in Figure 4.7 clearly show that LAHA reduces the toxicity of Tx-100, even 

at concentrations as low as 25 ppm (versus the 100 ppm Tx-100) and that LAHA’s ability to 

mitigate this toxicity increases at 50 ppm. However, there is no difference in the ability of LAHA 

to mitigate Tx-100 toxicity between LAHA concentrations of 50 and 100 ppm (Figure 4.7A). Due 

to the ionic strength and LAHA concentration, it seems logical that this observation is due to 

LAHA aggregation (Ojwang' and Cook 2013) FPHA also shows an ability to mitigate the toxicity 

of Tx-100, however to a lesser degree than LAHA and only at concentrations of 50 ppm and higher 

(Figure 4.7B). SRHA, on the other hand, shows little to no ability to mitigate the toxicity of Tx-

100. Fluorescence leakage experiments (Figure 4.3) show a consistent view that SRHA does not 

reduce the ability of Tx-100 to induce biomembrane permeability. This toxicity enhancement can 

be caused by SRHA’s ability to permeate cellular membranes due to membrane defects caused by 

the Tx-100 surfactant (Vigneault et al. 2000).  

4.3.4 Hatching assays with a cationic surfactant – CPC  

Unlike Tx-100, the cationic surfactant cetylpyridinium chloride (CPC) had significant 

impact on the hatching percentage of the Artemia at 3.5 ppm and above but did not affect the 

mortality percentage. The changes in hatching percentages in the presence of HAs can be seen in 
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Figure 4.8. The ability to mitigate CPC’s toxicity increased with HA concentration, with LAHA 

being the most effective. In fact, even at 5 ppm LAHA, the hatching percentage was very similar 

to the control sample (Figure 4.8A), suggesting that the toxicity of CPC is completely mitigated 

by the LAHA.  

FPHA and SRHA have similar CPC toxicity mitigation trends. Unlike the LAHA, even the 

lowest concentration of 1 ppm has a significant effect on the levels of toxicity.  

At the highest concentration of 5 ppm, FPHA nearly completely mitigates the toxicity (Figure 

4.8B). SRHA mitigates CPC toxicity but not to the same extent as FPHA at higher HA 

concentration (Figure 4.8C).  

4.3.5 Hatching assays with an anionic surfactant – SDS 

Similar to CPC, the anionic surfactant SDS also had a significant effect on the Artemia 

hatching percentage but not the mortality percentage. All HAs at concentrations of 5, 10, and 25 

ppm showed the ability to mitigate the toxicity of SDS to some extent. Unlike FPHA and SRHA, 

the ability of LAHA to mitigate SDS toxicity was concentration independent, with all three tested 

concentrations reducing the toxicity of the SDS surfactant by about half or yielding toxicity 

midway between the control solution and the SDS solution in the absence of HA (Figure 4.9A). 

FPHA’s SDS toxicity mitigation increased with HA concentration, but not in a linear manner 

(Figure 4.9B). SRHA showed an overall similar mitigating potential to SDS, but again, in a non-

linear manner (Figure 4.9C).  

Since HAs are anionic, they are expected to repel the negatively charged sulfate group of 

the SDS, resulting in limited binding (Koopal et al. 2004). However, the Artemia are in a saline 

environment containing positively charged Na+ ions. These cations are expected to 

electrostatically interact with the SDS and the HA to reduce electrostatic repulsion.  
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Figure 4.7 Artemia hatching assays at 100 ppm Tx-100 and LAHA, FPHA, and SRHA  
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Figure 4.8 Artemia hatching assay at 3.5 ppm CPC and LAHA, FPHA, and SRHA.  
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Figure 4.9 Artemia hatching assays at 25 ppm SDS and LAHA, FPHA, and SRHA.  
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This phenomenon can be also seen in the fluorescence study with liposome membranes 

(see Figure 4.3), whereby the presence of the SDS alone increased membrane permeability in both 

the saline and fresh water environments, but upon introduction of SRHA, there was a more 

significant decrease in membrane perturbation in the saline environment relative to that in the fresh 

water environment.  

4.3.6 Chemically modified humic acid with surfactants 

While studying HA-surfactant interactions alone provides relatively limited information in 

terms of the role of HA composition, chemically modified LAHA was utilized to determine 

specifically which components of the HA may be involved in the interactions. The data in Figure 

4.10A show that when the lipids are extracted, the ability of LAHA to mitigate Tx-100’s toxicity 

is almost completely removed. At the same time, samples with enhanced polymethylene chains 

demonstrate a slight increase in their ability to mitigate Tx-100’s toxicity.  

The hydrolyzed, lipid-extracted, and the unmodified LAHA all mitigate the CPC toxicity 

(Figure 4.10B). The bleached LAHA has a lower hatching percentage, indicating that it does not 

have the ability to mitigate the toxicity of CPC to the same extent as the unmodified, lipid-

extracted, and the hydrolyzed LAHA.  

All of the chemically modified LAHA somewhat mitigated the toxicity of SDS relative to 

the SDS alone (Figure 4.10C). However, in the presence of LAHA (modified or unmodified), the 

SDS remained still somewhat toxic.  

4.4 Discussion 

4.4.1 Non-ionic surfactant – Tx-100 

The HA demonstrated the following trend in Tx-100 toxicity mitgation: LAHA > FPHA > 

SRHA (Figure 4.7). Conceivably, two possible interactions could be occuring. First, the aromatic 
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component of the HA, by π-π stacking with that of Tx-100 (Keiluweit and Kleber 2009, Pignatello 

2011), could make Tx-100 unavailable to the Artemia and essentially mitigate Tx-100’s toxicity. 

The trend in the ability to mitigate TX-100 toxicity parallels the aromatic content of the 

different HAs, with LAHA demonstrating the highest, and SRHA having the lowest, such ability. 

Secondly, the observed trend in Tx-100 toxicity mitigation of the different HAs may be due to 

their polarity. 

The polarity indices obtained by elemental analysis ((O + N) / C) for LAHA, FPHA, and 

SRHA: 0.51, 0.73, and 0.83, respectively (elemental composition of these HAs are provided in 

Table 4.1)(Xing et al. 1994). Based on the chemical composition of the HAs, it can be postulated 

that the less polar or the more hydrophobic the HA, the better it can mitigate Tx-100 toxicity, 

exploiting interactions with the hydrophobic end of the Tx-100 molecule. The chemical 

modification of the HA can elucidate which of the proposed interactions is the primary interaction.  

Coincidentally, an aggregation study found these same components to be largely 

responsible for the amphiphilic character of HA samples (Chilom et al. 2009). Thus, the data in 

Figure 4.10A suggest the amphiphilic character of the lipid component play a large role in HA’s 

ability to interact with the non-ionic Tx-100 surfactant. When this component is removed, that 

interaction is significantly weakened and the ability of a humic acid to mitigate Tx-100’s toxicity 

is either removed or greatly reduced. 

This proposal is also consistent with the more polar HA - such as SRHA - being less able 

to mitigate Tx-100’s toxicity (see Figure 4.7), but it also offers strong evidence against aromatic 

moieties playing a role in HA’s ability to mitigate Tx-100’s toxicity. Additionally, the data in 

Figure 4.10 show that the bleached LAHA, depleted in aromatic content, was still able to mitigate 

Tx-100 toxicity to almost the same level as the unmodified LAHA. 
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Figure 4.10 Artemia hatching assays at 100 ppm Tx-100, 3.5 ppm CPC and 25 ppm SDS in the 

presence of chemically modified LAHA 
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This implies the increased importance of “hydrophobic” interactions in mitigating the 

toxicity of Tx-100 and downplays the possibility of π-π interactions in the interaction of Tx-100 

with HAs. 

The bleached and hydrolyzed LAHA samples reduced the early stages of Artemia mortality 

induced by Tx-100. There is a two-fold explanation for this observation. First, the reduction of the 

aromatic (in the bleached sample) and carbohydrate moieties (in the hydrolyzed sample) 

concentrates the aliphatic and lipid-like moieties, increasing their toxicity mitigating capacity. In 

addition, reducing the amount of aromatic and carbohydrate moieties limits the HAs’ potential to 

block lipid-like moieties (Lattao et al. 2008, Mitchell and Simpson 2013) from an interaction with 

Tx-100, enhancing their ability to interact with, and reduce the toxicity of, Tx-100.   

4.4.2 Cationic surfactant - CPC 

For both FPHA (Figure 4.8B) and SRHA (Figure 4.8C), the CPC toxicity mitigation 

capacity of the HA does not linearly change with concentration, suggesting partial aggregation of 

HAs at higher concentrations (Ojwang' and Cook 2013). This partial aggregation involves HA’s 

hydrophobic moieties (possibly aromatic groups) reducing their availability to interact with the 

CPC hydrophobic domain.  

 The trend in the CPC toxicity mitigation by HAs is the same as that seen for Tx-100, and 

so the same two mechanisms may be proposed, namely the CPC π-π stacking with the aromatic 

component of the HAs as well as the hydrophobic interactions. In addition, because CPC is cationic 

and HAs have an overall anionic nature at pH 7.8, it can be assumed that at least some of the CPC-

HA interactions are caused by electrostatic attractions and the formation of ion pairs (Otto et al. 

2003). 
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The bleached LAHA had a lower hatching percentage (Figure 4.10B), suggesting that the 

aromatic moieties play a role in binding CPC. Hence, when the aromatics are removed by 

bleaching, there are fewer interactions between CPC and the HA. This is consistent with the results 

obtained for CPC and HAs from different sources, as shown in Figure 4.8. SRHA has a low 

percentage of aromatic groups and did not demonstrate the CPC toxicity mitigating capacity of 

LAHA or FPHA, both of which have higher percentages of aromatic groups (Thorn et al. 1989). 

Since CPC contains a positively charged aromatic, and hence, hydrophobic head group, HAs have 

the ability to engage in aromatic π-π stacking interactions and/or form ion pairs with the surfactant 

to mitigate CPC toxicity (Chin et al. 1997, Keiluweit and Kleber 2009, Laor et al. 1998, Pignatello 

2011).  This explanation is further strengthened by the fact that the hydrolyzed sample has a better 

toxicity mitigating capacity than the unmodified LAHA, as it has been found that carbohydrate 

moieties can block aromatic interaction sites (Mitchell and Simpson 2013). In other words, the 

removal of the carbohydrate moieties frees up aromatic moieties to associate with CPC, and thus, 

reduce CPC’s toxicity. In addition, it appears that the removal of carbohydrate moieties is capable 

of enhancing the ability of the Artemia to hatch in the presence of CPC. Although interesting, this 

finding is beyond the scope of the presented work, but it will be the subject of future investigations. 

4.4.3 Anionic surfactant - SDS 

All HAs at concentrations 5, 10 and 25 ppm had the ability to mitigate the toxicity of SDS, 

likely through the electrostatic and hydrophobic/hydrophilic interactions (Koopal et al. 2004). 

Unlike FPHA and SRHA, the ability of LAHA to mitigate SDS toxicity was not concentration 

dependent (Figure 4.9A). This could suggest that either LAHA and SDS bind in a limited and non-

specific manner or the possible HA sorption sites for the SDS’s sulfur head group (such as 

nitrogen) are saturated, due to LAHA aggregation and conformational changes. Another possibility 
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is that LAHA is associating with, and hence, protecting the membrane from SDS’s toxic effect, 

and membrane association sites are saturated even at the lowest LAHA concentration (Ojwang' 

and Cook 2013). The hatching percentage for the SDS with 5 ppm SRHA was higher than that for 

SDS with 10 ppm SRHA, which constitutes a discrepancy compared to the mitigation trends of 

the previous surfactants (Figure 4.9C). Because of HAs’ heterogeneous nature, many different 

interactions and conformations of moieties within the HA are possible (Bonin and Simpson 2007). 

Accordingly, interactions of SRHA with SDS at a low SRHA concentration may have become 

limited when the concentration was increased to 10 ppm due to changes in HAs’ conformation or 

an altering of the interaction patterns. As SRHA concentration continued to increase to 25 ppm, 

those conformational changes may have been overcome. It has been previously proposed that 

structure, conformation, and accessibility of HA moieties can play a role in HAs’ interactions with 

pollutants (Mitchell and Simpson 2013). 

 Trends observed for the chemically modified LAHA (Figure 4.10C) are consistent with 

those reported for HA from different sources and with the proposal that SDS engages in non-

specific binding with the HA, which may be due to a combination of electrostatic (repulsions 

counteracted by the Na+ ions in the saline solutions) and hydrophobic/hydrophilic interactions 

(Koopal et al. 2004). 

4.5 Conclusions 

Overall, the results presented above show that HAs reduce the toxicity of surfactants, and 

need to be considered in studies of surfactant toxicity. The results of this work show that the 

chemical composition of the HA is an important factor in determining their effectiveness in 

mitigating surfactant toxicity and that HAs mitigate the toxicity of the various surfactants 
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differently. While there is no universal mechanism by which HAs mitigate the toxicity of 

surfactants, there is a range of possible mechanisms due to the complex nature of HAs.  
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CHAPTER 5 

SURFACTANT’S INFLUENCE ON ARTEMIA FRANCISCANA’S EMBRYONIC 

PHOSPHO-METABOLITE PROFILE AND THE INFLUENCE OF HUMIC ACID AS 

MEASURED BY 31P NMR 

 

5.1 Introduction 

Surfactants are a class of amphiphilic water soluble compounds and their toxicity is 

dependent on the organism being studied, the class of the surfactant, and the structure of the 

surfactant (Ivanković and Hrenović 2010). There are four classes of surfactants: zwitterionic, 

nonionic, cationic, and anionic. Surfactants used for household and industrial applications are 

typically classified as either nonionic, cationic, or anionic (Ivanković and Hrenović 2010). 

Surfactant toxicity has been a focus of many studies (Ivanković and Hrenović 2010). Due to their 

heavy use, surfactants inevitably end up in the environment via run-off, waste water treatment 

plants, remediation treatments, and pesticide formulations (Rogers 1996, Stalmans et al. 1991, 

Mulligan et al. 2001, Czarnota and Thomas, Song get al. 2012, Zoller 2014). This is of major 

concern because of their possible toxicity to aquatic organisms (Ostroumov 2006).  

Furthermore, humic acids (HAs), which are omnipresent in the environment, have been 

shown to mitigate the toxicity of a range of pollutants, including surfactants (Deese et al. 2015, 

Koopal et al. 2004). HAs are complex heterogeneous organic molecular assemblies created by the 

degradation of organic matter. They are amphiphilic and are made up of a variety of functional 

groups, mainly carbohydrates, aromatics, and lipids. HA structure and functionality varies 

depending on its biogeochemical origin. HA-pollutant interactions can be caused by electrostatic 

or hydrophobic/hydrophilic interactions, as well as by chemical binding (Stevenson 1994). These 

interactions are dependent on both the type of HA and the pollutant. Previous Artemia Franciscana 

(Artemia) hatching assays have shown that surfactant toxicity can be mitigated by HAs and that 
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mitigation is based on electrostatic interactions, π-π interactions, and the amphiphilic functionality 

of the HA (Deese et al. 2015).  

Artemia, commonly known as brine shrimp, are aquatic crustaceans that are often used in 

toxicological studies. Pollutant toxicity to Artemia has been studied for a range of toxicants, 

including (but not limited to) surfactants (Deese et al. 2015), oil dispersants (Rodd et al. 2014), 

pharmaceuticals (Nunes et al. 2005), pesticides (Venkateswara Rao et al. 2007), metals (Kokkali 

et al. 2011), and nanoparticles (Arulvasu et al. 2014, Rajabi et al. 2015). Depending on the type of 

pollutant or stressor, the embryonic development and the overall health of Artemia can be 

negatively impacted. Adverse conditions, such as a polluted environment, can cause significant 

changes and development inhibitions of an embryo as well as retard development after hatching.  

The changes in development of the Artemia are based on the toxicity mechanism of the pollutant. 

The commonly used toxicological monitoring methods include hatching ability, short-term 

mortality (≤ 48 h), and long-term mortality (> 48 h). Hatching ability assays with decreased 

hatching success under toxic conditions suggest that there is either death to the embryos or a delay 

of the processes required to hatch, while mortality assays measure the toxic response to Artemia 

after they have hatched. Although these methods can provide information on the toxicity of 

pollutants, they are limited in that they cannot provide any mechanistic insight on the causes of 

toxicity. 

 Because of the limited information obtained by Artemia hatching assays and the extensive 

sample preparation required for metabolite extraction, an in vivo method for analyzing embryo 

development under a variety of conditions is desired. Nuclear magnetic resonance spectroscopy 

(NMR) is an almost ideal technique for in vivo experiments because of its non-invasive nature. 

Phosphorous-31 (31P) NMR is of particular interest because 31P has a high gyromagnetic ratio (γ) 



115 

 

and is a biologically selective isotope. Notably, important metabolites in organisms contain 

phosphorus, such as adenosine triphosphate (ATP), adenosine diphosphate (ADP), inorganic 

phosphate (Pi), sugar phosphates, such as glucose-1-phosphate and NAD(P)H, phosphodiester 

bonds (PDE), and phosphocreatine (PCr). By tracking the changes in concentration of these 

important phospho-metabolites, the health of the organism in question can be monitored by in vivo 

31P NMR.   

Previous studies found that, while Tx-100 cause mortality after hatching, while 

cetylpyridinium chloride (CPC) and sodium dodecyl sulfate (SDS) inhibited hatching,  and HAs 

can mitigate these toxic effects (Deese et al. 2015). However, questions remained in regards to the 

toxicity mechanisms of CPC and SDS as well as to whether real-time measurements could be taken 

to study this toxicity. These questions have been addressed in this study by utilizing 31P NMR. The 

specific objectives are to determine if 1) surfactants can measurably change the phospho-

metabolite profile of the Artemia embryos, 2) changes can be measured in real time, 3) the toxicity 

mechanisms are based on membrane disruption or a growth inhibition, and 4) the toxicity 

mitigation by HA phenomenon could be measured by 31P NMR. 

5.2 Materials and Methods 

 The surfactants Tx-100, CPC and SDS were all purchased from Sigma Aldrich 

(Piscataway, NJ, USA). Sodium chloride and sodium hydrogen carbonate were also purchased 

from Sigma Aldrich. Sterile 18 MΩ deionized water was sourced from a US filter water 

purification system. Artemia franciscana was purchased from Brine Shrimp Direct (Ogdon, UT, 

USA). Guanosine 5’-triphosphate sodium standard was purchased from Sigma Aldrich. The 

Perista Pump SJ 1220 peristaltic pump was manufactured by the ATTO Corporation (Tokyo, 

Japan). Silicone tubing for the peristaltic pump (0.64 mm inner diameter, 1.27 mm outer diameter, 
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15.3 m length, and 1.47 mm inner diameter, 1.97 mm outer diameter, 15.3 m length) was purchased 

from Fisher Scientific (Pittsburg, PA, USA). 

5.2.1 Experimental design 

 In addition to Artemia Franciscana being a well-studied model organism for toxicity 

studies, it was chosen for the in vivo 31P NMR studies because its phospho-metabolite is readily 

measured by 31P NMR, its preparation for NMR studies is simple, and its embryogenesis is well 

characterized. The development of Artemia has been extensively studied and the processes that 

occur during its embryonic development are well known and thus, any changes due to stressors 

can be observed (Distribution, life cycle, taxonomy, and culture methods: Brine shrimp (artemia 

salina), Stappen , Wang et al. 2007, Warner and Clegg 2001, Warner et al. 1995). Commercially 

available Artemia are stored in a diapause (suspended development) state and the Artemia will 

come out of their diapause state when environmental conditions are favorable. The ability of 

Artemia to go into a diapause state makes them ideal for laboratory studies as they can be stored 

for long periods of time. Optimal conditions for Artemia involve a saline environment (20 – 40 ppt 

NaCl), pH 7.5  9, and temperatures between 25 and 30°C (Nunes et al. 2006, Warner et al. 1989). 

There are several normal stages of development for Artemia (Neumeyer et al. 2015). Immediately 

post-diapause, the Artemia are in a cyst stage, in which a spherical embryo is encased within a 

translucent membrane and a dense shell. The next stages include the emergence, in which the 

embryo ruptures its outer shell and begins to protrude, the “umbrella” stage, in which the embryo 

emerges from the shell but has not yet broken the translucent inner membrane, the first instar larva, 

in which they are free swimming, and finally the second instar, or the “adult stage” (Neumeyer et 

al. 2015).   
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 The surfactants chosen for the 31P NMR studies were Triton X-100 (Tx-100, non-ionic), 

cetylpyridinium chloride (CPC, cationic) and sodium dodecyl sulfate (SDS, anionic) as they cover 

the three common classes of surfactants, are extensively used in households and industries, and 

the toxic responses of Artemia to these surfactants have been previously studied.  

 Tx-100 is commonly used in laboratories for cellular lysing procedures and in heavy-duty 

industrial cleaners, CPC is found in mouthwash and is known to be toxic to aquatic organisms, 

and SDS is found in many household detergents(Safety data sheet: Cetylpyridinium chloride  2015, 

Sids initial assessment profile: Sodium dodecyl sulfate, Triton surfactants: Fda status of triton 

surfactants 2010). Artemia hatching assays with these surfactants revealed that Tx-100 caused 

mortality after hatching, while SDS and CPC caused hatching inhibition (Deese et al. 2015).  

 Humic acids have been shown to remediate the toxic effects of the surfactants to the 

Artemia (See Chapter 4, Deese et al. 2015). Three different HAs and chemically modified HAs 

have previously been studied with the surfactants to study changes in toxicity to the Artemia based 

on the HA-surfactant interactions (Deese et al. 2015). It was determined that the amphiphilic 

character of the HAs played a role in Tx-100 toxicity mitigation, aromatic content played a role in 

CPC toxicity mitigation, and SDS-HA interactions were nonspecific. This initial study provided 

important but limited information about the toxicity of these surfactants to Artemia and the role of 

HAs in toxicity mitigation. Hence, the objective of this study is to measure the “real time” toxicity 

of the surfactants and the ability of the HAs to reduce the bioavailability of the surfactants using 

31P NMR. Leonardite humic acid (LAHA) was chosen for these studies because it shows similar 

trends in regards to surfactant toxicity reduction as other HAs, is more economically viable for the 

experiments discussed below (each individual in vivo 31P NMR requires between 5 and 35 mg of 

LAHA), and has been well characterized as well as extensively studied. 
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5.2.2 Surfactant stock solution preparation 

 Stock solutions of the surfactants Tx-100, CPC, and SDS were prepared by dissolving 1 g 

of the surfactant into 100 mL of 18 MΩ water for a concentration of 10,000 ppm (1%). Any 

dilutions and pH adjustments were made as necessary for the exposure solutions. 

5.2.3 Humic acid stock solution preparation 

 The stock solution of LAHA was prepared fresh for each experiment by dissolving 

approximately 150 mg of LAHA in 18 MΩ water. NaOH was added as necessary to dissolve the 

LAHA in water and the pH was adjusted to pH 7.8 using HCl and NaOH. The solution was diluted 

to 250 mL using 18 MΩ water, protected from light, and stirred overnight. The pH was checked 

and, if necessary, adjusted after the equilibration period. 

5.2.4 Exposure solutions 

Artemia exposures took place in a 35 parts-per-thousand (ppt) sodium chloride (NaCl) 

solution at pH 7.8. The 35 ppt NaCl solution was prepared by dissolving 35 g of NaCl in 1 L of 18 

MΩ water. Sodium hydrogen carbonate (NAHCO3) was added to the solution until a pH of 7.8 

was reached. The 35 ppt NaCl solution without any pollutants or HA added was used for the control 

experiments. For surfactant exposure solutions, appropriate amounts of Tx-100, CPC, or SDS 

stock solution were added to the 35 ppt NaCl solution for a final surfactant concentration of 100 

ppm, 5 ppm, or 35 ppm, respectively. Humic acid exposure solutions were prepared by adding the 

appropriate amount of LAHA stock solution to the 35 ppt NaCl solution along with any desired 

surfactant. The final LAHA concentrations were 35 ppm for the LAHA control and SDS solution 

and 5 ppm for the CPC solution. In order to ascertain toxicity, 35 ppm LAHA in the 35 ppt NaCl 

solution was used and changes occurring to the Artemia’s phospho-metabolite profile in the 

presence of LAHA were monitored using 31P NMR. Since this was the highest concentration of 
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LAHA used for the experiments, it was determined that a 5 ppm LAHA control was not needed 

(especially in light of the large amount of LAHA required). In addition, it has previously been 

shown that LAHA had no toxic effects on Artemia (See Chapter 4, Deese et al. 2015). 

5.2.5 Decapsulation of Artemia Franciscana embryos 

 Prior to the 31P NMR analysis and perchloric acid extraction for HPLC analysis, the 

Artemia were decapsulated using a bleaching method. This decapsulation (removal of the cysts 

encapsulating the embryos, Figure 5.1) method is commonly used when Artemia are used as feed 

for other organisms (Stottrup and McEvoy 2003). Before decapsulation, approximately 5 g of 

Artemia cysts were hydrated with 18 MΩ water in a 250 mL Erlenmeyer flask equipped with a 

bubbler for 1.5 h in an ice bath. The ice bath was used to keep the Artemia cysts below 5°C to 

prevent any premature development. After complete hydration, the cysts were filtered utilizing a 

nylon mesh fabric, placed back into the Erlenmeyer flask, and a hypochlorite solution (pure 

Clorox® bleach) was added with continued aeration.  

 
Figure 5.1 Decapsulation of Artemia Franciscana embryos 

 

After approximately 35 s, when the Artemia embryos began to turn orange (see Figure 5.1), 

they were immediately filtered, using the nylon mesh fabric, and rinsed with copious amounts of 

deionized (D.I.) water. For the NMR experiments, the Artemia embryos were packed into a 10 mm 

NMR tube. For the perchloric extraction step required for the HPLC analysis, the Artemia were 
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directly transferred to their exposure solutions containing 35 ppt NaCl and the appropriate 

surfactant concentrations.  

5.2.6 In vivo 31P NMR 

A perfusion system was designed based on previous in vivo 31P NMR studies, see Figure 

5.3 (Covi et al. 2005, Tjeerdema et al. 1993, Viant et al. 2006). The total length of each tube used 

for the NMR experiments was approximately 4 m. Decapsulated Artemia embryos were packed 

by gravity into a 10 mm NMR tube along with the pump’s tube system (Figure 5.2).  

 

Figure 5.2 Multi-step gravity packing of Artemia embryos after packing into a 10 mm NMR tube 

with glass wool “cap” 

 

The 10 mm NMR tube was filled with D.I. water and the “in” tube of the pump system 

placed so that the opening was at the bottom of the NMR tube. Small aliquots of the Artemia 

embryos (< 0.5 mL) were added, allowing for settling between each aliquot (Figure 5.2). This 

multi-step gravity packing method assured that the Artemia embryos packed tightly in the NMR 

tube, limiting any movement once liquid flow begins.  Once the Artemia filled approximately 4 -

5 cm of the NMR tube, in order to increase packing efficiency, glass wool was placed on top of 

the Artemia and gently pressed to remove any air bubbles.  
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It was important not to over-fill the Artemia embryos as too many embryos would consume 

too much oxygen, leading to anoxia problems. The glass wool also acted as a “cap” to keep the 

embryos from being removed from the NMR tube via the “out” tube. A ATTO Perista Pump SJ 

1220 peristaltic pump was utilized to pump in fresh, oxygen rich, 35 ppt NaCl exposure solution 

at pH 7.8 (adjusted with NaHCO3) to the Artemia, with a flow rate of 2 mL/min. 

A bottom-to-top flow through the system was achieved by pumping fresh solution into the 

bottom of the NMR tube and then removing the solution from the top of the Artemia population. 

The solution pumped into the NMR tube was aerated so as to saturate the solution with oxygen to 

limit negative effects of anoxia on Artemia. The pump system was constantly monitored to verify 

that the “in” and “out” tubes were working properly throughout each 5-h long NMR experiment. 

 All 31P NMR experiments were performed on a Bruker AVIII HD 400 MHz NMR at a 

controlled temperature of 298 K and equipped with a 10 mm broad band probe operating at the 

202.43 MHz. All spectra were baseline and phase corrected. The NMR spectral shift was calibrated 

using a 80% H3PO4/20%D2O solution, with the phosphate peak serving as the 0 ppm reference. A 

deuterium lock was not required. The Artemia embryos were measured over a period of 12 minutes 

with 3072 transients, 2048 data points, a spectral width of 82 ppm, a delay time of 0.1 s, a pulse 

power of – 6 dB, and a pulse angle of 30°. Data were processed with a 25 Hz line-broadening prior 

to Fourier transformation. All experiments were repeated in triplicate. 

After 31P NMR control experiments solely utilizing the 35 ppt NaCl solution, normal 

hatching success was observed for the Artemia. To determine hatching success, embryos within 

the spectrometer detection window were gently removed from the NMR tube and placed into a 

250 mL Erlenmeyer flask equipped with a bubbler that contained 35 ppt NaCl hatching solution. 

The solution was aerated and hatching was observed after 24 hours.  



122 

 

 

 

Figure 5.3 Schematic and actual photograph of in vivo NMR perfusion system with 10 mm NMR 

tube 

 

5.2.7 In vivo 31P NMR peaks and trends 

This section briefly introduces the chemical meaning of the peaks in the representative in 

vivo 31P NMR spectrum presented in Figure 5.4, as well as a brief review of their use in previous 

toxicological studies. The main indicator of stress that has been established by numerous studies 

is measurable changes in the ATP cycle (Covi et al. 2005, Viant et al. 2002, Tjeerdema et al. 1993). 

It has been found that when an organism is stressed, cells consume a large amount of ATP to 

generate ADP and the by product Pi. Table 5.1 summarizes the assigned 31P NMR peaks. 
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Table 5.1 Assigned 31P NMR peaks 

Chemical Shift (ppm) Chemical linkage Compound Type 

-19.0 – -18.6 

 

β - adenosine triphosphate 

-11.8 –  -9.8 

 

 

α-adenosine triphosphate/ 

α-adendosine diphosphate 

-5.5 –  -4.5 

 

γ-adenosine triphosphate/ 

β-adendosine diphosphate 

0 - 1 

 

Phosphocreatine 

1.2 – 1.8 

 

Phosphodiester 

2.5 – 3.5 

 

Inorganic phosphorus 

3.7 – 3.9 

 

Phosphomonoester 
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The organism uses the energy from the ATP bonds for necessary biological functions that 

would be stressed in a toxic environment. The Pi can also be utilized to monitor the intracellular 

pH of an organism, which can also serve as an indicator of stress. Cells are alkaline under normal 

conditions and acidification of the cells is considered to be a response to stress.  

A variety of biological species, conditions, and toxins have been previously measured by 

in vivo 31P NMR. Tjeerdema, Viant, and co-workers have extensively studied in vivo metabolomics 

using 31P NMR on organisms such as red abalone (Martello et al. 1998, Tjeerdema et al. 1993, 

Viant et al. 2002) and medaka (Oryzias latipes) fish embryos (Pincetich et al. 2005, Viant et al. 

2006). These studies illustrated the ability of in vivo 31P NMR to characterize the effects of both 

chemical stressors, such as pollutants, and physical stressors such as anoxia (lack of oxygen); all 

of which can be monitored in real time. Two studies by Viant and co-workers measured the toxic 

response to copper by the red abalone (Viant et al. 2002) and medaka fish embryos (Viant et al. 

2002). Both organisms showed measurable changes in [ATP], [phosphoarginine], and [Pi] 

indicating changes in the ATP cycle caused by Cu-induced stress. A study of the effects of dinoseb 

(a herbicide) on medaka fish embryos which also indicted changes in the ATP cycle by an increase 

in [Pi], and declines in [ATP] and [PCr] under stressful conditions (Viant et al. 2006). The 31P 

NMR results of that study were verified with HPLC and 1H NMR measurments of the metabolite 

extracts of the embryos.  

The phospho-metabolite profile of Artemia franciscana has been studied with in vivo 31P 

NMR by several groups. Busa et al. measured the metabolite profile of Artemia embryos as they 

developed from a diapause state to a post-diapause state (Busa et al. 1982). Kwast et al. measured 

the changes in the 31P NMR spectra as the Artemia embryos when stressed by low oxygen (anoxic) 

conditions and measured their ability to recover (Kwast et al. 1995). A study by Covi et al. utilized 
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Artemia Franciscana and 31P NMR to study in vivo changes of the intracellular pH and the ATP 

cycle during anoxia and under incubation with bafilomycin A1 (a V-ATPase inhibitor) (Covi et al. 

2005). The 31P NMR results for these studies showed that, under stress, intracellular acidification 

occurred, as measured by the upfield shift of the Pi peak as well as a decrease in [ATP]. These 

studies also found that Artemia could recover from anoxia under normal conditions and that the 

V-ATPase inhibitor bafilomycin limited the intracellular alkalization aspect of the recovery but 

did not interfere with the [ATP]. 

The Pi peak is generally used to calculate intracellular pH, as acidification of Artemia 

embryonic cells has been linked to stress on the organism in low-oxygen conditions (Covi et al. 

2005, Warner et al. 1989). Because the Pi peak shifts upfield during intracellular acidification, 

which indicates stress, the shift itself can determine the pH, and the Pi concentration can be 

correlated with the peak area. As mentioned before, Pi is a by-product of the ATP consumption 

when an organism is under stress. Hence, the Pi peak shift and the peak area increase serve as good 

stress indicators. Recent studies with Artemia have failed to identify the 31P NMR peak at 

approximately 2 ppm (the peak labelled PDE in Figure 5.4) (Covi et al. 2005, Kwast et al. 1995). 

However, studies of organisms with a similar phospho-metabolite profile as the Artemia have 

provided convincing evidence for that peak to be due to a phosphodiester (PDE) peak and 

corroborated their assertions by such methods as HPLC and 1H NMR (Martello et al. 1998, 

Pincetich et al. 2005, Tjeerdema et al. 1993, Viant et al. 2006, Viant et al. 2002). For this study, 

this peak was assigned to PDE with further verification by HPLC.  

The 31P NMR profile for the Artemia in this study is similar to previous Artemia studies as 

well as having a similar phospholipid profile to that of medaka embryos (Busa et al. 1982, Covi et 

al. 2005, Kwast et al. 1995, Viant et al. 2006). The detectable peaks (see Figure 5.4.A) are 



126 

 

identified here as a phosphomonoester (PME, sugar phosphate; 3.7 – 3.9 ppm) peak, an inorganic 

phosphate (Pi; 2.5-3.5 ppm) peak, a phosphodiester (PDE, DNA backbone; 1.2-1.8 ppm) peak, a 

phosphocreatine (PCr; 0-1 ppm) peak, adenosine triphosphate (ATP; -19.0 - -18.6 ppm) peak, and 

two peaks attributed to both ATP and adenosine diphosphate (ADP; -11.8 - -9.8 ppm and -5.5 - -

4.5 ppm) that are indistinguishable from each other.  Figure 5.4B illustrates an example of the 31P 

NMR of Artemia embryos that are “dead” at the time of measurement. This typically occurs when 

the decapsulation process is either done improperly (e.g. by leaving the embryos in the 

hypochlorite solution for too long) or when the decapsulation hypochlorite (bleach) solution has 

degraded over time. 

5.2.8 Extraction of phosphorylated metabolites 

The phosphorylated metabolites were extracted from decapsulated embryos by a perchloric 

acid extraction for HPLC analysis, following Viant et al. (Viant et al. 2006). After the Artemia 

were exposed in 35 ppt NaCl and pollutant solutions for 1 h and 5 h time periods (n = 6), aliquots 

of the Artemia embryos were removed and flash frozen with liquid nitrogen. The frozen embryo 

samples were lyophilized overnight to remove all water. The dry tissue was then homogenized 

with a mortar and pestle and weighted. All solutions during the extraction procedure were kept at 

T ≤ 5°C by keeping them in an ice bath throughout the entire experiment. The dry tissue was 

extracted with 0ºC 1.0 M perchloric acid, vortexed for 30 s, and then put into an ice bath for 10 

min. The samples were centrifuged at 10,000 × g for 10 min. The supernatant was then removed 

and neutralized to pH 7.0 with ice-cold 1 M Na2CO3, kept on ice for 30 min, and then centrifuged 

again under the same conditions. The samples were diluted to 10 mL with 18 MΩ water and filtered 

with 0.45 μm polyvinylidene fluoride filters prior to HPLC analysis.  
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5.2.9 High performance liquid chromatography 

High performance liquid chromatography (HPLC) was performed on the extracted Artemia 

phosphorylated metabolites for verification of the in vivo 31P NMR results. 

 
Figure 5.4 A) Representative 31P NMR spectrum of live Artemia Franciscana. Peak identities are 

1) phosphomonoesters (PME; 3.7 – 3.9 ppm), 2) inorganic phosphate (Pi; 2.5 – 3.5 ppm), 3) 

phosphodiesters (PDE; 1.2 – 1.8 ppm), 4) phosphocreatine (PCr; 0 – 1 ppm), 6, 7, 8) α-adenosine 

triphosphate (ATP)/α-adenosine diphosphate (ADP), β-ATP (-5.5 - -4.5 ppm, -11.8 - -9.8 ppm) 9) 

γ-ATP/β-ATP (-19.0 – 18.6) and B)31P NMR example spectrum of dead Artemia embryos 

 

All measurements were obtained utilizing an Agilent 1100 series HPLC with a C18 reverse-

phase column. The HPLC method used to detect guanosine triphosphate (GTP) from the perchloric 
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acid extraction was developed by Veciana-Nogues et al. (Veciana-Nogues et al. 1997) with UV 

detection at 254 nm. A 24-min gradient was used for each sample. The mobile phase A was 0.05 

M phosphate buffer and mobile phase B was HPLC-grade methanol. The flow rate was 1 mL/min. 

The gradient was as follows: 0-9 min 100% A, 0% B; 9 - 14 min 70% A, 30% B 14 - 24 min 100% 

A, 0% B. Peak assignment was confirmed with the use of standards. A calibration curve for GTP 

was created with 1, 5, 10, 20, and 30 ppm GTP standard and a R2 = 0.99 was obtained.  

5.3 Results 

5.3.1 31P NMR of Artemia in 35 ppt NaCl solution – Control conditions   

31P NMR spectra were acquired over 5 h with 35 ppt NaCl at pH 7.8 and under continuous 

aeration in order to obtain a set of control spectra with which to compare the polluted systems. 

Representative spectra of the control can be seen in Figure 5.7A. The PME, PCr, and ATP/ADP 

peaks showed insignificant changes over the course of 5 h. These slight changes are attributed to 

the constant change in the PME, PCr, and ATP/ADP concentrations as the embryos begin to 

develop. The PDE peak for the controls had a significant increase after approximately 150 min 

and continued over the course of the experiment. 

5.3.2 Tx-100 

Although a significant and steady decrease in [ATP] is indicative of a stressed system, in 

the case of Tx-100, it is attributable to anoxia rather than stress by the surfactant, as it was not 

possible to fully aerate the Tx-100 solution due to a “foaming” issue, causing the solution to 

overflow with bubbles (Figure 5.5). This issue did not occur with the other surfactant solutions, 

which were aerated successfully and thus, did not exhibit anoxia-related problems.  



129 

 

 

Figure 5.5 Aeration of Tx-100 solution resulting in excessive “foaming” 

31P NMR spectra were collected for the Artemia with 100 ppm Tx-100 in 35 ppt NaCl. As 

can be seen in Figure 5.7B, there was a slight decrease in the [ATP] (specifically peaks at 

approximately -10.4 ppm and -19 ppm) over the total 5 hr-course of the experiment. This decrease 

in [ATP] is greater than seen for the other surfactants as can be seen in the data presented in Figure 

5.6 (see Appendix 2 for more detailed 13P NMR spectra representations). The PCr and PME peaks 

did not exhibit any significant changes over the course of time. Similar to the control Artemia 

spectra, the PDE peak increased significantly over time after ≈ 150 min.  

5.3.3 CPC and SDS 

The signals of the ATP peaks in the CPC spectra were similar to those of the control 31P 

NMR spectra. Some fluctuation occurred in the [ATP] over time, which was to be expected. 

However, the increase in [PDE] was significantly lower for the CPC- and SDS-exposed Artemia 

compared to the control and the Tx-100-exposed Artemia.  These solutions were constantly 

aerated, to eliminate, or minimize, the effects of anoxia. The in vivo 31P NMR intensities were used 

to calculate a PDE/Pi ratio for each time point obtained. 



130 

 

 
Figure 5.6 Normalized β-ATP (-19 ppm) 31P NMR intensities of Artemia under varying conditions 

 

The moving average (n = 3, interval = 2) of the PDE/Pi ratios are shown, with error bars, 

in Figure 5.8.  The PDE/Pi increased consistently over time after ≈ 150 min for both the control 

and Tx-100 solutions. 

This increase was not observed for the CPC and SDS and the PDE/Pi ratio was significantly 

lower for CPC and SDS solutions compared to the control and Tx-100 solutions after 150 min, as 

illustrated by the fact that the PDE/Pi ratio did not increase above 1 for the CPC and SDS solutions 

while for the control and Tx-100 solutions, the PDE/Pi ratio easily exceeded 1.4, especially after 

200 min. 

5.3.4 HPLC results 

High performance liquid chromatography (HPLC) with UV detection was utilized to 

measure the concentration of guanosine triphosphate (GTP). 
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Figure 5.7 Stacked representative 31P NMR spectra for Artemia embryos in A) 35 ppt NaCl, B)100 

ppm Tx-100, C) 5 ppm CPC and D) 35 ppm SDS  

  

   



132 

 

 

Figure 5.8 31P NMR intensities of PDE/Pi of Artemia Franciscana embryos with 35 ppt NaCl, 5 

ppm CPC in 35 ppt NaCl, 35 ppm SDS in 35 ppt NaCl, and 100 ppm Tx-100 in 35 ppt NaCl. 

 

Figure 5.9 illustrates the HPLC results obtained on the Artemia embryo extracts as the 

change in μmoles/mg of dry Artemia tissue over 5 h. For the control and 100 ppm Tx-100 solutions, 

the GTP concentration increases, while for the SDS and CPC solutions, the GTP concentration 

decreases. The CPC and SDS changes in [GTP] were significantly different (p < 0.05) compared 

to the control sample.  

5.3.5 31P NMR of Artemia with addition of LAHA  

Humic acid (HA) has been shown to mitigate the toxic effects of surfactants to Artemia 

(Deese et al. 2015). Specifically, Leonardite humic acid (LAHA) was able to interact and reduce 

the bioavailability of CPC, SDS, and Tx-100, resulting in changes in the hatching or mortality 

rates of Artemia. 
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Figure 5.9 The changes in micromoles of guanosine triphosphate (GTP) per milligram of dry 

Artemia franciscana tissue extracts for 5 h exposure as measured by HPLC (* p < 0.05 versus the 

control) 

 

As CPC and SDS induced changes in the Artemia’s phospho-metabolite profile, LAHA 

was added to the CPC and SDS toxic solutions in order to determine if LAHA’s ability to mitigate 

the toxicity of these surfactants could be measured and further understood by in vivo 31P NMR. 

The PDE/Pi ratios of the control, LAHA alone, CPC alone, and CPC plus LAHA were 

calculated from the 31P NMR data and plotted in Figure 5.10. Both the control and the 35 ppm 

LAHA in 35 ppt NaCl had PDE/Pi ratios were greater than 1.4 and, as described before, the 5 ppm 

CPC PDE/Pi ratios were less than 1. Since LAHA was previously shown in the hatching assays to 

have no effect on the Artemia hatching ability, similar trends in the phospho-metabolite profile of 

the control and LAHA solutions were expected. 
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Figure 5.10 31P NMR intensities of PDE/Pi of Artemia Franciscana embryos under 35 ppt NaCl, 

35 ppm LAHA in 35 ppt NaCl, 5 ppm CPC in 35 ppt NaCl, and 5 ppm LAHA and 5 ppm CPC in 

35 ppt NaCl 

 

 When LAHA was added to the CPC solutions, there was an increase in the ratio of PDE/Pi 

relative to that obtained for the CPC-only solutions.  

 The PDE/Pi of Artemia with CPC and LAHA was above 1 but less than 1.4, falling directly 

in between the highest ratio obtained the CPC-only solutions and the lowest ratio for the control 

solutions. Very similar results were obtained with SDS, as shown in Figure 5.11. Based on the 

PDE/Pi ratio, LAHA mitigates the toxicity of SDS better than the toxicity of CPC to Artemia. The 

data in Table 5.2 further illustrates these points and shows that LAHA significantly (p < 0.05) 

mitigates both CPC and SDS toxicity 
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Figure 5.1131P NMR intensities of PDE/Pi of Artemia Franciscana embryos under 35 ppt NaCl, 

35 ppm LAHA in 35 ppt NaCl, 35 ppm SDS in 35 ppt NaCl, and 35 ppm LAHA and 35 ppm SDS 

in 35 ppt NaCl (*last three time points only repeated in duplicate). 

 

Table 5.2 PDE/Pi ratios of Artemia Franciscana embryos measured by in vivo 31P NMR 

 

Time 

(min) 

Exposure Solution 

35 ppt 

NaCl 

5 ppm 

CPC 

35 ppm 

SDS 

100 

ppm 

Tx100 

35 ppm 

LAHA 

5 ppm 

LAHA + 5 

ppm CPC 

35 ppm 

LAHA + 

35 ppm 

SDS 

15 0.57± 

0.06 

0.50±0.06 0.67±0.07 0.56± 

0.03 

0.66± 

0.01 

0.58±0.04 0.60±0.05 

150 1.03± 

0.05 

0.78±0.11 0.62±0.04* 0.66± 

0.02 

0.91±0.08 0.61±0.03* 0.68±0.03 

200 1.34± 

0.10 

0.90±0.04* 0.75±0.13* 1.24± 

0.09 

1.48± 

0.15 

1.04±0.06 1.11±0.09 

250 1.57±0.14 0.81±0.07* 0.82±0.12* 1.41± 

0.05 

1.58± 

0.18 

1.15±0.05† 1.20±0.08† 

Values represent mean ± S.E.M. of three replicates. (*p < 0.05 at the same time point where null 

hypothesis = same as control. †p < 0.05 at the same time point where null hypothesis = same as 

respective surfactant-only exposure) 

 

 

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 50 100 150 200 250 300

P
D

E/
P

i
3

1
P

 N
M

R
 in

te
n

si
ti

e
s

Time (min)

35 ppm LAHA

35 ppt NaCl only

35 ppm SDS

35 ppm LAHA + 35 ppm
SDS



136 

 

5.4 Discussion 

CPC, SDS, and Tx-100 are known to have toxic effects on Artemia and HAs have the 

ability to mitigate the toxicity of these surfactants. This study addresses the question as to whether 

these trends could be observed using in vivo methods, namely 31P NMR, and if a better 

understanding of the toxicity can be obtained. The major advantages of 31P NMR is that clean, 

simple, and directly interpretable data can be obtained and that changes in phospho-metabolites 

can be measured in real time.  

The control 31P NMR spectra indicated some minor variation in levels of ATP throughout 

the experiment. Although changes in [ATP] can be used to indicate stress on an organism, [ATP] 

has also been shown to fluctuate greatly during embryogenesis in Artemia (Warner and Finamore 

1967, Zhu et al. 2009) and other organisms (Moroz and Luzhin 1976) with a significant increase 

in [ATP] immediately before and during hatching. Post-diapause development of Artemia is 

complex and most of the development events cause changes in energy and thus, changes in ATP 

demands by the embryo (Zhu et al. 2009). These energy-consuming events consist of protein 

synthesis, gene transcription, degradation of the yolk, and more. Since the degradation and 

synthesis of ATP is a cyclic process, the [ATP] can depend on the Artemia embryo’s point in the 

cycle at a particular time. Thus, the observed small fluctuations in the 31P NMR ATP/ADP peaks 

can be attributed to normal fluctuations in energy demands.  

The major change in the phospho-metabolite profile of Artemia in the control over time is 

the increase in [PDE] after ≈ 150 min. Artemia embryos are known to stay in a diapause state until 

introduced to the proper hatching conditions, such as the right salinity, pH, and temperature 

(Stappen). Thus, the time between 0 and 150 min is likely the delay time between the time the 

Artemia are introduced to the appropriate hatching conditions and the time when the embryos 
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begin to develop. Increases in [PDE] have been shown to occur during tissue growth, maturation, 

and cell replication (Styles 1993) and decreases in [PDE] have been attributed to declining rates 

of cellular replication (Viant et al. 2006). The increase in [PDE] observed in the control spectra of 

Artemia can be attributed to the significant cell replication occurring during embryonic 

development.  

Triton X-100 is a nonionic surfactant that was used previously in Artemia hatching assays 

to determine the toxicity of Tx-100 and the changes of that toxicity in the presence of HAs (Deese 

et al. 2015). The hatching assays in this work show that Tx-100 does not have any effect on the 

hatching ability of the Artemia, instead, the Tx-100 causes mortality after the Artemia had hatched 

at a Tx-100 concentration of 100 ppm or above. The spectra of Tx-100-exposed Artemia had a 

decrease in [ATP], which tends to indicate stress. However, this decrease of [ATP] is credited to 

the slight anoxic conditions caused by the inability to fully aerate the Tx-100 solution due to 

foaming issues rather than the stress from the surfactant itself.  

The [PDE] increase observed in the Tx-100-exposed Artemia spectra indicates that there is 

still cell replication occurring under Tx-100 solutions. Because Tx-100 does not affect the hatching 

ability of the Artemia and since normal processes still need to occur within the cell before hatching, 

it stands to reason that there should not be any significant differences in the phospho-metabolite 

profile of the Artemia embryos with Tx-100 versus the control. This notion is confirmed by the 

data in Figures 5.6, 5.7, and 5.8 as well as Table 5.2. It should be noted that data does, however, 

show lower values across the board for the Tx-100 condition versus the control due to anoxia, as 

discussed above.  

The previous study of Artemia franciscana under varying toxic surfactant conditions 

determined that the cationic surfactant, cetylpyridinium chloride (CPC), affected the hatching 
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ability of the Artemia but not the mortality after hatching (Deese et al. 2015). Only 10% or less of 

the Artemia cysts hatched under CPC conditions at 3.5 ppm or above. Hatching assays allow for 

the determination of whether a surfactant is toxic and at what concentration; however, they offer 

very limited information on the toxicity mechanisms. Because the CPC only affects hatching rates 

and not mortality rates, it can be assumed that CPC either 1) disrupts the cellular membranes of 

the embryos and causes them to die before hatching (Partearroyo et al. 1990) or 2) inhibits growth 

of the embryos by inhibiting their metabolism in some way(Roberts and Costello 2003). 

Surfactants have the ability to lyse cellular membranes and, although lysing tends to occur at 

surfactant concentrations close to the critical micelle concentration, this ability has been 

considered to play a role in surfactant toxicity to cells (Partearroyo et al. 1990).  It has also been 

shown that cationic surfactants cause narcosis in aquatic organisms, which is a depression is 

biological activity typically caused by narcotics (Roberts and Costello 2003). 

The presence of clear and stable ATP peaks detected indicates that CPC does not cause 

initial mortality of the embryos. If the CPC disrupted the cell membranes and caused embryonic 

death, the expected NMR spectrum would be expected to resemble that presented in Figure 5.4. 

This suggests that the second toxicity mechanism presented above is more likely.  

 For the Artemia under CPC conditions, the PDE peak increased but not to the extent of the 

control conditions, as illustrated by the 31P NMR data presented in Figure 5.8. Because the increase 

in [PDE] is indicative of cell replication and thus, growth of the system, it is suggested that CPC 

inhibits cell replication. This is consistent with the cationic surfactant studies of aquatic organisms 

that indicate that cationic surfactants cause a decrease in biological activity (Roberts and Costello 

2003).  
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The anionic surfactant utilized in the hatching assays, sodium dodecyl sulfate (SDS), was 

similar to CPC in that it affected the hatching ability of the Artemia and did not affect mortality 

rates. Anionic surfactants have been shown to have a similar influence to cationic surfactants 

ability to depress biological functions by means of binding to bioactive macromolecules, such as 

peptides, enzymes, and DNA, causing conformational changes and dissociation (Cserháti et al. 

2002). The same toxicity mechanisms as with the CPC can be suggested for SDS – either a 

perturbation of the cell membrane or some inhibition of growth. 

 Because the 31P NMR spectra with SDS-exposed Artemia shows normal ATP signals, once 

again the perturbation of the cell membrane does not seem to be a major contributor to the toxicity 

of SDS. However, the lack of increase in [PDE] indicates that SDS inhibits cell replication or 

growth, as shown in Figure 5.8. Cationic and anionic surfactants have been shown to attack 

different components of cells; anionic surfactants bind to peptides and DNA, while cationic 

surfactants attack cytoplasmic membranes (Ivanković and Hrenović 2010, Ostroumov 2006). 

Although these two classes of surfactants may have different mechanisms of toxicity, it has been 

shown that both cause a decrease in biological activity or narcosis (Cserháti et al. 2002, Roberts 

and Costello 2003).  

To verify the 31P NMR finding in regards to reduced [PDE], as induced by CPC and SDS 

during the course of the in vivo 31P NMR exposure studies and its linkage to cell growth and 

replication, HPLC was utilized to measure [GTP] changes over time. GTP is a metabolite that can 

act as a source of energy similar to that of ATP, an activator for substrates in metabolic reactions, 

and as a substrate for DNA replication. Embryogenesis studies of Artemia have indicated that an 

increase in the [GTP] is a major indicator of embryo growth(Warner and Finamore 1967), and a 

decrease in the [GTP] is indicative of stress on the system and lower hatching rates(Warner and 
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Clegg 2001). When the [GTP] increases, the growth in the system is assumed; however, under 

CPC and SDS conditions, the [GTP] significantly (p < 0.05) decreased, as shown in Figure 5.9, 

indicating that there inhibition in the embryo growth. This decrease in the [GTP] corroborates the 

inhibition of growth as seen in the in vivo 31P NMR spectra.  

In previous hatching assays, LAHA and, to a lesser extent, Florida Peak humic acid 

(FPHA) and Suwannee River humic acid (SRHA), were shown to have the ability to reduce the 

toxicity of Tx-100, CPC and SDS to Artemia (see Chapter 4, Deese et al. 2015). Although there 

was significant toxicity mitigation when these humic acids were present, some toxicity was still 

evident though slightly lower hatching rates. This phenomenon is clearly evident in the NMR data 

presented in Figures 5.10 and 5.11 for CPC and SDS, respectively, by the increase in the PDE/Pi 

ratio. However, the PDE/Pi remains lower than in the controls in the presence of the surfactant and 

LAHA, indicating that LAHA does not fully mitigate the toxicity of either surfactant. The toxicity 

mitigation ability of LAHA for these surfactants is attributed to interactions between LAHA and 

CPC or SDS, which in turn, reduces the bioavailability of these surfactants.  

5.5 Conclusions 

 Surfactants pose a threat to the overall health of the environment as they can be toxic to a 

variety of organisms. It is also of great importance to measure organisms’  responses to surfactants 

in the presence of other environmental constituents that are known to interact with pollutants, such 

as HA.  

Artemia hatching and mortality assays are commonly used for toxicity measurements; 

however they offer limited information in terms of toxicity mechanisms and toxic responses before 

hatching. For example, while hatching assays demonstrated hatching inhibition caused by CPC 

and SDS surfactants the question of whether this inhibition was caused by membrane disruption 
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or inhibition of development remained unanswered. In this study, an in vivo 31P NMR method was 

utilized to measure toxicity trends of surfactants and was able to illustrate growth inhibition of the 

Artemia embryos in the presence of CPC and SDS rather than membrane disruption. Over the 

course of time, the phosphometabolite profile of the 35 ppt NaCl control and Tx-100 solutions, but 

not the CPC or SDS solutions, show a significant increase in the PDE/Pi ratio for the Artemia 

embryos. These results demonstrate that CPC and SDS inhibit cell replication, and in vivo 31P 

NMR is a powerful, yet direct, tool that provides a noninvasive measure of the growth inhibition, 

and thus, toxicity, in real time.  

The toxicity mitigated effects on Artemia as a result of adding LAHA to the CPC and SDS 

solutions were investigated with the use of 31P NMR and a greater PDE/Pi ratio than that for the 

CPC or SDS alone. This example illustrates (i) the importance of accounting for all the effects of 

all environmental matrix components, in particular HAs and other natural organic matter, and (ii) 

the ability of in vivo 31P NMR spectroscopy to monitor the influence of these components. 

This study also illustrates a significant advantage of in vivo 31P NMR over other methods, 

such as hatching assays, which offer limited information on the toxicity processes, metabolomics, 

which utilizes 1H NMR requiring extensive multivariate analysis, and metabolite extractions, 

which require extensive sample preparation and time for analysis, rendering them unsuitable for 

real time studies of environmental systems.   
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CHAPTER 6 

TOXICITY OF CARBON NANOTUBES TO AREMIA FRANCISCANA UNDER A 

VARIETY OF CONDITIONS 

 

6.1 Introduction 

 Carbon nanotubes (CNTs) are hollow cylinders constructed of graphite sheets that can vary 

widely in length and diameter. There are two classes of carbon nanotubes: single-walled (SW) and 

multi-walled (MW). Single-walled CNTs consist of a single cylinder while MWCNTs consist of 

multiple cylinders that are placed concentrically within each other (Thomsen et al. 2007).  

 The main appeal of carbon nanotubes is that they have unique physical properties. CNTs 

have high thermal conductivity, high mechanical strength with flexibility, high electron/hole 

mobility, and low density. They also have the ability to be functionalized to increase their solubility 

or their reactivity (Kuzmany et al. 2004). Because of these properties, CNTs have many potential 

uses and are becoming widely used. CNTs are of particular interest in the fields of medical 

research, electronics, composites, and material sciences (D'Alessandro et al. 2016, Gerasimenko 

et al. 2015, Thomsen et al. 2007). CNTs may also be found in consumer products such as sporting 

goods, batteries, electronics, and clothing items because of their ability to add strength and better 

electrical conductivity (Kessler 2011).   

 Because of the increasing demand for CNTs in everyday products and research 

applications, this nanomaterial will inevitably enter aquatic environments. It is expected that CNTs 

will enter the environment via general weathering, accidental spillage, and from consumer waste 

of CNT-containing products (Nowack and Bucheli 2007, Petersen et al. 2011). CNTs are also 

generally hydrophobic and non-biodegradable so they can accumulate in the environment 

(Donaldson et al. 2006). It is important to understand the toxicity of CNTs to a variety of organisms 
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as well as the interactions they may have in the environment with environmental constituents such 

as natural organic matter (NOM). There have been many studies and reviews that have attempted 

to assess the sources, behavior, fate and toxicity of CNTs once they enter the environment (Crane 

et al. 2008, Donaldson et al. 2006, Du et al. 2013, Jackson et al. 2013, Klaine et al. 2012). A wide 

variety of organisms have been studied with CNTs such as the Chydorus sphaericus (water flea) 

(Velzeboer et al. 2008), Ambystoma mexicanum (salamander) (Mouchet et al. 2007), and Daphina 

Magna (water flea)(Kim et al. 2009); however, there has not been consistent or conclusive 

evidence on CNT toxicity. There have also been several toxicity mechanisms proposed for CNTs. 

One is biomembrane perturbation of the CNTs by physical penetration, oxidation of the 

biomembrane, and/or electrostatic interactions (Donaldson et al. 2006, Mwangi et al. 2012). 

Another proposed mechanism is that the CNTs create reactive oxygen species that are toxic to 

organelles or cause DNA damage. Some other suggestions are that any toxic effects are cause by 

metal impurities of the CNTs or that CNTs are inhibiting uptake of nutrients by the organism. It is 

a general consensus that CNT risk assessment studies must be carried out in a case-by-case basis 

because of the variability of results depending on physical characteristics of CNTs, the 

environments, and the organism being studied (Aitken et al. 2010, Jackson et al. 2013). 

 Another difficult challenge in environmental CNT studies is predicting the concentration 

of CNTs in soils, sediments, and water (Klaine et al. 2012, Mueller and Nowack 2008, Sun et al. 

2014).  Models predict that concentrations in soil range from 0.1 – 32 ng/kg and the range in 

surface water is 0.1 – 16 ng/L. These concentrations are believed to increase as CNT usage 

increases so they are likely on the low-end in regards to future CNT concentrations. 

 Because CNTs are hydrophobic, they tend to stay suspended in aqueous solutions and form 

large aggregates due to van der Waals forces. It is generally believed that by increasing the 
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dispersion of CNTs, the bioavailability, and possibly toxicity, will increase (Jackson et al. 2013, 

Kennedy et al. 2009, Mwangi et al. 2012). Dispersion can be enhanced by functionalization with 

polar functional groups such as carboxyl groups (-COOH), sonication, and the addition of 

surfactants or NOM.  

A variety of organic functional groups can be added to the surface of CNTs to functionalize 

them for different uses. CNTs functionalized with carboxyl groups (-COOH) is one of the more 

commonly studied types. The addition of -COOH reduces the van der Waals forces between the 

non-polar CNTs thus allowing water molecules to surround them and reduces aggregation 

(Kennedy et al. 2008). Carboxyl functionalization is achieved by either ultra-sonication in 

concentrated nitric and sulfuric acid or refluxing in nitric acid. These methods create oxidative 

defects on the surface of the CNTs resulting in –COOH functionalization (Balasubramanian and 

Burghard 2004).  

Sonication not only helps to disperse CNTs into aquatic solutions, it can also physically 

alter CNTs by shortening them. These changes, in some cases, were found to increase the toxicity 

of CNTs. Three aquatic organisms (Tigriopus japonicas, Oryzias melastigma, and Thalassiosira 

pseudonana) were studied by Kwok et al. and it was determined that for all three, the EC50s (mean 

effective concentration) of the double-walled CNTs decreased by a minimum of one magnitude 

after 1 hour of sonication (Kwok et al. 2010). Another study conducted with zebrafish embryos 

suggested that the length of MWCNTs play an important role in the toxicity of functionalized 

CNTs. The CNTs were shortened by sonicating the MWCNTs for 24 and 48 h (Cheng and Cheng 

2012).  

 CNT dispersion can be enhanced in the environment by NOM. NOM is a degradation 

product of biological matter and is thus omnipresent in the environment. Humic acids (HAs) are a 
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type of NOM that are soluble in water at any pH above 2. By nature, NOMs (and HAs) are complex 

and heterogeneous organic molecular assemblies. This complexity allows for NOM to interact 

with a variety of xenobiotic pollutants, including CNTs.  A NOM sorption study was performed 

by Hyung and Kim with MWCNTs with varying types of NOM and water quality parameters such 

as pH and ionic strength (Hyung and Kim 2008). This study determined that the type of NOM, 

especially the aromatic content, played a significant role in their sorption to MWCNTs. It was also 

found that as the pH or the ionic strength of the aqueous solution increased, as did the interactions 

between NOM and CNTs. Some of the interactions between NOM and CNTs are also attributed 

to the lipophilic groups of the NOM and it has been found that functionalized CNTs interact with 

NOM more so than non-functionalized (Lu and Su 2007).  Previous studies have illustrated that 

the addition of NOM to CNTs can increase the toxicity of the CNTs to D. Magna (Edgington et 

al. 2010), Chlorella vulgaris and P. subcapita (Nowack and Bucheli 2007).  

 Both vertebrates and invertebrates have been studied with CNTs and it has been found that 

invertebrates are generally more sensitive to CNT toxicity than vertebrates (Jackson et al. 2013). 

Crustaceans, a type of invertebrate, have been widely studied in terms of CNT toxicity. Daphnia 

Magna, a crustacean commonly known as a water flea, is widely used in aquatic toxicity studies. 

Both SWCNTs and MWCNTs of different lengths, functionalities, and environmental conditions 

have been tested with Daphnia Magna in acute and chronic toxicity studies where: acute toxicity 

describes the toxicity effects caused by a toxin in the short term while chronic toxicity are long 

term effects such as decreased growth, inhibition of nutrition uptake and reproduction problems. 

A study by Edgington et al. studied Daphnia Magna with MWCNTs in the presence of NOM and 

found that growth was inhibited by the CNTs with NOM increasing that inhibition (Edgington et 

al. 2010). It was demonstrated that it was not acute CNT toxicity that had negative effects on the 
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organism but instead it was CNTs aggregating and clogging the gut. Several other studies have 

been performed with Daphnia Magna that seem to agree that toxicity for that organism is based 

on aggregation of CNTs in the gut (Petersen et al. 2009, Roberts et al. 2007, Zhu et al. 2009). 

 Other crustaceans have been studied with CNTs. Ceriodaphnia dubia and Tigriopus 

japonicas were studied with MWCNTs and it was determined that the inability of them to eliminate 

CNTs from their gut was the cause for toxicity (Kennedy et al. 2008, Kwok et al. 2010, Li and 

Huang 2011). This is of concern because of the possibility of bioaccumulation up the food chain 

as many crustaceans are a source of food for larger organisms. Studies of another crustacean, A. 

tenuiremis with SWCNTs, showed that the organism was able to eliminate the SWCNTs from its 

gut and did not show significant toxicity (Ferguson et al. 2008).  

All toxic CNT effects observed for these organisms were at higher than the predicted 

environmental concentrations. But, as previously mentioned, those concentrations are expected to 

increase as CNTs become more widely used. 

 Artemia Franciscana, or brine shrimp, is a saltwater crustacean that has been extensively 

used in aquatic toxicology studies, including with nanomaterials (Arulvasu et al. 2014, Nunes et 

al. 2006, Rajabi et al. 2015). The allure of utilizing Artemia for toxicology stems from their 

commercial availability, the ease of hatching, and the ability to store the cysts (eggs) for long 

periods of time. This particular organism has not, to current knowledge, been utilized for CNT 

toxicity studies. The other organisms mentioned are fresh-water organisms while Artemia requires 

a saline environment for survival. Since toxicity can be organism-based, it is ideal to perform 

toxicity tests on a large variety of organisms, including Artemia.  It should be noted that the 

Artemia hatching assays performed for this study only indicates any possible acute toxicity at < 48 
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hours. Toxicity of CNTs to the Artemia after more than 48 hours or chronic toxicity cannot be 

determined with these assays.  

 The purpose of this study was to determine if there is any measurable toxicity of CNTs to 

Artemia franciscana. If so, does this toxicity change when the CNT’s physical characteristics or 

the environment changed? 

6.2 Materials and Methods 

6.2.1 Materials 

Leonardite HA standard, LAHA, was obtained from the International Humic Substances 

Society (Saint Paul, MN, USA). Sodium chloride and sodium hydrogen carbonate for the saline 

solution were purchased from Sigma–Aldrich. All the carbon nanotubes were purchased from 

Nano Lab (Waltham, MA, USA).  Sterile 18 MΩ deionized water was sourced from an apparatus 

by US Filter (Snellville, GA, USA). Artemia franciscana were purchased from Brine Shrimp 

Direct (Ogden, UT, USA). Fisherbrand 80 x 15-mm Petri dishes were purchased from Fisher 

Scientific (Somerville, NJ, USA). A VWR (Radnor, PA, USA) mini shaker was used during the 

hatching assays. An AmScope SE305R-PZ stereoscopic microscope (Irvine, CA, USA) was used 

for observing and counting the Artemia. 

6.2.2 Experimental design 

 Both SWCNTs and MWCNTs were studied in order to determine any difference in toxicity 

between the two classes of CNTs as previous studies have shown that they have differences in 

toxicity to a variety of organisms, with SWCNTs generally showing more toxic effects than 

MWCNTs. Two diameters of MWCNTs were studied, 15 nm (PD15) and 50 nm (PD50), to 

determine if the diameter of CNTs could play a role in any toxicity. All the CNTs studied were 
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functionalized with –COOH because the functionality lends to better dispersion in aqueous 

solutions.  

 LAHA, a lignite coal sourced HA, was chosen as the natural organic material. HAs are a 

major portion of NOMs, are soluble in water, and have been shown to interact strongly with non-

polar pollutants. In particular, LAHA was chosen because it has previously shown similar binding 

trends as other HAs from varying sources and it is economically viable. Previous studies have 

shown that LAHA is non-toxic to Artemia Franciscana as it does not affect their hatching abilities 

or mortality rates (see Chapter 3 for hatching assay results with LAHA).  

6.2.3 Stock solution preparation 

The saline stock solution was prepared by measuring 70 g of NaCl and diluting it with 2 L 

of 18 MΩ deionized water for a final concentration of 35 ppt NaCl (to mimic saline environments). 

It was adjusted to a pH of 7.8 with sodium hydrogen carbonate. 

The stock solutions of –COOH functionalized SWCNTs and MWCNTs were prepared by 

suspending approximately 50 mg of the CNTs in 250 mL of the saline solution. Adjustments to 

the pH were made if needed.  

6.2.4 Sample preparation 

LAHA stock solution was made by dissolving approximately 15 mg of LAHA in the saline 

solution. NaOH was added until the LAHA solid dissolved. The pH was brought back to 7.8 by 

using HCl and NaOH. The solution was diluted with the saline solution and stirred overnight 

(wrapped in foil so light doesn’t cause it to oxidize) to equilibrate the solution. If necessary the pH 

was readjusted after the equilibration period.  
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6.2.5 LAHA and carbon nanotube solutions 

LAHA and carbon nanotube solutions were prepared by adding appropriate amounts of the 

LAHA stock solution and carbon nanotube stock solution into a 50 mL volumetric flask. Some of 

the CNTs were not well dispersed so the CNT stock solutions were mixed well before dilution. 

The samples were diluted to 50 mL with the saline solution and the pH was adjusted to 7.8 with 

sodium hydrogen carbonate. The sample solutions were allowed to equilibrate overnight. The 

control solution was the saline solution for all sample series. 

6.2.6 Sonication of carbon nanotubes 

Sonication was performed to disperse the CNTs in the solution. If the CNTs are aggregated, 

sonication will break up this aggregation. Aggregation happens when the CNTs interact with 

themselves so they can’t interact with their surroundings as much. The CNT solutions were put 

into 250 mL glass bottles and placed in a water sonication bath. The CNT solutions were sonicated 

for 30 minutes, 1 hour, and 2 hours at room temperature. 

6.2.7 Artemia hatching assay 

 The Artemia hatching assay used in this study was based on previous experiments as is 

described in detail in chapter 3. Briefly, 25 – 28 hydrated Artemia eggs are placed into individual 

80 x 15 mm petri dishes and the total number recorded. To each dish, 10 mL of a saline-pollutant 

solution was added. Three replicate samples were made per hatching assay and the hatching assays 

were performed in duplicate. The petri dishes were placed on a shaker at 100 rpm to keep the 

Artemia solutions oxygenated. The Artemia were not fed during the 48 h hatching assays. The 

number of hatched and dead Artemia were counted at 24 and 48 h by using a stereomicroscope. 

The count for each sample was repeated 4 – 5 times for accuracy. The hatching percentage and 

mortality percentage was calculated for each sample using the following equations: 



154 

 

 

𝐻𝑎𝑡𝑐ℎ𝑖𝑛𝑔 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
𝐻𝑎𝑡𝑐ℎ𝑒𝑑 𝐴𝑟𝑡𝑒𝑚𝑖𝑎

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑖𝑡𝑖𝑎𝑙 𝑒𝑔𝑔𝑠
∗ 100%     (1) 

𝑀𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦 𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 =
𝐷𝑒𝑎𝑑 𝐴𝑟𝑡𝑒𝑚𝑖𝑎

𝐻𝑎𝑡𝑐ℎ𝑒𝑑 𝐴𝑟𝑡𝑒𝑚𝑖𝑎
∗ 100%     (2) 

 

6.3 Results and Discussion 

6.3.1 Varying concentrations of carbon nanotubes 

The concentrations of PD15 MWCNTs, PD50 MWCNTs, and SWCNTs were varied from 

10 ppm to 100 ppm in order to determine any toxicity of the CNTs alone. These results are 

measured as both hatching ability and mortality.  

As can be seen in Figure 6.1, neither the 100 ppm PD50 or PD15 MWCNTs completely 

dispersed in the aqueous matrix; however, visually it can be noted that the PD50 MWCNTs seemed 

to disperse more than PD15. 

 

Figure 6.1 100 ppm of PD50 and PD15 MWCNTs  

There are no 24 hour mortality percentages shown because there was no death of the 

Artemia in any of the assays at that time. As seen in Figure 6.2, there is a significant decrease (p < 

0.05) in hatching percentage at 100 ppm PD15 MWCNTs, suggesting that there is some effect on 
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the hatching ability of the Artemia once high concentrations of CNTs are reached. However, the 

mortality percentages for the Artemia do not show any significant changes as the concentration of 

PD15 CNTs increase.  

MWCNTs with a diameter of 50 nm were also studied with Artemia with varying 

concentrations (Figure 6.3). The PD50 MWCNTs did not have any significant effects on the 

hatching percentages or the mortality percentages of the Artemia which indicates that there are no 

toxicity effects under these concentrations. Lowered hatching rates indicate acute toxicity to the 

embryos before they have the ability to hatch. This is caused by either permeation of the embryonic 

membrane and then death or an inhibition of growth processes.  

The PD50 MWCNTs were more disperse than the PD15 MWCNTs but that did not play a 

role into the toxicity of the PD50 MWCNTS since the PD15 MWCNTs showed some toxicity at 

high concentrations while the PD50 MWCNTs did not. Single-walled CNTs were also studied 

with the Artemia Franciscana with varying concentration (Figure 6.4). For the Artemia, SWCNTs 

did not cause a significant decrease in hatching percentage or increase in mortality percentage 

versus the control group of the Artemia. 

The effects of diameter on the toxicity of CNTs have had contrasting results in previous 

studies. The results of some studies showed that the increased diameter of MWCNTs also caused 

an increase in toxicity (Hamilton Jr et al. 2013, Wang et al. 2009). 

The offered mechanism is that as the diameter increases, the rigidity of the MWCNT 

increase and thus, the increase of a physical/mechanical interaction with cellular membranes. 

However, other studies demonstrated higher toxicity for CNTs of smaller diameters than those 

with larger diameters (Allegri et al. 2016, Eom et al. 2015). The offered theory for these studies is 

either the thinner MWCNTs are able to perturb the cell wall or they are easier to uptake by the 
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biological organism. Comparing hatching results from the PD15 and PD50 MWCNTs with the 

Artemia, it can be seen that the smaller diameter MWCNTs were more toxic to the embryos. The 

thinner MWCNTs may have been able to penetrate the embryonic membrane and cause toxicity at 

very high CNT concentrations, possibly by disrupting the membranes or effecting mechanisms 

within the cells. 

A multitude of studies have been performed to compare SWCNT toxicity with that of 

MWCNTs. It is the general consensus that SWCNTs are more toxic than MWCNTs (Jackson et 

al. 2013, Zhu et al. 2009). Daphnia Magna is an organism that has been studied with both 

SWCNTs and MWCNTs where MWCNTs have been shown to be less toxic. It should be noted 

that the Daphnia Magna toxicity assays were performed for mortality, not hatching ability 

(Thomsen et al. 2007, Zhu et al. 2009). It should also be noted that the mortality studies of Daphnia 

Magna generally conclude that toxicity is not caused by cell perturbation but instead either a 

clogged gut or by metal toxicity from CNT impurities (Mwangi et al. 2012). 

 The toxicity indicators in these Artemia studies are both hatching ability and short-term 

mortality. The SWCNTs may not have the ability or rigidity to penetrate the embryonic membrane 

while PD15 MWCNTs has increased rigidity because of the multi-walls, but still small enough to 

penetrate the membrane. The Artemia at 48 h did show an accumulation of CNTs in their gut for 

all assays; however because these are short-term mortality assays (up to 48 h), it is not known if 

the CNTs clog the gut and cause problems with long-term mortality rates (> 48 h) similar to the 

D. Magna (see Figure 6.5). 

 

 

 



157 

 

6.3.2 Sonication of carbon nanotubes 

 The CNTs were sonicated in an attempt to better disperse them throughout the 

aqueous media and possibly make them more bioavailable to the Artemia. There have been 

previous toxicological studies that measured changes in toxicity before and after CNT sonication. 

 

 

Figure 6.2 Hatching at 24 and 48 hours and mortality percentages at 48 hours of Artemia with 

varying concentrations of PD15 CNTs (*p < 0.05) 
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Figure 6.3 Hatching at 24 and 48 hours and mortality percentages at 48 hours of Artemia with 

varying concentrations of PD50 CNTs (*p < 0.05) 
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Figure 6.4 Hatching at 24 and 48 hours and mortality percentages at 48 hours of Artemia with 

varying concentrations of SWCNTs 

 

 
Figure 6.5 Artemia at 48 h: A) 35 ppt NaCl only, B) 10 ppm PD15, C) 10 ppm PD50, and D) 10 

ppm SWCNT 
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However, sonication is not a naturally occurring phenomenon and so studying the effects 

of sonication may not be environmentally relevant. However, it can still help to illustrate if changes 

in the physical characteristics of CNTs play a major role in toxicity since sonication is also known 

to shorten CNTs, which can change their interactions with their environment. In Figure 6.6, it can 

be seen that as sonication time increased, as did the dispersion of the MWCNTS. The effect of 

sonication is visually more dramatic with the PD15 MWCNTs than the PD50 MWCNTs because 

the PD50 MWCNTS were already fairly disperse in the solution.  

 

Figure 6.6 Left to right: non-sonicated, 30 min, 1 h, 2 h; A) 10 ppm PD15 MWCNTs B) 25 ppm 

PD50 MWCTs  

 

In Figure 6.7, it can be seen that although the hatching percentages with the sonicated PD15 

MWCNTs are similar to the control, the mortality percentages increase with soniciation time. This 

suggests that sonication has either allowed the PD15 MWCNTs to disperse and become more 

bioavailable, or the MWCNTs were shortened and possibly become more toxic as a result. 

However, the mortality percentage does not exceed 50%.   

Unlike the PD515 MWCNTs, the PD50 MWCNTs did not show any toxicity changes after 

sonication which suggests that if there was further dispersion or shortening of the PD50 MWCNTs, 

it did not increase toxicity. The diameter, and possibly the membrane-perturbing potential, of the 
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PD50 MWCNTs would not be changed by sonication. Sonication hatching assays can be seen in 

Figures 6.7, 6.8 and 6.9.  

 

 
Figure 6.7 Hatching at 24 h and 48 h and mortality percentages of Artemia at 48 h with 10 ppm 

PD15 CNTs with varying sonication times (*p < 0.05) 
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Figure 6.8 Hatching at 24 and 48 h and mortality percentages of Artemia at 48 h with 25 ppm 

PD50 MWCNTs with varying sonication times 

 

 Sonication of SWCNTs showed a slight decrease in hatching ability with initial sonication 

but further sonication did not show a decreased hatching percentage. After 1 hour of sonication, 

the SWCNT did show a significant increase in the mortality percentage and it is the only hatching 

assay that was higher than 50% mortality. If sonication had shortened the SWCNTs, the aspect 

ratio of the diameter would increase and would have possibly allowed for perturbation of the 

embryonic membrane. 
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Figure 6.9 Hatching at 24 and 48 h and mortality percentages of Artemia at 48 h with 25 ppm 

SWCNTs with varying sonication times (** p = 0.05000) 

 

However, this shortening of the SWCNTs do not seem to play a major role in toxicity since 

longer sonication times did not continue to show a decreased hatching ability. If shortening the 
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that are toxic to the Artemia and further sonication or continued shortening, removes the CNTs 

from that range.  

6.3.3 Carbon nanotubes with LAHA   

 For the PD15 MWCNTs, LAHA was added to solutions at two different PD15 MWCNT 

concentrations: 10 ppm PD15 (Figure 6.10) and 25 ppm PD15 (Figure 6.11). For both cases, 

LAHA did not have any effect on the toxicity of the PD15 MWCNTs. For 25 ppm PD50 

MWCNTS (Figure 6.12) and 50 ppm SWCNTs (Figure 6.13), the addition of LAHA also did not 

show any toxic effects to the Artemia.  

Although the LAHA enhances CNT dispersion, this did not result in CNT toxicity. These 

results indicate that HA did not cause any changes to the bioavailability of the CNTs. As with 

comparing the toxicity of CNTs with different diameter, so too do studies with NOM and CNTs 

illustrate contrasting results depending on the organism. A study that measured the toxicity of 

CNTs in the presence of NOM with D. Magna and C. Dubia showed that there was no increase in 

CNT toxicity with NOM (Edgington et al. 2010). These results are in contradiction with a different 

study utilizing the organism’s C. vulgaris and P. subcapita. In that case, NOM enhanced the CNT 

toxicity and it was determined that the enhancement was due to NOM dispersing the CNTs and 

increasing their bioavailability to the organisms (Schwab et al. 2011). The difference in the toxicity 

changes compared with these two cases is likely because of the difference in organisms and thus 

the difference in toxicity mechanisms by the CNT. D. Magna and C. Dubia are crustaceans while 

C. vulgaris and P. subcapita are algae. The toxicity mechanism suggested for crustaceans are 

clogging of the gut and they show no evidence of CNT perturbation of biomembranes of the 

crustaceans. For algae, the toxicity mechanism suggested is shading of the algae (causing a lack 

of photosynthesis) and agglomeration of the algae cells. 
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Figure 6.10 Hatching at 24 and 48 h and mortality percentages of Artemia at 48 h with 10 ppm 

PD15 CNTs with varying LAHA concentrations  

 

The addition NOM may enhance shading and agglomeration effects of the CNTs to the 

algae, which causes an increase in toxic effects. However, NOM may not increase the ability of 

CNTs to clog the gut of crustaceans and thus, does not change the levels of toxicity. Because 

Artemia are crustaceans and, in general, did not show acute toxicity to CNTs alone in solution, it 

is not surprising that NOM does not change the toxicity.  
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Figure 6.11 Hatching at 24 and 48 h and mortality percentages of Artemia at 48 h with 25 ppm 

PD15 MWCNTs with varying LAHA concentrations 
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Figure 6.12 Hatching at 24 and 48 h and mortality percentages of Artemia at 48 h with 25 ppm 

PD50 MWCNTs with varying LAHA concentrations 
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Figure 6.13 Hatching at 24 and 48 h and mortality percentages of Artemia at 48 h with 50 ppm 

SWCNTs with varying LAHA concentrations 

 

6.4 Conclusions 

 In general, CNTs had little impact on the hatching ability and mortality of Artemia.  Only 

under two conditions were CNTs shown to be marginally toxic. As sonication time increased, the 

mortality percentages of Artemia increased with 10 ppm PD15 MWCNTs and SWCNTs up to 1 

hour of sonication. Sonication was performed on the CNTs because sonication can both disperse 

and change the CNTs’ length to possible increase bioavailability to the Artemia.  
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 Previous studies have suggested that the addition of a natural organic matter (NOM), such 

as HA, can cause an increase in toxicity of CNTs because it is a dispersion aid. This phenomena 

was not observed for any of these CNTs with Artemia.  

Overall, the CNTs were not significantly toxic to the aquatic species Artemia Franciscana 

under a variety of conditions. Better dispersion of the CNTs naturally, by sonication or by NOM 

does not play a major role in the toxicity of CNTs to Artemia Franciscana. The diameter and 

rigidity of the CNTs may play a role in the ability of CNTs to perturb the embryonic membrane of 

the Artemia. This was suggested by some hatching inhibition by PD15 MWCNTs and not the 

PD50 MWCNTs and SWCNTs.  

The type of toxicity that can be determined by these assays are acute toxicity. No chronic 

toxicity could be observed with < 48 h toxicity assays. Any mortality cause by gut clogging or 

bioaccumulation could not be determined in this study. These results suggest that there needs to 

be further thorough study on the toxicity of SWCNTs and MWCNTs under a variety of conditions 

for a more comprehensive understanding.  
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

 

 Although pollutant toxicity to organisms alone is important to understand, for 

environmental relevancy, other environmental constituents must be taken into account since they 

may affect toxicity and other environmental behaviors of pollutants. The overarching purpose of 

this dissertation work was to study and further understand the role of humic acid (HA) interactions 

with pollutants and biological organisms. The complexity of aquatic environments required the 

use of a systematic method designed to maintain relevancy while reducing some complexity. This 

was done by defining four environmental components that could be varied in these experiments: 

water, natural organic material, biological organisms, and pollutants.  

7.1 Interactions of humic acids and cations and the influence on biomembrane perturbation 

 

 Previous studies have shown that humic acids can perturb cellular membranes but it was 

unknown how adding other chemical entities into the environment could effect that perturbation. 

The fluorescence studies presented in Chapter 3 of this dissertation discusses the influence of 

cations on the humic acid and its biomembrane interactions. Metal cations are also known to 

interact with humic substances by both electrostatic and chelating mechanisms and they are of 

concern due to increasing concentrations in the aquatic environments.  

 The passive interaction of humic acid with 1-palmitoyl-2-oleoyl-sn-glycero-3-

phosphocholine (POPC) large unilamellar model biomembranes in the presence of cations was 

measured using fluorescence spectroscopy. The following metal cations studied were chosen 

because they had a range of affinities to the functional groups found in HAs and charges: Na+, 

Ca2+, K+, Mg2+, Mn2+, Co2+, Cd2+, Fe3+, Al3+.  

 Three different humic acids (Leonardite, Florida peat and Suwannee River) were studied 

with the biomembranes in the presence of Na+ and Ca2+. All three HAs were previously shown to 
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perturb biomembranes and both cations reduced that ability. Ca2+ had a greater ability to reduce 

the perturbation ability of the HAs by complexation and binding of the HA relative to the weak 

electrostatic interactions with Na+. Comparing the three HAs, Leonardite humic acids’s (LAHA) 

perturbing potential was not decreased in the presence of Na+ to the extent of the other HAs which 

was attributed to LAHA having lower percentages of carboxyl and carbohydrate groups.  

 Mixed solutions of Na+ and Ca2+ were studied to verify the difference of interactions 

between the cations and LAHA. It was found that as the percentage of Ca2+ in the mixture 

increased, the fluorescence intensity (and thus the perturbation of the membranes) decreased. 

There was more perturbation in the 100% Ca2+ solution than the 75% Ca2+/25% Na+ - illustrating 

the different binding affinities of different HA moieties for Na+ and Ca2+.  

 With the expanded set of cations, the impact of the cations on the LAHA’s ability to perturb 

the biomembranes was measured. The cations protected the biomembranes in the following order: 

K+ < Na+ < Mg+2 < Ca+2 < Mn+2 ≈ Co+2 << Cd+2 << Fe+3 < Al+3. This order also followed the trend 

of charge and chemical softness. The greater the charge or the softer the cation, the stronger the 

binding to LAHA and hence a reduced LAHA-biomembrane interaction. This is attributed to the 

cations binding to LAHA sites that would have otherwise been involved in biomembrane 

interactions and that “less abundant” or strong binding sites of LAHA play a large role in chelation.  

 Finally, chemically modified LAHA was studied with Na+, Ca+2, Co+2, Cd+2, Fe+3 and Al+3 

in order to determine which functional groups were responsible for the permeation of the 

biomembranes and the binding of the cations. Three chemical modifications were performed: 

bleaching to reduce aromatic moieties, Soxhlet extraction to reduce lipid moieties, and acid 

hydrolysis to reduce carbohydrate moieties. The LAHA perturbation of biomembranes is caused 

by hydrogen bonding followed by LAHA’s hydrophobic moieties absorbing into the 
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biomembrane’s lipid bilayer. Similar trends were seen for the lipid extracted and the acid 

hydrolyzed LAHA while the bleached humic acid showed a significant increase in membrane 

perturbation in the presence of the cations. The reduction of aromatics causes a reduction of 

membrane perturbation and an increased overall percentage of carbohydrate moieties that 

“protect” the biomembrane. In the presence of cations, the carbohydrates play a role in binding 

with them and thus, allowing the aliphatic components to have greater hydrophobic interactions 

with the biomembrane. 

 This study contributes to the overall goal of this dissertation by demonstrating that the 

interactions of HAs with biological membranes can be altered depending on other components in 

the environment, specifically cations.  

7.2 Surfactant toxicity to Artemia Franciscana and the influence of humic acid and chemical 

composition 

 

 Chapter 4 details the studies of a more complex biological organism and pollutant than the 

previous chapter in the presence of HA. The aquatic crustacean, Artemia Franciscana, was utilized 

as an indicator for humic acid and pollutant interactions. The pollutants studied were surfactants, 

Triton X-100 (Tx-100), cetylpyridinium chloride (CPC), and sodium dodecyl sulfide (SDS), which 

are commonly used in everyday life and are often released into the environment. Artemia hatching 

and mortality assays were performed with the surfactants, three humic acids (LAHA, FPHA, and 

SRHA), chemically modified LAHA, and combinations in order to determine any surfactant 

toxicity changes in the presence of humic acids and elucidate any specific interactions that could 

be occurring. It was found that although all three surfactants were toxic to the Artemia, Tx-100 

was the only one that affected mortality rates while CPC and SDS affected the hatching rates. 

For Tx-100, the toxicity mitigation by HA followed the trend LAHA > FPHA > SRHA. 

Two possible interactions were proposed: π-π stacking of the aromatic groups of the HA and Tx-
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100 and polarity interactions. Chemically modified LAHAs were studied to provide further insight, 

and it was discoved that the lipid-extracted LAHA did not have the same toxicity mitigation ability 

as the other HAs. This led to the conclusion that the aliphatic lipid-like moities are responsible for 

mitigating the toxicity of Tx-100. The trend with CPC toxicity mitigation was the same as that for 

Tx-100 with the unmodified HAs. However, the lipid-extracted LAHA had toxicity mitigation 

similar to that as the other HAs while the bleached LAHA had a lower hatching results, suggesting 

that it has less ability to mitigate toxicity. This observation can be explained by π-π stacking 

interactions playing a role in toxicity mitigation. It is also likely that there are electrostatic 

interactions between the cationic CPC and anionic HA moities.  

 For SDS, all the HAs and chemically modified LAHAs had the ability to mitigate the SDS 

toxicity. Because there were no trends based on the type of HA or the chemical modification, it 

suggests that SDS and HA undergo non-specfic binding interactions such as electrostatic or 

hydrophobic/hydrophilic interactions.  

 Overall, these studies show that HAs can interact with surfactants, reduce their 

bioavailability and, thus, their toxicity to Artemia Francisicana. This relates to the overall goal of 

the dissertation by elucidating some specific interactions that occur and demonstrate that while 

there is no universal mechanism of interaction, the complexity of HA lends to a range of possible 

mechanisms that can be studied systematically.  

7.3 Use of in vivo 31P NMR to measure phosphometabolite profile changes of Artemia 

Franciscana under toxic surfactant conditions 

 

 The studies presented in Chapter 5 also utilized Artemia Franciscana as a toxicity indicator 

for surfactants; however, rather than measuring the toxicity by hatching and mortality changes, the 

phospho-metabolite profile was measured by 31P NMR in an attempt to study the toxicity in vivo. 

The embryonic development of Artemia is well known and, thus, changes in this development can 
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be monitored in order to determine toxicity responses before hatching. Since two of the surfactants 

in the previous study, CPC and SDS, effected hatching ability – it was desired to see if there were 

significant changes in the phospho-metabolite profile due to toxicity and how HA could affect any 

changes. 

 The resulting 31P NMR profile for Artemia under normal conditions was similar to that of 

previous studies by Covi et al., Busaet al., Kwast et al., and also that of medaka embryos studied 

by Viant et al (Busa et al. 1982, Covi et al. 2005, Kwast et al. 1995, Viant et al. 2006). The peaks 

were identified as phosphomonoesters (PME), inorganic phosphate (Pi), phosphodiester (PDE), 

phosphocreatine (PCr), adenosine triphosphate (ATP), and adenosine diphosphate (ADP).  

 It was discovered that under healthy hatching conditions, the PDE peak of the Artemia’s 

phospho-metabolite profile began to increase at approximately 150 min and continue to increase 

to approximately 300 min (5 h). This was attributed to significant cell replication occurring during 

early Artemia development. Interestingly, under Tx-100 conditions, the trend was the same as the 

controls while under CPC and SDS conditions, the PDE peak did not increase to the same extent. 

This suggests that CPC and SDS do not kill the embryos before they hatch, but instead inhibits 

growth in the embryos so they do not develop to the point of hatching.  A perchloric acid extraction 

of metabolites and high performance liquid chromatography was utilized to measure guanosine 

triphosphate (GTP) levels of the embryos in order to verify the inhibited growth trend. An increase 

in GTP has been shown to indicate growth in Artemia embryos and the results of the HPLC studies 

determined that while there was an increase in GTP for both the control and Tx-100 conditions, 

there was a decrease in GTP concentration under CPC and SDS conditions. Thus, verifying that 

CPC and SDS causes an inhibition of growth. 
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 Since the addition of LAHA had previously been shown to mitigate the toxicity of these 

surfactants to the Artemia, LAHA was added to CPC and SDS conditions to determine if the 

addition would mitigate the growth inhibition in a way that could be measured by the in vivo 31P 

NMR method. The resulting spectra for both LAHA-CPC and LAHA-SDS conditions showed an 

increase in the PDE peak; however the PDE/Pi ratios were less than that of the controls alone. This 

may indicate that the LAHA does mitigate toxicity, but only partially, as observed in the previous 

hatching assays. 

 This study further verified HA-surfactant interactions mitigate toxicity and it lends to the 

overall goal of the work described in this dissertation by developing a method to dynamically study 

these toxic responses that allows for more information about the toxicity mechanisms to be 

obtained.  

7.4 Toxicity of carbon nanotubes (CNTs) to Artemia Franciscana under a variety of 

conditions 

 

 Carbon nanotubes are a relatively new pollutant and the use of them in everyday products 

is increasing. Although there have been many studies performed to determine the toxicity of CNTs 

and how the physical properties and environment can affect toxicity, there is inconsistency in the 

results. The variation of results are caused by the different types of organisms, the physical 

properties of the CNTs, and the different environments, so more work is needed in order to better 

understand the problems that could occur by these nanomaterials. Chapter 6 of this dissertation 

details Artemia toxicity studies to both single-walled (SW) and double-walled (DW) CNTs, the 

effects of sonication, and the effects of LAHA. This study contributes to the overall theme of the 

dissertation work by studying the interactions, or lack thereof, of pollutants (CNTs), HAs, and 

biological organisms. 
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 It was determined that sonicating 10 ppm of PD15 (diameter = 15 nm) MWCNTs and 

SWCNTs increased the mortality of the Artemia up to a sonication time of 1 h. However, all other 

conditions studied showed that the CNTs were not measurable toxic to the Artemia. It is likely that 

the CNTs could not penetrate the chorion (outer membrane) of the Artemia embryos to cause any 

toxic effects before hatching and mortality assays of < 48 h do not allow for chronic toxicity or 

starvation due to gut clogging to be measured.   

7.5 Considerations for further research 

 The studies in this dissertation lead to the opportunity to continue this line of study in which 

the interactions between pollutants, natural organic material, and biological organisms are 

systematically varied. The following are some future directions that should be considered in the 

future.  

 In Chapter 3, the study of cations and humic acid interactions offered some interesting 

results in regards to changes in the ability of humic acids to interact with model biomembranes. 

Some metal cations have been shown to be toxic to Artemia Franciscana (Gajbhiye and Hirota 

1990, Kokkali et al. 2011, MacRae and Pandey 1991); however, there seem to be no current studies 

measuring the toxicity of those cations under conditions containing natural organic matter. There 

was a study noting that there was a synergistic effect of toxicity of some metal cations to Artemia 

and, as Chapter 3 noted, multiple cations in solution (e.g. Na+ and Ca2+) can lead to greater binding 

of the HA (Gajbhiye and Hirota 1990). Studies should be continued with a variety of cations and 

mixtures of cations, HAs, and chemically modified HAs, to further understand pollutant-HA 

interactions and how it affects the threat to biological organisms.  

 Similarly to studies utilizing multiple metal cations to study synergistic (additive) toxicity 

effects - cations and surfactants could be measured as a two-pollutant system with Artemia to 



180 

 

determine if toxicity increases when there is more than one pollutant in the system. Furthermore, 

the addition of HA and chemically modified HAs could lead to understanding of any possible 

competitive HA binding of the cations and surfactants. 

 The Artemia studies suggested here could be performed both as hatching and mortality 

assays as well as 31P NMR studies. While surfactants have been shown to affect embryonic 

development by inhibiting growth, cations may have a different toxicity mechanism that could be 

elucidated via the phospho-metabolite profile.  

 For the 31P NMR studies of Artemia, it is important to note that the phospho-metabolite 

profile measured in this dissertation was slightly different than that of the study previously 

performed at Louisiana State University (Covi et al. 2005). It was discovered during this 

dissertation work that the differences were due to differences in the preparation of the embryos 

before performing 31P NMR. The “Covi spectrum” was accidently replicated when an error 

occurred during one experiment - the initial Artemia preparation failed and Artemia that had been 

sitting in fresh water (not a healthy medium for Artemia development) for an hour was used 

instead. Covi et al. prepared their Artemia embryos by hydrating the cysts for 24 hours, while the 

studies presented here only hydrated them for 1.5 h. This leads to questions that are beyond the 

scope of this dissertation but would be interesting to look into in the future.  

 Finally, it is believed that carbon nanotubes can penetrate biomembranes (Kang et al. 2007, 

Lelimousin and Sansom 2013). As shown in Chapter 6, the CNTs are overall non-toxic to Artemia 

Franciscana but it is not an indicator on the ability of CNTs to permeate biomembranes. An 

attempt was made to measure perturbation of CNTs with the POPC model biomembranes that 

were utilized in Chapter 3; however, it was found that the fluorescence of the dye was quenched 
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by the CNTs leading to inaccurate results. Future work could investigate other methodologies to 

study passive CNT perturbation of biomembranes by fluorescence spectroscopy.  
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APPENDIX A 

HATCHING ASSAY DATA TABLES AND P-VALUES 

 

Supplemental to Chapter 4 and Chapter 6 

Table A.1 Artemia hatching and mortality assays with LAHA, FPHA, and SRHA 

Sample Name 20 hours 24 hours 32 hours 44 hours 48 hours 

Average Hatched Percentage 

35 ppt NaCl 17.14 ± 4.33% 
57.28 ± 

3.09% 

61.28 ± 

4.30% 

64.90 ± 

1.33% 

64.99 ± 

1.33% 

5 ppm LAHA 14.36 ± 3.11% 
53.23 ± 

0.53% 

71.44 ± 

2.89% 

71.44 ± 

2.89% 

71.44 ± 

2.89% 

25 ppm LAHA 24.74 ± 1.48% 
57.09 ± 

2.21% 

73.83 ± 

3.46% 

73.83 ± 

3.46% 

73.83 ± 

3.46% 

100 ppm LAHA 18.07 ± 2.69% 
57.19 ± 

3.08% 

67.75 ± 

4.19% 

67.75 ± 

4.19% 

67.75 ± 

4.19% 

5 ppm FPHA 20.62 ± 3.23% 
62.14 ± 

6.89% 

69.43 ± 

2.99% 

69.43 ± 

2.99% 

69.43 ± 

2.99% 

25 ppm FPHA 24.87 ± 6.62% 
49.44 ± 

2.84% 

66.21 ± 

4.90% 

68.77 ± 

3.55% 

68.77 ± 

3.55% 

100 ppm FPHA 15.74 ± 1.81% 
44.72 ± 

0.62% 

63.18 ± 

0.71% 

68.46 ± 

1.67% 

68.46 ± 

1.67% 

5 ppm SRHA 23.79 ± 3.64% 
52.67 ± 

1.53% 

67.13 ± 

0.75% 

67.13 ± 

0.75% 

67.13 ± 

0.75% 

25 ppm SRHA 17.74  ±3.33% 
47.67 ± 

2.30% 

67.61 ± 

2.26% 

67.61 ± 

2.26% 

67.61 ± 

2.26% 

100 ppm SRHA 19.00 ± 4.82% 
55.04 ± 

1.89% 

72.02 ± 

5.20% 

73.30 ± 

1.39% 

73.30 ± 

1.39% 

Average Mortality Percentage 

35 ppt NaCl 0% 0% 0% 
18.01 ± 

2.96% 

23.90 ± 

2.67% 

5 ppm LAHA 0% 0% 1.67 ±1.44% 8.92 ± 3.95% 
18.14 ± 

3.32% 

25 ppm LAHA 0% 0% 0% 
17.39 ± 

2.64% 

17.39 ± 

2.64% 

100 ppm LAHA 0% 0% 0% 
21.11 ± 

1.20% 
23.19 ± 1.0% 

5 ppm FPHA 0% 0% 0% 
13.09 ± 

1.98% 

22.49 ± 

6.08% 

25 ppm FPHA 0% 0% 3.21 ± 1.60% 
28.43 ± 

2.97% 

28.43 ± 

2.97% 

100 ppm FPHA 0% 0% 0% 
11.76 ± 

5.88% 

13.73 ± 

6.12% 

5 ppm SRHA 0% 0% 0% 
15.69 ± 

4.49% 

19.61 ± 

6.12% 

25 ppm SRHA 0% 0% 3.03 ± 1.52% 5.47 ±2.64% 9.28 ± 1.64% 

100 ppm SRHA 0% 0% 0% 
19.31 ± 

1.39% 

26.72 ± 

5.34% 
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Table A.2 Artemia hatching and mortality assays with bLAHA, hLAHA, and leLAHA 

Sample Name 20 hours 24 hours 32 hours 44 hours 48 hours 

Average Hatched Percentage 

35 ppt NaCl 6.00 ± 1.10% 
45.45 ± 

6.37% 
67.13 ± 2.6%) 

67.13 ± 

2.63% 
67.13 ± 2.63% 

5 ppm bLAHA 
13.03 ± 

2.31% 

58.56 ± 

4.09% 

72.77 ± 

1.70% 

72.77 ± 

1.70% 
72.77 ± 1.70% 

25 ppm bLAHA 
22.85 ± 

6.79% 

51.18 ± 

3.44% 

60.16 ± 

4.33% 

61.50 ± 

3.45% 
61.50 ± 3.45% 

100 ppm 

bLAHA 

10.47 ± 

4.25% 

51.34 ± 

2.47% 

69.26 ± 

5.03% 

71.82 ± 

2.83% 
71.82 ± 2.83% 

5 ppm hLAHA 
17.33 ± 

7.02% 

64.00 ± 

5.87% 

68.00 ± 

2.00% 

68.00 ± 

2.00% 
68.00 ± 2.00% 

25 ppm hLAHA 3.66 ± 1.85% 
46.44 ± 

4.00% 

62.43 ± 

4.94% 

62.43 ± 

4.94% 
62.43 ± 4.94% 

100 ppm 

hLAHA 

28.00 ± 

3.46% 

56.00 ± 

5.29% 

65.33 ± 

1.15% 

65.33 ± 

1.15% 
65.33 ± 1.15% 

5 ppm leLAHA 
31.51 ± 

7.53% 

60.99 ± 

0.86% 

67.36 ± 

3.53% 

68.69 ± 

1.88% 
68.69 ± 2.55% 

25 ppm 

leLAHA 

11.79 ± 

4.04% 

59.79 ± 

6.05% 

66.36 ± 

5.68% 

66.36 ± 

5.68% 
66.36 ± 5.68% 

100 ppm 

leLAHA 

19.21 ± 

5.42% 

59.46 ± 

4.83% 

68.69 ± 

3.80% 

68.69 ± 

3.80% 
68.69 ± 3.80% 

Average Mortality Percentage 

35 ppt NaCl 0% 0% 0% 7.31 ±4.26% 11.25 ± 4.75% 

5 ppm bLAHA 0% 0% 0% 
12.67 ± 

5.72% 
19.88 ± 7.04% 

25 ppm bLAHA 0% 0% 0% 
12.10 ± 

2.39% 
22.88 ± 0.94% 

100 ppm 

bLAHA 
0% 0% 0% 8.80 ± 1.27% 10.76 ± 0.45% 

5 ppm hLAHA 0% 0% 0% 
19.66 ± 

3.49% 
25.68 ± 6.50% 

25 ppm hLAHA 0% 0% 0% 5.83 ± 3.15% 15.30 ± 3.54% 

100 ppm 

hLAHA 
0% 0% 0% 7.97 ± 4.47% 20.10 ± 7.28% 

5 ppm leLAHA 0% 0% 0% 
20.88 ± 

1.88% 
24.51 ± 0.42% 

25 ppm 

leLAHA 
0% 0% 0% 

25.37 ± 

6.02% 
27.75 ± 5.79% 

100 ppm 

leLAHA 
0% 0% 0% 

11.48 ± 

0.85% 
17.59 ± 4.05% 
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Table A.3 Artemia mortality percentages with 100 ppm Tx-100 and LAHA, FPHA, SRHA, 

bLAHA,  hLAHA, and leLAHA 

Sample name 20 hours 24 hours 32 hours 44 hours 48 hours 

Average Mortality Percentages 

35 ppt NaCl 0% 0% 6.14 ± 3.41% 
25.77 ± 

7.84% 
27. ±  6.16% 

100 ppm Tx-100 
59.09 ± 

11.45% 

83.5 ± 

13.31% 

91.07 ± 

4.49% 

97.92 ± 

2.08% 
100% 

25 ppm LAHA + 

100 ppm Tx-100 

21.03 ± 

11.59% 

46.29 ± 

10.12% 

65.02 ± 

7.34% 
100% 100% 

50 ppm LAHA + 

100 ppm Tx-100 
7.78 ± 4.84% 

16.35 ± 

1.66% 

33.83 ± 

2.22% 

93.70 ± 

3.42% 
100% 

100 ppm LAHA 

+ 100 ppm TX-

100 

7.69 ± 7.69% 
18.01 ± 

6.80% 

35.73 ± 

7.15% 

96.30 ± 

3.70% 

96.30 ± 

3.70% 

25 ppm FPHA + 

100 ppm Tx-100 

61.72 ± 

14.59% 

80.56 ± 

10.02% 

92.86 ± 

7.14% 
100% 100% 

50 ppm FPHA + 

100 ppm Tx-100 
8.83 ± 1.14% 

18.89 ± 

4.01% 

71.33 ± 

3.67% 
100% 100% 

100 ppm FPHA + 

100 ppm Tx-100 

25.37 ± 

5.87% 

36.35 ± 

1.06% 

58.03 ± 

8.04% 

94.53 ± 

3.05% 

94.53 ± 

3.05% 

25 ppm SRHA + 

100 ppm Tx-100 

31.61 ± 

5.84% 

52.39 ± 

1.21% 

68.24 ± 

2.61% 
100% 100% 

50 ppm SRHA + 

100 ppm Tx-100 

56.10 ± 

15.87% 

63.61 ± 

14.68% 

95.54 ± 

2.25% 

97.62 ± 

2.38% 

97.62 ± 

2.38% 

100 ppm SRHA + 

100 ppm Tx-100 

12.89 ± 

3.19% 

57.95 ± 

11.28% 

93.33 ± 

5.44% 
100% 100% 

100 ppm LAHA 

+ 100 ppm Tx-

100 

10.89 ± 

2.21% 

32.16 ± 

0.51% 

45.10 ± 

4.59% 

91.49 ± 

3.85% 

96.37 ± 

1.57% 

100 ppm bLAHA 

+ 100 ppm Tx-

100 

0% 
19.58 ± 

0.36% 

23.58 ± 

3.79% 

94.41 ± 

2.95% 

98.04 ± 

1.70% 

100 ppm hLAHA 

+ 100 ppm Tx-

100 

0% 
13.66 ± 

5.98% 

40.58 ± 

7.19% 
100% 100% 

100 ppm 

leLAHA + 100 

ppm Tx-100 

54.00 ± 

13.34% 

69.69 ± 

10.99% 

92.82 ± 

0.36% 
100% 100% 

bLAHA = bleached LAHA, hLAHA = hydrolyzed LAHA, leLAHA = lipid-extracted LAHA 
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Table A.4 p values for Artemia mortality percentages with 100 ppm Tx-100 at 48 hours 

 Control 
0 ppm 

LAHA 

25 ppm 

LAHA 

50 ppm 

LAHA 

100 ppm 

LAHA 

Control n/a 0.00 0.01 0.00 0.04 

0 ppm LAHA n/a n/a 0.02 0.00 0.01 

25 ppm 

LAHA 
n/a n/a n/a 0.04 0.05 

50 ppm 

LAHA 
n/a n/a n/a n/a 0.82 

100 ppm 

LAHA 
n/a n/a n/a n/a n/a 

 Control 0 ppm SRHA 
25 ppm 

SRHA 

50 ppm 

SRHA 

100 ppm 

SRHA 

Control n/a 0.00 0.00 0.00 0.10 

0 ppm SRHA n/a n/a 0.02 0.44 0.47 

25 ppm SRHA n/a n/a n/a 0.00 0.91 

50 ppm SRHA n/a n/a n/a n/a 0.39 

100 ppm 

SRHA 
n/a n/a n/a n/a n/a 

 Control 0 ppm FPHA 
25 ppm 

FPHA 

50 ppm 

FPHA 

100 ppm 

FPHA 

Control n/a 0.00 0.00 0.00 0.01 

0 ppm FPHA n/a n/a 0.84 0.03 0.03 

25 ppm FPHA n/a n/a n/a 0.08 0.02 

50 ppm FPHA n/a n/a n/a n/a 0.24 

100 ppm 

FPHA 
n/a n/a n/a n/a n/a 

 

 

 

 

Control 

 

 

0 ppmHA 

 

 

LAHA 

 

 

bLAHA 

 

 

hLAHA 

 

 

leLAHA 

Control n/a 0.00 0.01 0.02 0.04 0.00 

0 ppm HA n/a n/a 0.00 0.00 0.01 0.74 

LAHA n/a n/a n/a 0.04 0.67 0.01 

bLAHA n/a n/a n/a n/a 0.17 0.00 

hLAHA n/a n/a n/a n/a n/a 0.02 

leLAHA n/a n/a n/a n/a n/a n/a 
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Table A.5 Artemia hatching percentages with 3.5 ppm CPC and LAHA, FPHA, SRHA, bLAHA,  

hLAHA, and leLAHA 

Sample name 20 hours 24 hours 32 hours 44 hours 48 hours 

Average Hatching Percentages 

35 ppt NaCl 56 ± 7.1% 
59.83 ± 

5.30% 

67.11 ± 

3.50% 

69.58 ± 

5.96% 

69.58 ± 

5.96% 

3.5 ppm CPC 
3.85 ± 

3.85% 

5.13 ± 

5.13% 

5.13 ± 

5.13% 

6.41 ± 

6.41% 

6.41 ± 

6.41% 

1 ppm LAHA 

+ 3.5 ppm CPC 

21.13 ± 

9.67% 

23.74 ± 

8.39% 

25.03 ± 

8.14% 

27.69 ± 

6.22% 

27.69 ± 

6.22% 

3.5 ppm LAHA 

+ 3.5 ppm CPC 

34.67 ± 

2.67% 

50.67 ± 

1.33% 

58.67 ± 

3.53% 

58.67 ± 

3.53% 

58.67 ± 

3.53% 

5 ppm LAHA 

+ 3.5 ppm CPC 

52.66 ± 

4.56% 

58.97 ± 

5.59% 

66.30 ± 

1.50% 

66.30 ± 

1.50% 

66.30 ± 

1.50% 

1 ppm FPHA + 

3.5 ppm CPC 

10.67 ± 

4.81% 

22.67 ± 

3.53% 

22.67 ± 

3.53% 

22.67 ± 

3.53% 

24.00 ± 

2.31% 

3.5 ppm FPHA 

+ 3.5 ppm CPC 

29.47 ± 

7.05% 

42.35 ± 

4.00% 

44.92 ± 

1.66% 

48.87 ± 

3.60% 

48.47 ± 

3.60% 

5 ppm FPHA + 

3.5 ppm CPC 

35.52 ± 

3.69% 

45.63 ± 

2.69% 

51.80 ± 

3.89% 

59.45 ± 

2.83% 

59.45 ± 

2.83% 

1 ppm SRHA + 

3.5 ppm CPC 

13.33 ± 

8.11% 

17.33 ± 

5.33% 

25.33 ± 

4.81% 

25.33 ± 

4.81% 

25.33 ± 

4.81% 

3.5 ppm SRHA 

+ 3.5 ppm CPC 

24.38 ± 

1.37% 

38.65 ± 

4.69% 

42.49 ± 

4.61% 

42.49 ± 

4.61% 

42.49 ± 

4.61% 

5 ppm SRHA + 

3.5 ppm Tx-

100 

34.67 ± 

1.33% 

46.67 ± 

1.33% 

49.33 ± 

1.33% 

50.67 ± 

2.67% 

50.67 ± 

2.67% 

5 ppm bLAHA 

+ 3.5 ppm CPC 

37.48 ± 

4.25% 

53.09 ± 

2.85% 

53.09 ± 

2.85% 

54.42 ± 

2.10% 

54.42 ± 

2.10% 

5 ppm hLAHA 

+ 3.5 ppm CPC 

48.56 ± 

4.43% 

64.46 ± 

2.04% 

73.69 ± 

3.01% 

73.69 ± 

3.01% 

73.69 ± 

3.01% 

5 ppm leLAHA 

+ 3.5 ppm CPC 

39.00 ± 

2.36% 

55.90 ± 

2.62% 

61.08 ± 

1.59% 

67.59 ± 

2.71% 

67.59 ± 

2.71% 

bLAHA = bleached LAHA, hLAHA = hydrolyzed LAHA, leLAHA = lipid-extracted LAHA 
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Table A.6 p values for Artemia hatching percentages with 3.5 ppm CPC at 32 hours 

 Control 
0 ppm 

LAHA 

1 ppm 

LAHA 

3.5 ppm 

LAHA 

5 ppm 

LAHA 

Control n/a 0.00 0.01 0.21 0.64 

0 ppm 

LAHA 
n/a n/a 0.08 0.01 0.01 

1 ppm 

LAHA 
n/a n/a n/a 0.02 0.02 

3.5 ppm 

LAHA 
n/a n/a n/a n/a 0.15 

5 ppm 

LAHA 
n/a n/a n/a n/a n/a 

 Control 0 ppm FPHA 1 ppm FPHA 
3.5 ppm 

FPHA 
5 ppm FPHA 

Control n/a 0.01 0.00 0.03 0.18 

0 ppm FPHA n/a n/a 0.10 0.01 0.01 

1 ppm FPHA n/a n/a n/a 0.01 0.00 

3.5 ppm 

FPHA 
n/a n/a n/a n/a 0.09 

5 ppm FPHA n/a n/a n/a n/a n/a 

 Control 
0 ppm 

SRHA 

1 ppm 

SRHA 

3.5 ppm 

SRHA 

5 ppm 

SRHA 

Control n/a 0.01 0.01 0.03 0.02 

0 ppm 

SRHA 
n/a n/a 0.08 0.01 0.01 

1 ppm 

SRHA 
n/a n/a n/a 0.06 0.02 

3.5 ppm 

SRHA 
n/a n/a n/a n/a 0.22 

5 ppm 

SRHA 
n/a n/a n/a n/a n/a 

 Control 0 ppm HA LAHA bLAHA hLAHA leLAHA 

Control n/a 0.00 0.02 0.06 0.07 0.25 

0 ppm HA n/a n/a 0.00 0.00 0.00 0.00 

LAHA n/a n/a n/a 0.01 0.34 0.65 

bLAHA n/a n/a n/a n/a 0.10 0.15 

hLAHA n/a n/a n/a n/a n/a 0.27 

leLAHA n/a n/a n/a n/a n/a n/a 
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Table A.7 Artemia hatching percentages with 25 ppm SDS and LAHA, FPHA, SRHA, bLAHA,  

hLAHA, and leLAHA 

Sample name 20 hours 24 hours 32 hours 44 hours 48 hours 

Average Hatching Percentages 

35 ppt NaCl 
54 ± 

1.90% 

60.51 ± 

2.37% 

60.51 ± 

2.37% 

60.51 ± 

2.37% 

60.51 ± 

2.37% 

25 ppm SDS 
13.33 ± 

2.67% 

14.66 ± 

1.33% 

14.66 ± 

1.33% 

17.33 ± 

3.53% 

17.33 ± 

3.53% 

5 ppm LAHA 

+ 25 ppm 

SDS 

25.03  ± 

3.60% 

27.69 ± 

4.16% 

31.64 ± 

4.19% 

38.10 ± 

5.07% 

38.10 ± 

5.07% 

10 ppm 

LAHA + 25 

ppm SDS 

30.66 ± 

1.33% 

33.33 ± 

2.66% 

34.67 ± 

3.53% 

37.33 ± 

3.53% 

37.33 ± 

3.53% 

25 ppm 

LAHA + 25 

ppm SDS 

32.42 ± 

5.42% 

38.97 ± 

2.28% 

41.59 ± 

3.54% 

41.59 ± 

3.54% 

41.59 ± 

3.54% 

5 ppm FPHA 

+ 25 ppm 

SDS 

20.92 ± 

5.97% 

20.92 ± 

5.97% 

23.54  ± 

6.33% 

23.54 ± 

6.33% 

23.54 ± 

6.33% 

10 ppm 

FPHA + 25 

ppm SDS 

35.79 ± 

5.06% 

38.31 ± 

5.15% 

38.31 ± 

5.15% 

39.64 ± 

5.02% 

39.64 ± 

5.02% 

25 ppm 

FPHA + 25 

ppm SDS 

41.22 ± 

1.74% 

45.01 ± 

0.57% 

48.72 ± 

1.67% 

48.72 ± 

1.66% 

48.72 ± 

1.66% 

5 ppm SRHA 

+ 25 ppm 

SDS 

23.31 ± 

1.75% 

31.21 ± 

2.44% 

31.21 ± 

2.44% 

32.44 ± 

2.35% 

32.44 ± 

2.35% 

10 ppm 

SRHA + 25 

ppm SDS 

18.67 ± 

2.67% 

18.67 ± 

2.67% 

20.00 ± 

4.00% 

22.67 ± 

3.52% 

22.67 ± 

3.52% 

25 ppm 

SRHA + 25 

ppm SDS 

28.77 ± 

10.54% 

45.00 ± 

4.08% 

45.00 ± 

4.08% 

47.00 ± 

2.45% 

47.00 ± 

2.45% 

25 ppm 

bLAHA + 25 

ppm SDS 

34.36 ± 

5.28% 

42.21 ± 

4.45% 

44.87 ± 

5.36% 

52.67 ± 

5.13% 

52.67 ± 

5.13% 

25 ppm 

hLAHA + 25 

ppm SDS 

38.15 ± 

5.00% 

43.33 ± 

4.93% 

43.49 ± 

3.71% 

46.10 ± 

2.59% 

46.10 ± 

2.59% 

25 ppm 

leLAHA + 25 

ppm SDS 

31.00 ± 

5.01% 

38.15 ± 

1.01% 

38.15 ± 

1.01% 

44.72 ± 

4.05% 

44.72 ± 

4.05% 
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Table A.8 p values for Artemia hatching percentages with 25 ppm SDS at 32 hours 

 Control 
0 ppm 

LAHA 

5 ppm 

LAHA 

10 ppm 

LAHA 

25 ppm 

LAHA 

Control n/a 0.00 0.03 0.01 0.02 

0 ppm 

LAHA 
n/a n/a 0.03 0.02 0.01 

5 ppm 

LAHA 
n/a n/a n/a 0.91 0.15 

10 ppm 

LAHA 
n/a n/a n/a n/a 0.24 

25 ppm 

LAHA 
n/a n/a n/a n/a n/a 

 Control 0 ppm FPHA 5 ppm FPHA 
10 ppm 

FPHA 

25 ppm 

FPHA 

Control n/a 0.00 0.02 0.04 0.02 

0 ppm FPHA n/a n/a 0.45 0.03 0.00 

5 ppm FPHA n/a n/a n/a 0.12 0.05 

10 ppm 

FPHA 
n/a n/a n/a n/a 0.21 

25 ppm 

FPHA 
n/a n/a n/a n/a n/a 

 Control 
0 ppm 

SRHA 

5 ppm 

SRHA 

10 ppm 

SRHA 

25 ppm 

SRHA 

Control n/a 0.00 0.00 0.00 0.15 

0 ppm 

SRHA 
n/a n/a 0.65 0.30 0.01 

5 ppm 

SRHA 
n/a n/a n/a 0.09 0.05 

10 ppm 

SRHA 
n/a n/a n/a n/a 0.01 

25 ppm 

SRHA 
n/a n/a n/a n/a n/a 

 Control 0 ppmHA LAHA bLAHA hLAHA leLAHA 

Control n/a 0.00 0.95 0.23 0.02 0.05 

0 ppm HA n/a n/a 0.18 0.04 0.01 0.05 

LAHA n/a n/a n/a 0.67 0.47 0.44 

bLAHA n/a n/a n/a n/a 0.40 0.35 

hLAHA n/a n/a n/a n/a n/a 0.82 

leLAHA n/a n/a n/a n/a n/a n/a 
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Table A.9 Hatching and mortality percentages for hatching assays of PD15 CNTs, PD50 CNTs, 

and SWCNTs with varying concentration and sonication time 

 Hatching Mortality 

 24 h 48 h 24 h 48 h 

Control 54.67 ± 6.43% 67.86 ± 3.06% 0% 17.94 ± 8.97% 

10 ppm PD15 46.15 ± 3.33% 60.26 ± 7.59% 0% 36.72 ± 7.59% 

25 ppm PD15 57.08 ± 2.21% 
63.56% ± 

2.22% 
0% 26.34 ± 2.88% 

50 ppm PD15 47.95 ± 4.49% 67.49 ± 1.67% 0% 40.26 ± 1.22% 

75 ppm PD15 36.06 ± 9.51% 
29.83 ± 

13.23% 
0% 

49.88 ± 

15.00% 

100 ppm PD15 31.18 ± 1.96% 37.79 ± 5.28% 0% 
33.10 ± 

15.00% 

10 ppm PD50 51.48 ± 4.67% 57.75 ± 5.27% 0% 10.55 ± 5.27% 

25 ppm D50 45.48 ± 3.03% 64.79 ± 2.24% 0% 4.47 ± 2.24% 

50 ppm PD50 49.19 ± 2.93% 67.46 ± 5.22% 0% 10.45 ± 5.22 

75 ppm PD50 45.98 ± 3.91% 54.40 ± 3.79% 0% 22.95 ± 3.79% 

100 ppm PD50 48.48 ± 5.28% 50.86 ± 3.79% 0% 22.69 ± 1.26% 

10 ppm 

SWCNTs 
55.42 ± 2.78% 57.70 ± 1.68% 0% 39.52 ± 5.36% 

25 ppm 

SWCNTs 
55.13 ± 1.11% 64.10 ± 5.53% 0% 42.03 ± 5.53% 

50 ppm 

SWCNTs 
58.36 ± 5.28% 68.42 ± 2.55% 0% 42.79 ± 4.91% 

75 ppm 

SWCNTs 
52.26 ± 1.65% 67.01 ±2.91% 0% 44.71 ± 2.87% 

100 ppm 

SWCNTs 
53.18 ± 2.01% 65.91 ± 2.88% 0% 48.15 ± 2.87% 

10 ppm PD15 

30 min 

sonication 

31.01 ± 4.78% 80.69 ± 3.49 % 0% 21.21 ± 5.98% 

10 ppm PD15 

1 h sonication 
43.29 ± 5.90% 64.02 ± 6.26% 0% 34.77 ± 6.84% 

10 ppm PD15 

2 h sonication 
32.00 ± 2.00% 72.00 ± 8.72% 0% 43.69 ± 2.36% 

25 ppm 

SWCNTs 

30 min 

sonication 

37.67 ± 9.39& 37.67 ± 9.39% 0% 47.62 ± 6.29% 

25 ppm 

SWCNTs 

1 h sonication 

49.85 ± 5.20% 64.36 ± 6.30% 0% 58.99 ± 9.50% 

25 ppm 

SWCNTs 

2 h sonication 

49.81 ± 3.66% 52.81 ± 5.61% 0% 39.90 ± 5.46 % 
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Table A.10 Hatching and mortality percentages for hatching assays of PD15 CNTs, PD50 CNTs, 

and SWCNTs with LAHA 

 Hatching Mortality 

 24 h 48 h 24 h 48 h 

Control 49.48 ± 8.19% 68.67 ± 1.67% 0% 27.03 ± 3.45% 

25 ppm PD15  57.71 ± 5.78% 77.46 ± 4.22% 0% 29.80 ± 4.47% 

25 ppm PD15 

+ 5 ppm LAHA 
52.29 ± 7.84% 77.01 ± 3.94% 0% 20.51 ± 2.77% 

25 ppm PD15 

+ 10 ppm 

LAHA 

53.23 ± 2.30% 73.88 ± 2.51% 0% 
38.67 ± 

12.71% 

25 ppm PD15 

+ 25 ppm 

LAHA 

57.32 ± 3.21% 77.95 ± 5.77% 0% 21.38 ± 7.66% 

25 ppm PD15 

+ 50 ppm 

LAHA 

53.33 ± 3.92% 69.76 ± 3.10% 0% 25.22 ± 4.31% 

25 ppm PD50 47.00 ± 4.16% 58.99 ± 2.68% 0% 26.85 ± 3.34% 

25 ppm PD50 

+ 5 ppm LAHA 
51.85 ± 6.46% 65.84 ± 4.35% 0% 23.61 ± 5.79% 

25 ppm PD50  

+ 10 ppm 

LAHA 

57.05 ± 4.04% 74.29 ± 2.86% 0% 30.00 ± 2.89% 

25 ppm PD50 

+ 25 ppm 

LAHA 

50.00 ± 6.18% 72.62 ± 7.24% 0% 26.49 ± 6.01% 

25 ppm PD50 

+ 50 ppm 

LAHA 

48.43 ± 4.95% 63.71 ± 2.49% 0% 24.34 ± 7.79% 

50 ppm SWCNT 

+ 5 ppm LAHA 
47.34 ± 6.45% 71.13 ± 8.89% 0% 21.98 ± 5.25% 

50 ppm SWCNT 

+ 10 ppm 

LAHA 

40.67 ± 6.57% 69.79 ± 3.19% 0% 
39.94 ± 

12.60% 

50 ppm SWCNT 

+ 25 ppm 

LAHA 

44.35 ± 1.56% 78.19 ± 1.17% 0% 21.11 ± 3.54% 

50 ppm SWCNT 

+ 50 ppm 

LAHA 

40.44 ± 3.56% 67.56 ± 2.35% 0% 25.00 ± 1.60% 
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Table A.11 Hatching and mortality p values for hatching assays of  PD15 CNTs, PD50 CNTs, 

and SWCNTs with varying concentration and sonication time at 48 h versus controls 

 Hatching Mortality 

10 ppm PD15 0.31 0.81 

25 ppm PD15 0.69 0.58 

50 ppm PD15 0.66 0.57 

75 ppm PD15 0.01 0.18 

100 ppm PD15 0.03 0.99 

10 ppm SWCNTs 0.15 0.64 

25 ppm SWCNTs 0.81 0.52 

50 ppm SWCNTs 0.54 0.48 

75 ppm SWCNTS 0.63 0.53 

100 ppm SWCNTs 0.91 0.29 

10 ppm PD50 0.79 0.09 

25 ppm PD50 0.42 0.09 

50 ppm PD50 0.24 0.15 

75 ppm PD50 0.80 0.11 

100 ppm PD50 0.26 0.11 

PD15 no sonication 0.88 0.89 

PD15 30 minute sonication 0.05 0.29 

PD15 1 h sonication 0.88 0.07 

PD15 2 h sonication 0.58 0.01 

PD50 no sonication 0.10 0.09 

PD50 30 minute sonication 0.12 0.08 

PD50 1 h sonication 0.14 0.20 

PD50 2 h sonication 0.10 0.06 

SWCNT 30 min sonication 0.38 0.49 

SWCNT 1 hour  sonication 0.26 0.49 

SWCNT 2 hour  sonication 0.81 0.99 
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Table A.12 Hatching and mortality p values for hatching assays of PD15 CNTs, PD50 CNTs, 

and SWCNTs with LAHA at 48 h versus controls 

 Hatching Mortality 

25 ppm PD15 CNTs + 5 ppm LAHA 0.16 0.78 

25 ppm PD15 CNTs + 10 ppm LAHA 0.17 0.31 

25 ppm PD15 CNTs + 25 ppm LAHA 0.24 0.83 

25 ppm PD15 CNTs + 50 ppm LAHA 0.78 0.99 

25 ppm PD50 CNT 0.40 0.99 

25 ppm PD50 CNT + 5 ppm LAHA 0.59 0.92 

25 ppm PD50 CNTs + 10 ppm LAHA 0.18 0.97 

25 ppm PD50 CNTs + 25 ppm LAHA 0.64 0.84 

25 ppm PD50 CNTs + 50 ppm LAHA 0.18 0.75 

50ppm SWCNT 5ppm LAHA 0.59 0.40 

50ppm SWCNT 10ppm LAHA 0.40 0.71 

50ppm SWCNT 25 ppm LAHA 0.06 0.36 

50ppm SWCNT 50 ppm LAHA 0.63 0.51 
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APPENDIX B 

COMPLETE REPRESENTATIVE 31P NMR SPECTRA AND HPLC DATA 

 

 

 

 
Figure A2.1. Complete representative 31P NMR experiment with 35 ppt NaCl at pH 7.8 

(time increasing from bottom-to-top) 
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Figure A2.2. Complete representative 31P NMR experiment with 100 ppm Tx100 at pH 

7.8 (time increasing from bottom-to-top) 
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Figure A2.3. Complete representative 31P NMR experiment with 5 ppm CPC at pH 7.8 

(time increasing from bottom-to-top) 
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 Figure 

A2.4. Complete representative 31P NMR experiment with 35 ppm SDS at pH 7.8 (time 

increasing from bottom-to-top) 
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Figure A2.5. Complete representative 31P NMR experiment with 35 ppm LAHA at pH 

7.8 (time increasing from bottom-to-top) 
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Figure A2.6. Complete representative 31P NMR experiment with 5 ppm CPC and 5 ppm 

LAHA at pH 7.8 (time increasing from bottom-to-top) 
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Figure A2.7. Complete representative 31P NMR experiment with 35 ppm SDS and 35 

ppm LAHA at pH 7.8 (time increasing from bottom-to-top) 
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