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ABSTRACT

X-ray grating interferometry is a nondestructive tool for visualizing the internal
structures of samples. Image contrast can be generated from the absorption of X-rays,
the change in phase of the beam and small-angle X-ray scattering (dark-field). The
attenuation and differential phase data obtained complement each other to give the
internal composition of a material and large-scale structural information. The dark-field
signal reveals sub-pixel structural detail usually invisible to the attenuation and phase
probe, with the potential to highlight size distribution detail in a fashion faster than
conventional small-angle scattering techniques. This work applies X-ray grating
interferometry to the study of additively manufactured polymeric objects.

Additively manufactured bunnies made from single material—acrylonitrile
butadiene styrene (ABS) and polylactic acid (PLA)—were studied by grating-based X-ray
interferometric two-dimensional imaging and tomography. The dark-field images detected
poor adhesion in the plane perpendicular to the build plate. Curvature analysis of the
sample perimeter revealed a slightly higher propensity to errors in regions of higher
curvature.

Incorporation of flame-retardant molecules to near-surface regions of otherwise
flammable objects through the fused deposition modeling additive manufacturing
technique was also explored. The anticipated advantage was efficient use of the flame
retardants while keeping them away from the surface for safety.

To determine heat propagation effects, two-dimensional grating-based
interferometry imaging at LSU CAMD was used to study heated samples. The focus was
on the dark-field signals to highlight voids and gaps arising from layer delamination or

gasification of chemical components. The resulting differential phase and dark-field



images were tainted by fringes attributed to inaccuracies in the grating-step position.
Attempts to correct this will be presented. Interferometric tomography was also carried
out on the heated samples using the W. M. Keck interferometric system at LSU.
Grating-based interferometry was also used to probe scattering structure sizes of heated
samples. Comparison of the data with the conventional small-angle x-ray scattering
technique, SAXS, is being pursued.

The results obtained so far from the above-mentioned experimental works are

presented in this document.

Xi



CHAPTER 1
INTRODUCTION

Since their discovery by Roentgen, X-rays have revolutionized the study of the
composition of materials. X-ray imaging has become an indispensable tool in medical and
materials imaging, amongst other applications. The wide applications of X-ray imaging
drove research into improved devices for X-ray generation and detection.* Basic X-ray
imaging yields a two-dimensional projection image based on the attenuation of the
radiation through sample components of differing density or elemental composition.
Repeated projection images of a sample from different angles can be collected digitally
and superimposed by mathematical algorithms to obtain a three-dimensional
representation of the sample. This technique called computed tomography (CT), enables
visualization of components contributing to the two-dimensional projection. To obtain
other contrast information, additional optical and electronic devices are incorporated into
the imaging system. A recently developed evaluation technique, X-ray grating-based
interferometry, that simultaneously yields three sets of signals—absorption, dark-field
(small angle scattering) and phase contrast signals—has attracted some attention. The
details of this technique will be presented later in this dissertation. Studies have been
carried out to explore areas where this technique can be applied. In the pursuit of medical
applications, X-ray grating-based interferometry has been used to study biological
samples. Dark-field imaging of a healthy rat detected the collapsed lungs with improved
contrast compared to phase imaging while undetectable with absorption imaging.* X-ray
grating-based interferometry has also been used to visualize morphological changes in
the lungs associated with pulmonary fibrosis in mice, with dark-field imaging detecting

these changes well before they were observed in the absorption images.®



In the area of materials science, X-ray grating-based interferometry has been
applied to cement, concrete and wood.®° Following the comparison of different pearl
products, it was reported that X-ray grating-based interferometry required shorter
exposure time than that used in conventional radiography.® Application of X-ray grating-
based interferometry to additively manufactured polymeric and metal parts has been
pioneered by our group and some of the results will be presented in this dissertation.1-14
The effect of incorporating flame retardants into otherwise flammable polymeric parts by
additive manufacturing is also being explored.

1.1 Additive Manufacturing

Initially referred to as rapid prototyping and utilized for making prototypes and
models, additive manufacturing (AM) has metamorphosed into a technology used for a
variety of commercial manufacturing applications ranging from prototyping to end-use
materials. The additive manufacturing process involves loading the CAD drawing of a
desired object into a printer slicing software. The printer deposits material or energy
based on the design slice-by-slice till the bulk material is complete or formed. The
advantages of this technique over the conventional welding, molding or milling
manufacturing technique are the reduction of waste and the ease of making complex
geometries.'>6 The wide application of additive manufacturing is however limited by the
availability of raw materials in a suitable form and long production time thus, it is mostly
applied in custom, low-volume production usually where there is some economic
advantage.'®'” There are different additive manufacturing processes including:
stereolithography, 3D printing (3DP), fused deposition modeling (FDM), electron beam

melting (EBM) and selective laser melting (SLM); Figure 1.1.*831° Depending on the



process, the feedstock can be in powder, filament, sheet or liquid form. Materials used
include polymers, ceramics and metals.*>2° There are a limited number of metal alloys
available for AM, with Ti-6Al-4V being the most investigated.®2° Others are Al-Si-Mg,

Inconel 625, stainless steel 316 and 420 etc.2°

Additive
Manufactuting

l Solid ] l Liquid l
l Fitamentirod der ' Shesat
| |

Pow
mesting l melting ] Bindet blanking and [ photopolymerization ]
addition joining

:e% aklon E?r.;if:‘:stl:.‘:? ald .g: 30 printing ] en?ér?u{;?:(ﬁ:?ne: [ a.g. stersalithography 1
modelling (FDM) alectron beam (3DP) (LOM) B

melting (EBM).

Figure 1.1. Classification of additive manufacturing techniques based on the physical
state of feedstock. Adapted from reference 19.19

Additive manufacturing has found application in orthodontics; in orthopedics,
research is still ongoing into its potential application as scaffolding for bone
regeneration.??2 Patient-tailored medication via FDM has also been investigated.?* The
introduction of conductive inks into additive manufacturing increased the potential for
printing of electronic components or devices.?>?” General Electric’s additively
manufactured LEAP engine fuel nozzle currently powers planes around the world.?82°

SpaceX’s first manned spacecraft, Dragon V2, featured additively manufactured



combustion chambers.3° Marchelli et al. investigated the use of virgin and recycled glass
as a raw material for the 3D printing AM technique.3!

It is important that the performance of additively manufactured parts is comparable
to that of parts manufactured by conventional techniques. The slicing step typically
introduces a staircase effect most evident on curved or inclined surfaces.3? Temperature
variation across print layers can lead to microstructural differences within a part,
delamination of print layers, cracking and warpage in parts.?%32 There is a general
mechanical weakness in printed parts in the plane normal to the print bed.?%34 These, in
addition to the use of support structures usually necessitate one or more post-processing
steps and may prevent the use of an additively manufactured part in some applications.
Various research projects have been done on improving the mechanical strength of AM
parts. Fiber reinforcement during printing for 3DP parts has been reported.3® Shaffer et
al. reported improving the thermomechanical properties of FDM objects by exposing the
objects, post printing, to gamma radiation.®® The polymers used were blended with special
radiation sensitizers.

The fused deposition modeling AM technique involves extruding semi-molten
thermoplastic polymers based on the slice model (Figure 1.2). The bulk part is the result
of the cooling of fused slices. The common thermoplastics used are acrylonitrile
butadiene styrene copolymers (ABS), polylactic acid (PLA), polycarbonate (PC), and
polyamides (PA).37:38 The potential of polypropylene as a material for FDM has also been
studied.3® Research into replacing polypropylene with poly-hydroxyalkanoates like poly(3-

hydroxybutyrate) which is naturally occurring and exhibits similar properties as



polypropylene, is ongoing.*%4! Poly(3-hydroxybutyrate) is also promising for tissue
engineering via additive manufacturing.4?43

Studies on improving the mechanical properties of FDM parts have included
reinforcements with other materials and print parameter optimization.3844-46 |t was noted
that ABS has been the material most studied.*® Hwang et al. reported a decrease in the
tensile strength of ABS-copper and ABS-iron composite parts.*® Mohamed et al.
presented an extensive review on research works into the effect of print parameters on
surface roughness, dimensional accuracy and mechanical properties.*® An integrated

process-materials-design methodology for optimizing the mechanical performance of

Figure 1.2. Schematic of a fused deposition modeling printer.3” The components are (a)
the build platform, (b) the print head where feedstock is heated and extruded from a
nozzle, (c) one type of feedstock, (d) another type of feedstock and (e) the spool of a
feedstock filament. Reprinted from Chemical Reviews, 117, Ligon S. C., Liska R., Stampfl
J. R., Gurr M., and Mulhaupt R., Polymers for 3D printing and customized additive
manufacturing, 10212 - 10290, Copyright (2017) with permission from ACS.
https://pubs.acs.org/doi/abs/10.1021/acs.chemrev.7b00074. Permission requests should
be directed to ACS.



ABS-based FDM parts was reported by Rodriguez et al.*” Infrared thermography have
been used to study temperature profiles of an FDM printed part during printing.34

The susceptibility of additively manufactured parts to faults and associated failures
requires greater attention to quality evaluation. Internal evaluation of additively
manufactured parts has majorly involved X-ray computed tomography.*-5! Tetrahertz
tomography imaging has been reported for the study of polymer-based parts and
suggested as a cheaper alternative to X-ray CT.%2 SEM imaging can be applied to study
failure regions of fractured parts.>® Our research group pioneered the application of X-ray
and neutron grating-based interferometry to study additively manufactured parts. Some
of our works have been recently reported in peer reviewed journals.''-# Grating-based
interferometry provides two additional sources of contrast mechanisms than X-ray
radiography. Thus, there is a potential to extract more information about the printed part.
A chapter is dedicated to addressing X-ray grating based interferometry (Chapter 3).
Neutron interferometry studies of selective laser melted stainless steel tensile bars
predicted the failure region before failure occurrence.11?

The control in material placement afforded by additive manufacturing can be
applied in material reaction or functionality, specifically in the way in which flame
retardants are incorporated into otherwise flammable objects. It is important to see how
the bulk material, with specific flame-retardant regions, “holds up” when exposed to heat.
1.2 Flame Retardants in Polymeric Materials

For the year 2017, the National Fire Protection Association reports that 3400
civilians died in fires and it is estimated that property damage was about $23 billion.>

Due to the human and financial losses associated with fires, the flammability of polymeric



materials is of huge concern. The chemical reactions involved take place in three
interdependent regions namely: within the condensed phase of the polymer itself, at the
interface between the condensed phase and the gas phase, and in the gas phase (Fig.
1.3).55:56 Volatile decomposition products may serve as fuel to sustain the burning process
and/or pose a risk of asphyxiation or toxicity on inhalation. The combustion of the volatiles
in the presence of oxygen involve a free radical chain mechanism.>7:58
The following chemical reactions are possible steps in the combustion of methane

and show how the very reactive species He, OH+ and O+ may be formed.>®

CHs4 + O2 — CHz* + He + O2

He + O2 <> OHe* + O
CHs4 + OHs — CHzs* + H20
CHze + O* — CH20 + H-
CH20 +OH+ — CHO+ + H20
CHO+ + O2 — He+ + CO +0O2
CO + OHs — CO2 + He
In order for the process to be self-sustaining, it is necessary for the burning gases to feed
back sufficient heat to the material to continue the production of gaseous fuel vapors or
volatiles.>® The main exothermic reaction that provides most of the heat to sustain burning
is the reaction forming CO2.5°
In practice, the mechanism of polymer decomposition, and hence the nature of the

products formed, depends strongly on polymer structure and, in particular, on the nature
of the substituent groups attached to the main chain.>® With thermoplastics, such as

polyolefins and polystyrene, the primary polymer chain breakdowns and in extreme cases



simply ‘unzips’ to reform the original monomer leading to complete gasification and loss
of physical integrity of the polymer.5® Thus, relatively large amounts of combustible

volatiles are formed.

Gas Phase

Volatiles Products
A (CO3, €O...)
/l ..
Oxygen
l . Dispersion
Polymer +» Char

Condensed Phase

Figure 1.3. The polymer combustion cycle.>®> Oxygen in the air and flammable volatiles
produced as the polymer thermally decomposes, burn and supply heat to sustain the
combustion of the polymer. Reprinted from Materials Science and Engineering R, 84,
Malucelli G., Carosio F., Alongi J., Fina A., Frache A., and Camino G., Materials
engineering for surface-confined flame retardancy, 1 - 20, Copyright (2014), with
permission from Elsevier.

With other polymers, the breakdown process consists merely of the detachment of
the side chains; some volatile products are thus formed but the main chain remains
virtually intact and provides some solid residue.>® Alternatively, the polymer may suffer a
molecular rearrangement, with hardly any weight loss or formation of volatile products, to
give a polymer with a different structure.®® This is the case with thermosetting plastics
(e.g. phenolic resins and polyethers), where combustion is mainly that of the smoldering
combustion of a solid residue or char.> Charring may slowdown the combustion process
by inhibiting heat and mass transfer (volatiles) across the material’'s surface thus,

preventing complete breakdown of the material.5?



In addition to the chemical changes occurring due to heating, thermoplastics may
undergo a deformation into a fluid state where the material can flow or drip.%°® The effect
of dripping or flowing material may be positive, where non-flaming material flows away
from the heat source; or negative, where flaming material causes the fire to spread.5%.62
Crystallinity, aromatic content and crosslinking can raise the glass transition temperature
of a polymer.>°

Today, synthetic polymeric materials find applications as effective substitutes for
steel, metal, wood etc.®2 It is important then that the flammability of the most widely used
polymers in applications where fire safety is a concern, is addressed.®* These areas
include building and construction, electrical and electronics, and furniture and
furnishings.®* Examples of these polymers are acrylonitrile butadiene styrene (ABS), low
density polyethylene (LDPE), polycarbonate, polystyrene, polyvinyl chloride,
polyurethanes etc.%* In a number of applications these material can be used only if they
have been provided with a satisfactory fire retardant behavior.>®

Though a flammable material cannot be made completely non-combustible, flame
retardants can make ignition more difficult and/or decrease the rate of flame propagation
when the material is exposed to a source of heat.>” With a decreased rate of flame
propagation there is an increase in time available for escape and rescue from a fire.%4
Flame retardants can act physically and/or chemically in one or more of the combustion
regions to limit a material’s flammability.5861 Physical action involves char formation,
dilution of combustible volatiles by the formation of inert gases and heat sink effects where

endothermic reactions occur leading to lower temperatures.5”61.65 Chemical action



primarily involves intercepting the scavenging free radicals responsible for the branching
of radical chain reactions in the flame.®?

Different ways have been suggested to improve the fire behavior of polymers, such
as the incorporation of FRs into polymers via melt blending (physical methods), the
incorporation of FRs into the chemical structure of polymers (chemical methods, e.g. via
copolymerization or grafting) and the coating of a FR layer on the surface of the
material.?6:6” Depending on how they are incorporated into the substrate, flame retardants
can be classified as reactive (chemically modifying the polymer or monomer) or additive
(physically incorporated). In principle, incorporation of FRs into the chemical structure of
polymers is the simplest way to achieve flame retardancy however, the resulting materials
are generally very expensive to produce and do not possess many of the other physical
properties such as processability, needed for wide acceptance.’®®1 Among these
strategies, the incorporation of FRs into polymers via melt blending provides an
acceptable compromise between cost and properties.5%67

Flame retardant additives are available as metal hydroxides, borates, halogenated
compounds, phosphorus-based compounds, nanoclays and nanotubes etc.%® For
halogenated flame retardants, the choice halogens are bromine and chlorine as they can
be readily released within the range of polymer combustion temperatures.®® Halogenated
flame retardants represent the most diversified class of flame retardants of which,
brominated flame retardants maintain a good balance of physical properties, such as
good impact and tensile strength and a high heat distortion temperature.5?

On pyrolysis halogenated flame retardants yield HX, X2 and RX products, where X

is a halogen atom.®® Halogenated flame retardants mostly function in the vapor phase by
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intercepting the combustion free radical reactions, where halogen radicals replace the
more reactive He, OHe and Oe- in the vapor phase.5"58626365 |n the presence of a
halogenated flame retardant the following reactions are possible.®®
RX — Re + Xe
CHas + X* — HX + CHae
HX + He — H2 + Xe
HX + OHe — H20 + Xe

The hydrogen halide HX is readily regenerated from the from halide species and the
combustible volatile (methane in this example). Antimony(lll) oxide Sb203 has been found
to be synergistic with halogenated flame retardants, catalyzing the dehalogenation of the
flame retardant and prolonging the residence of the halogens in the flame zone.®?

Previously common additive flame retardants—polybrominated biphenyls (PBBs),
hexabromocyclododecane (HBCD) and polybrominated diphenyl ether (PBDE)
compounds like penta- and octa-BDE have been phased out.®® Examples of Brominated
flame retardants currently used are shown in Fig. 1.4. 1,2,5,6-tetrabromocyclooctane
(TBCO; used in expanded polystyrene), 1,2-dibromo-4-(1,2-dibromoethyl) cyclohexane
(TBECH; used in polystyrene and polyurethane), and decabromodiphenylethane
(DBDPE; used in styrene) are used as additive brominated flame retardants.s Reactive
brominated flame retardants include tetrabromobisphenol A (TBBPA; used in epoxies
and ABS), tetrabromophthalic anhydride (TBPA; used in unsaturated polyesters, styrene-
butadiene copolymers etc.), 2,4,6-tribromophenol (TBP; used in phenolics, epoxies).s8

TBBPA is used as an additive flame retardant in a few applications.
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Figure 1.4. Examples of common brominated flame retardants.

Phosphorus-based flame retardants are the second most widely used class of
flame retardants but are more specific in their action on certain polymers than the
halogen-based products i.e. the mechanism of action depends on both the type of
phosphorus compound and the specific polymer.62 Phosphorus compounds are effective
flame retardants for oxygen- or nitrogen-containing polymers and show little efficacy in
polyolefins and styrenics.%®62 Phosphorus-containing flame retardants include phosphate
esters, phosphonates, phosphine oxides, chlorophosphates, chlorophosphonates, red
phosphorus, and inorganic phosphates.>® They appear to function in the condensed
phase where they can promote char or coat the char surface with viscous phosphoric
acids, in the vapor phase where they can function by the free radical trap process, or

physically by promoting dripping of the burning polymer.58
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Red phosphorus acts in the vapor phase through its breakdown in fire to produce
P2 molecules.®® It is used in polycarbonates, polyamides, polyethylene terephthalate

etc.”® Though red phosphorus can react with moisture to form the toxic phosphine gas,
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Figure 1.5. Examples of Phosphorus-based flame retardants.

phosphorus-based flame retardants are generally not harmful.®® Thermal oxidation of
phosphorus compounds mostly yield P2Os which then hydrolyses to polyphosphoric acid
and contributes to char.®® Ammonium phosphate is a polymeric compound used in
intumescent coatings and paints.”® Phosphorus-based flame retardants have found
application in polycarbonates e.g. bisphenol A bis(diphenyl phosphate), in textiles e.g.
diethylphosphinate salts, in epoxies e.g derivatives of 9,10-dihydro-9-oxa-10-
phosphaphenanthrene-10-oxide (DOPOQO) etc.”t"2 Triphenyl phosphate and resorcinol
bis(diphenyl phosphate) are used to retard flammability in polycarbonates and
polycarbonate blends such as polycarbonate/ABS.%® Structures of some common

phosphorus-based flame retardants are shown in Fig. 1.5. There are some phosphorus-
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based flame retardants that also contain halogens.”® They may be used in combination
with a bromine flame retardant. The mode of action is presumably in the vapor phase as
these materials are volatile.>® Starch in addition to phosphorus-based flame retardant
improved the drippling behavior of PLA sheets and foams.”®

Inorganic metal compounds e.g. aluminum hydroxide, magnesium hydroxide, and
magnesium carbonate decompose endothermically lowering temperature and releasing
water to dilute volatile products.®88° They are cheap and easy to obtain but require high
loadings to be effective which can unfavorably modify the substrates’ properties.®® Major
applications include unsaturated polyester and polyethylene.>® Compounds of boron
interfere with the decomposition process to favor carbon formation over CO or CO2.74
They have a synergistic effect particularly with halogen systems.’* Aromatic boric acids
are used for ABS and polycarbonate systems.”* Sang et al. published an extensive review
on the studies of graphene and graphene oxide as stand-alone flame retardants and in
combination with known flame retardants.” Inorganic nanomaterials-graphene
composites were deemed most promising. The flammability of paper was suppressed by
coating pulp fibers with nanometer thin films of cationic chitosan and anionic
poly(vinylphosponic acid).” Starch in addition to phosphorus-based flame retardant
improved the dripping behavior of PLA sheets and foams.”®

Restrictions on halogen-based fire retardants have led to an increased interest in
building fire protections onto the polymer surface to prevent heat transfer and diffusion of
volatiles across the material surface.®® A review by Malucelli et al. covers how new
nanotechnologies, like layer by layer nano-deposition, developed for polymer surface

engineering, can be exploited for flame retardancy.>®
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Acrylonitrile-butadiene-styrene (ABS) is widely used due to an excellent
combination of mechanical, thermal and electrical properties, and chemical resistance.’®
Fire retardance is generally imparted to ABS by means of additives, among which
brominated organic compounds are widely used.’® In a study of the fire retarding effect of
the brominated additives nonabromobiphenyl (NBBP), octabromodiphenyl oxide
(OBDPO) and bis(tribromophenoxy) ethane (BTBPE) on ABS, it was reported that their
fire retarding abilities depended on chemical structure.’® It was also concluded that the
antimony-bromine synergism in these systems, was mostly independent of the chemical
structure of the brominated additive.”®

Flame retardancy can be characterized using various tests such as cone
calorimetry, limiting oxygen index (LOI), UL-94, single burning item (SBI) and glow
wire.6566.77-79 Flame retardancy has also been studied using X-ray K-edge tomography
and X-ray interferometry.8%81 A method to estimate the relationship between a molecule’s
structure and its flammability by calculating an interaction index has been purposed.8?
1.3 Flammability Tests
1.3.1 Limiting Oxygen Index (LOI)

This is a simple and common test standardized as ASTM D2863 and 1SO 4589. It
determines the minimum oxygen concentration in an oxygen/nitrogen mixture that will just
about support flaming combustion of a plastic substrate for a given amount of time or
consume a certain amount of the substrate depending on the sample form.5583 |t is carried
out in a transparent glass tube chimney, which is purged with the oxygen/nitrogen gas

mixture before the material is ignited (Figure 1.6). LOI is expressed in volume percent as:

LOl =100 —————,
[0,] + [N,]
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where [0,] and [N,] refers to the volume concentrations of oxygen and nitrogen in the

mixture used.

<« specimen

*«— N,/O, mixture

Figure 1.6. The limiting oxygen index flammability test.

1.3.2 UL-94 Test

This test is approved by the Underwriters Laboratories to test the flammability of
plastics used in devices and appliances. It is standardized in the United States as ASTM
D3801. Test specimens of a prescribed dimension are clamped with the longitudinal axis
vertically oriented (Figure 1.7). A blue flame with a 20 mm high central cone and a power
of 50 W is applied to the test specimen for 10 s.%° The afterflame time t1 (the time required
for the flame to extinguish) is recorded. After extinction, the flame is applied for another
10 s and the afterflame time t2 as well as the afterglow time ts (the time required for the
fire glow to disappear) are recorded.®>8* Occurrence of material dripping and ignition of
a cotton ball placed beneath the tested specimen is noted. The test must be repeated for
a total of five identical specimens. Depending on the afterflame and afterglow times and
the ignition of the cotton ball by flaming drops or particles; the material may be classified

as V-0, V-1 or V-2. V-2 is for a case where the cotton ball ignites.
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A paper by Dupretz et al. introduced additional instrumentation to the UL-94 test
to measure the weight of droplets, the weight loss of the sample as well as
the temperature gradients during the fire test with the aim of better understanding the
mechanisms occurring in the material during the test.”

1.3.3 Glow-wire Ignition Test

The glow-wire test was designed to assess the susceptibility of electrical insulating
materials or parts in contact with wires to ignition due to a glowing wire.®> Standardized
in the United States as ASTM D6194, it involves exposing a vertically supported
standardized test specimen to electrical heating from a glow-wire set at pre-determined
temperatures.®® The glow-wire apparatus is designed to apply a force of 1 +0.2 N to the
specimen. By increasing the applied temperature, the minimum temperature for glow-wire
ignition is determined.

1.3.4 Cone Calorimeter Test

The cone calorimeter is a specialized piece of fire test equipment that is used to
assess heat release data, as well as ignitability, mass loss and smoke released by burning
materials.8” A schematic representation of the equipment is shown in Figure 1.8. The
cone calorimeter test is standardized in the United States as ASTM E1354 and
internationally as ISO 5660. It is based on the measurement of the decreasing oxygen
concentration in the combustion gases of a sample subjected to a given heat flux (in

general from 10 to 100 kW/m?).55 The gas flow; oxygen, CO and CO, concentrations and

smoke density are measured during the test.55
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Figure 1.7. The UL-94 flammability test.®® Reprinted from Materials Science and
Engineering R, 63, Laoutid F., Bonnaud L., Alexandre M., Lopez-Cuesta J.-M., and
Dubois Ph., New prospects in flame retardant polymer materials: From fundamentals to
nanocomposites, 100 -125, Copyright (2008), with permission from Elsevier.
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Figure 1.8. The cone calorimeter.®®> The volatile combustion products, smoke and soot
are collected through the exhaust hood for analyses. Reprinted from Materials Science
and Engineering R, 63, Laoutid F., Bonnaud L., Alexandre M., Lopez-Cuesta J.-M., and
Dubois Ph., New prospects in flame retardant polymer materials: From fundamentals to
nanocomposites, 100 -125, Copyright (2008), with permission from Elsevier.
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In this dissertation, subsurface incorporation of flame retardants by additive

manufacturing was explored. Heat effects was studied by X-ray grating interferometry

imaging with a modified glow-wire incorporated into the X—ray grating interferometer.
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CHAPTER 2
FROM X-RAYS TO IMAGES

Since its published existence by W. C. Réntgen in 1896, X-rays have become an
indispensable tool in seeing the inside of materials that are opaque to visible light.1? Soon
after its discovery, X-ray imaging became the general technique for imaging bones. X-
rays have found wide application in medicine and materials science.3®

X-rays originate from the deceleration of fast-moving particles (bremsstrahlung
radiation) or from the relaxation of outer-shell electrons to vacant inner-shell positions
where the energy difference falls within the range for X-rays (fluorescent radiation). The
common X-ray sources are X-ray tubes and synchrotrons.

This chapter focuses on the common sources of X-rays used in imaging as well as
the detection and conversion of X-ray signal intensities to usable images.

2.1 X-ray Interaction with Matter

As observed with visible light, X-ray photons can be scattered or absorbed. Due to
the higher energy of X-rays however, the level of interaction involved is different and the
effects e.g. refraction, reflection and the photoelectric effect are not visible to the naked
eye. X-rays are electromagnetic waves with energy in the range of about 0.12 keV to over
100 keV (wavelength of 103 A to 0.124 A, respectively).6 These energies increase the
probability of X-rays interacting more with tightly bound inner-shell electrons than with
valence electrons. For instance, X-rays of energy 1.84 keV or more can remove a K-shell

electron from a silicon atom. Based on the wave-patrticle duality concept, X-rays can be
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treated as consisting of packets of energy or photons, the energy of which is calculated

as,

c
€=hv=h-, [2.1]

where h =6.626 x 1034 J s is Planck’s constant, v is the frequency of the radiation/waves,
c =2.998 x 108 m/s is the speed of light in a vacuum and A is the wavelength in vacuum.
Details on the forms of X-ray interaction with matter are presented below.
2.1.1 Scattering of X-rays

X-rays travelling through a material are primarily scattered by electrons.
Classically, when an X-ray beam interacts with an electron, the oscillating electric field of
the waves causes the electron to oscillate with the same frequency and direction.”® As
expected for a moving charged particle, this vibration is accompanied by the radiation of
electromagnetic radiation. The emitted radiation has similar energy as the incident
radiation thus, scattering is elastic and described as Thomson scattering.”® The

interaction is depicted in Figure 2.1, where k; and k; are the wavevectors of the incident

and scattered waves, respectively. The vectorial difference between the incident and

Figure 2.1. Elastic scattering of X-rays. (a) No change in energy i.e. k; = k. (b) The

vectorial difference, g, between the incident and scattered rays is easily determined
geometrically.
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scattered rays, k; — k; = q, is called the scattering vector and for elastic scattering at an

angle 26 it has a magnitude of g = 4m/A siné.
The ability of an electron to scatter X-rays is expressed in terms of a scattering
length. For the elastic scattering of an unbound electron it is referred to as the Thomson

scattering length, r,, calculated as:®

e’ .
=|——|=282x%x107°A, 2.2
o <4neomc2> [2.2]

Where e and m are the charge and mass of an electron, respectively. ¢, is the permittivity
of a vacuum valued at 8.85 x 10*? F/m. Another name for r, is the classical electron
radius.

A guantum description of electromagnetic radiation however acknowledges the
possibility of energy being transferred to the electron so that the emitted photons are of
lower energy relative to the incident.” Scattering in this case is therefore inelastic and

described as Compton scattering. The Compton scattering length, A., is calculated as:

h o
Ao = — =243 x 107%A. [2.3]
mc

The energy loss due to Compton scattering can be determined from the following
equation.®

hv, ki 4y
oy = = 4 + Acki(1 — cosy) , [2.4]

where 1 is the scattering angle and subscripts i and f refer to the incident and scattered
photons, respectively.
From Equation 2.4, energy loss from Compton scattering increases with increasing

incident X-ray energy and decreasing scattering angle. At X-ray energies of around 100
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keV, Compton scattering is almost constant and shows less dependence on the scattering
angle.®
2.1.2 Refraction and Reflection

Refraction and reflection are resultant scattering effects of X-rays interacting with
the multitude of atoms that make up a material. An X-ray wavefront experiences a change
in shape on passing through a sample due to variation in thickness and X-ray refractive
index.t0

For X-rays the refractive index, n, is less than unity and is given by,

n=1-8§+ip, [2.5]

where § is the refractive index decrement and g is the absorption index.” § is related to

the scattering properties of the medium by
oA ,
6(67,2) = 5= ) Ne(,y,2) T+ £, [26]
k

where Ny (x,y,z), Z, and f,, are the atomic density, atomic number and the real part for
the anomalous dispersion correction of element k, respectively.!! r, is the earlier
described classical electron radius.

The phase change, @, for a ray path through an object relative to vacuum is given

by,

Dd(x,y) = 2%[ 6(x,y,z)dz, [2.7]

where the optic axis is parallel to z.1* Thus @ is the projection of § across the object. The
change in phase provides a contrast basis in X-ray imaging and would be further

discussed in the interferometry section.
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2.1.3 Absorption
A beam of X-rays encountering a body experiences an attenuation which can be

calculated from,

I
—=ekz, [2.8]
Iy

where lyand [ are the incident and transmitted beams, respectively. z is the sample
thickness and p is referred to as the linear attenuation coefficient. It is worth noting that
rather than u, the mass absorption coefficient, u,,, calculated as i /p,,, is usually provided
in literature. The attenuation coefficient, u, also has a relationship with the imaginary part
of the complex refractive index (Equation 2.5);%!

A

B=7-H [2.9]

When a photon of X-ray is absorbed by an atom, if the energy is characteristic of
an atomic shell, an electron acquires enough energy to transition into an unbound state.

The absorption cross-section per atom, oy, is related to u by the following equation,®

N
Pm A) g [2.10]

= oupe = (22
Where p, and p,,are the atomic number and mass density, respectively. N, is Avogadro’s
number and A is the atomic mass number. The absorption cross-section is inversely
proportional to the third power of the photon energy, €, but exhibits a sharp increase at
characteristic energies.” It however varies approximately as the fourth power of the
atomic number, Z, of an element.” Thus u is element dependent.

The absorbed radiation can be calculated from Beer’s Law as,

I
A= —logl— =—logT, [2.11]
0
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where T is the transmittance. Absorption contrast is the basic contrast mechanism applied
in X-ray imaging applications.
2.2 X-ray Sources

This section describes the major sources of X-rays: X-ray tubes and synchrotrons.
X-ray tubes have the widest application in medical imaging applications. Synchrotrons
sources are generally for research activities.
2.2.1 X-ray Tubes

An X-ray tube consists of a cathode assembly, an anode assembly and the tube
housing. The cathode and anode are encased by glass in a vacuum environment with
external electrical connections (Figure 2.2).12 The cathode is a tungsten filament inserted
in a metal chamber or slot and produces electrons by thermionic emission. The shape of
the slot determine the shape and size of the electron beam.*3* The electrical current
applied to the filament and the size of the filament determines the amount of electrons
emitted. The anode is a high-atomic number metal and is where radiation is produced. A
high voltage applied between the anode and the cathode causes the emitted electrons to
travel towards the anode at very high speeds. Electron bombardment of the anode is
accompanied by the production of X-ray radiation. Since it is a portion or all the kinetic

energy that is converted to X-rays, we can write

Cc

hvy = h— = Ve, [2.12]
Ao

where Ve is the product of the accelerating voltage and charge of an electron. v, is
therefore the maximum frequency that can be produced at voltage V, and A, is the lower
limit of wavelengths that can be produced.'® Thus, the applied voltage determines the

maximum energy of emitted X-rays.
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The choice of the target anode material depends on the desired X-ray energy
range and its ability to withstand the local heating accompanying bombardment.
Tungsten, rhodium and molybdenum are common examples of targets used. The thicker
the target, the higher the probability of electrons losing their energy before radiating thus,

increasing the occurrence of bremsstrahlung radiation.16

“yMolybdenum stem

j

r/'
/"'-
,/
~ /
J
=~ 4

W \ 00
W ‘S\\e
) / all bearings

|
,\][ 4

Cathode filament

T

/ \

Glass envelope

Figure 2.2. Schematics of a rotating anode X-ray tube. The housing is not shown. Adapted
from reference 12.12

Fluorescent radiation is possible if the electron kinetic energy is no less than the
energy of an inner atomic shell. For a given electron beam energy, lower Z materials
display higher ratios of florescence to bremsstrahlung radiation.'® Tube operation takes
place within a vacuum confined by a glass envelope. The tube housing contains the glass
envelope, electrical components as well as a cooling system.!? It also contains lead
shielding to ensure X-rays exit the instrument only through the exit port or window.4

Variations in the X-ray tube design have focused on increasing beam power and

minimizing the effective focal spot. A rotating anode design, Fig 2.2, enabled increased
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high-power operation. The effective focal spot depends on the actual focal spot size and
the tube angle.'? The smaller the effective focal spot size the better the image resolution.
Transmission type X-ray tubes, where the target is a layer of thin metal just over the X-
ray window, are also in use.1’1°

A rotating envelope system has been reported to reduce cooling time thus enabling
X-ray tube operation for a longer period of time.?° It has been suggested that the use of
microstructured targets in microfocus X-ray tubes eliminate the need for beam-focusing
optics thus, achieving smaller sized tubes.!8
2.2.2 Synchrotrons

Synchrotron radiation is produced when electrons moving at relativistic speeds are
forced into circular trajectories using bending magnets. After its identification in 1947 at a
General Electric electron synchrotron facility, experiments into the usefulness of this
“radiation loss” commenced.®2* Current synchrotron facilities are exclusively designed for
radiation production with brilliance over 10*? times that of the X-ray tube. The components
of a synchrotron include an electron gun, a linear accelerator (LINAC), a booster ring, the
storage ring, magnets (bending magnets and insertion devices), a radiofrequency (RF)
cavity and beamlines.®?? Figure 2.3 is a simplified schematic of a synchrotron and its
basic components.

The electrons are produced by thermionic emission and accelerated in the LINAC
to kinetic energies in the MeV range. These electrons are then moved into the booster
ring where they are further accelerated but now to GeV energy values after which they
are injected into the storage ring. The storage ring consists of arcs where bending

magnets are placed and straight sections for insertion devices.®2 The high-energy
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electrons now moving at relativistic speeds, experience a Lorentz force at the bending

magnets that force them to move in a circular trajectory emitting radiation in the process.

Figure 2.3. A schematic of a synchrotron and its basic components.

The insertion devices—wigglers and undulators—are used to improve the beam size. At
the RF cavity, a RF voltage is applied to replenish the energy lost by the electrons as
radiation. The beamlines are set up along the path of radiation with optics relevant to the

desired energies.
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A few important properties describe a synchrotron facility. The storage ring energy
measured in GeV is the kinetic energy of the electrons and is usually expressed in a
dimensionless parameter, vy, the Lorentz factor.

_ £ 2.13
y_mczﬁ [ ]

mc? is the rest mass energy of the electron (511 keV) and E is the energy of the electrons
in the storage ring.? For electrons and positrons, y= 1957E with E in GeV. Current
facilities have storage ring energies in the 1-8 GeV range.® For LSU CAMD it is 1.3 GeV
(Table 1.1). The vertical divergence (natural opening angle) of the radiated beam is
approximately equal to y* in mrad.?® This means with higher storage beam energy comes
a vertically narrower beam. For a 2 GeV storage ring the divergence is about 0.25 mrad
(about 0.014°) thus, synchrotron radiation is highly collimated.

Another property is the brilliance and is defined as photons per second, per unit
source size and divergence in a given bandwidth.?

- _ photons/second 214
rilliance = (mm?2)(mrad?)(0.1% bandwidth) [2.14]

The implication of Equation 2.14 is that for increased brilliance a smaller source size and
smaller divergences are needed. Due to the direction of electron travel through bending
magnets, the radiation spreads out in the horizontal plane leading to a larger divergence
restricted only by the collection beam-slit width and its distance from the electron orbit.?3
Insertion devices have helped to reduce this divergence hence, improved brilliance and

will be addressed later.
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Table 1.1 LSU CAMD Storage Ring Parameters

Ring Parameters Value
Beam Energy (GeV) 1.3
Beam Current (mA) 200

Bending radius (meters) 2.928
Critical wavelength (A) 7.45
Critical Energy (keV) 1.66
Beam half-life (hours) 9.5
Harmonic number 92
Radiative power (watts/mrad/mA) 0.014
Injection energy (MeV) 200
Natural emittance (m-rad) ~2x10”7
Electron-beam width (mm) ~0.6
Electron-beam height (mm) ~0.15

Source: https://www.lsu.edu/camd/about/index.php (accessed October 25, 2018).

Synchrotron radiation covers a broad spectrum of electromagnetic radiation, from
X-rays to infrared radiation. The critical energy, E., of the synchrotron radiation is an
energy value that divides the beam spectrum into two equal parts—one side higher
energy values, the other lower energy values.? It is calculated as;

_ 3hey?
€ 2R

[2.15]

R here is the radius of curvature of the electrons orbit while # is the reduced Plank’s
constant in angular considerations. By equating the Lorentz force to the centripetal force
and replacing m with ym, R is calculated as;

ymce E
R=—7"m=——+ 2.16
eB ceB [ ]
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where B is the magnetic field strength, c is the speed of light and e is the charge of an
electron.

In a storage ring the product of the source’s transverse size and angular
divergence in the horizontal or vertical plane is the emittance and is constant around the
ring.?® As mentioned earlier, due to the electron beam bend motion, there is an increase
in the divergence in the horizontal axis.

Three kinds of magnets may feature in a synchrotron ring. Bending magnets are
always present as they are primarily used to keep the electrons moving in the storage
ring loop. With permanent magnets, the maximum magnetic field strength achievable is
on the order of 1 Tesla.?* The use of superconducting magnets makes higher value
magnetic field strengths of over 5 Tesla achievable, thus access to higher X-ray energies
than with simple magnets.® In practical units, the total power generated by a bending
magnet is;®

P [kW] = 1.266E2[GeV]B?[T]L[m]I[A] [2.17]
where L is the magnet length, | is the current.

The introduction of insertion devices greatly impacted the performance of
synchrotron facilities?®. These devices are composed of magnets—a series of magnets—
with alternating pole arrangement that force the electrons to make oscillatory motions in
a horizontal plane. With each turn radiation is emitted hence, an overall increase in
intensity compared to bending magnets, resulting in increased brilliance. Insertion
devices are of two types—wigglers and undulators—differing in the extent to which

electrons are deviated from a straight path. A dimensionless parameter, K, is used to
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express the difference between wigglers and undulators. It is the ratio of the angle of
electron deviation to the natural opening angle;??

K = ay. [2.18]
K can also be expressed in terms of spatial period, A, and magnetic field as?®

elAB
2mmc

= 0.934 A [cm]B[T]. [2.19]

For wigglers, K >> 1 but with undulators K ~ 1.2

To achieve many complete oscillations in a short distance, wigglers utilize
magnetic fields higher than in bending magnets to bring about the needed smaller R
value.?® This is accompanied by the deviation of electrons from the straight path by angles
much larger than y1. Each pair of alternating magnets yield twice the radiation that will
have been obtained with one magnet. For a series of N pairs of alternating magnets, in a
wiggler, the resulting radiation is increased by a factor of 2N.8 Total emitted power for a
wiggler is;®

Pr [kW] = 0.633E?[GeV]B?[T]L[m]I[A] [2.20]
where B is the maximum magnetic field. The average B value is used here due to zero-
value B-fields between magnet pairs.

In undulators, electrons are deviated from the straight path by an angle close to or
smaller than y1.22 This subtle oscillation is achieved by reducing the spatial period.® The
radiation emission accompanying each bend interfere with each other and those with
wavelengths that are whole number fractions of the magnet spatial period add up
constructively. The consequence of this is a beam with brightness increased by a factor
~ N2.22 Undulators can be used in-vacuum or out of vacuum, the latter providing better

flexibility for ring operation as the gap between magnets can reach smaller values.?%2” An
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undulator where the electrons’ sinusoidal motion is brought about by microwaves have
been reported.?® Research is still ongoing to further improve the performance of insertion
devices in terms of brilliance and beam energy by reducing the oscillation period and
magnet inter-pole distance.?’

The LSU CAMD synchrotron makes use of a wiggler. The storage beam
parameters for this facility are shown in Table 1.1.
2.3  Area Detectors for X-ray Imaging

X-ray detectors convert impinging photons to useful data from which information
about X-ray interactions can be extracted. The choice of detector depends mainly on the
X-rays energies of interest and experiment timescale. For imaging applications important
parameters include: spatial resolution, detector efficiency, sensitivity and dynamic range,
contrast and noise.?® This section looks at the common type of detectors currently used
in X-ray imaging applications.
2.3.1 Storage Phosphor Screens

These are common in medical imaging and have replaced screen films. They are
image plates having a detective layer of photostimulable crystals of a family of phosphors
BaFX:Eu?*, where X can be bromine, chlorine, or iodine.3%3! The phosphor crystals are
usually cast into plates into resin material in an unstructured way.3! When the plates are
exposed to X-rays, the electrons in the crystals are excited from the valence bands to the
conduction bands where they remain in stable states creating a latent image based on
the of spatial distribution of these electrons.®? Depending on the properties of the
phosphor used, the image can be stored for hours though the stored energy decreases

with time.30
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The readout process involves scanning the plate with a high-energy laser beam of
a specific wave length (flying-spot scanner), which stimulates the emission of light of
different wavelength from that of the scanner.2° This light is collected by photodiodes and
converted digitally into an image.®° Residual latent image is erased after the readout
process using a high-intensity white light source that flushes the traps without
reintroducing electrons from the ground energy level.?! Storage phosphor screens have
the advantage of size and don’t require special expertise for replacement of defective
screens. They are however of inferior quality compared to digital detectors.°
2.3.2 Multiwire and Microstrip Proportional Chambers

These are similar to gas proportional counters but have a patterned anode. For the
multiwire type it is a grid of wires while for the microstrip type it is a microfabricated pattern
of wire material on a substrate.3?33 They are position-sensitive photon-counting detectors.
Multiwire proportional counters are limited by the small number of pixels they have and
large pixel size.
2.3.3 Scintillation Detectors

Scintillation detectors consist of a scintillator (phosphor) material followed by an
optional optical relay element and a photodetector.3* The differences between phosphors
and scintillators arise from how the phosphor material is applied —phosphors in photon
integrating mode (as in storage phosphors) and scintillators is photon counting mode.3*
Scintillators range from organic to inorganic materials in liquid, solid or even gaseous
states. It was the glow of a phosphor — barium platino-cyanide — that drew Roentgen’s
attention to X-rays.3* CawQ4 powder and ZnS-based powders constitute the longest-in-

use so-called phosphor material employed for the detection of X-rays.3* Other examples
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are Tl-doped Nal and Csl single crystals, Th-doped oxysulfides (R202S,R =Y, La, Gd)
and rare earth ion doped oxyhalides LnOX (Ln =Y, La, Gd; X = ClI, Br).34 Of all scintillators
(phosphors), silver doped ZnS is the most efficient.®> Metal-organic frameworks based on
Hf and Zr have been reported as possible scintillators for X-rays.3® The more scintillator
material used, the more X-rays are absorbed. However, there is a reduction in spatial
resolution due to multiple scattering.3” A method to increase the spatial resolution, without
decreasing the height of the scintillator, consists of using an individual scintillator for each
pixel, separated by layers of a reflector material .’
2.3.4 Charge-coupled Device (CCD) Detectors

The CCD was invented in 1969 at Bell Labs by Boyle and Smith and its application
to image sensors was immediately apparent and first reported by Tompsett, Amelio and
Smith in 1970.38 In its simplest form, the basic structure of a CCD image sensor is formed
from an array of electrodes running orthogonally to a series of isolated charge transfer
channels (Figure 2.4).2°4° Typically, each pixel consists an n-type silicon layer formed on
a p-type silicon substrate.*® The n-type layer is then covered with a thin layer of silicon
dioxide followed by a metal electrode (or gate).*® When a reverse bias is applied (a
positive voltage to the electrode) a depletion region is formed at the p-n junction.*® On
exposure to X-rays, electron-hole pairs form in this region and the electrons migrate
upwards into the n-type silicon layer and are trapped in the potential well.*° The build-up
of negative charge is thus directly proportional to the level of incident light.*°

Following an exposure, the imaging area electrodes are pulsed or “clocked” to
transfer the integrated image charge pattern down the array one line at a time to the

readout register that runs orthogonally to the imaging area transfer channels or
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columns.®® The register reads out each pixel sequentially through a charge detection

amplifier till the complete line has been read. After this, the next image line is transferred
to the readout register and the sequence is repeated until all image lines have been
read.®® The CCD architecture described above is commonly referred to as a full-frame
CCD array (Figure 2.5).%° Other architectures are frame-transfer CCD and the interline-

transfer CCD arrays.
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Figure 2.4. Schematic of a CCD Detector pixel.*°

Though CCDs are directly responsive to x rays, as well as to light they are rarely
used as direct conversion X-ray detectors.*! The semiconductor of choice, namely silicon,
has relatively low stopping power and thick detectors are hard to make.*! Rather they are
coupled with a scintillator. Thus, a CCD detector generally comprises a scintillator, an

optional coupling element, an image intensifier as well as a CCD. Lens coupling is more
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flexible and easy to use while fiber-coupling is more efficient and preferred for high speed

imaging requirements.*?
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Figure 2.5. Schematic of a full-frame CCD array.3°

CCDs are available in either front- or back-side illuminated versions.*! The charge
transfer efficiency in CCDs is over 99.999%.%° Rows of pixels on the opposite side of the
array will experience more transfers that those closer to the readout register, introduces
slight differences in image quality. This effect contributes to the upper size limits of CCD
arrays.”® To reduce dark current, CCDs are usually cooled to below -30°C.3® One
limitation of CCDs is their small active area which is limited to a few squared
centimeters.?® This limits their use in medical imaging. For large samples, image stitching
or stacking of a few detectors might be necessary. CCD fabrication requires specialized
silicon foundries which makes them expensive.*!
2.3.4 Current-mode Semiconductor (CMOS) Detectors

CMOS image sensors exploit the same silicon chip technology used in
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microprocessor systems.®® Thus making it possible to integrate a large array of pixels,
each with its own photodiode and readout transistors, alongside ancillary electronics.3°
Each CMOS pixel employs a photodiode, a capacitor and up to three transistors (Figure
2.6).4% The pixel is describe as active if it contains an amplifier or passive if it does not
contain an amplifier. Passive pixel devices have charge amplifiers at the bottom of each

column of pixels.*? Active pixel arrays are currently more widely used.*® With the
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Figure 2.6. Schematic of a CMOS detector.*3

integrated circuitry, pixels can be directly accessed and readout thus avoiding multiple
charge transfers over long distances as in CCDs.3944

Before exposure begins, the capacitor will be charged to some known voltage.*°
When the integration period begins, the charge on the capacitor is allowed to slowly drain
away through the photodiode, the rate of drain being directly proportional to the level of

incident light.4° At the end of the integration period, the charge remaining in the capacitor
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is read out and digitised.*° As opposed to being discharged, the capacitor may be charged
during the integration period.*°

CMOS detectors are of lower power consumption and less expensive compared
to CCDs.3%43 As with CCDs, CMOS detectors need to be cooled to reduce dark current.
The temperature to which a CMOS can be cooled is limited due to its size as uneven
temperatures distribution and chip deformation may result.> Thus, they are generally of
lower sensitivity compared to CCDs. Also, the linear dynamic range of today’s best CMOS
sensors is about 5000, considerably less than for a CCD.3°
2.3.5 Thin-film Transistor Based Detectors

These devices are based off the realization that it was more cost-effective to
fabricate large area arrays of electronic components using amorphous silicon than
crystalline.*® TFT arrays are typically deposited onto a glass substrate in multiple layers,
with readout electronics at the lowest level, and charge collector arrays at higher levels
(Figure 2.7).3! Depending on the type of detector being manufactured, X-ray
photoconductors or light sensing elements are deposited at the top layer of this
“electronic sandwich”.3!

When an X-ray photoconductor e.g. amorphous selenium is used, X-rays photons
are directly converted to charges in the selenium layers.3! Operation involves applying an
electric field across the selenium layer which causes the generated charges to be drawn
to the charge collecting electrodes where they are stored till readout.®* When amorphous
silicon is used, an additional layer of a scintillator is employed because in form of a thin

film amorphous silicon offers insufficient absorption for direct X-ray detection.*® The
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amorphous silicon is in the form of a photodiode array to detect the light produced by the

scintillator. The charge collected at each storage capacitor is amplified and quantified to

TFT array
Photodiode or charge collector Collects charges fram

Converts x-rays to light the upper layer
or to electric charges

Electronic control
Triggers the swilching diodes

"-_I \J'\f \

s ANANA

Switching diodes
Cannects each pixel lo readout device

Multiplexer
Readout the electronic signal

Figure 2.7. Schematic of a thin-film transistor pixel.3*
a digital code value for the corresponding pixel.2! During the readout, the charge of the
capacitors of every row is conducted by the transistors to the amplifiers.3?
2.3.6 Hybrid-Pixel Photon-counting Devices

A prime example is the Pilatus detectors. These combine silicon sensors with
CMOS-processing chips by a 2D micro bump-bonding interconnection technology.4’
Unlike CCD detectors, the PILATUS detector does not add any noise to the data.*” They
register single-photon events by creating counting energy bins via pulse height analysis
and thresholds.*® By setting a low enough energy threshold, which remains above the
pixel's noise level, electronic noise can be completely cut off.#8 This in turn can provide
an imaging system, which requires no dark-count correction.*® HPC detectors provide

noise suppression, high and linear dynamic range, high count-rates and fast response,
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as well as a virtually perfect point spread function due to the direct conversion of X-rays
to charge within the sensor.*®
2.4  Data Processing

The data recorded by area detectors can vary in data type and file format. For
some applications, simple visualization of the images suffice. In other applications, further
processing or analysis is required. There are a variety of software packages for these,
the choice of which depends on availability, the file format and the complexity of
processing required. Examples of image processing software available at no cost include
ParaView, Vislt and ImageJ.*>5! They have graphical user interfaces (GUI) for easy
image manipulation and programming interface to tailor one’s processing algorithm.
Thermo Scientific’'s Amira-Avizo software is a commercial software with GUI and
programming interface.5? Mathematica is another commercial software package and is
applicable to a wide range of computation extending to image processing, visualization,
data science etc.>® It requires the knowledge of a given programming language to carry
out any operation.

In this work, Mathematica played a major role in image processing from quick
analysis of image quality to preparing sinusoids for image volume reconstruction. The
ASTRA toolbox was used for some image volume reconstruction based on sinusoids
prepared in Mathematica.>*%¢ An open-source Python-based package, TomoPy enabled
one-stop data processing for tomography data sets.>” The ASTRA toolbox and TomoPy

are both open-source software.
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2.4.1 Tomography Reconstruction

The X-ray photons detected by each pixel of the detector is the resultant of the
interaction of the beam with all materials in its path as it propagates to the detector. This
two-dimensional image (in the case of an area detector) is called a projection.
Determining the distribution of a measured parameter, say the attenuation in the three-
dimensional space, involves a reconstruction. To carry out a reconstruction, the sample
is rotated around an axis perpendicular to the direction of beam propagation and
projection acquired for the different views around the sample. It is important that the
sample of interest is fully within view in all the projections. The parameter of interest is
calculated for each projection. These parameter projections are then manipulated to “fill
in the gaps” of values in the spatial expanse.

Different reconstruction methods are available but can be broadly classified into
two groups: analytical reconstruction methods e.g. filtered back projection (FBP)
algorithms and iterative reconstruction (IR) methods.>® The basics of FBP algorithms
involve applying a filter to the projections first, the aim of which is to sharpen edges and
dampen non-uniformities associated with the acquisition process.>®8° After this, the
filtered projections are back projected by equally distributing the measured pixel values
equally across the ray path.>®

Iterative reconstruction begins with the FBP steps but followed by a forward
projection of the calculated volume and comparison with the original measured projection.
Depending on the difference between the two, a correction is determined and applied to
the calculated data.®! Back projection and forward projection are repeated over and over

again till a fixed number of iterations is reached or some predefined quality criterion is
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reached.®? Compared to FBP these IR algorithms enables the simultaneous reduction of

image noise and the improvement of overall image quality.>®

In this work, two reconstruction algorithms were employed, an improved FBP

algorithm called Gridrec and an iterative reconstruction algorithm called simultaneous

iterative reconstruction technique (SIRT).%263 The algorithms were executed using the

ASTRA GPU package and the Tomopy package, both open-source software. When

Tomopy was used, it was with integration of the ASTRA package.%*
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CHAPTER 3
X-RAY GRATING INTERFEROMETRY

In conventional X-ray imaging, contrast is obtained through the differences in the
absorption cross-section of the constituents of the object with excellent results when
highly absorbing structures are embedded in a matrix of relatively weakly absorbing
material.> For important classes of samples such as biological tissues, polymers, and fiber
composites, however, the use of conventional X-ray radiography is limited because these
objects show only weak absorption.?

In addition to the decrease in intensity accompanying the absorption of radiation
by an object, the wavefront experiences a change in phase due to refraction. This phase
change or shift can be a source of contrast in imaging. The variation of the phase-shift
cross-section, p, with atomic number, Z, can be up to a factor of 103times greater than
the absorption cross-section, o,, for low-Z elements.? Also, unlike o,, p falls off much
slowly at higher energies. This high sensitivity benefits low-Z element sample
compositions as well as composites of low-Z and high-Z elements. Since phase-contrast
is still relatively more sensitive at higher energies, with operation at such energies there
is the possibility of reduced X-ray dose in clinical applications.* Detecting the effect of an
object on the phase of the wavefront, involves converting the wavefront into amplitude
with contrast in the image plane.® There are various techniques used to do this all of which
involve the introduction of a temporal phase modulation.®

A third contrast mechanism, the dark-field signal, is based on the reduction in the
visibility of an interference pattern due to small-angle X-ray scattering from unresolvable
microstructures i.e. those on a size scale much smaller than the spatial resolution of the

imaging system.”’
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Grating interferometry with X-rays or neutrons simultaneously yields images with
all three contrast mechanisms.
3.1 Talbot-Lau Stepped-Grating Interferometry

For a parallel beam source, a stepped-grating interferometer consists of two
gratings labelled G1 and G2. The G1 grating is a phase grating which introduces a phase
shift into the beam and splits the beam essentially into the +1st and -1st diffraction
orders.® These diffracted beams form a periodic interference pattern in a plane
perpendicular to the beam propagation axis.® The G2 grating is an absorption grating with
the same periodicity and orientation as the interference pattern and is placed right in front
of the detector. It acts as a transmission mask for the detector and converts local fringe
position into a detectable signal intensity variation, magnifying the fringes so they can be
conveniently and effectively recorded using X-ray detectors with large pixel sizes.?1° The
detected signal profile thus contains quantitative information about the phase gradient of
the object.?

The position of the G2 grating with respect to the G1 grating is determined by the Talbot

effect — a self-imaging phenomenon of a periodic object under coherent illumination.® For

a phase grating and a parallel beam, this distance is given by:!!

d,, = (&)Zﬂ, m=1,35,.. [3.1]
n/ 22

where p; is the grating period and A is the wavelength of the applied radiation. The value

for n depends on the phase shift introduced by the phase grating. It is 1 for a 11/2 phase

shift and 2 for a 1 phase shift.

When the source is a conical beam, as in X-ray tube sources, a third grating, GO,

is included in the instrument setup and placed close to the source.! GO is typically an

60



absorption grating and its grating apertures reduce an incoherent beam into several
individually coherent but mutually incoherent sources.! Such a setup is described as a

Talbot-Lau interferometer.1?2 The Talbot distance for a cone beam source rescales to:8

Ay = dp, [3.2]

For a parallel beam set-up, the interference pattern has a lateral period, p, = p, /2, where
p, is the period of the G1 grating.2 The G2 grating period should match p,. For a cone
beam set-up, the grating magnification is taken into account so; ?

l+dp;
Po=—7"7 - [3.3]

Here d is the inter-grating distance and [ is the distance from the source to G1.

The experimental set-up for a stepped-grating experiment is shown in Figure 3.1.
Its operation involves moving the G2 gratings by a fraction of the grating period in a
direction transverse to the grating structure and beam propagation direction. For each

pixel, a sinusoidal intensity variation is recorded and the parameters: offset (ai,),

amplitude ( a, ), and phase (@,) need to be calculated. Intensity variations are recorded
for both sample and sample-free (reference) setups. The reference values are used to
normalize the sample values so as to exclude non-sample related effects.

A sample plot of intensity versus grating step distance —an interferogram— is

shown in Figure 3.2 and can be described by the sinusoid equation:

A . (2
Cgp = Qo, +ay, sin (p—:xg + Q)p) [3.4]
. (2T 2r _
= [1] o, + [sm (Exg)] ay, cos @, + [cos (Exg)] ay, sin @y, [3.5]
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where p and g represent a given pixel and a given grating position, respectively; p, is the

period of the stepped grating and x, is the distance of stepping.

X-roys

G? I
grating Gl

— grating GO
grating

Figure 3.1. Stepped-grating interferometer set-up. a) Gratings oriented with grating
features in the X-Z plane, referred to as the horizontal orientation. b) Gratings oriented
with grating features in the Y-Z plane, referred to as the vertical orientation. Sample
rotation is clockwise.

The sinusoid parameters Qo,: A1y, and @, for each pixel are calculated using a

vectorized least-squares algorithm that can quickly process large datasets and work with
non-uniformly spaced data.’® In this algorithm, fitting of interferograms is approached as

a simple matrix problem where the coefficients Qo,, @1, COS @, and ay, sin @, of the

expanded form of the sinusoid equation (Equation 3.5) in each pixel, are determined from
a matrix expression,*3

a=G -c. [3.6]



In equation 3.6, a is a 3 x N matrix of the earlier mentioned coefficients for the N pixels of
the detector and c is the M x N matrix of the M grating step positions and N pixels of the
detector. G = (BT - B)™! - BT, where B is the M x 3 matrix of the M grating step positions

and the three fitting functions in square brackets.
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Figure 3.2. Sample interferogram from a pixel showing calculated offset (aop), amplitude
(alp) and phi (@,) of the sine curve.

The absorption, differential phase contrast and dark-field values are calculated as

follows:
ao,°
absorption = —Log 7 [3.7]
Op
dif ferential phase contrast = ¢,° — ¢," [3.8]
a; */ag "
dark — field = @ . [3.9]
Ao, /a1p

where the superscripts s and r refer to sample and reference parameters.
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X-ray grating interferometry has been applied to materials like cement where the
dark-field signal was used to observe changes in the microstructure of cement during
setting and hardening.'# Phase contrast images of a concrete sample gave better contrast
between aggregates and hardened cement paste than absorption images.'®> Phase
contrast imaging has also been applied to wood samples.'%1” Malecki et al. related the
dark-field signal obtained with grating-based X-ray interferometry to fiber density and fiber
orientation in a wood sample.t’

In this work, grating-based interferometry will be applied to additively manufactured
parts to study structural features within the parts. The dark-field signals will highlight sub-
pixel voids while the phase-contrast signals should provide better contrast between
different materials.

3.2  Contrast Generation in Stepped-Grating Interferometry
3.2.1 Absorption Contrast

The absorption contrast generation is straightforward as the average intensity in a

pixel corresponds to the transmitted signal. With the sample and reference values the

absorption is calculated as follows,

I
Absorption = —InT = — lnl— =uz, [3.10]
0

where Il,and I are the incident and transmitted beams, respectively. z is the sample
thickness and u is referred to as the linear attenuation coefficient.
The absorption signal is the projection of the attenuation coefficient across the

sample,

—InT (x,y) = Ju(x,y,z)dz. [3.11]

64



3.2.2 Phase Contrast

The interference pattern experiences a shift due to the refractive effect of an object.
To determine this shift, the pattern is scanned by translating a grating in a direction
transverse to the grating structure and beam propagation direction as described in
Section 3.1. The lateral shift, s, is related to the angular deviation of a beam, Aa, by s =
Aa x d and translates into a phase shift of ¢ = 27 x s/p,.2

The relation between the angular deviation of a beam Aa and the differential phase
shift (09 (x,y))/0x) is given by the equation

Aa = %W, [3.12]
where x and y are the Cartesian coordinates perpendicular to the optical axis, ® (x,y)
represents the phase shift of the wavefront, and A is the wavelength of the radiation.! By
substituting for Aa in Equation 3.12 above, the differential phase shift is calculated from

the equation:

_ Ad 0P (x,y)

o ax [3.13]

Tomographic reconstruction of ® (x,y) from projection images different angles around the
sample yield the volumetric distribution of the X-ray refractive index decrement, &, of the

sample,

d(x,y) = Z%f 6(x,y,z)dz, [3.14]

where the optic axis is parallel to z.3
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3.2.3 Dark-Field Contrast

A third contrast mechanism, the dark-field contrast, based on small-angle X-ray
scattering from sub-pixel sized microstructures has been identified and can provide
structural information that is inaccessible from the absorption and differential-phase
images.’ In grating-based interferometry, it is detected as a relative decrease in the
visibility of the fringe pattern. The visibility is calculated as:*8

_ Lnax = Imin _ a1y

, [3.15]

Imax + Imin aOp
where I,,,, and I,,.are the maximum and minimum intensities, respectively, for the

recorded sinogram in pixel p. as, is the amplitude of the sinusoid and o, is the midline

value which is the average intensity for a given pixel. The relative decrease in visibility
due to the sample or the dark-field signal is obtained by dividing the sample visibility by

the reference visibility i.e.

= V;?S(m’ n) _ alps/aopr

W' (mn) - aops/a1pr .

[3.16]

When the sample is homogeneous, small-angle X-ray scattering contribution is negligible
so the visibility remains unchanged (V=1).® Specimens with structural anisotropy on
micrometer length scales produce strong small-angle X-ray scattering thus cause a
significant decrease in the visibility.1® Grating-based interferometers are only sensitive to
scattering in the direction of scanning i.e. perpendicular to the grating structure.?°

It has been demonstrated that the dark-field signal of the interferometer
exponentially decays with sample thickness similar to the attenuation of X-rays in a

sample (Beer-Lambert law), and that this decay is mathematically related to the width of
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the scattering distribution 0.2 Thus a material-dependent parameter, the diffusion

coefficient e was described and related to the dark-field signal by the expression,?!

dZ
DF = exp (—27-[2 F e(t) ) , [3.17]

2
where d is the distance between the G1 and G2 gratings, p, is the period of the G2 grating
and t is the sample thickness. € is expressed in terms of 62 and t as € = ¢2/t.?2 This
dependence of the dark-field signal on sample thickness enables quantitative dark-field
imaging computed tomography to be performed.

Based on the scanning technique, the dark-field signal has been shown to have a
direct relationship with the autocorrelation function of the sample.?® The expression is
given by,?°

DF (§corr) = exp[2t (G (§corr) — DI, [3.18]

where G is the autocorrelation function of the sample and is a function of the correlation

length, ...+, probed by the interferometer. X' is the scattering cross section and t is the

sample thickness. ¢, is calculated as Al;/p,, where 1 is the wavelength of operation,
I, is the sample to G2 grating distance and p, is the period of the G2 grating.?® However,
for a cone beam and sample positioned between GO and G1, &, becomes

AL
fcorr = [319]
b2

where I, = (I +d —1;)d/1.% | is the GO to G1 distance and d is the G1 to G2 distance.
Since ¢, Can be easily be tuned, the correlation function G(¢.,,) can be determined by

moving the sample either between GO and G1 or between G1 and G2.?°
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Correlation functions for a number of shapes have been determined.?* For spheres, it is

approximated by the Gaussian function

9 (Scorr ’
Gsphere('fcorr) ~ exp l_§<ER ) l ’ [3.20]

where R is approximately the radius of the sphere.?°

Using the correlation function for spheres, the above relationship between the
dark-field signal and G (Equation 3.20) have been shown to be in good agreement with
theoretical expectation.?°
3.3 Single-shot Grating Interferometry

This grating-based interferometry technique described as a spatial harmonic
method does not involve a phase-stepping process.?® A single transmission grating which
may be linear or two-dimensional (comprising a grid of orthogonal grating structures) is
used.?®2” The projection image of the object is modulated by the periodic grid pattern.?’
Reference images i.e. without the sample are also acquired. Wavefront modifications
arising from sample interaction can be quantified through spatial harmonic analysis of the
recorded image.

First, the image is converted into its spatial frequency spectrum by 2D Fourier
transformation.?” With a 2D grating the resulting spectrum is a lattice of distinct peaks at
(2M/P, 21TN/P), where M and N are integers and P is the period of the grating projection
image.?® Each peak of interest is isolated by applying a mask then the area surrounding
a peak is inverse Fourier transformed to yield the corresponding image.?® Inverse Fourier
transformation of the (1,0) and (0,1) peaks yield complex images of magnitude and
phase.?® Absorption and scattering are determined from the magnitude image while the

differential phase contrast is extracted from the phase image. The central peak labelled
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(0,0) is attributed to only attenuation effects, while the intensity of the (1,0) and (0,1) peaks

result from both attenuation and scattering effects.?>26 To obtain scatter-only harmonic

images, the (1,0) and (0,1) images are normalizing by the (0,0) image.?52” The intensity

of a pure diffraction image is then given by the logarithm of this ratio, which is proportional

to the depth of X-ray penetration through the material.?® The fundamental limitation of the

spatial harmonic method is that in order to resolve the grating lines on the camera, the

size of the camera pixel needs to be equal to or less than one-third of the projected grating

period.?8
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CHAPTER 4
INTERFEROMETRIC DETECTION OF VOIDS AND GAPS IN FUSED DEPOSITION
MODELED POLYMERIC OBJECTS
4.1 Introduction

X-ray stepped-grating interferometry, initially applied in phase contrast detection,
has been reported to detect a third contrast mechanism —the darkfield. This signal is
based on small angle scattering of the waves by structures of size scales smaller than
the grating period.* This signal shows up as a loss in visibility i.e. a decrease in detected
intensities after taking into account the absorption and refraction effects on the
wavefront.?

X-ray grating interferometry is promising in medical imaging and a number of
experiments have been carried out on biological samples.?® Some studies have also
been done on samples made of concrete, cement and fiber-reinforced polymers.”® To
further explore the possible applications of this technique, our group pioneered the
extension of grating interferometry studies to additively manufactured samples.

Additive manufacturing is a fabrication process that involves layer-by-layer
addition of material(s) till the bulk object is formed. The CAD file of the object’s model is
loaded into the software of the instrument that will build the object (the printer) where the
model is pre-sliced. The printer then deposits energy or material according to the pattern

of the slices, starting with the slice at one end till the whole object is formed. Many

techniques are used to bring about the fusion of material. Examples of such techniques

The work reported in this chapter has been published as a journal article by Kio et al. titled “Non-destructive
evaluation of additively manufactured polymer objects using X-ray interferometry”, and is available online
at https://doi.org/10.1016/j.addma.2018.04.014.
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are selective laser sintering, selective laser melting, stereolithography, fused deposition
modeling etc. Generally, it has been reported that additively manufactured parts have a
mechanical weakness in the plane normal to the print bed.%1! This can be attributed to
imperfect bonding of material in the parts as higher levels of porosity are seen with
additively manufactured parts compared to conventional wrought, cast or molded
parts.1>14 These porosities may be due to thermal stresses during material solidification
or the parameter settings of the printer. Porosities or imperfections in bonding have been
detected directly by computed tomography.4-1¢ Scanning electron microscopy (SEM) and
optical microscopy have also been used for surface studies of printed or fractured
samples.®> Scattering of X-rays by porosities, cracks and gaps may contribute to the dark-
field signal making them detectable by X-ray grating interferometry.

Based on interferometer visibility, V,, the dark-field signal is calculated as an

instrument dependent parameter using the following equation:®

*(m,n) a1,*/ao,”

DF = %
Vpr(m' n) aops/a1pr .

[4.1]

Here as, is the amplitude of the inteferogram and o, is the midline value which is the

average intensity for a given pixel. Subscripts s and r refer to measurements acquired
with and without the sample, respectively.
The dark-field signal can also be expressed in an instrument independent form by the

equation:

d2
DF = exp <—2Tl’2 — e(t)) , [4.2]

where the dark-field values are related to an instrument independent parameter, ¢, the
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linear diffusion coefficient. In Equation 4.2, d is the distance between the G1 and G2
gratings, p, is the period of the G2 grating and t is the sample thickness.

The correlation length of the interferometer, &.,,-, Which is the minimum size scale
of scattering structures for which the instrument is sensitive contributes to the scattering

signal. It is calculated from the following equation,*”:18

_ A-SDDsf

corr —
D2

[4.3]

Here 4 is the wavelength of operation, p, is the period of the G2 grating. SDD.f is

generally the sample-to-detector distance but for a cone beam source and for sample

position between GO and G1, SDD.sf = (I +d — l;)d/l where [ is the GO to G1 distance

and d is the G1 to G2 distance.

Our research group has applied grating interferometry to parts fabricated by
additive manufacturing. While metallic and polymeric materials have been studied, this
work focuses on polymeric parts fabricated by fused deposition modeling.®?? In fused
deposition modeling, a semi-molten filament of material is extruded from a nozzle which
moves according to the slice pattern. This technique majorly uses thermoplastic feedstock
like acrylonitrile butadiene styrene copolymers (ABS), polylactide (PLA), polycarbonate
(PC), and polyamides (PA).2324

In this work, X-ray grating interferometry was applied to the non-destructive study
of objects fabricated through the fused deposition modeling technique. The stepped-
grating mode was applied for tomographic imaging while the single-shot mode was used
for two-dimensional imaging. This work has been published as a journal article and forms

the bulk of this chapter.??

75



The samples were two prints of the Stanford Bunny—one printed using ABS material and
the other using PLA—and an object having three flat sides and a curved side, printed
using PLA and embedded with silver tracks.?®> The dark-field images detected structures
in the object that were not detected by the absorption image. By changing the grating
orientation (grating structure plane parallel or normal to print layers), and comparing the
dark-field images obtained, the presence of anisotropic voids in the plane parallel to the
print layer was detected. Curvature analysis of the ABS bunny perimeter in reconstructed
slices was also carried out.?® This involved isolating the print perimeter and extracting the
dark-field values within this region. The results revealed a slight correlation between the
dark-field signal and curvature, meaning that highly curved regions were a bit more
susceptible to the occurrence of voids or improper layer adhesion.
4.2  Materials and Methods
4.2.1 Samples

A CAD file of the Stanford Bunny in polygon (PLY) format was edited in Meshlab
and used to print models of the bunny.?®> The model in stereolithography (STL) file format
is shown in Figure 4.1a. One bunny sample was printed in ABS on a Stratasys Dimension
Elite Printer using a filament of 1.7 mm diameter. The sample height was about 50 mm.
The printer was set to use 0.254 mm thick layers with Sparse High Density fill and SMART
support styles thus, the sample had internal support structures. Another bunny sample
was printed to a height of about 50 mm on a Makerbot Replicator printer using PLA
filament of diameter 1.75 mm. Printing was done with the high resolution setting and
internal support. For both the ABS and PLA bunnies printing was done upwards from feet

to ears.
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A third sample referred to as a “quadratic object” was designed to have a curved
side for which the differential phase was equal to a constant (0®/dx = a), with the aim of
testing the sensitivity of differential phase measurements. As seen in the STL image in
Figure 4.1b, it comprises 3 flat sides and a curved side. The quadratic was printed on a
Voxel8 printer using 1.75 mm diameter PLA filaments and silver-based ink which was
used to embed silver tracks in the sample. Based on the printer settings the quadratic
was set to be printed as a fully solid object composed of 0.19 mm thick layers. The printed
dimensions were a height of 10 mm and with reference to Figure 4.1b had a maximum
thickness of 7.3 mm along the y-axis with the width (x-axis) varying from 15.8 mm at the

bottom to 8.5 mm at the top.

mm

a b

Figure 4.1. STL images of printed samples. (a) Stanford Bunny and (b) Quadratic object.
4.2.2 Stepped-grating Interferometry with Tomography at LSU

A Talbot-Lau stepped-grating X-ray interferometer was used to acquire two-
dimensional projections at a design energy of 26 keV for tomographic volume

reconstruction. The X-ray source was a microfocus tungsten Hamamatsu X-ray tube,
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L9181-02, operated without filtering at 45 kV, 300 n A with a 40 1 m source size. The GO
and G2 analyzer gratings each had 150 x m high Au linear structures with a 4.8 um
period, on Si wafers. The G1 phase grating had 3.9 u m high Au linear structures on a Si
wafer for a = phase shift at 26 keV, and had a 4.8 x m period. The three gratings were

supplied by Microworks (Karlsruhe, Germany). The interferometer set-up for two different
grating orientation is shown in Figure 4.2. The detector was a Pilatus 100K sensitive
photon counter with square 172 um pixels in a grid of 487 columns and 195 rows.
Exposure time was typically 50 seconds. Other components of the instruments are
rotation stages to align the gratings and translation stages for optimizing the grating-to-
grating distances.

The GO-G1=G1-G2 distance was 362 mm, the third Talbot distance for a design

energy of 26 keV, giving a two-fold magnification in the grating system.?” The X-ray
source-to-detector distance was 1053 mm and the source-to-sample distance was
761 mm (sample was between G1 and G2), yielding a sample magnification of 1.38 and

an effective pixel size of approximately 125 u m. The G2 grating was translated in 12
steps, moving by 0.48 um or 0.5 ym per step, in a direction transverse to the grating

structures and the direction of beam propagation. Images were acquired at each step.
Sample and reference images (without the sample) were acquired. The sinusoidal
intensity variation in each pixel as the grating was stepped position was recorded and
used to calculate absorption, differential phase and dark-field values and corresponding
images.?® The correlation length of the interferometer, &.,,,, was determined to be

2.72 ym.
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Figure 4.2. A Talbot-Lau stepped grating interferometer with two different grating
configurations. (a) Gratings oriented for sensitivity to scattering along the laboratory Y-
axis and (b) Gratings oriented for sensitivity to scattering along the laboratory X-axis.

The gratings were oriented for sensitivity to scattering transverse to the grating
structures. Thus, for sensitivity to scattering in the vertical direction the gratings were
oriented horizontally, while for sensitivity to scattering in the horizontal direction they were
oriented vertically, Figures 4.2 and 4.2b, respectively. Two sets of tomography projections
were acquired with the PLA bunny mounted feet-down with horizontal and vertical grating
orientation, respectively. Tomography projections were acquired with the ABS bunny
mounted feet-down as well as nose-down. Horizontal and vertical grating orientations, =+
45° grating orientations, two different values for the G2 stepping increment, 0.48 um and
0.50 um were explored with the ABS bunny. Tomography projections were acquired with
the sample rotated by 180° in 2° increments. Absorption volumes were reconstructed
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using the Gridrec algorithm while the dark-field volume reconstruction involved the use of
the SIRT algorithm, both in the ASTRA GPU package.?°-3!
4.2.3 Single-Shot Interferometry at the Advanced Photon Source (APS)

Single-shot interferometry was performed at the 1-BM-B beamline at APS using a
portable X-ray interferometer.32 Only one grating, a checkerboard phase grating with a
period of 4.8 um, designed for a 1 phase shift at 18 keV was used. No source grating
was needed as the synchrotron source was vertically coherent and no analyzer grating
was needed due to the detector being of high resolution. The detector was an Andor NEO
sCMOS camera coupled to a 100 um thick Lu203:Eu scintillator by a 10 x Nikor lens. The
camera had a 2560 x 2160 array of pixels, each of size 6.5 ym x 6.5 ym. The effective
pixel size was determined to be 0.66 ym by imaging a Siemens star and other resolution
elements fabricated at APS. Exposure time was 5 seconds.

The distance from the checkerboard phase grating to the scintillator was set to
84 mm and also 251 mm corresponding to the 1st and 3rd Talbot distances for an 18 keV
design energy. The correlation length for this system was determined to be 1.705 pm and
5.094 um for the 1st and 3rd Talbot distances, respectively. Single-shot interferometry
was used to study the quadratic sample. However, due to the narrow beam size hence
small field of view (1.25 mm x 1.19 mm), only a small portion specifically the upper left
corner of the quadratic sample was imaged, Figure 4.1.

4.2.4 SEM Imaging
SEM imaging was carried out using a FEI Quanta™ 3D FIB-SEM instrument (FEI,

Hillsboro, OR) at LSU. The sample was a portion of the ABS bunny ear prepared by

freeze fracture, coated with platinum and imaged at an accelerating voltage of 2 kV.
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4.2.5 Data Processing

Two-dimensional absorption and dark-field images were compared using line
probes. Processing of reconstructed absorption and dark-field volumes involved the
application of a mask to exclude stair-step surface roughness and the internal support
structures. The first step was the generation of a mask from the absorption volume to
focus on the sample perimeter. This involved binarization of the volume, dilation by three
pixels then erosion by four pixels to minimize surface roughness that could contribute to
the dark-field signal. To exclude the internal support structure a duplicate mask eroded
by an additional six pixels was subtracted from the original mask. The resulting hollow
mask was then applied to the absorption and dark-field volumes. The reconstructed
volumes were rendered in Avizo 9.

The darkfield images of the ABS bunny acquired with the gratings in the horizontal
orientation seemed to show more intense signal intensities at the more curved regions of
the sample. This informed a curvature analysis to explore the correlation between
curvature and the dark-field signal. The curvature analysis involved determining the
coordinates of the perimeter pixels in a reconstructed slice, calculating the curvature for
each pixel and comparing with the dark-field signal at each pixel. The curvature was
calculated based on the following definition of curvature in a space plane,?®

_ |xlyll _ xllyll
N COEN DR

[4.4]

where the space plane is described by a function f(x(t),y(t)) with x and y being the
coordinates and t an independent variable. The pseudocode for the curvature analysis is
provided in Appendix B. In summary, a reconstructed absorption slice is identified,

binarized, magnified then smoothed. The {x,y} coordinates are detected, demagnified
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then ordered based on their position in the perimeter of the slice. Ordering involved a
nearest point detection method which was rather slow. The curvature for corresponding
{x, y} coordinates is then calculated. Dark-field and absorption values used are the mean
non-zero values within a radius of two pixels of the {x, y} coordinates. Thus, the curvature,
dark-field and absorption values for {x,y} coordinates of the sample perimeter for the
correlation investigation were obtained. Curvature analysis was however limited to the
top portion of the reconstructed bunny slices namely the head and neck as perimeter
slices from the lower portion were incomplete due to parts of the bunny e.g. the rump
being outside the field-of-view.
4.3 Results
4.3.1 The ABS Stanford Bunny

The reconstructed volumes for the ABS bunny mounted feet-down i.e. such that
the print layers are normal to the axis of sample rotation, Y, (Figure 4.1b) are shown in
Figure 4.3 with opacities of 20%. The reconstructed absorption volume of the ABS bunny
is shown in Figure 4.3a and was acquired with an instrument set-up where the gratings
were oriented horizontally. The volume for a vertical grating orientation is not shown as
the absorption signal is independent of grating orientation. As can be seen, the recorded
absorption intensities are nearly uniform. Reconstructed dark-field volumes, are shown
for two grating orientations—horizontal and vertical—in Figures 4.3b and 4.3c,
respectively. Unlike the absorption signal, the dark-field signal detected by the
interferometer is dependent on the grating orientation with the interferometer more
sensitive to scattering in a direction transverse to grating structures. The horizontal

grating orientation makes the interferometer more sensitive to scattering in the vertical
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direction while the vertical grating orientation makes the interferometer more sensitive to
scattering in the horizontal direction. Comparison of both dark-field images show higher
intensities occur more in Figure 4.3b than in Figure 4.3c, indicative of the sample being
more efficient in scattering X-rays in the vertical direction than in the horizontal direction.
This further indicates that more scattering sites in the sample have a long axis aligned in

the horizontal direction than in the vertical direction.
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Figure 4.3. Volume rendering of reconstructed absorption and dark-field volumes with
20% opacity. (a) Absorption volume obtained with gratings oriented horizontally.
Intensities are nearly constant. (b) Dark-field volume obtained with gratings oriented
horizontally. (c) Dark-field volume obtained with gratings oriented horizontally. The dark-
field signal is expressed as linear diffusion coefficient, ¢, in mt. By comparison of images
(b) and (c), the higher intensities obtained in (b) indicate that the sample is more effective
in scattering X-rays in the vertical direction than in the horizontal direction.
Two-dimensional absorption and dark-field projections of higher magnification,

76 pym, were compared using a line probes, Figure 4.4. The absorption image, Figure
4.4a, detects the filament layers composing the sample. The effect of changing grating
orientation is glaring in the dark-field images (Figures 4.4 b and 4.4c) and the more
intense X-ray scattering obtained with the horizontal grating orientation suggests
scattering centers aligned parallel to the filament layers. Line probes across the three

projections (Figures 4.4a, 4.4 b and 4.4c) reveal that the absorption and dark-field

intensities alternate in an opposing manner such that absorption maxima occur at dark-
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field minima and vice versa (Figures 4.4d). Since absorption maxima should coincide with
higher concentrations of material, the trend observed in the line probes indicate that while
the absorption peaks correspond to the center of filament layers, the dark-field signal

peaks arise from in-between filaments layers.
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Figure 4.4. Absorption and dark-field projections of the ABS bunny with line probe plot.
(a) Absorption and (b) dark-field projections with horizontal gratings. c) Dark-field
projection with vertical gratings. (d) Line probe plot for projections (a), (b) and (c).
Absorption and dark-field signals alternate in opposing fashion indicating that scattering
(dark-field) arises from between filaments layers. Note that the width of the peaks is about
0.25 mm corresponding to the layer thickness setting of the printer.
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A portion of the ear of another Stanford Bunny, also printed from ABS, was
subjected to SEM imaging. The SEM images reveal gaps or cracks between filament
layers with longitudinal axes of the right orientation to contribute to scattering in the

vertical direction, Figure 4.5.

Figure 4.5. SEM image of a portion of an ABS bunny ear. Inset is a magnified image and
reveals gaps between and parallel to the print layers.

4.3.2 The PLA Stanford Bunny

Reconstructed absorption and dark-field image modalities of the PLA bunny are
shown in Figure 4.6 with 20% opacity. The dark-field images for the horizontal and vertical
grating orientations are yet again clearly different with higher signal intensities
characterizing the image for the horizontal grating orientation. Unlike with the ABS bunny
however, the scatterers detected for the horizontal grating orientation seem to be
homogenously distributed about the sample. It should be noted that the ABS and PLA
samples also differ in terms of the printer used to print them; a Stratasys Dimension Elite

printer for the ABS sample and a Makerbot printer for the PLA sample.
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Figure 4.6. Reconstructed absorption and dark-field volumes for Stanford Bunny printed
in PLA. (a) Absorption and (b) dark-field volumes with horizontal gratings. (c) Dark-field
volume with vertical gratings. Opacity set to 20%.

4.3.3 The Quadratic Sample

Projections of the absorption and dark-field image modalities obtained using the
single-shot interferometry technique are shown in Figure 4.7. In this technique no
reorientation of gratings is needed as a checkerboard grating is used and scattering in a
given direction is extracted by spatial harmonic analysis of the recorded raw projection.
Two Talbot distances 84 mm and 251 mm corresponding to the 1st and 3rd Talbot
distances for an 18 keV design energy, were probed. The correlation lengths were
determined to be 1.705 pum and 5.094 um for the 1st and 3rd Talbot distances,
respectively. As mentioned earlier, the absorption image modality is independent of X-
ray scattering direction and this can be seen in the near similar absorption images for the
two Talbot distances probed (Figure 4.7a and 4.7d). Comparison of the dark-field images
when scattering in the vertical and horizontal directions are probed reveal that scattering
is more effective in the vertical direction indicating filament-to-filament print defects with
orientation similar to that observed in both Stanford Bunny tomography volumes. As
Expected, the scattering intensities increase from the 1st to the 3rd Talbot distance due

to increase detection of scatterers.
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Figure 4.7. Absorption and dark-field projections of the PLA quadratic object obtained
using single-shot interferometry. (a) Absorption projection, (b) dark-field projection of the
vertical harmonic, and (c) dark-field projection of the horizontal harmonic acquired at the
1st Talbot distance. (d) Absorption projection, (e) dark-field projection of the vertical
harmonic, and (f) dark-field projection of the horizontal harmonic acquired at the 3rd
Talbot distance. Increased detection of scatterers observed as the Talbot distance is
increased. Apart from the slight beam divergence effect, the absorption images are
similar.

4.3.4 Curvature Analysis

As described in Section 4.2.5, a curvature analysis was carried out on the
reconstructed slices of the ABS bunny. Following the application of the mask, the resulting
absorption and dark-field slices are shown, with two traces, in Figures 4.8a and 4.8b. The
pink trace is the interpolation function for the perimeter derived from the absorption image.
The blue trace indicates the (row, column) coordinate centers used for intensity selection
of absorption and dark field values within a radius of two pixels. Fig. 4.8c shows the

reconstruction of the shape of the slice from the curvature values for corresponding {x, y}
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Figure 4.8. Curvature analysis. (a) Absorption slice (b) Dark-field slice for horizontal
grating orientation. The blue trace is the sample perimeter derived form the mask while
the pink trace show the coordinates of pixels selected for absorption and linear diffusion
coefficients. (c) Reconstructed perimeter from calculated curvature and corresponding
{x,y} coordinates. (d) Plot of variation of dark-field with radii (inverse of curvature).
Curvature values were put in groups. The plot shows a slight correlation between
curvature and dark-field value as slightly higher mean dark-field values occur for radii of
3 mm or less.
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coordinates which is in agreement with the original slice as inspected in ImageJ. The
results of the curvature analysis on sixty-six slices are presented in Figure 4.8d where the
dark-field values are in units of linear diffusion coefficients and curvature values have
been converted to radii. The inverse relationship between curvature with radius means
lower radii have higher curvature values. Inspection of the data plot in Figure 4.8d reveals

a slightly higher mean of dark-field values for radii of 3 mm or less.

4.4 Conclusions

Anisotropy in the tensile strength of additively manufactured parts has been
reported and usually attributed to improper adhesion of print material. This has been
revealed with conventional tomography and microscopic imaging of fractures samples.
However, x-ray grating interferometry —the dark-field signal in particular— has the
advantage of revealing porosities on a size scale smaller than the detector pixels can and
also provide some information on their orientation. A comparison of the images obtained
with horizontal gratings with that obtained with vertical gratings shows that scattering is
dominated by structures with elongated dimensions in the plane of the print layers. Thus,
the orientation sensitivity of the dark-field signal provides some direction in determining
the mechanism or source of porosity formation in additive manufacturing systems. The
ABS dark-field image with grating in the horizontal position suggested a concentration
anisotropic scatterers in specific regions like the bunny forehead and ears. This prompted
a curvature analysis of the sample perimeter and showed a slight correlation between the

darkfield signal and perimeter curvature.

89



References

Yashiro, W.; Terui, Y.; Kawabata, K.; Momose, A., On the origin of visibility
contrast in x-ray Talbot interferometry. Optics Express 2010, 18 (16), 16890-
16901.

Pfeiffer, F.; Bech, M.; Bunk, O.; Donath, T.; Henrich, B.; Kraft, P.; David, C., X-
ray dark-field and phase-contrast imaging using a grating interferometer. Journal
of Applied Physics 2009, 105 (10), No. 102006.

Yaroshenko, A.; Hellbach, K.; Yildirim, A. O.; Conlon, T. M.; Fernandez, |. E.;
Bech, M.; Velroyen, A.; Meinel, F. G.; Auweter, S.; Reiser, M.; Eickelberg, O.;
Pfeiffer, F., Improved In vivo Assessment of Pulmonary Fibrosis in Mice using X-
Ray Dark-Field Radiography. Scientific Reports 2015, 5, No. 17492.

Lim, H.; Park, Y.; Cho, H.; Je, U.; Hong, D.; Park, C.; Woo, T.; Lee, M.; Kim,
J.; Chung, N.; Kim, J.; Kim, J., Experimental setup and the system performance
for single-grid-based phase-contrast x-ray imaging (PCXI) with a microfocus x-ray
tube. Optics Communications 2015, 348, 85-89.

Pfeiffer, F.; Bech, M.; Bunk, O.; Kraft, P.; Eikenberry, E. F.; Broénnimann, C.;
Grunzweig, C.; David, C., Hard-X-ray dark-field imaging using a grating
interferometer. Nature materials 2008, 7 (2), 134-137.

Eggl, E.; Schleede, S.; Bech, M.; Achterhold, K.; Loewen, R.; Ruth, R. D;
Pfeiffer, F., X-ray phase-contrast tomography with a compact laser-driven
synchrotron source. Proceedings of the National Academy of Sciences 2015, 112
(18), 5567-5572.

Sarapata, A.; Ruiz-Yaniz, M.; Zanette, |.; Rack, A.; Pfeiffer, F.; Herzen, J., Multi-
contrast 3D X-ray imaging of porous and composite materials. Applied Physics
Letters 2015, 106 (15), No. 154102.

Prade, F.; Chabior, M.; Malm, F.; Grosse, C. U.; Pfeiffer, F., Observing the setting
and hardening of cementitious materials by X-ray dark-field radiography. Cement
and Concrete Research 2015, 74, 19-25.

Hannesschlager, C.; Revol, V.; Plank, B.; Salaberger, D.; Kastner, J., Fibre
structure characterisation of injection moulded short fibre-reinforced polymers by
X-ray scatter dark field tomography. Case Studies in Nondestructive Testing and
Evaluation 2015, 3, 34-41.

90



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Frazier, W. E., Metal Additive Manufacturing: A Review. Journal of Materials
Engineering and Performance 2014, 23 (6), 1917-1928.

Seppala, J. E.; Migler, K. D., Infrared thermography of welding zones produced by
polymer extrusion additive manufacturing. Additive manufacturing 2016, 12, 71-
76.

Ziemian, C.; Sharma, M.; Ziemian, S., Anisotropic mechanical properties of ABS
parts fabricated by fused deposition modelling. In Mechanical engineering,
InTechOpen: 2012.

Sallica-Leva, E.; Jardini, A. L.; Fogagnolo, J. B., Microstructure and mechanical
behavior of porous Ti—-6Al-4V parts obtained by selective laser melting. Journal of
the Mechanical Behavior of Biomedical Materials 2013, 26, 98-108.

Waller, J. M.; Parker, B. H.; Hodges, K. L.; Burke, E. R.; Walker, J. L.
Nondestructive evaluation of additive manufacturing state-of-the-discipline report;
Nov 2014.

Maskery, I.; Aboulkhair, N. T.; Corfield, M. R.; Tuck, C.; Clare, A. T.; Leach, R.
K.; Wildman, R. D.; Ashcroft, I. A.; Hague, R. J. M., Quantification and
characterisation of porosity in selectively laser melted Al-Sil0-Mg using X-ray
computed tomography. Materials Characterization 2016, 111, 193-204.

Seifi, M.; Salem, A.; Beuth, J.; Harrysson, O.; Lewandowski, J. J., Overview of
Materials Qualification Needs for Metal Additive Manufacturing. JOM 2016, 68 (3),
747-764.

Strobl, M., General solution for quantitative dark-field contrast imaging with grating
interferometers. Scientific Reports 2014, 4, No. 07243.

Betz, B.; Harti, R. P.; Strobl, M.; Hovind, J.; Kaestner, A.; Lehmann, E.; Van
Swygenhoven, H.; Grinzweig, C., Quantification of the sensitivity range in neutron
dark-field imaging. Review of Scientific Instruments 2015, 86 (12), No. 123704.

Brooks, A. J.; Yao, H.; Yuan, J.; Kio, O.; Lowery, C. G.; Markdtter, H.; Kardjilov,
N.; Guo, S.; Butler, L. G., Early detection of fracture failure in SLM AM tension
testing with Talbot-Lau neutron interferometry. Additive Manufacturing 2018, 22,
658-664.

91



20.

21.

22.

23.

24,

25.

26.

27.

28.

29.

Brooks, A. J.; Hussey, D. S.; Yao, H.; Haghshenas, A.; Yuan, J.; LaManna, J.
M.; Jacobson, D. L.; Lowery, C. G.; Kardjilov, N.; Guo, S.; Khonsari, M. M.;
Butler, L. G., Neutron interferometry detection of early crack formation caused by
bending fatigue in additively manufactured SS316 dogbones. Materials & Design
2018, 140, 420-430.

Brooks, A. J.; Ge, J.; Kirka, M. M.; Dehoff, R. R.; Bilheux, H. Z.; Kardijilov, N.;
Manke, I.; Butler, L. G., Porosity detection in electron beam-melted Ti-6Al-4V using
high-resolution neutron imaging and grating-based interferometry. Progress in
Additive Manufacturing 2017, 2 (3), 125-132.

Kio, O. J.; Yuan, J.; Brooks, A. J.; Knapp, G. L.; Ham, K.; Ge, J.; Van Loo, D.;
Butler, L. G., Non-destructive evaluation of additively manufactured polymer
objects using X-ray interferometry. Additive Manufacturing 2018, 24, 364-372.

Ligon, S. C.; Liska, R.; Stampfl, J. r.; Gurr, M.; Mulhaupt, R., Polymers for 3D
printing and customized additive manufacturing. Chemical reviews 2017, 117 (15),
10212-10290.

Domingo-Espin, M.; Puigoriol-Forcada, J. M.; Garcia-Granada, A.-A.; Lluma, J.;
Borros, S.; Reyes, G., Mechanical property characterization and simulation of
fused deposition modeling Polycarbonate parts. Materials & Design 2015, 83, 670-
677.

The Stanford 3D Scanning Repository. Stanford University Computer Graphics
Laboratory: 1994.

Rovenski, V., Modeling of Curves and Surfaces with MATLAB. Springer: 2010.

Herzen, J., A grating interferometer for materials science imaging at a second-
generation synchrotron radiation source [PhD Thesis]. Hamburg University 2010.

Marathe, S.; Assoufid, L.; Xiao, X.; Ham, K.; Johnson, W. W.; Butler, L. G.,
Improved algorithm for processing grating-based phase contrast interferometry
image sets. Review of Scientific Instruments 2014, 85 (1), No. 013704.

Palenstijn, W. J.; Batenburg, K. J.; Sijbers, J. In The ASTRA tomography toolbox,
13th International Conference on Computational and Mathematical Methods in
Science and Engineering, CMMSE, 2013; pp 1139-1145.

92



30.

31.

32.

Marone, F.; Stampanoni, M., Regridding reconstruction algorithm for real-time
tomographic imaging. Journal of synchrotron radiation 2012, 19 (6), 1029-1037.

Gilbert, P., Iterative methods for the three-dimensional reconstruction of an object
from projections. Journal of theoretical biology 1972, 36 (1), 105-117.

Assoufid, L.; Shi, X.; Marathe, S.; Benda, E.; Wojcik, M. J.; Lang, K.; Xu, R;;
Liu, W.; Macrander, A. T.; Tischler, J. Z., Development and implementation of a
portable grating interferometer system as a standard tool for testing optics at the
Advanced Photon Source beamline 1-BM. Review of Scientific Instruments 2016,
87 (5), No. 052004.

93



CHAPTER 5
X-RAY INTERFEROMETRIC STUDIES ON THE EFFECT OF FLAME
RETARDANT INCORPORATION INTO POLYMERIC OBJECTS BY
FUSED DEPOSITION MODELING

5.1 Introduction

A wide variety of common plastics are flammable and their flammability needs to
be addressed where fire safety is a concern.! Examples of such plastics include
acrylonitrile butadiene styrene (ABS), low density polyethylene (LDPE), polycarbonate,
polystyrene, high impact polystyrene (HIPS), polyvinyl chloride, polyurethanes etc.!
These plastics are usually desirable due to one or more favorable material characteristics.
For example, ABS has properties of insulation, easy processing, shiny surface, thermal
stability, good mechanical strength, resistance to oil, resistance to weather and high
impact strength.?

Flame retardants can make ignition more difficult and/or decrease the rate of flame
propagation when an otherwise flammable material is exposed to a source of heat.?
Introduction of flame retardants into flammable plastics is mostly done by melt blending
as it is less expensive and does not degrade the physical properties for which the plastic
had been chosen in the first place.*® Fire retardancy is generally imparted to ABS this
way.® The common flame retardants for ABS are halogen-containing compounds such as
decabromodiphenyl oxide (DBDPO), tetrabromobisphenol A (TBBPA) and 1,2-bis (2,4,6-
tribromophenoxy) ethane (BTBPOE).? In a study on the heat release of ABS in the
presence of different concentrations of a brominated flame retardant (1,2-bis
pentabromophenyl ethane), antimony oxide and zinc borate; peak heat release values

decreased by 60-73 %.!
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Another way to make polymeric objects less flammable is through the production
or accumulation of a thermally stable surface layer, able to act as a barrier to mass
(oxygen, smoke) and/or heat transfer.>’ Such a layer is built during the early stage of
combustion as a consequence of the decomposition of the polymer surface layer in the
presence of a fire retardant.” The flame retardant can be introduced to the surface by
intumescent coatings, layer by layer assembly etc. Intumescent materials swell up and
expand over the surface of the material when exposed to heat above a given
temperature.® In the application of intumescent coatings, adhesion and retention of fire
retardancy over time are concerns.” In layer-by-layer assembly, flame retardant species
are adsorbed on a substrate by taking advantage of a specific interaction (e.qg.
electrostatic interactions) between the two.’

Exposure to heat, moisture, UV or gamma irradiation and abrasion can lead to the
deterioration of the flame retardancy of polymers through leaching out of additives,
chemical degradation of the flame-retardant system, and chemical or physical
modification of the polymer structure.®

Evaluating the flammability of a material can be done in a variety of ways and
depends on the intended application of the material. A number of nationally or
internationally standardized flammability tests are known. Common examples are the UL-
94 flame test, the limiting oxygen index and the glow-wire ignition test.%** Another test,
the cone calorimeter test is useful for extensive information of the burning behavior like
heat release, ignitability, mass loss, and smoke release by burning materials.! X-ray K-
edge tomography was used to study high impact polystyrene (HIPS) samples containing

a brominated flame-retardant to determine the concentrations of antimony and bromine
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on burning.’® In the study of the flame retardancy performance of a brominated flame
retardant, X-ray single-shot interferometry enabled real-time imaging of heated
samples.'® Three-dimensional tomography imaging has been used to study homogeneity
of flame retardant-polymer blends.":18
In this work, the flame retardant was restricted to specific portions of an otherwise
flammable polymeric sample through fused deposition modeling; an additive
manufacturing technique. Effects of heat propagation on the sample microstructure were
then studied by X-ray grating interferometry. Near-real time two-dimensional images of
heated samples were acquired with synchrotron X-rays. A laboratory system was used
for tomographic imaging of samples post-heating. By varying the sample to detector
distance, different correlation lengths were probed.
5.1.1 Phase-Step Error Due to Irreproducible Nanometer Stage Motion

Phase shifting interferometry is generally regarded as the most accurate phase
measurement technique.'® Due to the very small distances involved accuracy is very
important. Inaccuracies in predetermined shifts can result from a faulty or poorly
calibrated translation motor and vibration of instruments’ component parts. Since the
measured signal is supposed to represent the effect of the introduced phase shift, shift
inaccuracies can lead to reduced image contrast and noisy datasets or images. Data
acquired at LSU CAMD for this dissertation showed fringe-like noise after processing.
This is by no means exclusive to the CAMD interferometer as some data acquired at the
advanced photon source (APS), Chicago and more recently at Helmoltz Zentrum Berlin

(HZB) exhibited a lot of residual fringes.
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To achieve the very small translations involved in stepped-grating interferometry,
the interferometer at LSU CAMD was equipped with a Physik Instrument P-542.2CL XY
stage with a resolution of 0.7 nm in closed loop mode. The stage itself cost about $13,000
but with the chassis and amplifier the cost came to about $35,000. For a grating with a
period of 4.8 um, 12 steps each of 0.48 um was typically used to cover slightly more than
one period of the sinusoidal signal. It was estimated that motion errors of 1% or 48 nm,
would be acceptable.

According to the data sheet for the P-542.2CL XY stage, the travel range was 200
pum with a linearity error of 0.03%.2 Thus, over the travel range of 5 uym, the linearity error
should not exceed 1.5 nm. The repeatability error was less than 5 nm. With these
specifications the instrument was expected to exceed our needs. However, after
successful image acquisition for less than two years the dark-field images obtained from
the CAMD interferometer began to suffer from fringes.

Stepped grating interferometry images acquired at APS also suffered from fringes.
Interestingly, the APS system utilized a similar Physik Instrument P-542.2CL XY stage.
Investigation of the fringe structures in both cases strongly indicated errors in the P-
542.2CL XY stage performance. When the sinusoidal interferogram was fitted with
variability allowed in the motor position, the best fits indicated stage errors on the order
of 100 to 200 um. The CAMD stage was returned to Physik Instrument for re-calibration
and has been returned to CAMD. Unfortunately, reduced synchrotron performance has

not allowed a test of the re-calibrated stage.

a https://www.physikinstrumente.com/en/products/nanopositioning-piezo-flexure-stages/xy-piezo-flexure-
stages/p-5412-p-5422-xy-piezo-stage-201530
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5.1.2 Phase-step Error Correction

Many attempts at the removal or reduction of fringe-like artifacts have been
reported in published works showing that fringe artifacts have been around for a long
time. Correction for errors in shift are largely composed of using spatial-carrier
interferograms and iterative calculations of the phase of the wavefront.'® For an iterative
calculation it is important that the starting value is close to the true value. An example of
the iterative methods is the least squares approach. A self-tuning phase-shifting algorithm
was developed and reported to require very few iterations.?° Combinations of the least
squares approach with other algorithms have also been reported.?*??> For the removal or
reduction of residual fringes in processed data having a correlation to the fringe pattern
in the raw data, an algorithm based on the determined correlations has been reported.?3
An algorithm based on determining a projection angle theta, for a set of interferograms
acquired over a 21 phase-shift, at which a Radon transform is applied has also been
reported.?* The aim was to obtain a single sinusoidal waveform of the fringe patterns
(interferograms) characterized by a similar amplitude and frequency.?*

Phase-stepping correction based on Fourier-transform methods have been
suggested; here no a priori information or initial guess values of the phase steps are
required.?>26 Fourier-based methods require a spatial carrier frequency.2®

To avoid instrumental instabilities and other challenges associated with
mechanical phase-stepping, Harmon et al. reported an electromagnetic phase-stepping
technique where phase-stepping was achieved by moving the X-ray beam with the aid of
a solenoid coil.?” This mechanical-motion-free technique was found to be of similar

sensitivity as the mechanical phase-stepping technique.?®

98



The near-real time two-dimensional images acquired using the CAMD synchrotron
interferometer were tainted by fringe artifacts. Least-squares fitting of raw interferograms
to determine the actual phase-shifts was attempted. The first step was to determine if
there was a pattern in the fringe spatial distribution across interferograms. In the absence
of any pattern the vectorized least squares algorithm, used for fitting interferograms in
each pixel, was modified to accommodate small deviations in the grating steps. This
algorithm is somewhat similar to that described by de Marco et al.?® The outcome was
unsuccessful. Another approach involved simulating fringe noise in an image by varying
factors such as phase wrap, grating tilt and grating step errors; followed by an attempt to
remove the fringes with an iterative vectorized least square algorithm. Simulated fringes
with phase wrap, grating step errors and zero tilt error were successfully corrected. This
algorithm was then applied to experimental data and resulted in only a slight reduction in
the fringes. Attempts were also made to “work around” the fringes in a bid to extract
measurements from the filament-filament interface in the dark-field data but without
success. Though efforts to remove or reduce the fringe artifacts in the CAMD data were
unsuccessful thus making the images not ideal for quantitative analysis, some qualitative
information can be extracted from these uncorrected two-dimensional images.

5.2 Materials and Methods
5.2.1 Samples

ABS and ABS-flame-retardant (ABSFR) filaments were purchased from Filabot.
The ABSFR filament contained a brominated epoxy-oligomer flame retardant. Using a
Flashforge Creator Pro dual filament printer, blocks of design dimensions 20 mm x 10

mm x 3mm were printed. Printed dimensions turned out to be 20.2 +0.3 mm x 9.4 +0.3
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mm x 2.9 £0.3 mm. The blocks were of different composition —~ABS/ABSFR layers in ratio
3:1, ABS/ABSFR layers in ratio 1:1 and pure ABSFR. The printer nozzle temperatures
were 235°C and 230°C for the ABS and ABSFR filaments, respectively. The build plate
temperature was 60°C and the layer thickness was set to 0.27 mm. Other parameters
are; infill 100%, feed rate 80mm/s and travel federate 150 mm/s.

5.2.2 Two-Dimensional Imaging with A Talbot-Lau Stepped-Grating Interferometer

A Talbot-Lau stepped-grating interferometer set-up at LSU CAMD was used to
acquire two-dimensional near-real time images of heated samples. Using a Si(111)
double crystal Laue monochromator, 38.8 keV synchrotron X-rays were supplied to the
system. The GO and G2 analyzer gratings each had >200 ym high Au linear structures
with a 4.8 pym period, on 200 um thick Si wafers. The G1 phase grating had 6.7 um high
Au linear structures on a 200 um Si wafer for a m phase shift at 35 keV, and had a 4.8 ym
period.

The GO—G1=G1—G2 distance was 524 mm, the third Talbot distance for the
effective energy of about 38 keV, and the sample was placed between G1 and G2, 335
mm downstream of G1. The gratings were oriented horizontally. The detector system was
a Pco.edge 5.5 camera coupled to a 250 ym thick LuAg(Ce). The camera had a 2560 x
2160 array of pixels, each 6.5 um x 6.5 ym in size and was operated in the 4 by 4 binning
mode. With optical magnification the effective pixel size was determined to be
approximately 15 ym. The heating system was a modified glow wire set-up where the
narrow protrusion of a heater applied a force of 1 N in an orientation normal to the print
layers. Heating was for 2 s after which the G2 grating was translated in 15 steps, moving

by 0.48 ym per step, in a direction transverse to the grating structures and beam
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propagation axis. Images were acquired at each step with each exposure lasting 2 s.
Heating was repeated for a total of thirty times with a set of stepped-grating images
acquired in-between heating. Reference images (without the sample) and dark images
(with X-rays off), were also acquired. Two heating temperatures, 265°C and 275°C, were
probed.

5.2.3 Tomography Imaging with A Talbot-Lau Stepped-Grating Interferometer

This involved the use of a laboratory-based W. M. Keck stepped-grating
interferometer setup at LSU. The X-ray source was a microfocus tungsten Hamamatsu
X-ray tube, L9181-02, operated with a source size of 40 ym at 45 kV and 290 pA.
Operation was without any filtering and each exposure time was 8 s. All three gratings
had a period of 4.8 ym and comprised periodic linear gold structures on silicon wafers.
The G1 phase grating had 3.9 pm thick linear structures, for a T phase shift at 26 keV.
The GO and G2 absorption gratings had 150 ym thick linear structures.

The detector was a nitrogen-cooled Pilatus 100k photon counter with 172 pym sized
pixels, in a 487 x 195 array. The GO—G2 distances was 725 mm and G2 was mounted
in-between G1 and G2 for a grating magnification of 2. Thus, the third Talbot distance
was used. The samples were the heated ABS/ABSFR samples from section 5.2.2 above.
The samples were placed between G1 and G2 and imaged at four positions—80 mm, 90
mm, 100 mm and 110 mm—upstream from G2. For the set of distances, autocorrelation
lengths probed were 0.78 ym, 0.88 uym, 0.98 ym and 1.08 um. The effective pixel size
was ~ 150 um. The source to detector distance was 860 mm and the G2 to detector

distance was 20mm. The sample was rotated by 190° in 1° increments and the G2 grating
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translated by 12 steps that covered over one fringe period. Images without the samples
were acquired as reference images.

5.2.4 Two-dimensional Correlation Length Scanning Experiment with A Talbot-
Lau Stepped-Grating Interferometer.

To probe different correlation lengths, a Talbot-Lau Stepped-Grating
Interferometer setup at LSU CAMD was used. A Si (111) double crystal Laue
monochromator was used to select X-rays of 38 keV and the detector was a Pco.edge
5.5 camera coupled to a 250 um thick LuAg(Ce) scintillator. The camera had a 2560 x
2160 array of pixels, each of size 6.5 um x 6.5 ym and was operated in the 4 by 4 binning
mode. The effective pixel size was determined to be ~16.6 um with optical magnification.
The GO and G2 analyzer gratings each comprised 200 pm high Au linear structures with
a 4.8 uym period, on graphite wafers. The G1 phase grating had 6.7 um high Au linear
structures on a 200 ym Si wafer for a ™ phase shift at 35 keV, and had a 4.8 um period.

The G0—G1=G1—G2 distance was 540 mm for an effective energy of 38.8 keV.
The sample was positioned between G1 and G2 and the sample-to-detector distance was
scanned, from 31 mm to 281 mm in steps of 10 mm by moving the sample. Thus,
correlation lengths of 0.21 um to 1.87 um were probed. Operation involved heating the
sample with a modified glow wire set-up where the narrow heating element applied a
force of 1N to the sample in a direction normal to the print layers. Heating was for 2 s
after which phase-stepping images were acquired at each G1 grating position. Imaging
was performed over 4 cycles of heating. Reference images were acquired at the
beginning of the experiment and after each heating. For each sample design, two heating

temperatures of 265°C and 275°C were used.
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5.2.5 Data Processing

The data obtained in Sections 5.2.2 and 5.2.4 were processed in Mathematica and
visualized with Avizo. Mathematica processing involved reading in the reference and
samples files and calculating the absorption, differential phase and dark-field values for
each pixel. Sample codes used are provided in Appendix C.1. Images acquired in the
tomography experiment (Section 5.2.3) were processed in the Tomopy software package
where image reconstruction was executed using the SIRT and Gridrec algorithms.
Sample codes for processing in Tomopy are provided in Appendix C.2 and C.3. By
definition, the calculated visibility/dark-field signal should be <1 when small angle
scattering occurs; since air is ideally a non-scatterer, the signal in air should be ~1. Due
to the requirements that the sample exterior be set to O for volume reconstruction, the
dark-field signal for the reconstruction volumes was set to 1-DF. Therefore, higher values
in the dark-field region correspond to increased scattering. Avizo was used for image
visualization of two-dimensional and tomographic images. To exclude surface scattering
contribution to the dark-field volumes, a mask was created from the absorption volume
and applied to the dark-field volume. Mask creation involved binarization, dilation by one
pixel and erosion by two pixels.
5.3 Results
5.3.1 Two-dimensional Imaging at One Position with Repetitive Heating

The intention of repeatedly heating a sample (30 cycles) with immediate imaging
after each heating session was to track the effect of heat on the sample. Due to a faulty
grating translation stage, the grating position was not reproducible thus a mismatch in the

grating position for reference and sample data. This resulted in fringe artifacts in the
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processed dark-field, absorption and differential phase images. However, by focusing on
the higher intensity ABS flame retardant composite (ABSFR) layers, some useful

information was obtained from the absorption images. Figure 5.1 shows the images

0.70

Figure 5.1. Absorption images of a 1:1 ABS/ABSFR sample heated at 265°C. (a) Image
of a pristine sample. Sixteen ABSFR layers detected. (b) Image of the sample in (a) after
the thirtieth heat application. Two full length ABSFR layers were lost. Point of heat
application was at the left side. The seeming change in the size of higher intensity layers
is due to fringe artifacts.

acquired for a 1:1 ABS/ABSFR sample heated at 265°C. Before the onset of heating
(Figure 5.1a), sixteen ABSFR layers were detected but after the 30th heating cycle two
layers were no longer detected (Figure 5.1b). The layers had mostly melted off due to

direct contact with the heater. The width of the layers should be disregarded as it is due

to fringe artifacts. Regardless of the width it is clear that a few layers have been lost.
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Images acquired for a 3:1 ABS/ABSFR sample heated at 275°C are shown in
Figure 5.2. The wider distance between ABSFR layers (three ABS layers in-between
ABSFR layers versus one in-between for a 1:1 ABS/ABSFR sample), led to only one
ABSFR layer coming into direct contact with the heater. After thirty heating cycles the

layer is mostly undetected (Figure 5.2).

Figure 5.2. Absorption images of a 3:1 ABS/ABSFR sample heated at 275°C. (a) Image
of a pristine sample. Seven ABSFR layers detected. (b) Image of the sample in (a) after
the thirtieth heat application. The first ABSFR layer almost completely lost. Heat was
applied from the left.
5.3.2 Tomography of Samples after Thirty Cycles of Heating

The reconstructed volumes were processed and displayed using Avizo software.
Fully opaque mid-sectional views of the volumes are shown in all the images presented.
The absorption images for samples with ABS/ABSFR ratios 1:1 and 3:1 are shown in

Figure 5.3. The intensity distribution is as expected for the 3:1 and the 1:1 composition,

with the lower intensity region arising from pure ABS layers and higher intensity regions
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arising from the brominated flame retardant and ABS composite layers. A comparison of

the absorption images of similar samples but at different heating temperatures seem to
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Figure 5.3. Sectional views of absorption volumes for 1:1 and 3:1 ABS/ABSFR samples.
(a) Image for a 1.1 ABS/FR sample heated at 265°C and (b) heated at heated at 275°C.
(c) Image for a 3:1 ABS/FR sample heated at 265°C and (b) heated at heated at 275°C.
All four images are for a SDD of 80 mm. Heat application was at the right side.
reveal no visible differences. Correlation lengths are irrelevant in absorption imaging as
the transmitted signal remains the same regardless of the sample-to-detector distance
(SDD).

The dark-field volumes are a bit more interesting. It should be noted that scattering

signal can arise from voids or lumps/particles in the sample. Surface scattering effects

have been largely excluded by applying a mask as described in Section 5.2.5. The
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samples showed a variation in the measured dark-field signal as the correlation length

(SDD) was changed.

Figure 5.4 shows volume renderings of a sectional view of the dark-field volumes
for a sample composing 1:1 layers of ABS and ABSFR heated at 265°C. At SDD 80 mm,
corresponding to a correlation length of 0.78 um (Figure 5.4a), scatterers having vertical

dimensions < 0.78 ym are detected. The figure shows lower intensities concentrated in
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Figure 5.4. Sectional views of dark-field volumes for a 1.1 ABS/ABSFR sample heated at
265°C. (a) Image for correlation length 0.78 pm, (b) correlation length 0.88 um, (c)
correlation length 0.98 ym and (d) correlation length 1.08 um. For (a) through (d), Sample
to detector distances are 80 mm, 90 mm, 100 mm and 110 mm. Heat application was at

the right side.

107



the region adjacent to the point where heating was applied. The lower intensities
observed could be attributed to a lower concentration of scattering particles or voids in
this region. As the SDD is varied from 80 mm to 110 mm, higher intensities gradually
show up in this region (Figure 5.4 a-d). At SDD 110 mm, the instrument picks up additional
scattering from scatters with vertical dimensions in the range of > 0.78 ym and =2 1.08 ym
compared to SDD 80 mm. A possible explanation for the observed changes as the
correlation length was varied is that due to the applied heat, particles in the region
adjacent to the point where heating was applied underwent a change that led to them
shrinking in size. Gases produced during the process in addition to original air pockets
may have then contributed to larger-sized pores which were detected at higher correlation
length settings.

For a 1:1 ABS/ABSFR sample heated at 275°C (Figure 5.5) similar effects
were observed as for the 1:1 ABS/ABSFR sample heated at 265°C (Figure 5.4). Lower
intensity dark-field signals concentrated in the region adjacent to the where heat was
applied. As correlation length was increased from 0.78 ym to 0.88 um, 0.98 ym and 1.08

pum, dark-field intensities gradually increased towards the heated region.
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Figure 5.5. Sectional views of dark-field volumes for a 1.1 ABS/ABSFR sample heated at
275°C. (a) Image for correlation length 0.78 pm, (b) correlation length 0.88 pm, (c)
correlation length 0.98 um and (d) correlation length 1.08 um. For (a) through (d), Sample
to detector distances were 80 mm, 90 mm, 100 mm and 110 mm. Heat application was
at the right side.
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The reconstructed volumes for a 3:1 ABS/ABSFR sample heated at 265°C are
shown in Figure 5.6. for different correlation lengths. This sample design seemed to throw
more light on the effects of heat on the sample. First, based on the layer distribution, it is
clear that ABSFR layers contribute more to scattering intensity than the ABS layers. It is
then reasonable to say that the higher intensities detected in the ABSFR layers are due
to the flame retardant molecules as this is the major difference between the ABS layers
and the ABSFR layers. There may also be some contribution from the ABS-ABSFR

interface. Looking at the region adjacent to the point where heat was applied, it is evident
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that the high intensities characterizing the ABSFR layers above and below this region are
relatively absent. This yet again points to the possibility of flame-retardant particles going
into the gaseous state thus causing a lower concentration of scatterers in this region at a
correlation length of 0.78 ym. The seeming uniformity of scattering intensity in the ABS

layers indicate better adhesion of material within these layers.
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Figure 5.6. Sectional views of dark-field volumes for an ABS/ABSFR 3:1 sample heated
at 265°C. (a) Image for correlation length 0.78 um, (b) correlation length 0.88 pm, (c)
correlation length 0.98 ym and (d) correlation length 1.08 um. For (a) through (d), Sample
to detector distances were 80 mm, 90 mm, 100 mm and 110 mm. Heat application was

at the right side.

Figure 5.7 shows volume renderings of the ABS/ABSFR 3:1 sample heated at
275°C. Observations in this sample are similar to what was observed in the ABS/ABSFR

3:1 sample heated at 265°C (Figure 5.6) though there seems to be less scattering in this
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than seen with the 265°C sample. For both ABS/ABSFR 3:1 samples, there seems to be
an absence of strongly scattering flame retardant molecules at the opposite end from
where heat was applied. It is possible that the particles in this region are of larger vertical

dimensions and not detected at any of the correlation lengths used.
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Figure 5.7. Sectional views of dark-field volumes for an ABS/ABSFR 3:1 sample heated
at 275°C. (a) Image for correlation length 0.78 um, (b) correlation length 0.88 um, (c)
correlation length 0.98 ym and (d) correlation length 1.08 um. For (a) through (d), Sample
to detector distances are 80 mm, 90 mm, 100 mm and 110 mm. Heat application was at
the right side.
5.3.3 Two-dimensional Correlation Length Scanning Experiment.

The correlation length experiments were plagued by inaccurate grating step
motions, leading to fringe artifacts in the processed images. The sample layer-based

composition made it even more difficult to distinguish the fringe artifact from the sample
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in the image. Figure 5.8 shows the fringing extent in images acquired at two consecutive
SDDs, 17.1 mm and 18.1 mm, for a 3:1 ABSFR sample heated at 275°C. Since the fringe
artifacts are not in a fixed position, it was difficult to isolate any region for signal analysis

without a fringe correction or reduction processing step.
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Figure 5.8. Dark-field projections of a 3:1 ABS/ABSFR sample at two consecutive SDD
positions. The sample was heated at 275°C. (a) SDD 17.1 mm for correlation length of

1.14 ym and (b) SDD 18.1 mm for a correlation length of 1.21 ym. The residual fringes
introduce errors in the measured signal.

Regardless of the fringes, the images do reveal some changes in the signal
detected across the different correlation lengths used. As an example, dark-field images
for the same 3:1 ABSFR sample referred to above at SDD 7.1 mm (0.47 um) and 28.1
mm (correlation length 1.87 ym) are shown in Figure 5.9. Here it is clear that at the

correlation length of 1.87 um, the system picks up scattering from the interface of ABS-

ABS layers (Figure 5.9b).
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Figure 5.9. Dark-field projections of a 3:1 ABS/ABSFR sample at two SDD positions. The
sample was heated at 275°C. (a) SDD 7.1 mm for correlation length of 0.47 um and (b)
SDD 28.1 mm for a correlation length of 1.87 um. An increased detection of structure in
(b) compared to (a) is due to the correlation length of the instrument and independent of
the residual fringes though it cannot be accurately measured in this noisy state.
5.4  Conclusions

X-ray grating interferometry was used to study fused-deposition modeled objects
made of pure ABS and ABS-flame retardant composite (ABSFR) filaments with ABS to
ABSFR ratios of 3:1 and 1:1, as well as 100% ABSFR. This was done to explore the
feasibility of introducing flame retardants to specific portions of an otherwise flammable
object and how such an object “holds up” when exposed to heat. Of most importance was
the dark-field or scattering signal which has the potential to detect gaps or pores that
could result from structural breakdown of layers or decomposition of constituent
molecules.

Near-real time two-dimensional images of samples subjected to repeated heating
at one correlation length and multiple correlation lengths were marred by fringe artifacts

which inhibited the use of quantitative data from the images. The absorption images

acquired at one sample-to-detector distance for repeatedly heated samples however
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showed the gradual loss of ABSFR layer(s) due to melting as a result of direct contact
with the heater.

X-ray grating interferometry tomography was applied to multiply-heated samples
(30 cycles) at four sample-to-detector distances: 80 mm, 90 mm, 100 mm and 110 mm
for correlation lengths 0.78 ym, 0.88 ym, 0.98 ym and 1.08 um. The images acquired at
a correlation length of 0.78 pm for 1:1 samples heated at 265°C and 275°C, showed that
lower dark-field intensities concentrated in the region adjacent to where the heat was
applied. Based on the absorption images —both 2D and tomographic— it can be concluded
that this region of lower concentration did not result from direct contact between the layers
and the heater since only very few layers actually came in contact with the heater,
whereas the full region of sample adjacent to the point of heating show these lower
scattering intensities. As the correlation length increased from 0.78 um till 1.08 ym, higher
intensities were gradually detected in this region indicating contribution to scattering from
initially undetected particles i.e. particles of size-scales in the range 0.78 ym to 1.08 ym.
Similar effects were observed in the dark-field images of the 3:1 samples. The 3:1 sample
images also gave a clearer picture of the scattering contributions in the sample. Based
on the distribution of component layers, it was easier to associate scattering intensity to
a given layer type and it was clear that the ABS layers contributed less to scattering than
the ABSFR layers. Since the difference in these layer types is the flame retardant, it can
be concluded that the flame retardant is a major scatterer. Furthermore, the increase in
intensities are most likely due to larger pores formed as a result of gaseous products

formed from the thermal decomposition of the flame retardant molecules.
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For the heating temperatures 265°C and 275°C probed, no visible difference in

heat propagation effects were detected.

5.5
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CHAPTER 6
CORRELATION LENGTH STUDIES OF FUSED DEPOSITION MODELED
SAMPLES WITH X-RAY GRATING INTERFEROMETRY AND SMALL
ANGLE X-RAY SCATTERING

6.1 Introduction

The dark-field signal in grating interferometry shows up as a decrease in visibility
due to small angle scattering, offering another source of image contrast to complement
attenuation and phase contrasts.! The dark-field signal has also been shown to decay
exponentially with sample thickness making tomographic dark-field imaging possible.?*
The structure sizes measured correspond to a propagation distance hence, the
interferometer can be tuned to be sensitive to particular sizes/correlation lengths, .o ,
of scattering structures.®>’ Thus, the system reveals scattering structure of sizes < &,,,, ,
with the probed dimension in the axis normal to the grating structure.®

A qualitative relationship between the dark-field signal and the size and shape of
the scattering structure exist through the autocorrelation function, an expression given
by®

DF (§corr) = exp[2t (G (corr) — D] [6.1]

Here G is the autocorrelation function of the sample, X is the scattering cross section and
t is the sample thickness.*® For many simple shapes, the autocorrelation function has
been determined analytically.® This relationship depicted in Equation 6.1 has been tested
on known systems, mostly solution of spherical samples, in both neutron and X-ray
grating interferometry.>6710 Results have also been compared with those obtained with
conventional small angle scattering (SAS) technique.! Harti et al. carried out correlation
length imaging of ordered and unordered phases resulting from gravity induced

sedimentation of polystyrene microspheres.® With appropriate scaling to remove
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macroscopic scattering effects, structure factor effects were isolated. As reported in
chapter 5 of this document, we have carried out correlation experiments on fused
deposition modeled (FDM) samples of acrylonitrile butadiene styrene (ABS) and a
brominated flame retardant to see heat propagation effects on printed layers.

Conventional small-angle X-ray scattering (SAXS) involves the measurement of
the g vector at scattering angle 26. As mentioned in section 2.1.1 of chapter 2, g has a
magnitude of 41t /A sinf. Taking into account Bragg’s law, the scattering vector q is related
to a dimension d in the system by g=2m/d.'' Also, the SAXS signal generally lies within
an angular range of about 26 = 1/d.*?> For incident radiation of constant wavelength, for
all scattering phenomena, the larger the irradiated object, the smaller the scattering
angle.’® SAXS enables the study of systems where long-range order is absent and can
be applied to solution and solid samples.

The SAXS experiment involves illuminating the sample with a monochromatic
X-ray beam and collecting the scattered radiation behind the sample as close as possible
to the transmitted beam. Hence, the beam needs to be small or vary narrow.'?® So, by
changing the detector position i.e. the scattering angle, detected size scales can be tuned.
For a typical pin-hole setup, SAXS detects structural size-scale of 1 to 100 nm though a
ultra-small angle scattering (USAXS) set up which utilizes a narrow beam, size-scales
can be extended to 1000 nm.** With these size scales, the spatial variation in the electron
density detected by the instrument due to the X-ray interaction with the sample are on
size-scales larger than the atomic scale i.e. SAXS is not sensitive
to electronic density fluctuation on an atomic scale'®> Contrast can therefore arise from

particles, voids or matrices in otherwise homogeneous material.'®
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The measured intensities are plotted against g values (A unit) for the scattering
angles. The plot is then interpreted by using scattering functions that relate intensity
distribution to structural information like shape and size distribution.*?

The spatial and quantitative information of scattering structures available through
the dark-field signal gives it the potential to be widely utilized as a small angle scattering
measurement technique. The scattering vector measured in SAXS can be related to the

dark-field measurements through the scattering angle, Aa (or 26 as mentioned above),

as follows:16
pa=S and pa=2 6.2
a= L an a= o [6.2]
s
@ =2 X — [6.3]
P2
I A
p=——Xq = Ecorrxq [6'4]
P2

Where s is the lateral shift of the scattered ray, [, is the sample to detector distance, 1
is the X-ray wavelength, ¢ is the phase shift and angle and p, is the grating period for a
grating interferometer set-up.

The aim of this work is to validate the spatial and quantitative information obtained
by X-ray grating interferometry imaging of a non-model system like a fused deposition
modeled object by comparing interferometry measurements with measurements obtained
using the conventional small angle X-ray scattering (SAXS) technique. To do this, the
choice of polylactic acid polymer (PLA) as feedstock material was made due to its
simplicity as a one-monomer based polymer. Some ABS/flame retardant-based samples

were also imaged.
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PLA filaments—pristine and heated—were characterized by solid-state **C NMR
to determine the presence of crystalline domains that could contribute to scattering data
as well as their purity.'” The presence of crystalline and amorphous domains should show
up in the spectrum as narrow peaks (from the crystalline domain) superimposed on broad
peaks (from the amorphous domain); spin-lattice relaxation time measurement should
differentiate between the two domains types.!’ Scanning electron microscopy (SEM)
imaging of printed samples was also carried out to give an idea of the size scales of voids
or porosities present in printed PLA samples. Small-angle and ultra-small angle X-ray
scattering data (SAXS and USAXS) were acquired at beamline 9-ID-B,C of the APS
USAXS facility. In the following, the techniques and results obtained so far are presented.
It should be noted that X-ray grating interferometry experiments are yet to be done.

6.2 Materials and Methods
6.2.1 Sample preparation

PLA samples were printed using a Makerbot PLA filament of 1.75mm diameter on
a Flash Forge Creator Pro dual extrusion printer. Sample dimension was designed to be
20 mm x 1mm x 10mm (LxBxH). However, printed samples had dimensions of 20 +0.5
mm, 1 £0.1 mm and 10 +1 mm (LxBxH). The printer settings included 0.27 mm layer
thickness, 100% density and 65°C print bed temperature. Print speed and travel speed
was set to 120 mm/s. Printing was done with varying nozzle temperatures, from 170°C to
215°C in steps of 5°C for a total of ten samples. The aim was to have samples ranging in
quality; from high quality (215°C) to poor quality (170°C). The poor adhesion of layers

was visible by eye in the poorest quality samples.
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The ABS/flame retardant-based blocks were printed on a Flash Forge Creator Pro
dual extrusion printer using Filabot ABS and ABSFR filaments. Sample composition
included 3:1 and 1:1 ABS/ABSFR layers and pure ABSFR. Nozzle temperature was
230°C and 225°C for the ABS and ABSFR filaments respectively. Layer thickness was
0.27 mm, print bed temperature was 60°C (80°C for pure ABSFR), travel speed was 40
mm/s and print speed 60 mm/s. Sample dimension was designed to be 20 mm x 1mm x
10mm (LxBxH) but printed dimensions were 20 +0.5 mm, 1 +0.1 mm and 10 +1 mm
(LxBxH).

6.2.2 Solid-State 13C NMR

The degree of crystallinity and purity of pristine PLA filaments and filaments printed
at 170°C and 215°C were determined by solid-state 3C NMR. The measurements were
carried out on a Bruker AV-400 (9.39T, 400 MHz) NMR spectrometer using a triple
resonance 4 mm MAS probe. MAS rate was 10 kHz and 12 kHz for the pristine and heated
samples, respectively. The acquisition temperature was 300K (26.85°C). 13C spectra was
acquired using the cross-polarization technique, with a contact time of 6 ms, a delay of
6 s between consecutive scans and acquisition time of 48 ms. Alpha-glycine was used
for the chemical shift reference.

The spin-lattice relaxation times T1(*H) were determined by saturation recovery
with 13C CP MAS. The parameters are as described above.

6.2.3 SEM imaging

SEM imaging was carried out using a FEI Quanta™ 3D FIB-SEM instrument (FEI,

Hillsboro, OR) at LSU. The samples were coated with platinum and imaged at an

accelerating voltage of 5 kV and a current of 1.5 pA.
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6.2.4 Small-Angle X-ray Scattering at APS

Scattering measurements were acquired at beamline 9-1D-B,C of the APS USAXS
facility. The USAXS instrument was equipped with SAXS (and WAXS) integration
capability where optics changeover between USAXS and SAXS systems occur in less
than 30 seconds.® The X-ray energy was 21 keV. While the USAXS system had a slit
source, and offers a g range of about 0.0001 to 0.3 A1, the SAXS system had a pinhole
source and with typical q range about 0.05 to 1.7 A1.18 The USAXS experiment was
carried out with a beam size of 800 um by 50 um and acquisition time of 20 seconds per
sample. Acquisition time for the SAXS experiment was 90 seconds per sample. Data
reduction of acquired data was done using the Igor Pro 8 software: the USAXS package
was used for the USAXS data and the Irena package was used for the SAXS data.®23
The USAXS data was desmeared to remove slit smearing effects so that the USAXS and
SAXS data could be merged and plotted on one graph.

Scattering measurements were acquired for four PLA samples (nozzle
temperatures 175°C, 185°C, 195°C and 215°C), one pure ABSFR sample, and one each
of ABS/ABSFR sample ratio 1:1 and 3:1. Samples were mounted such that the print layers
where orthogonal to the incident beam and vertical plane. Scattering measurements
where acquired for a minimum of five positions on each sample. Scattering from pristine
ABS, ABSFR and PLA filaments were also measured.

6.3 Results
6.3.1 Solid-State **C NMR
With 13C NMR the presence of both crystalline and amorphous domains in the PLA

sample is indicated by narrow peaks superimposed on broad peaks. Spin-lattice
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relaxation studies of the superimposed peaks should reveal more than one T relaxation
time. In the NMR spectrum for the pristine PLA sample, the characteristic CO, CH2 and
CHs peaks (169.89 ppm, 69.5 ppm and 16.8 ppm, respectively) seem to be singular
peaks, Figure 6.1. This is confirmed by the T1(*H) measurements which give only one T
value for each peak: 806.8 ms for the CO peak, 801.8 ms for the CH2 peak and

806.8 ms for the CHs peak, Figures 6.2, 6.3 and 6.4. With the T1 measurements it can be
concluded that there is no detectable crystallinity in the pristine PLA sample.

To determine if the heating of the filaments during printing modifies the molecular
arrangement of PLA polymers, solid-state 13C NMR measurements were carried out on
filaments heated to 170°C and 215°C. The 3C peaks and associated T1(*H) values show
that the heating associated with the printing process introduces no detectable crystallinity
into the PLA samples. The *C NMR spectra for the 170°C and 215°C samples indicate
singular peaks for CO, CH2 and CHs (Figures 6.5 and 6.6 respectively). The T1(*H) values
associated with the peaks remain single-valued for each sample. For the 170°C sample,
T1is 774.2 ms for the CO peak, 830.3 ms for the CH2 peak and 800.6 ms for the CHs
peak (Figures 6.7, 6.8 and 6.9). For the 215°C sample, T1 is 731.7 ms for the CO peak,

723.5 ms for the CH2 peak and 751.2 ms for the CH3s peak (Figures 6.10, 6.11 and 6.12).
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Figure 6.1. 13C NMR spectrum for pristine PLA. Peaks for CH3, CH2 and CO are at 16.8
ppm, 69.5 ppm and 169.89 ppm, respectively.
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Figure 6.2. T1(*H) measurement for peak 169.89 ppm (CO) of the pristine PLA sample.
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Figure 6.3. T1(*H) measurement for peak 69.5 ppm (CH?:) of the pristine PLA sample.
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Figure 6.4. T1(*H) measurement for peak 16.8 ppm (CHs) of the pristine PLA sample.
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Figure 6.5. *3C NMR spectrum for PLA heated to 170°C. Peaks for CHz, CH2 and CO are
at 16.8 ppm, 69.5 ppm and 169.89 ppm, respectively. The peak at 50 ppm is a spinning
sideband of the CO peak.
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Figure 6.6. **C NMR spectrum for PLA heated to 215°C. Peaks for CHz, CHz2 and CO are
at 16.8 ppm, 69.5 ppm and 169.89 ppm, respectively. The peak at 50 ppm is a spinning
sideband of the CO peak.
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Figure 6.7. T1(*H) measurement for peak 169.6 ppm (CO) of the 170°C PLA sample.
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Figure 6.8. T1(*H) measurement for peak 69.2 ppm (CH2) of the 170°C PLA sample.
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Figure 6.9. T1(*H) measurement for peak 16.6 ppm (CHs) of the 170°C PLA sample.
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Figure 6.10. T1(*H) measurement for peak 169.6 ppm (CO) of the 215°C PLA sample.
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Figure 6.11. T1(*H) measurement for peak 69.2 ppm (CH2) of the 215°C PLA sample.
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Figure 6.12. T1(*H) measurement for peak 16.6 ppm (CHs) of the 215°C PLA sample.

136

14



6.3.2 SEM Imaging

The variation in nozzle temperature from 170°C to 215°C resulted in PLA samples
ranging from poor quality (170°C) to high quality (215°C). SEM imaging was done to have
an idea of some of the size scales of scatterers/voids present in samples based on the
voids that open up to the surface. The samples were PLA blocks printed at 175°C, 185°C,

195°C, 205°C and 215°C. On inspection of the images, Figure 6.13 and Figure 6.14, as

20 )-"'_'i

100 pym 100 pm

20 pm

100 pm

C
Figure 6.13. SEM images of PLA blocks printed with nozzle temperatures (a) 215°C, (b)
205°C, and (c) 195°C. The 215°C sample is ranked highest quality. As one goes to lower
print temperatures imperfection and features begin to show up at the layer-layer interface
as well as along the layers. Print direction is leftward.

137



100 {im

a b
Figure 6.14. SEM images of PLA blocks printed with nozzle temperatures (a) 185°C and

(b) 175°C. By 185°C, voids become evident at the interface. Print direction is leftward.
the nozzle temperature is decreased features or imperfections begin to show up at the
layer-layer interface becoming more obvious in the 195°C sample. Voids become visible
at the interface in the 175°C and 185°C samples. Regions adjacent to the interface also
show increased features or imperfections as one goes to lower temperatures.
6.3.3 Small-Angle X-ray Scattering at APS

SAXS and USAXS measurements were acquired for portions of the PLA and
ABS/ABSFR blocks. The region of measurement was such that layer-interface-layer
regions were sampled. The USAXS/SAXS graph for regions within filaments/layers of the
PLA samples is shown in Figure 6.15. For the interface region, the graph is presented in
Figure 6.16. By comparing both graphs one can see that from about q = 0.001 A the
scattering curves are similar with one correlation peak at about 1 A in that g range. This
portion of the curves is most likely related to the packing of the PLA polymer chains. This
means that on size scales of about 0.628 pm or less (d=211/q), the interface and layer

regions comprise similar scattering features. The additional peak that shows up in the
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interface plot (from q < 2 x 104 A1) may then be attributed to features exclusive to the
interface e.g. voids. The exact source of these peaks is yet to be determined. A plot of

the difference between the interface region curves and layer region curves is shown in

Figure 6.17.
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Figure 6.15. SAXS measurements within a layer each of the 175°C, 185°C, 195°C and
215°C samples. The scattering curves show uniformity for values of about q = 0.001 AL,
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Figure 6.16. SAXS measurements at layer-layer interfaces for 175°C, 185°C, 195°C and
215°C samples. The curves show uniformity for values of about q = 0.001 Al The
leftmost peak is indicative of features exclusive to the interface region.
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Figure 6.17. Plot of the difference between the scattering measurements for the interface
region and layer region for the PLA 175°C, 185°C, 195°C and 215°C samples.

For the ABS/ABSFR block samples, the SAXS measurements across the
filaments/layers of 1:1 and 3:1 samples differentiate between the ABS and ABSFR layers,
Figures 6.18. The ABS filaments’ curves share a similar pattern while the ABSFR
filaments share a different pattern. This is likely due to the structure factor associated with

the ABS polymer being evened out by the presence of flame retardant molecules.
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Figure 6.18. SAXS measurements for ABS/ABSFR blocks. The graph is divided into two
distinct trace patterns where the features in the trace for ABS layers are absent in the
ABSFR trace. The label ABSFR31 refer to the 3:1 blocks and ABSFR11 refers to the 1:1
blocks.

Scattering curves for the interface regions in the ABS/ABSFR block samples are
shown in Figure 6.19 for the 1:1 samples and Figure 6.20 for a 3:1 sample. As a point of
note, the measurements were acquired with the sample oriented in the direction it was
printed i.e. bottom-up. The curve label ABS/ABSFR refers to an interface where the ABS
layer is above and the ABSFR layer is below while the curve label ABSFR/ABS refers to

an interface where the ABSFR layer is above and the ABS layer is below. It is interesting
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to note that for the 1:1 samples, the curves seem to differentiate, in pattern and intensity,

in a way that that coincides with the difference in print order. This is also evident in the

3:1 sample.
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Figure 6.19. SAXS curves for interface regions in ABS/ABSFR blocks of 1:1 composition.
The trace patterns seem to differentiate based on print layer order.
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Figure 6.20. SAXS curves for interface regions in an ABS/ABSFR block of 3:1
composition. Slight differentiation in the scattering pattern based on print layer order
ABS/ABSFR vs ABSFR/ABS. The purple trace is clearly different being for ABS/ABS print
order.
6.4 Conclusions

X-ray grating interferometry has the potential to be as widely used as the
conventional small-angle scattering technique. Though some quantitative information can

be obtained from dark-field images the extraction of quantitative data on structure and

distribution is still in the developmental stages. Few examples exist on retrieving
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guantitative data using dark-field interferometry and have mostly been on known ordered
systems. This work contributes to the area of studying unknown systems.

For the characterization of the PLA filaments solid-state NMR measurements were
taken. T1(*H) measurements, determined by saturation recovery with 13C CP MAS, did
not detect crystallization in pristine or heated filaments. SEM imaging of PLA samples
was also carried out and showed how printed samples could vary due to nozzle
temperature differences. Voids in the interface were detected. Features based on print
direction were also seen in the SEM images.

Small- and ultra-small angle X-ray scattering (SAXS and USAXS) was used to
study fused deposition modeled samples of PLA and of ABS/ABSFR blends. For the PLA
samples, the USAXS/SAXS curves detected interface-related features in the USAXS
region and for q < 2 x 10* Al. Measurements on the ABS/ABSFR samples showed a
differentiation between ABS and ABSFR layers where the features associated with ABS
polymers seem to be phased-out, probably due to the flame retardant molecules.
Interestingly, the print orientation and order seemed to influence the curves as seen in
the differentiation for ABS on ABSFR vs ABSFR on ABS interfaces for the 1:1 and 3:1
samples.

Having studied these samples with the conventional SAXS technique, X-ray
grating interferometric studies will follow for a full comparison of both techniques.

Experiments at the LSU CAMD facility are in the works.
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CHAPTER 7
CONCLUSIONS AND RECOMMENDATIONS

7.1 Conclusions

X-ray grating interferometry has been applied in this dissertation to study parts
fabricated by the fused deposition modelling technique of additive manufacturing. Three
signals are retrieved using this interferometric technique —the absorption signal, the
differential phase contrast signal and the dark-field signal. Our interest in the failures,
faults and porosities in the layers composing an additively manufactured part caused us
to focus on the dark-field signal. The dark-field signal is a small-angle scattering signal
showing up as an attenuation in X-ray intensity after the absorption and phase change
effects have been accounted for. It represents the scattering of microstructures of size
scales much smaller than those of the pixels of the detector system. The dark-field signal
is orientation sensitive and based on the interferometer setup, can be made to be
sensitive to specific size scales. The ability to tune the dark-field signal to be sensitive to
specific size scales makes it possible to fully probe a sample to determine the size range
and shapes of structures composing it.

X-ray grating interferometry imaging was carried out on two fused deposition
modelled Stanford bunnies, one made from ABS using a Stratasys Dimension Elite
Printer and the other from PLA using a Makerbot Replicator printer; and an object having
three flat sides and a curved side, printed using PLA and embedded with silver lines. Two
grating orientations—qrating structures oriented vertically and horizontally—were probed.
For the ABS bunny, the dark-field images showed higher scattering intensities when the
gratings were oriented horizontally than when the gratings were oriented vertically. This

indicated that microstructure in this ABS sample scattered more efficiently in the vertical
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direction and were probably composed more of structures elongated along the horizontal
axis (an anisotropic shape). A comparison of line probe plots performed on two-
dimensional dark-field and absorption images, covering many layers, showed that the
dark-field layers arose between filaments. The horizontally elongated scatterers were
therefore attributed to porosities or gaps arising from imperfections in layer fusion. When
SEM imaging of a portion of the ABS bunny ear was carried out, anisotropic gaps and
pores that could contribute to vertical scattering were observed between layers. The
higher intensity regions seemed to concentrate around higher curvature regions e.g. the
bunny ear and forehead, and prompted a curvature analysis. The curvature analysis was
carried out on the bunny ears and head, and involved extracting the dark-field intensities
in the perimeter regions and comparing with the perimeter curvature. However, only a
very slight correlation was observed.

For the PLA bunny, the dark-field image obtained with the gratings in the horizontal
orientation yet again showed higher intensities than that obtained with the vertical grating
orientation. However, the higher intensities obtained with horizontal grating orientation
were more widespread across the sample than for the ABS sample.

Darkfield images of the third sample i.e. the object having three flat sides and a
curved side, printed using PLA and embedded with silver lines, emphasize the interlayer
scattering when the gratings are oriented horizontally.

To investigate the effect on performance and feasibility of incorporating flame-
retardant into an otherwise flammable object through additive manufacturing, X-ray
grating interferometry was used to study sample blocks comprising pure different ratios

of ABS polymer and ABS/flame retardant layers. Two heating temperatures, 265°C and

150



275°C, were probed. While the absorption images give no clear indication of the heat
propagation effects the dark-field images are very informative.

For samples with a 1:1 ratio of ABS polymer and ABS/flame retardant layers, the
dark-field images at a correlation length of 0.78 ym showed lower scattering intensities
and seemed to concentrate in the region adjacent to the point where heat was applied.
As the instrument correlation length was increased from 0.78 uym to 0.88 ym, 0.98 ym
and 1.08 ym, the lower intensity region gradually shrunk, meaning the instrument began
to picked up scattering from initially undetected scatterers i.e. with vertical dimensions in
the range of 2 0.78 ym and = 1.08 ym. For the samples with a 3:1 ratio of ABS polymer
and ABS/flame retardant layers thus, wider distances between the ABS/flame retardant
layers; the dark-field images show that higher scattering intensities occurred mainly in the
ABS/flame retardant layer. The lower intensities in the ABS layers indicate better
homogeneity in the ABS filaments. The ABSFR layers show decreased intensities in the
region adjacent to the point of heating at the correlation 0.78 pm with the intensities
increasing as the correlation length is changed to 1.08 um, similar to the 1:1-layer
samples. The increasing intensities were attributed to the detection of larger pores formed
as a result of gaseous products of the thermal decomposition of the flame retardant
molecules.

Dark-field images from x-ray grating interferometry have the potential to be as
widely applied as the conventional small-angle scattering technique (SAXS). This
however, requires more research into extracting quantitative information about scattering
centers. SAXS studies were carried out on fused deposition modelled samples printed

from PLA and from ABS/ABSFR. Traces for the PLA samples showed additional structure
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in interface regions than in layer regions. Characterization of pristine PLA filaments by
13C CPMAS solid-state NMR measurements detected no crystalline domains in the
polymer. Similar characterization of heated filament also detected no crystalline domains.

Scattering measurements for the ABS/ABSFR samples gave similar curves for
the ABS layers and similar curves for the ABSFR layers. For the 1:1 ABS/ABSFR
samples, the curves seemed to differentiate between the print order i.e. where ABS was
printed on ABSFR versus where ABSFR was printed on ABS. This distinction was also
seen in the 3:1 sample.
7.2 Recommendations

In this dissertation, X-ray Talbot-Lau and single-shot interferometry was used to
study polymeric objects made through fused deposition modelling with meaningful results.
Further studies on the incorporation of flame retardants through additive manufacturing
should involve using a known flame retardant. To fully explore the feasibility of
constraining flame retardant molecules to subsurface layers, additional experiments are
necessary. Samples of subsurface-layer-confined flame-retardants and samples made
from blended polymer/flame-retardant i.e. by conventional manufacturing methods need
to be compared. The concentration of flame retardant in both classes of samples should
be the same and the flame inhibiting performance compared through the UL-94
technique. X-ray interferometry images of samples, acquired before and after burning,
should inform on the extent of flame retardant participation during burning for both sample
classes. This can be followed by tuning the number of flame-retardant layers till the

number of layers needed for efficient flame-retardancy is determined.
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Fused deposition modelling in not widely used in manufacturing therefore other
AM techniques that make use of polymer feedstock e.g. selective laser sintering, need to
be studied. It will be important to see how grating orientation in X-ray grating
interferometry contributes to identifying the source of voids in such processes where
elongated or stretched material is not used.

For X-ray grating interferometry to gain wide acceptance as the conventional small
angle scattering technique, more work needs to be done in quantitatively studying
inhomogeneous or unknown micro-structure.

In the case of low-absorbing polymer-based objects like ABS and PLA reported in
this dissertation, another technique, far-field interferometry, may potentially yield better
images. In far-field interferometry only phase gratings are used and the periods are on
the order of a few hundred nanometers thus, making for higher fluxes reaching the
detector and a higher sensitivity to changes in the wavefront. A higher sensitivity would
translate to the detection of even smaller structure sizes by the dark-field imaging.

The removal of fringe-like artifacts in images is still very challenging though a
variety of algorithms have been published. It is therefore necessary that a review of this

algorithms is attempted to isolate the handful that are most robust in application.
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APPENDIX B
PSEUDOCODE FOR CURVATURE ANALYSIS

funcrion CenerstelistRawColumnCurvature (Absorprionsiics, MegnifitationFactor, GaussiaasilvarRadiug)

|

input abzorptienslice(z] [c]

[, o] =stza{absorprionsSlice)

s=zaron|r]lc]
‘a+~—apply function Einarize (Absorprionslics)
2 +«—apply function ¥agnify{s, MagnificacionFactor)
2 +— apply funceisn GaosylanFllter (s, GausaianFilrerkadiva)
pzerosic' ] [e)

fr— spply function Detestferimateria)

p—apply fanction Magnify{p, 1/MagnificatianFactor)
for index = 1 2o lenuth(p)

plindax] [} «— spely tunction Order (p)

end

t=2eros{c”]e")

t— apply functlon Intarpolate(p)

for inday=1 ro length (p) )

y[index] — apply funcrion Curvature(t)

&na

retarn (cow, column, ¥)

}
funct lon MaavDarkFisld (AbsgrptionsSiles, DarkFlelid)
|

input absorptionslice(x] [c]
2[e) le] — apply function Binarize(AbsorptionSlice)
=[] [e] — apoly functien Evede{Dilat=(s, 1), 2)
input DarkFieid{r] )

d[z] [¢] — apply funcrion Baak (BarkFi=la, 89
return(d(z] [e])

|

function Ordar(p)

|

§ — appand(p, pli])

arderadp — pfl]
‘o —gropip(i]) ,

ordered? — agpand (ardered?, pli])

p—droplp[l])

whils (langth(p) >0)

|

1astPoint ~— las=t {ordasredP)

nextPolnt — nesrsst(p, Lastpoir) (1]
Af(norm{pextFoint = lasrPolint) > = maxhistanceletysenfarinsterfolnts)
breaky

arderanp —— append |orderedp, nexc¥oline)
indsxUncrdered — pesitien (p ! = nextPoinr) {1,1]

p ~—drop(p, indexiinordered)

|

return ordered?()

|

funcrion Curvature {t}

{

for 2=1 to issirh(ordereds)

|

1lstCurvaryre «— table(Ar, = interpolation(e}; Ax; = intespelatian{s]; Ay; = int=spelacianis]; Ay, = ln-

t=rpolation|s])

chop (abs (AxAys = Ardyy ) Aax + a5 K372

|

l{stCurvature — rotatedight {listCurvature, 10);
gap — take(llstCorvature, |8, 15})s

gap — movingaverage{gsp, 3):

Alstourvaryreff:13] «— g=p;

listCurvature — rotstsleft (listCurvature, 10);
return MistCyurvaturar

|
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APPENDIX C
PROCESSING CODES FOR INTERFEROMETRY

This Appendix presents sample processing codes for data processing in Tomopy. The
first Section (C.1) presents an example of mathematica codes used to calculate the
three image contrast types accessible from grating-based interferometry—absorption,
differential phase and dark-field—for the projection images. The steps involve importing
the data files obtained from the detector, ordering them and grouping sample files with
their corresponding reference files. The images are then calculated.

Python codes for use in Tomopy for similar processing as described above are provided
in Section C.2. Section C.3 presents typical Python codes used for tomographic
reconstruction and based on the two-dimensional absorption, differential phase and
dark-field images obtained from Section C.2. Here, the center of rotation for the
sample, the axis where the region of interest remains in the field of view for all
projections, is determined then sinograms are generated for the volume reconstruction.

The Gridrec and SIRT algorithms are used for the reconstruction.
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C.1. Sample Mathematica Codes for Stepped-grating Interferometry

One Reference Set and Many Raws at an angle
GRATING position read from header

Step 1: Define functions

Functions for reading file, finding number of groups of reference files and
sample fites

funcReadPCOFite[filename_| This will read diata fram a PCO intager-16 binary file:
funcFindRefaronceB16files|pathTIF. | Finds files based on *.white,” and orders the list based on the
Image sequence number,

funckFindSampleB16tiles|pathTIFF_| Finds files based on = raw,” and orders the list based on the image
sequence nurmber, ‘
funcFindReferenceGroups!] Based on sequence number, Hinds the grouping of the reference flles.
funcFindSampleGraups|] Based on'seguence number, finds the grouping of the sample files.

funcheadPCOrileHeader [filenase | 1« Module | (GRATING],
HeaderStr = FindList [filename, ":", 17}
text « StringSplit (HeadersStr,
("% Start:", "X End:", “X 8inning:®, 'Y Start:", "y End:*, "¥ Gloning(”,
“Exposure (msec) 1", "PixeldMicron:", "Angle:", “Grating:", "Time :*}][[1]1];
XSTART = ToExpression |text[|111];
XEND = ToExpression[text[{2}]];
XBIN = ToFxpression[text[[3]]]1;
YSTART = ToExpression(text|[4]]];
VEND = Totxpression[text{[5]1];
YRIN » ToExpression[text{(6]]];
EXPOSURE = ToExpression[text|[7]]];
PIXEL2MICRON » ToExpression [text{[(8]]];
ANGLE » ToExpression[text[[9]]1]1;
GRATING « ToExpression[text[[18]]];
timeImage « Datelist [text[[11]]];

columns = XEND - XSTART » 1}

rows = YEND - YSTARY « 1;
Grating = GRATING] ;
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funcleadPCOrile (Filename | :« Module [ (rows, columns, stroam, dota),
HeaderStr » FindList[Filename, “t", 1);
text « SteingSplit (HeadersStr,
(V% Start:™, "X End:™, Y% Bioninp:®, Y Stare:", MY End:t, 'Y Binning:”,
“Exposure (msec) 3", "PixelMicron:”, "Angle:”, “Grating:", “Time ™) [[1]];
XSTART « ToExpression[text||1))];
XEND = Tofxprossion(text[(2)]];
XBIN = Tolxprossion(text|[ (D)) ]}
YSTART = ToExprossionftext[[a)]];
YEND » Tofxprassion(text{(5)]])
YBIN » ToEspression[text[[6)]);
EXPOSURE = ToExpression(text|[7]]];
PIXELZMICHON « ToExprossion [toxt((8]]];
ANGLE » Tolxpression[text[[9)]];
GRATING « ToExpresslon[text[[10]]];
timeImage » Datelist [text[[(1X]]]}

cplum = uu_o - XSTANT + 4}
roWs = YEND - YSTART « 1;

stroam « OpenRead [ filename, BinaryForwat « True))

Skipistroam, Byta, 220];

data » Binaryfoadlist (stream, “Unsignedintogorls™, DyteOrdaring « -1];
Close [stream] ;

Partition{data, columns] - referencaDarkficld |;
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funcheadPCOr L1eUncorractad (filenume ] s Module| (rows, colusas, straam, data),
Headerste « Findlist [fllename, “:%, 1]}
taxt « StringSplit (MenderStr,
"X Start:”, "X End:*, "X Bioning:", "V Svart:™, "Y End:", *V Binning:*,
TExposure (maec) 1", "Pixel2Micron:®, "Angle:, "Grating:", "Tise :“}1[(2]];
XSTART « ToExpression[text[[3]]]:
XEND » ToExpression(text{[2]11];
KNIN « ToExpression|text([(3]]];
YSTART « ToExpression{text((4]]];
YEND « Tobxpreasion(text|[(S511];
VOIN « Tofxpression|text|[6]]];
EXPOSUNE « Tobxpression[text|[7)]]:
PIXEL2NICRON « ToExpression|text|[8]]]:
ANGLE » ToExpression[text|(9]]];
GRATING « ToExpression[text|[18]]];
timelmage « Datelist [text|[12]]);

columns « XEND - XSTART « 1;
roWs « YEND - YSTARY « 1}

straam » Openfiead [ filename, BinaryFormat « True];

Skip[stream, Byte, 228);

data « BinaryReadlist[stroam, “Unsignedintegerls”, HytoOnrdering « -1};
Close[strem];

Partition [date, coluans )|

funck indReferencesiffiles [pathTIFF | <o Module[ (),
filenamesReference = FileNames | "o .white.« . b16", pathTIFF);
numbecOfReferoocefiles « Length(filenamesReference) |
1istReferencaSoquencoNumters = Table|
ToExpression{StringSplit|[Last [FileNameSplit[FilenamesRoeforence| (31111, “.“111%111,
{4, nunhorOfReferencofiles));
ListReferencelndmxSuguanceGratinghumbers = Table[ (4, YoEspression |
steingsplit [Last{FileNomeSplit [FilenamesReference 11117, “."1(15)]1.
Tolixpression [StringSplit{Last [FiloNameSplit [¥ilanamesheference [ [4])]), "1 11
61113, (4, numborofReferonceriles’];
indexOrdering « Ordaring(listReferenceSequenceNusbers ] ;
filunameshofarence « fFilenamesReference | [indexOrdering]];
listReforonceindexSoquenceliratingtumbors «
ListReferenculnderxsequencebratingiumbers [ [ indmxOedaring) 1
nunberOffeferenceFiles « Length|filenmesheference);
numberGratingSteps « Max [Table[ListReforencelodexSequenceGratingNumbers | (1)) (13)),
{1, numberOfReferenceriles)1); |;
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funcrindSaeplefI6files (pathTEFF_| o Module((},
FilunamesSanple « FLLENAMeS [ "o tMan. o 026", pathTIFr],
numberofSamplel L1es « Length | filenawesSample ) ;
listSasmpleSequencelusbers « Table|
ToExprassionIStringSplit [Lant [FileNameSplit|filenanesSanple | (£11]1], . "1115311,
(4, mumberOfSomplerilos)]
IndexOrdaring « Ordering[listSpmpleSequenceNumbers ] ;
filenamesSanpie « filenamesSample | {indexOrdaring] )}
numborOfSamplofiles « Langth|filnnamesSample] ;
testiamestr o Last(FileNamesplit [First [filonaseskeference]]);
testNomeStr « StringSplit[testhameSte, ", white,”] // First; |;

FUNCFANADArKBIG {1os (POthTIFF | 1u Module[ (),
filonmmesDark « FileNames ("« . Dark,«.p16", pathTIFF];
numberOfDarkfiles « Length{filenamesDark];
ListOarkSeguenceNumbers «
Table [Tobwpression [Stringsplit{Last (FileNaseSplit | FilenamesOurk | (4)71), “."111531),
14, numherOfDarkriles) ]
IndexOrdering « Ordering!listbarkSequenceNumbers);
filenmmesDark « filenamesOark || indexOrdering)):
numborOfDarkFiles « Longth]filenamesOark] | ;
(stestNameStr « Last([filoNaseSplit [Firat|filenameskeforence] | ];
tustNamaStr « StringSplit{tusthamestr, " white. "] //First; 1ie)

funckindieferencetroups | ] t« Module ([},
listReferenceAnglesAl] « Table[(anglefeforeOecinslbolnt «
SteingSplit[Last {¥ileMamasplit |Filenanesheference [ [£15]1], *."1(13)1;
angleAfterDecimalPoint « StringSplit|
Last [FlloManeSplit [ filenameskoferanco[[8])]], .71 1(4]]);
angle « ToExpression[anglebeforeDecimalPoint <> °." «» angleAfterDecimalPoint ],
(8, numberOfteferencefilos)|;
listReforancedngles » Union|listReferenceAnglesAll];
ListReferencesSequanoeNimbers « Table|
ToExpression [SteingSplitLast (FileMameSplit [fLlonaneshoference | {4)11), “.T1L1S310,
(1, numberOfRefarancefiles) |}
ListReforenceSequencoNunber sGroups = Partition |
TistReferenceSoquenceNustiars , numberGratingSteps);
numberOfReferenceGroups « Dimensions [1istReferencaSequenceNumbersroups]{[1]1;
ListReforanceSequonceNumbersGroupsBounds «
Table [ {Finst[listheferenceSequanceNushersGroups [ (4]1]],
Last [1istieforenceSequenceumberstroups{ (1)1},
(4, Dimensions [ listRefarenceSequenceNunbersGroups] (11)))71: 1
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foncFindSampleGroups (] <« Module({),
listSampleAnglesall «
Table (anglebeforaDecimalPoint «
StringSplit (Last[FileNameSplit [FilenamesSample [ [4))3), "1 (13))s
angloAfterDocimalioint « StringSplit|
Last [FileNameSplit [filenamesSample [[4]]7), . 114113
angle « ToEzpression|angleBeforeDecimalPoint <» “. " <> angleAfterDecimalPoint],
{4, numborOfSamplefiles)|;
IistSampleAngles « Undon|listSaspleAnglesall);
1istSampleSequenceNumbers = Table|
ToExpression (StrdogSplit [Last [FiloNameSplit (FilenamesSamplo [ (L)1), "1 (15111,
(4, nuiberOfSampleriles)]
TistSampleindoxSequanceAngleGratingiumbers «
Table[ (4, HistSompleSequenceNunbers [ [4]], 1istSampleanglosAll{(i]],
Tokxpression [StringSplit [Last [FileNameSplit [FilonamasSample((87] 1), " "1 1[€11)),
14, humbarOfSampleFilesy |
1istSamplesequencoNumbersGroupns « Split [ListSamplasoquenceNusbers, 3 -ul « 18);
1istSampleSequunceNumbersGroups «
Partition [ 1istSampleSequenceNumbers, numberGratingSteps];
mnberOfSampleGroups « Dimensions | 1istSampleSequenceoumberstroups] [[3]]:
IistSampleSequencoNumbersGroupyBounds «»
Tablo[[First|listSespleSequenceNumborsGroups|[L]]],
Last [ 1istSampleSedunnceNunbersGroups ({41110,
(4, Dimenstons [ 1istSampleSaquencoNunberstroups] (1211005 13

funcheadbarkfibld {1{stf{lonamesOorkfield | 2=
Module [ (¥ilename, allbarkfield, imige, data),
allparkfiold « Constantarray |0, (rows, columny, Length|listfilenamosxDarkfield)]];
Farindex « 1, index <« Longth(1istfilenamenOarkfield], indexss,
filename « Listfilenamespackfield [ [index]];
data « funcRoadPCOF LloUncorracted {Filename]
allDarkfField| [ALL, ALY, indux}| = data;
1
referenceDarkiield =« YotallallOarkfield, (3)) / Length(listfilenamesDarkfield) |;
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Functions for Interferometry

funcPreparelivectorArbitrarySteps (gratingPeriodticrons _, 1istGratingStepsiicrons | :=
Modulei (b1, b2, 63, nusberGratingSteps),

(eoxEXpt «listGratingStepsticrons;

bl « Tableixixpti{i]]/grotingPeriod, (1, LengthixExpt]]];e)

numberGratingSteps « Length{listGratingStepsMicrons) |

bl = Table(1, {{, nusberGratingSteps));

B2 = Table{Sin{2» listGratingStepsiicrons|(i]] / gratingPerindmicrons] // N,
(1, nusberGratingSteps}|;

b3 = Table[Cos[2x listGratingStepsMicrons|(4)) / gratingPeriodmicrons) // N,
(%, numberGratingSteps) )}

Chop| Transpose [{bX, b2, 13} |] 1;

funcPreparesllVactors [gratingPeriodMicrons
listGratingStepsiicrons , rows_, coluans | := Module({},
tVector = FuncPreparedvectorarbitrarySteps |
gratingPeriodricrons, listGratingStepsiicrons);
avector « cVector » ConstantArray(@, (3, rows « columnsi];
aMstrix « ConstantArray(®, [rows, columns, 3});
visibility « phi « ConstantArray (@, (rows, colusns));
g%atrix « Inverse [Traospose [bVector] . b¥ector] . Transpose [b¥ector]; |

funclteadlistGratingStepsiticrons |
list¥ilenamesOnelnterferogras , medarGratingStans | {+ Module! (filename),
(snusderGratingSteps=Length| listGratingStepshicrons ] j«)
2110sts = ConstantArray (8, numberGratingSteps];
Forlindex = 1, index <= numberGratingSteps, indes <.,
filename - 1istFilenanesOnelnterferogram] | indexj];
GRATING = funcReadPCOFileHeader [filoname] ;
allData( [index]] « GRATING:
1i
allData);
funcReadOnelnterferogran | ListFilenampesOneInterforogran_, rows
columns _, listGratingStepsmicrons | := Module| (Fllename, intensity),
nunberGratingSteps = Length[1istGratingStepsnicrons);
#110ata = ConstantArray [0, {rows, columns, nusberGratingSteps});
For |index = 1, index <= numberGratingSteps, indexss,
filename = 1istFilenamesOnalnterferogran | [index]|;
intensity = Tuke|funcReodPCOFile [Filename!, cropfiows, croptolumns);
allData[ {All, ALY, index)] = intensity;
)i
allbate);
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funcCalculateTransmissionvisibiiityPhl [data_| <« Module | {transmission, visibility, phi},
cVectar » Transpose [Flattenidata, (3, 25111
aVectar « gMatrix.cVectar;
aMatrix « Partition (Transpose [aVector], columns |}
transmission « aMatelx| [ALLl, AlL, 23
visibility « Sqrt[amateix [ [ALL, ALL, 211 "2+ aatrix| (ALY, ALL, 371721}
phi « ArcTan{aMatrix([(ALL, ALY, 217, amatrdx{[ALl, A1, 31113
(transmission, visihildty, phi} )}

funcCarrectforzurovaluePixels (datadriginal | 1»
Module [ [coordinateslerolntensityPivels, dataCorrected, dataMadianfilter, r, <),
coordinatesterolntensityPlisxels « Position[dotaOriginel, p 2 (0= 0A));
1f [Length[coordinstesZerolntensityPivels) » 0,
Module (),
dataCorrected « dataDeiginal;
datamedianfiiter « Redianf{lter [dataOriginal, 1];
For[index » 1, index 1 Length[coordinatesZerolintensityPixeis], indaxes,
{r, &} = conrdinatmslerointensityPixels | [indax)];
datuCorrected|[r, €] » dataMediankilter|(r, ¢]1;
| H
|
I3
1f [Longth [cobrdinatesZercintensityPixels] » 0, dataCorrected, dataOriginal] |;

funcCorrectioriitOfilangeOarks ield (dutaOriginal | t»

Modiule [ (coordinatesBadintensityPivels, datatorrocted, r, €},
coordinstestadIntensityPixels « Position [dataDriginal, p_? (0 <=0 8));
dutaCorrected » dstaoriginal;

For [ index « 1, index < Length|coordinatesBadintensityPivels ], indexss,
(r, €} » coordinatesdadintensityPixels | |index]];
dataCorracted|[r, )] « 1}

13

coordinatesbadintensityPixels « Poaition(dateOriginal, p ?(w»18)];

For[index » 1, index s Length[coordinatestiadintensityPixeis], indox+s,
(r, €} » coordinatestadintansityPixels [ [indnx]];

datalorrected[[r, €] » 3;

1

dataCorrected) ;
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funcCorrectiargotiPCvalue [data_| 1= Module | (coardinatestargeDRC, dataConrected, r, ¢},
dataCorrectod » data;
coordinatuslargeDPC « Position{data, p_? (# > ~4&)])
TELangth | coardinsteslargedPC) » 0,
Module|{},
For[index « 1, index ¢ Length|coordinatestargodPC), Indexs.,
{r, €) » coordinatasiargeDPC | (index] ]
dataCorrected[[r, €]] = data{(r, )] -2m;
13
i
1
coordinatestargeDPC « Position[date, p 2 (u¢ -~ 8)];
14 [Langth [coordinateslargedPl)] > 8,
Module (),
For[index » 1, index s Longth|coordinateslargeddC], indexss,
{r, €) » coordinatasiarged¥C | [index] ]
dutaCorrected[(r, c]] = data{(r, c]] *»2n;
13
is

1
dataCortracted);

Functions for finding correct files for a given rotation angle

funcOetSamplef tlenamesForSpecificAngle (angle_| :« Module((},
indexAngle « Flatten|[Posaition|
1istSamplelindesSequenceAngleGrat inghusbers [ [ALL, 3]), p_? (o = angle &) )]
indexFilenase » 1istSamplolndoxSequonceAngleGratingiusbers | [ indexAngle, 177}
HistSamplef dlenamesAt ThatAngle « fllenmmesSample [ [indexf ilenama] | |

funcOetSampler { LanasesForSpocificGroup [ samplogroup | 1« Module[ ()},
(sindexGroup « Flutten(Position|
ListSampleSequanceNumbersGroupBounds [ [AX1,3]], p_ P (awsamplegroup &)1 )ie)
Indexticoup « ListSampleSoquencoNumberosGroups | [samplegroup]] -
soquenceNumberSasplominimum « 1
1istSanplef ilunamasAt ThatGrovp « filenamesSanple [ [indenGroup]] 1;

funcGatSanplemMininumSeqenceNunberForsprcificangle fangle | <= Module] (),
induxAngle « Flatten(Position]
1istSampleIndexSoquoncednglotrat inghusbers { [ALL, 31, p_ 2 (8« angle &)]);
sequencetiunbor « 1istSampleIndesSequenceAngleGratinghumbers | [ indexangle, 2]);
Min | seguenceNunber| |;
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funcGetReferencef Llenamesfanipecticangle tangle | 1« Module( (),
saquencelunberSanpleMin laus o
funcGetSamplemininunSeqenceNunberkorspecificAngle (angle] ;
HstFilenamesatSpecificAngle « funcGetSamplerilehamesForSpacificangle [angle];
groupRumberiteferonce «» Last[Position{listheferenceSequencoNunbarsGroups,
p_? (=« saquenceNumberSanplominimum &) 1] (1113
indexfteferonceSeqencoMmbers « 1istReforenceSequencoNumbersGroups | |
groupNumbareference, ALL]];
Indexteferanced Slenames « Flattun(Table|
Position [ListReferencalndextequenceGratingiunbercs | [ALL, 2],
indexReferenceSeqenceNusbers [ (1111, (1, Length|indexieferenceseqenceNumbers) )] ]
filenamesReference [ [indexfeferencefilenames]] 13

Plot functions for interferometry results

fancrlotTransmissionVisbilityPhiFit [testPoint_, plotiabel ,
transedsslooMatrix , visbilityMateis_, phiMatrix_, interfecogram_| :« Module((),
gRoferenceTransmission = ArrayPlot|transmissionMateis,

PlotRange « (ALl, ALL, climTrans), Colorfunction « “GrayTonns",
ClippingStyle « (Black, White), Frise « False,
PlotLabel « plotLabel <>~ transsission, @e" <>

ToSteing [angle] <> ", test point=" <> ToSteing{testPointOne),
Ao « Teuo, AspectRatio « rows / columns, ImageSizo « 300,
PlotLegends -« (Placed [BarLegend | ("GrayTonea™, climTrana )], Right)),
fpilog < (PointSize « Large, Point| (testPoint)]));

gheforancaVisibility = ArrayPlot|vishilityMatrix,

PlotRange -+ (ALl, All, climvis), Colorfunction -« “GrayTones",
ClipplngStyle « (Black, White), Frase < False,
Plotlabel < plotlabel <» = visibility",
Axes < True, AspectRatio - rows / columns, ImageSize < 306,
Plothegends « [Placed [Baclegend | ("GrayTones™, clinvis) ], might]));

gheferencelhi «
ArrayPlot (phimMatrix, PlotRange « (ALL, ALl, climPhl), ColorFunction « "GrayTones",
Clippingstyle « (Black, White), Frame « False,
Plotlabel « plotlabel «» * phi®,
AXes « True, AspectRatio « rows / columns, ImageSize « 300,
Mlotlegends « [Ploced [BarLegend | ( "GrayTones™, climPhi) ), might])j;
yExpt = dinterferogram| [testPaintOne( (2] ], testPointOne|(1]], A11]];
xExpt = 1istGratingStepsMicrons;
transmission = transmissionMatedx| (testPoint([2])], testPodnt (2] )]
visibility = visbilityMatrix| [testPoint|(2]], uul’bint[ 111
phi = phiMatris| [testPoint | (2] ), testPoint[{1))])]);
yCale = Yable[transmission «
visibility Sinf2n xExpt[[4])] / gratingPeriodticrons « phi ), {1, Length{xExpt])];
plotString = "tronsmission=" <> ToSteing[tronsmission] <> "\nh* <>
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“visibilitys=" o ToString(visibility] o “\n" o

“phi=" <» ToStringiphi];
gFitReference = ListPlot|

(Yranspose [ (xExpt, yEspt) ], Transpose | (x€xpt, yCalc))), Jolined - {False, True),

Frame < Troe, Fromelabel < { (“intensity™, “*},

{"grating position/es", plotiabel «» ", tést pointe" ¢» ToString[testPoint])),

Eplliog « InsetiStyle[Text[plotString], 32], Scaled[(0.4, 0.85)]], TmageSize « 388]
EALIReference « Grid{

((gheferenceTransmission, gReforenceVisibility ), (gheferancePnd, gFitkeference) )] )

funcPlotAbsorptioaDPCharkF {2 14110C [plotishel
absorptiontateis_, dpcsatris , dackfleldatris | c« Module|(),
gAbsorption = ArrayPlot [sbsorptionsateix,
PFlothtange - [ALl, All, climAbs), Colorfunction <« “GrayTones”,
ClippingStyle « (Black, White), Frame « False,
Plotiasbel « "absorption, &=" ¢ ToStringlangle],
Axes <« Trun, AspectRatio « rows / columns, ImageSize « 300,
Plotiegends « (Placed[BarLegend [ (“GrayToses™, climAbs)], Night])1;:
m -
ArrayPlot [dpcratrix, PlotRange « (All, All, clis0eC), Colorfunction « "GrayTones”,
ClippingStyle « (Black, Mhite), Frame < False,
Plotlabel « "OPC, 0=" <» ToStringlangle],
Axes « Troe, ASpectRatio « rows / columns, IsageSize - 300,
Flotiegends « (Pluced (BarLegend [ [ “GrayTones™, clinDPC) ], Right]) ]
E0arkField « ArrayPlot [darkfieldmatrix,
PlotRange - (AL, All, clisDorkField), Colorfunction « “GrayTones”,
ClippingStyle < (Black, white), Frase <« False,
Plotilabe) - “dark-field, =" < ToStringlangle),
Axes < True, Aspectiatio « rows / colusns, ImageSize < 300,
Plotlegends « [Placed|DarLegend | {"GrayTones”, clisDurkField) ), Right]));

X » Range [cows) ;
ListColums « Range (50, columns - 50, 289 ;
mumberOfColomns » Length|listColemns);
LineProbevertics]l = Take|atsorptionMetrix, All, (S8, colusms - 58, 200)];
gAbsorptionlinedrobe «
ListPlot [table[Transpose|(x, (L -1) « Rax[climabs] + 1inedrabevertical([ALl, 1)])],
(£, nusberOfColunns) |, Joined « True, Frame « True,
Frameiabel « {{"absorption™, *"), {"row”, plotiebel}],
Epilog -+ Table[Style[Text {JistColumns{[£]], (2@, (£-1) e Max{climAla]}],
12, Background < white], (4, neeberOfColumns ||, IsageSize - 309 ;
1ineProbevertical = Take(dpcMatrix, All, {50, calews - 59, 208));
COPCL ineProbe =
ListPlot jTable[Trarspose|ix, (1 -1) « Max[c1is0OPC) « 1ineProbeVertical [ (AL, 1]])],
{1, nusberGiColumns) |, Joined « True, Frame « True,
Frasolabel « (("DPC™, " ). ("row", plotiabel) ),
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Epilog -« Table[Style(Text{ListColumns [ (A1), (28, (4 -1) « Maw[clinDPC] )],

12, Backiground — White], (1, numberOfColumna )|, Dnagesize « 308) ;
lineProbevartical « Take(darkfieldMatpix, AL, (B0, colusns - 50, 200));
ghorkeleldiinefrobe « Listhlot |

Table[Transpose | (x, (1 - 1) « Max[clisDarkFleld] « LinaProbovertical [ (ALY, L1])),
(4, dumbarOfColumns )], PlotRange «
[AL1, (1« numberOfColumns) « Max [clisOarkfiold) ), Joinad « True, Frame « True,
FrameLabal -« ({"dork-field", “*},; ("row", plotiLabel)}),
Epilog « Table[Style(Text {1istColumna{(4]], {10, (1) « Max[clinDurkFiold) )],

12, Hackiground « White], (1, numberOfColumns ||, Imagesize « 300) ;

RALIALSOPCOArk P LeldILDC « Grid| | (gAbsorption, gOPC, goarkFleld, gILbe),
(gAbsorptionlineProbo, gOPCLIneProbe, goarks loldlineProbe, gilbCLinedrobe})] |

Step 2: Paths, filenames, and grouping: Set
interferometer steps and period

Clear [pathTINF, pathiors)

PathTIFF « Notebookrlirectory|[] «» "datas"

pathDark « NotebookDiructory(] «<» “data/”

pathHDFS « NotebaokDirectory|] «» "HOFS_g/";
pathFITs » NotebookDirectoryl| «» "FITS g/";
pathSiices « NotehookDirectory|] <» "siices_muhrec/";
path¥igures = NotobaokDirectory(] <» "figures g/";
pathVolumes « NotebookDirectory(] <> "volumes/";
PALhSIng « NatebookDirectory (] «» "sinograss/”;

t2pratingPeriodMicrons « 4.8;
(edistincolamplotol=171000;«) (amicrons, mhe)

funcFindDarkd16f11es (pathDark] ;

Firstiark = fllenamesDark( (1))

{rows, colusns) « Dimensions [funclaadPCOFLleUncorrectad [Firsthark) |
referencebarkfield « funcRondDarkfield {fLlenamesDark) ;

Dimensions (referencebarkflield)

funcFindRoferencedl6files [pathTIfr);
funcFindSamplebia6files [pathTIre ],
funcFindRefarencetroups (| ;
funcEindSampleGroups
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CropRows « (1, rows];
croplolumny » (1, columny};
(rows, columns | «
{ (Max [cropRows ] - Rin{cropRows ) » 1), (Max|cropColemns) - Rin{cropColumns] « 1) };
gratingPeriosnicrons « 4.8
{+ inpot for numborGratingSteps )
nuaberGratingSteps
listGratingStepsiicrons = Tablel(§~1) « 0.48, (1, 1, nunbertiratingSteps )]
CONMROT » (([10, 150), (35, 190) )} (» same coordinates as Muhrec ««)

Tablefors| (| “sample name™, testMameStr),
|"grating period (in micrans)®, gratingberlodmicroos),
["grating steps (in microns) ™, {(ListGratingStepsiicrons}),
(“u of graving steps”, numberGratingSteps),
{“=m of reforence images®, nunberCéRefurencefiles),
{"n of reference groups™, numherOfiieferencetiroups ),
{"bounds: reference groups”, listReferanceSeguenceianbersGroupsBounds ),
{"n of saaple images®, musberOfSampleriles),
("= of sample groups®, numberGfSampleGroups),
[*bounds: sample groups®, listSaspleSequencelusbersGroupsBiounds) ))

Aistsampinangles
numberCfangles « LengthilistSanpleAngles)

1istSanpledngles| (1))

nusberOfSanpleliroups

Step 3: For any angle, process reference and sample

initialize vectors usad for the calculation
funcPrepareAllVectors [gratingderiodiicrons, listGratingStepsnicrons, rows, columny)

[Oimensions {ghatrix), Oimensions [bVector), Dimensions [aVector),
Pimensions [aMatrix], Disensions [visidility], Dimensions [phi])

set angle for calculation, find the correct filenames

1istSanp letngles
1istSampleGroup = Table[d, (4, 1, nusberOfSampleGroups ) |

180



angle » FirstiliatSanpieaAngles)

(eangle «9.95%.)
HstFilensmesReforenceOneInterferograns «
funcetReferencefilenanesforSpecficangle (angle)
1istf L lenanesSamploOne Intorforogran «
funcGetSanplef i lenanesforSpeci FicGroup [First|listSampleGrow) )
(+14stF LinnamesSanpleOnelnterferograms funchetSanplef t LenasesforSpeci ficAngin fangle] «)

calculate transmission, visibility, and phi for reference and sampie

nusborGratingsteps

listGratingStepsnicrons « funclleadl istGratingStepsticrons |
1istFilenmeshoforonceOnolnterforogran, nusbecGratingSteps |
funcPreparsillVectors [ gratingPeriodticrons, ListGratingStepsmicrons, rows, colusny )
[(Uimensions {ghtatrix) , Disensions [bVactor], Disensions [aVector)
Dimensions Janatrin], Disensions [visidility], Mimensions[phi] )

interferograsfioference « funclradOneinterferogrm|
HstrilsnanesieferenceOneInterferogran, rows, columns, ListGratingStepsMicrons )|
Dimensions [ isterferofranfiaference |
[referonceTransuission, referonceVisibility, refecencolhl ) «
funcCalculatetransalssionVvisibi 1itydhl [ interfarograsfiefdrence ) |
[Oinensions { referenceTransnission) , Min[refsrenceTransudssion),
Mean (Flatten[refarencoTransmission) ] // N, max[referenceTransmission) )
(Oimensions [ referenceVisibility ], min[referencevisibility],
Mean(Flatten[referencevisibility]] // N, Max|refarencevisibility])
{Odmensions {referencePhi] , Min[referoncePhd ),
Mean{Flatten|referenceihl] ] 7/ X, Max[referencethl])
time Inage

ListGratingStepsricrons «

funcheadiistGratingStepsicrons [ ListFilenasesSampleOooInterferagran, nunberGratingStops |
fancPrepareAllvectors [gratingPeriodiicrons, listGratingStepsRicrons, rows, columns |
{Dimensions [ghatrin) , Disensions |bWector], Disensions [aVectar),

Dimensions {amatriz], Dimensions (visibility), Odmmnsions [phi] )
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intorfarogramSanple « FuncRaadOnuIntarfurogran|
ListrilenamesSanpleOneInter feropean, rows, columns, 1isthGratingStepsMicrans | ;
Oimensiond [intecferogramSample)
(sampleTransmission, sampleVisibility, samplePhi) «
funcCalculateTransmissionVisibllityPnd [interferogransanple ] ;
(Oimensions [saspleTransmission], Win{sanpleTransmission],
Moan|Flatten [sampleTransmission] ] // K, Max{sampleTransmission]}
(Dimonsions [sampleVisibility], Min]samplevisibility],
Mean [Flatten [sanplevisibility]] /7 N, Max[rasplevisibility])
(Oimensions [samplerhl], Min|samplePhl ), Mean|Flatten[samploPhi] ] // N, Mak[sampledhi])
tinelnage

correct for bad pixels: referenceTransmisdion, sampleTransmission
raferanceVisibility

plor transmission, visibility, and phi for referance and sample

testPointone « [ (Round [colunns /2] « 68) , Round [rows / 2]);

(sclinTrans « (Min[refecencaTeansmisstion] Max[reforenceTransmission])je«)

climTrans « (Min[refsrenceTransmission], 8000) ;

(sclimvis » (Min{reforenceVisibility] MaxreferencoVisibility]);s)

climvis o (Min[referencevisibility], 1500);

climPhi « (Min[refarencerhi|, Max[rofaroncePhi] ) ;

ghllReferance « funcPlotTransmissionVisbilityPhirit [testPolntOne, "cef™,
referencelransmission, referenceVisibility, referencePhi, interferogramieforence )

Dimwnsiooy [sampleTransaission)

pAlISample « funcPlotTransmissionVisbility#hiFit [testPointOne, “sample”,
samploTransmission, samplovisibility, samplePhi, Snterferogramiamle |

Bxport [pathPigures <> "trans OPC DF F1t "o Tostedng[angle] <» “.pog”, gALLSample, "ONG")

calculate absorption, differential phase contrast, and dark-figld

sampleTransmission

reforenceTransmission
[Min[absorption], Mean{Flatten{absorption] ], Max[absorption] )

absorprion « -m( ] TN}

difforentinlfhase « samplePhi - referencebhi;

(Min{differentialPhase], Mean (Flatten [diffarentialfhase] ], Max [differentialPhase])
differentialPhase » fuhcCorrectlargeoPCyalue [differantialPhase] ;
(Min(differontialPhase ], Mean (Flatten | difforentialPhase] ], Max[differentialPhase])
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samplevisibility / referenceVisibility

sampleTransmission / referanceTransaission 1
(Min[darkfield], Mean[Flatten[darkfinld] ], Max[darkfield])

dark¥leld =

plot absorption, differential phass contrast, and dark-field

plotLlabel = "vertical sensitivity";
climAbs = (6, 1.2); ¢limDPC =B.5« {0, )}
climDarkField » (8, 1}: climILDC » (0, 1 #*-11};

gAbSDpCOF =
funcPiotAbsarptionDPCDarkFieldILDC [plotlabel, absorption, differentialPhase, darkfisld]
Export [pathFigures <> "abs_DPC DF " <> ToStringlangle] <> ".pag", gAbsDpcDF, “PNG")

plot doseRO|

doseR0T
columnROT = {doseROT([1, 2]], doseROT (12, 2]])
rowROT = (doseROI[[1, 1]], doseROI (2, 1]])
InsgeResize (TmageAdjust [Inage [Take [absorption, columnBDT, rowROT], “Real”]], 508)
meanBackgroundabsorptionSelectedangle =
Moan|Flatten[Take [absorption, calumnROI, rowR0I]]]
m2anBackgrounddpCSelectadAngle «
Mean[Flatten[Take [differentialPhase, columnROI, rowk0I]]]
meanfackgroundDarkFieldSelectedAngle « Mean[Flatten[Take[darkfield, columnROI, rowRCI|]]

Step 4: For all angles, process reference and sample

[nitialize vectors used for the calculation

funcPrepareAllVectors [gratingPeriodMicrons, l1istGratingStepsMicrons, rows, columns)
(Dimensions [gMatrix], Disensioos [bVector], Dimensions [aVector],
tHmensions [aMatrix], Dissnsions (visibility], Dimensionsphi] ]

far all angles, calculate transmission, visibility, and phi for reference and
sample, store HOFS, FITS

listileferenceAngles

listSampleSroup

oldlistFilenamesfeferencedneinterferogram « [ ")
1istTimeAngle = Ta'ble [Iodule[( 1
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(sangle «listheferonceAngles [ [indextistangle]];e)
samplegroup « ListSampleGroup [ {indexLlistGroup) |;
1istf LlenamesRefarenceOnelnterferogran «
funcOetheferoncel tlanames forfpect LcAngle (angle] ;
Print{{1, "o of rof lmages «", Length(lists{lonameshoforenceOnelntorforogran))];
I (First [old)istFilenamesReferonceOneInterfarogran) |«
First(ListFilenamesRefarencoOneinterforogram),
ListGratingStepsnicrons » funcReadlistGratingStepsMiceons |
HstFilenamesRefarenceOneinterfarogram, nusberGratingSteps |
funcPriparedliVectors [gratingPeriodficrons, 1istdratingStupsticrons, rows, collems |
(Dimenstony [gMateix), Dimensions [Bvector], Dimenaions [avector),
Oimensions [aMatrix) , Dimensions (visibility), Disensions [phi] ) ;
interforogranReference « funcRnadOnelnterferogram|
JistFilenamesReferencaOnelntorforogran,
rows, columns, IistGratingStepsMicrans|; |;:
{reforenceTransmission, referenceVisibility, referenceihi] «
funcCalculatoTransalssionVisibilityPhl [interfarograsftofarence ) |

1isti{lenamosSampleOneInterforogran «
funcGetSanplo¥ i lanames ForSpoct f ictroup [samplegroup) ;
Peint | (AindexiistGroup, "1t of sample lhages «~,
Longth[listFilenomesSamplebnelInterferogran] )|}
HstGratingStepamicrons « funcRpadiistGratingStepsMicrons |
HstFilenamesSamploUneInterforogram, nusherGratingStops) ;
funtPreparsAllVectors {gratingPuriodMicrons, LASGratingStepsMicrons, riws, columny]
(Disensions [gMatrix), Disensions [bVector), Dimensions |aVector),
Dimensioos {aMatrix], Oisensions [visibility], Dimensions (phi]};
interferogranSample « funcReadOnelnterferogram[1istFilanamesSanpleOneIntorferogram,
tows, columng, 1stGratingStepsiicrony] |
Peint [ {(indexl istGroup, samplegroup, timelmage]|;
(saspleTransmission, sanpleVisibility, saoploPhi)
funcCalculateTransnissfonVisibilityPhl [{interferagrasiomple | ;

reforenceTransmission « funcCorrectForZeroValuePixels |referencefransmission);
samploTransmission « funcCorrectForZeroValusPixels | sampleYranseission];
rofurenceVisibility « funcCorrectiorZerovValuelixels |reforencovisibility};

sompleTransmission
absorprion « -m[ =
refarenceTransnission

meanBackgroundAbsorption « Mean|Flatten|Take [atsorprion, columnROl, rowR0I]] 1}
absorption « absorption - meanBackgroundAbsorption;

differantinlPhase « samplePhi - referencolhl;
differentialPhase « funcCorrectiargedPCvalie (differentialPhase];
mesnBackgroundtiPC » Mean|FlattenTake [differontialPhase, columniiol, rowdOI] ]}
differentialphaselorr « diffecontialPhase - seanbBackgrounddC;

] AT
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differentizifmaseCorr = funcCorrectiargel®Cvalue [differentialPhasedorr) |

darkfield «
sseplevisidility / referenceVvisibllity / sssplefransmission / referonceTransmission;

dorifield « funcCorrectforOutOfiangeDarks ield [darkfield];

saspleVisibility
sanpleTransmission

samplevisibilityPer « 100 «

FilonaselDFS = test¥amesStr < ° ° o IntegerString [ indexiistGroup, 10, 8] < * "«
ToSteing (Nusberfors{angle, (6, 4}, NusberPadding -+ (*8%, "0"|]] < ".h§";
FilenamefITSaby « testhamaStr «» “_30° o “_abs_*“ o
mw”w‘,m‘mn i, 5 o it 2 8 3 0
filanameFITSdpc » testhiameStr <> " 30" <> " _dpc_" <>
Integersteing [indexlistGroug, 10, 5] «» " . fins";
TilenameF ITSApcCore « testiameStr «» ° 0" «» * _dpeCorr " <>
IntegerString [indestivtGroup, 10, 5) «» " . finn";
#ilenomet ITSdarkfield « tosthamestr <> * 30" > *_darkfield * o
IntegorString (indexiistGroup, 10, 5] < " Fits™;
EXpOrt {pUthMOFS <> TilonameHDFS, {absorption, differentizlPhase,
differentialPhaseCorr, darkfiold, samplevisiblliityber],
(“Datasets®, (“atmorption®, “dpc®, “dpcCorr™, “darkflelo”, “samplevisivilityPer®)));
Export [pathFITS o fllanameFITSabs, absorption] )
Expact [pathiITS <> filenanePITSdpe, difforentialPhase) |
Export [pathFITs < fllenameFITSdpcCore, differentialPhaselorr);
Lxport | pathFITS > FllensmeFITSdarkfield, dorkfield);
(eExport [pathFITS O Fllenamel ITSILOC, 1LOC) ;o)
ExpOrt [pathFITS o fllenmeF ITSsampleVisibilityPer, sanpleVisioliityPer)

(timeInage, angle) |,
(indext {stGroup, mumberofsmplatroups) |;

DatelistPlot [ 1istTimedngle,
Datelicksformat -> (“MonthShort™, /%, "Day™, ":", “Hour™ ), Joined < False,
frame < True, Frasetabel « ((“rotation angle”, "), ("dote:24-hr tise™, testiaseStr)))
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C.2. Sample Tomopy Codes for Stepped-grating Interferometry

Step 1: Initialization

Inf }: & -* coding: utf-8 -*-
froo  future  dimport print_ function
import os
from os disport listdir
from os.path import isTile, join
import nu=py
from PIL import Image
import matplotlib.pyplot as plt
import numpy a&s np
import string
from numpy.linaly dmport inv Smatrix calc
import math #log.
import scipy
import scipy.ndimisgs
import scipy.signal #median filter for zero bad pixels
from astropy.lo import Tits #fits file read nd writeTo
np.set_grintoprionssuppress=True) #no scientific notations
import rz #sort firs files
from IPython.display import clear_output #clear output

Descriptions: make sure you put "raw/” file in the correct path

In | |: # usar defined secticn
workdir = “/run/media/tomouser/MercurySSD/1tolFREBL-2650 pl4) dataProcessing/" #change your path here
rawPath = “frun/medis/tomouser/MercurySSO/1tniFRBL-265C pl141/"
yourfRawFilename = rawPath
angleincrement = |
par = angleincrement
try:
os-stat{os. pgath, joinlwarkdir, 'FITS')| #&crsat2 sxport fils: FITS
excapt:
os.mkdir{os. path. join(workair, "FITS'))
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Step 2: functions

Step 2.1: Reading files

In { |: det? readFllelpath, strtng;x #search string “white™ and “raw®
allFiles = [f for f listdir(path) if isfile(join(path,f))]
for n in runge(8, len{allFiles)):

allFilas(n] = Join{path,allFilesin]) _
allFiles, sortiKey=lambda var:[int(x) 4f x isdigit() else x for x in r=. ftindall(r' ["6-G]|(8-9]+", var)])
#use "regular expression” to sort filenames
Listfile = [}
for seq in range (0, ten(allFites)):

if string in allFilesisen):

Ustfile.appand(allFiles[sdg]))

print (‘There are '+ strilen(listfilaljs * "+ string + ' filas’)
return(listfile)

Step 2.2: grouping

In [ ]: def groupingflistfiles): _

Grouplist = [ap.int(listfiles|8). splatl”. =) |seqNum])]

numfiles = lanflistftiles)

for | in range(numfiles-1):

it (np.intilistfiles[isl] . splat(”.*)tseqium]} > np.ant(listfilesis] .splat(". " )iseqNum]) « 1):

GraupList append(np. Intilistfilesfl). split(*, ") [seqhum|))
Grouplist.appendinp. iny(listfiles[i+1] splin(®. ") [seqNum]))

Grouplist.append(np.int{listrites|lentiistriles)-1) splie(™. ") [seqhun] )}

Girouplist = np,transpose(Grouplist)

Group = np.reshape(Grouplist, (lenlGrouplist) /2, 24)

retarn(Group)

In | |: def funcGetSampleFilenamesFarSpecdficAngle langle)!
sampleFileforThisAngle = ]
for L\ in range(8, numSample):
if tnngle == np.float("." join([sampleFites[i].splat("." ) [anglel], samplefFiles{i].spliz{*.")[angle2]]))):
sanpleFileFarThisAngle, append(sanpleriles|i])
retarn{sampleFileForThisAngle)
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Tn [ ]t def funcGetWhiteFilenamesForspecificAngle(angle):

seql = np.antffuncCetSamplerilenamesForspecificAnglelangle) (8] .split(™. ") [s2qium])
pos = np.array(np.whera({sampleGroupl:,1] >= seqll)).flatten() 8]
for L in rangel{numwhite):

it (refGrouplpos.1] (0] == np.int(whiteFites|[L].split(".")|s58qNum]) )

StartNum = 4

listHefFilenamesAtThatAngle = []
for 1 in range(12):

ListRefFilanamesAtThatAngle append (whiteFiles|startXum 4 L))
return{listRafiilanamesAtThatAngle)

Step 2.3: Function for interferometry

In { ): det funcPrepareBvectorArbitraryStepsigratingPeriodMicrans, llstGratinqStuplecrons)

numberGratingSteps = len(listGratingStepsHicrons)

bl = pp.onss{numberGratingSteps))

b2 = np.zeros((numberGratingSteps))

ul = pp.zeros((nunbherGratingSteps))

for | in range(numberGratingSteps): )
B2IL] = np.sin(2*np.pi*listGratingStepsMicronsit) / gratingPeriodMicrons)
b3[L] = np.cas(2*np.pi*tlistGratingStepsMicrons|i| / gratingPeriadMicrans)

return(np.column stack((bl b2, 63)))

#funcPraparaBvectardrbitrarySteps(gratingferiodMicrons, listGratingStepsMicrons)

In | 1: def funcPrepareAllvVectorstgratingPeriodMicrans, ListGratingStepsMicrons, rows, columns):
tvector = funcPrepareBvactorArbitrarySteps(gratingPeriodMicrons, ListGratingStepsMicrons)
avector = cVector = np.zeros((3, rows * columns))
aMatrix = np.zeras((rows, calumns, 3})
amplitude = phi = fp.zeros(irows, columns))
gMstrix = np.dot{invinp.dot(np.transposeibVector), bVector)), np-transposa(bVector))
return(giatrix, bVector, aVector, aMatrix, amplitude, phi)

188



In [ 1: def funcRzadOnelnterferogram|{listFilenasesOneinterferogran, rows, columns, ListGratingStepsHicrons):
numberGratingSteps = len(listGratingStepsMicrons)
allbata = np.rerosiirows, columns, numberGratingSt=ps))
for index in rangs(numberGratingStepy): ‘
filename = ListFilena=ssOnelnterf=rogran] index |
intonsity = pp.array(Image.open(filenane))
alibatal!,:,index) = intensity
return(aliData)

In | 1: det funcCaloulztelifsatAmplitudePhi(data):
nunbarGratingSteps = len({listGratingStepsMicrons)
cVector = np.trandposa(np. reshape(dats, (rows*columns, numberGratingSteps)))
avector = np.dot(gMatrix, cVector)
aMateix = np.reshaps(np, transposelavector), (rows, columns, 1))
oftset = aMatrix{:,: 0]
anplitude = np sgrilaMatrixl:, ,1)°%2 & aMatrix|:, :,2]**2)
phi = np.arctan2{aMatrix|:.:, 2], aMatrix|(:,:,1])
#visibilityPercent = 168 * amplitude / offset
return{offaet, Fplituds, phi)

In [ ): def funcCorrectForZeroValunPivels(datpOriginal);
coordinatesZerointensityPixels » np.transposainp.whereidatalriginal == 8))
if lleo(coordlnnesuro!ntenut{?tuls > 08)):
dataCorrected = dataOriging
dataMedianFilter = scipy.signal. medfilt(dataOriginal, 3) & sedfilt Ordering = 1 doesn't work
for index in range(len{coordinatssZerolntansityPixels)):
{r, ¢| = coordinates2erolntensityPixels|index]
dataCorractad(r, c] = dataMedianFilter([r, <l
return{dataCorrected)
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In | }: def funcCorrectLargelPCValue(data):
datatorracted = dato
coordinatestargedPC = np. transpose(np.where(data > np.pi))
it (len(coordinatestargeRPC) > 9):
for indexr in range{len{cnordinatasiargedf()):
[r, €] = coordinateslargsDPC[index]
dataCorrected(r.c] = datalr, ¢} - 2*np.pl
coardinatesLargeDPC = np.transposeinp.whereldifferantinlPhase < -np.pl))
4f (len{conrdinatesLargeDPC} > 8):
for index in rangellen{coordinatesLargedPC)):
fr, €] = coordinateslargeOPC] tndex |
dataCorrected|{r, c] = data|r, c] « 2%np.pi
returnidatalorrected)

Step 3: Paths, filenames and grouping

In | |: rawbata = os.path, join{rawPath, yourRawFilename)
fitsFile = os.path. jolniworkdir, *FITS/')
print [ 'Your warking directory &s "', workdir, **")
print ()

In | |: whiteFiles = readFilelrawdata, ' .white,')
sdmpleFiles = readFile(rawbate, ‘.raw.’)

print()

nunktiite = len(whiteFiles)

nuxSample = len(sampleFiles)

print (np. transpose(whiteFiles(6:4)))
print()

print [(np.transpose(sampleFiles[0:4]))

in | ): #Fussr defined
print (whitefilesis0])
priat ()
print (whiteFiles|[368] . split{*. "))
seqNum = 5, ouser definsd numbérs
print (|}
print ("Is " & whiteFiles|{S8].split(".")[{seqNum] + * the correct seguence number for grouping?* )
print (“IIf not, please change ‘segNum’ value above. Thanks!)*)
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Inl 1:

In [ 1:

In | }:

In| |:

Inf 1:

fyser defined Tor angle searching

priat (‘is this the angle for the filenane?’)

print {)

anglei =3

angle? = 4

priant(op.fleat(”~." join([uhiteFiles[46) split(~.") [anglel], whiteFiles[aB).spliv(~.")[anglez]])))
print(“\n(please change anglel and angle? values above Lf this number is incorrect, Thanks!)®)

#run grouping funcrion for white and raw files
print{ ‘Reference files grouping:')

print {groupinglwhiteFiles))

prinat{)

print ("Sample files grouping:")

print (grouping(sampleFiles))

refGroup = grouping(whizeriles)

sampleGroup = groupingfsanmpleFiles)

Step 4: Look at one angle here

#user defired

angle = 145 Finteger hers 8-196 degree with I degres incresent
print ('the ane angle you want to look at is5: ', angle., ‘\n’)
print(’1f not, please change angle =", angle, “above. Thanks!')

ListFilenamesSampletnainterferogran = funcGetSanplefilennsesFarSpuctficAnglufangle)
print (np.transposs(listFilenamesSampladaalntarferngran))
priat| ‘\pNuaber of angle’, anple, ‘sample files:' K len{listFilennmesSaspleOnelnterferogras))

ListFilenamesRaferancedneinterfarogram » funcGetwhiteFilsnprasForspecificAnglelangi=s)
print (np.transpos=|listFilenamesReferanczlnelnterf=rogran))
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In [ ]t [rows, columns| = np.array(Inage.open|sampleFiles[0])).shape
#00 cropping
print (‘rows = ', rows)
print {’columns = ', columns}
gratingPeriodMicrons = & .0 #pixel size = 7 microns
listhratingStepsMicrons = np.aeros({i2))
for i in rangu(@, 12):
ListGratingStepaMicrons{i] = 1*9. 48
print (ListGratingStepsMicrons)

In | 1: print ('sample name: Y, whiteFiles (0] split(™/7") (seghum|. split(* . “)|a])
print (‘grating period (in microns): *, gratingPeriodMicrons)
print (‘grating steps (in microns): *, UistGratingStepsMicrons)
print ('# of grating steps: “, len{listGratingStepsMicrons))
priant {‘# of reference images (white): “, ten{whiteFiles))
print ('# of reference groups: *, len(refGroup))
print {‘# of somple images {(raw): . len{samplefiles))

tn | J: listSampleAngles = np.zeros(inp.int(199/par+1)))
for { in rangellentltstSampleAngles)):
UistSampleAnglesii] = 1*par
print {‘There are’, len(listSampleAngles), ‘angles:’, “\n\n', ListSampleAngles)
number0fAngles = Len(UistSampleAngles)
clear outputi)

inltialize vectors used for the calculation

In [ |: [gMatrix, bVector, aVectur, aMateix, amplitude, phi] = !unc?rmrullv«ectoulgnuwvertaMcmhs.
istGratingStepsMicrons, rows, cplumns)
print (g¥atrix. shape)

print (bVector.shape)
print (avector.shape)
print (aMatrix.shape)
print (amplitude.shape)
print (phi_shope)
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In | |: interferogramReference = funcﬁudoﬁélnleruronrullutFnanmsmunnceondnurferoqrn. rows, columns,
' listGratingStepsMicrony)
print (interferogramRefergnce.shapel

In [ |= npcseterr(divide='ignore’, invalide'ignore') #code have some “divided by zero® or “Nan® appears
[raterence0ffset, raferenceAmplitude, referencefhi] = \
funcCalculate0ffsetAmpli tudePhi (interferogroaRefarance)

print ['reference Offset:')

print (referenceQffsetr.shape, ap.min(referencelffsetr),
np.mean(reference0fiset flatten()), np.max{referenced?fset))

print ('reference Amplitude’)

print (referenceAmplitude.shape, ap.min(referancedmplitude),
np.mean(referencefmplitude. flatren() ). np.max(referenceAmplitude))

print (‘reference Phi')

print (raferencePhi. shape, np.min(raferencePhi],
np.mean(refarencePhi, flatten() ), op.max(referancePhi))

In [ ]: interferogramSample = funcReadOnelnterferogram(listFilenamesSampleadneinterferogran, rows, columns,
listGratingStepsMicrons)
print (interferogramSample.shaps)

In | |: IsampleOffset, sanpleAwplitude, <amplePhi| = fundCalculated!fsetAmplitudePhl (interferngranSanple)
print (‘sample Tranmmission:')
print (sasple0ifset. shape, np.minisampleQffset),
np.mean(sampledffset. flatten() ), np.max{saapledffset))
print ('sample Asplitude’)
print (samplaAmplitude.shape, np.min(sampleAnplitude),
np.mean (sampleAnplitude, Fiatten()), np.max(sanpleAmplitude))
print (’'sample Phi') A
print (samplePhi.shape, np.min(samplePhi),
np.mean(samplePhi fiatten()), np.maxisamplefhi))
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In| )

In| )¢

In )

In | }:

print (ap.transposelnp.wherelreferancedf fset == 8)))
reforance0ffser » funcfarrectForZaroValuePixnls(reforance0fiset)
print (np.transposeinp.wheralreferynce0f fset == 8)))

print (np. transpeselnp.wherelsample0f fapt == 0)))
sample0ffset = funcCorrectforZeroValuoPixols(somple0ffsot)
print (np.transpose(np. where(sample0fiset == 0)))

print (np.transpose(np . where(refersnceAnplitude == 0)))
referanceAmplitudo = funcCorrectForZaeroValuePixels(reforenceAmplitoos)
print (np.transpote(np.wherelreferpnceAnplitude == 0)))

plot trans, vis, and phi for ref and sample

testPointOne » (np.roundlcolumns/2), ap.round(rows/2))

print (testPointOne)

climOffeet = [np.min(reference0ffset), np.max(referancedffset])]
climAmptitude = [np.min{referenceAmplithde), np . mox(reforenceAmplitude) |
climPhi = [np.minireferoncePhl), np.max{reférencoPhl)]

plrtoimshow(reference(rfset, cmaps'gray’)
wplt.cotorbar()

pLt. showl )

plr. imshow(reforancoAmplitade, caaps'gray’)
plt.show()

plroimshow(referancePhi, Emop='gray’)
plt.show()

cloar_output()

pLE. imshowlsample0f{set, cmap='gray’)
pit. abow()

pLr.imshowlsampleAmplitude, cmap="gray’)
plt. show()

plr.imshowlsampleRrhl, cmape'gray’)

plt. whow()

clear_autput()
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calculate abs, dpc, and dark-field

In | |: absorprion = -np. logisaspleOffset / referenceQffset)
print (op.sinlabsorption). np.aeani{absorption. flatten()), np.sax(sbsorption))

In | ): differentialPhase = sasplePhi - refersncePhi
print (np.min{differentiaiPhase), np.mean(differentialPhase. tlatten()), np.max(differentialPhasel)

In | ]: eifferentislPhase = funcCorrectlargebPCValue(differentialPhase)
print (np.min{differentialPhose), np.meanidifferentiaiFfhose. finttent)), np.moxidifferentiaifnase])

In | ]: durkfield = (sompleAmplitvde / referenceAnplitude) / (sample0ffser / roferencedffset)
priat (np.sin(darkficld), np.scantdarkfield), np.sax(darkfield))

In | }: plt.isshowiabsorption, csap = "gray')

plt show!}

plt . imshowidifferentialPhase, coap = 'gray’, veax = ap.pi, vmin = -np.pi)
plt.show()

plt.isshowidarkfield, coap « "gray’, veox = 1, vain = @)

plt.showl )

sclear_output()

Step 5: for all angles, process ref and sample

In | 1: |gMatrix, GVector, aVector, aMatrix, amplitude, phi] = funcPrepareAllVectors(gratingPeriodMicrons,
ListGratingStepsMicrons, rows, colusns)
print (gMatrix.shape. bVector.shape. avector.shape. aMatrix. shape. asplitude.shope, phi.shapo)

In | )i saspleNosePosi = 6
oldlistFilenanesfefarencodnelnterfarpgran = = =
sonpletane = whiteFiles|8] split(*/") {smmpleNancPost) split(". ") [0}
print( sample nase: ", sampleNane )|
nusher0fAngles
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In | ): for ipdextistAngle in range(nuaber0fAngles):
angle = linrSampleAngles|indextistAngle]
ListFilenanesReterencelnelnterferogran = funcGeiwhiterilenamesForSpectficAnglelangle)

print (indexListAngle, '® of ref ilmages «°, len(listFilenanesfeferenceOnelnterterogran))
it (olglistFilenapesReferancelnelnterferogran f= 1istFilenampsReferencednelInterfarogram(@]):
interferngranfoference = tuncleadOnelnterferogram(ListFilensnesfeferencednelnterferogram, rows,
columns, listGratingStepsMicrons)
|refarence0ffsat, referencedAmplitude, refercncelhl] = funcCalculateOffsataAmplituderhi(interfercgranReference)

ListFilenamesSanplednelnterferogram = funchetSamplefilenanesForSpecificAnglelangle)

print (indextistAngle, '# of sample images =', len(listFilenamesSsnpleOnelinterferogras))

interferogramSample « funcieadOnelIntarferogram(listFilonamesSanpledneinterferogram, rows,
columns, ListGratingStepsMicrons)

rinmt (indexListAngle, angie)

sampledf fuet, sanpleAmplitude, samplePhi) = funcCalculatedffyatampiitudedhi(intorferogransSaegte)

raferencedtfset = funcCorrectForZeroValiuePisels(referance0f fsat)

sampleQffset = funcCorrsctForZeroValuePixels(sampledffsat)

referenceAnplitude = funclorrectforZeroValuePixels{referenceinplitude)

absorption = -np.loglsampledffeat / referencedffset)

differentialPhase = samplofhi - roferencePhi

wdifferentiolPhase = funcCorrectlarge0PCValue(differontialPhose)

darkfield = {sampleAnpiitude / referenceAmplitude) / (vampleQffser / reforancedffset)

#darkfield = 1 . darkfield

#fits file writeTo htip;//docs. astropy. org/en/stable/19/fits/

visibilityPercent = 168* sampledmplitude/roferenceAnplitude

#urite abs FITS files
absFilename » os.path.join(fitsFile, sampleName ¢ ' abs ° + np.strianglefparsel) & “_fits')
try: #resove file (f exits
05 . remove{absFilenane)
except (S5Error:

pass
BbEFits » fits HWOULLSE(|[Tits PrimaryHDU(absorption)|)

absFits.writetofabsFilenane)
absFits.closel)
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#write dpc FITS Files
dpcFilenase » os.path. join(fitsFile, sampleNase ¢ ' dpc " + np.strianglesparsl) ¢ ".firs")
try: Sremove file iF exits
s, resove(dpcFilenane)
except OSErrar:
pass
dpcFits = Tits HOULLSTI| Fits. PrisaryRl (differentiaiPhass) )
dpocFits writetoldpcFilenass)
dpcFits. clos=i)

Bwrite darefield FITS files
dfFilename = ps.path.join(fitsFile, sampleName + * darkfield_ ' « np.striangiesparsl) + “.fits")
try: #remove file 1f enits
es.resove(dfFilenans)
except O0SError:

pass
diFits = Fits MOUList(|VPits . PrisaryiDU(darkfield] ])
dfFits.writstoldiFilename)
diFits. closs={)

swrite visibilityParcent FITS files .
visPerFilenass = os.gath. join(fitsFile, ssapleliams « ' visibilityPercent ' + np.sirlangle/parsl) « *.fits')
try: #Fresove file if =2xits
o3 resovelvisPerfilennse)
umf .oszrror:

pass
visPerFits = fits.#UList([fits.PrisaryOU{visibilityPercent)])
visPerFits writstolvisPerfllenans)
visPorfits. . close{)
clear_output!)
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C.3. Sample Tomopy Codes for Volume Reconstruction

Inl ):

In | I:

Reconstruction with Tomopy/Astra modules

Descriptions: "FITS" folder Is needed

path = “/ent/wen- - Sx5888091410821e41 . partl/1T10lFRBL-263C plal dataProcessing/’
absFitsFileName = ‘FITS/®

darkFitsFileName = 'FITS/'

dpcFitsFiloNamse > ‘FITS/"

angleincrement = 1

par = anglelncrement

Step 1: Initialization

& .*. goding: vtf-8 -*-

from _ future  import print_function

import tomopy

import os

from os isport Listdir

from os.path import isfile, join

import nuspy

from PIL Smport Image

import matplotlib pyplot as plt

import numpy as np

import string

from numpy.linalg import inv ®matrix calc

import nath #log

import scipy

import scipy.ndisage

import scipy.signal ssedian filter for zero bad pixels
from astropy.lo impert fits #rits file read and writelo
import r= gsart rits files

from IPythen. display impart clear output eclesr output

198



Step 2: Functions

Step 2.1: Read files

In [ |= def readFile(path, string): gssarch =tring “white® and “raw*
alifiles = |f For f in Uistdirtpath) if ssfileljoin{path,1))]
for n in rang=(0, leniallFiles)):

allFilesin] = join(path,allfilesin])
allfiles.sort{keyelambda var:[int(x) if x.1sdigir{) else x for x in ra.findallic’ ["8-8]|[8-G)s ", var)l)
#use “regular expression” to sort fllenames
listfile = []:
for seq in range (8, lenlallfile<)):

if string in allFilesiseq):

listfile.append(aliFilesiseq))

print ('There are '+ strilea(listfile))s ' "4 string & " files")
returnilistfile)

Step 3: path, read files and filenames

in [ J: warkdir = path
absFITS = os,.path, join{workdir, absFitsFileName)
daTKFITS = os.path, joln(workdir, darkFits¥iieNome)
dpcFITS = os.path,join{workdir, dpcFitsFileName)
print ('Your working directory is: ', workdir)
print (absFITS)
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Inl It

read abs fits files and create abs volume

index = BO mlook at bne rit file here
absFitsFiies = readFile(absFITs, ‘abs’)
nunfiles = Len(absFitsFilen)

print (absFitsFiles{index])

onelmage = Yits. open{obsFitsFiles|index))
onelmnage.infaf)

sonelmage.close()

onelmageArray = onelmagel(&] . dota
oneInsgedrray. shape

plt. imshow(oneimageArrayl:, 114871, ‘gray')
it showl )

print ('Iepge dimension is', anelmageArray.shape)

[X, Y] = anelmageArray, shape ‘

print ('X 1s', X, ‘apd Y A5', ¥

0llALS » np. zeros{(numFiles, X, Y)) #croate abs volume
print (sl1AbS. shape)

for Lndex dn range{nuofiles):
onelmage = fits.open(absFitsFites|index])
onelmugedrray = anelmagel0] . dats
allAbs [1ndex, @, 1] = onolmageArray
it dmshow(allAbsfindex, <, :), 'gray')
wplt. show()
allAbs dtype
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in[ It

read darkfield fits files and creale (1-dark) volume

darkFitsFiles « readFile(darkFITS, "dark’)

oneinage » fits openidarkFitsFiles|index])

onelssge. info()

sonelmage.close()

onelsageArray = onelnage[0] data

oneinageArray.shape

plt . isshow(onzimagaAreay, "Qray’. wmin = @, vsax=1)

plt. showl)

priant ("Isage disension is', onelsageArtay.shapel

(X, Y] = onelmageArray.shape

priat ("X is', X, "and Y i3, ¥)

alllark = np.zerosi(mmFiles, X, Y))

priat (allDark.shape)

for index in range(nwaFiles):
onelinage = fits. open{darkFitsFiles|index))
onelnageArray = onclmage{@] . dota
sliDark{index, =, :] = 1 - onelaageArray

splt.imshow(alibarkfindex, =, =], ‘gray’',vain =8, wmax = })

splt.show()
alidark.dtype

201



Inl |:

In[ ):

In | ):

read dpc fits files

dpcFitsFiles = readfileldpcFITS, ‘opc')
onelmpge = fivs.open{dpeFirsFiles|index])
onelmage. info()
fonelmage.close()
oneImageArray = onsimagelB] . data
onelmagoArray. shape
plt, imshowloneimageArray, “Qray', vimin » «np.pl, ymaxs=np.pl)
plt. show()
print ['Image dimension 15, onelmageArray.shape)
IX, Y] = onelmagoArray. shape
print ('X 1s°, X, ‘and Y is°, Y
o110PC » np,zeros((numFiles. X, Y))
print (allDPC. shapu)
for index in rangé(numFiley)!:
onelmage = fits. open(dpcFitsFiles|index))
onelisagoAtrray = onelmage|0].data
all0PCiindex, ©, 1] = oneimageArray
aplt imsnow{allOPClindex, 2, ), ‘gray', wiin =.np.pi, vinax = np,pi)
splt. show()
allDPL . dtype

cropping images

absProj = allAbs[:, 75:196, 1:487]
dpcProf = all0PCL:, 75:196, 1:487)
darkProj = allDark|:, 75:190, 1:487)
nosProd  shape

plt.imshowlabaProy |z, &0, ], cmep=‘Greys r")
plt. show()

plt. imshowlabsPro) |98, =, ], cmep='Greys r’)
plt. show(})

sclear oytput()

202



In | )= plt.imahow(dpcProj |88, 1, :], cmap=‘Greys r', vmax = np.pi, vmin = -np.pi)
#olt. colorbar()
plt.show(}
plt.imshow(dpcProj|:, 8@, :], cmap="Greys r', vmax = 'np.pi, vmin = «hp.pi)
#pit.colorbar()
plt.showl}
gclear output()

In | i plt.imshow{darkPra) |80, :, ], cmap=‘Grays_r', vein = 8, vEax=1)
#pit.colorbar()

plt.showl)

plt. imshowi{darkProjf:, B0, :|. cmap=‘Greys_r', vmin
#plt.colorbar()

plt.show()

print (np.max(darkProj))

print (np.min(darkProj))

#clear output()

8, wmax=1}

In | 1t proj = dpcProj
print (np.max(proj))
print {np.mintpraj))
#thety = tomopy.anyles(proj. shapeld])
startAngle = 8
endAngle = 190
print {startAngle, endAngle®np.pi/188, proj.shapeid))
theta = ||
for 1 in rangelpro).shapalB]):
theta, append{(L*par*np.pl/188)
print (np.transpose(theta))
gclear output()

find rotation center

Tn [ ]: rot_center » romopy.find centeriproj. thets, (nit=236, ind=28., tol=8.5)
#proj = tomapy. minus log(prof)
gremove outlier bafora recon
print (rot center)
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In [ |: 2dofined by yourself
rot_center = 263

Step 4: TomoPy Reconstruction

In | }: recon = tomopy.recon{abhsPro), theta, centersrot center, algorithms=‘gridrec’)
recon = tomopy.circ_mask{recon, axis=8, ratio=8.99)
plt.imchow(recon{95, :,:], omap='Greys r')
pit.colorbar()
plt_show()

In [ |: #save the reconstrucied volume
dmport hSpy
with hSpy.Fils(os.path.join(workdir, ‘absRecon_Tomopy Gridrec.h3’), ‘w') as hi;
hi.create_detaset( ‘slics', data=r=con)

in [ 1z recon = tomopy.recon(darkPro), theta, center=rot center, algorithm='gridrec’)
recon = tomppy. circ_mask(racon, sxis=8, ratiuwg_ 99)
plt.imshow(racon[95, :.:]. cmaps'Greys r)
plt.colorbar()
plt.show()

In [ ]: #save the reconstructed volume
import h5py
with hSpy.File(os.path. join(workdir, ‘darkRecon Tomopy Gridrec.hS'), ‘w') as hf:
nf.create dataset(‘slice’, datasracon)

In [ ]: recon = tomopy.reconidpcProf, theta, centsrerot_center, algorithm="gridrac’)
recon = tomopy.cire mask(recon, axis=@, ratio=0.99)
plt.imshow(recon(95, :, :], cmape'Greys r')
plt.colorbar()
plt. show()
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in

in

In

In

.
.

Step 5: ASTRA Reconstruction

Step 5.1 sirt for dpe

ftomopy. astra?

extra_options ={'MinCanstraint’':«np.pi}

options = {‘proj_type':'cuda’, 'method’: SIRY CUDA‘, ‘nus_iter’:40, "extra options':extra uptions}
dpcRecon = tomopy.recon{dpcProj, thets, centers=rot center, algorithastomopy.asten, optiohseoptions)
dpchecon = tomopy. circ_maskidpcRecon, axis=0, ratio=8.99)

plt. imshow{dpcRacon[95, <, :], cmap="Greys r*, vmin = np.min(dpcRecon) /2, vmax = np.max{dpcRecon)/2)
plt.colarbar()

plt.show()

import hipy
with hSpy.Filefos.path. join(workdir, ‘dpcRecon Astra SIRT CUDA fterdB.h5'), 'w') as hf:
hf . create_dataset('slice’, datasdpcRecon)

sirt for dark-field

#Ftosopy . astra?

extra_options ={"MinCanstraint':~1}

options = {'pro) type':'cuda’, 'method':"SIRT CUDA', 'num Iter'!48, 'extra options’:extra options)
darkRecon = tomopy. recon{darkProj, theta, centermrot_center, algorithm=tomopy,.astra, options=options)
darkflecon = tomopy.circ msskidarkRocon, axis=8, rutio=8_85%5)

plt.imshow(darkReconi9%, :,:], cmaps"Greys ', vmin = np.min{darkRecon), vmax = np.max{darkiecon))
plt.colorbari)

pit.show()

import nSpy
with hSpy.Filelos.path, join(workdir, ‘darklecon_ Astro STRT_CUDA_iterd8.h5°), “w') as ht:
he.create dstaset| slice’ odata=darkRecon)

205



sirt for absorption

In | |: #tomopy. astra?
extea_options »{ '‘MinConstralint’' =0}
optigns ~ (‘proj type':‘cuda’, ‘method’ :*SIRT CUDA'. 'tum_fter-:40,'extra_options’':extra_ogtions)
abiRecon = tomopy. recon(absProf, theta, centersrat_center, algoritheetomopy.astra, options=options)
absRecon = tomopy.cire _mask{nbsRecon, axissd, ratio=0 85)

In | |: ple.imshowlsbsReconf9s, .1}, cmaps'Greys r', vein « np.aihiabsRecon), veax = np.max{absBecon))
plt.colorvar()
plt.shaw!l )

In [ 1: import nSpy .
with nfipy File(os.path. jotniworkdir, ‘absRecon Astra SIRT (UDA 1terdd.n5°), 'w') o hi:
hf.create dataset('slice’, data=absRecon)

206



VITA

Omoefe Kio was born in Oyo state, Nigeria. She had her secondary school
education at St. Lukes Grammar School, Lagos, Nigeria. Following her secondary school
studies, she proceeded to the University of Lagos where she obtained her Bachelor of
Science degree in Industrial Chemistry. Her undergraduate research involved the study
of the corrosion inhibitive properties of naturally occurring products like Gossypium
hirsutum L under the supervision of Dr. Olusegun K. Abiola.

She joined the graduate program of the Louisiana State University Chemistry
department in January 2014 with Dr. Leslie Butler as her research advisor. Her research
focuses on X-ray grating-based interferometry and its potential application in additive
manufacturing. She has co-authored a number of conference papers and peer-reviewed

publication during her graduate studies.

207



