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ABSTRACT 

Organic Light Emitting Diodes (OLEDs) are predicted to revolutionize next generation 

consumer electronics by offering many advantageous device characteristics, including low power 

consumption, low heat dissipation, a tunable and wider color gamut, high resolution and contrast, 

light weight, flexibility, and semi-transparency. However, a major limiting factor for OLEDs to 

reach their full potential is that only a few known blue OLED emitters with substantial spectral 

purity and longevity are available to date. Therefore, focus of this research is on understanding 

and addressing limitations of OLED emitters, with an emphasis on improving the characteristics 

of blue emitters.   

The work presented in this dissertation includes understanding structure-property relationships 

of OLED blue emitters using four structurally related pyrenylpyridines as model compounds 

(chapter 2), applying these structure-property relationship concepts to synthesize three novel blue 

emitters derived from pyrene-benzimidazole conjugates with substantially improved spectral 

properties (chapter 3), as well as synthesizing and characterizing propidium luminophore (3,8-

diamino-5-[3-(diethylmethylammonio)propyl]-6-phenylphenanthridinium dication) based 

GUMBOS (group of uniform materials based on organic salts) to evaluate how these GUMBOS 

materials can be applied to address the aforementioned limitations of OLED emitters. A number 

of analytical tools were applied to study the characteristics of these compounds, including 

morphology, spectroscopy, photothermal stability, and electrochemistry. Also, OLED prototypes 

were fabricated and characterized with selected compounds to understand the luminance, current, 

and power relationships of these materials.  
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CHAPTER I. INTRODUCTION 

1.1. Organic Light Emitting Diodes (OLEDs) - A Brief Overview    

Organic semiconductors are widely used in optoelectronic applications such as photovoltaics,1 

photodetectors,2 phototransistors,3 and light emitting diodes.3,4 Among these, OLED technology 

represents one of the most promising means of next generation energy-saving, full-color, flat-

panel electronic displays and lighting.5 Since electronic display and lighting applications are 

integral to modern life, an estimated global market share of $9.6 billion is expected by the year 

2020 for OLEDs, with the highest contribution from the Asia-Pacific region, as depicted in Figure 

1.1 (A).5 Also, the global OLED market share statistics indicate that the largest market segments 

for OLED displays are held by televisions and laptops/tablets/personal computers (PCs), whereas 

the largest market segments for OLED lighting are held by residential, commercial, outdoor, and 

automotive lighting applications, as shown in Figure 1.1 (B and C).5 

The concept of OLEDs was initiated by observation of electroluminescence from small organic 

molecules, such as acridine derivatives, by French scientists at the University of Nancy, France, 

in 1950s.6   In 1987, Ching W. Tang and Steven A. Van Slyke (Eastman Kodak, USA) reported the 

first commercially useful OLED prototype, which showed a substantial light emission efficiency 

at a relatively low voltage (10 V).7 This breakthrough helped OLEDs to rapidly evolve from a 

preliminary laboratory concept to a commercially sustainable leading technology. Sony launched 

the first OLED display, XEL-1 television, in 2007 whereas OSRAM commercialized the first 

OLED lamp in 2008.5 Today, companies such as Samsung, Sony, LG, Panasonic, Apple, Dell, and 

Asus lead the OLED display market. Companies that lead the lighting market include Philips, 

OSRAM, LG Chem, Konica Minolta Pioneer OLED (KMPO), Seimens, Selux, and Acuity 
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Brands. Figure 1.2 displays some consumer electronic products and lighting applications based on 

OLEDs that are available in the current market.8,9  

 
Figure 1.1. Global share of OLED market forecast by region (A), by display application type (B), 

and by lighting application type (C). 

The cutting-edge advantages of OLED display with respect to the competing display 

technology, liquid crystal display (LCD), are low power consumption, semi-transparency, low 

weight, flexibility, faster response time, wider viewing angles, wider color range, high resolution, 

and high contrast.10,11 Additionally, OLED based lighting panels offer unique advantages. These 

advantages include the absence of hazardous heavy metals like mercury, which is found in 

compact fluorescent light (CFL) bulbs, significantly lower heat generation compared to 

incandescent bulbs, and ‘paper-like’ thin, light weight, and remarkably malleable structures that 

provide great design flexibility.8,9 Also, OLED white light panels emit soft diffused light that 

resemble natural sun light with insignificant emission of near UV radiation.12 This is in contrast 
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to most LED bulbs, which often emit near UV radiation, thus OLED based lighting applications 

provide more safety and comfort to the eyes.12  

   

Panasonic TX-65CZ950 65” 

curved TV 

Asus ProArt PQ22UC 21.6" 

monitor 

Samsung Galaxy A8/A8+ 

smart phones 

 
  

Acer Liquid Leap+ smart 

fitness tracker 
Apple smart watches HTC Vive Pro VR headset 

   

Acuity Brands OLED lighting 

panels for offices 
Audi TT RS OLED tail lights 

OSRAM OLED lighting 

panels for homes 

Figure 1.2. Consumer electronics and lighting applications based on OLED technology. 

Beyond this point, the main focus of this chapter is to provide an overview of the principles 

and components of OLED display, since this focus is in line with the broader objective of this 

research, which is, to improve the characteristics of OLED emitters used in electronic displays. 
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1.2. Working Principle of OLEDs  

OLEDs are solid-state electroluminescent devices consisting of multiple organic 

semiconducting layers sandwiched between two electrodes (usually an anode and a cathode).10,11 

Therefore, the working principle of OLEDs largely relies on exciton formation and decay.10 

Excitons are mobile quasi-particles, in which an electron and a hole are paired by Coulombic 

interactions.10,13 Decaying of excitons formed in the emissive layer (EML) of OLEDs under the 

influence of an applied electric field generates electroluminescence.14,15  

As schematically illustrated in Figure 1.3, a simple state-of-the-art OLED design for electronic 

displays often contains multiple thin layers of task-specific organic materials to optimize the 

device’s performance.11,16 Under the influence of an applied electric field, holes and electrons are 

injected from the anode and the cathode into the device. These holes and electrons occupy frontier 

orbitals of organic semiconducting molecules and move toward oppositely charged electrodes 

through the organic layer(s) due to Coulombic interactions. Holes hop through the highest 

occupied molecular orbitals (HOMO, analogues to the valence band of inorganic semiconductors), 

whereas electrons hop through the lowest unoccupied molecular orbitals (LUMO, analogues to the 

conduction band of inorganic semiconductors).10 A fraction of these holes and electrons combine 

to form excitons in the EML, in which both electrons and holes are found in abundance. 

Subsequent radiative decay of excitons yield photons. The color of the emitted photons is 

determined by the HOMO-LUMO energy gap (Eg) of the EML.10,16 Since red, green, and blue 

(RGB) colors are indispensable to realizing full-color electronic displays, OLEDs are often 

designed to emit RGB colors by appropriately tuning the Eg of EML materials.17 Supporting 

organic layers (i.e., charge injection layers, charge transport layers, and charge blocking layers) 

are energetically matched with HOMO and/or LUMO levels of EML to optimize the flux of 
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charges from electrodes to the EML and maintain the maximum charge concentration within the 

EML.  

 
Figure 1.3. Schematic representation of a state-of-the-art multi-layered OLED design indicating 

the flow of charges under an applied electric field. (HIL: hole injection layer, HTL: hole transport 

layer, EBL: electron blocking layer, EML: emissive layer, HBL: hole blocking layer, ETL: electron 

transport layer, EIL: electron injection layer). 

 

1.3. OLED Classification 

OLEDs are classified as bottom-emitting (conventional), top-emitting (inverted), and 

transparent, according to the device architectures, as shown in Figure 1.4.16,18 Bottom-emitting 

OLEDs transfer light through bottom semi-transparent electrode(s), whereas top-emitting OLEDs 

transfer light through top semi-transparent electrode(s). In transparent OLEDs, light travels 

through both top and bottom semi-transparent electrodes. 

Indium tin oxide (ITO) is the most widely used semi-transparent electrode material to date, 

whereas ultrathin films, grids, nanotubes, and nanowires made from materials including metals, 

graphene, and polymers are also employed as electrode materials.18 Inverted and transparent 

OLEDs have advantages such as the ability to use a wide variety of substrates, including flexible 
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and wearable materials, are easy to integrate with OLED circuitry, and have significantly low 

wave-guiding losses of light through the substrate.19,20  

 
Figure 1.4. Bottom emitting (A), inverted top emitting (B), and transparent (C) OLED 

architectures. 

 

In electronic screens, OLEDs are often applied as either passive-matrix OLEDs (PMOLEDs) 

or active-matrix OLEDs (AMOLEDs).16 PMOLEDs have anode stripes perpendicular to cathode 

stripes, in contrast to AMOLEDs, in which electrodes are found as complete layers. Also, 

AMOLEDs contain a thin film transistor plane parallel to the anode.16,21 Production of  PMOLED 

screens is relatively economical and less complex compared to AMOLED screens. However, 

PMOLED screens have limitations, such as high power consumption, low resolution, and a low 

operational lifetime compared to AMOLEDs. Also, PMOLEDs are typically applied to small 

screens (> 3”) that limited to display a few characters or a few small icons.8 In contrast, AMOLED 

design is more complex and applicable to large and complex screens, with advantages including 

low power consumption, a high battery life, and high resolution.8 Accordingly, PMOLEDs are 

limited to wearable and/or small devices, while AMOLEDs are used in a wide variety of larger 

and more complex electronic devices, such as monitors, large-screen televisions, smart phones, 

electronic signs, and billboards. 
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1.4. Blue Emitters in OLED Displays 

The research work presented in this dissertation focuses mainly on blue OLED emitters. The 

first blue emitting multi-layer OLED was fabricated by Japanese scientists in 1990.22 Blue is a 

primary color that is essential to realizing full-color displays along with red and green emitters. 

These RGB emitters should ideally yield equivalent color purity, operational lifetime, and 

efficiency. However, the intrinsically wide HOMO-LUMO energy gap of blue emitters affects 

efficient charge injection and causes rapid deterioration of EML, particularly upon excitation.23,24 

As a result, blue emitters typically have lower operational lifetimes, lower efficiencies, and lower 

spectral purities compared to red and green emitters, thus causing a key obstacle for the long-term 

commercial viability of OLED technology.23 Accordingly, several strategies were introduced to 

address the inadequacies that are inherent to blue emitters including optimization of molecular 

design, optimization of EML design, and improving exciton harvesting mechanism(s).23-25 Figure 

1.5 provides a brief summary of these approaches towards improvement of aforementioned 

limitations of blue emitters. Also, sections 1.5-1.7 of this chapter further discuss these approaches 

in detail.  

 
Figure 1.5. Exciton harvesting mechanisms, molecular designs, and emissive layer designs 

employed to optimize the longevity, efficiency, and spectral purity of blue OLED emitters in 

electronic displays. 
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1.5. Exciton Harvesting Mechanisms 

The ability to extract photons from OLEDs by the exciton decay process occurs in the EML is 

known as exciton harvesting.25,26 The exciton harvesting efficiency of a particular emitter can be 

quantified using electroluminescence quantum efficiency, which is the ratio of emitted photons to 

injected charges.11 Internal quantum efficiency (IQE) is the ratio of the emitted photons generated 

within the OLED to the number of injected charges, whereas external quantum efficiency (EQE) 

is the ratio of emitted photons into the viewing direction to injected charges.11,26 

Electroluminescence quantum efficiency of OLEDs is further discussed in section 1.9.5.4 of this 

chapter. To date, well established mechanisms for harvesting excitons in OLEDs are conventional 

fluorescence/fluorescence, phosphorescence, thermally activated delayed fluorescence (TADF), 

and triplet-triplet annihilation (TTA)/triplet fusion.15,23-28 These exciton harvesting processes are 

schematically illustrated in Figure 1.6 using modified Jablonski diagrams. 

1.5.1. Fluorescence and Phosphorescence 

Fluorescence is the radiative transition between electronic states with the same spin 

multiplicity.29 Therefore, conventional fluorescence is ‘an allowed’ transition, which refers to the 

selection rules stating that the electronic transitions between two electronic states with the same 

spin multiplicity are allowed.29 Consequently, conventional fluorescence is a fast process that 

occurs within nanoseconds.29 However, only 25% of excitons that are in the singlet state can 

undergo conventional fluorescence.15,25 Furthermore, the internal reflection of photons restricts 

light extraction from OLEDs due to the presence of organic layers, electrodes, and glass 

substrates.25,30 Therefore, the EQE of a typical bottom emitting OLED is estimated as 20% of its 

IQE value.24,30 As a result, the theoretical upper limit of EQE for a bottom emitting OLED with 

conventional fluorescence is approximately 5%.24 Common fluorophores widely used in blue 
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emitters include anthracene, phenanthrene, fluorene, pyrene, carbazole, triphenylamine, 

indenopyrazine, benzimidazole, and imidazole.23-25   

 
Figure 1.6. Modified Jablonski diagrams displaying exciton harvesting mechanisms, conventional 

fluorescence and phosphorescence (A), thermally activated delayed fluorescence (TADF, B), and 

triplet-triplet annihilation (TTA, C). (F: conventional fluorescence P: phosphorescence, S: singlet 

state, T: triplet state, NR: non-radiative decay, VR: vibrational relaxation, IC: internal conversion, 

ISC: inter-system crossing, RISC: reverse inter-system crossing, TTET: triplet-triplet energy 

transfer). 

Phosphorescence is a radiative transition between states of different multiplicities.29 

Phosphorescence is ‘forbidden’ in accordance with the selection rule of quantum mechanics.29 

Accordingly, phosphorescence takes a much longer time (microseconds to milliseconds) than 

fluorescence and is often sensitive to environmental conditions.29 Phosphorescence can 

theoretically harvest up to 75% of excitons in the triplet state and is very common in 

organometallic emitters.24 Interestingly, some phosphorescent transition metal complexes possess 

strong spin-orbit coupling with the lowest excited state, causing an accelerated relaxation of 

excitons from S1 state to T1 state via fast inter system crossing (ISC) that occurs within 

femtoseconds. Simultaneously, these complexes significantly relax the selection rules, and thus 
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enhance T1 to S0 transition of excitons. As a result, phosphorescence in some transition metal 

complexes can theoretically harvest 100% of excitons generated under electrical excitation 

regardless of the spin state, yielding nearly 100% IQE.31-33  

1.5.2. Thermally Activated Delayed Fluorescence (TADF) 

TADF based OLED emitters were first reported by Japanese scientists in 2009.34 TADF 

upconverts triplet excitons to singlet excitons by thermal activation followed by subsequent 

harvest of singlet excitons via conventional and delayed fluorescence.34-37 Delayed fluorescence 

observed in TADF is caused by reverse inter system crossing (RISC).35,36 Since S1 state has a 

slightly higher energy compared to T1 state in TADF emitters, the exciton upconversion process 

is essentially endothermic and the resultant fluorescence intensity is temperature dependent.35,36  

However, some TADF compounds are designed to undergo substantial RISC even at room 

temperature without providing external heating, thus making TADF emitters easily integrated to 

OLEDs.36,37 Since TADF emitters harvest both singlet and triplet excitons, 100% IQE can be 

theoretically achieved with these emitters.35  The two most important characteristics of compounds 

that show TADF are, 1) a small energy gap between S1 and T1 states and 2) having a high 

photoluminescence quantum yield (PLQY), according to the equation 1.1.36 

𝐼𝑄𝐸 = 𝑁𝑆 . 𝑃𝐿𝑄𝑌 + N𝑆. QY𝐷𝐹 + E𝑇 . (
QY𝐷𝐹

QY𝐼𝑆𝐶
)    (1.1), 

where NS is the efficiency of singlet exciton generation (≤ 0.25), ET is the efficiency of triplet 

exciton generation (≤ 0.75). PLQY, QYDF, and QYISC are quantum yields of photoluminescence, 

delayed fluorescence, and inter-system crossing, respectively.36 Companies such as Kyulux 

(Japan) and Cynora (Germany) are forerunners in the development of TADF based OLEDs.  
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1.5.3. Triplet-Triplet Annihilation (TTA) 

TTA is another method of harvesting triplet excitons that was first reported in the 1960s by 

British scientists.38 TTA is also an upconversion process of excited triplet excitons to excited 

singlet excitons, as in TADF.38-40 However, unlike TADF, TTA utilizes a bimolecular process, in 

which, the fusion of two T1 excitons generates two singlet excitons in S0 and S1 states (also see 

section 1.7 in this chapter for further details). Accordingly, an IQE of 62.5% can be achieved in 

theory for TTA based emitters.39 The crucial step in TTA is the radiationless triplet-triplet energy 

transfer (TTET) occurring between the donor and the acceptor in close proximity (< 10 Å), which 

is usually a bimolecular Dexter energy transfer process.39 Other requirements to obtain efficient 

TTA upconversion include lower triplet energy of the acceptor than the donor (to facilitate an 

efficient energy transfer), high PLQY for the acceptor, and an efficient ISC of the donor (to 

adequately populate the donor triplet state).40,41 

1.6. Molecular Design  

The first OLED design reported by Ching W. Tang and Steven A. Van Slyke contained an 

organometallic compound, tris(8-hydroxyquinolinato)aluminium (Alq3), as the electron transport 

and emissive material.7 Since then, different types of molecules were designed as OLED emitters. 

According to the chemical structures, these OLED emitters can be classified as organometallics, 

small organic molecules, oligomers, dendrimers, polymers, and solid-state organic salts known as 

GUMBOS.  

 1.6.1. Organometallics as Blue Emitters  

Organometallic compounds are widely used as blue emitters in OLEDs from the initial stages 

of OLED technology.7,15,31-34 Novel organometallics are mostly phosphorescent emitters with the 

capability of harvesting both singlet and triplet excitons via effective intersystem crossing induced 

by strong spin-orbit coupling.31-34 Accordingly, theoretical IQE of 100% can be achieved by these 
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organometallic emitters. Noticeably, coordination complexes with iridium (Ir) and platinum (Pt) 

as central metal ions are well-known organometallic blue emitters for OLEDs.42-47 Organometallic 

complexes based on Pt are widely used in OLEDs, although Pt based blue emitters with high 

efficiency and spectral purity are not as common as in Ir complexes.24 The main disadvantages of 

organometallic emitters are the instability of some coordination bonds formed between organic 

ligands and the central metal ion, which in turn affects the long-term stability of OLED devices, 

and the high cost of rare metals that are incorporated in these complexes.36,48   

1.6.2. Small Organic Molecules as Blue Emitters  

The research presented in this dissertation is based on OLEDs derived from small molecular 

organic emitters. To date, numerous small organic molecules with molecular weight less than 1000 

Dalton (Da) were reported as blue emitters for OLEDs.49-53 Electroluminescence of small organic 

molecules often derive from fluorescence, phosphorescence, TADF, TTA, and/or other 

mechanisms.24,49-53 These small organic blue emitters usually contain luminophores such as 

pyrene, anthracene, fluorene, carbazole, phenanthrene, triphenylamine, and benzimidazole.23,24,49-

53 The basic chemical structures of these luminophores are presented in Figure 1.7.  

 

Figure 1.7. Examples of common luminophores used for syntheses of blue emitters. 

Some of the unique advantages of small organic molecules that have made them popular are, 

well-defined chemical structures, modest synthesis, facile purification and modification, high 
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thermal stability, high spectral purity, substantial quantum yields, and low cost.23,24 However, 

many small organic molecules have a great tendency to extensively aggregate (i.e., undergo π-π 

stacking) in the condensed state and form excimers/exciplexes that often induce undesirable 

emission band broadening, band-shifting, and aggregation-induced quenching.23,24,49 The 

attachment of rigid and bulky moieties to adequately twist intramolecular ring systems as well as 

the practice of applying host matrices to dilute emitter concentration in the solid-state are two of 

the most common strategies used to control dye aggregation.23-25 Additionally, designing emitters 

that undergo aggregation induced emission (AIE) by restricting intramolecular rotation in the 

solid-state is applicable for small molecular organic emitters.54,55 Consequently, AIE based 

emitters often show an enhanced emission in solid-state than solution state. However, chemical 

stability of aliphatic double bonds and/or heteroatomic functional groups that are often found in 

AIE based emitters is typically inferior to that of polycyclic aromatic hydrocarbon (PAH) based 

conventional small organic molecular emitters.    

1.6.3. Polymers, Oligomers, and Dendrimers as Blue Emitters  

Polymers with π conjugated backbones have been extensively investigated for their suitability 

as emissive materials, beginning with the first polymer based OLED fabricated in 1990s by British 

scientists.56 Polymers can readily be solution-processed, hence providing an inexpensive and 

simple means of device fabrication.23,24 Fluorene derivatives are widely used as the repeating units 

of polymers owing to high quantum yield, film forming ability, high photothermal stability, and 

the ease of functionalization.57,58 However, difficulties associated with polymer reproducibility, 

purification, and the low preciseness of the chemical structures are some of the restrictions for the 

application of polymers in OLEDs.24 A typical polymer backbone is extensively twisted in solid-

state due to a random orientation upon film forming, thus limiting the intramolecular interactions 
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to several repeating units, resembling a series of oligomers. Therefore, researchers focused on blue 

emitters derived from oligomers and dendrimers, which have precise chemical structures that can 

be synthesized with high reproducibility and purity, while preserving most of the advantages 

offered by polymers.49,59-61 These blue luminescent polymers, oligomers, and dendrimers typically 

contain same luminophores that are used in small molecules, as showed in Figure 1.7, in their 

core/backbone.24,49,59-61  

1.6.4. GUMBOS as Blue Emitters 

Solid-state organic salts with melting points in the range of 25-250 ºC are referred to as 

GUMBOS to distinguish them from liquid state organic salts, i.e., ionic liquids.62 The key 

advantage to GUMBOS is their capability for tuning some of the physical, chemical, and spectral 

properties by incorporating task-specific counterions, thus providing an economical and simple 

means to improve the characteristics of resultant ionic organic compounds.62 Such physical and 

chemical modifications induced by counterion variations include tuning the 

hydrophobicity/solubility,63,64 selective chemical sensitivity,65 tuning spectral characteristics,66,67 

improving photothermal stability,67 tuning molecular motion,68 and tuning magnetic behavior.69 

For example, figure 1.8 schematically shows the solid-state morphology of an ionic luminophore 

changed from crystalline to amorphous by simple counter ion variation process. Noticeably, 

Warner group has introduced a number of task-specific GUMBOS for a range of applications.62-67 

Among these, the first GUMBOS compounds reported for OLED applications contained a 

carbazole-imidazole conjugated small organic compound as the cation and three organic 

counteranions derived from fluoroalkylsulfonates.67 These imidazoliumcarbazole based 

GUMBOS are deep blue emitters with improved photothermal stability and significantly high 
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PLQY than their non-GUMBOS analogues.67 Furthermore, imidazoliumcarbazole GUMBOS were 

found predominantly amorphous with improved film forming ability.67  

 

Figure 1.8. Schematic representation of an amorphous GUMBOS derived from a crystalline salt 

by counterion variation. Note the less compatible stacking in the GUMBOS. 

 

1.7. EML Design 

The OLED emitter may be embedded in a host matrix (i.e., doped EML) or used as is (i.e., 

non-doped/self-host EML).23 Doping process dilutes emitter concentration in the EML thus 

effectively reducing aggregation-induced quenching. Also, doping typically improves device 

performance by inducing energy transfer mechanisms that occur between the host matrix and the 

emitter. The most common energy transfer processes between a donor/host and an acceptor/emitter 

in a doped EML are Förster resonance energy transfer (FRET), Dexter energy transfer, and TTA.29 

These energy transfer mechanisms are schematically shown in Figure 1.9. 

FRET involves a host molecule (donor) in the excited state that transfers energy to the emitter 

molecule (acceptor) in the ground state. In order to undergo FRET, the host and the donor should 

be in close proximity to electronically couple via Coulombic forces and show significant overlap 

of the host emission spectrum and the acceptor absorption spectrum.29,70 Dexter energy transfer 

occurs between a donor and an acceptor, in which, an exciton diffuses from an excited host 
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molecule (donor) to the ground state emitter (acceptor) in very close proximity and has similar 

requirements as in FRET.71 Most common Dexter energy transfers are singlet-singlet and triplet-

triplet energy transfers. TTA is a special type of energy transfer mechanism in some 

phosphorescent emitters, where a triplet excited state donor and a triplet excited state acceptor 

interact to produce an excited singlet state exciton within the acceptor.  

 
Figure 1.9. Energy transfer mechanisms between a donor molecule (MD) and an acceptor molecule 

(MA). 

In the case of blue emitters, compatible hosts require wider band gaps and thus further hinder 

charge injection to EML.23,24 Therefore, doped blue EMLs often require additional organic layers 

to support charge injection and transport. Other disadvantages associated with doping include 

phase separation induced degradation, limited availability of energetically matching hosts, and 

complexity of the device fabrication process.23 Due to these shortcomings of doped EMLs, 
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numerous OLEDs are fabricated without hosts, which are known as non-doped/self-emitters. 

These non-doped emitters offer advantages such as relatively simple device architectures and 

inexpensiveness. Further, the difficulty of charge injection to the EML in blue emitters can be 

addressed in non-doped emitters by functionalizing the emitters with hole- and/or electron-

transport units to yield multifunctional blue emitters.23 For example, triarylmine and carbazole 

moieties are often use as the hole-transporting/p-type units, whereas indenopyrazine, quinolone, 

phosphine oxide, oxadiazole, and imidazole moieties are often employed as electron 

transporting/n-type units in multifunctional blue emitters.23 Bipolar blue emitters contain both p- 

and n- type moieties.23  

1.8. OLED Fabrication 

OLEDs are often fabricated by depositing thin films of organic semiconducting materials and 

metallic electrode materials on substrates using physical vapor deposition (PVD) techniques, i.e., 

vacuum thermal evaporation (VTE) and electron-beam physical vapor deposition (EBPVD). 11,72,73  

Solution processing such as ink-jet printing and spin casting is another OLED fabrication method 

for heat-sensitive, non-volatile materials and polymers.11,72,73 This chapter only discusses VTE in 

detail, since OLED prototypes reported in this dissertation were fabricated exclusively using VTE 

technique.  

VTE is a well-known organic thin film deposition technique heavily used in both academia 

and industry, particularly for thermally stable and substantially volatile small organic molecules. 

The first step of OLED fabrication using VTE is loading ultra-pure solid material(s) that needs to 

be deposited to the sample holder(s), and securing the clean substrate to the substrate holder(s) 

inside the VTE chamber. Then, the VTE chamber is sealed and an ultra-high vacuum (< 1 x 10-6 

Torr) is applied followed by a current flow across an electrical resistive heating element attached 
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to the sample holder. Consequently, the sample holder is gradually heated and the material starts 

evaporating/subliming at a pre-determined rate. Then, this evaporated/sublimed material traverses 

the chamber and deposits on the substrate as a thin film. Organic materials are often deposited at 

a rate of 1 Å/s or below to achieve defect-free and uniform thin films. Therefore, material 

evaporation rate and film thickness are precisely monitored. The substrate, which is usually 

suspended to a substrate holder on the inner chamber roof, is covered by a shutter until the desired 

material deposition rate is reached, as well as often heated and/or rotated during the deposition 

process to facilitate the formation of a uniform and defect free thin film. Patterning of deposited 

organic films is achieved by the use of shadow masks, which are applied to the substrate prior to 

the deposition process and removed after the deposition.74 Figure 1.10 shows the basic components 

of a typical VTE system with multiple sample holders and heating elements, which enables the 

thermal deposition of several different materials at one time (co-deposition) and/or switches 

between samples to deposit multiple layers in a single run to save time.  

 

Figure 1.10. A simplified schematic diagram of a typical VTE system. 
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1.9. Analytical Techniques Used in This Research 

1.9.1. Ultraviolet-Visible (UV-vis) Spectroscopy 

An organic molecule can absorb UV-vis light of a certain wavelength that provides the energy 

required to promote ground state electrons to excited states. Common electronic transitions of 

organic compounds induced by UV-vis light are 1) π bonding (π) to π anti-bonding (π*) 2) non-

bonding (n) to π* 3) n to σ anti-bonding (σ*) 4) σ to π*, and 5) σ to σ*.75 The HOMO-LUMO 

energy gap of an organic semiconductor is experimentally determined using absorption 

spectra.76,77 For this calculation, the onset at the higher wavelength side of the absorption peak 

(λedge) is assumed as the minimum energy required to promote a ground state electron to the first 

excited state, which also represents the HOMO-LUMO energy gap for most organic emitters. 

Application of λedge to Planck’s equation yields the HOMO-LUMO band gap of the compound, as 

shown in equation 1.2.76,77  

Energy gap (eV) = (𝐻𝑂𝑀𝑂 − 𝐿𝑈𝑀𝑂) =  
hc

λ
=

1240

λ𝑒𝑑𝑔𝑒
 (𝑒𝑉) (1.2), 

where h is the Planck’s constant (6.626 x 10-34 Js), c is the speed of light in a vacuum (3.00 x 10-8 

ms-1), and λedge is the wavelength of the photons at absorption onset (nm). The value of (h × c) is 

also a constant that equals 1240 eV. nm. 

A double beam UV-vis spectrophotometer, schematically presented in Figure 1.11, is often 

employed to record absorption spectra. This instrument contains light source(s), a monochromator, 

and detector(s). Samples in solution state are usually measured in quartz cuvettes, whereas solid-

state samples are coated on quartz plates. A monochromator is used to select the light with the 

required wavelength to transmit through the sample, which is then quantified by the detector with 

respect to a reference. The absorbance (A) of the sample is determined using equation 1.3.29 

A =
log 𝐼0

log 𝐼
= ϵbc    (1.3), 
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where I0 is the incident light intensity and I is the transmitted light intensity. For samples in the 

solution state, the Beer-Lambert law is a correlation of absorption with sample concentration, 

where ϵ is the molar absorption coefficient (Lmol-1cm-1), b is the path length (the length light 

travels through the sample, cm), and c is the concentration of analyte solution (molL-1). 

 
Figure 1.11. Schematic diagram of a double beam UV-vis spectrophotometer. 

1.9.2. Fluorescence Spectroscopy 

Radiative transitions between states of the same multiplicities is known as fluorescence.29 

Depending upon the excitation energy source, luminescence is further classified as 

photoluminescence, electroluminescence, chemiluminescence, radioluminescence, 

thermoluminescence, and etc.29 Among these luminescence types, evaluation of 

photoluminescence and electroluminescence for a given emitter are crucial to determining the 

performance of OLED devices in terms of color purity, efficiency, and lifespan.  



 

21 

 

The photoluminescence of a compound is measured using a spectrofluorometer, which is 

schematically presented in Figure 1.12. A typical spectrofluorometer consists of light source(s), 

two monochromators for excitation and emission, and a detector. The sample in a quartz cuvette 

or plate is irradiated by using monochromatic light at the excitation wavelength that is specific for 

a given compound and the resultant photoluminescence is recorded at a right angle to the direction 

of the excitation light.  

Another very important parameter for the evaluation of performance of fluorescence based 

OLED emitters is PLQY, which is defined as the ratio of emitted photons to absorbed photons.29 

PLQY is determined either relative to a standard (relative PLQY) or without such standard 

(absolute PLQY).78,79 For absolute PLQY measurements, an integrating sphere is used as depicted 

in Figure 1.12.78 Estimating EQE of OLED prototypes is also performed using the integration 

sphere.26 Since OLEDs are self-emitters, EQE measurements are taken without using the light 

source of the spectrofluorometer, and therefore detecting only the amount of light emitted by the 

OLED. 

Fluorescence lifetime is the average time a fluorophore spends in the excited state before 

radiatively relaxing to the ground state and can be measured using either frequency domain or time 

domain techniques.29 In the time domain method, a sample is illuminated with a short pulse of 

light at the excitation wavelength, followed by measuring the emission intensity as a function of 

time, and the fluorophore lifetime is determined using the slope of the decay curve. Time correlated 

single photon counting (TCSPC) enables simple data analysis by counting at least one photon per 

excitation pulse, which is correlated to time using a time-to-amplitude converter. In the frequency 

domain method the sinusoidal modulation of the incident light is required.29 Since the lifetime of 
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a fluorophore delays the emission in time with respect to the excitation, phase shift caused by the 

delay is used to calculate the decay time.  

 

Figure 1.12. A simplified schematic diagram of a spectrofluorometer with sample holder options. 

Sample holder set-up for fluorescence (A), absolute quantum yield (B), and OLED prototype 

performance testing (C). 

1.9.3. Cyclic Voltammetry (CV) 

CV is a versatile electrochemical technique in which electronic properties of an analyte are 

obtained by measuring the current as a function of an applied voltage. Experimental estimation of 

the HOMO and LUMO energies of organic semiconductors is achieved by analyzing their CV 

characteristics.80 For OLED emitters, the energy of HOMO denotes the minimum energy required 

to extract an electron (therefore generating a ‘hole’) from the emitter, which is an oxidation 
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process. Similarly, the energy of LUMO denotes the minimum energy required to inject an electron 

into the emitter, which is a reduction process. 

A simplified CV set up is illustrated in Figure 1.13 (A), which employs an electrochemical cell 

containing three electrodes, i.e., working, counter, and reference electrodes. Potentiostat measures 

the current flow between the working electrode (WE) and the counter electrode (CE), as well as 

regulates and monitors the difference in potential between the WE and the reference electrode 

(RE).80 In a typical CV experiment, the sample to be analyzed is dissolved in a degassed solvent 

containing an inert supporting electrolyte to effectively conduct current. Then, the electrodes are 

immersed in this solution. Next, the potential of the WE is ramped linearly to the positive direction 

and to the negative direction at a given scan rate, while measuring the current between WE and 

CE.80 As shown in Figure 1.13 (B), a typical single electron oxidation-reduction (redox) process 

of a compound produces cathodic and anodic peaks, and the corresponding peak potentials are 

denoted as the anodic/oxidation peak potential (Epa) and the cathodic/reduction peak potential 

(Epc). This redox process is often measured relative to ferrocene/ferricenium (Fc/Fc+) redox 

couple.76,77 Consequently, the HOMO and LUMO energies of a compound are determined by 

employing equations 1.4 and 1.5.76,77 If the compound has a quasi-reversible cyclic 

voltammogram, equation 1.2 is employed to obtain the energy of the ‘non-visible’ frontier orbital. 

𝐻𝑂𝑀𝑂 =  −1𝑒 [𝐸𝑜𝑥.  𝑜𝑛𝑠𝑒𝑡 𝑣𝑠 𝐹𝑐/𝐹𝑐+  + 4.71]𝑒𝑉               (1.4) 

𝐿𝑈𝑀𝑂 =  −1𝑒 [𝐸𝑟𝑒𝑑.  𝑜𝑛𝑠𝑒𝑡 𝑣𝑠 𝐹𝑐/𝐹𝑐+ + 4.71]𝑒𝑉    (1.5), 

where Eox and Ered are onset values of the oxidation and reduction peaks of the compound with 

respect to Fc/Fc+, and 4.71 eV is the formal potential of the Fc/Fc+ redox couple.76,77 
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Figure 1.13. Schematic diagram of CV instrumentation (A) and a typical voltammogram for a 

single electron redox process (B). 

1.9.4. X-Ray Diffraction (XRD) Studies 

Solid-state/film morphology is a very important piece of information for understanding the 

photo-physical properties of OLED emitters. Therefore, XRD techniques such as single crystal X-

ray diffraction (single crystal XRD), powder X-ray diffraction (PXRD), grazing-incidence small-

angle X-ray scattering (GISAXS), and grazing-incidence wide-angle X-ray scattering (GIWAXS) 

are routinely used to elucidate emitter characteristics.81-84 X-rays interact with the sample in the 

form of a single crystal, a powder, or a thin film, and diffract with constructive and destructive 

interferences determined by Bragg’s law, which refers to equation 1.7.81,82 

𝑛𝜆 = 2𝑑 𝑠𝑖𝑛 𝛳      (1.6), 

where n is a positive integer, d is lattice spacing, λ is the wavelength of the incident X-ray, and ϴ 

is the scattering angle.  

Figure 1.14 schematically illustrate the components of a typical X-ray diffractometer. XRD 

patterning is indicative of the electron density of the atoms and bonds within the molecules, and 

thus, analyzing the diffraction pattern of a compound provides solid-state structural information. 

Single crystal XRD provides absolute structure and detailed information on molecular packing, 
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such as bond lengths and angles, and the molecular conformation of compounds in the form of 

single crystals, whereas PXRD provides the degree of crystallinity of compounds in powder 

form/crystallites. GIWAXS offers information regarding thin film morphology, therefore 

providing more realistic information on the morphology of materials when applied in OLED 

devices as thin films.  

 

Figure 1.14. Schematic diagram of an X-ray diffractometer. 

1.9.5. OLED Performance Characteristics 

Since OLEDs are optoelectronics, they are evaluated in terms of both optical and electrical 

performance metrics. Optical characteristics include the exact color of the electroluminescence 

observed from device in terms of Commission Internationale de L’Eclairage (CIE) spectral 

coordinates, luminance, luminous efficiency, and external/internal quantum efficiencies, whereas 

the electrical properties of OLEDs include current and power efficiencies.11 
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1.9.5.1. CIE 1931 Spectral Coordinates 

The color of an object is identified by the human eye in terms of hue, brightness, and 

saturation.85,86 For color vision, the human eye utilizes three types of cone photoreceptor cells in 

the retina corresponding roughly to blue with absorption maximum (λabs) at 445 nm, green (λabs 

535 nm), and red (λabs 575 nm).86 By distribution, approximately 64% of cones are red sensitive, 

32% are green sensitive, and only 2% are sensitive to blue.86 The CIE 1931 spectral coordinates 

utilizes red, green, and blue primary color stimuli responses (tristimulus values) of the human eye 

as shown in Figure 1.15 (A) as weighing functions for a given color stimulus.85-87 Accordingly, 

the corresponding color for a given color stimulus that can be seen by the human eye is 

characterized by CIE coordinates based on a two dimensional color space known as the 1932 CIE 

chromaticity diagram containing all colors that can be distinguished by the human eye as depicted 

in Figure 1.15 (B).87  

 

Figure 1.15. The RGB primary color stimuli response (tristimulus values) curves (A) and the 1931 

CIE chromaticity coordinates diagram (B). 

CIE spectral coordinate criterion for a blue emitter in an electronic display with RGB sub-pixel 

design is (y < 0.15, (x + y) < 0.30).23 However, National Television System Committee (NTSC) 
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and European Broadcast Union (EBU) require much spectrally pure blue emitters for RGB sub-

pixel design based electronic displays, particularly television screens, with CIE coordinates of 

(0.14, 0.08) and (0.15,0.06), respectively.24,88 Interestingly, light blue emitters are used in a non-

conventional electronic display that contains a sub-pixel design known as red-green-light blue-

deep blue (RGB1B2) that invented by Universal Display Corporation (USA) as shown in Figure 

1.16.89,90 This novel RGB1B2 sub pixel design have advantages including significant power saving, 

improved device lifespan, and minimum emission of harmful near UV radiation.90-92    

 
Figure 1.16. Sub-pixel designs of electronic screens, conventional RGB (A) and novel RGB1B2 

(B) designs. 

1.9.5.2. Luminance and Luminance Power Efficiency 

OLEDs in electronic screens primarily interact with human eyes. Therefore the amount of light 

emitted per unit surface area of an OLED is needed to weigh the visual response of the human eye 

and is termed the luminance.11,26 In order to weigh OLED light output by the day vision/photopic 

vision of the human eye, a standardized spectral response curve of an average human eye based 

on photopic vision, known as the photopic response curve, is used, which was determined by the 

CIE in 1924 (Figure 1.17).11,26  
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Figure 1.16. Photopic response curve for the human eye (dashed line is showing maximum eye 

response at 555 nm). 

Luminance is often recorded as candelas per square meter (cdm-2).26 Luminance power/ 

luminous power efficiency/power efficiency is the ratio of the emitted luminous flux (weighed by 

the photopic response) to radiant flux.11,26 Luminous power efficiency provides an insight into the 

energy consumption of an OLED producing visible light and is often recorded as lumens per Watt 

(lmW-1). For a Lambertian emitter, luminous power efficiency can be calculated using Equation 

1.7.11,26  

Luminous Power Efficiency =
π x L 

J x V
   (1.7), 

where L is the luminance (cdm-2), J is the current density (Am-2), and V is the applied voltage (V). 

1.9.5.3. Current Efficiency 

Current efficiency provides insight into the light emitting ability of an OLED and is often 

recorded in units of cdA-1. Current efficiency can be calculated using Equation 1.8.11,26 

Current Efficiency (CE) =
 L 

J 
     (1.8), 

where L is luminance (cdm-2), and J is current density (Am-2). 
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1.9.5.4. Internal and External Quantum Efficiencies 

Quantum efficiency provides an insight into the exciton harvesting efficiency of an OLED and 

is defined as the ratio of emitted photons to injected charges. The internal quantum efficiency 

(IQE) is the ratio of the emitted photons generated within the OLED to the number of injected 

charges, whereas external quantum efficiency (EQE) is the ratio of emitted photons into the 

viewing direction to injected charges.26 Therefore, EQE is only a fraction of IQE, and the 

relationship between IQE and EQE is given by equation 1.9. 

EQE = IQE x ɳ     (1.9), 

where ɳ is the fraction of light coupled out of the OLED into the viewing direction. For a standard 

bottom emitting OLED, ɳ is typically considered as 0.2.26,30,89 However, EQE is more useful than 

IQE, since the human eye can only utilize the light extracted out from the OLED. Furthermore, 

IQE measurements can be more tedious and less accurate, especially if the emitted photons are re-

absorbed and/or re-emitted at a longer wavelength by organic layers.26  

1.10. The Scope of this Dissertation 

This dissertation is focused on the design, synthesis, and characterization of novel OLED 

emissive materials, with an emphasis on blue emitters for electronic displays derived from small 

organic molecules and GUMBOS. Accordingly, chapter two includes a novel sky-blue light 

emitting compound, 2,4,6-tri(1-pyrenyl)pyridine (2,4,6-TPP), and three dipyrenylpyridines, [2,4-

di(1-pyrenyl)pyridine (2,4-DPP), 2,6-di(1-pyrenyl)pyridine (2,6-DPP), and 3,5-di(1-

pyrenyl)pyridine (3,5-DPP)], which were systematically evaluated for solution and solid-state 

characteristics, such as spectroscopy, electrochemistry, photothermal stability, and solid-state 

morphology. Also, chapter two presents design, fabrication, and a device performance evaluation 

of a non-doped OLED prototype with 2,4,6-TPP as the emissive layer.   
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The third chapter describes three novel blue emitters derived from pyrene-benzimidazole 

conjugates: 2-(1,2-diphenyl)-1H-benzimidazole-7-tert-butylpyrene (compound A), 1,3-di(1,2-

diphenyl)-1H-benzimidazole-7-tert-butylpyrene (compound B), and 1,3,6,8-tetra(1,2-diphenyl)-

1H-benzimidazolepyrene (compound C). These compounds were also evaluated for suitability for 

OLED applications as blue emitters, and the characterization methods and OLED prototype 

evaluation are similar to that in chapter 2. 

In chapter 4, a well-known red fluorescent dye, propidium iodide (3,8-diamino-5-[3-

(diethylmethylammonio)propyl]-6- phenylphenanthridinium diiodide, [P][I]), is converted to 

GUMBOS by replacing iodide counteranions of [P][I] with three organic anions: 

trifluoromethanesulfonate/[TfO], bis((trifluoromethyl)sulfonyl)imide/[NTf2], and 

bis((perfluoroethane)sulfonyl)imide/[BETI]. Then, the morphological, spectral, physical, 

chemical, and electronic properties of these novel GUMBOS materials were thoroughly 

investigated and compared with the parent compound [P][I] to understand the impact of counterion 

variations on ionic luminophores.  
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CHAPTER II. PYRENYLPYRIDINES: SKY-BLUE EMITTERS FOR 

ORGANIC LIGHT EMITTING DIODES 
 2.1. Introduction  

OLEDs occupy a significant niche in organic semiconductor-based technology, representing 

a promising means for next generation electronic displays and solid-state lighting. Accordingly, 

an estimated global market share of $9.6 billion is expected by the year 2020 for OLEDs.1 

Perceived popularity of OLED displays over LCDs is attributable to numerous cutting-edge 

advantages offered by OLEDs such as lower power consumption, self-emission, greater color 

gamut, high resolution, high contrast, light weight, flexibility, transparency, and broader viewing 

angles.1,2 Full color OLED displays often require emitters for the three primary colors (red, green, 

and blue). However, the intrinsically wide HOMO-LUMO energy gap of blue emitters causes it 

to suffer from inefficient charge injection and rapid deterioration of the emissive layer upon 

excitation.3,4 Consequently, blue emitters typically show inferior operational lifetime, efficiency, 

and color purity than red and green emitters.1 The limited availability of efficient, photothermally 

and chemically stable, spectrally pure, and highly processable organic blue emitters constitutes a 

major challenge for the progress of OLED technology. Unfortunately, this is a prevalent problem 

among blue emitters with all kinds of molecular designs including polymers, oligomers, 

dendrimers, organometallics, and small organic molecules.4 Among these molecular designs,  

small-molecular organic blue emitters have distinct advantages such as ease of synthesis, 

purification, characterization, modification, and OLED fabrication.3,4 Majority of these small-

molecular organic blue emitters are derived from PAH based luminophores such as anthracene, 

phenanthrene, fluorene, pyrene, carbazole,  and indenopyrazine.3-6 Among these luminophores, 

pyrene has a great potential as a blue emitter in OLEDs owing to high photothermal stability, 

favorable charge carrier properties, and spectral characteristics.5,7 Consequently, number of 
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pyrene derivatives have already been reported as blue/green OLED emitters7-12 as well as charge 

injectors/transporters in OLEDs.7,13-18 More importantly, pyrene derivatives can be designed as 

multifunctional p-type, n-type, or bipolar emitters, ensuring efficient and balanced flux of charges 

to the emissive layer even with relatively simple device architectures.7,19  

However, a major challenge of many pyrene-based emissive materials is controlling 

undesirable excimer formation, particularly in the condensed state. The nearly planer aromatic 

conjugated ring system of pyrene readily undergoes π-π stacking and excimer formation. As a 

result, emission of most pyrene derivatives significantly red-shifts and often undergo aggregation-

induced quenching, which affects color purity and device efficiency.7,20,21 A notable exception for 

aggregation-induced quenching of fluorescent dyes is AIE, that shows restriction of 

intramolecular rotation in the solid-state, thus improves emission efficiency in the solid-state.22,23 

However, our group prefer emitters with much chemically stable PAH based ring systems such as 

pyrenylpyridines discussed in this chapter than AIE emitters, in which, less chemically stable 

aliphatic double bonds and/or heteroatomic functional groups are often used.22,23  

For non-AIE molecules derived from pyrene, mutually twisting pyrene substituents found to 

show less prevalent π-π stacking, and thus lower the excimer induced fluorescence quenching in 

solid-state.17,20,24 For this reason, molecules with multiple pyrenyl moieties are designed in such 

a way that the pyrene units are attached to rigid bridging molecular platforms such as benzene, 

calixarene, and octavinylsilsesquioxane.17,20,24 These molecular designs provide sufficient steric 

strain to mutually twist the pyrene units into a nearly orthogonal position with respect to each 

other. These twisted configurations electronically isolate intramolecular pyrene moieties to 

minimize extended conjugation, as well as reduces solid-state inter-molecular π-π stacking as a 

result of steric hindrance.17,20,24 Accordingly, such molecular designs confine the luminophore 
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emission largely within the blue region of EMS while minimizing aggregation-induced 

quenching.17  

In the study reported herein, four pyrenylpyridines were used as model compounds to evaluate 

the structure-property relationships of pyrene-containing small organic molecules. Among these 

pyrenylpyridines, 2,4-di(1-pyrenyl)pyridine (2,4-DPP), 2,6-di(1-pyrenyl)pyridine (2,6-DPP), and 

3,5-di(1-pyrenyl)pyridine (3,5-DPP), each having two pyrene units, are thus collectively referred 

to as dipyrenylpyridines (DPPs), whereas 2,4,6-tri(1-pyrenyl)pyridine (2,4,6-TPP) has three 

pyrene units. Also, molecular symmetry of these structural isomers shows much diversity with 

2,4-DPP and 2,4,6-TPP being asymmetric, while 2,6-DPP and 3,5-DPP are symmetric molecules. 

The pyridine unit is used as the bridging moiety to induce enough steric strain to intramolecularly 

twist pyrenyl moieties to control dye aggregation.  

During the course of studies, it was noted that, despite the significantly twisted conformations 

of pyrenylpyridines, π-π stacking occurs in the solid-state to different extents, depending on 

multitude of factors such as molecular symmetry, solid-state conformation, and the extent of inter- 

and intramolecular interactions between the pyrene units. As a result, solid-state characteristics of 

pyrenylpyridines including absorption and photoluminescence spectra, fluorescence lifetimes, 

photoluminescence quantum yields, melting points, thermal decomposition onset temperatures, 

and the degree of crystallinity were found to be significantly different among these compounds, 

despite their structural similarity.  

It is noted that the dipyrenylpyridine compounds, 3,5-DPP and 2,6-DPP have been previously 

reported as electron transporting materials, and 2,4-DPP has been previously mentioned in few 

patents.13,25,26 However, to the best of our knowledge, these compounds have not been evaluated 

for suitability as blue OLED emissive materials. Furthermore, 2,4,6-TPP is a novel compound 
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that has not been described in the literature. This compound exhibited the most favorable 

characteristics for blue OLED emitters, including the highest photothermal stability and quantum 

yield, and the lowest degree of crystallinity, among the pyrenylpyridines investigated. 

Accordingly, a non-doped, bottom-emitting OLED prototype based on 2,4,6-TPP as the emissive 

layer was fabricated, that showed a sky-blue electroluminescence with a maximum EQE of 6 

(±1.2) % at 5 V, which is close to the theoretical maximum limit for OLEDs based on conventional 

fluorescence.4  

2.2. Experimental Section 

2.2.1. Materials 

The compounds, 1-pyrenylboronic acid, 2,4,6-tribromopyridine, 2,4-dibromopyridine, 2,6-

dibromopyridine, and 1,3,5-tris(1-phenyl-1H-benzimidazole-2-yl)benzene (TPBI, sublimed 

grade) were purchased from Tokyo Chemical Industries Co. Ltd. (Portland, OR) and 1,4-dioxane 

was purchased from Acros Organics (West Chester, PA). Tetrakis(triphenylphosphine) 

palladium(0), tetrabutylammonium hexafluorophosphate (TBAPF6), ferrocene (Fc), and N,N′-

di(1-naphthyl)-N,N′-diphenyl-(1,1′-biphenyl)-4,4′-diamine (NPB, sublimed grade) were 

purchased from Sigma-Aldrich (St. Louis, MO), whereas 3,5-dibromopyridine was purchased 

from Alfa Aesar (Ward Hill, MA). Potassium carbonate (K2CO3) was purchased from Fisher 

Scientific (Fair Lawn, NJ). The analytical grade solvents, chloroform (CHCl3), tetrahydrofuran 

(THF), hexane, acetone, isopropanol, ethyl acetate (EA), methanol (MeOH), dimethyl sulfoxide 

(DMSO), acetonitrile (ACN), and dichloromethane (DCM), were purchased from Macron (Center 

Valley, PA). Aluminum (Al) and calcium (Ca) were purchased from Angstrom Engineering Inc. 

(99.999%, Kitchener, ON). Indium tin oxide (ITO) coated glass (sheet resistance of 8-12 Ohm 

square–1) was purchased from Delta Technologies (Loveland, CO). Column chromatography was 
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performed on silica gel (Sorbent Technologies, 40-63 μm particle diameter) slurry packed into 

glass columns.  

2.2.2. Instrumentation  

All UV-vis absorption spectra of compounds were recorded using a scanning 

spectrophotometer (UV-3101PC, Shimadzu, Columbia, MD) and quartz cuvettes (Starna Cells, 

Atascadero, CA) with path lengths of 1 cm (for solutions) or quartz slides (for thin films, Ted 

Pella, Inc., Redding, CA). Photoluminescence spectra were acquired using a HORIBA Spex 

Fluorolog-3 spectrofluorometer (model FL3-22TAU3, Jobin-Yvon, Edison, NJ), with entrance 

and exit slit widths maintained at 3 or 5 nm and using quartz cuvettes (Starna Cells, Atascadero, 

CA) with path lengths of 0.4 or 1 cm or quartz slides (for thin films, Ted Pella, Inc., Redding, CA). 

The same fluorometer was used for time-dependent kinetic photostability measurements with a 14 

nm entrance slit width, as well as for the absolute photoluminescence quantum yield experiments, 

by connecting an integrating sphere to the fluorometer (HORIBA Scientific Quanta φ accessory, 

model FL3-22TAU3, HORIBA Scientific, Edison, NJ). Fluorescence lifetime experiments based 

on time-correlated single photon counting (TCSPC) were performed using a HORIBA FluoroMax 

plus fluorometer with a pulsed laser DeltaDiode (375 nm, pulse width 45 ps) and a PPD-850 

detector with a transit time spread of 180 ps (Horiba Scientific, Edison, NJ). All CV experiments 

were performed at room temperature using an Autolab PGSTAT 302 potentiostat (Metrohm, 

Riverside, FL) with a three-electrode system, i.e., a platinum disk working electrode, a Ag/AgNO3 

nonaqueous reference electrode, and a Pt wire counterelectrode (CH Instruments, Austin, TX). 

The reference electrode was checked against the ferrocene/ferrocenium (Fc/Fc+) redox couple as 

the standard. The potentials were quoted relative to the Fc/Fc+ redox couple. The scan rate was 

maintained at 0.1 V/s within the potential range of -0.5 to +3.0 V and TBAPF6 (in DCM or ACN, 
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0.1 M) was used as the supporting electrolyte. Thermal stability studies were performed using a 

Hi Res Modulated TGA 2950 thermogravimetric analyzer (TA Instruments, New Castle, DE) 

while single crystal XRD analysis was performed using a Bruker Kappa APEX-II DUO 

diffractometer (Bruker, Madison, WI). Malvern PANalytical Empyrean multipurpose 

diffractometer (Westborough, MA) with a copper anode was used for PXRD experiments. Grazing 

incidence X-ray scattering measurements were performed at beamline 8-ID-E of the Advanced 

Photon Source at Argonne National Laboratory using an X-ray wavelength of 1.6868 Å.27 The 

area detector, a Pilatus 1M pixel array detector (Dectris, Switzerland) was positioned 204 mm from 

the sample. The sample was measured under vacuum and the scattering measured at two different 

detector heights for an incident angle of 0.18° and exposure time of 5s. Combining corresponding 

images eliminated rows of inactive pixels between the detector modules and verified that the 

samples were not damaged by the synchrotron beam. The acquired data (as two-dimensional 

images) were further treated and analyzed using GIXSGUI software package.28  

An ultra-high vacuum thermal evaporation (VTE) system (Angstrom Engineering, Kitchener, 

ON) was used for OLED prototype fabrication. These OLED prototypes were fabricated in 

accordance with state-of-the-art protocols.2,6,29 In summary, OLED prototypes were fabricated 

using following steps. First, ITO coated glass was ultrasonicated sequentially in detergent solution, 

DI water, acetone, and isopropanol followed by exposure to UV-ozone under ambient conditions 

for 20 minutes. Next, the OLED prototypes were fabricated by depositing organic layers on clean 

ITO coated glass substrates using the VTE system, maintained at a base pressure less than 1 × 10-

6 Torr during all depositions. The deposition rates were 0.3 Å/s (Ca), 1 Å/s (NPB, 2,4,6-TPP, and 

TPBI), and 2 Å/s (Al). Layer thickness calibration was achieved using a Bruker Dektak XT surface 

profilometer (Bruker, Madison, NJ). Electroluminescence spectra and performance characteristics 
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of OLED prototypes were obtained using a PTI QuantaMaster4/2006SE spectrofluorometer 

(Photon Technology International, Edison, NJ), combined with an integrating sphere (Labsphere, 

North Sutton, NH). The total spectral flux was calibrated using a SCL-050 lamp standard 

(Labsphere, North Sutton, NJ). Current and voltage of OLED prototypes were controlled and 

measured using a Keithley 2601 sourcemeter (Tektronix, Inc., Beaverton, OR).  

2.2.3. Computational Details 

Density functional theory (DFT) computational calculations were performed using hybrid 

three-parameter non-local exchange functional developed by Becke with Lee–Yang–Parr 

correlation functional (B3LYP) to obtain energies and geometries of pyrenylpyridines.30,31 The 

resolution of the identity (RI) approach was employed to speed up the computation through 

effective calculation of the two-electron integrals.32 These calculations were performed using a 

triple-zeta valence plus polarization basis set (such as def2–TZVP).33 Vibrational frequencies 

confirmed the identity of the optimized structures at local minima and the results were obtained 

by employing the Turbomole program suite (version 4.2).34 

2.3. Synthesis and Characterization 

Four pyrenylpyridine compounds displayed in Figure 2.1, i.e., 2,4-DPP, 2,6-DPP, 3,5-DPP, 

and 2,4,6-TPP, were synthesized using a one-step Suzuki coupling reaction between respective 

bromopyridines and 1-pyrenylboronic acid.35 Synthesis of 2,4,6-TPP is described here as a 

representative protocol which is applied to the synthesis of all pyrenylpyridines with slight 

modifications. An Airfree flask was charged with 2,4,6-tribromopyridine (126 mg, 0.40 mmol), 1-

pyrenylboronic acid (320 mg, 1.30 mmol), and tetrakis(triphenylphosphine)palladium(0) catalyst 

(60 mg, 0.05 mmol) inside a glove box. Following this, 1,4-dioxane (60 mL, degassed for 30 min) 

and aqueous K2CO3 (0.2 M, 15 mL, degassed for 30 min) were added to the flask while purging 
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with argon. The resulting mixture was stirred at 80 °C for 72 h under argon atmosphere, followed 

by chloroform extraction. The combined organic layer was washed several times with brine 

solution and DI water, and then dried over anhydrous magnesium sulfate. The solvent was 

removed under vacuum and the crude product was purified using column chromatography on silica 

gel (eluent hexanes: ethyl acetate ratio of 9:1 v/v) three times. After solvent evaporation, 2,4,6-

TPP was obtained as a light-yellow powder (198 ±16 mg, yield 73 ±6%). In the case of the 

dipyrenylpyridines, molar ratios of dibromopyridine and 1-pyrenylboronic acid were maintained 

as 0.53:1.16 to obtain the products (163 ±11 mg, yield 74 ±14%). Characterization data for these 

compounds using 13C NMR, 1H NMR, (Bruker Avance 400) and ESI-MS (Agilent 6210 ESI-TOF) 

are presented in Appendix A. 

 

Figure 2.1.17 Chemical structures of pyrenylpyridines evaluated in this study. 

2.4. Results and Discussion 

2.4.1. Solid State Packing and Thin Film Morphology 

Solid-state conformation often influences molecular aggregation and thin film morphology, 

thus influencing photo-physical properties of dyes, particularly in the condensed state. Therefore, 

molecular conformations of DPPs were elucidated with PXRD and single-crystal XRD techniques 

and presented in Figures A1-A3 in Appendix A. As revealed by PXRD, 2,4,6-TPP has the lowest 

degree of crystallinity among all four pyrenylpyridines studied (See Figure A2 in Appendix A). 
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The observed degree of crystallinity variations of pyrenylpyridines is correlated to the 

conformational changes of these compounds. For example, asymmetric and bulkier 2,4,6-TPP may 

reduce the packing efficiency in the solid-state than symmetric 2,6-DPP and 3,5-DPP and 

asymmetric, but less bulkier 2,4-DPP. Except 2,4,6-TPP, all pyrenylpyridines formed high quality 

single crystals for single-crystal XRD experiments. Crystal structures of three DPP compounds are 

available in crystallographic information file (CIF) formats, CCDC 1560016 (2,4-DPP), CCDC 

1560018 (2,6-DPP), and CCDC 1560019 (3,5-DPP). Intermolecular distances and torsion angles 

of DPPs derived from single-crystal XRD experiments are listed in Table 2.1. According to single-

crystal XRD data, all three DPP compounds adopt significantly twisted conformations in solid-

state, with torsion angles between pyrenyl and pyridine moieties ranging from 42(12)° to 47(18)°, 

suggesting that the intramolecular twisting is significant and occurs more or less to same extents 

in all DPPs. Computed torsion angle values for DPPs were very close to the experimental values 

as showed in Table 2.1. The computed average torsion angle in 2,4,6-TPP was 49.58(7)°, 

confirming a twisted geometry similar to DPPs. However, the addition of the third pyrenyl moiety 

in 2,4,6-TPP had virtually no effect on the extent of intramolecular twisting of pyrene moieties, 

since the positioning of three pyrene units around the pyridine moiety in 2,4,6-TPP provided 

comparable steric effects to inter-molecular pyrene units as in DPPs. Despite this significant 

intramolecular twisting of pyrenyl units, DPPs managed to arrange in an apparent zig-zag order 

(Figure A3 in Appendix A), allowing these molecules to undergo significant π-π stacking. The 

intermolecular distances measured using C-C distances and N-N distances of neighboring DPP 

molecules in crystals ranged from 6.86 (±3) to 3.63 (±5) Å (for C-C) and 6.86 (±3) to 3.86 (±7) Å 

(for N-N), as a result of differences in solid-state packing induced by factors including the extent 

of intramolecular twisting, inter and intra molecular interactions, and molecular symmetry. Based 
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on intermolecular distances, solid-state packing efficiency of DPPs increases in the following 

order, 2,4-DPP < 2,6-DPP < 3,5-DPP.  

Table 2.1. Summary of conformational and thermal properties of pyrenylpyridines. 

 

Compound 
Tm 

(°C) 

Tonset 

(°C) 

Intermolecular     

Distance (Å) 
Torsion Angle (°) c 

2,4-DPP 172 415 
6.86(3)a 

6.86(3)b 

47.48(18)d 

52.28(6)e 

2,6-DPP 273 424 
4.72(5) a 

5.16(11)b 

42.33(12)d 

43.75(2)e 

3,5-DPP 281 429 
3.40(3)a 

3.90(3)b 

46.74(18)d 

57.21(1)e 

2,4,6-TPP 312 510 N/A 49.58(7)e 

Tm: Melting point, Tonset: Decomposition onset temperature, Closest C-C distance a and N-N 

distance b between two neighboring pyrenylpyridine molecules in the single crystal, Angle between 

pyrenyl and pyridine units of pyrenylpyridines.c Experimental torsion angles obtained from single-

crystal XRD.d Torsion angles obtained from DFT computations.e N/A: Not available. 

Grazing-incidence wide-angle X-ray scattering (GIWAXS) is a very useful technique to study 

the crystallinity and orientation of organic thin films, which provides more realistic morphological 

information than PXRD and single crystal XRD techniques.36 Accordingly, GIWAXS studies on 

vacuum-deposited thin films of 2,4,6-TPP revealed that there is no distinct diffraction features 

arising from isotropic/oriented condensed matter (Figure 2.2), as denoted by showing just an 

amorphous broad scattering at q = 1.51 Å. This diffraction pattern indicates that 2,4,6-TPP thin 

films were essentially amorphous, with no preferred packing of TPP molecules in thin films. 

Amorphous properties would be particularly suitable for using this material in thin film 

electroluminescent devices, since crystalline molecules may undesirably influence thermal 

stability and solid-state characteristics by the presence of nonlinear properties such as optical 

activity, conductivity, and photothermal reactivity.37  
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Figure 2.2.18 Two-dimensional GIWAXS image of a 2,4,6-TPP thin film on a quartz substrate (top) 

and vertical linecut of the GIWAXS data (bottom). 

2.4.2. Computational Studies 

Density function theory computational studies were performed to confirm structural and 

electrochemical characteristics of the pyrenylpyridines. Experimental details of computational 

calculations are provided in the section 2.2.3. All optimized geometries showed twisted structures 

with torsion angles between pyrene and pyridine units within each molecule comparable to the 

experimental torsion angles obtained using single-crystal XRD (Table 2.1). Also, details on 

frontier molecular orbitals were computationally obtained for all pyrenylpyridines. Noticeably, 

HOMO of 2,4,6-TPP was distributed over two of the pyrenyl components while LUMO was 

primarily located on the third, orthogonal pyrenyl moiety (Figure 2.3). The asymmetric 2,4-DPP 
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also shows a separation of HOMO and LUMO orbitals within the molecule (Figure A4 in 

Appendix A). In contrast, symmetric molecules, i.e., 2,6-DPP and 3,5-DPP, have HOMO and 

LUMO orbitals distributed over the same pyrenyl fragments (Figure A4 in Appendix A). Energy 

gaps obtained from computational studies were slightly higher (approximately 0.1-0.4 eV) than 

energy gap values obtained from low-energy onsets of the absorption bands of compounds in UV-

vis absorption spectroscopy (Table A1 in Appendix A). This difference may due to fact that 

computational studies were done for the gas phase whereas experimental calculations were based 

on condensed phase of the compounds. 

 
Figure 2.3.19 HOMO (A) and LUMO (B) of 2,4,6-TPP. 

 

2.4.3. Photothermal Stability 

Resistance to thermal degradation is crucial for the longevity of OLED devices.38,39 In this 

regard, thermal stability of pyrenylpyridines was evaluated using thermogravimetric analysis 

(TGA). Typically, TGA experiments were conducted by heating samples of pyrenylpyridines (< 5 

mg) in nitrogen atmosphere from 25 to 600 °C at a constant rate (10 °C/min). Since thermal 

decomposition of organic compounds typically accompanied with the formation of volatile 

compounds, the temperature in which an onset of weight loss (< 5%) is observed is reported as the 

onset decomposition temperature of the compound (Tonset), which is determined by using a step-

tangent method.40 The resultant TGA profiles of pyrenylpyridines are shown in Figure A5 in 

Appendix A, and Tonset values are listed in Table 2.1. Interestingly, all compounds exhibited high 
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thermal stabilities with Tonset values in the range of 415-510 °C. It is noted that the Tonset values of 

DPPs were distributed in a narrow range of 415-429 °C. The significantly high thermal stability 

of 2,4,6-TPP with Tonset value of 510 °C, which is 18 (±3)% higher than that of DPPs, is attributed 

to increased inter and intra molecular interactions of 2,4,6-TPP molecules, as a result of  having 

an additional pyrenyl moiety. All pyrenylpyridines are high-melting solids, with melting points 

(Tm) ranging from 172-312 °C. The melting temperatures of the pyrenylpyridines increase in the 

following order, 2,4-DPP < 2,6-DPP < 3,5-DPP < 2,4,6-TPP, which parallels the trend in solid-

state packing efficiency. For example, 2,4-DPP, which has the lowest packing efficiency (as 

discussed in the XRD section), shows the lowest Tm  (172 °C). Thus, thermal stability of the 

pyrenylpyridines can be correlated to factors such as molecular symmetry, solid state 

conformation, and the extent of inter and intramolecular interactions.  

Among various degradation processes of organic semiconductors which ultimately lead to 

device malfunction, photodegradation is one of the possible pathways.41,42 Although the exact 

mechanisms involved in these light-induced reversible/irreversible oxidation processes may 

specific for a given molecule and not fully understood to date, it is suggested that radical dark 

states might be involved in the photobleaching mechanisms.42,43 Photostability of pyrenylpyridines 

was evaluated using a previously reported procedure developed for organic dyes.44,45 In a typical 

time dependent kinetic photostability experiment, the compound is intensively irradiated with a 

monochromatic light of the wavelength set at the absorption maximum for a sufficient time period, 

while recording the photoluminescence intensity fluctuations at the respective emission maximum 

of the compound. Typically, photolabile compounds show exponential decrease of emission 

intensity when intensively irradiated, as a result of photodegradation.45 Therefore, it is assumed 

that this decay of emission intensity observed with increased irradiation time is proportional to the 
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extent of photobleaching. Accordingly, photostability of pyrenylpyridines were determined using 

Equation 2.1. 

𝑃ℎ𝑜𝑡𝑜𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑡𝑦 (%) = (
𝐼

𝐼0
) × 100 % , (2.1) 

where I is the emission intensity after the intensive irradiation and I0 is the observed emission 

intensity before the intensive irradiation. The resultant time-dependent photoluminescence 

intensity fluctuation curves of all pyrenylpyridines are presented in Figure A6 in Appendix A. It 

is noted that all pyrenylpyridines maintained stable photoluminescence, i.e., there is no measurable 

photobleaching upon intense irradiation under the given experimental conditions. These   

photobleaching curves of pyrenylpyridines are similar to that of other photostable compounds 

evaluated by time dependent kinetic photostability experiments reported in literature.46 The 

enhanced photostability exhibited by pyrenylpyridines is attributed to pyrenyl moieties which are 

highly resistant to photodegradation under ambient conditions.  

 2.4.4. Spectral Properties in Solution and Solid States 

UV-vis absorption spectra of pyrenylpyridines were recorded in chloroform solution (5 µM) 

and in thin solid films. Thin solid films of pyrenylpyridines were formed on quartz slides by 

electro-spray deposition (1 mM in DCM, flow rate 100 μL/min, applied voltage 2.8 V, and applied 

current 3 A). The absorption spectra obtained for solution and solid films of pyrenylpyridines are 

presented in Figure 2.4 and values of absorption maxima and full widths at half maxima (FWHM) 

are summarized in Table 2.2.  
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Figure 2.4.20 Normalized absorption spectra of pyrenylpyridines in chloroform solution and as thin 

films on quartz. 

Accordingly, all pyrenylpyridines showed three broad absorption peaks in both solution 

and solid states, with absorption peak maxima (Amax) at 244 ±1 (Amax3), 282 ±2 (Amax2), and 353 

±3 (Amax1), respectively. Solution and solid-state absorption spectra largely resembled those of 

pyrene, but were lacking the fine vibronic features characteristic for the pyrene absorption 

spectrum.21,47 Considering the molecular design of pyrenylpyridines, in which, pyrenyl groups are 

relatively good electron acceptors and pyridine group is an electron donor, it is likely to occur 

intramolecular charge transfer absorption. Accordingly, in solid-state absorption spectra, 

absorption peaks of pyrenylpyridines were significantly broadened with average FWHM values of 

77 (Amax1), 43 (Amax2), and 58 (Amax3) nm in solid films than in solution state (48 for Amax1, 24 for 

Amax2, and 19 for Amax3 nm, respectively) and red-shifted (≤ 7 nm).  
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Table 2.2.i Absorption data for pyrenylpyridines. 

Compound 
Absorption Maxima (nm) FWHM (nm) 

Solx Film Solx Film 

2,4-DPP 

244 

282 

353 

241 

286 

358 

19         

25     

46 

56     

59    

75 

2,6-DPP 

245 

282 

352 

240 

287 

355 

20     

25     

48 

64    

37     

74 

3,5-DPP 

244 

282 

351 

243 

286 

358 

20      

21      

41 

61    

41     

83 

2,4,6-TPP 

244 

284 

356 

244 

286 

361 

19      

27      

51 

58    

37    

69 
x In chloroform solution (5 µM) 

Photoluminescence spectra of all pyrenylpyridines were recorded in chloroform solutions (1 

µM) and in thin solid films prepared by electro-spray deposition as described in previous section. 

Photoluminescence spectra of pyrenylpyridines are presented in Figure 2.5. Also, emission 

maxima and FWHM values are summarized in Table 2.3. Emission spectra of all pyrenylpyridines, 

in both solution and solid states, are largely resembled to pyrene excimer emission with a single 

broad peak that has no fine vibronic structures.47 Emission maxima of pyrenylpyridines were found 

in the range of 392-440 nm in chloroform solution and 463-494 nm for solid films (Table 2.3). 

Photoluminescence peaks of pyrenylpyridines were broadened (as denoted by increase of FWHM 

values approximately by 20-30 nm) and red-shifted (as denoted by λmax shifts of approximately 

50-90 nm) in solid-state than in solution (Table 2.3), presumably due to dye aggregation.12 

However, dye aggregation was not as extensive as in many cases of pyrene derivatives reported in 

the literature, in which, solid-state emission was completely shifted to green region of the EMS, 

with substantial aggregation-induced quenching .7  
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Figure 2.5.21 Normalized emission spectra of pyrenylpyridines in chloroform solutions and as thin 

films on quartz. 

Photoluminescence of pyrenylpyridines was confined approximately to the violet-blue region 

of the EMS in solution state and greenish-blue region of the EMS in the solid-state. Accordingly, 

the color of these compounds has been assigned in accordance to CIE coordinates (Table 2.3) and 

found in the range of (0.162 ±0.003, 0.04 ±0.016) for solution state and (0.149 ±0.018, 0.235 

±0.09) for solid-state. 

Table 2.3.ii Summary of emission properties of pyrenylpyridines. 

x In chloroform (1 µM)  

In order to investigate possible solvatochromism, photoluminescence spectra of 

pyrenylpyridines were recorded in hexane, methanol, and DMSO solvents which have polarity 

Compound 

Emission 

Maxima (nm) 
FWHM (nm) 

Stokes Shift 

(nm) 
CIE Coordinates (x,y) 

Solx Film Solx Film Solx Film Solx Film 

2,4-DPP 406 463 59 82 53 107 0.162, 0.062 0.159, 0.279 

2,6- DPP 400 468 55 77 48 116 0.159, 0.027 0.135, 0.144 

3,5-DPP 392 476 44 69 41 125 0.165, 0.037 0.132, 0.175 

2,4,6-TPP 412 494 52 85 56 141 0.160, 0.029 0.170, 0.343 
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indices in the range of 0-7.2 (Table A2 of Appendix A). The emission spectra of all four 

compounds red shifted with increasing solvent polarity from 394 ±2 nm (hexane) to 435 ±10 

(DMSO) nm, indicating charge transfer character in photoluminescence. Absorption, excitation, 

and emission spectra of 2,4,6-TPP in chloroform solution (5 µM) are presented in Figure 2.6, 

indicating absorbance and excitation spectra of 2,4,6-TPP almost coincide, and the absorption and 

emission spectra obey ‘the mirror image rule’, suggesting no major geometrical changes occurring 

in the excited state.21 

 
Figure 2.6.22 Normalized absorbance, excitation, and emission spectra of 2,4,6-TPP in chloroform 

solution.  

2.4.5. PLQY and Lifetimes  

High photoluminescence efficiency is an important requirement for OLED emitters, but is not 

the only criterion to determine the electroluminescence efficiency of OLED emitters. This is 

because electroluminescence mechanism of an emitter may influence by number of factors that are 

typically not interfere with photoluminescence mechanisms, including OLED architecture and 

electrical properties of the OLED.48,49 Photoluminescence efficiency of an OLED emitter is 

determined in terms of PLQY, which is defined as the ratio of emitted photons to absorbed 
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photons.21 Absolute quantum yields of pyrenylpyridines in chloroform solutions and in thin films 

were determined using an integrating sphere attached to a spectrofluorometer.50 Table 2.4 

summarized the PLQY values recorded for pyrenylpyridines. Accordingly, 2,4,6-TPP displayed 

the highest quantum yield in solution (89%) as well as in thin film (64%), likely due to the presence 

of an additional pyrenyl luminophore as well as much reduced dye aggregation than DPPs. 

Interestingly, DPPs showed PLQY values in the range of 74-79% in solution and 47-55% in solid 

films. Accordingly, despite the dye aggregation in the solid-state, substantial PLQY values were 

observed for all pyrenylpyridines.   

Table 2.4. ii i Quantum yields and fluorescence lifetimes of pyrenylpyridines. 

 

Compound 
PLQY (%) 

Emission lifetime (ns) 
Solx Film 

2,4-DPP 79 47 7.66 

2,6-DPP 74 51 6.28 

3,5-DPP 76 55 6.12 

2,4,6-TPP 89 64 4.25 
x In chloroform solution (1µM)   

Fluorescence lifetime measurements were performed for each of the studied pyrenylpyridine 

compounds. Table 2.4 and Figure A7 in Appendix A provide lifetime data summary and decay 

curves for these compounds in solid-films. Fluorescence decay curves of all four compounds 

showed single-exponential decays indicating a single pathway for energy transitions, and 

origination of photoluminescence from the singlet excited state in all cases.21 The lifetimes of 

pyrenylpyridines were distributed in the range of 7.66-4.25 ns. Interestingly, 2,4,6-DPP has the 

shortest lifetime (4.25 ns), thus has a less tendency for non-radiative side reactions in the excited 

state, as denoted by the observed highest PLQY for investigated pyrenylpyridines. 

 

  



 

57 

 

2.4.6. Electronic Properties  

Estimating HOMO and LUMO energies and HOMO-LUMO energy gaps (Eg) of OLED 

emitters is crucial for designing OLED devices. The Eg value of a material is defined as the 

separation between maximum energy of the valence band and minimum energy of the conduction 

band.51 Typically, semiconducting materials display energy gaps in the range of 0-4 eV.51 The Eg 

values of all pyrenylpyridines were experimentally determined using UV-vis absorption spectra, 

in particular, λedge values assuming the minimum energy required to promote an electron from the 

ground state to the first excited state is equal to Eg (Equation 2.3).44 Accordingly, experimental Eg 

values obtained by CV were in the range of 3.10 to 3.28 eV as shown in Table 2.5. Also, the 

HOMO values of pyrenylpyridines were experimentally obtained using CV by employing 

Equation 2.2.52,53 All pyrenylpyridines displayed quasi-reversible cyclic voltammograms with 

measurable oxidation peaks under the stated conditions (Figure A8 in Appendix A). Quasi-

reversible behavior is often displayed by redox couples with one state (oxidation or reduction) is 

not stable in the time scale of the CV experiment.54 Accordingly, the LUMO values were 

calculated using Equation 2.3 since Eg values were obtained from UV-vis spectroscopy.44,45 In 

Equation 2.2, Eox is the onset potential value of the oxidation peak obtained from the cyclic 

voltammogram of a compound. The energy values experimentally determined for frontier orbitals 

of pyrenylpyridines were in the respective ranges of -5.67 to -5.76 eV, and -2.42 to -2.60 eV (Table 

2.5).   

𝐻𝑂𝑀𝑂 (𝑒𝑉) =  −1𝑒 [𝐸𝑜𝑥. + 4.71]𝑒𝑉     (2.2) 

𝐸𝑔(𝑒𝑉) = [𝐻𝑂𝑀𝑂 − 𝐿𝑈𝑀𝑂]  =
ℎ𝑐

𝜆𝑒𝑑𝑔𝑒
 =

1240

𝜆𝑒𝑑𝑔𝑒
 𝑒𝑉  (2.3) 
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Table 2.5. Electronic properties of pyrenylpyridines 
 

Compound Eg (eV) HOMO (eV) LUMO (eV) 

2,4-DPP 3.16 -5.75 -2.60 

2,6-DPP 3.16 -5.76 -2.60 

3,5-DPP 3.28 -5.70 -2.42 

2,4,6-TPP 3.12 -5.67 -2.55 

2.4.7. Characterization of OLED Prototype Fabricated with 2,4,6-DPP as the EML 

OLED emitters in EML can be embedded in an energetically matching host matrix (doped) or 

use as it is without such matrices (non-doped/self-host).3,4 Doped EMLs have distinct advantages 

such as reduction of aggregation induced quenching and formation of favorable energy transfers 

between the host and the emitter, which typically improve the device performance.3,4 However, 

the disadvantages associated with doping include phase separation induced degradation, limited 

availability of energetically matching host materials for blue emitters, and the complexity in device 

fabrication.3,4 Considering pros and cons of doped EMLs, a non-doped OLED prototype was 

fabricated for preliminary studies presented in this chapter to reduce the complexity of device 

fabrication and to understand electroluminescent properties of the pure emitter. Since 2,4,6-TPP 

displayed the most promising photo-physical characteristics among the pyrenylpyridines 

investigated (i.e., highest PLQY, highest thermal stability, and the lowest degree of crystallinity), 

an OLED prototype was fabricated using 2,4,6-TPP as the non-doped emissive layer. These 

prototypes were fabricated using VTE method, in accordance with the state-of-the-art.29 The 

configuration of OLED prototypes were, ITO (140 nm)/ NDB (35 nm)/ 2,4,6-TPP (35 nm)/ TPBI 

(30 nm)/ Ca (12 nm)/Al (100 nm) as schematically showed in Figure 2.7 (A). These OLED 

prototypes contained NPB and TPBI as hole transport and electron transport layers, and 2,4,6-TPP 

as the non-doped emissive layer whereas ITO was employed as the anode and a Ca as the cathode. 

The device performance metrics were obtained in accordance with previously reported 
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protocols.6,55 This device reached maximum EQE of 6.0 (±1.2) % at 5 V with luminance of 36.2 

(±4.7) cdm–2, power efficiency of 8.0 (±1.9) lmW–1, and current efficiency of 6.3 (±1.5) cdA–1. 

Upon gradual increase of voltage, the device showed much brighter electroluminescence, and 

luminance reached to 100 cdm–2 at 7.5 V. At 100 cdm–2 luminance, an EQE of 1.2 (±0.1) %, power 

efficiency of 1.1 (±0.1) lmW–1, and current efficiency of 1.4 (±0.1) cdA–1 were obtained. The 

OLED prototype performance is graphically presented in Figure 2.7 (B).  

 
Figure 2.7.23 A simplified schematic of the device architecture (A) and OLED performance plots 

(B) for the OLED prototype with 2,4,6-TPP as the emissive layer. (Please note: OLED device is 

not drawn proportionally). 

 

A sky-blue electroluminescence is observed from this OLED prototype with a turn-on voltage 

of 4 V as showed in Figure 2.8. The CIE coordinates of the electroluminescence observed from 

this OLED was (0.154, 0.297), which is analogous to observed photoluminescence from the thin 

film of 2,4,6-TPP, with peak maximum at 490 nm. Therefore, electroluminescence mechanisms 

of the 2,4,6-DPP emissive layer are assumed to be based on conventional fluorescence (Figure A9 

in Appendix A).4 This sky-blue OLED emitter can be successfully applied in novel pixel designs 

that contain a light blue component.56,57 
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Figure 2.8.24 A photograph showing electroluminescence of the OLED prototype with 2,4,6-DPP as 

the emissive layer. 

 

2.5. Conclusions 

A series of structurally related pyrenylpyridine compounds was successfully synthesized and 

spectral, physical, and electrical properties of these compounds were thoroughly investigated. 

Although these pyrenylpyridines are structurally related, aforementioned properties were found to 

be quite diverse, particularly in the solid-state. These differences stem from factors such as 

molecular symmetry, extent of inter/intramolecular interactions, and conformational changes of 

pyrenylpyridines. Pyrenylpyridines exhibited high photothermal stability, PLQY, and electronic 

properties that are suitable for optoelectronic applications. Among these pyrenylpyridines, 2,4,6-

TPP was found to display the highest photothermal stability and the lowest crystallinity in thin 

films, as well as the highest PLQY. Therefore.  prototype OLED device was fabricated with 2,4,6-

TPP as the non-doped emissive layer, which showed bright sky-blue electroluminescence, and 

reached luminance value of 100 cd m–2 at 7.5 V, with external quantum efficiency of 1.2 (±0.1) 

%, power efficiency of 1.1 (±0.1) lmW–1 and current efficiency of 1.4 (±0.1) cdA–1. Evaluation of 

structure-property relationships of the pyrenylpyridines as model compounds related to pyrene 

aided in understanding the important role of morphology induced inter- and intra- molecular 

interactions, that are known to tremendously affect the spectral and physical characteristics of 
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structurally related molecules. Future directions for this research involve fabrication and 

characterization of OLED prototypes for DPPs and fabrication of OLED prototypes with a doped 

emissive layer by embedding pyrenylpyridines in a suitable host matrix to further improve device 

performance.  
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CHAPTER III. PYRENE-BENZIMIDAZOLE DERIVATIVES AS NOVEL    

BLUE EMITTERS FOR OLEDS 

3.1. Introduction 

OLEDs were developed over the course of 30 years, from a laboratory concept in the 

pioneering work of Ching W. Tang and Steven A. Van Slyke, to a leading technology in the 

consumer electronics market.1,2 Compared to the competing LCD display, OLED display offers 

advantages such as energy conservation by self-emission, device flexibility for curved electronic 

displays with broad viewing angles, outstanding picture quality due to the absence of back-

lighting, and thin electronic screens with a significantly low weight.2,3 However, the much shorter 

lifespan of OLED panels compared to that of LCDs is still a formidable challenge, one caused by 

inferior performance of blue emitters.1,2 Blue emitters often suffer from deficiencies such as 

inefficient charge injection and mobility, lower photo-thermal/chemical stability, and an 

insufficient spectral purity with respect to red and green emitters in full-color RGB electronic 

displays.4-6 The intrinsically wide HOMO-LUMO band gaps of blue emitters make charge 

injection from the electrodes/supporting organic layers to the emissive layer much harder. Also, 

blue emitters are susceptible to rapid degradation as a result of side-reactions from the high energy 

excited state.4 Therefore, it is important to design novel blue emitters addressing these 

inadequacies.4-7 several strategies were employed to address the aforementioned inadequacies of 

blue emitters. These efforts included optimization of molecular designs, OLED architectures, and 

exciton harvesting mechanisms.4,5 Multifunctional molecular designs are recognized as one of the 

most promising solutions, therein,  hole and/or electron transport moieties are incorporated into 

the blue emitters to facilitate proper flux of charge carriers to the EML.4 Multifunctional emitters 

are classified as p-type (hole transporters)8-11, n-type (electron transporters),12-14 and bipolar 

(electron and hole transporters).15-17 The use of multifunctional emissive materials could 
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effectively reduce the number of supporting organic semiconducting layers in OLEDs, thus 

lowering the cost and the complexity of OLED devices.4  

This chapter reports the design, synthesis, and characterization of three novel, structurally 

related, n-type multifunctional small organic molecules. These compounds are hybrids of pyrene 

and benzimidazole derivatives, namely, 2-(1,2-diphenyl)-1H-benzimidazole-7-tert-butylpyrene 

(compound A), 1,3-di(1,2-diphenyl)-1H-benzimidazole-7-tert-butylpyrene (compound B), and 

1,3,6,8-tetra(1,2-diphenyl)-1H-benzimidazolepyrene (compound C). Pyrene moieties in these 

compounds serve as the blue luminophores. Pyrene was selected as the luminophore due to a 

number of  favorable characteristics, in particular, its resistance to all sorts of degradations stems 

from chemically stable PAH structure, substantial quantum efficiency, favorable charge carrier 

properties, ease of modification, and low cost.7,18 For these reasons, a vast number of pyrene 

derivatives have been studied as emissive materials, charge injection materials, and charge 

transport materials in OLEDs.7,18 However, pyrene derived pure blue OLED emitters are less 

common owing to the extensive π-π stacking of the relatively planer pyrene moieties in condensed 

state, causing massive red-shifts of the pyrene derivatives’ emission spectrum, which often results 

in greenish blue, bluish green, or green emissions.7 Also, dye aggregation is accounts for 

aggregation-induced quenching of the emitter, thus reducing the OLED emission efficiency.3,7 

However, a notable exception to this common case is pyrene derivatives exhibiting AIE.19,20 

Interestingly, these AIE based pyrene derivatives show an enhanced emission in the solid-state as 

a result of restricted molecular motion. Strategies other than AIE to preserve the desirable optical 

characteristics of pyrene derivatives include twisting the structure to restrict π-π stacking for 

relatively small molecules,21,22 designing polymers/oligomers/dendrimers with pyrene moieties 
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placed in such a way that they cannot aggregate effectively due to steric effects,23,24 and applying 

a suitable host matrix to dilute the pyrene derivative concentration in the EML.25 

The novel compounds discuss in this chapter are not AIE materials. Therefore these 

compounds are designed with multiple phenyl and/or tertiary butyl groups, which are attached to 

the pyrene-benzimidazole cores of compounds A, B, and C, to effectively reduce π stacking of 

pyrenyl moieties in the solid-state by causing substantial steric hindrance. Benzimidazole moieties 

in these compounds were used to aid in electron transport since benzimidazole is a well-known 

electron transporter, particularly when conjugated to organic or transition metal electron 

donors.16,26,27  Compounds, A, B, and C were systematically evaluated for morphological, photo-

thermal, optical, and electrochemical properties to assess the suitability of these molecules as blue 

OLED emitters. As expected, compounds A, B, and C showed a systematic reduction in the degree 

of crystallinity, due to the systematic increase of steric hindrance that prevents efficient solid-state 

aggregation of these compounds. As a result, a significantly pure blue emission is observed from 

all three compounds in both solution and solid states. The spectroscopic characteristics of these 

compounds were thoroughly investigated in terms of absorption, photoluminescence, and PLQY. 

Since compound B showed the best photo-physical properties among the three compounds 

investigated, a non-doped OLED prototype was fabricated with compound B as the emissive 

material for preliminary studies. This OLED prototype showed significantly pure blue 

electroluminescence as expected, with CIE coordinates of (0.1482, 0.1300). Other OLED 

performance characteristics including power and current efficiencies and EQE were also 

determined for this OLED prototype.  
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3.2. Experimental Section 

3.2.1. Materials 

Tetrakis(triphenylphosphine)palladium(0), 2-bromo-7-tert-butylpyrene, 1,3-dibromo-7-tert-

butylpyrene, 1,3,6,8-tetrabromopyrene, and 1-phenyl-2-[3-(4,4,5,5-tetramethyl-1,3,2-

dioxaborolan-2-yl)phenyl]-1H-benzimidazole were purchased from Tokyo Chemical Industries 

Co. Ltd. (Portland, OR). Bathocuproine (2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline, BCP) 

was purchased from Sigma-Aldrich (St. Louis, MO). The compounds, TBAPF6 and Fc were 

purchased from Sigma-Aldrich (St. Louis, MO) and K2CO3 was purchased from Fisher Scientific 

(Fair Lawn, NJ). Analytical grade CHCl3, THF, hexane, EA, 1,4-dioxane, acetone, isopropanol, 

ACN, and DCM were purchased from Macron (Center Valley, PA). The metals, Al and Ca, were 

purchased from Angstrom Engineering Inc. (99.999%, Kitchener, ON). Glass slides coated with 

ITO were purchased from Delta Technologies (Loveland, CO). Column chromatography was 

performed on silica gel (Sorbent Technologies, 40-63 μm particle diameter) slurry packed into 

glass columns. Deionized water was obtained from an Elga model PURELAB ultra water-filtration 

system.  

3.2.2. Instrumentation  

A scanning UV-vis spectrophotometer (UV-3101PC, Shimadzu, Columbia, MD) was used to 

obtain absorption spectra and a HORIBA Spex Fluorolog-3-spectrofluorometer (FL3-22TAU3, 

Jobin-Yvon, Edison, NJ) with entrance and exit slit widths maintained at 3 or 5 nm was used to 

record photoluminescence spectra. The same spectrofluorometer set up was used for photostability 

experiments with entrance slit width maintained at 14 nm. Quartz cuvettes (Starna Cells, 

Atascadero, Ca) with path lengths of 0.4/1 cm (for solutions) and quartz slides (for thin solid films, 

Ted Pella, Inc., Redding, CA) were used for spectroscopic characterizations. Absolute quantum 
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yields of compounds were obtained by using a Petite Integrating Sphere (Jobin-Yvon, Edison, NJ) 

mounted to this spectrofluorometer. A Hi Res Modulated TGA 2950 Thermogravimetric Analyzer 

(TA Instruments, New Castle, DE) was employed to obtain thermal decomposition onset 

temperatures. An Autolab electrochemical system coupled with a potentiostat (model PGSTAT 

302N, Metrohm, Riverview, FL) was used for CV analysis at room temperature, using a three-

electrode system consisting of a platinum disk (3 mm diameter) working electrode, an Ag/AgNO3 

non-aqueous reference electrode, and a Pt wire counter electrode (CH Instruments, Austin, TX). 

The Fc/Fc+ redox couple was used as internal standard against reference electrode. For CV 

experiments, ACN/DCM containing TBAPF6 (electrolyte, 1 mM) was used as the solvent. A 

Bruker Kappa APEX-II DUO diffractometer (Bruker, Madison, WI) was employed to carry out 

single crystal XRD, whereas a PANalytical Empyrean multipurpose diffractometer (Westborough, 

MA) with a copper anode was employed to obtain PXRD data. Thin films (75 ±7 nm) of 

compounds A, B, and C were prepared on clean quartz slides by spin coating (Model WE-650MZ-

23NPPB, Laurell Technologies Corporation, North Wales, PA). For this first step, compounds 

were dissolved in chloroform to prepare dilute solutions (0.1-0.5 mM) and filtered through syringe 

filters (0.1 µm pore size). These solutions were used to spin coat the materials on quartz slides 

(100 µL solution volume and 1500-2000 rpm, with 2 min spinning duration).  

OLED prototypes were fabricated by employing vacuum thermal deposition. An ultra-high 

vacuum thermal evaporator (VTE, Angstrom Engineering, Kitchener, ON) was used to deposit 

metal and organic layers on ITO coated glass substrates using a previously reported procedure.28 

In brief, ITO coated glass substrates were cleaned by sequential ultra-sonication in an aqueous 

detergent solution, DI water, acetone, and isopropanol. Then, these cleaned substrates were dried 

overnight inside a glove box and subjected to UV-ozone treatment for 20 min under ambient 
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conditions. The ozone treated ITO coated glass substrates were immediately returned to the glove 

box to make OLED prototypes by mounting them onto the VTE chamber. Base pressure of the 

VTE system was maintained at < 1 × 10-6 Torr throughout the entire material deposition process. 

Deposition of the metals and organic layers was carried out with rates of 1 Å/s (organic 

compounds), 0.3 Å/s (Ca), and 2 Å/s (Al). A Bruker Dektak XT surface profilometer (Bruker, 

Madison, NJ) was used to calibrate the OLED layer thicknesses. The electroluminescence of the 

OLED prototypes were obtained using a PTI QuantaMaster4/2006SE spectrofluorometer (Photon 

Technology International, Edison, NJ) combined with an integrating sphere (Labsphere, North 

Sutton, NH). A Keithley 2601 sourcemeter (Tektronix, Inc., Beaverton, OR) was employed to 

control and record the current and voltage of OLED prototypes. A SCL-050 lamp standard 

(Labsphere North Sutton, NH) was used to obtain the total spectral flux to obtain OLED prototype 

performance.  

3.3. Synthesis and Characterization 

Three novel pyrene-benzimidazole conjugate compounds, namely, 2-(1,2-diphenyl)-1H-

benzimidazole-7-tert-butylpyrene (compound A),  1,3-di(1,2-diphenyl)-1H-benzimidazole-7-tert-

butylpyrene (compound B), and 1,3,6,8-tetra(1,2-diphenyl)-1H-benzimidazolepyrene (compound 

C), were synthesized via a one-step Suzuki coupling between respective mono-, di-, or tetra- 

bromopyrenes and 1-phenyl-2-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]-1H-

benzimidazole (Figure 3.1). The synthesis of compound A is described here as a representative 

protocol for the synthesis of all three compounds. In a typical synthesis, an Airfree flask was 

charged with 2-bromo-7-tert-butylpyrene (341 mg, 1.00 mmol), 1-phenyl-2-[3-(4,4,5,5-

tetramethyl-1,3,2-dioxaborolan-2-yl)phenyl]-1H-benzimidazole (397 mg, 1.01 mmol), and 

tetrakis (triphenylphosphine)palladium(0) catalyst (120 mg, 0.1 mmol) in a nitrogen atmosphere. 
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Next, 1,4-dioxane (degassed, 80 mL) and an aqueous potassium carbonate solution (degassed, 0.2 

M, 20 mL) were added to the same flask. The reaction mixture was stirred at 60 ˚C in Airfree flask 

for 24 h in an argon atmosphere. The crude product was precipitated inside the flask as white 

needles upon cooling the reaction mixture to room temperature. The crude product was isolated 

by filtering the reaction mixture under vacuum, followed by air-drying in an ambient temperature. 

A silica gel flash column chromatography purification was carried out for the crude product with 

ethyl acetate: hexane (4:6) solvent system to isolate the pure compound as colorless needles (332 

±7 nm, yield 63 ±7%). In the case of product B, the molar ratio used for the synthesis of 1,3-

dibromo-7-tert-butylpyrene and 1-phenyl-2-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)phenyl]-1H-benzimidazole was 1.00:2.05. For the synthesis of product C, the molar ratio of 

1,3,6,8-tetrabromopyrene and 1-phenyl-2-[3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-

yl)phenyl]-1H-benzimidazole was maintained at 1.00:4.05. Compound B was a yellow solid (580 

±71 mg, yield 73 ±9%) and compound C was a light brown solid (893 ±140 mg, yield 70 ±11%). 

Products A, B, and C were characterized with ESI-MS/MALDI-MS and NMR spectroscopy. This 

characterization information is provided in Appendix B.  

3.4. Results and Discussion 

3.4.1. Solid-State Morphology  

Photo-physical properties are often swayed by solid-state conformations of the small molecular 

organic compounds.10 Therefore, powder and/or single-crystal XRD experiments were performed 

for compounds A, B, and C and PXRDs of these compounds were presented in Figure B1 in 

Appendix B. Accordingly, PXRDs indicate that compounds A, B, and C show a systematic 

reduction in the degree of crystallinity, as denoted by a gradual reduction of the number of sharp 

peaks observed in PXRDs. The observed crystallinity trend (i.e., A > B > C) is attributed to the 
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systematic increase of phenyl and/or alkyl substituents in these compounds (i.e., 3, 4, and 8 

alkyl/phenyl groups in compounds A, B, and C, respectively), that progressively reduced π 

stacking of the pyrenyl moieties by increasing steric hindrance. Amorphous organic compounds 

are typically preferred for optoelectronic applications than crystalline compounds. This is because 

amorphous compounds lack non-linear optical, thermal, and electronic characteristics stem from 

anisotropy.29,30 

 

Figure 3.1.25. Synthesis schemes of pyrene-benzimidazole derivatives, 2-(1,2-diphenyl)-1H-

benzimidazole-7-tert-butylpyrene (compound A), 1,3-di(1,2-diphenyl)-1H-benzimidazole-7-tert-

butylpyrene (compound B), and 1,3,6,8-tetra(1,2-diphenyl)-1H-benzimidazolepyrene (compound 

C). 

Since compound A is a highly crystalline compound, single-crystal XRD derived solid-state 

conformation of compound A was obtained (Figure B2 in Appendix B), and this crystal structure 

is available in crystallographic information file (CIF) format in the Cambridge Crystallographic 
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Data Centre (CCDC) under the reference number CCDC 1902159. Interestingly, solid-state 

packing of compound A (Figure B3 in Appendix B) indicated that two neighboring compound A 

molecules are paired in head-to-tail fashion, with the closest intermolecular distance between two 

neighboring benzimidazole N atoms being 5.5 (±3) Å. It is also noted that among aliphatic and 

aromatic moieties attached to the benzimidazole-pyrene core to induce steric hindrance, the phenyl 

group which is attached to the N atom of benzimidazole moiety is highly twisted. This phenyl 

group is positioned nearly orthogonal to the rest of the molecule (Figure B2 in Appendix B), thus 

causing the highest steric hindrance to prevent dye aggregation in the solid-state. Since the number 

of this particular phenyl groups increases in compounds A, B, and C systematically, the solid-state 

packing is drastically affected, as denoted by shifting the molecular morphologies from 

predominantly crystalline (compound A) to predominantly amorphous (compound C).  

 3.4.2. Photothermal Stability  

Organic blue emitters may undergo various degradation processes to different extents.31-38 

OLED degradation is caused by external factors such as heat, light, moisture, and oxygen and/or 

internal factors such as design/fabrication errors including formation of pin-holes/deformities, 

morphological changes of organic layers during operation, and excessive electrical stress in non-

optimized designs. For example, it is reported that blue phosphorescent emitters with strong 

electron withdrawing moieties (i.e., –F, –CN) and with iridium metal centers are more susceptible 

to degradation, when applied in optoelectronic devices.31-34 Also, some polymeric blue emitters 

are susceptible to delamination and/or non-emissive ‘black’ spot forming as a result of 

morphological changes.35 Heat generation as a result of biasing of OLEDs due to Joule heating, 

stems from high resistance of organic layers and non-radiative recombination.36 Photodegradation 

of emitters could occur during the material handling, device fabrication, and device operation, 
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which is induced by light in the presence oxygen.37,38 Therefore, among the aforementioned factors 

that induce OLED degradation, susceptibility to photothermal degradation is evaluated for 

compounds A, B, and C as a preliminary measure to access the stability of these compounds. 

The photostabilities of compounds A, B, and C were evaluated using a previously reported 

time-dependent kinetic fluorescence method.39 In brief, thin films of compounds A, B, and C on 

quartz were intensively irradiated with monochromatic light at the respective Amax wavelengths 

for 100 consecutive minutes, while recording the photoluminescence intensity fluctuations at the 

respective λmax wavelengths. It is assumed that any decrease in the emission intensity recorded 

with increasing irradiation time is correlated to the extent of photodegradation. Accordingly, the 

percentage of photodegradation for a compound was estimated using Equation 3.1. 

𝑃ℎ𝑜𝑡𝑜𝑑𝑒𝑔𝑟𝑎𝑑𝑎𝑡𝑖𝑜𝑛 (%) = (1 −
𝐼

𝐼0
) × 100 % , (3.1) 

where I is the emission intensity after the intense irradiation and I0 is the initial emission intensity 

(prior to irradiation). Bathocuproine (BCP), which is a well-known electron transport/hole 

blocking compound, was used as the reference compound. The resultant photodegradation curves 

were presented in Figure 3.1. Under the aforementioned conditions, BCP showed the highest 

photodegradation, with approximately a 30% reduction of initial fluorescence intensity under the 

given experimental conditions (Figure 3.2). This high photobleaching rate observed for BCP is 

attributed to the high energy excited state, as indicated by the HOMO-LUMO energy gap (Table 

3.3), which makes it susceptible to photo-induced side reactions that ultimately lead to substantial 

photodegradation.37 Interestingly, compounds A and C showed a 16% and a 14% reduction of 

relative fluorescence intensity, whereas compound B displayed the minimum photobleaching with 

only 7% of relative fluorescence intensity decay among tested compounds, under the given 

experimental conditions. Therefore, it is assumed that compounds A, B, and C were reasonably 
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photostable than the reference compound. The exact reasons for the observed photostability trend 

of compounds A, B, and C (A ≤ B < C) is not clear. Photostability fluctuations of these compounds 

could be attributed to the overall outcome of many complex factors including excited state energy 

and side reactions, the extent of solid-state molecular interactions, chemical reactivity of materials, 

particularly towards oxygen40, and susceptibility to various photobleaching mechanisms that are 

not fully understood yet.41  

 
Figure 3.2.26 Time-dependent relative photoluminescence intensity fluctuation curves of compounds 

A, B, and C thin films over a time period of 100 min. 

Thermal stability of compounds A, B, and C were estimated using TGA.42 In brief, the 

compounds (< 5 mg) were gradually heated in the temperature range of 25-600 °C, at a rate of 10 

°C/min, in an inert atmosphere. The onset of weight loss (< 5%) is assumed as the onset of thermal 

decomposition (Tonset).
42 The resultant TGA profiles of compounds A, B, and C are provided 

in Figure B4 in Appendix B, and the Tonset values are listed in Table 3.1. Accordingly, compounds 

A, B, and C displayed substantial thermal stabilities with Tonset values in the range of 308-467 °C. 

The Tonset trend of the compounds, C < B < A, is attributed to the gradual reduction of highly 
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thermally stable pyrenyl moiety percentage in compounds A, B, and C (i.e., 38, 25, and 16%, 

respectively). Accordingly, compound A with the highest percentage of pyrenyl character (38%) 

showed the highest Tonset whereas compound C with the lowest percentage of pyrenyl character 

(16%) showed the lowest Tonset among these three compounds.  

Table 3.1.iv Thermal decomposition onset temperatures (Tonset) of compounds A, B, and C. 

 
 
 

 

3.4.3. Spectral Properties in Solutions and in Solid States 

Normalized UV-vis absorption and photoluminescence spectra of compound B and parent 

compounds of compound B, i.e., pyrene derivative (P1) and benzimidazole derivative (P2), in DCM 

solution (5-10 µM), were displayed in Figure 3.3. Similarly, absorption and photoluminescence 

spectra of compounds A, C, and the parent compounds were recorded in DCM (5-10 µM) and 

presented in Figures B5 and B6 in Appendix B. It is noted that the spectral characteristics of 

compounds A, B, and C are complex and could be related to both parent compounds (Figure 3.2 

and Figures B5 and B6 in Appendix B). For example, absorption and photoluminescence behaviors 

of compound B show similarities to that of its parent compounds (Figure 3.3). However, it is noted 

that spectral characteristics of compound B are unique in terms of shape, relative peak intensities, 

and peak positioning. For example, although the absorption and photoluminescence spectra of 

compound B is positioned closely to the absorption and photoluminescence spectrum of the parent 

compound P1, vibrational features of these spectra were significantly reduced in compound B than 

in P1.  

Compound Tonset (°C) 

Compound A 467 

Compound B 378 

Compound C 308 
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Figure 3.3.2 7. Normalized UV-vis absorption (Abs.) and photoluminescence (PL) spectra of 

compound B and its parent compounds: pyrene derivative (P1) and benzimidazole derivative (P2) 

in DCM.  

Figure 3.4 displays the normalized absorption and photoluminescence spectra of pyrene-

benzimidazole derivatives (compounds A, B, and C) in dilute DCM solutions (1 µM-10 µM), as 

well as in thin films on quartz. All three compounds showed multiple absorption peaks 

corresponding to multiple electronic transitions, with/without distinguishable vibronic features 

(i.e., shoulders, peak clusters). The absorption maxima (Amax) values for compounds A, B, and C 

are summarized in Table 3.2 for solution and solid states. Noteworthy, a systematic red-shift of 

Amax values was observed for compounds A, B, and C, in particular, for the lowest energy 

absorption bands. This could be due to the systematic increase of the extended conjugation in these 

compounds. In solid-state, these absorption spectra were widened as denoted by an increase in the 

FWHM values. For example, FWHM values of the lowest energy absorption bands were widened 

by 12-21 nm for compounds A, B, and C in the solid-state than in solution (Table 3.2). Also, these 

absorption spectra were red-shifted. For example, the lowest energy absorption bands were red-
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shifted by 4-6 nm for compounds A, B, and C in the solid-state than in solution (Table 3.2). These 

spectral changes in the solid-state suggest that, despite the steric hindrance caused by phenyl/t-

butyl moieties, compounds A, B, and C were able to aggregate in the solid-state to different extents. 

Table 3.2.v Absorption data summary for compounds A, B, and C. 

  

Compound 
Amax (nm) FWHM (nm) 

Solx Film Solx Film 

A 

284 

326 

342 

 

285 

329 

347 

 

43 

12 

8 

73         

18 

20 

B 

243, 259 y 

293 

366, 351y 

 

N/A 

296 

372 

42 

41 

47 

N/A    

87     

61 

C 

242 

303, 293 y 

378, 396 y 

N/A 

309 

400 

58 

44 

53 

N/A    

55     

74 
x In DCM solution (10 µM), y Prominent shoulder peak maxima, N/A: Not available within the 

scanned wavelength range.  

Photoluminescence spectra of compounds A, B, and C were also presented in Figure 3.4 for 

both solution and solid states, and a summary of photoluminescence characteristics was provided 

in the Table 3.3. Accordingly, photoluminescence spectra of all three compounds have a single 

broad peak, which contains recognizable shoulder(s) in the solution state but no such shoulders(s) 

recognizable in the solid-state, suggesting excimer formation of pyrene, particularly in the solid-

state.43 The emission maxima (λmax) values recorded in DCM solution were found in the range of 

395-424 nm, whereas in solid-state λmax values were ranged from 452-456 nm. According to these 

λmax values, it is noted that solid-state photoluminescence of compounds A, B, and C was 

significantly red-shifted than solution by 61, 58, and 30 nm, respectively. The λmax values of all 

three compounds in solid-state were very close as a result of systematic reduction of the Stokes 

shifts, suggesting a gradual reduction of dye aggregation in the solid-state. Also, a systematic 

reduction of the peak broadening in solid-state, as indicated by gradual reduction of FWHM values 
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(81, 72, and 52 nm for compounds A, B, and C) was observed, further confirming a gradual 

reduction of dye aggregation for the reasons discussed in section 3.4.1. 

 

Figure 3.4.28 Normalized UV-vis absorption and fluorescence spectra of compound A, B, and C in 

DCM (1 µM, solid lines) and neat films (dashed lines). 

The photoluminescence of these compounds is mostly confined to violet-blue region (in DCM 

solution) and blue region (in the solid-state) of the EMS. It is noted that solid-state emission of 

these compounds does not contain harmful near UV radiation. The color of these compounds has 

been assigned in accordance with the CIE coordinates and are listed in Table 3.3. In summary, 

compounds A, B, and C have an average CIE coordinates of (0.160 ±0.005, 0.029 ±0.009) in DCM 

solution and (0.152 ±0.007, 0.126 ±0.005) in solid-state. These CIE coordinates comply with the 

general criterion for blue emitters (y < 0.15, (x + y) < 0.30),5 although these values are slightly off 

from NTSC and EBU standards, which require average CIE coordinates of (0.150 ±0.010, 0.07 

±0.010) for blue emitters in electronic displays.4 However, many blue emitters with significant 

commercial interest (i.e., emitters that show high OLED device performance) often have CIE 

coordinates that are not fully compliant with NTSC/EBU standards.44-46  
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Table 3.3.vi Summary of emission properties of compound A, B, and C. 

x In DCM solution (1µM) 

3.4.4. PLQY 

PLQY is the ratio of emitted photons to absorbed photons by a fluorophore and is influenced 

by factors such as optical characteristics, molecular rigidity, and inter/intra molecular 

interactions.47 It is noted that a dye with a high PLQY does not necessarily exhibit high 

electroluminescence when applied to an OLED device and may not exhibit similar emission 

behavior (i.e., emission peak shape, intensity, position, efficiency etc.). This is because of the 

differences in emission and/or quenching mechanisms, influence of the other semiconductor layers 

in the device, device architecture, and physical/electrical properties of the emissive layer.48,49 Also, 

compounds with low PLQY values often not show efficient electroluminescence. Therefore, it is 

important to estimate PLQY values of compounds A, B, and C, to further understand optical 

characteristics of these compounds. Accordingly, absolute PLQY values were measured using an 

integration sphere for solution and thin films deposited on quartz.50 The resultant PLQY values of 

compounds A, B, and C are presented in Table 3.4. It is noted that all three compounds have 

substantial PLQY values in both solution and solid states. The PLQY values for both solution and 

solid-states increases in the following order, A < B < C. This trend is attributable to the systematic 

decrease in dye aggregation to reduce aggregation induced quenching. However, PLQY is reduced 

Compound 
λmax  (nm) 

FWHM 

(nm) 

Stokes Shift 

(nm) 
CIE Coordinates (x,y) 

Solx Film Solx Film Solx Film Solx Film 

A 395 456 45 81 53 106 
0.1620, 

0.0197 
0.1483, 0.1214 

B 396 452 43 72 30 82 
0.1635, 

0.0306 
0.1482, 0.1300 

C 424 454 49 52 46 54 
0.1548, 

0.0373 
0.1600, 0.1275 
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in the solid-state than in solution, suggesting some dye aggregation related quenching of these 

compounds in the solid-state is inevitable.  

Table 3.4.vii Quantum yields and lifetimes of compounds A, B, and C. 

 

Compound 
PLQY (%) 

Solution Film 

Compound A 43 x 35 

Compound B 64 x 51 

Compound C 96 y 56 
x In ACN solvent, y In DCM solvent 

3.4.5. Electronic Properties  

Equations 3.2 and 3.3 were employed to calculate HOMO and LUMO energies of compounds 

A, B, and C by employing cyclic voltammetry, which is the most common experimental method 

for estimating the HOMO and LUMO energies of organic semiconductors.51 The cyclic 

voltammograms obtained for compounds A, B, and C were presented in Figure B7 in Appendix 

B. The calculated energies of frontier orbitals are listed in Table 3.5. Compounds A, B, and C 

showed quasi-reversible CVs with only oxidation peaks (Figure B7 in Appendix B). Furthermore, 

compounds A and B showed two distinguishable peaks (with prominent shoulders). These multiple 

oxidations can be attributed to the oxidations of two imidazole nitrogens. The solvent window for 

ACN (used for compounds A and B) was wider than DCM (used for compound C), therefore, only 

the first oxidation was recorded for compound C. However, the onset of oxidation/reduction is the 

most important piece of information obtained from the cyclic voltammograms to estimate the 

oxidation potential (Eox).
51 For molecules with quasi reversible cyclic voltammograms with only 

oxidation peak(s), LUMO is theoretically calculated by the use of band gap (Eg) and HOMO 

values, which are obtained experimentally (Equations 3.2. and 3.3).   

𝐻𝑂𝑀𝑂 (𝑒𝑉) =  −1𝑒 [𝐸𝑜𝑥 + 4.71] 𝑉     (3.2) 

𝐿𝑈𝑀𝑂 (𝑒𝑉) = 𝐸𝑔  − 𝐻𝑂𝑀𝑂 𝑒𝑉    (3.3) 
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The Eg values of compounds A, B, and C were estimated using UV-vis absorption spectra, 

hence termed the optical band gap. This simple Eg calculation method is widely used for organic 

semiconductor materials by employing Equation 3.4.52 This method is based on the hypothesis that 

the onset at the higher wavelength side of the absorption spectrum corresponds to the minimum 

energy required to promote a ground state (HOMO) electron to the first excited state (LUMO), 

which is true for most small molecular organic semiconductors. 

𝐸𝑔 (𝑒𝑉) = ℎ𝑓 = ℎ. (
𝑐

𝜆𝑜𝑛𝑠𝑒𝑡
) =

1240

𝜆𝑜𝑛𝑠𝑒𝑡
 𝑒𝑉,  (3.4) 

where h is the Planck’s constant (6.626 x 10-34 Js), c is the speed of light in a vacuum (3.00 x 10-8 

ms-1), and λonset is the wavelength of the absorption onset (nm). Accordingly, the value of (h × c) 

is also a constant (1240 eV. nm). Accordingly, HOMO and LUMO values calculated in the 

aforementioned methods for compounds A, B, and C were found in the range of (-5.10 to -5.46) 

and (-2.23 to -2.56) eV. It is noted that Eg is gradually reduced with increasing the extended 

conjugation in these compounds. Computed HOMO and LUMO values of these compounds are in 

a range, in which, it is easy to find energetically matching supporting organic semiconductors (i.e., 

charge transporters/injectors/blockers) and to the work functions of most metal electrodes, making 

it easier to incorporate these compounds into existing OLED architectures.53 

3.4.6. Characterization of OLED Prototype with Compound B as the EML 

Compound B, which exhibited the best overall photo-physical characteristics among the three 

compounds investigated, was used to fabricate an OLED prototype for the preliminary OLED 

performance evaluations. Although doping may enhance the efficiency of OLED devices by 

controlling aggregation induced quenching and/or inducing favorable host-dopant energy transfers 

interactions, a non-doped OLED prototype was fabricated at this preliminary stage to reduce the 

device complexity and study the electroluminescence characteristics of the emitter itself.  
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Table 3.5. Summary of the electronic properties of compounds A, B, and C. 

 

Compound Eg (eV) HOMO (eV) LUMO (eV) 

Compound A y 3.16 -5.39 -2.23 

Compound B y 2.90 -5.46 -2.56 

Compound C z 2.79 -5.10 -2.31 

BCP 3.65x -6.61x -2.95x 
x These values were obtained from reference 48. y In ACN solvent. z In DCM solvent. 

An optimized OLED prototype was fabricated by vacuum thermal deposition with a 

configuration of ITO (140 nm)/ NDB (30 nm)/ Compound B (30 nm)/ TPBI (30 nm)/ Ca (10 nm) 

/Al (100 nm), as schematically shown in Figure 3.5 (A). Here, NDB and TPBI were used as charge 

transport layers, ITO and Ca are electrode materials, and compound B is the non-doped emissive 

layer. The performance of this OLED prototype was assessed by calculating CIE coordinates, 

current density, luminance, efficiency (in terms of power and current), and EQE in accordance 

with previously reported protocols.3,54 This OLED device showed a blue electroluminescence with 

λmax at 454 nm, while turning on at 3 V. EQE, which is the ratio of emitted photons into the viewing 

direction to injected charges, was recorded as 0.35 (± 0.04) % at 5.5 V. Power and current 

efficiencies, which provide insights into the energy consumption and light emitting ability of an 

OLED, were recorded as 1.2 (±0.6) lmW–1 and 0.17 (± 0.2) cdA–1, respectively at 5.5 V. The 

OLED performance plots of this prototype are provided in Figure B8 in Appendix B. CIE 

coordinates of the electroluminescence spectrum is identical to that in solid-state (0.1482, 0.1300), 

implying blue emission with substantial spectral purity. Luminance (i.e., the amount of light 

emitted per unit surface area of OLED weighed by the visual response of the human eye) of the 

device reached 100 (± 6) cdm–2 at 5.5 V. 
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Figure 3.5.29 A simple schematic diagram of the OLED prototype (A) and a photograph of actual 

OLED showing blue emission at 3 V (B).  

A comparison of photoluminescence (in DCM solution and in thin films) and 

electroluminescence (as EML in the OLED prototype) of compound B is presented in Figure 3.6. 

It is noted that the luminescence in solid state (both photo and electroluminescence) may affected 

by dye aggregation as denoted by band broadening and red-shifting than luminescence in the 

solution state. Noteworthy, photoluminescence and solid-state electroluminescence are nearly 

completely superimposable, suggesting both emission mechanisms are comparable.5 Interestingly, 

solid-state luminescence of this OLED prototype does not contain near UV radiation, thus is safe 

to human eye when applied in electronic screens.  
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Figure 3.6.30. Normalized photoluminescence (PL) from solution and solid states, and 

electroluminescence from the OLED prototype recorded for compound B.  

3.5. Conclusions 

Three novel organic blue emitters, i.e., 2-(1,2-diphenyl)-1H-benzimidazole-7-tert-butylpyrene 

(compound A), 1,3-di(1,2-diphenyl)-1H-benzimidazole-7-tert-butylpyrene (compound B), and 

1,3,6,8-tetra(1,2-diphenyl)-1H-benzimidazolepyrene (compound C) were synthesized via a Suzuki 

coupling reaction. These compounds displayed significantly pure blue emission with reasonably 

high spectral purity in the solid-state compared to many pyrene derivatives reported in the 

literature, which emit a bluish green or greenish blue light as a result of excimer formation and 

dye aggregation. Spectroscopic characteristics, such as absorption, photoluminescence, and 

quantum yield, as well as electronic properties based on cyclic voltammetry and UV-vis absorption 

of these novel compounds were found suitable for optoelectronic applications. Compound A, B, 

and C showed a systematic decrease in the degree of crystallinity, as elucidated by powder X-ray 

diffraction analysis. An OLED prototype fabricated using compound B as the non-doped emissive 
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layer, which displayed a blue electroluminescence with CIE coordinates of (0.1482, 0.1300), with 

an EQE of 0.35 (± 0.4) % at 5.5 V, at which approximately 100 (± 6) cdm–2 luminance was 

recorded.   
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CHAPTER IV. INFLUENCE OF ANION VARIATIONS ON PHOTO-

PHYSICAL PROPERTIES OF THE PROPIDIUM LUMINOPHORE1 

4.1. Introduction 

Propidium iodide (3,8-diamino-5-[3-(diethylmethylammonio)propyl]-6-

phenylphenanthridinium diiodide, [P][I]) is a well-known red fluorescent dye, often used for 

staining nucleic acids in human cells, animal cells, and micro-organisms.1-7 Consequently, [P][I] 

is widely used in flow cytometry1-3 and other related biological applications4-7. In this study, the 

typical iodide counteranion of [P][I] was replaced with three relatively hydrophobic and bulky 

organic anions containing systematically increasing chain length and number of fluorine atoms: 

trifluoromethanesulfonate/[TfO], bis(trifluoromethanesulfonyl)imide/[NTf2], and 

bis(perfluoroethylsulfonyl)imide/[BETI]. The resultant solid phase organic salts were propidium 

trifluoromethanesulfonate/[P][TfO], propidium bis(trifluoromethanesulfonyl)imide /[P][NTf2], 

and propidium bis(pentafluoroethylsulfonyl)imide/[P][BETI]. These novel propidium salts are 

collectively termed propidium GUMBOS (PGUMBOS), as the acronym GUMBOS (group of 

uniform materials based on organic salts) has been coined for solid-state organic salts to distinguish 

them from liquid state organic salts, i.e., ionic liquids.8 Many task-specific GUMBOS have been 

designed by our group, and have been derived from a wide variety of organic compounds for a 

range of applications such as rhodamine GUMBOS with selective cytotoxicity for chemotherapy,9 

aminopyrene GUMBOS with optimized hydrophobicity for matrix assisted laser 

desorption/ionization (MALDI) mass spectrometry,10 porphyrin GUMBOS with enhanced vapor 

sensitivity for quartz crystal microbalance (QCM) sensors,11 cyanine GUMBOS for dye-sensitized 

                                                 
1 This Chapter previously appeared as De Silva, T. P. D.; Sahasrabudhe, G.; Yang, B.; Wang, C.-H.; Chhotaray, P. 

K.; Nesterov, E. E.; Warner, I. M. Influence of anion variations on morphological, spectral, and physical properties of 

the propidium luminophore. Journal of Physical Chemistry A 2019, 123, 111-119. It is reproduced by permission of 

the American Chemical Society.  

https://pubs.acs.org/doi/10.1021/acs.jpca.8b06948 

https://pubs.acs.org/doi/10.1021/acs.jpca.8b06948
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solar cells (DSSCs) applications,12 and carbazole GUMBOS for OLED applications.13  Herein, we 

report efforts toward tuning photothermal stability and solid-state morphology of the propidium 

luminophore simply by counteranion variation with the expectation of expanding the range of 

applications for the propidium luminophore in both solution and solid states.  

Materials that are amorphous or have a low degree of crystallinity are preferred over highly 

crystalline compounds for use in optoelectronics and other related solid-state applications. This is 

because crystalline structures would often undesirably influence solid-state characteristics such as 

nonlinear optical activity, photothermal reactivity, and conductivity.13,14 Optimization of solid-

state molecular arrangements to reduce the degree of crystallinity is often achieved by inclusion 

of host materials, attachment of substituents, and use of polymorphism.15-17 In addition, designing 

organic salts with appropriate combinations of cationic and anionic moieties to adjust solid-state 

molecular arrangements by optimizing electrostatic attractions as well as steric hindrance is also 

regarded as a simple, economical, and time-saving approach for ionic species.18,19  

Variations in counteranions can generally produce modifications of physical and chemical 

properties of organic salts including solubility,9 photothermal stability,13,20 molecular motion,21 

magnetic behavior,22 as well as spectral characteristics23,24 such as absorption, photoluminescence, 

quantum yield, and lifetimes. In particular, [NTf2] and [BETI] counteranions are known to enhance 

the photostability of luminophores.13,20 According to single-molecule experiments, it is revealed 

that photobleaching usually takes place by light-induced oxidation of molecules, which affects the 

emission of the luminophore reversibly or irreversibly.25 Although the mechanisms involved in 

photobleaching are not fully realized and specific for a given molecule, it is also reported that 

radical dark states might be involved in the photobleaching mechanisms.26 These photobleaching 

mechanisms are likely perturbed by certain counterions as has been reported in previous 
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studies.12,13,20  Thermal stability of organic salts depends on many factors including charge density, 

chain length, and functional groups of both anions and cations. In particular, the characteristics of 

the counterion such as nucleophilicity, shape, coordinating nature, and hydrophobicity. Therefore, 

counterions typically play an important role in determining the thermal stability of the organic 

salts.13,27 

Anion variations are known to have variable influences on spectral and electrochemical 

characteristics of luminophores.9-13,18,19 In the present study, we have found that [NTf2] and [BETI] 

counteranions facilitate improved solubility of propidium luminophore in relatively less polar 

solvents such as ethyl acetate, THF, and DCM. According to fluorescence lifetime experiments, 

the excited state of the propidium luminophore is stabilized in relatively less polar solvents as 

indicated by longer fluorescence lifetimes. As a result, photoluminescence quantum yield was 

substantially higher in these relatively less polar solvents, possibly due to hindering nonradiative 

relaxation to the ground state by energy transfer, internal conversion, and intersystem crossing.28,29 

The propidium luminophore has a predominant red photoluminescence from S1 emission as well 

as a weak photoluminescence in the deep blue region of the electromagnetic spectrum (EMS) 

resulting from S2 emission in selected solvents (which was confirmed using a computational 

study). We note that S2 emission is a rare phenomenon since Kasha’s rule requires photon emission 

to occur from the lowest excited state of a given fluorophore.30 This property of propidium 

fluorophores could be attributed to a higher than normal energy gap between the first two excited 

singlet states of the propidium moiety. Electronic properties of [P][I] and PGUMBOS show similar 

trends, with the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular 

orbital (LUMO) energies in the range of -5.2 (±0.1) and -3.2 (±0.1) eV, as well as HOMO-LUMO 

energy gap at approximately 1.96 eV, confirming that these materials can act as organic 
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semiconductors. Therefore, PGUMBOS evaluated in this study can be potentially useful in organic 

light-emitting diodes (OLEDs), solar cells, smart materials, and sensors.  

4.2. Experimental Section 

4.2.1. Materials 

The compound, [P][I], was purchased from Biotium Inc. (Fremont, CA) and [Li][NTf2], 

[Na][TfO], TBAPF6, and Fc were purchased from Sigma-Aldrich (St. Louis, MO). [Li][BETI] was 

purchased from IoLiTech Inc. (Tuscaloosa, AL). The solvents, EA, DMSO, DMF, MeOH, THF, 

DCM, and ACN were purchased from Macron (Center Valley, PA). Deionized water was obtained 

using an Elga PURELAB ultra water-filtration system (Neobits Inc., CA). All solvents were 

analytical grade with no stabilizers and all chemicals were used as received without further 

purification. 

4.2.2. Instrumentation 

A Panalytical Empyrean multipurpose diffractometer (Westborough, MA) with a copper anode 

was used for PXRD experiments. A Hi Res Modulated TGA 2950 thermogravimetric analyzer 

(TA Instruments, New Castle, DE) was used to obtain thermogravimetric profiles. 

Photoluminescence spectra were recorded using a HORIBA Spex Fluorolog-3-spectrofluorometer 

(model FL3-22TAU3, Jobin-Yvon, Edison, NJ) with a 0.4 cm path length quartz cuvette (Starna 

Cells) and connected to an integrating sphere (HORIBA Petite Integration Sphere, Jobin-Yvon, 

Edison, NJ) when absolute quantum yields were measured. The same fluorometer was used for 

photostability experiments with the entrance slit width maintained at 14 nm. All UV–vis 

absorbance spectra were obtained using a UV-3101PC scanning spectrophotometer (Shimadzu, 

Columbia, MD) with a 1 cm path length quartz cuvette (Starna Cells) against an identical cuvette 

filled with solvent as a blank. Fluorescence lifetime experiments were performed using a HORIBA 
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FluoroMax plus fluorometer with pulsed light source Delta Diodes (294 nm, pulse width 800 ps; 

481 nm, pulse width 80 ps) and a PPD-850 detector with transit time spread ~180 ps (Horiba 

Scientific, NJ). All CV experiments were performed at room temperature using an Autolab 

PGSTAT 302 potentiostat (Metrohm, Riverside, FL) with a three-electrode system: a platinum 

disk working electrode, a Ag/AgNO3 nonaqueous reference electrode, and a Pt wire 

counterelectrode (CH Instruments, Austin, TX). The reference electrode was checked against the 

ferrocene/ferrocenium (Fc/Fc+) couple as the standard before and after each CV experiment and 

the potentials were quoted relative to the Fc/Fc+ redox couple (scan rate of 0.1 V/s within the 

potential range of -1.5 to +1.3 V). [P][I] and PGUMBOS were dissolved in degassed TBAPF6 

solutions (0.1 M, supporting electrolyte) prepared in DCM or ACN to obtain a final concentration 

of 1 mM. 

4.3. Synthesis and Characterization 

All PGUMBOS were synthesized using a simple, one-step metathesis reactions between [P][I] 

and the respective Li/Na salts of [BETI], [NTf2], and [TfO] as previously reported, as showed in 

Figure 4.1.9-13 Synthesis of [P][BETI] is described here as a representative protocol for preparation 

of all PGUMBOS. First, the starting material, [P][I] (50 mg, 0.075 mmol), was completely 

dissolved into 75 mL of DI water in a 500 mL round bottom flask. Then, [Li][BETI] (58 mg, 0.15 

mmol) was added to the aqueous [P][I] solution in the round-bottom flask and stirred for 

approximately 5 min until [Li][BETI] was completely dissolved. Then, DCM (300 mL) was 

gradually added to the aqueous [P][I] and [Li][BETI] solution. Once DCM was added, the resultant 

biphasic solution was stirred vigorously for approximately 6 h at room temperature. Then, this 

biphasic solution was transferred to a separatory funnel and the bottom organic layer was carefully 

siphoned into a separate container. The extracted organic layer was washed three times with DI 
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water (200 mL × 3) to remove traces of the byproduct, [Li][I], which is water soluble. Then, 

anhydrous magnesium sulfate was added to the DCM layer to remove trace amounts of water from 

the organic layer, followed by suction filtration to remove magnesium sulfate particles. The dried 

and filtered organic layer was vacuum evaporated to remove DCM. The resultant product, 

[P][BETI], was freeze -dried and obtained as a maroon color solid (81 ±5 mg, yield 92 ±6%). 

Syntheses of [P][NTf2] and [P][TfO] were similarly performed and are detailed in Appendix C. 

PGUMBOS were characterized using 13C NMR, 1H NMR, (Bruker Avance 400), and 19F NMR 

(Bruker Avance 500) as well as ESI-MS (Agilent 6210 ESI-TOF) with data presented in Appendix 

C.  

 

Figure 4.1.31 Synthesis scheme of PGUMBOS. 
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4.4. Results and Discussion 

4.4.1. Morphology of PGUMBOS 

Solid-state morphologies of [P][I] and PGUMBOS were elucidated using PXRD (Figure C1 in 

Appendix C), which confirmed the high crystallinity of [P][I] and [P][TfO] as denoted by clusters 

of sharp peaks. Since [I] and [TfO] are relatively small anions with less steric hindrance, [P][I] 

and [P][TfO] allowed effective packing in the solid-state, resulting in high crystallinity. In contrast, 

the significantly lower crystallinity exhibited by [P][BETI] and [P][NTf2] as reflected from a few 

broad peaks in PXRD is attributed to reduced packing efficiency of [P][BETI] and [P][NTf2] in 

the solid-state, as a result of steric hindrance caused by bulky [BETI] and [NTf2] counteranions. 

These counterions, [BETI] and [NTf2], were shown to produce similar effects on the solid-state 

morphology of a carbazole based cationic luminophore in the previous studies from our 

laboratory.13 Counteranion dependent optimization of luminophore morphology is the simplest 

method for avoiding undesirable optical, electrical, and physical phenomena arising from 

crystallinity, which is extremely important for solid-state applications.13,14 

4.4.2. Photothermal Stability 

The effect of anion variation on photothermal stability was evaluated using TGA and time-

dependent kinetic photoluminescence methods. TGA experiments were conducted within the 

temperature range of 25-600 °C at a rate of 10 °C/min using heating materials (< 5 mg) placed in 

aluminum pans under a nitrogen purge. The onset of weight loss (< 5%) due to thermal degradation 

was determined using a step-tangent method, denoted as Tonset, which is used to measure the 

thermal stability of the materials.27 The resultant TGA profiles of [P][I] and PGUMBOS are 

displayed in Figure 4.2 and Tonset values are listed in Table 4.1. Also, TGA profiles of [Li][BETI], 

[Li][NTf2], and [Na][TfO] were presented in Figure 2 in Appendix C. The thermal stability of an 
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ionic organic compound depends on the characteristics of the cation as well as the anion. These 

characteristics include size, shape, the extent of resonance stabilization, charge density, 

nucleophilicity/nucleophobicity, and functional groups. The influences of these factors on thermal 

stability of ionic liquids are well investigated and cited in the literature, and are relevant here. The 

outcomes of these studies are also applicable to solid-state ionic compounds such as 

PGUMBOS.31,32 The thermal stability trend of [P][I] and PGUMBOS were determined to be in the 

following order: [P][BETI] ≥ [P][NTf2] > [P][I] ≥ [P][TfO]. Halides are known to significantly 

reduce thermal stability of ionic compounds since halides possess relatively high nucleophilic and 

basic properties. As a result, iodide ions in [P][I] are more nucleophilic than [BETI], [NTf2], and 

[TfO] anions and thus induce SN1 or SN2 nucleophilic decomposition of [P][I], resulting in the 

lowest thermal stability observed for the compounds investigated.31-34  

 
Figure 4.2.32 TGA profiles of [P][I] and PGUMBOS. 

Among the variety of interactions that exist between the cationic and anionic species, 

electrostatic attractions are the strongest, which is determined by shape and charge delocalization 

of the associated ions. The thermal stability trend observed for Li/Na salts, [Li][BETI] > [Li][NTf2] 
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> [Na][TfO], can be explained by use of electrostatic interactions (Figure C2 in Appendix C). In 

order to understand the thermal stability trends observed for PGUMBOS, it is important to 

remember that electrostatic interactions are much weaker in PGUMBOS than in Li/Na salts. The 

result is a significantly lower charge density on the bulky propidium cation. As a result, 

decomposition of PGUMBOS occurs at relatively lower temperatures as compared to Li/Na salt 

decomposition of the same set of anions. For example, Tonset of [Li][BETI] was 364 °C whereas 

Tonset of [P][BETI] was 327 °C. Thermal stabilities of PGUMBOS are influenced by numerous 

anion characteristics (since the cation is the same for all three compounds) including the extent of 

resonance stabilization, nucleophilicity, size, and shape of the anions. Noticeably, [TfO] has a 

negative charge on oxygens, whereas [BETI] and [NTf2] have negative charges on N atoms. In 

addition, the negative charge of [TfO] is highly stabilized as compared to that of [BETI] and [NTf2] 

(which is also reflected in the fact that [TfO] is one of the best leaving groups in organic 

chemistry).35 Therefore, [P][TfO] exhibited the lowest thermal stability among PGUMBOS. The 

Tonset values of [P][BETI] and [P][NTf2] are very close as a result of more or less similar 

characteristics of these two anions including size, shape, functional groups, nucleophilicity, and 

interactions with the cation. The TGA profiles of PGUMBOS showed few distinguishable 

decomposition steps during the thermal degradation process with multiple inflection points (Figure 

C3 in Appendix C). These multistep thermal decompositions are likely due to formation of 

intermediate degradation products formed during the thermal degradation process.  

Table 4.1. vii i Onset of decomposition (Tonset) and percentage photobleaching in DCM for [P][I] and 

PGUMBOS. 

Compound Tonset (°C) Photobleaching (%) 

[P][BETI] 327 1 

[P][NTf2] 323 1 

[P][TfO] 271 2 

[P][I] 273 6 

[Ru (Phen)] N/A 93 
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It should be noted that the performance of luminophores is often compromised by photo-

induced changes.36,37 Therefore, photostabilities of [P][I] and PGUMBOS were evaluated using a 

previously reported protocol with small modifications.13,20,38 In a typical experiment, the 

PGUMBOS compound was dissolved in DMF at 50 °C to produce a concentrated solution (0.1 M) 

and this solution was used as the bulk solution to prepare [P][I] and PGUMBOS solutions in DCM 

(0.5 mM). These solutions were intensively irradiated with monochromatic light at the absorption 

maximum of the compound for 3000 consecutive seconds, while recording the photoluminescence 

intensity fluctuations at the wavelength of the emission maximum. The decrease in emission 

intensity observed with increasing irradiation time was deemed to be proportional to the extent of 

photobleaching. The experimental conditions for photostability experiments including solvent 

system, irradiation time, and concentration of the analyte were optimized by testing a readily 

photobleachable red fluorescent dye, dichlorotris(1,10-phenanthroline)ruthenium(II) hydrate 

[Ru(Phen)], using different experimental conditions, and choosing the conditions in which 

[Ru(Phen)] was near complete photobleached (93%) as shown in Figure 4.3. The extent of 

photobleaching of a compound was then calculated using Equation 4.1. 

𝑃ℎ𝑜𝑡𝑜𝑏𝑙𝑒𝑎𝑐ℎ𝑖𝑛𝑔 (%) = (1 −
𝐼

𝐼0
) ×  100 % , (4.1) 

where I is the emission intensity after 3000 s and I0 is the observed emission intensity prior to 

irradiation. Under these experimental conditions, [P][I] displayed approximately 6 % 

photobleaching, and PGUMBOS showed a substantially improved photostability as compared to 

that of [P][I]. [P][BETI] and [P][NTf2] showed only 1% photobleaching, whereas [P][TfO] showed 

2% photobleaching. Photobleaching data are summarized in Table 4.1. A similar counterion 

dependent improvement in photostability was also observed for cyanine GUMBOS with [NTf2], 

as well as carbazole GUMBOS with [BETI] as counteranions in previous studies.13,20  
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Figure 4.3.33 Time-dependent relative photoluminescence intensity of [P][I] and PGUMBOS over a 

time period of 3000 s. 

4.4.3. Spectral Properties in Solution and Solid States  

Figure 4.4 displays normalized UV-vis absorption spectra of [P][I] and PGUMBOS in 

methanol solution (10 µM) with a summary of absorption characteristics presented in Table 4.2. 

All compounds exhibited analogous absorption profiles with two sets of bands (A1 and A2) with 

absorption maxima (Amax) at 535 ±3 and 296 nm, respectively. Molar extinction coefficients (ε) of 

these compounds were found to be comparable (Table 4.2). 

Table 4.2.ix Absorption maxima (Amax), FWHM, molar extinction coefficients (ε) in methanol for 

[P][I] and PGUMBOS. 

 

Compound Amax (nm) FWHM (nm) ε (103 M-1cm-1) 

[P][BETI] 296,535 30,95 6.0 

[P][NTf2] 296,532 30,94 6.1 

[P][TfO] 296,536 30.91 6.1 

[P][I] 296,535 30,97 5.8 

The A1 peaks were observed to be much weaker and wider, with a FWHM value of 94 ±3 nm 

as compared to the A2 peaks, which were much more intense and narrower (FWHM of 30 ±1 nm). 

Absorption spectra of [P][I] and PGUMBOS were recorded in several solvents with different 
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polarities and a significant blue shift was observed for [P][TfO] and [P][I] in water, suggesting the 

excited state to be relatively less polar than the ground state (Figure C4 in Appendix C).   

 
Figure 4.4.34 Normalized absorbance of [P][I] and PGUMBOS in methanol solution (10 µM). 

 

The photoluminescence spectra of these compounds were also recorded in methanol solution 

(5 µM) using separate excitations at absorption maxima of both A1 and A2 peaks (Amax1 and Amax2). 

The resultant photoluminescence spectra are shown in Figure 4.5.  

Table 4.3.x Emission maxima and full widths at half -maxima (FWHM) for [P][I] and 

PGUMBOS in methanol. 

In addition, a summary of emission characteristics is provided in Table 4.3. When excited at 

Amax1, all compounds showed comparable S1 emissions in the orange-red region of the EMS with 

the emission maxima (λmax1) at approximately 630 ±2 nm (Figure 4.5A). When excited at Amax2, 

all compounds showed a weak S2 emission in the violet-blue region of the EMS with the emission 

Compound λmax1 (nm) FWHM1 (nm) λmax2 (nm) FWHM2 (nm) 

[P][BETI] 632 93 410 73 

[P][NTf2] 632 93 413 73 

[P][TfO] 631 93 408 73 

[P][I] 632 93 410 72 
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maxima (λmax2) at 410 ±3 nm, as well as a strong S1 emission with the emission maxima at 630 ±4 

nm (Figure 4.5B).  

 
Figure 4.5.35 Normalized photoluminescence spectra of [P][I] and PGUMBOS in methanol solution 

(5 µM) when excited at Amax1 (A) and Amax2 (B) wavelengths.  

Photoluminescence spectra of [P][I] and PGUMBOS were obtained in different solvents and 

are displayed in Figures C5 and C6 in Appendix C. Except for DCM, where [P][BETI] and 

[P][NTf2] showed no detectable S2 emission, [P][I] and PGUMBOS showed both S1 and S2 

emissions when excited at Amax2 in polar solvents such as ACN, THF, and water. Also, normalized 

absorption and excitation spectra of [P][BETI] in methanol solution are displayed in Figures C7 

and C8 in Appendix C to further understand the spectral properties of PGUMBOS. Excitation 

spectra of [P][BETI] relevant to S1 and S2 emissions are presented in Figures C7 and C8 provided 

important insights into the electron distribution of the ground -state [P][BETI] molecule. Since 

excitation spectra found analogues to A1 and A2 bands of the absorption spectrum of [P][BETI], 

existence of both S1 and S2 emissions were experimentally confirmed and further supported by 

computational studies.    
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Solid films of [P][I] and PGUMBOS were prepared by electrodeposition of these compounds 

(from a 1 mM MeOH solution) on precleaned quartz slides followed by drying in ambient 

conditions overnight. Absorption and photoluminescence spectra of [P][BETI] thin films are 

presented in Figure 4.6. It is noted that the solid-state absorbance of [P][BETI] shows 

characteristics similar to those observed in the solution state, i.e., a strong peak with an absorption 

maximum (Amax2') at 298 nm and a weaker peak with an absorption maximum (Amax1') at 533 nm. 

The FWHM values of Amax1' and Amax2' were 95 and 179 nm, implying significant peak broadening 

as compared to the solution state values. The solid-state photoluminescence spectrum of [P][BETI] 

showed only an S1 emission with a peak maximum at 636 nm and a slight red shift (5 nm) as 

compared to the solution state spectrum. The observed spectral broadening and red shifting of 

absorption peaks can be attributed to molecular aggregation in the solid-state.39,40  

 
Figure 4.6.36 Normalized absorption and photoluminescence spectra of [P][BETI] solid film. 

4.4.4. Lifetimes and PLQY 

Measurement of the excited -state lifetime of a fluorophore provides both qualitative and 

quantitative information including quantum yields, polarization, and radiative energy transfer 
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processes.28 For this reason, the fluorescence lifetimes of [P][I] and PGUMBOS were measured at 

620 nm (near S1 emission maxima of compounds) with excitation at 481 nm (near A1 absorption 

maxima of compounds) in selected solvents with different polarities. Figure C8 in Appendix C 

displays fluorescence intensity decay curves and Table 4.4 lists the estimated lifetimes in each 

solvent. Lifetimes of [P][I] and PGUMBOS were found to be in the range from approximately 1 

ns (water) to 8 ns (DCM). All curves were easily fit to monoexponential decays, indicating that 

emissions occurred from relatively pure compounds in the singlet excited state. Noticeably, 

lifetimes of [P][I] and PGUMBOS showed a strong solvent dependence as denoted by a systematic 

decrease of lifetimes with increasing polarity of solvents. This observation is likely a result of the 

excited state of propidium luminophore being relatively nonpolar as compared to the ground state 

of the propidium luminophore, which results in better stability in nonpolar solvents. As a result, 

nonradiative decay pathways such as energy transfer, internal conversion, and intersystem crossing 

were less favored in nonpolar media as indicated by substantial increases in photoluminescence 

quantum yields in nonpolar solvents (Table 4.4).28,29 

Absolute quantum yields of [P][I] and PGUMBOS were determined using an integrating 

sphere for S1 emission in the same set of solvents that were used for lifetime measurements.41 The 

resulting quantum yield data are displayed in Table 4.4. [P][I] and [P][TfO] showed a systematic 

decrease in quantum yields with increasing solvent polarity. Maximum quantum yields for [P][I] 

and [P][TfO] (5 ±1%) were recorded in methanol. In the case of [P][BETI] and [P][NTf2], the 

quantum yields were found to be essentially the same in DCM, THF, and EA with an average 

quantum yield of 21 ±2% and 18 ±1% for [P][NTf2] (Table 4.4). The observed high quantum yields 

for PGUMBOS in relatively less polar solvents (such as DCM, THF, and EA, in which polarity 

indices are distributed in a narrow range of 3.1-4.4) as compared to those in the more polar solvents 
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(MeOH, DMSO, and water with polarity indices in the range of 5.1-9.0) used in this study are 

supported by the fluorescence lifetime data.42 On the basis of these quantum yield and lifetime 

data, we contend that the bulky, hydrophobic [BETI] and [NTf2] counteranions play a significant 

role in improving quantum yields of [P][BETI] and [P][NTf2] through solubilization of the 

propidium fluorophore in less polar solvents. Furthermore, the bulky, hydrophobic [BETI] and 

[NTf2] counteranions may contribute to stabilization of the excited state species by providing a 

hydrophobic environment analogous to that of previously reported significant quantum yield 

enhancements for [P][I] upon binding to nucleic acids with relatively hydrophobic cores.43  

Table 4.4.xi Fluorescence lifetime and PLQY data for [P][I] and PGUMBOS in different solvents. 

 

Compound  DCM THF EA MeOH DMSO Water 

[P][BETI] 

Lifetime (ns) 7.72 4.86 5.78 3.07 - - 

QY (%) 
22.8 

(±1.2) 

21.3  

(±1.8) 

21.5 

(±1.7) 

5.6   

(±0.6) 
- - 

[P][NTf2] 

Lifetime (ns) 8.26 4.95 5.90 3.16 - - 

QY (%) 
18.8 

(±2.0) 

18.8  

(±0.6) 

17.8 

(±1.5) 

5.6 

(±0.3) 
- - 

[P][TfO] 

Lifetime (ns) - - - 3.00 2.82 0.96 

QY (%) - - - 
5.9   

(±0.5) 

5.5   

(±0.4) 

1.5  

(±0.2) 

[P][I] 

Lifetime (ns) - - - 3.04 2.79 0.96 

QY (%) - - - 
5.2 

(±0.1) 

5.6 

(±0.5) 

1.9 

(±0.1) 

4.4.5. Electrochemical Properties  

CV and UV-vis absorption spectra were employed for estimating experimental HOMO, 

LUMO, and HOMO-LUMO energy gap (Eg) energies of [P][I] and PGUMBOS. The cyclic 

voltammograms obtained for [P][I] and PGUMBOS are shown in Figure C10 in Appendix C, and 

a summary of the electronic properties is provided in Table 4.5. From the CV data, the onset 

oxidation values (Eox.) were estimated against the Fc/Fc+ redox potential. Also, long-wavelength 

onset values of the absorption spectra (λedge) were used to estimate energy gaps of the compounds. 
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Equations 4.2 and 4.3 were employed to calculate energies of HOMO, LUMO, and Eg of 

compounds.44 

𝐻𝑂𝑀𝑂 =  −1𝑒 [𝐸𝑜𝑥.  + 4.71]𝑒𝑉              (4.2) 

𝐸𝑔 = (𝐸𝐻𝑂𝑀𝑂 − 𝐸𝐿𝑈𝑀𝑂) = (
ℎ𝑐

𝜆𝑒𝑑𝑔𝑒
) = (

1240

𝜆𝑒𝑑𝑔𝑒
) 𝑒𝑉  (4.3) 

Calculated experimental HOMO and LUMO energies of the PGUMBOS were in the range 

of - (5.1 ±0.1) eV to - (3.1 ±0.3) eV. In the case of [P][I], additional oxidation peaks were observed 

and were attributed to the oxidation of [I].45 Optical energy gaps were calculated using absorption 

spectra of [P][I] and [P][BETI] and found to be 1.96 eV, which is within the typical energy gap 

range (0-4 eV) of organic semiconducting materials.46 

Table 4.5.xii Experimental HOHO-LUMO energies and energy gaps of [P][I] and PGUMBOS. 

 

 

 

4.4.6. Computational Studies 

In order to confirm structural and electronic assignments obtained in spectroscopic and 

electrochemical studies, computational analysis was performed using the time-dependent density 

functional theory (DFT) approach at the B3LYP/6-31+G(d,p) level of theory. The DFT approach 

is widely used to accurately model small to medium size organic compounds and has been 

previously used by our group to characterize heteroaromatic carbazole derivatives.13 To better 

adjust for the polar medium of the ionic solids, computations on the propidium cation was 

performed using a polarizable conductor calculation model (CPCM) for the highly polar solvent 

DMSO. The CPCM model applies a solvent field to account for potential dispersion effects and 

polarization, which also provide some cation stabilization in the solid-state.47,48 This computational 

Compound Energy Gap (eV) HOMO (eV) LUMO (eV) 

[P][BETI] 1.96 -5.10 -3.14 

[P][NTf2] 1.96 -5.12 -3.16 

[P][TfO] 1.96 -5.12 -3.16 

[P][I] 1.96 -5.27 -3.31 
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study produced an energy gap value of 2.39 eV, which is in reasonable agreement with the 

experimental values estimated from UV-vis absorption spectra (Table 4.5). Furthermore, the 

computed long-wavelength absorption band maximum (519 nm) agreed well with the experimental 

value for the band A1 (535 nm, Figure 4.5). These computations indicated that this absorption band 

was primarily due to the HOMO→LUMO electronic transition, with both frontier molecular 

orbitals spatially distributed over the three-ring benzoquinolinium aromatic fragment (Figure 4.7). 

The colocalization of the frontier molecular orbitals over the benzoquinolinium fragment might be 

at least partially responsible for the invariance of the optical properties with respect to the 

counteranions. In contrast, the higher energy absorption band A2 originated from two primary 

configurations, HOMO-1→LUMO, and HOMO-2→LUMO, one of which (HOMO-2) was 

spatially delocalized over both benzoquinolinium and phenyl rings (Figure 4.7), which could make 

it sensitive to torsional twisting of the phenyl ring, and therefore to molecular packing in the solid-

state. 

 

Figure 4.7.37 Calculated distributions of molecular orbitals near the energy gap for the propidium 

luminophore. 
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4.5. Conclusions 

A series of novel solid-state organic salts derived from PGUMBOS were successfully 

synthesized, and physical characteristics such as solubility, crystallinity, photothermal stability, 

electrochemistry, and spectroscopy including absorption, photoluminescence, quantum yields, and 

lifetimes of these compounds were systematically investigated. The parent compound, [P][I], and 

the novel synthesized compound, [P][TfO], showed similar characteristics such as a high degree 

of crystallinity, solubility in relatively polar solvents including water, and similar thermal 

stabilities. In contrast, [P][BETI] and [P][NTf2] with the bulkier and more hydrophobic 

counteranions exhibited substantially lower crystallinity, better solubility in less polar solvents, 

and high thermal stability relative to [P][I]. All PGUMBOS materials showed high stability with 

regard to photothermal degradation. Interestingly, PGUMBOS showed two absorption peaks and 

a single broad photoluminescence peak in the red region of the EMS. In some solvents, a weak S2 

emission in the deep blue region was also observed for PGUMBOS. Quantum yields and lifetime 

measurements of [P][I] and PGUMBOS showed a strong dependence on solvent polarity. The 

counteranions, [BETI] and [NTf2], played an important role in increasing the lifetime and quantum 

yield by allowing solubilization of propidium luminophore in less polar solvents and thus 

providing a more hydrophobic environment. These novel PGUMBOS materials were organic 

semiconductors with electronic properties suitable for a variety of optoelectronic applications. 

Future studies of these compounds will include preparation and evaluation of electroluminescent 

devices with these materials as emissive layers.   
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CHAPTER V. CONCLUSIONS AND FUTURE WORK 
  

This dissertation work involved synthesis and the characterization of dyes (with an emphasis 

on blue emitters) derived from small organic compounds and GUMBOS, for potential application 

as OLED emitters. Accordingly, in the first chapter, an overview of OLEDs, with a focus on 

history, market forecast, working principles, classification methods, current status, challenges, and 

suggestions for further improvements, as well as analytical techniques used in this research, was 

discussed. 

 The first project described in Chapter two contains the synthesis and characterization of four 

structurally related pyrenylpyridine compounds, and an evaluation of the spectral, optical, 

physical, and electronic properties of these compounds in both solutions and in solid-state (as thin 

films on quartz substrates and inside OLED prototypes). Interestingly, the photo-physical 

properties of these compounds were found to be quite diverse, stemming from factors such as 

molecular symmetry and the extent of inter/intramolecular interactions, which are attributable to 

variations in the conformations. These compounds exhibited high photothermal stability and 

favorable optoelectronic properties. Interestingly, the OLED prototype fabricated with 2,4,6-TPP 

as the non-doped emissive layer showed bright sky-blue electroluminescence with promising 

device performance. An evaluation of the structure-property relationships of the pyrenylpyridines 

as model compounds related to pyrene aided in understanding the important role of morphology 

induced inter- and intramolecular interactions that tremendously influence the spectral and 

physical characteristics of these structurally related molecules. Future directions for this research 

would involve fabrication and characterization of OLED prototypes for the other three DPPs to 

understand electroluminescence and OLED characteristic variation with the structure of these 

compounds. Also, fabrication of OLED prototypes with a doped emissive layer created by 
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embedding pyrenylpyridines in a suitable host matrix is important, since this approach may further 

improve device performance.  

The second project discussed in Chapter three involved the synthesis and characterization of 

three novel organic blue emitters derived from pyrene-benzimidazole hybrids (compounds A, B, 

and C). Learning from the first project, these compounds were designed to avoid solid-state dye 

aggregation to obtain significantly pure blue electroluminescence. Spectroscopic characteristics of 

these materials, such as solid-state morphology, absorption, photoluminescence, and quantum 

yield, as well as electronic properties based on cyclic voltammetry and UV-vis absorption, were 

investigated and found suitable for optoelectronic applications. An OLED prototype fabricated 

using compound B as the non-doped emissive layer displayed a significantly pure blue 

electroluminescence as expected. Future directions for this research include fabrication and 

characterization of OLED prototypes for the other two compounds and fabrication of OLED 

prototypes with a doped emissive layer by embedding these dyes in a suitable host matrix to further 

improve device performance.  

In the third project discussed in Chapter 4, a series of novel solid-state organic salts derived 

from propidium luminophore (PGUMBOS) were synthesized, and photo-physical characteristics 

such as solubility, crystallinity, photothermal stability, electrochemistry, and spectroscopy, 

including absorption, photoluminescence, quantum yields, and lifetimes, were systematically 

investigated. Noteworthy, PGUMBOS exhibited a substantially lower crystallinity, better 

solubility and quantum efficiency in less polar solvents, and a high thermal stability relative to the 

parent compound, [P][I]. Also, these PGUMBOS materials showed improved resistance to 

photodegradation. These novel PGUMBOS materials were organic semiconductors with electronic 

properties suitable for a variety of optoelectronic applications. Therefore, GUMBOS were 
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recognized as one of the promising molecular designs for optoelectronic applications. For future 

work related to this research, it is important to prepare and evaluate electroluminescent devices 

with these GUMBOS materials as emissive layers and compare the performance with OLEDs 

fabricated using non-GUMBOS analogues to further understand the influence of counterion 

variations on ionic luminophores.  
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APPENDIX A. SUPPORTING INFORMATION FOR CHAPTER 2 

Characterization of pyrenylpyridines 

2,4-DPP: HRMS-ESI (CHCl3): m/z 480.1800 (M+H+ for C37H21N, calculated mass 480.1674); 1H 

NMR (CDCl3, 400 MHz, ppm): δ 9.09 (d, J = 4.00Hz, 1H), 8.65(d, J = 8.00Hz, 1H), 8.37-8.31 (m, 

4H), 8.28-8.19 (m, 4H), 8.14-8.03 (m, 10H), 7.73 (d, J = 4.00Hz, 1H); 13C Proton Decoupled NMR 

(CDCl3, 400 MHz, ppm): δ 159.72, 149.79, 135.58, 134.56, 131.56, 131.52, 131.42, 130.93, 

130.87, 128.74, 128.41, 128.29, ), 128.20, 128.17, 128.00, 127.80, 127.47, 127.43, 127.33, 127.18, 

126.32, 126.07, 125.67, 125.42, 125.35, 125.01, 124.87, 124.79, 124.43, 123.83.  

 

2,6-DPP: HRMS-ESI (CHCl3): m/z 480.1767 (M+H+ for C37H21N, calculated mass 480.1674); 1H 

NMR (CDCl3, 400 MHz, ppm): δ 8.65 (d, J = 12.00Hz, 2H), 8.39 (d, J = 8.00Hz, 2H), 8.33 (d, 

8.00Hz, 2H), 8.25 -8.22 (m, 4H), 8.18-8.11 (m, 7H), 8.07-8.04 (t, J = 8.00Hz, 2H), 7.88-7.87 (d, J 

= 4.00Hz, 2H); 13C Proton Decoupled NMR (CDCl3, 400 MHz, ppm): δ 159.53, 136.58, 131.43, 

130.94, 129.60, 128.75, 127.99, 127.92, 127.88, 127.46, 126.01, 125.35, 125.13, 125.07, 124.88, 

124.02. 

 

 3,5-DPP: HRMS-ESI (CHCl3): m/z 480.1761 (M+H+ for C37H21N, calculated mass 480.1674); 1H 

NMR (CDCl3, 400 MHz, ppm): δ 9.07 (d, J = 4Hz, 2H), 8.34-8.32 (m, 4H), 8.30-8.23 (m, 5H), 

8.17-8.13 (m, 8H), 8.09-8.06 (m, 2H); 13C Proton Decoupled NMR (CDCl3, 400 MHz, ppm): δ 

149.48, 139.71, 136.75, 133.17, 131.46, 131.36,  130.90, 128.82, 128.37, 128.06, 127.77, 127.35, 

126.29, 125.60, 125.27, 125.06, 124.90, 124.81, 124.34. 
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2,4,6-TPP: HRMS-ESI (CHCl3): m/z 680.2342 (M+H+ for C53H29N, calculated mass 480.2300); 

1H NMR (CDCl3, 400 MHz, ppm): δ 8.88-8.86 (d, J = 8Hz, 2H), 8.56 (t, J = 8Hz, 3H), 8.35 (t, J = 

8Hz, 3H), 8.27-8.22 (m, 9H), 8.20-8.15 (m, 9H), 8.09-8.03 (m, 4H); 13C Proton Decoupled NMR 

(CDCl3, 400 MHz, ppm): δ 159.70, 149.92, 135.87, 134.67, 131.60, 131.44, 130.96, 130.89, 

128.90, 128.50, 128.43, 128.19, 128.15, 128.11, 127.95, 127.46, 127.34, 126.31, 126.03, 125.80, 

125.69, 125.40, 125.21, 125.12, 125.09, 124.95, 124.84, 124.41. 

 

 
Figure A1. Single-crystal XRD derived ORTEP diagrams of dipyrenylpyridines.  
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Figure A2. PXRDs of pyrenylpyridines.  

  

Figure A3. Molecular packing of dipyrenylpyridines in the unit cells derived from single-crystal 

XRD.  
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Figure A4. HOMO (left) and LUMO (right) of DPPs.  

Table A1. Energy gaps of pyrenylpyridines obtained from computational studies. 

Compound 2,4-DPP 2,6-DPP 3,5-DPP 2,4,6-TPP 

Computed energy gap (eV) 3.44 3.27 3.64 3.42 

Experimental energy gap (eV) 3.16 3.16 3.28 3.12 

 

 
Figure A5. Thermogravimetric profiles of pyrenylpyridines.  
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Figure A6. Time-dependent relative photoluminescence intensity spectra of pyrenylpyridines in 

chloroform solvent over a period of 1500 s. 

 

Table A2. Emission maxima (nm) of pyrenylpyridines in different solvents. 

Solvent 2,4-DPP 2,6-DPP 3,5-DPP 2,4,6-TPP 

Hexane 392 394 393 396 

Methanol 407 405 406 410 

DMSO 428 429 429 444 

 

  
Figure A7. Fluorescence decay curves of pyrenylpyridines solid films monitored at emission 

maxima with a 1.5 nm band pass and excitation at 375 nm.  
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Figure A8. Cyclic voltammograms of pyrenylpyridines. 

 
Figure A9. Photoluminescence and electroluminescence (in OLED device) of 2,4,6-TPP in solid 

state. 
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APPENDIX B. SUPPORTING INFORMATION FOR CHAPTER 3 

Characterization of compound A, B and C - 1H, 13C NMR, ESI-MS/MALDI-MS data 

Compound A: HRMS-ESI (CHCl3); m/z 527.2417 (M+H+ for C39H30N2, calculated mass 

527.2409);  1H NMR (CD2Cl2, 400 MHz, ppm): δ 8.31 (s, 2H), 8.13 -8.15 (m, 4H), 8.10-8.08 (m, 

2H), 8.048-8.03 (m, 1H), 7.95-7.91 (m, 2H), 7.84-7.82 (d, 1H), 7.72-7.70 (m, 3H), 7.61-7.57 (t, 

1H), 7.50-7.52 (m, 2H), 7.38-7.42 (m), 7.35-7.36 (m, 2H), 1.64 (s, 9H); 13C Proton Decoupled 

NMR (CD2Cl2, 400 MHz, ppm): δ 152.13, 149.44, 143.26, 141.25, 137.56, 137.50, 131.36, 130.96, 

130.76, 130.13, 129.05, 128.74, 128.66, 128.39, 128.01, 127.83, 127.22, 123.80, 123.30, 123.19, 

122.83, 122.54, 119.69, 110.46, 35.16, 31.63.    

Compound B: HRMS-ESI (CHCl3); m/z 795. 3592 (M+H+ for C58H42N4, calculated mass 

795.3409);  1H NMR (CDCl3, 400 MHz, ppm): δ 8.24 (s, 2H), 7.99 -7.93 (q, 6H), 7.90-7.87 (m, 

2H), 7.76 (m, 2H), 7.66-7.58 (m, 4H), 7.55-7.51 (m, 3H), 7.43-7.35 (m, 11H), 7.30-7.29 (d, 3H), 

1.63 (s, 9H); 13C Proton Decoupled NMR (CD2Cl2, 400 MHz, ppm): δ 152.26, 149.55, 143.22, 

140.89, 137.46, 137.10, 136.13, 133.38, 132.35, 131.98, 131.89, 131.69, 131.56, 131.01, 130.49, 

130.00, 129.09, 128.73, 128.56, 128.52, 128.44, 128.42, 128.05, 127.68, 127.56, 124.98, 124.53, 

123.29, 123.08, 122.83, 122.54, 119.68, 110.49, 35.13, 31.61. 

Compound C: MALDI-MS (CHCl3); m/z 1274.661 (M+ for C92H58N8, calculated mass 

1274.4784);  1H NMR (CDCl3, 400 MHz, ppm): δ 7.94-7.92 (d, 3H), 7.88-7.85 (m, 3H), 7.81 (s, 

3H), 7.78 (s, 3H), 7.72-7.67 (m, 2H), 7.62 (m, 5H), 7.60-7.56 (m, 2H), 7.53-7.48 (m, 10H), 7.43-

7.41 (m, 6H), 7.40-7.33 (m, 10H), 7.31-7.30 (m, 7H), 7.27-7.21 (m, 4H); 13C Proton Decoupled 

NMR (CDCl3, 400 MHz, ppm): δ 152.26, 143.10, 140.90, 137.28, 137.01, 136.31, 134.06, 132.16, 
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132.07, 131.94, 131.91, 131.84, 131.66, 130.49, 130.00, 130.39, 130.04, 129.59, 128.78, 128.62, 

128.56, 128.44, 127.93, 127.51, 125.48, 125.17, 123.50, 123.10, 119.96, 110.55. 

 

Figure B1. PXRDs of pyrenylpyridines.  

 

Figure B2. Single-crystal XRD derived ORTEP diagram of compound A.  
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Figure B3. Molecular packing of compound A in the unit cells derived from single-crystal XRD.  

 

 
Figure B4. TGA profiles of compounds A, B, and C. 
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Figure B5. Normalized UV-vis absorption (Abs.) and photoluminescence (PL) spectra of 

compound A, and its parent compounds: pyrene derivative (P’1) and benzimidazole derivative (P’2) 

in DCM. 

 
Figure B6. Normalized UV-vis absorption (Abs.) and photoluminescence (PL) spectra of 

compound C, and its parent compounds: pyrene derivative (P”1) and benzimidazole derivative 

(P”2) in DCM. 
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Figure B7. Cyclic voltammograms of compounds A, B, and C. 

 
Figure B8. Performance plots for the OLED prototype with compound B as the emissive layer.  
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APPENDIX C. SUPPORTING INFORMATION FOR CHAPTER 4 

Synthesis protocols of [P][NTf2] and [P][TfO] 

Synthesis of [P][NTf2]: The starting material [P][I] (50 mg, 0.075 mmol) was dissolved in 60 

mL of DI water in a 500 mL round bottom flask. Then, [Li][NTf2] (43 mg, 0.15 mmol) was added 

to the aqueous [P][I] solution and stirred for approximately 5 minutes until [Li][NTf2]  is 

completely dissolved. Then, DCM (300 mL) was gradually added to the same round bottom flask 

containing the aqueous [P][I] and [Li][NTf2] solution. Once DCM was added, the resultant 

biphasic solution was stirred vigorously for 6 hours at room temperature. Then, this biphasic 

solution was transferred to a separatory funnel and the bottom organic layer was carefully siphoned 

into a container. The extracted organic layer was washed three times with DI water (200 mL x 3) 

to remove traces of the byproduct, [Li][I], which is water soluble. Then, anhydrous magnesium 

sulfate was added to the DCM layer to remove trace amounts of water from the organic layer, 

followed by suction filtration to remove magnesium sulfate particles. The dried and filtered 

organic layer was vacuum evaporated to remove DCM. The resultant product, [P][NTf2], was 

freeze dried, and obtained as a maroon color solid (68 ±4 mg, yield: 93 ±5%). 

Synthesis of [P][TfO]: The starting material [P][I] (50 mg, 0.075 mmol) was dissolved in 300 

mL of ACN in a 500 mL round bottom flask. Then, [Na][TfO] (26 mg, 0.15 mmol) was added to 

the same flask and stirred for 48 hours at room temperature. Then, this solution was concentrated 

by use of solvent evaporation. Next, the concentrated solution was sent through a short silica gel 

column, first with 100% methanol as the solvent to elute NaI byproduct. The remaining red color 

band of [P][TfO] at the bottom was eluted using 100% acetone and combined fractions were 

filtered to remove any silica particles. The solvent was evaporated using a rotatory evaporator. The 
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resultant product, [P][TfO], was freeze dried, and obtained as a maroon color solid (45 ±5 mg, 

yield: 84 ±10%). 

Summary of ESI-MS and 1H, 13C, and 19F NMR data for [P][I] and PGUMBOS 

[P][I]: MS, ESI+- m/z 207.1397 (P2+); MS, ESI-- m/z 126.9049 (I-); 1H NMR (d-DMSO, 400 MHz, 

ppm): δ 8.69-8.72 (d, 1H), 8.64 -8.66 (d, 1H), 7.76-7.81 (m, 5H), 7.55-7.57 (m, 2H), 7.36-7.38 (d, 

1H), 6.39 (s, 2H), 6.27-6.28 (d, 1H), 5.99 (s, 2H), 4.45 (s, 2H), 3.21-3.26 (m,6H), 2.89 (s, 3H), 

2.23 (m, 2H), 1.13-1.17 (t,6H); 13C Proton Decoupled NMR (d-DMSO, 400 MHz, ppm): δ 159.24, 

151.71, 148.59, 134.69, 132.36, 131.47, 130.00, 128.86, 128.70, 128.07, 125.47, 125.27, 123.21, 

120.53, 117.95, 108.27, 98.64, 56.55, 56.01, 50.67, 47.21, 21.68, 8.04 

 

[P][BETI]: MS, ESI+- m/z 207.1392 (P2+); MS, ESI-- m/z 379.9116 (BETI-); 1H NMR (CD2Cl2, 

400 MHz, ppm): δ 8.55-8.57 (d, 1H), 8.49-8.51 (d, 1H), 7.82-7.84 (m, 3H), 7.63-7.65 (m, 2H), 

7.56-7.59 (d, 1H), 7.44 (d, 1H), 7.36-7.39 (d, 1H), 6.47-6.48 (d, 1H), 4.64-4.68 (t, 2H), 3.26-3.34 

(m, 6H), 2.94 (s, 3H), 2.37 (m, 2H), 1.26-1.29 (m,6H); 13C Proton Decoupled NMR (CD2Cl2, 400 

MHz, ppm): δ 159.11, 151.19, 146.51, 134.93, 131.71, 131.32, 130.07, 129.90, 128.91, 128.20, 

125.28, 125.04, 122.73, 122.17, 120.68, 119.64, 119.31, 118.98, 118.72, 116.45, 114.34, 111.80, 

111.42, 110.07, 108.88, 98.02, 56.96, 56.85, 49.62, 47.30, 21.68, 7.50 (Signals coming from C 

atoms in the anion are split due to the attached F atoms and are presented in italics) ; 19F NMR 

(CD2Cl2, 500 MHz, ppm): δ -78.90, -117.54 

 

[P][NTf2]: MS, ESI+- m/z 207.1389 (P2+); MS, ESI-- m/z 279.9177 (NTf2
-) 1H NMR (CD2Cl2, 400 

MHz, ppm): δ 8.56-8.58 (d, 1H), 8.49-8.52 (d, 1H), 7.83-7.85 (m, 3H), 7.64-7.65 (m, 2H), 7.57-

7.60 (d, 1H), 7.47 (d, 1H), 7.37-7.39 (d, 1H), 6.48-6.49 (d, 1H), 4.66-4.70 (t, 2H), 3.26-3.34 (m, 
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6H), 2.95 (s, 3H), 2.38 (m, 2H), 1.27-1.31 (m, 6H); 13C Proton Decoupled NMR (CD2Cl2, 400 

MHz, ppm): δ 159.19, 151.12, 146.52, 134.93, 131.71, 131.31, 130.09, 129.85, 128.90, 128.21, 

125.29, 125.06, 124.46, 122.76, 121.26, 120.67, 118.74, 118.07, 114.88, 110.15, 98.17, 56.91, 

56.90, 49.71, 47.39, 21.71, 7.56 (Signals coming from C atoms in the anion are split due to the 

attached F atoms and are presented in italics) ; 19F NMR (CD2Cl2, 500 MHz, ppm): δ -78.73 

[P][TfO]: MS, ESI+- m/z 207.1382 (P2+); MS, ESI-- m/z 148.9529 (TfO-) 1H NMR (d-DMSO, 400 

MHz, ppm): δ 8.69-8.71 (d, 1H), 8.63-8.65 (d, 1H), 7.80 (m, 3H), 7.74-7.76 (m, 2H), 7.54-7.57 (d, 

1H), 7.36-7.39 (m, 2H), 6.33 (s, 2H), 6.27-6.28 (d, 1H), 6.0 (s, 2H), 4.44 (t, 2H), 3.19-3.24 (m, 

6H), 2.86 (s, 3H), 2.21 (m, 2H), 1.13-1.16 (m, 6H); 13C Proton Decoupled NMR (d-DMSO, 500 

MHz, ppm): δ 159.25, 151.68, 148.62, 134.72, 132.38, 131.47, 130.00, 128.84, 128.71, 128.07, 

125.95, 125.49, 125.28, 123.20, 122.74, 120.51, 119.54, 117.98, 116.34, 108.27, 98.60, 56.52, 

55.97, 50.63, 47.17, 21.64, 7.95 (Signals coming from C atoms in the anion are split due to the 

attached F atoms and are presented in italics) ; 19F NMR (d-DMSO, 500 MHz, ppm): δ -77.75 

 
Figure C1. PXRD profiles of [P][I] and PGUMBOS. 
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Figure C2. TGA profiles of [Li][BETI], [Li][NTf2], and [Na][TfO]. 

 
Figure C3. TGA profiles with first derivative curves for [P][I] and PGUMBOS showing multiple 

inflection points. 
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Figure C4. Absorption spectra of [P][I] and PGUMBOS in different solvents. 

 

 
Figure C5. Emission spectra of [P][I] and PGUMBOS in different solvents when excited at Amax1 

wavelength. 
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Figure C6. Emission spectra of [P][I] and PGUMBOS in different solvents when excited at A2 

wavelength. 

 

Table C1. Absorption maxima of [P][I] and PGUMBOS in different solvents. 

Solvent 

Compound 

DCM THF EA MeOH ACN Water 

[P][BETI] 
297, 530 299,548 296, 

533 
296,535 295,525 N/A 

[P][NTf2] 297, 533 299, 546 296,534 296,532 295,526 N/A 

[P][TfO] N/A N/A N/A 296, 536 294, 531 288, 493 

[P][I] N/A N/A N/A 296, 536 294, 525 288, 491 

N/A: Not available due to the limited solubility 

 

Table C2. Emission maxima of [P][I] and PGUMBOS in different solvents when excited at A1 

wavelengths. 

 

Solvent 

Compound 

DCM THF EA MeOH ACN Water 

[P][BETI] 614 633 623 632 617 N/A 

[P][NTf2] 612 630 624 635 619 N/A 

[P][TfO] N/A N/A N/A 635 620 624 

[P][I] N/A N/A N/A 633 618 625 

N/A: Not available due to the limited solubility 
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Table C3. Emission maxima of [P][I] and PGUMBOS in different solvents when excited at A2 

wavelengths. 

 

Solvent 

Compound 

DCM THF EA MeOH ACN Water 

[P][BETI] 611a 631a,411b 624a,412b 632a,410b 617a,426b N/A 

[P][NTf2] 612a 632a,411b 623a,409b 632a,413b 617a,421b N/A 

[P][TfO] N/A N/A N/A 631a,408b 616a,414b 623a,425b 

[P][I] N/A N/A N/A 632a,410b 616a,415b 622a,424b 
a S1 emission, b S2 emission, N/A: Not available due to the limited solubility 

 
Figure C7. Normalized absorption and excitation spectra of [P][BETI] related to S1 emission in 

methanol solution. 
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Figure C8. Normalized absorption and excitation spectra of [P][BETI] related to S2 emission in 

methanol solution. 

 
Figure C9. Fluorescence lifetime decay curves for [P][I] and PGUMBOS in different solvents. 
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Figure C10. Cyclic voltammograms of [P][I] and PGUMBOS. 
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APPENDIX D. LETTERS OF PERMISSION 
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