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ABSTRACT 

The work presented in this dissertation employs task-specific materials for sensing and protein 

separation applications. These materials were derived from a group of uniform materials based 

on organic salts (GUMBOS). GUMBOS are organic salts similar to ionic liquids, but have 

melting points ranging from 25 to 250 °C. As with ionic liquids, the properties of GUMBOS can 

be easily tuned by changing the counter-ion. Thus, task-specific GUMBOS can be designed and 

prepared with properties that are beneficial for applications in sensing or protein separation. In 

this dissertation, the selective responsive behavior of a series of GUMBOS and nanomaterials 

derived from GUMBOS (nanoGUMBOS) were evaluated. Firstly, binary nanoGUMBOS, 

containing two cyanine cations, were synthesized and characterized. Based on significant 

spectral overlap and differences in reactivity towards hydroxyl radicals, the two cyanine cations 

in the binary nanoGUMBOS were able to generate a ratiometric fluorescence response. These 

results suggest a promising ratiometric probe for detection and quantification of hydroxyl 

radicals. This approach of investigating binary nanoprobes will serve as the basis for designing 

other cyanine-based fluorescent probes for biosensing and imaging. Secondly, a series of 

cyanine-based GUMBOS were combined to serve as a sensor array for detection of proteins. The 

cyanine-based sensor elements utilized in this sensor array, exhibit different aggregation 

behaviors when mixed with the seven proteins, giving various fluorescence responses. The 

resulting responses exhibited cross-reactive patterns, which can be analyzed to discriminate 
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proteins at a low concentration. Finally, nanoGUMBOS derived from imidazolium ionic liquids 

and magnetic dysprosium-based anions were designed as magnetic, nanoadsorbent materials for 

selective hemoglobin isolation. These nanoGUMBOS were successfully applied in selective 

hemoglobin (Hb) isolation from human whole blood. All studies presented in this dissertation 

demonstrate promising advantages of GUMBOS-based materials in the field of sensing and 

protein separation. 
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CHAPTER 1: INTRODUCTION 

1.1 Ionic Materials 

1.1.1 Ionic Liquids 

Ionic liquids (ILs), are defined as low melting (melting points less than 100 °C) organic salts 

that are typically composed of a combination of bulky cations and anions. 1 These liquid salts 

typically have properties such as thermal stability, wide liquid temperature range, considerable 

ionic conductivities, broad electrochemical window, and good solubility and miscibility. 2, 3 ILs 

were first recorded in 1914 by Paul Walden, who designed and studied ethylammonium nitrates. 

4, 5 In 1948, Frank H. Hurley and Thomas P. Wier synthesized a series of chloroaluminate ILs by 

combining quaternary heterocyclic cations with aluminum chloride. 6 In the following years, 

more chloroaluminate ILs were discovered and studied for various applications. 7-11 

Unfortunately, these findings did not gain much attention due to their sensitivity to moisture.  

A major step forward in ILs was made by John S. Wilkes and Michael J. Zaworotko in 1992, 

through the report of moisture stable ILs based on 1-ethyl-3-methylimidazolium cation and either 

a tetrafluoroborate or hexafluorophosphate counter-anion. 12 Since then, development of ILs has 

grown exponentially. Examples of the commonly used ILs cations and anions are listed in Figure 

1.1. 13  

As organic salts, the physicochemical properties of ILs can be tuned simply through pairing 
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of counter-ions. In 2001, the concept of task specific ionic liquids (TSILs) was conceived by 

Rogers et al. using amine and thiol groups to extract mercury and cadmium ions from water. 14 

ILs can also be designed to possess magnetic, 15, 16 protic, 17-19 chiral, 20-22 luminescent, 23-25 ion 

conductive, 26-28 and catalytic. 29, 30 These characteristics allow ILs to be applied to be used in 

various areas including as solvents for targeted synthesis,31 biological reaction media, 32 

extraction, 14, 33, 34 catalysis, 1, 29 sensing, 35-37 as well as energy storage and conversion. 38-40  
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Figure 1.1. Commonly used ILs cations and anions 

1.1.2 Group of Uniform Material Based on Organic Salts 

As mentioned earlier, ILs are organic salts with melting points below 100 ºC. Room 

temperature ionic liquids (RTILs) are ILs that are liquid below room temperature. The low 
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melting points of these salts is the reason why most applications of ILs use RTILs. Frozen ILs 

are defined as ILs with melting points above room temperature. These salts are typically reported 

in applications such as rewritable imaging, 41 and dye-sensitized solar cells. 42 

GUMBOS (group of uniform material based on organic salts) are solid phase organic salts 

with tunable properties similar to ILs, but with a wider range of melting points (25°C to 250°C). 

This group of materials was first introduced by Isiah Warner et al. in 2008. 43 Figure 1.2 shows a 

diagram of the defined melting point ranges of ILs, RTILs, frozen ILs and GUMBOS. 

 

Figure 1.2. Melting point ranges of ILs, RTILs, Frozen ILs, and GUMBOS 

GUMBOS exhibit many of the desired tunable properties of ILs, including high thermal 

stability, low volatility, and high ionic conductivity. 43, 44 A variety of GUMBOS have been 

prepared in the Warner research group with unique fluorescent, magnetic, sensing, and 

tumor-targeting properties. 2, 43, 45-47 For example, Min Li and coworkers synthesized a 

multifunctional lipophilic phosphonium–lanthanide GUMBOS that simultaneously possess 

paramagnetism, luminescence, and tumor mitochondrial targeting properties. 48 In another work, 

it was found that by simply altering the anion of rhodamine 6G, the tumor-targeting property is 
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tuned due to the variation of hydrophobicity. 49 

1.1.3 Preparation of GUMBOS 

Similar to the synthesis of ILs, GUMBOS synthesis is fairly simple and does not require 

laborious, time-consuming procedures. An ion-exchange reaction is the most widely used 

method for preparation of GUMBOS when a bulky organic counter-ion is introduced. There are 

two representatives for such a reaction. The first representative reaction is the preparation of the 

hydrophobic GUMBOS 3,3’-diethylthiacarbocyanine bis(pentafluoroethane)sulfonimide 

([TC1][BETI]) (Figure 1.3). This reaction was performed in a biphasic mixture of water and 

dichloromethane (DCM) under ambient conditions and was completed in 24 hours. A slight 

molar excess of lithium bis(pentafluoroethane)sulfonimide (Li[BETI]) is required to push the 

reaction to completion. The compounds 3,3’-diethylthiacarbocyanine iodide ([TC1][I]) and 

lithium bis(pentafluoroethane)sulfonimide (Li[BETI]) at a molar ratio of 1 to 1.1 are allowed to 

stir for 24 h at room temperature. After the reaction is complete, the aqueous phase is discarded 

and the IL containing organic phase is washed several times with distilled water to remove any 

remaining lithium iodide byproduct. Finally, DCM is removed under reduced pressure. 46 
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Figure 1. 3. Synthesis of hydrophobic [TC1][BETI] GUMBOS 

The second representative ion-exchange reaction is the preparation of hydrophilic GUMBOS 

rhodamine 6G trifluoromethanesulfonate ([R6G][OTf]) and rhodamine 6G ascorbate 

([R6G][Asc]). This is a one-phase reaction. As shown in Figure 1.4, the starting materials, 

rhodamine 6G chloride ([R6G][Cl]) and sodium trifluoromethanesulfonate ([Na][OTf]) are 

dissolved in anhydrous acetonitrile and stirred for 72 h. The byproduct NaCl is removed by 

filtration. Acetonitrile is removed under vacuum, yielding the pure [R6G][OTf] GUMBOS. 49  

 

Figure 1. 4. Synthesis of hydrophilic GUMBOS [R6G][OTf] and [R6G][Asc] 
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1.1.4 Nanoparticles Derived from GUMBOS 

Nanoparticles were initially studied because of their size-dependent physical and chemical 

properties. 50, 51 In recent years, the unique properties and utility of nanoparticles for a variety of 

biological applications including drug delivery, 52, 53 enhancing conductivity, 54, 55 battery 

improvement, 56-58 medical imaging, 59-61 sensing, 62-64 and thermal therapy 65-67 have been 

reported. Nanomaterials fabricated from GUMBOS (nanoGUMBOS) are able to provide several 

complementary properties into one nanoscale material, which allows us to develop 

multifunctional organic nanomaterials easily. 68-70 

Preparation of uniform and ambient-stable nanoparticles from GUMBOS has been studied 

for a wide variety of applications. 43, 46, 47, 69, 71-78 Following these studies, there has been an 

upsurge of interest in the application of nanomaterials fabricated from solid-state organic salts. 

Many approaches have been developed for the preparation of nanoGUMBOS. Reprecipitation is 

the most commonly used technique, although other techniques such as cyclodextrin-assisted,79 

microwave-assisted, 80 and surfactant-assisted 81 syntheses were also available. In this 

dissertation, nanoGUMBOS were prepared using the reprecipitation method as seen in Figure 1.5. 

In this method, the GUMBOS material is dissolved in a suitable volatile organic solvent to make 

a concentrated stock solution. A small volume of the stock solution is then pipetted rapidly into 

water under sonication. After aging for 15 to 60 min, dispersed nanoparticles would be obtained.  
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Figure 1. 5. Preparation of nanoGUMBOS through reprecipitation method 

In addition to reprecipitation, a reverse micelle method is also commonly used for 

preparation of nanoGUMBOS. 45, 81 Micelles are aggregates formed from surfactant monomers 

above their critical micelle concentration (CMC). Typically, micelles are formed in aqueous 

medium, in which the hydrophilic heads are on the outside and the hydrophobic tails buried in 

the interior. Conversely, reverse micelles are formed in organic medium wherein the hydrophobic 

tails face the external medium and the hydrophilic head face inward. Since these reverse micelles 

are able to stabilize relatively large water pools of defined size, this reverse micelle system is 

suitable for formation of relatively monodispersed nanoparticles. 82, 83  
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1.2 Chemical Sensors 

1.2.1 Chemical Sensors: Definition and Components 

A chemical sensor is a device that is used to determine the presence or quantity of an analyte, 

and transform chemical information to real-time analytical information. 84, 85 An ideal chemical 

sensor should be inexpensive, stable, easy to use, and selectively responsive to a target analyte at 

required concentrations. Over the past few decades, researchers have disclosed intensive efforts 

to develop and improve sensor performance with the aim of making ideal chemical sensors. 

Chemical sensors have two main functions, recognition and transduction. 86-88 It is very 

important that interaction occurs between the sensor and the analyte of interest. This interaction 

can be selective or partially selective and usually take place as chemical or physical 

reactions，which will change the properties of the chemical sensors. Figure 1.6 is a display of a 

representative chemical sensor operation. In the transduction step, chemical sensors convert the 

unmeasurable interactions into measurable physical properties, such as mass, conductivity, light 

intensity and refractive index. This allows people to assess and quantify the alteration in reaction 

components. While the sensor does not respond to a square analyte, it shows partial selectivity 

towards the other three analytes and gives similar signals with different intensities. In this study, 

if the analyte of interest is the orange analyte, the oval and triangle analytes can be considered 

interferences. 
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Figure 1. 6. Representative scheme of a partially selective chemical sensor. 

1.2.2 Chemical Sensor Arrays 

With the properties of an ideal chemical sensor in mind, the requirement of a selective 

response to a particular target analyte at any required concentrations seems far from reality. Most 

often, a chemical sensor only has partial selectivity. Sensor arrays are a complementary approach 

that could put partially selective sensors into good use. 

The representative and most widely known sensor arrays are electronic noses, or artificial 

sensor arrays of odorants. 89, 90 These sensor arrays were inspired by the biological olfactory 

system, where there are thousands of odor receptors. Upon interaction with odorant molecules, 

electrical signals are generated and transported from the receptor to brain through neurons. 91, 92 
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Interestingly, these olfactory receptors are not strictly “lock-and-key” with any specific odorants; 

instead, they are partially selective. 93-95 In other words, an olfactory receptor has the ability to 

respond to many odorants, and many receptors are able to interact with one odorant. Thus, 

pattern recognition systems are considered an essential element of the olfactory signal processing 

and analyzing.  

Similar to olfactory system, a chemical sensor array contains an assembly of cross-reactive 

sensor elements and an appropriate pattern recognition system. 96-98 A graphical representation of 

a sensor array operation is displayed in Figure 1.7, where partially selective interactions between 

the sensing elements and analytes generate unique sensor response patterns. The patterns contain 

information about each analyte and can be used as the fingerprint for a given analyte of interest. 
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Figure 1. 7. Graphic representation of a chemical sensor array 

This array-based sensing method offers the ability to respond to a variety of different 

analytes. Moreover, sensor arrays have the potential of generating unique signals for complex but 

distinctive analyte mixtures. In recent decades, chemical sensor arrays have been reported to 

successfully discriminate volatile organic compounds (VOCs), 99 visualize odors, 100 detect and 

monitor the growth of bacteria 99 and cancer cells. 101 In this dissertation, a series of 

cyanine-based GUMBOS were used to perform array-sensing of proteins. Each GUMBOS 

served as a sensor element and had partial selectivity. Data was analyzed using a pattern 

recognition system combining principal component analysis and linear discrimination analysis. 
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This sensor array showed impressive performance of discriminating protein mixtures at different 

concentration levels. 

1.3 Protein Structure 

Proteins are macromolecules that play important roles in biological activities. The function 

of proteins depend on their structure, which has four levels: primary, secondary, tertiary, and 

quaternary (Figure 1.8). 102, 103 Amino acids are the building blocks of proteins. An amino acid 

consists of a central carbon linked to an amino group, a hydrogen atom, a carboxyl group, and a 

side chain. Through a condensation reaction, amino acids are able to link together via peptide 

bonds, and form a peptide chain. This linear chain of amino acids is known as the primary 

structure of a protein. The peptide chain can be coiled to form a random coil, α helix, or β sheet 

through intramolecular hydrogen bonding. These stable coiling peptide chains represent the 

secondary structure of a protein. Most of the time, one protein contains several random coil, 

α-helices and β-sheets. They interact, fold and twist in order to achieve lower energy levels and 

higher stability. The resulting three-dimensional structure is designed as the tertiary structure of 

the protein.  The tertiary structure is primarily stabilized by interactions between the side 

groups of amino acids, which include hydrogen bonding, disulfide bonding, ionic bonding, 

dipole-dipole interactions, hydrophobic interaction and London dispersion forces. 104 While some 

proteins only contain one polypeptide chain with a tertiary structure, many proteins contain 

several polypeptide subunits. These subunits are assembled together through those amino acid 
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side chain interactions mentioned above and form a quaternary structure. 

 

Figure 1. 8. Four levels of protein structure 

 



15 

1.4 Protein Extraction and Separation 

Before a specific protein present in a complex mixture can be studied for further applications, 

protein extraction and separation are often essential steps. Various analytical methods have been 

used to separate or extract proteins from complicated biological matrices, such as plant or animal 

tissues. The most conventionally used protein separation methods are chromatography, such as 

size exclusion chromatography and reverse phase chromatography; 101, 105-107 fractionation 

techniques such as sonication, centrifugation and filtration; 108-110 gel electrophoresis;111, 112 

solvent extraction using organic solvents or ionic liquids; 113-115 and solid-phase protein 

extraction. 116-118 In this dissertation, GUMBOS were used to design a magnetic nanoparticle that 

was capable of selectively extracting hemoglobin from whole blood.  

1.4.1 Hemoglobin Isolation 

Hemoglobin (Hb) is a protein present in red blood cells that plays an essential role in the 

transportation of oxygen. As shown in Figure 1.9, Hb proteins consist of four subunits, two 

α-chains and two β-chains. Each subunit contains a heme group with a ferrous atom at the center 

of each heme ring. Four of the six ferrous coordination sites are occupied by nitrogen atoms from 

the heme porphyrin ring. One of the vertical coordination sites is occupied by a nitrogen atom 

from a histidine side chain. The last vertical coordination site is left available to bind to an 

oxygen molecule. 
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Figure 1. 9. Hemoglobin and heme group 

Hb’s oxygen transportation properties make it potentially useful for production of blood 

substitutes for blood transfusions in extreme situations, particularly for persons with rare types of 

blood. 119, 120 Therefore, as a prerequisite step for such investigations, isolation of Hb has drawn 

considerable attention over the last decade. In this dissertation, a magnetic nanoadsorbent 

GUMBOS was developed for selective Hb isolation. In this nanomaterial, the imidazolium cation 

serves as a selective Hb affinity group, while dysprosium contributes paramagnetic properties. 

The affinity interaction between imidazolium and the heme group from hemoglobin is shown in 

Figure 1.10, where a coordinating bond forms between the nitrogen atom in the imidazolium 

cation and the ferrous atom in the heme group. 
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Figure 1. 10. Affinity interaction between heme group and imidazolium cation 

1.5 Analytical Techniques 

1.5.1 Ultraviolet-Visible Spectroscopy 

Ultraviolet visible (UV-Vis) spectroscopy is an analytical technique, that measures the 

absorption of photons of light by a sample in the ultraviolet and visible light region (uv <400 nm, 

visible = 400 to 800 nm). The ultraviolet and visible light region comprises light energy of 

approximately 36 kcal/mol to 143 kcal/mol. When a molecule absorbs light, the absorbed energy 

promotes one electron from a lower energy level to a higher energy level. In particular, the 

promotion of electron from the highest energy occupied molecular orbital (HOMO) to the lowest 

energy unoccupied molecular orbital (LUMO) is energetically favored. The wavelength or 
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energy of an absorbed photon can be explained using a molecular orbital diagram. For example, 

Figure 1.11 is a diagram explaining the electron excitation of an ethene molecule. If a molecule 

is exposed to a photon of light with energy equal to the HOMO-LUMO energy gap (ΔE), this 

photon will be absorbed. The absorbed energy promotes one electron from the HOMO to the 

LUMO. In this case, ethene absorbs light with wavelength of 165 nm and energy of 173 

kcal/mol.  

 

Figure 1. 11. Partial molecular orbital diagram showing the electronic excitation of ethene 

Molecules with conjugated double bonds, e.g. polyaromatic hydrocarbons, tend to have a 

narrower energy gap between the HOMO and the LUMO. This allows these conjugated π 

systems to absorb light of longer wavelength. As a result, most of these molecules have distinct 

absorption energies. The molecular orbital diagram for 1,3-butadiene, the simplest conjugated 

system, is shown in Figure 1.12. In comparison to ethene, the narrower HOMO-LUMO gap 

allows 1,3-butadiene to absorb light with energy of 132 kcal/mol and wavelength of 217 nm. 
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Figure 1. 12. Partial molecular orbital diagram showing the electronic excitation of 
1,3-butadiene 

Absorbance is defined to represent the amount of light absorbed. It can be determined by 

measuring the transmission of light through the sample. Assume that the sample has low scatter, 

thus almost all of the light not absorbed will be transmitted. 

 𝑇 = 𝐼 𝐼$⁄ ,  (1.1) 

where T is transmission, I0 is the intensity of the incident light, I is the intensity of the 

transmitted light. 

Transmission can be converted to absorbance (A) using the following equation: 

 𝐴 = 𝑙𝑜𝑔*$(
*
,
). (1.2)  

The amount of light absorbed by a sample is proportional to the amount of absorbing 

molecules in the given sample, in the region where the spectrometer light beam transverses. In 

Beer’s Law “molar absorptivity (ε)” is defined to be the ability of an analyte to absorb light at a 
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given wavelength, and correlates the absorbance value to the concentration of the analyte, as 

demonstrated in the following equation: 

 A=εbc, (1.3) 

where A is absorbance value, ε is molar absorptivity (L⋅mol-1⋅cm-1), b is path length of the 

cuvette (cm), c is concentration of analyte (mol⋅L-1). 121 

The working principle of a UV-Vis spectrophotometer is displayed in Figure 1.13. The light 

source of a UV-Vis spectrometer is typically designed as a combination of a deuterium lamp with 

a tungsten lamp. This allows coverage of the entire UV and visible light range. The light beam 

first reaches a monochromator, that only allows light with a desired wavelength to pass through. 

Then, the beam will be split into two beams by a beam-splitter. One beam passes through a 

reference cell, the other passes through the sample cell. A detector records the absorbance of both 

the reference and the sample. 
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Figure 1. 13. Schematic diagram of a conventional UV-Vis spectrometer 

1.5.2 Fluorescence Spectroscopy 

Fluorescence is a form of luminescence that involves emission of light from electronically 

excited states not created by heat. Luminescence can be a result of physical (absorption of light), 

mechanical (rubbing or shearing), or chemical (reactions) mechanisms. Luminescence generated 

from molecules excited by ultraviolet or visible light is termed photoluminescence, which 

includes fluorescence and phosphorescence. The process of photoluminescence can be illustrated 

with the Jablonksi diagram as seen in Figure 1.14. 122 In the Jablonksi diagram, energy levels are 

arranged on a vertical axis. The singlet spin state S0 is the ground state of the electrons, and S1 

and S2 are singlet excited states. The thin horizontal lines above S0, S1 and S2, represent 

rotational/vibrational energy levels. As a molecule absorbs photons of light, an electron is excited 

from the ground state to an excited state. This process occurs extremely rapidly, on the order of 
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10-15 seconds. Fluorescence is emitted when the electron decays from the first excited state (S1) 

back to the ground state (S0) on a timescale of nanoseconds. Several non-radiative transitions of 

electrons from a higher energy level to a lower energy level can also occur. For example, internal 

conversion (IC) is a non-radiative decay process that allows an electron in an excited state higher 

than S1 to decay to S1. If IC occurs between absorbance and fluorescence, the emitted light will 

have less energy than the absorbed light, resulting in fluorescence of longer wavelength than 

absorbance. This wavelength difference is called a Stokes shift (Figure.1.15). 123 Intersystem 

crossing (ISC) is another non-radiative process. It occurs when electrons transition between S1 

and T1 (the first excited triplet state). Both of these two non-radiative transitions happen in 

nanoseconds or less in order to compete with fluorecence. If an electron transitions to T1, 

phosphorescence (10-3 - 10-16 s) may occur, where the electron will decay from T1 to S0. 

Phosphorescence is a radiative phenomenon that could be interference relative to the 

fluorescence process, but has a decreased probability of occurring. 
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Figure 1. 14. Jablonski diagram 

 

Figure 1. 15. Representative absorbance and fluorescence spectra of a compund showing a 
stokes shift 
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A graphical representation of a fluorescence spectrometer is displayed in Figure 1.16. The 

light from the light source (e.g. xenon arc lamp) reaches a monochromator, which only allows 

the desired excitation wavelength to pass through. The filtered light then reaches and excites the 

sample. In order to minimize interferences introduced by excitation light, emitted light is 

monitored at a 90°angle relative to excitation. Prior to reaching the detector, the emitted light 

passes through another monochromator (90° angle) that assists the detector in recording intensity 

of emitted light at each wavelength and form a spectrum. 

 

Figure 1. 16. Schematic diagram of a fluorescence spectrometer 
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1.5.3 Circular Dichroism Spectroscopy 

Circular dichroism (CD) spectroscopy is a special type of absorption spectroscopy. The 

principle is based on the differential absorption of left circularly polarized light and right 

circularly polarized light by chiral molecules. The CD spectrometer is widely used to study chiral 

molecules, in particular, chiral biological molecules such as amino acids and proteins. 

Optically active chiral molecules tend to absorb more of the circularly polarized light in one 

direction than the other direction. The difference in absorption of the circularly polarized light 

with two directions can be illustrated as: 

 𝛥𝐴 = 𝐴0 − 𝐴2, (1.4) 

where AL is the absorbance of left-handed circularly polarized light (LCPL), AR is the absorbance 

of right-handed circularly polarized light (RCPL). If we recall Beer’s Law, the above equation 

can be written as: 

 𝛥𝐴 = (𝜀0 − 𝜀2), (1.5) 

where εL is molar absorptivity for LCPL, εR is molar absorptivity for RCPL (L⋅mol-1⋅cm-1), b is 

path length of the cuvette (cm), and c is concentration of analyte (mol⋅L-1). 

Generally, scientists report CD data using spectra with molar ellipticity ([θ]) as Y axis. 

Molar ellipticity can be calculated using such an equation: 
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 [𝜃] = 3298𝛥𝜀, (1.5) 

where Δε is molar absorptivity difference (Δε=εL−εR), [θ] is molar ellipticity 

(degrees⋅cm2⋅dmol-1).  

A schematic diagram of a CD spectropolarimeter based on modulation techniques introduced 

by Grosjean and Legrand, is given in Figure 1.17.124 The most commonly used light source of a 

CD spectropolarimeter is a Xenon lamp. The polychromatic light first passes through a 

monochromator and a linear polarizer. This generates a linearly polarized monochromatic light, 

which is then converted to circularly polarized light (LCPL or RCPL) by a photoelastic 

modulator (PEM). LCPL and RCPL pass through the sample alternately. Finally, the detector 

signal allows a recording of this absorbance. 

 

Figure 1. 17. Schematic diagram of a circular dichroism spectropolarimeter 

Recently, CD has been increasingly recognized as a powerful tool for studying secondary 
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structure of proteins in solution. Protein secondary structure can be determined by using “far-UV” 

(190-250 nm) CD spectroscopy. The chromophores of interest here is the peptide bond, which 

absorbs light with wavelength below 240 nm. CD spectrometry gives characteristic spectral 

bands that are easily assigned to an alpha-helix, beta-sheet, and random coil structures (Figure 

1.18). The approximate composition of each secondary structure in a protein can be calculated 

using the CD spectrum. 125 

 

Figure 1. 18. CD spectra showing three secondary protein structures  

1.5.4 Fluorescence Microscopy 

Fluorescence microscopy is a special type of optical microscopy that is widely used when 

studying biological applications of fluorescent samples. In a fluorescence microscope, a sample 

is excited with light of desired wavelength. The emitted photon are then measured and visualized. 

A simplified schematic of the instrumental setup of a fluorescence microscope is illustrated in 
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Figure 1.19. The schematic is similar to that of a fluorescence spectrometer, where the device 

includes a light source, an excitation filter, an emission filter, and detection at a 90° angle. The 

use of a dichroic mirror in fluorescence microscopy is a result of the requirement of upright 

geometry. 

 

Figure 1. 19. Schematic representation of a fluorescence microscope 

1.5.5 Fourier-transform Infrared Spectroscopy 

Fourier Transform Infrared (FT-IR) spectroscopy is an important analytical technique that 

enables identification of functional groups.126 FT-IR is a measure of the absorbance of light in 

the infrared region (wavelength range from 2500 to 16000 nm). Since infrared light has lower 

energy than UV or visible light, it does not have enough energy to promote electrons in the 
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ground state to the exited state. In contrast, when a compound is exposed to IR light, the resultant 

energy will cause the molecular bonds to vibrate. This allows for identification of characteristic 

stretching and bending vibration bands of certain functional groups.127  

A graphical representation of an FT-IR spectrometer is illustrated in Figure 1.20. Briefly, 

light generated by the source passes through the beam-splitter and is divided into two equal 

beams. One beam is reflected back by a fixed mirror, while the other beam is reflected by a 

sliding mirror. Due to the movement of the sliding mirror, the reflected beam path is constantly 

changing. The two beams meet again at the beamsplitter and combine together to form a new 

beam, which then passes through the sample and reaches the detector. The collected signal is an 

interferogram which results from the interference between the two reflected beams. Figure 1.21 

shows the representative light interference and an example interferogram. The detector records 

absorbed energy versus time for all wavelengths, simultaneously. The time-domain raw data is 

then transferred into a frequency-domain spectrum. This data-transfer process is called a Fourier 

transform. 128 
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Figure 1. 20. Schematic diagram of an FT-IR sepctrometer 
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Figure 1. 21. Light interference and an example interferogram 

1.5.6 Transmission Electron Microscopy 

Transmission electron microscopy (TEM) is an analytical technique used to visualize the 

morphology of specimens in micro- and nanoscale. TEM operates under similar basic principles 

as an optical microscope, but TEM uses electron beam instead of photon beam. Since these 

high-speed electrons have wavelengths a million times shorter than that of visible light, the 

predicted attainable resolution of a TEM is much better than that of an optical microscope.129 In 

fact, in the high resolution imaging mode, a TEM is able to reach a direct map of atomic 
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arrangements.130 The working principle of a TEM is shown in Figure 1.22.  

Briefly, an electron gun produces electrons with high energy and at nearly the speed of light. 

Theses electrons pass through a condenser system that focuses the beam onto the sample, where 

some of the electrons are scattered and some of the electrons transmit through the sample. The 

transmission of electrons depends on the thickness and density of the sample. An objective lens, 

movable specimen stage, and projector lenses work together to focus the transmitted electrons 

and form a high-quality image. The image can be directly observed with the human eye and form 

a photograph on the fluorescent screen or recorded by CCD (charge-coupled device) camera.131, 

132 

 

Figure 1. 22. Schematic representation of a transmission electron microscope 
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1.5.7 Sodium Dodecyl Sulfate Polyacrylamide Gel Electrophoresis 

Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) is an analytical 

technique widely used to separate proteins. In PAGE, charged molecules will migrate through a 

polyacrylamide gel in an electric field with different rate. The migrating rate of a molecule in a 

given gel and electric field depends on both charge and size. Due to the complicated secondary, 

tertiary and quaternary structure of protein, the migrating rate in PAGE conditions is not able to 

determine their molecular weight. In this regard, protein samples are first treated with SDS and 

2-mercaptoethanol to eliminate the tridimensional structure (quaternary and tertiary structures). 

In this treatment, 2-mercaptoethanol breaks the disulfide bonds, 133 while the hydrophobic side of 

SDS binds the protein interior hydrophobic groups. 134 This results in a linear peptide chain, 

which is uniformly coated with negatively charged molecules (~1.4 g SDS/g protein). By doing 

so, the migration rate of these peptide chains depends primarily on the molecular weight. 

Diagrams of SDS amphipathic structure and protein pretreatment are illustrated in Figure 1.23 

and Figure 1.24, respectively. 
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Figure 1. 23. Amphipathic structure of sodium dodecyl sulfate 

 

Figure 1. 24. Protein pretreatment with SDS and 2-mercaptoethanol 

A schematic diagram of SDS-PAGE principle, based on Laemmli system, 135 is shown in 

Figure 1.25. Polyacrylamide gels are prepared by acrylamide polymerization and 

N,N'-methylenebisacrylamide cross linking (Figure 1.26). The gel is discontinuous, and consists 

of a stacking gel and a running gel. Chloride is the mobile anion in the gels, while in the upper 

and lower tank buffers, glycine is the mobile anion. Pretreated protein samples are loaded into 

wells in the stacking gel. When an electric field is applied, proteins migrate through the gel 
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toward the anode, which is at the bottom of the system. Proteins are sufficiently separated by size 

with smaller proteins migrate faster toward the anode. 

 

Figure 1. 25. PAGE working principal 

 

Figure 1. 26. The preparation of polyacrylamide gels 
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1.5.8 Principal Component Analysis and Linear Discriminant Analysis 

Both principal component analysis (PCA) and linear discriminant analysis (LDA) are 

statistical techniques that commonly used for dimensionality reduction. PCA was first reported in 

1901 by Karl Pearson; 136 and now is mostly used as a technique for making predictive models. 

The goal of using PCA is to transform several  correlated variables into a smaller number of 

uncorrelated variables (principal components); these principal components will maximize the 

variance in a dataset. 137-139 The first principal component gives information from as much of the 

variability in the data as possible, and the following components accounts for as much of the 

remaining information as possible. 140, 141 Most often, the first few principal components are able 

to represent the most useful information of a dataset. For example, if we want to visualize a 

multivariate dataset using each variable as an axis, a high-dimensional data space is needed. With 

the help of statistical software, such as SAS (Statistical Analysis System) and R, principal 

components can be generated from the raw data. By using only the first two or three principal 

components, the dimensionality of the data is reduced. 

While PCA is “unsupervised”, in that it ignores class labels, LDA is a “supervised” 

technique and computes the linear discrimination factors that maximize the separation between 

multiple classes. 142, 143 Figure 1.27 presents a simple conceptual scheme of PCA and LDA 

methods. 
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Figure 1. 27. Conceptual scheme of PCA and LDA methods 

In this thesis, PCA and LDA were used to analyze data generated by sensor arrays and 

facilitate identification and classification of analytes. A method combining PCA and LDA was 

used here. In this method, the first few principal components created by PCA were used as input 

variables for LDA. This PCA-plus-LDA method has been verified as effective, and capable of 

addressing computational difficulties caused by high-dimensionality and helps to avoid 

over-fitting. 144-147 

1.6 Overview of the Dissertation 

The work presented in this dissertation is based on the development of task-specific organic 

salts for sensing and protein separation. In Chapter 2, a sensitive and selective ratiometric 
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fluorescent nanodiamond probe was developed for detection of hydroxyl radicals. These 

materials were based on the use of GUMBOS that were derived from 1,1’-diethyl-2,2’-cyanine 

(PIC) iodide and 1,1’-diethyl-2,2’-carbocyanine (PC) iodide. Each GUMBOS compound 

exhibited different reactivity towards reactive oxygen species. Without the use of any organic 

linkage, the two GUMBOS were combined to provide a ratiometric fluorescence sensing profile. 

The cyanine based ratiometric nanoprobe exhibited high selectivity toward hydroxyl radicals in 

comparison to other reactive species, such as superoxide anion (O2•-), singlet oxygen (1O2), 

hydrogen peroxide (H2O2), and peroxynitrite (ONOO-). In addition, in vitro detection of 

hydroxyl radical was successfully demonstrated by use of the binary nanoGUMBOS using 

hormone-independent human breast adenocarcinoma cells (MDA-MB-231). 

In Chapter 3, an imidazolium-dysprosium-based nanoGUMBOS was prepared using a facile 

method. This nanomaterial served as a magnetic nanoadsorbent for selective hemoglobin 

isolation. The imidazolium cation was introduced as the selective hemoglobin affinity group, 

with a dysprosium element possessing the paramagnetic property as the anion. These 

nanoGUMBOS exhibited high adsorption capacity and good selectivity toward hemoglobin. In 

addition, they were successfully applied in the selective Hb isolation from human whole blood. 

In Chapter 4, a cyanine-based fluorescent sensor array was studied for discrimination of 

serum proteins. The physicochemical properties of the sensor array components were tuned 

through variation of the counter-ions. Three cyanine cations and two hydrophobic anions were 
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used to fabricate GUMBOS sensors in this study. The resulting six sensor elements respond 

differently to seven proteins. By following with a pattern recognition system, this sensor array 

was able to discriminate protein mixtures at different concentration levels. 
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CHAPTER 2: RATIOMETIC FLUORESCENCE DETECTION OF 
HYDROXYL RADICALS USING CYANINE-BASED BINARY 

NANOGUMBOS 

2.1 Introduction 

Reactive oxygen species (ROS) are formed as byproducts of the metabolism of oxygen 

within the mitochondria of living cells. ROS generated by this process include superoxide anion 

(O2•-), hydroxyl radical (•OH), singlet oxygen (1O2), and hydrogen peroxide (H2O2) 1 An 

imbalance between production and reduction of ROS causes oxidative stress. 2 Furthermore, 

overproduction of ROS produces significant damage within cells and eventually leads to many 

diseases including cardiovascular disease, neurological disorders, diabetes, and cancer. 3-8 

Hydroxyl radicals (•OH) and hydroxide ions (OH−) are formed as a result of a Fenton reaction, 

wherein reduced iron (Fe2+) or copper (Cu+) is oxidized by use of H2O2. 9, 10 Since the hydroxyl 

radical is considered the most reactive ROS, it has very high aggression toward other molecules 

10, 11 and therefore a short life time.12 For this reason, visual detection of hydroxyl radicals in 

cells is of utmost importance for examining health-related problems. 

Several instrumental techniques such as electron spin resonance (ESR), 13, 14 

ultraviolet-visible absorbance (UV-Vis), 14, 15 and fluorescence 11, 14-16 have been used to detect 

ROS. 17 Among these techniques, fluorescence spectroscopy offers several advantages including 
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sensitivity, selectivity, rapid acquisition, and versatility. 11, 12, 15 However, there are limitations to 

development of a successful real-time fluorescent probe for ROS. For instance, sensitivity of the 

instrumentation, fluctuation of light-source intensity, temperature, sensor concentration variation, 

and other environmental factors can affect the reliability of a given probe. 18 A possible solution 

to this problem is to employ a ratiometric sensor, which could effectively eliminate the 

aforementioned artifacts through built-in correction from two emission intensities. 18-20 In this 

regard, a Förster resonance energy transfer (FRET) strategy can be employed to develop such a 

ratiometric sensor. However, in order to develop a FRET based ratiometric sensor, a certain 

degree of spectral overlap is required between the emission spectrum of the donor and the 

absorption spectrum of the acceptor. In addition, the donor and acceptor molecules must be in 

close proximity (typically 10-100 Å). 21 

Cyanine dyes belong to a family of fluorescent dyes that are widely used in industry, as well 

as in academic research. Depending on the particular modification of the molecular structure of 

these dyes, the absorbance and emission characteristics can be tuned from the ultraviolet (UV) to 

the infrared (IR) regions of the electromagnetic spectrum. 22, 23 Since cyanine dyes are 

fluorescent, they are frequently employed as fluorescent labels, particularly in the area of 

biomedical imaging. 3, 24-26 A few studies have reported cyanine dyes as ROS sensors. For 

example, Karton-Lifshin, et al. have synthesized a quinone-cyanine 7 probe, which behaved as a 

“turn-on” sensor for hydrogen peroxide. 27 More recently, Oushiki et al. have investigated 
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different ROS reactivity with various cyanine dyes. 28 In these studies, FRET was achieved by 

linking cyanine dyes with another dye through a complex series of organic reactions. 

Our research group has been working on a relatively new class of materials defined as a 

group of uniform materials based on organic salts (GUMBOS). These materials are solid phase 

organic salts with a wider range of melting points (25 – 250 °C) than ionic liquids (ILs) (melting 

point <100 °C). However, similar to ILs, GUMBOS exhibit many attractive characteristics such 

as excellent thermal and photophysical properties. 29, 30 Furthermore, GUMBOS can also be 

fabricated into nanoscale materials, termed nanoGUMBOS. NanoGUMBOS can be constructed 

to possess various properties in a single nanoscale material, allowing easy development of 

multifunctional organic nanomaterials. 31-33 In recent years, the utility of nanoGUMBOS for a 

variety of biological applications including drug delivery, medical imaging, sensing, and cancer 

therapy has been reported. 33-35  

The tunable properties of GUMBOS/nanoGUMBOS enables design of materials for specific 

applications. 31 It has previously been observed that cyanine based nanoGUMBOS are capable of 

showing tunable photochemical activity. 29, 36, 37 Such outcomes prompted us to investigate 

cyanine based nanoGUMBOS as a fluorescent probe for detection of ROS species. 36  In this 

study, we have used 1,1’-diethyl-2,2’-cyanine bis(trifluoromethanesulfonyl)imide  

([PIC][ NTf2]) and 1,1’-diethyl-2,2’-carbocyanine bis(trifluoromethanesulfonyl)imide 

([PC][ NTf2]) to develop this nanoprobe. Thus. a ratiometric fluorescent nanoprobe using FRET 
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was designed and simply synthesized to form binary nanoGUMBOS. Furthermore, we have 

investigated the sensitivity of these cyanine based nanoGUMBOS towards different ROS and 

further used them to quantify hydroxyl radicals. Moreover, an in vitro application of hydroxyl 

radical detection inside cells has been demonstrated by using confocal fluorescence microscopy.  

2.2 Materials and Methods  

2.2.1 Materials  

1,1’-diethyl-2,2’-cyanine (PIC) iodide, 1,1’-diethyl-2,2’-carbocyanine iodide, lithium 

bis(trifluoromethanesulfonyl)imide (NTF2), phosphate buffered saline (PBS), dimethyl sulfoxide, 

ethanol, ascorbic acid, copper sulfate, potassium superoxide, and N,N-Dimethylformamide, 

dimethyl sulfoxide (DMSO) were purchased from Sigma Aldrich (St. Louis, MO). Hydrogen 

peroxide (30%) and sodium nitrite were purchased from Fisher Scientific (Waltham, MA). Triply 

deionized distilled water (18.2 megaohm) was obtained from an Aries high purity water system 

(West Berlin, NJ).  

Absorption spectroscopic properties of GUMBOS and nanoGUMBOS were studied using a 

Shimadzu UV-3101PC UV-Vis scanning spectrometer (Shimadzu, Columbia, MD). Fluorescence 

emission properties were studied using a Spex Fluorolog-3 spectrofluorimeter (model 

FL3-22TAU3; Jobin Yvon, Edison, NJ) with a slit width of 5 nm. All spectroscopic studies were 

performed using quartz cuvets (Starna Cells). 
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An aliquot (5 µL) of nanoGUMBOS aqueous solution was drop casted onto a carbon-coated 

copper grid (CF400-Cu, Electron Microscopy Sciences, Hatfield, PA) and air dried at room 

temperature. Electron micrographs were obtained for characterization of size and morphology 

using a transmission electron microscope (TEM). The sizes of these nanoGUMBOS were 

determined by measuring the average of 100 nanoparticles.   

Superoxide anion (O2·-) was derived by dissolving KO2 in DMSO. Peroxynitrite (ONOO-) 

was chemically generated by reacting NaNO2 with H2O2. Singlet oxygen 1O2 was generated by 

reacting H2O2 with NaClO, while hydroxyl radicals were prepared in phosphate buffer (pH=7.4) 

via the reaction of cuprous sulfate and ascorbic acid, followed with introduction of hydrogen 

peroxide. Since the lifetimes of these hydroxyl radicals are relatively short, the concentration of 

Cu2+ added, which is directly related to hydroxyl radical concentration, is used to represent the 

concentration of hydroxyl radicals. 15, 19 

2.2.2 Synthesis of GUMBOS 

Cyanine based GUMBOS were synthesized using an anion exchange method in a biphasic 

solvent system as outlined in previous studies. 31, 33 Briefly, 1,1’-diethyl-2,2’-cyanine iodide 

([PIC][I]) or 1,1’-diethyl-2,2’-carbocyanine iodide ([PC][I]) was dissolved in dichloromethane 

(DCM) and mixed in a 1:1.1 mole ratio with a solution of lithium bis(perfluoroethylsulonyl) 

imide ([Li][NTf2]) that was previously dissolved using a minimum amount of water. This 
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mixture was then stirred at room temperature for 24 hours. After completion of this anion 

exchange reaction, the water soluble lithium iodide byproduct was removed by washing with 

deionized water. GUMBOS were isolated using rotary evaporation to remove the organic solvent. 

Finally, these GUMBOS were freeze dried to remove trace amounts of water. Formation of 

GUMBOS was confirmed using high resolution electrospray ionization mass spectrometry 

(Supplementary material).  

2.2.3 Synthesis of nanoGUMBOS and sample preparation for ROS study 

Binary nanoGUMBOS were formed using a reprecipitation method of two GUMBOS 

posessing the same counter-anion. As a typical synthetic procedure, 100 µL of 1mM [PIC][NTf2] 

and 10 µL of 1mM [PC][NTf2] in acetonitrile were added dropwise into 5 mL of water with 

ultra-sonication. The mixture was then sonicated for an additional 10 minutes and allowed to sit 

undisturbed for 20 minutes in order to attain stable nanoparticles. For ROS reactivity study, all 

spectra were recorded after incubation of nanoGUMBOS with the specific reactive oxygen or 

nitrogen species for 5 minutes at room temperature. 

2.2.4 In vitro detection of hydroxyl radicals with confocal fluorescence microscopy 

In vitro detection of hydroxyl radicals was tested using human breast adenocarcinoma 

(MDA-MB 231, ATCC no. HTB-26). For this experiment, nanoGUMBOS were prepared in cell 

media. MDA-MB 231 cells were obtained from American Tissue Culture Collection (ATCC, 
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Manassas, VA) and grown to 90% confluence as per the instructions. Five thousand (5000) cells 

were plated on a 35 mm glass bottom petri dish (10 mm micro cell; Ashland, MA, USA) with 3 

mL of cell media and incubated for 24 h at 37 °C. After 24 h, the cell media was removed. Then, 

media containing nanoGUMBOS was added into the petri dish, and cells were incubated again 

for 30 minutes. Then, media was removed and cells were washed with fresh cell media to 

remove excess nanoGUMBOS. An aliquot of 1 mL H2O2 (200 µM) cell media solution was 

added for in vitro generation of hydroxyl radicals in cells. To another cell plate, 1 mL of cell 

media was added as a control group. These cells were incubated again for 15 mins. Finally, cell 

media was removed and cells washed with PBS buffer. All fluorescence images were captured 

using a HCX PL APOCS 40×1.25 OIL objective lens on the Leica DM IRE2 confocal 

fluorescence microscope (λex=514 nm). 

2.3 Results and Discussion 

2.3.1 Characterization of GUMBOS and nanoGUMBOS  

The formation of GUMBOS products was confirmed by use of electrospray ionization mass 

spectrometry (Figure 2.1) and the product yield was >95%. In positive ion mode, intense peaks 

with m/z values of 327.1869 and 353.2025 were observed, corresponding to molecular weights 

of [PIC]+ and [PC]+ cation, respectively. In the negative ion mode, a peak was observed at 

279.9177 m/z which is the characteristic peak of [NTf2]- anion.   
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a 

 

B 

Figure 2. 1. High resolution electrospray ionization mass spectrometry for [PIC][NTf2] positive 
ion mode (a), negative ion mode (b); and [PC][NTf2] positive ion mode (c), negative ion mode 
(d). (figure cont’d.) 
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TEM images of [PIC-PC][NTf2] nanoGUMBOS (Figure 2.2) exhibit nanodiamonds (NDs). 

These NDs possess a width of 111.4±15.1 nm and length of about 189.2±16.4 nm. In the 

literature, NDs have been demonstrated for better cellular uptake as compared to spherical 

nanoparticles. 38 As described by Chu et al., sharp-shaped nanoparticles enter into the cell via 

endocytosis using the endosome as the entrance vehicle. Furthermore, NDs have a higher 

probability of breaking the endosomal membrane before the lysosome is formed, leading to a 

very low excretion rate and thus allowing these sharp-shaped nanoparticles to remain in the 

cytoplasm for an extended period of time. 38  

 

Figure 2. 2. TEM micrograph of [PIC-PC] [NTf2] nanoGUMBOS 

2.3.2 Spectroscopic studies 

Ultraviolet-visible (UV-vis) and fluorescence spectroscopies were used to study the spectral 

properties of GUMBOS and nanoGUMBOS. Normalized UV-vis spectra and fluorescence 

emission spectra of the two individual GUMBOS in acetonitrile are depicted in Figure 2.1. The 
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absorbance wavelength range of [PIC][NTf2] and [PC][NTf2] are repectively 400 – 580 nm and 

500 – 650 nm. Absorbance maxima were observed at 521 nm and 602 nm for [PIC][NTf2] and 

[PC][NTf2], respectively (Figure 2.3a). As seen in Figure 2.3b, the fluorescence emission 

wavelengths of [PIC][NTf2] are in the range of 550 nm to 650 nm with emission maxima at 589 

nm. The GUMBOS [PC][NTf2], has an emission profile from 610 nm to 750 nm with emission 

maxima at 616 nm. Based on the spectra given in Figure 2.3, significant overlap is observed 

between the emission spectrum of [PIC][NTf2] and the absorption spectrum of [PC][NTf2]. This 

observation suggests the possibility of employing the FRET phenomena between these two 

cyanine-based GUMBOS. In order to obtain efficient FRET, both GUMBOS were coupled 

together to produce binary nanoGUMBOS. The UV-Vis absorbance spectrum of [PIC-PC][NTf2] 

nanoGUMBOS in aqueous solution is shown in Figure 2.4a. These spectra exhibited two peak 

maxima which correspond to [PIC] and [PC] cations in the binary nanoGUMBOS, since NTf2 

does not absorb UV-Visible light. It is observed from the fluorescence spectra that 

nano[PC][NTf2] alone is not fluorescent (Figure 2.4b). However, in the presence of [PIC][NTf2], 

two fluorescence emission peaks were observed when excited at 525 nm. The spectra for 

[PIC-PC][NTf2] nanoGUMBOS (10:1 molar ratio) displayed very good FRET results as 

depicted in Figure 2.4c.  
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Figure 2. 3. (a) Normalized UV-Vis pectra of the individual GUMBOS [PIC][NTf2] and 
[PC][NTf2] (acetonitrile); (b) Normalized fluorescence emission spectra of [PIC][NTf2] and 
[PC][NTf2]; (c) Overlap spectra of [PC][NTf2] absorbance and [PIC][NTf2] fluorescence 
emission. 

 

Figure 2. 4. (a) UV-Vis spectrum of [PIC-PC][NTf2] binary nanoGUMBOS in water; (b) 
Fluorescence spectrum of the individual nanoGUMBOS in water; (c) Fluorescence spectrum of 
[PIC-PC][NTf2] binary nanoGUMBOS in water, excited at 525 nm 

The spectral overlap integral (J) for [PIC-PC][NTf2] binary nanoGUMBOS at a 10:1 molar 

ratio was calculated using the following equation: 

 𝐽(𝜆) = ∫ 𝜀(𝜆)𝜆>𝐹@(𝜆)𝑑𝜆
B
$ ,   (2.1) 

where FD(λ) is the normalized emission spectrum of the donor, ε is the molar absorption 

coefficient of the acceptor and λ is wavelength. The energy transfer efficiency (E) was 
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determined using the following formula: 

 𝐸 = 1 − 𝐹@′ 𝐹@,⁄    (2.2) 

where FD’ and FD are the donor fluorescence intensities with and without an acceptor, 

respectively. 

The spectral overlap integral for [PIC-PC][NTf2] binary nanoGUMBOS at a 10:1 molar 

ratio was calculated to be 5.123 × 10-14 M-1 cm3, with an energy transfer efficiency as high as 

88.73%. Examination of results revealed that there is significant overlap between the PIC-PC 

species. Hence, very high FRET efficiency is expected and was observed. 

2.3.3 Reactivity evaluation for ROS  

Reactivity of [PIC][NTf2] and [PC][NTf2] nanoGUMBOS, towards 50 µM concentration of 

different reactive species (superoxide anion (O2•-), hydroxyl radicals (•OH), singlet oxygen (1O2), 

hydrogen peroxide (H2O2), and peroxynitrite (ONOO-) were investigated separately (Figure 2.5). 

In this regard, we evaluated spectral changes using UV-Vis and fluorescence spectroscopies. 

Figure 2.5a and Figure 2.5b illustrates absorbance spectra of [PIC][NTf2] and [PC][NTf2] 

nanoGUMBOS, respectively (in water) in the absence and presence of ROS.  As seen in 

Figures 2.3a and 2.3b, a significant decrease in absorbance intensity was observed for [PC][NTf2] 

in the presence of hydroxyl radicals, while no significant change in the absorption spectra was 

observed in the case of [PIC][NTf2] for the same analyte. In addition, the fluorescence spectra 
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obtained for [PIC][NTf2] nanoGUMBOS did not exhibit a significant change in the presence of 

ROS (Figure 2.5c); whereas, the fluorescence signal was very low for [PC][NTf2] 

nanoGUMBOS suspension. Moreover, there is a significant decrease in the intensity of 

[PC][NTf2] emission when it is exposed to hydroxyl radicals (Figure 2.5d).  From these 

reactivity studies of the individual nanoGUMBOS towards ROS, it can be concluded that 

[PIC][NTf2] exhibit a lower sensitivity for reactive species as compared to [PC][NTf2]. More 

specifically, [PC][NTf2] displayed selectivity toward hydroxyl radicals in comparison to other 

reactive species. 

The reduction potentials of cyanine based GUMBOS have been measured using cyclic 

voltammetry by Jordan et al.36 The results showed that the reduction potential of [PC][NTf2] is 

lower (-1.04 V) than that of [PIC][NTf2] (-1.01V), suggesting much easier oxidation for 

[PC][NTf2] than the later. The above electrochemical data also validate our nanoGUMBOS 

reactivity observation towards reactive oxygen species. Furthermore, similar observations have 

been achieved by Harriman et al. 39 and Chen et al. 40 while investigating mechanism of 

long-chain cyanine compound oxidation. In these reports, oxidation of cyanine with long 

methine chain would lead to chain cleavage and loss of both the absorbance and fluorescence.  
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Figure 2. 5. (a) Absorbance spectra of the [PIC][NTf2] nanoGUMBOS with different ROS; (b) 
Absorbance spectra of the [PC][NTf2] nanoGUMBOS with different ROS; (c) Fluorescence 
spectra of [PIC][NTf2] nanoGUMBOS with different ROS, excited at 525 nm; (d) Fluorescence 
spectra of [PC][NTf2] nanoGUMBOS with different ROS excited at 595 nm.  

2.3.4 Ratiometric Analysis of ROS with Binary [PIC-PC][NTf2] NanoGUMBOS 

The fluorescence spectra of the binary ratiometric nanoprobe were examined using different 

ROS and results are depicted in Figure 2.6a.  Nanoprobe mixing with hydroxyl radicals, shows 

the lowest emission intensity at 662 nm and highest intensity at 589 nm. All ROS, more or less, 

decrease [PC][NTf2] emission intensity at 662 nm, but not at 589 nm (λmax.em for [PIC][NTf2]). 

The peak intensity ratio was calculated at 662 nm (λmax for [PC][NTf2]) and 589 nm (λmax.em for 

[PIC][NTf2]). The reactivity of this binary nanoGUMBOS probe was thus defined as  
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𝑅𝑒𝑎𝑐𝑡𝑖𝑣𝑖𝑡𝑦 = −
OPPQ

ORST	V (WXYZ	2[\)]OPPQ ORST	V (WXYZ	^_``ab)
OPPQ

ORSTV 	(WXYZ	^_``ab)
.   (2.3) 

As shown in Figure 2.6b, the binary [PIC-PC][NTf2] nanoprobe shows higher sensitivity 

towards hydroxyl radicals in comparison to other reactive oxygen  species, with hydrogen 

peroxide being the least sensitive. 

When comparing the reduction potentials of these reactive oxygen species (Table 2.1), 

hydroxyl radicals have the highest reduction potential, followed in order by superoxide, singlet 

oxygen, and hydrogen peroxide. 12 After combining the reduction potential values of ROS and 

oxidation potentials of nanoGUMBOS, it is found that the experimental results are in good 

agreement, i.e, the nanoprobe showed the highest reactivity toward hydroxyl radicals, followed 

by superoxide and singlet oxygen. Peroxynitrite, known as a versatile oxidant, shows exceptional 

behavior presumably due to some additional interactions with the nanoprobe. This observation is 

further corroborated using Figure 2.6a, where the first emission peak (λmax.em for [PIC][NTf2]) is 

significantly reduced only by peroxinitrite. This exceptional behaviour could also be attributed to 

the size and shape of both nanoprobe and peroxynitrite. The difference in methine chain length in 

PIC and PC results in different reduction potentials and further leads to different reactivity 

towards ROS, allowing measurement of a ratiometric fluorescence response to ROS. This 

measurement greatly adds to the selectivity of this binary nanoprobe and its ability to serve as a 

ratiometric sensor toward hydroxyl radicals. 
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Table 2. 1. Reduction potential of reactive species 

Reactive Species Reduction Potential 
(V) 

Hydroxyl radical 2.33 

Peroxynitrite 1.25 

Superoxide 0.94 

Singlet oxygen 0.65 

Hydrogen peroxide 0.32 

 

Figure 2. 6. (a) Fluorescence emission spectra of [PIC-PC][NTf2] nanoGUMBOS with different 
ROS; (b) Reactivity of the binary nanoprobe to different ROS. 
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The response of this binary nanoGUMBOS was also investigated in the presence of different 

hydroxyl radical concentrations. In this regard, the concentration of hydroxyl radical was 

increased from 0 to 25 µM and quenching in the fluorescence spectra was monitored. Results 

from this experiment are presented in Figure 2.7a. Examination of these results demonstrates 

micromolar level detection of hydroxyl radicals using binary nanoGUMBOS. A linear 

relationship was observed between the fluorescence intensity ratio (I662/I589) and hydroxyl radical 

concentration (Figure 2.7b), with a detection limit of 769 nM (3σ⁄m, wherein σ is the standard 

deviation of blank measurement, and m is the slope of the calibration plot). This relationship will 

aid in determining the approximate concentration of hydroxyl radicals in an unknown system. 

Thus, we may conclude that our system is very sensitive and selective towards hydroxyl radicals.  

 

Figure 2. 7. (a) Fluorescence spectra of [PIC-PC][NTf2] nanoGUMBOS with different hydroxyl 
radical concentration (expressed as the concentration of [Cu2+]); (b) Linear relationship between 
intensity ratio (I662/I589) and hydroxyl radical concentration (represented by [Cu2+]) 

In order to confirm that the observed change in ratiometric signal is due to the presence of 

hydroxyl radicals, a control experiment was also designed. All reagents (i.e. Cu2+ and hydrogen 
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peroxide) that were used to generate hydroxyl radicals, were tested individually with 

nanoGUMBOS. As shown in Figure 2.8, Cu2+ and hydrogen peroxide alone did not produce 

quenching in the fluorescence intensity at 662 nm. Only the hydroxyl radicals, generated after 

combining Cu2+ and hydrogen peroxide, produced a drastic decrease in the fluorescence signal of 

the nanoprobe. 

 

Figure 2. 8. Fluorescence spectra of [PIC-PC][NTf2] nanoGUMBOS with copper sulfate (Cu2+), 
hydrogen peroxide (H2O2), and hydroxyl radicals (·OH) prepared with them. 

2.3.5 In vitro detection of hydroxyl radicals 

Due to the high selectivity and sensitivity of these binary nanoGUMBOS for hydroxyl 

radicals, we rationalize that such materials are suitable for detection of hydroxyl radicals in 

living cells and organisms. Thus, in vitro sensor properties were evaluated using live 
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hormone-independent human breast adenocarcinoma cells (MDA-MB-231). As reported, 

hydroxyl radicals are usually generated by the reaction of hydrogen peroxide with transition 

metals in the biological environment. 2 Thus, we have designed our experiment accordingly. In 

this regard, MDA-MB-231 cells were incubated with cyanine-based binary nanoGUMBOS and 

fluorescence images were collected by use of a confocal fluorescence microscope. Images are 

recorded in two different wavelength regions. One channel (Channel 1) collects the fluorescence 

signal from 568nm to 608nm, which corresponds to PIC emission, while another channel 

(Channel 2) collects the fluorescence signal from 613nm to 647nm, which corresponds to PC 

emission. As shown in Figure 2.9 a, before addition of hydrogen peroxide, Channel 1 provided 

weak fluorescence signals and Channel 2 produced significant fluorescence. However, when the 

cells are exposed to hydrogen peroxide, hydroxyl radicals are immediately generated in the cells. 

Consequently, we observed that fluorescence collected using Channel 1 was enhanced, while 

fluorescence collected using Channel 2 decreased significantly (Figure 2.9 b). Thus, in vitro 

studies are in excellent agreement with our solution-based studies, such that we conclude that 

these cyanine-based binary nanoGUMBOS can serve as ratiometric sensors for detection of 

hydroxyl radicals in living cells. 
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Figure 2. 9. Fluorescent imaging of binary nanoprobe response in live cells exposed to 
H2O2-induced oxidative stress: (a) before addition of H2O2 and (b) 15 mins after addition of 
H2O2 

2.4 Conclusions 

This study involves development of cyanine-based nanoGUMBOS as a simple fluorescence 

probes for ROS detection. Based on significant spectral overlap and differences in reactivity 

towards ROS, the two GUMBOS were combined to generate a ratiometric fluorescence response. 

We have successfully demonstrated that this binary nanoprobe displayed a higher sensitivity and 

selectivity for hydroxyl radicals over other reactive oxygen species. Moreover, the rapid sensing 

ability of our binary nanoGUMOS overcomes the restriction due to very short lifetime of 
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hydroxyl radicals. Based on experimental results, our binary nanoGUMBOS was investigated for 

in vitro application of detecting hydroxyl radicals in human breast adenocarcinoma cells. The 

results suggest a promising ratiometric probe for hydroxyl radicals detection. We believe that this 

novel nanoprobe should have a great future in studies aimed at understanding the role of 

hydroxyl radicals in cellular activity. Furthermore, this approach of investigating binary 

nanoprobes should serve as the basis for designing other cyanine-based fluorescent sensors for in 

vitro and in vivo imaging of ROS. 
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CHAPTER 3: IMIDAZOLIUM-DYSPROSIUM-BASED NANOGUMBOS 
FOR ISOLATION OF HEMOGLOBIN 

3.1 Introduction 

Proteins are an important group of biomolecules that play essential roles in structure, 

function, and regulation of cells, tissues, and organs of humans. However, due to the typical 

complexity of the biological environment, protein purification from biological matrices is often a 

challenging process and thus is a crucial issue in bioscience separations. In this study, we focus 

on isolation of hemoglobin (Hb), which is a protein with four heme groups and is abundantly 

present in human red blood cells. Each heme group contains a ferrous cation that is responsible 

for oxygen transportation. 1, 2 Hemoglobin’s oxygen transportation properties make it potentially 

useful for production of blood substitutes for blood transfusions in extreme situations, 

particularly for persons with rare types of blood. 3-6 Therefore, as a prerequisite step for such 

investigations, isolation of Hb has drawn considerable attention over the last decade. 

Over the past ten years, several studies on ionic liquid-based liquid-liquid extractions of 

Hb have been conducted, where the designated ionic liquid (IL) showed good Hb extraction. 7-9 

Ionic liquids (ILs) are defined as low melting organic salts that possess useful properties such as 

biocompatibility, thermal stability, low vapor pressure, considerable ionic conductivities, broad 

electrochemical window, as well as good solubility and miscibility. 10 Due to these unique 

properties, ILs have attracted wide recognition as novel green solvents in chemistry, 11-14 
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particularly for extraction of analytes. 15-17 In addition, the application of ILs in liquid-liquid 

extraction systems addresses several issues regarding toxicity of organic solvents. 15, 18, 19 

However, problems associated with liquid-liquid extractions, such as incomplete phase 

separation and disposal of large amounts of solvents, make this method less favorable in practice. 

7, 20 In this regard, solid-phase extraction (SPE) overcomes many of the problems noted above. 

21-24 In recent years, interest in magnetic solid-phase extraction (MSPE), especially extractions 

based on magnetic nanomaterials, has increased in order to reduce the time-consuming 

separation process and provide increased surface area interactions. However, conventional 

extractions using magnetic nanoparticles are generally based on surface functionalization of 

magnetic nanoparticles using affinity ligands to increase the selectivity and efficacy of the 

extraction procedure. 25-31 Frequently, the preparation of these types of nanomaterials with 

surface functionalization requires tedious synthetic methods in combination with 

time-consuming purifications.  

Similar to ILs, GUMBOS (groups of uniform material based on organic salts) are solid 

phase organic salts that are typically composed of bulky incompatible counter-ions, and thus 

with a higher range of melting points (25 °C - 250 °C) than ILs (melting point <100 °C). 32 For a 

wide range of potential applications, properties of GUMBOS such as hydrophobicity, melting 

point, viscosity, and toxicity can be tuned by simply altering either the cation or anion. In this 

regard, a variety of GUMBOS have been synthetized in our laboratory with numerous properties 
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such as fluorescence, magnetic, sensory, and tumor-targeting. 32-36 Multifunctional nanomaterials, 

prepared from GUMBOS (nanoGUMBOS), have been reported as early as 2008 35, 37-41 with 

tunable properties similar to ILs. Thus, GUMBOS may represent very good solid-phase 

extraction substrates. 

Interactions between the ferrous atom in the heme group of Hb and the imidazolium 

cation present in ILs has been studied for many years. 7, 21, 42, 43 Based on the literature, it is well 

established that the ferrous atom in the heme group has six coordinating positions, within an 

octahedral geometry. When the nitrogen atoms in the heme ring occupy four of these positions, 

one of the two coordinating positions on the vertical axis is occupied by a histidine amino acid, 

with the other vertical position vacant for coordination with external molecules such as oxygen. 

This vacant coordinating site can coordinate or interact with other species, such as the 

imidazolium cation.7, 21, 42, 43 For this reason, by combining the advantages of MSPE, as well as 

the properties of imidazolium ILs, a novel magnetic lanthanide-based GUMBOS 

[C16mim]5[Dy(SCN)8] was synthesized using a simple synthetic route. In this GUMBOS material, 

the magnetic property is produced by use of the cation Dy3+ that is paramagnetic at room 

temperature due to a 4f9 electron orbital configuration. NanoGUMBOS can then be fabricated 

from such a material using a simple reprecipitation method. Such nanoscale MSPE adsorbents 

exhibit high extraction capacities, as well as efficient and selective adsorption towards Hb. The 

adsorbed protein can then be desorbed using 1% (m/v) sodium dodecyl sulfate (SDS) aqueous 
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solution. In this manuscript, we demonstrate application of these magnetic nanoGUMBOS for 

selective Hb isolation from human whole blood. 

3.2 Experimental 

3.2.1 Chemicals and apparatus 

Potassium thiocyanate, dysprosium(III) oxide, perchloric acid (70%), sodium dodecyl 

sulfate, and TRIS were obtained from Alfa Aesar (Ward Hill, MA) and used without further 

purification. Human whole blood was obtained from VWR (Batavia, IL). Lysozyme (Lys) from 

chicken egg white, transferrin (Trans) (human minimum 98%), Albumin from human serum 

(HSA) (approx. 99%), cytochrome c (Cyt-c), bovine hemoglobin (Hb), and ammonium 

persulfate were purchased from Sigma Aldrich (St. Louis, MO). Glycine, glycerol, bromophenol 

blue, 30% acrylamide stock, TEMED, and 10× running buffer were obtained from Bio-Rad 

Laboratories (Hercules, California). All solvents used in the preparation process were of 

analytical reagent grade or better. Deionized water (18 MΩ cm-1) was obtained using an Aries 

high purity water system (West Berlin, NJ).  

3.2.2 Instrumentation and methods 

Fourier transform infrared (FT-IR) spectra of designated materials were recorded using a 

Bruker Tensor 27 spectrometer equipped with a PIKE MIRacle single-bounce attenuated total 
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reflectance (ATR) cell. Spectra were collected over the 4000–650 cm-1 region using 256 scans 

with a resolution of 2 cm-1. An aliquot (5 µL) of nanoGUMBOS aqueous solution was drop 

casted onto a carbon-coated copper grid (CF400-Cu, Electron Microscopy Sciences, Hatfield, PA) 

and air dried at room temperature. Electron micrographs were acquired for characterization of 

size and morphology using a JEOL JEM-1400 transmission electron microscope (TEM). Circular 

dichroism spectra were recorded using a Jasco J-815 Circular Dichroism (CD) 

Spectropolarimeter, operating at a scanning speed of 50 nm/min. 

3.2.3 Synthesis of dysprosium-based GUMBOS 

 [C16mim]SCN was synthesized by reacting [C16mim]Br (1 equiv.) with KSCN (2 equiv.) 

in ethanol for 48 hours. Dy(ClO4)3∙6H2O was obtained by dissolving Dy2O3 in 50% HClO4 

aqueous solution with water-bath heating (70 °C), followed by removal of water through freeze 

drying. Synthesis of [C16mim]5Dy[SCN]8 was  achieved by reacting [C16mim]SCN (5 equiv.), 

KSCN (3 equiv.) and Dy(ClO4)3∙6H2O (1 equiv.) in anhydrous ethanol at room temperature for 

24 hours. Byproducts were removed using filtration and ethanol was removed using rotary 

evaporation. In order to completely eliminate KClO4 byproduct, the residue was redissolved in 

dry dichloromethane (DCM), left overnight at 4 °C, and then filtered. DCM was removed using 

rotary evaporation and the product was further dried under vacuum for 24 hours.   

 



83 

3.2.4 Synthesis of nanoGUMBOS 

 A 32mM [C16mim]5Dy[SCN]8 methanol stock solution was prepared. A small amount of 

stock solution was dropped into 10 mL DI water with probe sonication (vibration amplitude 20%) 

for 5 min. The aqueous solution was left undisturbed for 20 mins. Water was removed under 

vacuum over 24 hours to obtain nanoparticle pellets. These nanoparticle pellets were 

resuspended easily in water simply by employing a 1-minute bath sonication. 

3.2.5 Protein adsorption studies 

 To avoid protein denaturation, 0.6 mg of the [C16mim]5[Dy(SCN)8] nanoparticle pellets 

were resuspended into 1mL protein solution while employing a sonication bath for 5 s. This 

solution was then allowed to cool for 10s in an ice bath. This two-step process was repeated for 3 

min. The sample was then shaken vigorously in an oscillator at room temperature for 5 min to 

facilitate protein adsorption. A magnetic field was applied to the sample in order to separate the 

proteins adsorbed onto the solid nanoparticles from the aqueous solution. Finally, the 

concentrations of proteins in the aqueous supernatant were determined by comparing absorption 

measurements using the characteristic wavelengths (406 nm for Hb and Cyt-c, 280 for HSA, Lys, 

and Trans) and employing standard calibration curves for each protein obtained using a 

Shimadzu UV-3101PC UV-Vis scanning spectrometer (Shimadzu, Columbia, MD). All protein 

adsorption studies were performed in 0.1 M TRIS-HCl buffer at different values of pH. 
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 Elution of the extracted protein was performed by shaking the mixture with 6 mL of SDS 

aqueous solution for 20 min. The supernatant was then collected for CD study and SDS-PAGE 

separation using an external magnetic field.  

 Scheme 3.1 is a representation of the preparation and application of [C16mim]5[Dy(SCN)8] 

nanoGUMBOS for Hb isolation. 

 

Scheme 3. 1. Preparation of [C16mim]5[Dy(SCN)8] nanoGUMBOS and application to Hb 
isolation 
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3.3 Results and Discussion 

3.3.1 Fabrication and characterization of imidazolium magnetic nanoGUMBOS 

Formation of intermediates and final GUMBOS were confirmed by using FT-IR (Figure 3.1) 

and the product yield was determined to be more than 90%. The characteristic signals of the 

thiocyanate (S-C≡N) stretching vibration at 2055 cm-1, C-H stretching vibration of alkane chain 

between 3000-2840 cm-1, the imidazolium ring C-N stretching vibration at 1162 cm-1, and C-H 

stretching at 3147 and 3106 cm-1are displayed in Figure 3.1a, suggesting imidazolium and 

thiocyanate in the final product. Disappearance of the ClO4- stretching bands at 1050 cm-1 and 

945 cm-1 further confirms that the KClO4 byproduct was successfully removed.  

The magnetic moment of Dy3+ has been reported to be 10.48 μB, which is approximately 

twice the value of iron (III). 44 Figure 3.1b is a representation of how this new material can be 

easily and quickly separated from the liquid phase in the presence of an external magnet due to 

the magnetic property of [C16mim]5[Dy(SCN)8] GUMBOS gained by use of dysprosium. 
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Figure 3. 1. (a) FT-IR spectra of Dy(ClO4)3 (green line), [C16mim]Cl (blue line), KSCN (red line) 
and [C16mim]5[Dy(SCN)8] (black line); (b) Response of nanoGUMBOS dispersed in water to a 
neodymium magnet; (c) TEM image of prepared nanoGUMBOS; (d) Size distribution of 
[C16mim]5[Dy(SCN)8 nanoGUBMOS as determined by DLS. 

Figure 3.1c is a display of a representative TEM image of the resuspended 

[C16mim]5[Dy(SCN)8] nanoparticles, demonstrating that quasi-spherical nanoparticles are 

generated. As shown in Figure 3.1d, these nanoGUMBOS represent an average size of 24 ± 5 nm 

with a relatively narrow size distribution for measurement of 200 representative nanoparticles.  

We note that the high surface-to-volume ratio of nanomaterials is beneficial to improving protein 

extraction efficiency. 
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3.3.2 Protein adsorption performance 

Time-dependent Hb adsorption was conducted using the synthesized nanoGUMBOS. 

Results are depicted in Figure 3.2. The absorption of supernatant was recorded from 1.5 min to 

15 min, where 1.5 min is the time when we can barely observe any red color from Hb in the 

supernatant. As shown in Figure 3.2 a, as time reached 5 min, there is negligible absorption of 

Hb at 406 nm. The extraction efficiency was evaluated and depicted in Figure 3.2 b, which 

suggested that 5 min is a sufficient extraction time with 95.4% extraction efficiency. 

 

Figure 3. 2. Time-dependent study: (a) UV-Vis spectra of surpernatant solution after extraction 
using [C16mim]5[Dy(SCN)8] nanoGUMBOS, with extraction time of 1.5 min-15 min; (b) 
extraction efficiency calculated using data from (a). 

In addition to Hb, other proteins with different molecular weights and isoelectric points (pI 

values) were chosen to evaluate the selective protein adsorption performance of the 

[C16mim]5[Dy(SCN)8] nanoGUMBOS. According to the pI values of these proteins (Table 3.1), 

human serum albumin (HSA) and transferrin (Trans) represent acidic proteins, while lysozyme 

(Lys) and cytochrome c (Cyt-c) are alkaline proteins. The adsorption properties of these 
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nanoGUMBOS were studied over a pH value range of 5 to 9.5 using 0.1 M TRIS-HCl buffer. As 

illustrated in Figure 3.3, the adsorption efficiency of the nanoparticles was much higher for Hb 

than for the other proteins examined. As discussed earlier, this is attributed to interactions 

between the ferrous atom in the heme group of Hb and the nitrogen atom in the imidazolium ring. 

These results are presented in Figure 3.3 and it is observed that adsorption of proteins is 

pH-dependent. The maximum adsorption efficiency for Hb was achieved at pH 7, while the 

maximum adsorption efficiencies for Trans, HSA, Cyt-c and Lys were achieved at pH 5, 5, 9, 

and 9.5, respectively. Analysis of these results shows that the highest adsorption efficiencies 

were obtained at pH values close to the pI values of these proteins (Table 3.1). This indicates that 

when the pH value is close to the pI value, the protein is more likely to be adsorbed by 

[C16mim]5[Dy(SCN)8] nanoGUMBOS.. When the value of pH is higher or lower than the pI, 

proteins are negatively or positively charged, respectively. Conversely, when the value of pH is 

equal to the pI, proteins are deemed to be in their most hydrophobic state. Since nanoGUMBOS 

are hydrophobic, proteins are more likely to be adsorbed when they are in their most 

hydrophobic state. In this regard, hydrophobic interactions are likely a contributor to the success 

of this approach. 
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Table 3. 1. Adsorption efficiency of  proteins using [C16mim]5[Dy(SCN)8] nanoGUMBOS 

Tested 
Protein 

Isoelectric 
point (pI 

value) 

Molecular 
Weight 
(kDa) 

Maximum 
adsorption 
efficiency 

pH that maximum 
adsorption 

efficiency was 
achieved 

Adsorption 
efficiency at 

pH 7 

Trans 5.2 80 6.8% 5 2.3% 

HSA 5.3 66.5 10.0% 5 2.7% 

Hb 6.9 64.5 95.4% 7 95.4% 

Cyt-c 10.7 12 12.8% 9.5 4.4% 

Lys 11.3 14.3 7.9% 9 1.8% 

 

Figure 3. 3. Values of pH dependent extraction efficiencies of major blood proteins using 
[C16mim]5[Dy(SCN)8] nanoGUMBOS. One mL solutions of Hb, HSA, Cyt-c, Lys and Trans 
with a concentration of 100 µg/mL;  tested with 0.6 mg/mL of nanoGUMBOS. 

The adsorption of Hb over a concentration range of 10-850 µg/mL was studied at room 

temperature and the resultant adsorption isotherm is shown in Figure 3.4. TRIS buffer (pH 7.0) 



90 

was used for control of neutral Hb. The observed adsorption capacity shows a linear relationship 

with Hb concentration in the range of 10-400 µg/mL. As the Hb concentration increased to 800 

µg/mL, the adsorption capacity approached 840.2 µg/mg and then reached a plateau. The 

adsorption capacity of [C16mim]5[Dy(SCN)8] nanoGUMBOS  with difference sizes are 

compared in Table 3.2. A negative trend was observed between particle size and the adsorption 

capacity, which is attributed to the decrease of surface area/volume ratio. Table 3.3 compares the 

current results presented in this work with results from reported Hb adsorption capacities from 

the literature. 7, 21, 26, 31, 42, 45-48  It is clear that [C16mim]5[Dy(SCN)8] nanoGUMBOS offer a 

favorable adsorption capacity of approximately 840 µg/mL. In comparison with magnetic Hb 

nanoadsorbents with higher adsorption capacity, such nanoGUMBOS provide an advantage of 

better selectivity and much simpler preparation. 26, 31  
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Figure 3. 4. Adsorption isotherm for Hb using [C16mim]5[Dy(SCN)8] nanoGUMBOS at room 
temperature and pH 7.0 

Table 3. 2. A comparison of Hb sorption capacity using [C16mim]5[Dy(SCN)8] nanoGUMBOS 
with different sizes 

Diameter (nm) Surface area/Volume (nm-1) Adsorption Capacity (μg mg-1) 

24 ± 5 0.25 840.2 

33 ± 8 0.18 822.6 

53 ± 11 0.11 657 
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Table 3. 3. A comparison of Hb sorption capacity using ILs-based materials 

Materials Adsorption Capacity (μg 
mg-1) 

Reference 

Bovine hemoglobin magnetic molecularly 
imprinted polymers 

10.5 48 

PS-CH2-mimCl 23.6 42
 

PVC-NmimCl 26.5 46
 

SPEEK-Bmim 31.6 21
 

PPimPF6/TiO2 122.3 45
 

Cu2+-IDA-poly 
(methacrylate-divinylbenzene)-Fe3O4 

168.2 47 

Poly(C12vim)Br 205.4 7
 

Cu2+-EDTA-Fe3O4 Particles 1250 31 

Fe3O4 NPs@SiO2@IL 2150 26
 

[C16mim]5[Dy(SCN)8] 840.2 This Work 

3.3.3 Elution of adsorbed Hb from [C16mim]5[Dy(SCN)8] nanoGUMBOS 

 Elution of Hb from the adsorbent is required for further investigations and applications 

of the protein. SDS solution was chosen as the eluent due to favorable dissolution of proteins 

through disruption of the interactions between Hb and nanoGUMBOS. The Hb elution efficiency 

was investigated over an SDS concentration range of 0.05%-2% (m/v) in order to avoid extreme 

denaturation of the protein. Analysis of the elution profile presented in Figure 3.5 indicates that 1% 

SDS solution produces an elution efficiency of approximately 87%.  

 In order to evaluate whether the adsorption and elution process would produce a 
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conformational change to the protein, circular dichroism (CD) spectra of Hb in 1) aqueous 

solution, 2) Hb in 1% SDS solution and 3) Hb eluted by 1% SDS solution using nanoGUMBOS 

were compared (Figure 3.6). Evaluation of the results presented in Figure 3.6 demonstrated that 

the CD spectrum of the native Hb in 1% SDS overlaps with the CD spectrum of Hb after 

adsorption and subsequent elution. This suggests that there is no conformational change during 

the adsorption process. When these two spectra were compared with the spectrum of native Hb 

in aqueous solution, the presence of SDS in the solution shifted the spectrum slightly to the left. 

Due to this slight change in CD spectrum, the secondary structure of Hb was evaluated by 

calculating the α-helix content. The calculation method employed in this manuscript has been 

previously described by Perez-Iratxeta, et al. 49 Hb in 1% SDS contains the same α-helix content 

as Hb after adsorption and elution, which is 28.9%. In contrast, native Hb in aqueous solution 

contains 36.3% α-helix. These results suggest that while adsorption does not change the 

secondary structure of Hb, the Hb conformation slightly changes when dissolved in 1% SDS 

solution, but remains predominantly α-helix. 
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Figure 3. 5. Elution efficiency study of Hb in presence of different SDS concentrations. 

  

 

Figure 3. 6. CD spectra of native Hb dissolved in water, Hb dissolved in 1% SDS-PAGE and Hb 
recovered from [C16mim]5[Dy(SCN)8] nanoGUMBOS. 
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3.3.4 Isolation of Hb from whole blood 

Due to the high selectivity and efficiency of nanoGUMBOS for Hb isolation, we 

hypothesize that such materials are also suitable for selective isolation of Hb from complex 

biological matrices. Thus, the performance of [C16mim]5[Dy(SCN)8] nanoGUMBOS in isolating 

Hb from practical matrices was evaluated using human whole blood. The blood sample was 

diluted 200-fold with TRIS buffer (pH 7.0) before performing extraction. To corroborate the 

selective extraction of Hb from whole blood, the solution was collected after elution in order to 

perform standard sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) 

analysis (Figure 3.7). The results obtained demonstrated that only a few protein bands are visible 

for 200-fold diluted human whole blood (lane b), while the Albumin band at 66.5 kDa and Hb 

band at 14.3 kDa can be clearly observed. After performance of the adsorption procedure, the Hb 

band at 14.3 kDa is noted to be significantly weaker while other protein bands remain (lane c). 

Lane e was loaded with the solution obtained after elution and a single Hb band was observed. 

This result reinforces the observed good recovery of Hb from [C16mim]5[Dy(SCN)8] 

nanoGUMBOS using 1% SDS solution. This single band is identical to that for standard Hb 

solution used in lane d. Thus, whole blood studies are in excellent agreement with our 

solution-based studies, such that we conclude that these [C16mim]5[Dy(SCN)8] nanoGUMBOS 

can serve as effective magnetic nanosubstrate for selective isolation of Hb from whole blood 

samples. 
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Figure 3. 7. SDS-PAGE results: Lane a: standard protein molecular weight marker; lane b: 
200-fold diluted human whole blood; lane c: 200-fold diluted human whole blood after 
extraction using [C16mim]5[Dy(SCN)8] nanoGUMBOS; lane d: 600 µg/mL Hb solution; lane e: 
Hb recovered from the [C16mim]5[Dy(SCN)8] nanoGUMBOS using 1% SDS solution. 

3.4 Conclusion 

 This study involved development of imidazolium-dysprosium-based nanoGUMBOS as 

magnetic solid phase adsorbents for selective isolation of Hb. These novel [C16mim]5[Dy(SCN)8] 

nanoGUMBOS were easily synthesized to a size of approximately 24 nm through a simple 

reprecipitation method. Coordination of imidazolium with the ferrous cation in Hb is believed to 

be the major driving force for selective adsorption of Hb, while hydrophobic interaction also 

plays a minor role. It has been successfully demonstrated that [C16mim]5[Dy(SCN)8] 

nanoGUMBOS display a significantly higher selectivity for adsorption of Hb over other blood 
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proteins used in this study. Moreover, in comparison with previously reported Hb adsorbents, 

these nanoparticles provide a favorable adsorption capacity and efficiency. The adsorbed protein 

may be successfully recovered by using 1% SDS solution to achieve an elution efficiency of 87%. 

The recovered Hb remains in a predominantly α-helix structure, suggesting that its 

tridimensional conformation is essentially intact after extraction. Based on experimental results 

in prepared solutions, our [C16mim]5[Dy(SCN)8] nanoGUMBOS were investigated for practical 

isolation of Hb isolation from human whole blood. Evaluation of results obtained suggests a 

promising magnetic nanoadsorbent for isolation of Hb from complex biological samples. Thus, 

we believe that this novel nanoadsorbent is a promising technique for selective isolation of 

proteins. 
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CHAPTER 4: PROTEIN DISCRIMINATION USING A FLUORESCENCE 
BASED SENSOR ARRAY OF THIACARBOCYANINE-GUMBOS  

4.1 Introduction 

Highly sensitive and precise sensing of multiple proteins simultaneously is of great interest 

for clinical diagnosis and proteomic research. Currently, enzyme-linked immunosorbent assay 

(ELISA) is the most widely used protein sensing technique. 1-3 The sensing mechanism of ELISA 

is based on specific binding interactions between each antibody and its targeting protein. 4 This 

allows ELISA to be an effective sensor with excellent specificity and sensitivity; 5, 6 however, 

only a few proteins can be detected by use of this method. In addition, the high cost and low 

stability of antibodies limit the application of ELISA in protein sensing.  

Alternatively, cross-reactive sensor arrays, known as “electronic noses”, have been 

employed for high-throughput detection and discrimination of proteins. 7-12 In this approach, 

receptors (sensing elements) are not responsive to one specific protein as in the traditional 

“lock-and-key” method, but rather are partially selective. In other words, certain receptors in a 

sensor array can respond to multiple proteins while multiple receptors can interact with a certain 

protein.  By integrating multiple sensing elements, a distinct response pattern will form for each 

protein and can be used as a fingerprint for discrimination and identification. 13, 14 Diverse 

receptor systems have been applied for array sensing of protein, such as functionalized gold 

nanoparticles, 7, 15-17 fluorescent polymers, 8, 18 carbon nanotubes, 17, 19-21 and porphyrins. 22, 23 
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Among these sensing materials, the fluorescence technique has been a method of choice due to 

its high sensitivity. However, application of this technology is hampered by complicated design 

and synthesis.  

Herein, we demonstrate a fluorescence-based sensor array using a group of uniform 

materials based on organic salts (GUMBOS) for sensitive and accurate protein discrimination. 

The concept of GUMBOS was first introduced by the Warner research group in 2008, as solid 

phase organic salts with tunable properties similar to ionic liquids (ILs), but with a wider range 

of melting points (25°C to 250°C) than ILs (melting point <100°C). 24 The GUMBOS employed 

in this work consist of a series of fluorescent thiacarbocyanine (TC) cations bearing different 

methine chain lengths (Figure 4.7). TC-dyes belong to a dye family called polymethine dyes 

(PD). The alternating π-electrons along the methine chain of PD allow high polarizability, which 

provides strong attractive dispersion forces between molecules. 25 Thus, the structures of TC 

dyes allow extended and stable aggregation. 26 Their association enthalpies have been found to 

be much higher than other aromatic compounds. 27 It was also found that aggregation of PD is 

highly depended on the composition of the surrounding environment. 28-36 In particular, 

researches on noncovalent interactions between cyanine dyes and biomolecules are of great 

interest. 28, 36-38 These interactions vary the aggregation of dyes and hence remarkably alter their 

photophysical and photochemical properties. Due to favorable properties mentioned above, TC 

dyes have great potential to be used for fluorescence protein sensing. Notably, the 
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bis(trifluoromethylsulfonyl)imide ([NTf2]-) and bis[(pentafluoroethyl)sulfonyl]imide  ([BETI]-) 

anions were selected to increase hydrophobicity of the GUMBOS and facilitate aggregation at 

low concentrations. 

The six TC-based sensor elements utilized in this sensor array, exhibit different aggregation 

behaviors when mixed with the seven proteins, giving various fluorescence responses. The 

resulting responses exhibit cross-reactive patterns, which can be analyzed to discriminate 

proteins at a low concentration. The fluorescence sensor array developed in this study shows 

great potential for development of highly sensitive diagnostic applications. 

4.2 Experimental 

4.2.1 Materials and instrumentation 

The thiacarbocyanine (TC) dyes, 3,3’-diethylthiacyanine iodide ([TC0][I]), 3,3’ 

-diethylthiacarbocyanine iodide ([TC1][I]), and 3,3’-diethylthiadicarbocyanine iodide ([TC2][I]), 

were purchased from Sigma Aldrich (St. Louis, MO). Lysozyme (Lys) from chicken egg white, 

human transferrin (Trans) (˃ 98%), albumin from human serum (HSA) (approx. 99%), 

cytochrome c (Cyt-c), Immunoglobulin G from human serum (IgG), fibrinogen from human 

plasma (Fib), human hemoglobin (Hb), ammonium persulfate, sodium phosphate dibasic and 

sodium phosphate monobasic were all purchased from Sigma Aldrich. Lithium 

bis(trifluoromethane)sulfonamide (Li[NTf2]) salt and lithium 
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bis(pentafluoroethanesulfonyl)imide (Li[BETI]) salt were obtained from TCI Portland, Oregon. 

Artificial urine, HPLC grade ethanol and dichloromethane were acquired from VWR (Batavia, 

IL). Triple deionized ultrapure water (18.2 M Ω cm) was obtained using an Aries high purity 

water system (West Berlin, NJ). All reagents were used without further purification. 

Ultraviolet-visible (UV-vis) absorption properties were studied using a Shimadzu 

UV-3101PC UV-Vis scanning spectrometer (Shimadzu, Columbia, MD). Fluorescence emission 

spectra were recorded uisng a Spex Fluorolog-3 spectrofluorimeter (model FL3-22TAU3; Jobin 

Yvon, Edison, NJ) with a slit width of 5 nm. All spectroscopic studies were performed using 

quartz cuvettes (Starna Cells). 

The starting materials, intermediates and final product in solid state were deposited on an 

ATR cell in a Bruker Tensor 27 instrument (Billerica, MA) to obtain their FTIR spectra. 

Transmission electron images were obtained for characterization of size and morphology using a 

JEOL JEM-1400 Transmission Electron Microscope (München, Germany). 

4.2.2 Preparation and Characterization of TC-GUMBOS 

The TC-GUMBOS were synthesized using an ion exchange reaction between TC iodides 

and Li[NTf2] (or Li[BETI]) at a molar ratio of 1 to 1.1. The reactions were performed in a 

biphasic mixture of DCM and water while stirring for 24 h at room temperature. Residual lithium 

iodide byproducts were washed several times with DI water. DCM was removed using rotary 



107 

evaporation. Finally, the GUMBOS were dried under vacuum. The resultant TC-GUMBOS were 

characterized using high resolution electrospray ionization mass spectrometry. 

4.2.3 Preparation of Protein Solutions 

Protein samples were prepared in 10 mM sodium phosphate buffer (pH=7.4). Stock 

solutions of 200 µg/mL were first prepared and diluted to concentrations ranging from 0.1 to 20 

µg/mL. 

4.2.4 Sensing Process 

TC-GUMBOS aggregates were prepared using a reprecipitation method.39, 40 Briefly, 50 µL 

of 0.5 mM ethanolic TC-GUMBOS solution was dropped into a 5 mL protein solution and 

sonicated on ice for 3 min. After the sensor-protein solution was allowed to stabilize for 15 min, 

the spectral properties were characterized using UV-vis and fluorescence spectrophotometry. 

In this study, the relative emission intensity change (𝐼 𝐼$V − 1) is considered as a sensor 

response. Here, I and I0 represent emission intensity of TC-GUMBOS in buffer with and without 

proteins, respectively. For each analyte, six replicate samples were analyzed. 
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4.3 Results and Discussion 

4.3.1 TC-GUMBOS Sensors 

Preparation of TC-GUMBOS is a one-step ion exchange reaction, which is very simple in 

comparison with traditional covalent modification reactions. The formation of TC-based 

GUMBOS was confirmed by high resolution electrospray ionization mass spectrometry (Figure 

4.1 – Figure 4.6). In positive ion mode, intense peaks with m/z of 339.099, 365.11 and 391.13 

m/z were observed, corresponding to the molecular weights of [TC0]+, [TC1]+ and [TC2]+ 

cations, respectively. In negative ion mode, peaks were observed at 279.92 and 379.91 m/z 

which are the characteristic peaks of the [NTf2]- and [BETI]- anions, respectively. The chemical 

structures of these TC GUMBOS are shown in Figure 4.7. 
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Figure 4. 1. High resolution electrospray ionization mass spectrometry for [TC0][NTf2] positive 
ion mode (A), negative ion mode (B). 
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Figure 4. 2. High resolution electrospray ionization mass spectrometry for [TC0][BETI] positive 
ion mode (A), negative ion mode (B). 
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Figure 4. 3. High resolution electrospray ionization mass spectrometry for [TC1][NTf2] positive 
ion mode (A), negative ion mode (B). 
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Figure 4. 4. High resolution electrospray ionization mass spectrometry for [TC1][BETI] positive 
ion mode (A), negative ion mode (B). 
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Figure 4. 5. High resolution electrospray ionization mass spectrometry for [TC2][NTf2] positive 
ion mode (A), negative ion mode (B). 
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Figure 4. 6. High resolution electrospray ionization mass spectrometry for [TC2][BETI] positive 
ion mode (A), negative ion mode (B). 
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Figure 4. 7. Chemical structures of TC-GMBOS prepared in this study 

The relative hydrophobicities of all GUMBOS used in this study were estimated using 

octanol/water partition coefficient (KO/W). The logarithm of KO/W is listed in Table 4.1. As 

inferred by these log KO/W values, hydrophobicities of these TC GUMBOS increase in the order 

of [TC2][NTf2]＜[TC1][NTf2]＜[TC1][BETI]＜[TC2][BETI]＜[TC0][NTf2]＜[TC0][BETI]. 

Table 4. 1. Molecular weight (MW), yield and log KO/W of TC-GUMBOS 

GUMBOS MW Yield Log K
O/W

 

[TC0][NTf2] 619.65 98.3% 1.72 
[TC0][BETI] 719.66 99.0% 2.04 
[TC1][NTf2] 645.69 98.6% 1.59 
[TC1][BETI] 745.7 99.3% 1.63 
[TC2][NTf2] 671.73 98.8% 1.53 
[TC2][BETI] 771.74 99.1% 1.85 
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These TC-GUMBOS were first dissolved in ethanol, then dispersed into phosphate buffer 

(pH=7.4) with sonication and allowed to stabilize for 15 min. TEM images were obtained for 

these aggregations (Figure 4.8). Rod-like [TC0][NTf2] and [TC0][BETI] aggregates with sizes 

of around (8.13±0.51)×(0.42±0.15) µm and (6.92±0.38)×(1.01±0.10) µm, respectively. TEM 

images of [TC1][NTf2] and [TC1][BETI] aggregates showed spherical morphologies. The 

average diameter of [TC1][BETI] aggregates was measured to be 291.3±44.3 nm, while size is 

not measured for [TC1][NTf2] aggregation due to the blur edge contrast. In the case of 

[TC2][NTf2] and [TC2][BETI], wire-like morphologies were observed with size of (2.80±

0.38)×(0.12±0.03) µm and (1.88±0.54)×(0.06±0.01) µm, respectively.  

 



117 

 

Figure 4. 8. TEM micrograph of TC-GUMBOS aggregation: (A) [TC0][NTf2], (B) 
[TC0][BETI], (C) [TC1][NTf2], (D) [TC1][BETI], (E) [TC2][NTf2], (F) [TC2][BETI]. 

4.3.2 Spectral Properties of TC-based GUMBOS 

 [NTf2]- and [BETI]- are non-fluorescent anions that do not absorb light at wavelengths 

longer than 210 nm. Thus, the spectral properties of these GUMBOS are attributed to the TC 

cations. Due to the hydrophobicity of the synthesized TC-GUMBOS, ethanol was selected as a 

solvent for this study. Absorption and emission spectra for all six TC-GUBMOS were recorded at 

a concentration of 5 µM in ethanol. As shown in Figure 4.9a, the maximum absorbance 



118 

wavelengths for [TC0]+, [TC1]+ and [TC2]+ are 423, 555 and 655 nm, respectively, regardless of 

the anions. However, the alteration of anion has altered the molar absorptivity, to some extent. 

Figure 4.9b depicts fluorescence emission spectra of these synthesized materials. The excitation 

wavelengths are their corresponding maximum absorption wavelengths. Emission maxima for 

[TC0]+, [TC1]+ and [TC2]+ were recorded at 483, 572 and 672 nm, respectively. 

As fluorescence sensors, photostability is an important characteristic of interest. 

Photostabilities of the synthesized TC-GUMBOS were monitored over a 3600 second time 

period using fluorescence kinetic measurements (Figure 4.10). [TC0]+, [TC1]+ and [TC2]+ were 

exited at 423, 550 and 645 nm, respectively. Emission was monitored at 483 nm for [TC0]+, 572 

nm for [TC1]+ and 672 nm for [TC2]+. These six GUMBOS were found to be extremely 

photostable over this experiment period with negligible photodegradation observed. 

Absorbance spectra of TC-GUMBOS aggregations in phosphate buffer (pH=7.4) are 

displayed in Figure 4.11. In comparison with their ethanol solutions, [TC0]-GUMBOS buffer 

dispersions exhibit same absorption maxima at 423 nm, while relatively higher shoulders at 402 

nm attributed to H-aggregation are observed (Figure 4.11a). Absorption spectra for [TC1][NTf2] 

and [TC1][BETI] buffer dispersions show second peaks at 615 nm and 650nm, respectively, 

representative of J-aggregation (Figure 4.11b). In the case of [TC2][NTf2] and [TC2][BETI], 

absorption spectra of these aggregates exhibit blue-shifted peaks centered at higher energy and 

attributed to H-aggregation (Figure 4.11c). Buffer dispersion of TC0-GUMBOS, TC1-GUMBOS 
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and TC2-GUMBOS were excited at 423, 541, and 645 nm, respectively. Emission spectra of 

these compounds are depicted in Figure 4.11d, showing emission maxima at 476, 488, 565, and 

665 nm for [TC0][NTf2], [TC0][BETI], TC1-GUMBOS and TC2-GUMBOS, respectively.  
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A 

 

B 

Figure 4. 9. UV-Vis (A) and fluorescence (B) spectra of TC-GUMBOS in ethanol at a 
concnetration of 5 µM. 
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Figure 4. 10. Photostability of GUMBOS monitored for 3600 s using fluorescence spectroscopy 
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Figure 4. 11. UV-Vis spectra of 5 µM (A) [TC0]-GUMBOS, (B) [TC1]-GUMBOS and (C) 
[TC2]-GUMBOS suspended in phosphate buffer (pH=7.4), and their 5 µM ethanol solution, 
respectively; D is the fluorescence spectra of 5 µM TC-GUMBOS suspended in buffer via 
reprecipitation method. 

4.3.3 Discrimination of Proteins Using TC-GUMBOS 

Seven proteins that have diverse molecular weight (MW), metal/non-metal containing 

properties, and isoelectric points (pI) were selected as sensing targets (Table 4.2). Among the 

seven selected proteins, HSA, IgG, Trans and Fib are the top four abundant proteins in human 
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serum,41 while Hb, Cyt-c and Lys are non-serum proteins. 

Table 4. 2. Pysical properties of selected proteins. 

Proteins pI value MW (kDa) 

Human Serum Albumin (HSA) 5.3 66.5 
Transferrin (Trans) 5.6 80 
Fibrinogen (Fib) 5.6 340 
Hemoglobin (Hb) 6.9 64.5 
Immunoglobulin G (IgG) 7.5-7.8 150 
Cytochrome-C (Cyt-c) 10.7 12 
Lysozyme (Lys) 11.3 14.3 

Figure 4.12 is a comparison of the sensor response in the presence of different proteins at 0.5 

µg/mL. As shown in Figure 4.12, for the same sensor, the presence of different proteins varied 

the fluorescence response. In contrast, in the presence of the same protein, the fluorescence 

response depends on different TC-GUMBOS sensors. The distinct response patterns suggest the 

feasibility of protein discrimination using this method. 

In order to further validate the ability of this sensor array to discriminate proteins, the pattern 

responses were then subjected to multivariate statistical analyses, specifically, principal 

component analysis (PCA) and linear discriminant analysis (LDA). Both PCA and LDA are 

statistical techniques commonly used for dimensionality reduction. PCA is “unsupervised”, as it 

ignores class labels, while LDA is a “supervised” technique and computes the linear 

discrimination factors that maximize the separation between multiple classes. 42, 43 A method 

combining PCA and LDA was used here. This PCA-plus-LDA method has been verified as 

effective and capable of addressing computational difficulties caused by high-dimensionality and 
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avoid over-fitting. 44-47 In this method, we first transformed our fluorescence responses (𝐼 𝐼$V − 1) 

into principal component scores.  

For seven proteins at 0.5 µg/mL, the first three principal components created by PCA 

accounted for 99.32% of the overall variability given by the 252 observations. Then the first 

three principal components were used as input variables of LDA. These patterns were finally 

transformed to canonical score plots, which were visible as well clustered groups (Figure 4.13). 

The classification accuracy was calculated to be 100%. If not specified, the following LDAs 

were conducted after PCA and using the first three principal components as input variables. 

 

Figure 4. 12. Array-based sensing of seven proteins at 0.5 µg/mL in pH 7.4 phosphate buffer. 
Error bars represent standard deviations of six replicate samples. [TC0]+, [TC1]+ and [TC2]+ 
aggregates were excited at 423, 541, and 645 nm, respectively. Their corresponding emission 
intensities were recorded at 488, 565, and 665 nm. 
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Figure 4. 13. Canonical score plot for the response patterns as obtained from PCA-plus-LDA for 
seven proteins at 0.5 µg/mL. 

Lower protein concentrations were tested to evaluate the ability of this sensor array to 

discriminate proteins at trace levels. The sensor responses obtained from seven proteins at 0.1 

µg/mL were used to perform pattern analysis and PCA-plus-LDA. As shown in Figure 4.14a, the 

relative deviations of the responses become lager at such a low protein concentration. Figure 

4.14b depicts successful clustere of these proteins into groups, while Hb and Cyt-c have 

overlapped confidence ellipses. The discriminant scores suggest that one Hb sample is 

misclassified as Cyt-c, and three Cyt-c samples are misclassified as Hb. This resulted in a 9.5% 

misclassification. The reason for this phenomenon is probably due to the similarity of these two 

proteins, as they both contain heme groups. 
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Figure 4. 14. Array-based sensing of seven potiens at 0.1 µg/mL: (A) response pattern obtained 
from the six sensor elements; (B) canonical score plot obtained using LDA with 95% confidence 
ellipses. 

 In order to study the sensor response with respect to protein concentration, different protein 

concentrations (0.1 - 20 µg/mL) were tested using this sensor array (Figure 4.15). The 
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compounds, [TC1][NTf2] and [TC2][BETI], exhibited positive responses toward all seven 

proteins. In contrast, [TC0][NTf2] exhibited negative responses toward IgG; [TC0][BETI] 

exhibited negative responses toward all  seven proteins; The compound [TC1][BETI] showed 

negative responses toward HSA and Lys; [TC2][NTf2] showed negative responses toward HSA 

and Trans. These features remained consistent over a protein concentration range of 0.1 - 20 

µg/mL and were enhanced with higher concentrations. As illustrated in Figure 4.16, for each 

protein, the tested nine concentrations were grouped into nine isolated clusters in LDA plots. 

Discriminant accuracies were calculated to be 100% for HSA, Trans, Hb, Cyt-c, IgG, and Lys. 

Since an 8 µg/mL Fib sample was misclassified as a 10 µg/mL sample, the discriminant accuracy 

for Fib was 98.15%. This suggests the feasibility of this sensor array for protein quantification. 

Since the first discriminant canonicals (Canonical 1) produced over 99% variance, it is 

reasonable to use Canonical 1 for protein quantification. A linear relationship between Canonical 

1 and protein concentrations was observed and illustrated in Figure 4.16 b, d, f, h, j, l, and n. 
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Figure 4. 15. Sensing responses toward seven proteins at 9 concentrations (0.1 - 20 µg/mL): (A) 
[TC0][NTf2]; (B) [TC0][BETI]; (C) [TC1][NTf2]; (D) [TC1][BETI]; (E) [TC2][NTf2]; (F) 
[TC2][BETI]. (figure cont’d) 
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Figure 4. 16. Canonical score plot for fluorescence responses patterns obtained with the sensor 
array against different concentrations of (A) HSA, (C) Trans, (E) Hb, (G) Cyt-c, (I) IgG, (K) Lys, 
and (M) Fib; Plot of the first discriminant canonical vs. protein concentrations (0.1, 0.5, 1, 3, 6, 8, 
10, 15 and 20 µg/mL): (B) HSA, (D) Trans, (F) Hb, (H) Cyt-c, (J) IgG, (L) Lys, (N) Fib. (figure 
cont’d) 
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In order to evaluate the ability of this sensor array to discriminate proteins regardless of 

protein concentration, sensor array responses toward HSA and Hb over a range of 0.1 - 20 µg/mL 

were used to perform new PCA-plus-LDA. The 648 observations (2 proteins × 9 protein 

concentrations × 6 sensor elements × 6 replicates) involved in this experiment were first used to 

conduct PCA. The first two principal components accounted for 98.9% of the variance, and were 
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used as input variables for LDA (Figure 4.17). The discriminant scores showed 94.5% 

discriminant accuracy, attributing to misclassification of the six 0.1 µg/mL HSA samples. 

Furthermore, in order to investigate the feasibility of this sensor array for discrimination of 

similar protein mixtures, we conducted experiments using HSA and Hb using various weight 

ratios (100% HSA, 80% HSA + 20% Hb, 60% HSA + 40% Hb, 40% HSA + 60% Hb, 20% HSA 

+ 80% Hb, and 100% Hb).The total concentration was 5 µg/mL. As illustrated in the LDA plot, 

Figure 4.18, HSA and Hb mixtures with various ratios were well discriminated with a 

discriminant accuracy of 100%. 

 

Figure 4. 17. Canonical score plot fof discrimination of HSA and Hb at nine concentrations over 
a range of 0.1 - 20 µg/mL. 
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Figure 4. 18. Canonical score plot for discrimination of HSA, Hb, and their mixtures at 5 
µg/mL. 

4.3.4 Discussion of the possible sensing mechanism 

Spectral properties of PD are highly dependent on the surrounding media. 48, 49 In recent 

decades, studies of noncovalent interactions between PD and biomolecules have produced great 

interest. 37, 50-54 We hypothesize that noncovalent interactions occur in the sensing process 

between TC-GUMBOS and the tested proteins, which results in variation of aggregation type, 

rotational/stretching motion, etc. Among these effects, we believe that formation of 

differenttypes of aggregaties is the major driving force for emission change. The absorption and 
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emission spectra of the six sensor elements with different proteins are depicted in Figure 4.19. It 

is well known that H-aggregation of polymethine dyes causes non-radiative decay, which will 

lead to decreased emission. 55, 56 As an example, the [TC2][BETI] sensor element gave positive 

responses toward all seven proteins. As observed inFigure 4.19k, in the presence of proteins, the 

intensity of H-aggregation absorption at 476 nm decreased and the monomer absorption peak at 

655 nm amplified. The fluorescence spectra (Figure 4.19l) showed increased fluorescence 

emission of [TC2][BETI] as proteins were introduced into the system. Conversely, fluorescence 

emission of [TC0][BETI] decreased as proteins were incorporated (Figure 4.19d). This is 

attributed to the formation of H-aggregation in the presence of proteins, which is verified using 

absorption spectra as shown in Figure 4.19c, where blue-shifted peaks were observed as proteins 

were introduced. In addition, H-aggregates exhibit a red shift of the emission spectrum and 

remarkably lower fluorescence intensity (Figure 4.19d). Similarly, the sensing phenomenon of 

[TC0][NTf2], [TC1][BETI] and [TC2][NTf2] can be explained using such theory (Figure 4.19a, 

b, g-j).  

 The [TC1][NTf2] GUMBOS showed positive responses toward all seven proteins; however, 

this phenomenon cannot be explained using the decay of H-aggregation. The absorption spectra 

(Figure 4.19e) shows that [TC1][NTf2] does not form H-aggregates. Instead, a red-shifted peak 

was observed at 610 nm, which is attributed to the absorption of J-aggregates. In the presence of 

proteins, both the absorption peak of the monomer at 555 nm and the shoulder peak of 
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J-aggregates increased. The emission spectra confirmed formation of J-aggregates with a 

red-shifted emission peak at 638 nm. Interestingly, emission intensity of the monomer increased 

with addition of proteins as well. This is probably due to formation of a dye monomer-protein 

complex, which would restrict intramolecular rotational motion. The intramolecular rotational 

motions of the flexible polymethine chain in TC dyes would lead to rapid non-radiative decay. 37, 

57 As a result, noncovalent interactions (e.g. hydrogen bonding, hydrophobic interaction, and 

electrostatic attraction) with proteins are very likely to stabilize TC dyes and restrict the 

non-radiative decay caused by rotation and twist, and hence increase the quantum yield of these 

TC dyes. 58 Thus, we hypothesize that the slightly red-shifted monomer absorption peak (Figure 

4.19e) is also due to noncovalent interactions between dye monomer and protein.  
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Figure 4. 19. Absorption and emission spectral of TC-GUMBOS suspended in buffer with 
different proteins at 10 µg/mL. Absorption spectra: (A) [TC0][NTf2]; (C) [TC0][BETI]; (E) 
[TC1][NTf2]; (G) [TC1][BETI]; (I) [TC2][NTf2]; (K) [TC2][BETI]. Emission spectra: (B) 
[TC0][NTf2]; (D) [TC0][BETI]; (F) [TC1][NTf2]; (H) [TC1][BETI]; (J) [TC2][NTf2]; (L) 
[TC2][BETI]. (figure cont’d) 
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4.3.5 Protein discrimination in urine 

  In order to further explore the application of this sensor array to more complex real samples, 

artificial urine that contains various organic and inorganic salts was used as media for 

discrimination of the seven proteins at 5 µg/mL. As shown in Figure 4.20, a three-dimensional 

canonical score plot indicates that this sensor array is suitable for discrimination of the seven 

proteins in urine sample, providing seven different clusters without overlap. Discriminant 

accuracy was calculated to be 100%. These results indicate that this fluorescence sensor array is 

able to discriminate proteins in urine at low concentrations. 



139 

 

Figure 4. 20. Canonical score plot for discrimination of the seven proteins in artificial urine 

4.4 Conclusion 

In this study, we have developed a rapid and effective fluorescence sensor array for protein 

discrimination. This sensor array was constructed using a series of TC-based GUMBOS, which 

were easily synthesized through a simple ion exchange method. The variation of TC-GUMBOS 

aggregation due to noncovalent interaction with proteins was believed to be the major driving 

force for fluorescence protein sensing. Other noncovalent interactions also play indispensable 

roles, such as TC molecular rotation restriction. It has been successfully demonstrated that this 

sensor array was capable of discriminating proteins at concentrations as low as 0.1 µg/mL with 

high accuracy. In addition, a linear relationship was observed between the first canonical score 

and protein concentration, providing the potential of protein quantification using this sensor array. 

Furthermore, seven proteins spiked in artificial urine were successfully identified at 0.5 µg/mL 
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with 100% discriminant accuracy. In comparison with previously reported protein sensor arrays, 

this TC-GUMBOS-based fluorescence sensor array provides favorable discriminant accuracy at 

a much lower protein concentration. 10, 11, 16, 59, 60 Thus, we believe that this TC-GUMBOS-based 

sensor array has great potential for highly sensitive and accurate medical diagnosis, as well as for 

discrimination of other biomolecules. 
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CHAPTER 5: CONCLUSIONS AND FUTURE WORK 

5.1 Conclusions 

The research presented in this dissertation is primarily focused on development of sensors, 

sensor arrays, and a magnetic solid-phase extraction (MSPE) method based on use of a group of 

uniform materials based on organic salts (GUMBOS) and the nanomaterials derived from 

GUMBOS (i.e. nanoGUMBOS). The GUMBOS compounds were used due to their favorable 

properties including simple synthesis, tunable physicochemical properties, and negligible vapor 

pressure. In Chapter 2, cyanine-based binary nanoGUMBOS were designed and synthesized for 

ratiometric sensing of hydroxyl radicals. It was successfully demonstrated that this binary 

nanoprobe displayed a higher sensitivity and selectivity toward hydroxyl radicals over other 

reactive oxygen species. We believe that this novel nanoprobe can play a great role in studies 

aimed at understanding the role of hydroxyl radicals in cellular activity. In Chapter 3, an 

imidazolium-dysprosium-based nanoGUMBOS was prepared using a facile method. This 

nanomaterial can serve as a magnetic nanoadsorbent for selective hemoglobin isolation with high 

adsorption capacity and good selectivity toward hemoglobin. Furthermore, in Chapter 4, a 

cyanine-based fluorescent sensor array composed of six TC-GUMBOS was developed to 

discriminate proteins. This sensor array is able to discriminate protein mixtures at different 

concentration levels with high accuracy. In addition, this sensor array is capable of 

discriminating proteins in urine at low concentrations. Based on studies outlined in this 
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dissertation, we can conclude that task-specific GUMBOS can be successfully designed for 

detection, discrimination, and extraction of a wide range of analytes. 

5.2 Future Work 

Use of GUMBOS as sensors or solid phase extraction (SPE) substrates is proven to be 

promising due to the tunable properties of GUMBOS through simple counterion alteration. Thus, 

more task-specific GUMBOS can be easily designed and prepared for sensing and extraction. 

For example, [C16mim]5[Dy(SCN)8], the material described in Chapter 3, is useful for selectively 

isolating hemoglobin from a complex mixture. Due to the selective interaction between 

[C16mim]5[Dy(SCN)8] and hemoglobin, this material or its derivatives can be further developed 

as hemoglobin sensors for clinic diagnosis.  

In addition, while this work is primarily focused on development of novel fluorescent 

sensors and design of novel SPE methods, there are many areas where further investigations 

could be focused. For example, TC-GUMBOS, which are used to compose the sensor array 

illustrated in Chapter 4, are able to form different aggregates with variation of the environment. 

This property provides further insight into development of sensors targeting other small 

molecules or biological macromolecules. 
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