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Abstract  

 Ultrafast and nonlinear spectroscopies are implemented in the investigation of 

excited-state dynamics and structural properties of materials and nanomaterials. In the 

first study, the excited-state dynamics of size-dependent colloidal TiO2-Au 

nanocomposites are investigated using ultrafast transient absorption spectroscopy. The 

dynamics corresponding to the plasmon depletion band are characterized by electron-

phonon and phonon-phonon coupling lifetimes that are observed to be independent of 

the gold nanocluster shell thickness. The excited-state dynamics corresponding to the 

interband transition of gold is also spectrally overlapped with the interfacial electron 

transfer lifetime, which is shown to decrease as the nanocluster shell thickness 

increases. In the second study, in-situ second harmonic generation (SHG), a nonlinear 

spectroscopic technique, is coupled with extinction spectroscopy to monitor the growth 

of colloidal gold nanoparticles in real time. The in-situ SHG results capture an early 

stage of the growth process where a large enhancement in the SHG is observed due to 

the formation of plasmonic hot spots attributed to a rough and uneven nanoparticle 

surface. In a third project, the ultrafast carrier dynamics of self-assembled La1-xSrxTiO3-δ 

(LMSO) is studied using ultrafast reflectivity experiments. The measured long-lived 

phonon-phonon coupling lifetime for the oxygen deficient LSMO thin film indicates that 

the phonons are the major energy carrier in the system. Residual oscillations of two 

distinct phonon frequencies are also observed and are superimposed on a 

biexponential decay. Both oscillatory signals are fit with an exponentially damping sine 

function in which both frequency and damping times are obtained. In a fourth project, 

our ultrafast reflectivity setup is modified with an added microscopy component for our 
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work with the Consortium for Innovation in Manufacturing and Materials (CIMM) to 

investigate heating and melting dynamics of metals, semiconductors, and metal alloys. 

Finally, in the last portion of this dissertation, electronic sum-frequency generation 

spectroscopy is utilized to study the azimuthal angular dependence in α-quartz (0001). 

This dissertation describes the versatility of these ultrafast and nonlinear spectroscopic 

techniques through fundamental research on different types of materials and 

nanomaterials in colloidal suspension and at surfaces. 
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Chapter 1. Introduction to Spectroscopy 

1.1 Ultrafast Spectroscopy 

 Over the past century, scientists have made major strides creating faster 

measuring tools on the timescales of atomic and molecular motions in order to study the 

excited-state relaxation dynamics of molecules and materials.1 The invention of the 

laser has allowed us to observe these optically-induced reactions on ultrafast 

timescales. The fundamental principles that led to the conception of the laser, or light 

amplified by the stimulated emission of radiation, dates back over a century to Einstein’s 

theoretical description of stimulated emission.2,3  

 The past sixty years have seen remarkable progress in laser technologies. The 

first q-switched ruby laser, developed in the 1960’s, was able to produce pulses in the 

nanosecond (10-9 s) to picosecond (10-12 s) timescales.4 Laser pulses on these 

timescales, in contrast to continuous wave (CW) laser light, can be achieved through 

q-switching where an optical element, such as a Pockels cell or an optoacoustic 

modulator, controls the light building up in the lasing cavity under an electronic trigger to 

produce a short burst of light. The timing of this trigger determines the power and time 

duration of the laser pulses.2 In the 1980’s, the dye laser was introduced which was 

able to produce ultrafast laser pulses on the femtosecond (10-15 s) timescale.5 Since the 

1990’s, scientists have relied mostly titanium:sapphire (Ti:sapph) lasers for producing 

ultrafast femtosecond (fs) laser pulses due to their high stability and high damage 

threshold, utilizing the technique of Kerr-lens mode-locking.6,7 Kerr-lens mode-locking is 

achieved when the intense center of a Gaussian beam alters the refractive index of a 

Kerr medium resulting in a self-focusing beam in the laser cavity, which under correct 
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alignment, can result in constructive interference of the different cavity modes to 

produce a pulsetrain of ultrafast femtosecond pulses.8 

The introduction of Ti:sapph lasers propelled the field of femtochemistry. The 

average speed of atomic motion is about 1 km/s, or over the distance of an atom, 

equivalent to approximately one Angstrom per 100 fs.1 By using sub 100 fs pulses, 

scientists can take a snapshot of a system at critical transition states to understand the 

excited-state reaction dynamics of molecules and materials. An important caveat in 

studying these dynamics is inducing a coherence in the molecule or material sample. 

When a femtosecond pulse interacts with an atom, molecule, or material, it induces a 

time-dependent polarization due to the coherent superposition between the ground and 

excited states.9 The coherent superposition of ground and excited states is given by 

𝛹𝑐𝑜ℎ𝑒𝑟𝑒𝑛𝑡(𝑟, 𝑡) = 𝑎(𝑡)𝜑𝑎(𝑟) + 𝑏(𝑡)𝜑𝑏(𝑟)                                          (1.1) 

where 𝑎(𝑡) and 𝑏(𝑡) represent quantum mechanical phase factors 𝑒(−𝑖𝜔𝑎𝑡)⁡ and 𝑒(−𝑖𝜔𝑏𝑡), 

respectively, of the ground and excited states.1 As time progresses, this induced 

coherent state dephases through incoherent atomic motions and molecular interactions 

with the surroundings. This coherence produces critical interference between the light 

and sample being studied. Without this coherence, an induced polarization is not 

observed. In ultrafast spectroscopy, femtosecond laser pulses are split into pump and 

probe pulses where a resonant pump pulse creates a superposition between the ground 

and excited states within a molecule or material, which is monitored by a weak probe 

pulse as a function of pump-probe time-delay.10 Typically, the pump-probe time delay is 

controlled using a retroreflector or a computer-controlled delay stage, where the time 

delay is equal to the optical path length difference divided by the speed of light. 
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1.2 Nonlinear Spectroscopy  

 Additionally, the field of nonlinear spectroscopy developed from the science of 

producing intense, ultrafast laser pulses. The interaction of light and matter can be 

described by a series of linear and nonlinear optical processes. When a time-dependent 

optical electric field 𝐸̃(𝑡) interacts with an atom, molecule, or material sample, it induces 

a polarization 𝑃̃(𝑡), or dipole moment per unit of volume, that can be represented by 

𝑃̃(𝑡) = 𝜖0[𝜒
(1)𝐸̃(𝑡) + 𝜒(2)𝐸̃2(𝑡) + 𝜒(3)𝐸̃3(𝑡) + ⋯ ]                              (1.2) 

where 𝜒(1) is the linear susceptibility and where 𝜒(2) and 𝜒(3) are the second-order and 

third-order nonlinear susceptibilities, respectively.11 In the weak-field regime, the 

induced polarization scales linearly with the incident electric field, as shown by the first 

term in Eq. 1.2, and the sample absorbs or scatters the incident electric field linearly as 

a function of intensity, according to Beer’s Law or Rayleigh Scattering. In this case, the 

higher-order susceptibilities can be neglected. However, with high intensity optical 

electric-field contributions, higher-order nonlinearities are non-negligible resulting in 

optical fields that can add together in frequency. Femtosecond laser pulses have 

sufficient intensity for producing these higher-order nonlinear optical processes.  

 Second-order nonlinear processes can occur according to two general cases. 

The first case is sum-frequency generation (SFG) where two incident photons of 

frequency ω1 and ω2 coherently add to produce a third photon with a frequency equal to 

𝜔3 = 𝜔1 + 𝜔2.
11 The second case is a special condition of sum-frequency generation 

called second harmonic generation (SHG) where two incident photons of the same 

frequency (𝜔1 = 𝜔2 = 𝜔) produce a third photon at twice the fundamental frequency 

(2𝜔), as shown in Figure 1.12,13 
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Figure 1.1. (a) Energy-level diagram of SHG. (b) SFG or SHG generated from the 
second-order nonlinear susceptibility of an atom, molecule, or material. 
 

The second-order polarization 𝑃̃(2)(𝑡) induced from an electric-field 𝐸̃(𝑡) can be 

written as 

𝑃̃(2)(𝑡) = 2𝜖0𝜒
(2)𝐸̃2(𝑡)                                                (1.3) 

where 𝜖0 is the permittivity in free space and 𝐸̃(𝑡) is an oscillating incident electric field. 

If we express 𝐸̃(𝑡)  as 𝐸𝑜𝑒
𝑖𝜔𝑡 where 𝐸𝑜 is the amplitude and 𝜔 is the optical frequency, 

then the second-order polarization here will oscillate at 2𝜔 since it is proportional to 

𝐸̃2(𝑡), resulting in the generation of light at twice the incident frequency, or half the 

incident wavelength. SHG is typically forbidden in bulk media with a center of inversion 

symmetry due to resulting cancellations of the optical field.11 However, this symmetry for 

centrosymmetric or isotropic systems is broken at an interface making SHG a powerful 

technique for investigating surfaces, surface chemistry, and nanoparticle interfaces 

(Figure 1.2).14 Previous work has used SHG to investigate dye adsorption on gold 

nanoparticles,15 the surface charge density of gold nanoparticles,16 charge-transfer in 

TiO2 microparticles,17 ion transport in liposomes,18 and metal nanoparticles made of 

gold, silver, and gold-silver alloys.19-23 
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Figure 1.2. SHG generated on a nanoparticle surface. 
 
1.3 Reflectivity of Metals 

 When metals are optically excited by a short femtosecond pulse, a non-Fermi 

distribution of conduction electrons is created.24 These highly-thermalized 

nonequilibrium electrons can then diffuse their energy through ballistic electron 

transport, electron-electron collisions, electron-phonon scattering, and phonon-phonon 

scattering.25,26 Within approximately 100 fs, ballistic electrons travel deeper into the bulk 

of the sample on the order of the optical penetration depth. Additionally, in this 

timescale the excited electrons can participate in collisions with other Fermi electrons 

creating electron thermalization.27 The resulting electron gas can also transfer energy to 

the lattice through electron-phonon collisions which happen on the order of 

picoseconds. This exchange of energy can be described by the two-temperature model 

where the hot electron bath and cold lattice reach a local thermal equilibrium described 

by 

𝐶𝑒(𝑇𝑒)
𝜕𝑇𝑒

𝜕𝑡
=

𝜕

𝜕𝑧
(𝐾𝑒

𝜕𝑇𝑒

𝜕𝑡
) − 𝑔(𝑇𝑒 − 𝑇𝑙) + 𝑃(𝑧, 𝑡),                         (1.4) 

and 

𝐶𝑙
𝜕𝑇𝑙

𝜕𝑡
= ⁡𝑔(𝑇𝑒 − 𝑇𝑙)                                              (1.5) 
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where 𝐶𝑒 is the electron gas heat capacity, 𝐾𝑒 is the electron thermal conductivity, 𝑔 is 

the electron-phonon coupling constant, (𝑇𝑒 − 𝑇𝑙) is the difference in electron and lattice 

temperatures, and 𝑃(𝑧, 𝑡) is a source term describing the intensity dependence of 

electron heating from the laser pulse at a depth of 𝑧 .24 In Eq. 1.5 the heat capacity of 

the lattice, 𝐶𝑙, only depends on the electron-phonon coupling constant and the 

temperature gradient of the electron bath and lattice. The last process describes the 

coupling of the lattice to itself through vibrational motion via phonon-phonon scattering, 

which happens on the timescale of hundreds of picoseconds to nanoseconds.24 These 

concepts are of critical importance in describing laser-induced heating of metals. 

1.4 Scope of Dissertation 

 This dissertation describes the use of ultrafast spectroscopy and nonlinear 

spectroscopy to investigate the excited-state dynamics and nonlinear optical properties 

of various nanomaterials. Chapter 2 describes research which uses transient absorption 

spectroscopy to study the excited-state dynamics of size-dependent colloidal TiO2-Au 

nanocomposites. In this investigation, an enhanced size-dependent electron-transfer 

lifetime is observed for nanocomposites containing different molar ratios of TiO2 to gold 

in the colloidal nanomaterials. In Chapter 3, the time-dependent nonlinear optical 

technique of in-situ SHG is used to monitor the seed-mediated growth of colloidal 

citrate-stabilized gold nanoparticles in water. The real-time monitoring of the growth 

dynamics show size-dependent nonlinear enhancements at early growth times which 

are attributed to plasmonic hot spots. In Chapter 4, the optical technique of ultrafast 

reflectivity is used to investigate excited-state carrier dynamics of the perovskite thin film 

La0.67Sr0.33MnO3/SrTiO3 prepared under oxygen deficient conditions. Here, the excited-
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state dynamics are described by two relaxation lifetimes and two separate oscillatory 

phonon frequencies, which are used to characterize the perovskite thin film. Chapter 5 

involves our work with the Consortium for Innovation in Manufacturing and Materials 

(CIMM) at LSU where we modify our ultrafast reflectivity setup to study heating and 

melting dynamics in different metals and metal alloys. Finally, Chapter 6 describes 

research using the electronic sum-frequency generation (ESFG) technique to study the 

azimuthal angular dependence in α-quartz (0001). Throughout my research I’ve used 

ultrafast and nonlinear spectroscopy to study both colloidal nanomaterials and metallic 

surfaces. Each individual experiment involves either modifications or new constructions 

of our experimental setups for the purpose of investigating the chemistry and materials 

science of interest under the specialized optical configurations to ascertain critical new 

insight of different nanomaterial interfaces.  
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Chapter 2. Excited-State Dynamics of Size-Dependent Colloidal 
TiO2-Au Nanocomposites 
 
2.1 Introduction1 

Gold nanoparticles have been widely studied due to their various potential 

applications in sensing, photovoltaics, catalysis, imaging, and photothermal therapy.1–

10 The size- and shape-dependent localized surface plasmon resonances from coherent 

oscillations of free electrons11–13 can lead to large optical field enhancements. Ultrafast 

pump-probe spectroscopy has been used to investigate the excited-state relaxation 

dynamics of gold nanoparticles, which can be characterized by different spectral regions 

that correspond to different relaxation processes.14–17 A higher-energy, excited-

state absorption spectral region near 480 nm is attributed to the interband excitation of 

electrons from the gold d band to the sp band above the Fermi level, with excited-

state dynamics specified by the electronic interband transition lifetime. A lower-energy 

depletion spectrum near 550 nm corresponds to the plasmon resonance region with 

relaxation dynamics described by electron-phonon and phonon-

phonon scattering lifetimes. The electron-phonon scattering lifetime is observed to 

increase as the pump pulse intensity is increased due to heating of the electron 

gas.11,16–19 At even lower spectral energies, excited-state absorption centered near 600 

nm is attributed to plasmon-induced hot carriers.20–23 In general, the excited-

state dynamics from the interband transition and electron-phonon scattering are 

independent of the size and shape of the gold nanoparticles for sizes ranging from 

approximately 10 nm to 60 nm.17–19 The phonon-phonon scattering lifetimes, in contrast, 

                                                           
Reprinted from Karam, T. E.; Khoury, R. A.; Haber, L. H., J. Chem. Phys. 144 (12), 124704, 2016, with the 
permission of AIP Publishing and coauthors. 
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are shown to depend on the surface-to-volume ratio of the nanoparticle due to energy 

transfer to the surroundings.19,24 

Semiconductor-metal nanocomposites are of great interest for plasmon-induced 

photocatalytic applications such as the production of hydrogen,25–27 the reduction of 

thiocyanate,28 and the oxidation of carbon monoxide.29 The oxidation of CO to CO2 at 

the surface of semiconductor-supported gold nanoclusters depends on 

the nanocluster size as well as the size and material of the semiconductor.30,31 Several 

studies have reported ultrafast electron transfer into the conduction band of 

TiO2 nanocrystals after an excitation on resonance with the plasmon band.32–

34 Excitation above the Fermi level permits excited electrons to cross the Schottky 

barrier leading to electron transfer from gold to TiO2.35 Excitation above the TiO2 band 

gap in colloidal suspensions of gold nanoclusters adsorbed to TiO2 nanoparticles in 

ethanol-toluene causes electron transfer from TiO2 to gold for photocatalytic reduction 

reactions and size-dependent Fermi level shifts with larger shifts for 

smaller nanocluster sizes.36,37 An opposite size-dependent trend is observed for gold-

TiO2 nanocomposites in water, where a more negative Fermi energy shift occurs for 

larger gold nanocluster sizes.38 Understanding the relationship between the 

semiconductor-metal nanocomposite size and morphology with the resulting excited-

state dynamics is critical for the development, control, and optimization of the 

nanomaterial catalytic properties.39 

In this paper, we report investigations on the ultrafast excited-state dynamics of 

TiO2-Au nanocomposites composed of size-dependent gold nanocluster shells 

surrounding a TiO2 core in colloidal suspension in water. The electron-phonon and 
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phonon-phonon scattering lifetimes are found to be constant for the 

different nanocluster shell sizes. The decay of the induced excitation band centered at 

480 nm is characterized by two lifetimes corresponding to excited-state electrons from 

the gold interband transition and size-dependent electron transfer between 

the gold nanocluster shell and the TiO2 core. In addition, size-dependent periodic 

oscillations are observed at the plasmon depletion band and are attributed to coherent 

acoustic phonons of the gold nanocluster shell. 

2.2. Synthesis of TiO2-Au Nanocomposites 

 The TiO2-Au nanocomposites are prepared by hydrolysis of titanium (IV) 

tetraisopropoxide (Ti[OCH(CH3)2]4) (TTIP) followed by the reduction of gold chloride 

(HAuCl4) at the TiO2 nanoparticle surface.39 All chemicals are purchased from Sigma-

Aldrich and are used without further purification in ultrapure water. Briefly, the 

TiO2 colloidal suspension is produced by acidifying 200 ml of water with perchloric acid 

(HClO4) to a final pH of 1.5 under vigorous stirring followed by the dropwise addition of 

3.0 ml of 0.35M TTIP in ethanol (EtOH). The reaction flask is then covered with parafilm 

and stirred vigorously for 20 min. Three different suspensions of gold-capped 

TiO2 nanocomposites are prepared by adding 4 ml of the TiO2 colloid suspension to 0.7 

ml, 1.4 ml, and 2.0 ml, respectively, of 30 mM gold chloride solution, with the total 

volume of the solution subsequently adjusted to 100 ml by adding ultrapure water. The 

relative concentrations of HAuCl4 are varied in these solutions to achieve molar 

concentration ratios of [TiO2]:[Au] of 1:1, 1:2, and 1:3, respectively. Finally, 5 ml of a 1 

mM solution of the reducing agent, sodium borohydride (NaBH4) in water, is added 
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dropwise under vigorous stirring over approximately 20 min to each solution until a deep 

red color change is observed. 

2.3 TiO2-Au Characterization 

 Transmission electron microscopy (TEM) images and the corresponding 

extinction spectra of the different TiO2-Au nanocomposite samples are shown in 

Figure 2.1. The size distributions of the nanoparticles are obtained after surveying more 

than 100 nanoparticles for each sample. Additional TEM images of 

the nanoparticles are shown in Appendix A.55 All nanoparticles and nanocomposites are 

observed to be very spherical in shape. The average diameter of the 

TiO2 nanoparticles is measured to be 9.9 ± 0.4 nm. The average diameters of the 1:1, 

1:2, and 1:3 [TiO2]:[Au] nanocomposites are measured to be 19.1 ± 0.4 nm, 21.9 ± 0.3 

nm, and 24.3 ± 0.4 nm, respectively. Although the spatial resolution of the electron 

microscopy used in this study is insufficient to clearly resolve the size distribution and 

morphology of individual gold nanoclusters on the TiO2 nanoparticle surface, the 

average gold nanocluster shell thickness can be estimated from the increases of 

the nanoparticle sizes by the TEM measurements, following previous comparative 

investigations.39 Using this approach, the thickness of the gold nanocluster shell is 

estimated to be 4.6 ± 0.3 nm, 6.0 ± 0.3 nm, and 7.2 ± 0.3 nm for the 1:1, 1:2, and 1:3 

[Au]:[TiO2] nanocomposite samples, respectively. 
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Figure 2.1. Transmission electron microscopy of (a) 1:1, (b) 1:2, (c) 1:3 TiO2-Au 
nanocomposites and (d) precursor TiO2 nanoparticles. The scale bars correspond to 40 
nm. (e) Extinction spectra of colloidal TiO2 nanoparticles (black) and TiO2-Au 
nanocomposites with 1:1 (red), 1:2 (blue), and 1:3 (green) [TiO2]:[Au] ratios, 
respectively.  
 
2.4 Transient Absorption Setup 

The transient absorption setup consists of an amplified titanium:sapphire laser 

system, an optical parametric amplifier (OPA), an optical setup, and a fiber optic 

spectrometer with a charge-coupled device detector (Figure 2.2).18,40 The laser 

produces 0.7 mJ, 75 fs pulses centered at 800 nm with a repetition rate of 10 kHz. A 

90/10 beam splitter is used to separate the pump and probe beams. The pump beam is 

passed through an OPA to generate 400 nm, 5 μJ pump pulses. The probe beam is 

focused into a fused quartz flow cell containing water to generate the femtosecond 

white light probe pulses that are refocused to a spatial overlap with the pump pulse at 

the sample, which is contained in a 3 mm fused quartz cell under constant stirring. The 

pump-probe temporal delay is controlled using a retroreflector on a computer-controlled 
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translation stage. A computer-controlled beam block opens and shuts on the pump 

pulse in synchronization with an automated file saving program, and 60 spectra at 1 s 

acquisitions are taken for each time step. Several time-resolved transient 

absorption spectral scans are taken for each sample for statistical analysis. 

 
Figure 2.2. Transient absorption optical setup. 
 
2.5 Results and Discussion 

 Pump-probe transient absorption spectroscopy is used to investigate the excited-

state dynamics of the colloidal TiO2-Au nanocomposites. Figure 2.3 shows the 

transient absorption spectra of the colloidal samples at different pump-probe time 

delays using 400 nm excitation pulses for the (a) 1:1, (b) 1:2, and (c) 1:3 

[TiO2]:[Au] ratios, respectively. As in the case of free colloidal gold nanoparticles, the 

transient absorption spectra are described by a positive excited-state absorption band 

centered near 480 nm followed by a negative depletion band centered near 550 

nm.14,15 The positive band centered near 480 nm is consistent with the well-established 
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interband transition region in the gold nanoclusters. The negative depletion band 

centered near 550 nm is consistent with the depletion of plasmon electrons.14,15 By 

careful analysis of the transient absorption data, information on the optical and 

electronic interactions between the gold nanoclusters and the TiO2 nanoparticle surface 

can be obtained.  

 Figure 2.4 shows the time-dependent transient absorption profiles of 

the colloidalTiO2-Au nanocomposites with (a) 1:1, (b) 1:2, and (c) 1:3 [TiO2]:[Au] ratios, 

respectively, at probe wavelengths of 480 nm (blue data points) and 550 nm (red data 

points). The time-dependent transient absorption profiles measured at 550 nm are fit 

with a biexponential function to determine the excited-state lifetimes due to electron-

phonon scattering and phonon-phonon scattering.14,15 
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Figure 2.3. Transient absorption spectra of colloidal TiO2-Au nanocomposites at 
different time delays after 400 nm excitation pulses with (a) 1:1, (b) 1:2, and (c) 1:3 
[TiO2]:[Au] ratios, respectively. 
 
The electron-phonon scattering lifetimes are 3.0 ± 0.3 ps, 3.3 ± 0.5 ps, and 3.2 ± 0.2 ps 

for the 1:1, 1:2, and 1:3 [TiO2]:[Au] ratios, respectively. The phonon-

phonon scattering lifetimes are 49 ± 6 ps, 53 ± 8 ps, and 55 ± 8 ps for the 1:1, 1:2, and 

1:3 [TiO2]:[Au] ratios, respectively. Our previous studies of colloidal 54 nm gold 
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nanospheres using the same experimental setup obtained electron-phonon and 

phonon-phonon scattering lifetimes of approximately 3 ps and 100 ps, 

respectively.18 The electron-phonon scattering lifetimes from the TiO2-

Au nanocomposites correspond with previous measurements of colloidal gold 

nanoparticles. Additionally, the electron-phonon scattering lifetimes are similar for the 

three samples to within experimental uncertainty. These results agree with previous 

work that showed the electron-phonon scattering lifetime is generally independent of the 

size and shape for gold nanoparticles of sizes larger than about 10 nm,17,19,41,42 which 

suggests that the gold nanocluster shells in the TiO2-Au nanocomposites are large 

enough so that confinement effects can be neglected.19,43,44 However, the phonon-

phonon scattering lifetimes from the TiO2-Au nanocomposites are considerably faster 

than the corresponding lifetime in gold nanoparticles, and these lifetimes remain the 

same to within the experimental uncertainty for the three colloidal TiO2-

Au nanocomposite samples. The phonon-phonon scattering lifetime is known to depend 

on the surrounding medium of the gold nanoclusters caused by differences in the rate of 

energy transfer.45,24 The faster phonon-phonon scattering lifetimes of TiO2-

Au nanocomposites compared to gold nanoparticles can be explained due to the much 

higher thermal conductivity of TiO2 compared to water, leading to faster heat transfer. 

However, the complicated structure of the porous, 

inhomogeneous gold nanocluster shell surrounding the TiO2 core requires additional 

characterizations in order to determine the total gold surface area in contact with water 

and TiO2 for a better understanding of the effect of energy transfer on the phonon-
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phonon scattering lifetimes. The size-dependent superimposed oscillations are due to 

acoustic phonons and will be discussed later.  

The transient absorption time profiles measured at 480 nm are fit with 

biexponential functions with corresponding lifetimes attributed to the excited-state decay 

of electrons in the gold interband transition with an additional lifetime attributed 

to electron transfer between the gold nanoclusters and the TiO2 conduction band. The 

lifetimes associated with the interband transition in gold are measured to be 7.9 ± 0.3 

ps, 8.2 ± 0.2 ps, and 8.5 ± 0.3 ps for the 1:1, 1:2, and 1:3 [TiO2]:[Au] ratios, respectively. 

These lifetimes are the same to within the experimental uncertainty. 
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Figure 2.4. Transient absorption time profiles of colloidal TiO2-Au nanocomposites at 
480 nm and 550 nm with (a) 1:1, (b) 1:2, and (c) 1:3 [TiO2]:[Au] ratios, respectively. 
 

The lifetimes associated with the electron transfer between the gold and 

TiO2 nanomaterials are determined to be 33.1 ± 0.4 ps, 7.5 ± 0.1 ps, and 4.2 ± 0.1 ps 

for the 1:1, 1:2, and 1:3 [TiO2]:[Au] ratios, respectively. These lifetimes become faster as 

the gold nanocluster shell size increases. The net electron transfer from the gold to the 
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TiO2 conduction band at the metal-semiconductor junction occurs upon photoexcitation 

at time zero on the time scale of the electron-electron scattering, which occurs faster 

than the current experimental temporal resolution. As the pump-probe time increases, 

back electron transfer from the TiO2 to the gold nanocluster shell occurs, corresponding 

to an eventual relaxation back to the global ground state. Larger gold nanoclusters have 

a larger density of states near the Fermi level leading to a faster electron-hole 

recombination rate and a shorter electron transferlifetime.46 

Figure 2.5 shows the decay spectra obtained using the global analysis 

technique47,48 for a more detailed analysis of the transient absorption spectroscopy of 

the colloidal (a) 1:1, (b) 1:2, and (c) 1:3 [TiO2]:[Au] nanocomposites, respectively. The 

transient absorption time-profiles are fit using four exponential functions and an offset, 

given by: 

𝐼(𝑡) = 𝑦0 + 𝐴𝑖𝑏𝑒
−𝑡

𝜏𝑖𝑏 + 𝐴𝑒𝑡𝑒
−𝑡

𝜏𝑒𝑡 + 𝐴𝑒𝑝𝑒
−𝑡

𝜏𝑒𝑝 + 𝐴𝑝𝑝𝑒
−𝑡

𝜏𝑝𝑝                              (2.1) 

where 𝐼(𝑡) is the time-dependent transient absorption intensity at a given 

wavelength, 𝑦0 is a constant offset, and 𝐴𝑖𝑏,⁡𝐴𝑒𝑡,⁡𝐴𝑒𝑝, and 𝐴𝑝𝑝 are the wavelength-

dependent amplitudes of the excited-state decays of the interband transition, 

the electron-transfer, the electron-phonon scattering, and phonon-phonon scattering, 

respectively, with the corresponding lifetimes,𝜏𝑖𝑏,⁡𝜏𝑒𝑡,⁡𝜏𝑒𝑝, and 𝜏𝑝𝑝 that describe these 

dynamics. The decay spectra in Figure 2.5 show the wavelength-dependent amplitudes 

of the four dynamic processes for the different nanocomposite samples. The electron-

phonon scattering lifetimes obtained from the global analysis fits for the 1:1, 1:2, and 1:3 

[TiO2]:[Au] nanocomposites are 3.0 ± 0.3 ps, 3.3 ± 0.5 ps, and 3.2 ± 0.2 ps, respectively. 

Additionally, the obtained phonon-phonon scattering lifetimes are 49 ± 6 ps, 53 ± 8 ps, 
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and 55 ± 8 ps, for the 1:1, 1:2, and 1:3 [TiO2]:[Au] nanocomposites, respectively. The 

obtained interband transition lifetimes are 7.9 ± 0.3 ps, 8.2 ± 0.2 ps, and 8.5 ± 0.3 ps, 

for the 1:1, 1:2, and 1:3 [TiO2]:[Au] nanocomposites, respectively. The obtained electron 

transfer lifetimes are 33.1 ± 0.4 ps, 7.5 ± 0.1 ps, and 4.2 ± 0.1 ps, for the 1:1, 1:2, and 

1:3 [TiO2]:[Au] nanocomposites, respectively. These values are all in agreement with 

the results from the transient absorption time profiles. 

 The global analysis decay spectra associated with each dynamic process provide 

important spectral characterizations of the TiO2-Au nanomaterial. The interband 

transition decay spectrum is centered near 480 nm, followed by the electron 

transfer decay spectrum centered near 485 nm. These decay spectra approach zero 

amplitude, to within the experimental uncertainty, for wavelengths greater than 520 nm. 

The electron-phonon scattering and phonon-phonon scattering decay spectra are both 

centered near 550 nm. The amplitudes of these electron-phonon and phonon-phonon 

decay spectra approach zero to within experimental uncertainty at wavelengths below 

500 nm. This separation in the decay spectra allows the 480 nm and 550 nm time 

profiles to be accurately treated using separate biexponential fits with different lifetimes. 
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Figure 2.5. Decay spectra obtained using a sum of exponential fits for global analysis of 
the transient absorption results from (a) 1:1, (b) 1:2, and (c) 1:3 [TiO2]:[Au] 
nanocomposites, respectively. 
 

The interband transition decay spectra obtained from global analysis are positive 

in amplitude while the electron transfer decay spectra are negative. This indicates that 

the electron transfer causes a net depletion from the electronic population of 
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the sp band associated with the interband transition. A positive excited-state absorption 

band at wavelengths longer than 600 nm, attributed to thermally 

excited plasmon electron distributions, is observed for the 1:2 and 1:3 samples. 

However, this positive band is not observed for the 1:1 sample. This agrees with 

previous measurements that observe more prominent hot electron excited-

state absorption in this spectral region for larger nanoparticle sizes.15 

Figure 2.6 shows the time-dependent differences between the experimental 

results and the biexponential best fits for the TiO2-Au nanocomposites with (a) 1:1, (b) 

1:2, and (c) 1:3 [TiO2]:[Au] ratios measured at 550 nm. The resulting oscillations are 

attributed to acoustic phonons of the plasmonic gold nanocluster shell surrounding the 

TiO2 core due to the characteristic spectroscopy, frequencies, and damping times.49–

52 The residual oscillations of the phonons are fit using a sine function given by: 

 𝐼(𝑡) = 𝑦0 + 𝐴𝑒
−𝑡

𝜏𝑑 sin(2𝜋𝑓𝑡 + 𝜑)                                          (2.2) 

where 𝑓, 𝜑, and 𝜏𝑑 are the frequency, phase shift, and phonon damping time, 

respectively. The phonon frequencies obtained from the fits are 0.35 ± 0.02 ps−1, 0.26 ± 

0.02 ps−1, and 0.22 ± 0.01 ps−1 for the 1:1, 1:2, and 1:3 samples, respectively. The 

corresponding phonon damping times are 108 ± 7 ps, 106 ± 8 ps, and 110 ± 7 ps for the 

1:1, 1:2, and 1:3 samples, respectively. The size-dependent 

acoustic phonon frequencies are consistent with an inhomogeneous, porous gold shell 

composed of aggregated nanoclusters.53 Figure 2.7 shows the trend in experimental 

size-dependent phonon frequencies. Additional discussion on the phonon frequencies 

compared to different nanocomposite architectures is discussed in Appendix A.55 More 
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work is still needed to accurately characterize the gold nanocluster shell surrounding the 

TiO2 core, including size distribution measurements of the nanoclusters and pores. 

 

 
Figure 2.6. Residual signals from the transient absorption time profiles integrated at 550 
nm after subtracting the biexponential best fits, showing the phonon oscillations for the 
different TiO2-Au nanocomposites samples with (a) 1:1, (b) 1:2, and (c) 1:3 [TiO2]:[Au] 
ratio, respectively, along with the corresponding fits. 
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The acoustic phonon damping times are known to depend on factors such as 

energy transfer to the surrounding environment, acoustic phonon coupling to 

other phonon modes in the nanoparticle, and dephasing of the phonon frequencies due 

to polydispersity of the sample.50 When the damping is dominated by either 

polydispersity dephasing or energy transfer to a homogeneous surrounding medium, 

the damping time 𝜏𝑑 is expected to be proportional to 

the nanoparticle radius.50,54 However, these descriptions apply to 

isolated nanoparticles and do not account for the porous nanocluster shell architecture 

in the TiO2-Au nanocomposites studied here. The phonon damping times of 

the gold nanocluster shells surrounding the TiO2 nanoparticles are measured to be 

constant for the different nanocomposite sizes, to within experimental uncertainty. Since 

the gold nanoclusters have surface contact with both TiO2 and water, and form 

aggregated contact with neighboring nanoclusters in an extended porous shell 

architecture, the effect of a heterogeneous surrounding will likely result in deviations 

from an ideal model. Transient absorption spectroscopy provides key information on the 

complicated spectroscopic and dynamic processes, including plasmon depletion, 

interband transitions, electron transfer, and acoustic phonon oscillations, occurring in 

these colloidal TiO2-Au nanocomposites. 
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Figure 2.7. Size-dependent frequencies of the phonon oscillations of gold nanoclusters 
at the surface of colloidal TiO2 nanoparticles.  
 
2.6 Conclusion  

 The ultrafast excited-state dynamics of colloidal size-dependent TiO2-

Au nanocomposites in water are investigated using transient absorption spectroscopy. 

The average sizes of the gold nanocluster shells are determined using transmission 

electron microscopy for different molar concentration ratios of TiO2 to Au. The transient 

absorption time profiles measured at the peak of the plasmon depletion band are fit to 

biexponential functions to obtain the lifetimes of the electron-phonon and phonon-

phonon scattering processes, where the plasmon depletion dynamics are shown to be 

independent of the size of the gold nanocluster shells surrounding the 

TiO2 nanoparticle core. The relaxation dynamics of the excited-state absorption band 

centered at 480 nm are fit with different biexponential functions to determine the 

lifetimes associated with the electronic interband transition in gold and the electron 

transfer between the gold and TiO2 nanomaterials. While the interband transition 

lifetime is observed to remain constant under changing nanocluster shell sizes, 

the electron transfer lifetimes were shown to decrease significantly as 

the gold nanocluster shell size increases due to increased density of states near the 
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Fermi level. Additionally, size-dependent oscillations in the plasmon depletion transient 

absorption time profiles were observed and are attributed to acoustic phonon breathing 

modes of the gold nanocluster shells with frequencies that decrease and damping times 

that remain constant as the nanocluster shell sizes increase. These findings provide 

important information that can be useful for improving catalytic efficiencies 

in plasmonic TiO2-Au nanocomposites. 
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Chapter 3. Monitoring the Seed-Mediated Growth of Gold 
Nanoparticles using In-Situ Second Harmonic Generation 
 
3.1 Introduction 

 Colloidal gold nanoparticles have received considerable attention due to their 

potential applications in molecular sensing, photovoltaics, catalysis, imaging, 

nanomedicine, and photothermal therapy.1-14 These applications rely heavily on the 

localized surface plasmon resonance (LSPR) from coherent oscillations of free 

electrons that lead to optical field enhancements at the nanoparticle surface.15 The 

optical properties of gold nanoparticles can be tuned depending on the desired 

application by changing the nanoparticle size, shape, and surrounding medium.16,17 

Varying the nanoparticle size causes only minor changes in the extinction spectra for 

gold nanospheres of diameters ranging from approximately 12 to 200 nm.13 However, 

varying the gold nanosphere shape by elongating it into a nanorod18  or by creating a 

bumpy “urchin-like” surface19 leads to pronounced changes in the associated optical 

properties. Therefore, developing synthetic protocols for greater control and tunability 

over the associated surface chemistry is critical for developing gold nanoparticle-based 

applications.13,16 

 Citrate-stabilized gold nanoparticles prepared by the reduction of a gold chloride 

salt (HAuCl4) with sodium citrate (Na3C6H5O7) in water remains one of the most 

common synthetic methods for producing spherical gold nanoparticles.20 By varying 

reaction conditions, such as the citrate to gold salt ratio and the aqueous pH, it is 

possible to obtain gold nanoparticles ranging from 5 to 150 nm in diameter.21 However, 

the gold nanoparticle sample polydispersity is often very large with nonuniform surfaces 

when using this method to prepare nanoparticles larger than 30 nm in diameter.22,23 In 
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order to gain better control over the nanoparticle size and shape distributions, an 

additional seed-mediated growth step can be used where additional gold salt is 

selectively reduced on the surface of the colloidal citrate-stabilized gold seeds using 

hydroquinone. This seed-mediated nanoparticle growth procedure results in spherical 

gold nanoparticles with sizes ranging from 50 to 200 nm while minimizing unwanted 

secondary nucleation for improved monodispersity and uniform surface morphologies.24  

 Characterization techniques such as transmission electron microscopy (TEM), 

scanning electron microscopy (SEM), and atomic force microscopy (AFM) are excellent 

for studying nanoparticle size and shape distributions ex-situ and post-synthesis. 

However, monitoring nanoparticle surface formation in-situ can provide important 

additional insight into the growth dynamics for better control over surface and optical 

properties. The growth of gold nanoparticles by citrate reduction in water has been 

studied using in-situ small-angle X-ray scattering (SAXS) where the results indicate that 

the gold nanoparticles formation occurs in a four step mechanism.25 Additionally, gold 

nanoshells grown on silica microparticles have been studied using in-situ nonlinear 

second-harmonic scattering (SHS) where the large SHS signal during the growth 

process is attributed to electric-field enhancements in gaps of incomplete or uneven 

nanoshells.26 Here, large nonlinear optical field enhancements are dependent on the 

metal nanoparticle shape as well as the surface roughness. For example, fundamental 

studies have investigated the SHG electric field enhancements from rough metal 

surfaces and sharp metal tips, both experimentally and theoretically, where the localized 

plasmon resonance contributes to the electrostatic “lightning-rod effect.”27,28  
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 Second-harmonic generation (SHG) is a noninvasive nonlinear spectroscopic 

technique in which two incident photons of frequency ω coherently add to produce a 

third photon of frequency 2ω.29-33 This process is forbidden in bulk media with a center 

of inversion symmetry. However, SHG is allowed at interfaces, making SHG a powerful 

tool for studying colloidal nanoparticle surfaces. Previous work has used SHG to 

investigate TiO2 microparticles,34 liposomes,35,36 and metal nanoparticles made of gold, 

silver, and gold-silver alloys.3,4,37-43 In-situ SHG coupled with extinction spectroscopy 

provides important information that can be used to characterize the nanoparticle growth 

dynamics for potential advances in colloidal nanoparticle engineering and associated 

applications. Here we demonstrate the versatility of SHG by monitoring the seed-

mediated growth process of gold nanoparticles using in-situ SHG and extinction 

spectroscopy. Time-dependent changes in the SHG signal as a function of the reaction 

time are fit to exponential functions to obtain the associated growth lifetimes under 

different initial gold seed concentrations. The final nanoparticle sizes are determined 

using extinction spectroscopy and TEM measurements. The measured growth lifetimes 

depend on the final nanoparticle diameter where larger nanoparticles have 

corresponding longer growth lifetimes. By comparing the in-situ SHG results with 

extinction spectroscopy, an intermediate growth stage attributed to a rough, nonuniform 

nanoparticle surface is observed through inhomogeneous spectral broadening followed 

by a narrowing and blue-shifting of the plasmon spectrum. This correlates with the in-

situ SHG results where a size-dependent maximum in the SHG signal is measured due 

to the rough, bumpy surface during the initial nanoparticle growth process. The 

versatility of in-situ SHG measurements combined with in-situ extinction spectroscopy 
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enables a wide range of investigations for studying nanoparticle growth and 

functionalization in real time for developing new nanomaterials and associated 

applications.  

3.2 Gold Nanoparticle Synthesis 

 The colloidal gold nanoparticle samples are prepared by a seeded-growth 

technique using hydroquinone (HQ) as the reducing agent.23, 24 The gold seeds are 

prepared by adding 900 µL of 34 mM sodium citrate (Na3C6H5O7) to 30 mL of 290 µM 

gold tetrachloride (HAuCl4) in water under boiling and vigorous stirring conditions. Five 

gold nanoparticle samples of different sizes are synthesized by adding 25 µL, 30 µL, 35 

µL, 40 µL, and 50 µL of the prepared gold seeds, respectively, to 25 µL of 29 mM 

HAuCl4 which are all diluted to a final volume of 2.5 mL with ultrapure water. The 

addition of the reducing agents using 25 µL of 0.03 M HQ and 5 µL of 34 mM sodium 

citrate initiates the growth process. For each sample, the final solution is left to stir at 

room temperature for 60 minutes.  

3.3 In-Situ Second Harmonic Generation and Extinction Spectroscopy  

 The SHG setup uses an ultrafast oscillator laser, an optical setup, and a high 

sensitivity charge-coupled device (CCD) detector connected to a 

monochromator/spectrograph, modified from our previous work.3,4 A titanium:sapphire 

oscillator laser produces 75 fs pulses centered at 800 nm with a repetition rate of 80 

MHz and an average power of 2.7 W. The laser beam is attenuated to 600 mW and is 

focused into a 1 cm quartz cuvette containing the gold seeds, HAuCl4, HQ, and sodium 

citrate in the various gold nanoparticle reaction conditions. An optical filter is placed in 

front of the cuvette to remove any residual SHG prior to the sample. Another filter is 
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placed after the sample to remove the fundamental light while transmitting the SHG, 

which is collected in the forward direction and refocused into the monochromator. This 

optical setup allows for the detection of the SHG signal as a function of time in order to 

capture nanoparticle reaction dynamics. At the same time, the in-situ extinction 

spectroscopy is measured using a broadband tungsten filament lamp which is 

collimated using a pair of lenses and focused orthogonal to the SHG beam and into the 

quartz cuvette with the resulting spectra detected using a fiber optic spectrometer 

detector. For each trial, the precursor gold seeds and HAuCl4 are added in ultrapure 

water for a baseline SHG measurement. At time zero (t=0), HQ and sodium citrate are 

added simultaneously to initiate the nanoparticle growth process.  

3.4 Results 

 After the nanoparticle synthesis is completed, TEM images are acquired 

surveying approximately 200 nanoparticles for each nanoparticle sample. The 

nanoparticle sizes are measured and fit using a log-normal distribution to obtain the 

average nanoparticle diameter, as shown in the Supporting Information, for each 

sample. Figure 3.1 shows TEM images that are representative of each gold 

nanoparticle sample with sizes of 92.2 ± 4.0 nm, 86.1 ± 4.3 nm, 72.6 ± 5.3 nm, 71.3 ± 

4.8 nm, and 65.6 ± 5.0 nm synthesized from 25, 30, 35, 40, and 50 μL of precursor gold 

seeds, respectively. The average nanoparticle size is also confirmed by fitting each final 

extinction spectrum using Mie theory with corresponding sizes of 94, 89, 76, 72, and 66 

nm, respectively, which are within the standard deviations of the sizes measured from 

TEM. 
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Figure 3.1. Representative TEM images of gold nanoparticles with average sizes of (a) 

92.2 ± 4.0 nm, (b) 86.1 ± 4.3 nm, (c) 72.6 ± 5.3 nm, (d) 71.3 ± 4.8 nm, and (e) 65.6 ± 
5.0 nm prepared using 25, 30, 35, 40, and 50 μL of precursor gold seeds, respectively. 
 
The final extinction spectrum using 25 μL of precursor gold seeds is shown in Figure 

3.2, compared with the Mie theory fit. The results from the other nanoparticle samples 

are shown in Appendix B. 

 
Figure 3.2. Final extinction spectrum (red line) of gold nanoparticles prepared using 25 
μL of precursor gold seeds compared to corresponding fit (black line) from Mie theory.  
 
 The temporal evolution of the SHG electric field for each nanoparticle sample is 

shown in Figure 3.3. 
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Figure 3.3. SHG electric field (red squares) as a function of reaction time of gold 
nanoparticles using (a) 25 μL, (b) 30 μL, (c) 35 μL, (d) 40 μL, and (e) 50 μL of precursor 
gold seeds, respectively, compared to the fits (black lines). 
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The SHG electric field is taken as the square root of the integrated SHG signal. Before 

the growth process is initiated at time zero, a baseline SHG intensity is measured for all 

samples, which contains contributions of SHG from the precursor seeds as well as 

hyper-Rayleigh scattering44 from the aqueous solvent. After adding the reducing agents 

HQ and sodium citrate, a sharp increase in the SHG electric field is observed followed 

by a size-dependent exponential decay for all samples. Representative in-situ SHG 

spectra of the 25 μL precursor gold sample at selected reaction times are shown in 

Figure 3.4. Additional in-situ SHG spectra from other samples are displayed in the 

Supporting Information. The in-situ SHG spectra are fit with a Gaussian function to 

obtain a central wavelength of 400 nm and a full width at half-maximum of 4.8 nm, 

which are constant values throughout the growth process for each nanoparticle sample.  

 
Figure 3.4. SHG spectra for gold nanoparticles prepared using 25 μL of precursor gold 
seeds at different times during the reaction. 
 
 The SHG electric field time profile for each nanoparticle sample provides surface-

sensitive information on the seed-mediated growth process. A maximum in the SHG 

electric field is observed in the initial stage of growth, shortly after time zero. The peak 

SHG for the 25 μL precursor gold seed sample shows approximately an order of 

magnitude increase in SHG intensity, which can be attributed to the initial stage in the 
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reaction, characterized by inhomogeneous growth of the nanoparticles with rough 

surfaces giving rise to plasmonic hot-spots. As the reaction proceeds, the sharp SHG 

feature exponentially decays where the characteristic growth lifetime is observed to be 

longer for larger nanoparticles. This indicates that the second stage in the reaction is 

described by the nanoparticle surface becoming more smooth and uniform over time, 

leading to a decrease plasmonic hot spots and a lower SHG intensity. Finally, the 

nanoparticles reach their final morphology characterized by a relatively smooth surface 

where the reaction is complete and the SHG signal remains constant over time. 

 The in-situ extinction spectra from gold nanoparticle growth provides additional 

and complementary insight on the seed-mediated nanoparticle reaction. Representative 

extinction spectra at various times during the reaction for the 25 μL precursor gold seed 

sample are shown in Figure 3.5. Additional in-situ extinction spectra are shown in 

Appendix B.  

 
Figure 3.5. In-situ extinction of gold nanoparticles prepared using 25 μL of precursor 
gold seeds at different times during the reaction. 
 
Prior to the start of the nanoparticle growth reaction, a baseline extinction spectrum is 

taken showing the absorption and scattering profile of the 15 nm gold precursor seeds 
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along with the added gold chloride solution. Immediately after the addition of the 

reducing agents, a broad plasmon peak centered near 600 nm is observed, which is 

attributed to a polydisperse distribution and an uneven, rough nanoparticle surface.22 As 

the nanoparticle growth reaction proceeds, this broad plasmon peak narrows to a 

wavelength centered near 575 nm indicating a more uniform surface and reduction in 

polydispersity. During the final stage of the reaction the plasmon peak continues to 

narrow and blue shifts as the nanoparticle surface reaches its final, smooth morphology 

with a final spectrum that is very stable over time and agrees with the corresponding 

Mie theory fit. Previous studies have investigated the formation of a “blackberry-like” 

intermediate stage that smoothens out over the course of the reaction, which is 

consistent with our in-situ SHG results.45  

 The size-dependent growth dynamics of the gold nanoparticles are analyzed in 

more detail to obtain the corresponding growth lifetimes. The SHG electric field time 

trace for each nanoparticle sample is fit using an exponential function given by 

𝐸𝑆𝐻𝐺(𝑡) = 𝑦0 + 𝐴𝑒−
𝑡

𝜏, where 𝑡 is the reaction time after the addition of the reducing 

agents, 𝜏 is the growth lifetime, 𝐴 is the amplitude, and 𝑦0 is the offset. The fits for each 

nanoparticle sample are shown in Figure 3.4 and the best fit parameters are tabulated 

in the Supporting Information. The resulting growth lifetimes are plotted as a function of 

the final nanoparticle diameter Figure 3.6 (a). These growth lifetimes decrease as the 

final nanoparticle diameter decreases with values of 1.66 ± 0.01 min, 1.50 ± 0.01 min, 

1.06 ± 0.08 min, 0.98 ± 0.03 min, and 0.37⁡±⁡0.23 min for the 94 nm, 90 nm, 75 nm, 72 

nm, and 66 nm nanoparticles, respectively. The general trend in these lifetimes is in 
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agreement with previous studies observing that the growth rate is proportional to the 

amount of precursor seeds.46 

 
Figure 3.6. (a) Analysis of growth lifetime, τ, as a function of final nanoparticle diameter. 
(b) Peak SHG electric field as a function of final nanoparticle diameter. (c) Final SHG 
electric field per nanoparticle. 
 
 The in-situ SHG time profiles and corresponding extinction spectra of the seed-

mediated gold nanoparticle growth dynamics are consistent with a two-step process. 
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The first step is characterized by a rapid growth resulting in an uneven, bumpy surface 

and a high surface concentration of plasmonic hot spots. The second step is 

characterized by the nanoparticle surface becoming more smooth over time resulting in 

increased monodispersity, narrowing plasmonic spectra, and lower, more stable SHG 

signals as the nanoparticle surface reaches thermodynamic equilibrium under a 

characteristic size-dependent exponential growth lifetime. The peak SHG electric field, 

shown in Figure 3.6 (b), is observed to increase as the final nanoparticle diameter 

increases. The addition of sodium citrate reduces AuIII to AuI followed by the selective 

reduction by HQ of AuI adsorbed on the seed surface.19,24,45 Lower seed concentrations 

here correspond to higher concentrations of Au0 adsorbed to each nanoparticle surface 

to produce larger gold nanoparticles. A higher Au0 to seed ratio has been observed to 

promote the formation of urchin-like gold nanoparticles with high surface energy 

facets.19 These higher surface energy facets produce plasmonic hotspots corresponding 

to the large SHG signals observed here shortly after time zero. These uneven surface 

energy facets that form under high concentrations of Au0 in the presence of HQ become 

less bumpy in morphology over time,19 reaching a thermodynamic equilibrium 

corresponding to a relatively smooth gold nanoparticle surface according to a size-

dependent exponential time profile. Additionally, using the baseline SHG for each 

nanoparticle sample after the reaction is complete, the contribution to the SHG electric 

field per nanoparticle is determined, as plotted in Figure 3.6 (c). These results 

demonstrate that the larger gold nanoparticles have a higher SHG signal, in agreement 

with previous theoretical work on the enhancement of the second-harmonic field from 

different spherical nanoparticles.48,49 Overall, the in-situ SHG and extinction 
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measurements provide crucial insight for monitoring the colloidal seed-mediated gold 

nanoparticle growth reaction under varying synthesis conditions.  

3.5 Conclusion  

 In summary, we have demonstrated the versatility of in-situ SHG in the 

investigation of size-dependent seed-mediated gold nanoparticle growth dynamics in 

water. The in-situ SHG and extinction spectroscopy results are consistent with a two-

step growth process. During the first step of the nanoparticle growth reaction, rough and 

uneven surfaces are formed rapidly giving rise to plasmonic hot spots that dramatically 

enhance the SHG electric field and have corresponding broad, red-shifted plasmonic 

spectra. In the second step, the nanoparticle surface becomes smoother, reaching a 

thermodynamic equilibrium over a corresponding size-dependent exponential growth 

lifetime that results in a final nanoparticle sample with a lower, more stable SHG signal 

and corresponding narrower, blue-shifted plasmonic spectra that agrees with Mie 

theory. The seed-mediated nanoparticle growth lifetimes measured using in-situ SHG 

are faster for smaller final gold nanoparticle sizes, varying from 0.37 min to 1.7 min for 

final nanoparticle sizes of 66 nm and 93 nm, respectively. These in-situ SHG and 

extinction spectroscopy techniques provide complimentary information that can be used 

to monitor colloidal nanoparticle growth dynamics for improving nanomaterial synthesis 

and characterization.  
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Chapter 4. Ultrafast Carrier Dynamics in Self-Assembled 
La1-xSrxMnO3/SrTiO3 Heterostructures 
 
4.1 Introduction 

 Transition metal oxide (TMO) thin films and heterostructures have attracted the 

interest of the scientific community due to the manifestation of broken symmetry and 

dimensional confinement which create new forms of coupling between charge, orbit, 

spin, and lattice, leading to new functionalities.1 For perovskite manganites, 

manipulating the film or heterostructure dimensions reveals interesting phenomena 

such as thickness-dependent metal-insulator transitions, reemergent magnetic order, 

and ferroelectric behavior.2-4 These artificially structured materials are frequently 

investigated by very powerful methods capable of probing the ground state, but an 

important challenge is to probe excited states, especially those far from equilibrium. 

Ultrafast reflectivity measurements can be used to study these systems in highly non-

equilibrium exited states and to observe subsequent dynamical behavior on the 

timescales of electronic and atomic motion, offering insight on the nature of both 

electron-phonon and phonon-phonon interactions.5-7 We have grown self-assembled 

La1-xSrxMnO3/SrTiO3 (LSMO/STO) (001) structures which result in structural and 

compositional modulation near the interface, profoundly changing the electronic and 

magnetic properties of these thin films.8 In this chapter, using ultrafast reflectivity 

measurements we show novel excited-state relaxation dynamics and phonon 

oscillations in these LSMO/STO heterostructures.  

4.2 Sample Preparation 

 The sample used for this experiment is La1-xSrxMnO3 grown on a STO (001) 

substrate, in collaboration with Dr. Plummer’s research group at LSU, using pulsed 
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laser deposition under conditions described elsewhere.8 Briefly, a stoichiometrically 

precise compact-powdered La0.67Sr0.33MnO3 target is ablated using a high powered 

pulsed fiber laser. The ablated plasma condenses on the STO surface in a cell by cell 

deposition. Conventionally, this growth is done under 80 mTorr oxygen/ozone pressure 

while the samples used in this dissertation are grown in a 40 mTorr oxygen/ozone 

mixture creating relatively deficient oxygen conditions. Compared to conventionally 

grown LSMO thin films, these modified growth conditions create two distinct regions in 

the thin film as shown in Figure 4.1 where the 8-10 unit cell region (green) above the 

substrate contains a higher concentration of La ions relative to the bulk (blue).8 The high 

La concentration region at this interface alters the magnetic properties of the material 

and can manifest as spontaneous magnetic reversal. These interactions can be used 

for room temperature magnetic switching where the net magnetic moment of the thin 

film can be flipped by applying a weak magnetic field.8 

 
Figure 4.1. Thin-film of LSMO/STO showing the STO bulk (red), LSMO interface 
(green), and LSMO bulk (blue). 
 

The bulk structure of LSMO is rhombohedral with space group R3̅c (No. 167).9 

The material class of perovskites (ABO3) are unique in their octahedral tilt degrees of 

freedom which can be described shorthand using Glazer’s notation.10 For bulk LSMO 
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the Glazer notation is a-a-a-, which denotes equal tilting in the x, y, and z axes.11 STO 

possesses cubic structure where there is no tilt and rotation (a0a0a0).  

By simply tilting and/or rotating the oxygen cage, both structural and physical 

properties can be changed through doping. In the prepared La0.67Sr0.33MnO3 film, 

doping with Sr (green region Figure 4.1) causes a strain creating an octahedral oxygen 

tilt up to 6° due to the large ionic radii. In perovskites, chemical doping provides an 

avenue of control over the B-O-B orbital overlap by inducing unit cell strain.12 The 

La0.67Sr0.33MnO3/SrTiO3 (LSMO/STO) heterostructure is an interesting perovskite to 

study due to having the highest known Curie temperature (Tc) of perovskite manganites, 

which is a useful feature for device applications. The octahedral oxygen tilt dampens 

from its maximum value to 0° in 18 unit cells. Above that, the La concentration is 

reduced to its stoichiometric value, where the tilt and rotation vanishes. Conversely, for 

LSMO thin films not grown under oxygen deficient conditions, this octahedral oxygen tilt 

does not dampen and is prevalent throughout the bulk.  

4.3 Ultrafast Reflectivity Setup 

 The ultrafast reflectivity setup is shown in Figure 4.2. The setup consists of a 

Titanium:sapphire amplifier laser that produces 75 fs pulses centered at 800 nm with a 

1 kHz repetition rate at 3.6 mJ per pulse. A half-wave plate (λ/2) in combination with a 

polarizing beam splitter (PBS) is used to split the laser into pump and probe pulses of 

variable relative powers. The pump-probe time delay is controlled with a retroreflector 

on a computer-controlled delay stage. The pump pulse repetition rate is chopped at 500 

Hz and focused on the sample surface. The probe pulse is spatially and temporally 

overlapped with the pump pulse on the sample surface and the reflected probe pulse is 
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collimated and detected with a photodiode (PD) coupled to a lock-in amplifier. A variable 

neutral density (ND) filter is used for the power-dependent studies. 

 
Figure 4.2. Ultrafast reflectivity setup. 
 
4.4 Results and Discussion 

 The excited-state dynamics using 800 nm pump and probe pulses on a 70 unit 

cell LSMO/STO sample is investigated under varying pump powers. Previous studies 

report a broad absorption feature centered at 1.0 eV, which is interpreted as an intersite 

charge transfer of an electron from the lower energy Jahn-Teller eg level of a Mn3+ ion to 

the eg level of a neighboring Mn4+ ion as shown in Figure 4.3.13,14 Additionally, band 

structure calculations reveal that the 1.55 eV pulse energy correlates with the excited 

transition of the Mn3+ eg band.15 
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Figure 4.3. Optical transitions of Jahn-Teller eg levels from Mn3+ to Mn4+ when using 1.0 
eV excitation pulses. 
 
 Figure 4.4 (a) shows the time-resolved reflectivity using 40 mW pump and 5 mW 

probe pulses. Immediately after excitation with the intense pump laser pulse (t=0), the 

following excited-state relaxation is characterized by a 46.9⁡±⁡8.2 ps fast lifetime 

corresponding to electron-phonon coupling and a slower independent phonon-phonon 

coupling lifetime of 1325 ± 10 ps, which are obtained by fitting the experimental time-

resolved data to a biexponential function. Compared to LSMO studies found in 

literature, our lifetimes are an order of magnitude longer, indicating the significance of 

the oxygen-deficient growth conditions and the corresponding changes in the interfacial 

octahedral tilt on the resulting excited-state relaxation dynamics.16 Ballistic electron 

motion and electron-electron decay are processes that occur on a faster timescale than 

our femtosecond resolution.17 The measured long-lived phonon-phonon coupling 

lifetime (>1ns) for the LSMO/STO thin film implies that the phonons are the major 

energy carrier. This is due to the fact that the prepared LSMO/STO sample is a thin film 

with no bulk diffusive media to generate heat.17  
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Figure 4.4. (a) Time-resolved reflectivity using 40 mW pump pulses with (b) first 
biexponential fit subtraction (low energy phonons) and (c) second biexponential fit 
subtraction (higher energy phonons). 
  
 By subtracting the biexponential fit from the obtained data, two residual phonon 

frequencies can be seen as a fast oscillatory frequency superimposed on a slower 

frequency as shown in Figures 4.4 (b) and (c). Both oscillatory signals are fit with an 

exponentially-damping sine function given by  

𝑅(𝑡) = 𝑦0 + 𝐴𝑒
(−

𝑡

𝜏𝑑
)
sin(2𝜋𝑓𝑡 + 𝜑)                                    (4.1) 

where 𝐴, 𝜏𝑑, 𝑓, and 𝜑 are the oscillatory amplitude, damping time, frequency, and 

phase, respectively. The lower energy phonons have a period of 261.7 ps and dephase 

within 1784 ± 310 ps. The higher energy phonons have a period of 21.2 ps (2 cm-1) and 

dephase within 285 ± 35 ps. 

 The ultrafast reflectivity measurements on the LSMO/STO thin film is repeated 

under varying pump powers for further characterization of the excited-state relaxation 

dynamics and associated material properties. Figure 4.5 (a) shows the time-resolved 
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reflectivity results using 15 mW pump and 5 mW probe pulses. At this lower pump 

power, the electron-phonon coupling lifetime is observed to be longer (228 ± 5 ps) while 

the phonon-phonon coupling lifetime is still on the order of 1 ns (1074⁡± 10 ps). The 

biexponential subtractions again reveal two oscillatory components where the lower-

energy period reduces to 561.8 ps and dephases in 1027 ± 322 ps while the higher-

energy period remains approximately the same at 21.9 ps and dephases in 377 ± 60 

ps.  

 
Figure 4.5. (a) Time-resolved reflectivity using 15 mW pump pulses with (b) first 
biexponential fit subtraction (low energy phonons) and (c) second biexponential fit 
subtraction (higher energy phonons). 
 
 Figure 4.6 shows the time-resolved reflectivity using 10 mW pump and 5 mW 

probe pulses at 800 nm. The electron-phonon coupling constant is again slightly longer 

at 314 ± 6 ps as the power continues to decrease while the phonon-phonon coupling 

remains on the order of a nanosecond (1300⁡± 9 ps). Both oscillatory periods of high 
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and low energy phonons remain relatively unchanged at 21.8 ps and 552.5 ps, while the 

dephasing times of the fast and slow components change to 405 ± 71 ps 

 and 1526 ± 633 ps, respectively. 

 
Figure 4.6. (a) Time-resolved reflectivity using 10 mW pump pulses with (b) first 
biexponential fit subtraction (low energy phonon) and (c) second biexponential fir 
subtraction (higher energy phonons). 
 
 Finally, as shown in Figure 4.7, when the pump power is reduced to 8 mW, the 

electron-phonon coupling increased to a lifetime of 468 ± 7 ps while the phonon-phonon 

coupling lifetime decreased to 972.8 ± 8.3 ps. In the powers used in these studies, the 

electron-phonon coupling lifetime is observed to decrease as the pump power 

increases, with values that vary from 511.6 ps to 46.9 ps as the pump power changed 

from 8 mW to 40 mW, respectively. Conversely, a lack of power dependent changes in 

the phonon-phonon coupling lifetime might be further supported by the highly symmetric 

LSMO crystal. Higher electron temperatures lead to faster electron-phonon coupling; 

however in this data, the constant phonon-phonon lifetimes indicate a relatively constant 

phonon or lattice temperatures. In order to fully understand this relationship, a precise 
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band structure calculation on this particular system is necessary along with additional 

theoretical and experimental work.  

 
Figure 4.7. (a) Time-resolved reflectivity using 8 mW pump pulses with (b) first 
biexponential fit subtraction (low energy phonon) and (c) second biexponential fit 
subtraction (higher energy phonons). 
 
 The slow decaying low energy phonon, to the best of our knowledge, has not 

been observed in the literature for these perovskites. One possible explanation is that 

the long-range structural modulation of the probe pulse causes interference between 

the two distinct tilt regions in LSMO. This long-range interaction is consistent with the 

long-lived lifetimes, stated previously, as a result of the highly ordered LSMO structure. 

The fast oscillations reveal a frequency of about 46 GHz (0.046 ps-1), likely relevant to 

other longitudinal acoustic phonon measurements in the literature.10,12  

 The power-dependent lifetimes are shown in Figure 4.8 where τep represents the 

electron-phonon lifetime and τd,fast represents the dephasing lifetime of the fast 

oscillatory phonon. In the powers surveyed in this study, both lifetimes shown in Figure 

4.8 decrease as the pump power is increased. These power-dependent lifetimes may 
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be caused by a two-temperature model where excited electrons have a much higher 

temperature than the lattice on ultrafast timescales. A table of all lifetimes can be found 

in Appendix C. Other lifetimes such as the phonon-phonon lifetime and the dephasing 

lifetime of the slower oscillatory phonon show much lower variation as a function of 

pump power, suggesting that the lattice temperature heating is not as significant as the 

electron temperature heating under the pump powers used in these studies, assuming a 

two-temperature model. Again, more experimental and theoretical work is needed on 

confirm this interpretation.  

 
Figure 4.8. Power-dependent lifetimes where τ1 is the electron-phonon lifetime and τd is 
the fast oscillation dephasing lifetime.  
 
 In the prepared LSMO thin film, tilt and non-tilt structures co-exist such that the 

interactions are different from samples commonly found in the literature. This would 

suggest the possibility of stronger anharmonic effects, greater structural variation, and 

more excited-state decay channels. To investigate the mechanisms for the altered 

ultrafast excited-state dynamics, our group is currently extending these studies in 

collaboration with Dr. Plummer’s research group, to investigate additional experimental 
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parameters by varying the thin film thickness, doping concentration, and oxygen levels 

to control the structural disorder. By increasing sample thickness, the low energy 

phonons, which are attributed to long-range structural modulations, should become less 

apparent and may vary in frequency. A thickness dependence in the phonon frequency 

should also verify the acoustic versus optical phonon designation. Furthermore, the 

effect of A-site doping on the dephasing time will allow us to confirm the vibrational 

frequencies originating from the octahedra. For more disordered systems, a faster 

dephasing time is expected from the existence of additional decay channels. 

4.5 Conclusion 

 In summary, we have investigated the ultrafast carrier dynamics of a self-

assembled LSMO/STO heterostructure using pump-probe reflectivity. The excited-state 

dynamics are characterized with a fast electron-phonon coupling lifetime which is 

observed to decrease as the pump power increases and a slower phonon-phonon 

coupling lifetime that remains relatively constant near 1 ns under varying pump powers. 

Additionally, two oscillatory frequencies were observed to be superimposed on the 

biexponential relaxation and are assigned to a high energy acoustic phonon and a low 

energy phonon. The dephasing time of the high energy phonons, with a frequency of 

about 0.046 ps-1, decreases as the pump power is increased. However, the dephasing 

time of the low energy phonon, with a frequency of about 0.0018 ps-1, remains relatively 

constant on the order of 1 ns for the range pump powers investigated. In order to fully 

understand the relationship of the electron-phonon and phonon-phonon lifetimes, 

additional experiments at higher powers will be done. These results will also be 

compared a reference LSMO sample using conventional growth conditions, similar to 
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previous studies in the literature, where there is no octahedral tilt region in the bulk. The 

investigations of excited-state dynamics play a crucial role in identifying structural and 

electronic interactions in highly complex systems, providing important insight that can 

help in developing new potential applications in advanced materials.  
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Chapter 5. Ultrafast Microscopy and Reflectivity of Laser Heating and 
Melting Dynamics 
 
5.1 Introduction 

 Laser additive manufacturing is an efficient, robust, and cost-effective way of 

creating three-dimensional (3D) materials with high precision. Compared to other 

additive manufacturing methods, selective laser melting (SLM) is one of the most 

promising techniques for producing three-dimensional high quality metal and metal alloy 

objects.1 In order to better understand and improve SLM for 3D printing of metal and 

metal alloy objects, the temporal dynamics of laser heating, melting,2 ablation, and 

resolidification3,4 processes need to be investigated on ultrafast timescales in the 

relevant bulk materials, thin films, powders, and nanomaterials. Studying these SLM 

processes on sub-picosecond timescales requires a femtosecond laser to produce the 

high energy densities to induce a phase transition5 at the metal or metal alloy surface in 

a pump-probe optical configuration. Structural changes in metal melting processes can 

occur thermally after laser electronic excitation through lattice vibrational modes,6 or 

nonthermally where the lattice destabilizes due to a large population of photoexcited 

electrons from bonding orbitals.7 Experimental techniques such as ultrafast pump-probe 

reflectivity, x-ray diffraction, and x-ray near-edge absorption spectroscopy have shown 

laser-induced solid-to-liquid phase transitions in metals like aluminum and gold.8-10 In 

this chapter, our progress on measuring ultrafast heating and melting dynamics at the 

surface of different metal, metal alloy, and semiconductor materials is described  

 We have constructed an ultrafast microscopy setup that utilizes single pump-

probe pulse imaging as well as an ultrafast reflectivity optical setup, with preliminary 

results reported here.  The laser melting dynamics in different samples such as metals, 
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semiconductors, and alloys were investigated with both ultrafast microscopy imaging 

and reflectivity setups under varying powers and wavelengths. We show preliminary 

results on germanium excited-state dynamics measured using ultrafast pump-probe 

reflectivity. We also demonstrate a series of power-dependent ultrafast reflectivity 

measurements on aluminum thin film samples that are explained in terms of the two-

temperature model. This research is continued on single crystal silicon samples, which 

show that the two-temperature model in laser heating and melting dynamics is generally 

universal across many different metal and semiconductor materials. Additional studies 

utilize optical microscopy to investigate ultrafast laser melting of an aluminum alloy 

substrate using pulse train and single-pulse configurations. Future work will focus on 

combining the ultrafast reflectivity and microscopy configurations to take pump-probe 

imaging of laser melting dynamics on ultrafast timescales. Additional conditions such as 

laser wavelength, pulse width, pulse repetition rate, and different metal alloy 

nanomaterial samples will be altered and studied for investigating SLM ultrafast 

processes. Using this combined ultrafast microscopy and reflectivity setup, fundamental 

physical and material properties can be studied such as photoexcitation, non-

equilibrium heating,2,7 electron-phonon coupling, lattice thermalization,11 heat flow, 

melting, and resolidification.4  

5.2 Ultrafast Reflectivity and Microscopy Setup 

 The ultrafast setup for microscopy and reflectivity measurements, shown in 

Figure 5.1, uses a Titanium:sapphire amplifier laser that produces 75 fs pulses centered 

at 800 nm with either a 1 kHz or 10 kHz repetition rate. A series of optical choppers, 

synchronized with the amplifier, can be used to reduce the laser repetition rate for 
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single-pulse selection. The laser is split into pump and probe pulses using a half-wave 

(λ/2) plate in combination with a polarizing beam splitter. The pump-probe delay time is 

controlled with a retroreflector on a computer-controlled delay stage. The probe pulse 

can be kept at 800 nm or frequency-doubled to 400 nm using a nonlinear BBO crystal. 

The probe pulse is focused and overlapped with the pump pulse, both spatially and 

temporally, on the sample surface. The probe pulse is reflected from the sample 

surface, collimated by the plano-convex lens, and split by a beam splitter so that a 

portion of the reflected beam is detected with a photodiode (PD) and lock-in amplifier for 

reflectivity measurements while the remaining portion is imaged using a high-sensitivity 

CCD camera. For single-pulse microscopy measurements, an optomechanical shutter 

(S) picks a single pulse from a 5 Hz pulse train set by the choppers. A portion of the 

single pulse is reflected by a beam sampler and detected with a photodiode which 

serves as a trigger for the CCD. Future work will focus on measuring ultrafast time-

resolved laser melting images using pairs of single pump and probe pulses exposed to 

a fresh sample position controlled by the sample stage. Additionally, by incorporating an 

optical parametric amplifier (OPA), the pump pulse wavelength can be varied from the 

infrared to the visible energy range (from 365 to 1300 nm) for investigating wavelength-

dependent ultrafast dynamics of SLM processes in metals, metal alloys, and 

nanomaterials. 
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Figure 5.1. Experimental setup for ultrafast reflectivity and microscopy measurements. 
 
5.3 Results  

 Preliminary pump-probe reflectivity data has been obtained for germanium, 

aluminum, and silicon surfaces using an intense 800 nm pump pulse and a weak 800 

nm or 400 nm probe pulse. Figure 5.2 (a) shows the time-resolved excited-state 

dynamics of Ge (100) using 14 μJ pump and 4 μJ probe pulses, both at 800 nm. At 

negative time delays, no change in reflectivity is observed. However, immediately after 

excitation a sharp decrease in reflectivity is measured. The time-dependent change in 

reflectivity occurs due to relaxation dynamics of photoexcited carriers from the creation 

and recombination of electron-hole pairs.12 The relaxation in Figure 5.2 (a) can be fit 

with a biexponential function with lifetimes of 11.2 ps and 81.6 ps, corresponding to 

electron-phonon and phonon-phonon scattering processes. 
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Figure 5.2. Time-resolved reflectivity from Ge with (a) 14 μJ and (b) 7.8 μJ pump pulse 
powers at 800 nm.  
 
  At a lower 800 nm pump power of 7.8 μJ, residual periodic oscillations are 

observed during the relaxation processes which are attributed to acoustic phonons, as 

shown in Figure 5.2 (b). Figure 5.3 (a) shows the fit of this biexponential ultrafast 

relaxation, with lifetimes of 11.2 ps and 106 ps. After subtracting the biexponential fit 

from the data in Figure 5.3 (a), the resulting oscillations are shown in Figure 5.3 (b). 

These acoustic phonon oscillations can be fit by an oscillating exponential function with 

a damping time of 164.6 ps and a frequency of 0.0526 ps-1, also shown in Figure 5.3 

(b). 

 
Figure 5.3. (a) Ultrafast relaxation dynamics of Ge (red squares) with 7.8 μJ pump at 
800 nm with a biexponential fit (black dotted line). (b) Acoustic phonon oscillations 
obtained after subtracting biexponential fit (red circles) and fitting with an exponentially 
decaying sine function (black dotted lines).  
 
 When the reflectivity probe wavelength is 400 nm, the Ge excited-state dynamics 

measured show a much different time profile described by a fast decrease and rise 
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followed by a slower rise, providing complementary information on the carrier relaxation 

dynamics. These results are shown in Figure 5.4 where the 800 nm pump power is 11.4 

μJ and the 400 nm probe power is 4 μJ per pulse. The fast decrease observed after 

excitation occurs within 133 fs, which is attributed to electron-electron scattering during 

carrier thermalization, manifesting as a reduction in reflectance. The exponential rise 

can be fit to obtain a rise lifetime of 351 fs which is comparable to electron 

thermalization times in similar materials reported in literature.13 The detection of this 

ultrafast process at 400 nm may be due to the material’s complex dielectric being more 

sensitive to 400 nm light as opposed to 800 nm; however, a thorough analysis of the 

wavelength dependence and power dependence of these lifetimes must be done to 

verify these results. 

 
Figure 5.4. Time-resolved reflectivity on Ge using 800 nm pump and 400 nm probe. 
 

More recently, we have investigated the melting dynamics of a 270 nm thick 

aluminum thin film deposited on a SiO2 substrate using ultrafast reflectivity. Figure 5.5 

shows the power-dependent changes in the ultrafast reflectivity time traces of the 

aluminum thin film using 800 nm pump and probe pulses. At low powers (<2.0 μJ per 
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pulse) the temporal change in reflectivity is observed to be a linear step function. This 

linear behavoir can be explained using the two-temperature model where the electron 

and lattice temparatures are two distinguishable coupled systems on ultrafast 

timescales. At low laser fluences the electron temperature is not sufficient to cause 

significant electron diffusion or coupling to the lattice, and where the linear response is 

indicitave of straight-forward electronic excitation and heating.13 The data in Figure 5.5 

are fit with a single exponential fucntion given by ∆𝑅 = 𝐴 + 𝐵𝑒(−
𝑡

𝜏
)
, where 𝐵 is set equal 

to zero for Figure 5.5 (a) through (d) to resemble the linear step-function response. At 

higher pump powers of 2.5 and 3.0 μJ, a clear exponential decay is observed, requiring 

nonzero 𝐵 values for fittting, which is conistent with the two-temperature model. At 

these higher laser pump powers, the thermalized electron bath now diffuses and 

couples to the aluminum crystal lattice via electron-phonon coupling, converting 

significant heat to the metal lattice, as shown in Figures 5.5 (e) and (f). The electron-

phonon coupling lifetime 𝜏 increases from 34 ps to 251 ps, and the corresponding 

amplitude of electron-phonon coupling 𝐵 also increases in magnitude from 860 to 1505 

as the pump power increases from 2.5 to 3.0 μJ, respectively. Finally, at even higher 

powers (>3.0 μJ), the reflectance drops to a much lower value, indicating an irreversible 

change in the dielectric constant of the aluminum due to melting.14 However, even after 

melting has occurred, as shown in Figures 5.5 (g) and (h), an exponential decay 

behavoir is still seen, suggesting a reoccurance of heating and melting processes from 

electron-phonon coupling is ongoing, but to a lesser degree due to sample damage. 

Under these higher powers above the melting thresold, the electron-phonon coupling 

lifetime 𝜏 decreases from 120 ps to 50 ps, and the electron-phonon coupling amplitude 
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𝐵 decreases compared to pre-melting conditions going to 586 and 609 for pump powers 

of 3.5 and 4.0 μJ, respectively. The fitting parameters with corresponding errors are 

tabluated in Appendix D. 

 
Figure 5.5. Ultrafast reflectivity time traces for Al thin film with 800 nm at (a) 0.5, (b) 1.0, 
(c) 1.5, (d) 2.0, (e) 2.5, (f) 3.0, (g) 3.5, and (h) 4.0 μJ pump pulse powers, respectively, 
where melting is observed near 3.5 μJ.  
 

 Figure 5.6 shows the reflectivity constants of 𝐴 and 𝐴 + 𝐵 over the powers 

surveyed in the ultrafast reflectivity measurements on the Al thin film sample. Here, 

three distinct regions are observed. The first region is the low-power region, which is 
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described by a linear step function corresponding to electron excitation and heating. 

The second region corresponds to the onset of significant electron-phonon coupling 

described by the two-temperature model, where the dynamics are described by an 

exponential function. Finally, the third region occurs after the observation of melting, 

where the reflectivity constants decrease dramatically and irreversibly, and the time 

traces are still described by exponential functions. In the first region, the reflectivity 

offset magnitude 𝐴 varies linearly with power, as expected due to a linear increase in 

electron population density leading to a linear change in the excited-state complex 

dielectric function of the material. Interestingly, the sum of the reflectivity constants 𝐴 +

𝐵 in the second region continues to vary linearly with power on the same approximate 

slope as in the first region, indicating that the electron density population transfer at time 

zero continues to follow a linear trajectory as a function of pump power. However, at 

these higher powers, the increased excited-state electron density undergoes ultrafast 

high-temperature thermalization according to the two-temperature model where the 

electrons initially have a much higher temperature than the surrounding lattice, leading 

to significant electron-phonon coupling and the subsequent heating of the lattice. 

Finally, after the melting threshold is observed, the original linear slope no longer 

accurately describes the sum of the reflectivity constants. 
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Figure 5.6. Reflectivity constant values as a function of pump power on aluminum where 
the linear region (dotted line) is shown with fits only including 𝐴 (red) and with 𝐴 + 𝐵 
(blue).  
 
 This research has also been extended to investigate the heating and melting 

dynamics of a Si (001) single crystal sample.  Figure 5.7 shows the ultrafast changes in 

reflectivity of silicon under varying of pump powers. In contrast to the aluminum thin film 

studies, the silicon sample shows a negative change in reflectivity upon 800 nm 

excitation due to the differences in the excited state versus ground state complex 

dielectric constants. Similar to the aluminum thin film, at low powers (<4.0 μJ) a linear 

step-function behavior in the reflectivity is observed and the results are fit using ∆𝑅 =

𝐴 + 𝐵𝑒(−
𝑡

𝜏
)
, where 𝐵 is set equal zero. As the pump power increases to 4.0 μJ, the 

thermalized electron bath begins to couple strongly with the colder crystal lattice 

through electron-phonon coupling and heat transfer, as observed by the exponential 

decay in Figure 5.7 (c). Finally, at a power of 5.0 μJ, the time-resolved changes in 

reflectivity decrease due to the irreversible melting of the sample. These results show 

that the two-temperature model can be applied universally to describe the ultrafast 

heating and melting dynamics in both metals and semiconductors.  
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Figure 5.7. Ultrafast reflectivity time traces for Si sample with 800 nm at (a) 2.0, (b) 3.0, 
(c) 4.0, and (d) 5.0 μJ pump pulse powers, respectively, where melting is observed near 
5.0 μJ.  
 

Figure 5.8 shows the power-dependent changes in the reflectivity constants from 

the ultrafast time-trace fits for the pump powers surveyed for Si (001). These results 

also describe the onset of electron-phonon coupling and heat transfer at higher pulse 

pulse powers, followed by the observation of decreased change in reflectivity after 

irreversible melting occurs. The tabulated values for these fits can be found in Appendix 

D. More power-dependent data points are needed to determine if the reflectivity 

constants vary linearly as a function of power up to the onset of irreversible melting. 

Additionally, it isuseful to point out that the ultrafast dynamics in Al and Si are quite 

different compared to the Ge and LSMO samples studied previously in this chapter and 

in Chapter 4. In those samples, the pump pulse is more on resonance with a bandgap 

excitation causing higher changes in reflectivity and corresponding phonon oscillations. 

In Si, the bandgap is near 1.1 eV, so the 800 nm (1.55 eV) pump pulse is significantly 

higher in energy, making the excited electrons behave similarly to metallic electrons, 
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like in Al which has no bandgap, resulting in thermalization of the lattice phonon modes 

that is not expected to be coherent in time, so oscillatory reflectivity time traces are not 

observed to within experimental uncertainty. 

 
Figure 5.8: Reflectivity constant values as a function of pump power on Si (001) where 

the linear region (dotted line) is shown with fits only including |𝐴| (red) and with |𝐴 + 𝐵| 
(blue).  
 
 In order the investigate the spatial morphology of laser-induced melting in metal 

and metal alloy material, optical microscopy was used in the same setup as in the 

ultrafast reflectivity experiments. Optical microscopy images of an aluminum alloy 

substrate after ultrafast laser melting using different powers and pulse properties are 

shown in Figures 5.9 and 5.10. First, the aluminum sample is exposed to a pulse train of 

800 nm femtosecond pulses at a repetition rate of 1 kHz for 200 ms with average laser 

powers of 0.3 W, 0.5 W, 0.8 W, and 1.4 W, in Figures 5.9 (a)-(d), respectively. These 

images show clear melting patterns at the laser focus. Next, the laser melting is 

repeated using single pulses that are created using the optical chopper assembly, with 

single pulse powers of 0.3 mJ, 0.5 mJ, 0.8 mJ, and 1.4 mJ, shown in Figures 5.10 (a)-
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(d), respectively. The single-pulse powers here would correspond to the same average 

powers shown in Figures 5.9 (a)-(d), respectively. These results demonstrate that single 

pulse powers are easily sufficient for the metal alloy melting. By combining these results 

with the conclusions from ultrafast reflectivity measurements, a two-temperature model 

is predicted to describe these ultrafast heating and melting processes even in a single 

laser pulse. Future work will incorporate microscopy in an ultrafast pump-probe 

configuration, using a computer-controlled x-y sample stage to expose fresh sample 

spots for the laser for each pulse, combined with repeatable time scans for statistical 

analysis. This will enable fundamental investigations of the ultrafast imaging of selective 

laser melting of metal and metal alloy materials.  

 
Figure 5.9. Microscopy images of aluminum alloy laser melting using 75 fs 800 nm 
pulses with a continuous pulse train with average powers of (a) 0.3 W, (b) 0.5 W, (c) 0.8 
W, and (d) 1.4 W. 
 

 
Figure 5.10. Microscopy images of aluminum alloy laser melting using single 75 fs, 800 
nm pulses at energies (a) 0.3 mJ, (b) 0.5 mJ, (c) 0.8 mJ, and (d) 1.4 mJ. 
 
 In order to characterize the interaction of the laser pulse and the aluminum alloy 

surface, a spatial profile of a single laser pulse was taken using the optical microscope, 
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as shown in Figure 5.11. To confirm the intensity profile of the laser, the pulse image is 

integrated and fit with a Gaussian profile, shown in Figure 5.12. The focal size of the 

laser pulse is similar in diameter to the melt areas in Figures 5.9 and 5.10, which is a 

good indication of localized energy deposition of the ultrafast laser pulses.  

 
Figure 5.11. Optical microscopy image of a single laser pulse. 
 

 
Figure 5.12. Integrated intensity profile fit with a Gaussian function to obtain a focal spot 
size of 216 μm. 
 
5.4 Conclusion 

 The ultrafast heating and melting dynamics are presented for different metal, 

metal alloy, and semiconductor materials. Time-resolved reflectivity measurements for 

Ge (100) using 800 nm pump and both 800 and 400 nm probe pulses are presented 

under varying pump powers. Under certain pump powers, excited-state relaxation 
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dynamics show biexponential decays with overlapping acoustic phonon oscillations. 

Measuring the ultrafast time-dependent changes in reflectivity for these samples is a 

fundamental step in ultimately achieving single-pulse time-resolved microscopy for 

different materials. Additionally, extensive ultrafast reflectivity measurements under 

varying pump powers are used to characterize the heating and melting dynamics of 

aluminum thin film and silicon single crystal samples. Both results are in agreement with 

the two-temperature model where a sufficient power density is required to promote 

electron diffusion and electron-phonon coupling, leading to irreversible laser melting 

damage at higher laser powers. We have also shown preliminary optical imaging of 

ultrafast laser melting of an aluminum alloy substrate, demonstrating that the melting is 

driven by the high peak intensity of a single laser pulse. Future work will continue the 

power-dependent ultrafast reflectivity measurements of aluminum thin films under 

different thicknesses to determine the dependence of the metal film thickness on 

resulting heating and melting dynamics.  Additional work extending these studies to iron 

and aluminum nanoparticles deposited on substrates will also be investigated to 

compare melting dynamics on the nanoscale. These fundamental investigations are 

important for developing a better understanding of laser heating and melting processes 

in metals, semiconductors, and metal alloys for the purpose of improving selective laser 

melting in additive manufacturing technologies. 
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Chapter 6. Electronic Sum-Frequency Generation of α-Quartz (0001) 

6.1 Introduction 

 Second-order nonlinear spectroscopic techniques are powerful tools in 

characterizing and studying surfaces and interfacial chemistry.1-5 For example, 

vibrational sum-frequency spectroscopy (VSFS) using infrared and visible pulses has 

been used to study the oxidation of CO on Pt (111),6 electrochemistry of adsorbed CO 

at the liquid-electrode interface,7 surface phonons of α-quartz (0001),8 and excited-state 

dynamics of malachite green at the air-water interface.9 Sum-frequency generation 

(SFG) is a nonlinear optical process in which two photons, or optical electric fields (E1 

and E2), coherently add at a surface or interface to produce a third photon at the sum of 

their frequencies.1 The interaction of E1 and E2 induce a second-order nonlinear 

polarization, 𝑃(2), which is described by Eq. 6.1, where E1, E2, and 𝜒(2) are the two 

incident optical electric fields and the second-order nonlinear susceptibility tensor, 

respectively. The SFG intensity, 𝐼𝑆𝐹𝐺, is approximated by 𝐼𝑆𝐹𝐺~|𝑃
(2)(𝜔)|2, where  

𝑃(2) = 𝜒(2)𝐸1(𝜔1)𝐸2(𝜔2)                                                          (6.1) 

The susceptibility tensor 𝜒(2) can be further expressed in resonant (R) and nonresonant 

(NR) terms given by 

 𝜒(2) = 𝜒𝑅
(2)

+ 𝜒𝑁𝑅
(2)

= 𝐴𝑁𝑅𝑒
𝑖𝜑𝑁𝑅 + ∑

𝐴𝑛

𝜔1−𝜔2−𝑖𝛤𝑛
𝑛                                        (6.2) 

where, 𝐴𝑁𝑅 is the nonresonant susceptibility amplitude, 𝜑𝑁𝑅 is the phase difference 

between the resonant and nonresonant signal, 𝐴𝑛 is the amplitude, and 𝛤𝑛 is the 

transition linewidth of the nth mode, respectively. If the incident optical frequencies 𝜔1 

and 𝜔2 are off resonance with optical transitions of the sample, then the SFG spectrum 

will be largely dominated by the nonresonant term, producing a signal that correlates 
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with the incident laser pulse spectra, which are usually Gaussian distributions. If 𝜔1 or 

𝜔2 are on resonance with one or more electronic or vibrational transitions, the SFG 

signal will greatly enhanced at those transitions to provide spectral information on the 

relevant transitions of the sample. It is important to note that both centrosymmetric and 

noncentrosymmetric systems have resonant and nonresonant SFG signals. For 

centrosymmetric systems, the SFG will be produced only at the surface, making this a 

surface-sensitive spectroscopic technique. For noncentrosymmetric systems, the SFG 

will be produced from both the surface and the bulk, where a large nonresonant 

contribution arising from the hyperpolarizability of the bulk will often dominate the overall 

signal. Very few studies have investigated minimizing the bulk contribution of SFG in 

order to extract, or enhance, surface signals.9-10 Recently, in collaboration with Dr. 

Plummer’s research group at LSU, we have published a paper that investigates the 

azimuthal angular dependence of SFG on noncentrosymmetric gallium arsenide (GaAs) 

where our results show interference between the surface and bulk due to heterodyne 

amplification.4 Furthermore, the technique we outline can be extended to surface 

studies of other noncentrosymmetric crystals that are extensively used in many 

applications. 

 In electronic-SFG (ESFG), E1 and E2 are both pulses in the visible optical energy 

range with wavelengths 𝜆1 and 𝜆2, respectively, that are spatially and temporally 

overlapped at a sample to study the electronic resonant and nonresonant optical 

transitions. ESFG can be used where one incident pulse has a broad energy bandwidth 

to cover a wide range of molecular or material electronic transitions.11-13 ESFG is a very 

new and versatile technique that is being developed by a small number of research 



83 
 

groups. We ultimately would like to develop and study more complex systems and 

surface chemistries using ESFG. In this experiment, ESFG is used to study the 

polarization-dependent nonlinear response of α-quartz.  

6.2 ESFG Optical Setup 

 The experimental setup for ESFG is shown in Figure 6.1. A seed pulse 

generated by a titanium:sapphire oscillator is amplified by a regenerative amplifier to 

produce 0.7 mJ, 75 fs pulses centered at 800 nm with a pulse repetition rate of 10 kHz. 

In order to control the relative powers of the two beams corresponding to E1 and E2, the 

amplified pulses pass through a half-wave plate (λ/2) and a polarizing beam splitter 

(PBS). Approximately 75% of the power passes through the PBS and is focused into a 

flowing water cell to produce ultrafast pulses of supercontinuum white light. The other 

25% of the power is reflected off of the PBS and sent to a computer-controlled delay 

stage to optimize the temporal overlap of the white light and 800 nm pulses. The 

femtosecond white light is then filtered through a 600 nm long pass and a 1000 nm 

short pass filter and polarized through a polarizing beam cube (PBC). Finally, the 800 

nm pulse passes through another λ/2 plate in order to control the polarization, then both 

beams are overlapped spatially and temporally on the sample surface. The reflected 

ESFG signal is then collimated, polarized using a linear polarizer, and focused into a 

monochromator coupled to a charged coupled device (CCD). A 530 nm short pass filter 

is used to block unwanted wavelengths resulting from simple white-light reflection. The 

quartz sample is mounted on a computer-controlled rotational stage. For each azimuthal 

angle, 20 ESFG spectra and 20 background spectra (with the incident 800 nm blocked) 
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are taken in the spectral range of 370-430 nm at acquisition times of 1 second under 

varying angles and pulse delays.  

 
Figure 6.1. Experimental ESFG setup. 
 
6.3 Results 

 The femtosecond white light pulses are chirped at the sample such that different 

wavelengths arrive at different temporal times in the pulse duration. By varying the 

temporal overlap of the 800 nm pulse with the broad visible white light pulses, the 

steady state ESFG spectrum can cover a broad energy bandwidth, as shown in Figure 

6.2. When increasing the path length of the 800 nm pulse, the temporal overlap with the 

shorter wavelengths in the white light is enhanced. Conversely, by decreasing the path 

length, the 800 nm pulse enhances the temporal overlap with the longer wavelengths in 

the white light. By finely tuning the path length we can probe with ESFG wavelengths 
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ranging from 370-430 nm. The ESFG signal and corresponding ESG spectra also 

change under varying the azimuthal angular orientation of the α-quartz sample, as 

shown in Figure 6.2. This demonstrates that our optical setup is very sensitive to the 

angular-dependent nonlinear response of α-quartz at different optical wavelengths. By 

combining all this nonlinear optical information together, a very detailed picture of the 

nonlinear response of α-quartz can be obtained. 

 
Figure 6.2. Steady-state ESFG spectrum at two different time delays of -0.33 ps (solid 
spectra) and +0.33 ps (dotted spectra), and as a function of azimuthal crystal angular 
orientation.  
 
α-Quartz (0001) has a D3 bulk point-group symmetry8 with four nonvanishing second-

order nonlinear susceptibility tensors given by 

𝜒𝑥𝑥𝑥
(2) = −𝜒𝑥𝑦𝑦

(2) = −𝜒𝑦𝑥𝑦
(2) = −𝜒𝑦𝑦𝑥

(2)
                                (6.3a) 

𝜒𝑥𝑦𝑧
(2) = −𝜒𝑦𝑥𝑧

(2)
                                                   (6.3b) 

𝜒𝑥𝑧𝑦
(2) = −𝜒𝑦𝑧𝑥

(2)
                                                   (6.3c) 

𝜒𝑧𝑥𝑦
(2) = −𝜒𝑧𝑦𝑥

(2)
                                                   (6.3d) 

Here, the subscripts denote the 𝜒(2) nonlinear response of α-quartz dependent on the 

polarization of the incident electric fields and the relative crystalline angle in the 

laboratory framework in Cartesian coordinates. The crystal is oriented parallel to the x-y 

plane and the crystalline azimuthal axis z is perpendicular to the surface of the crystal 

1.0

0.8

0.6

0.4

0.2

0.0

E
S

F
G

 (
a

rb
. 
u

n
it
s
)

430420410400

Wavelength

 0 deg
 30 deg
 60 deg
 0 deg
 30 deg
 60 deg



86 
 

(Figure 6.3). For example 𝜒𝑥𝑦𝑧
(2)

 denotes a 𝜒(2) response when E1 and E2 are polarized in 

the x and y direction, respectively, and the induced nonlinear ESFG polarization is in the 

z direction. 

 
Figure 6.3. Schematic representation of crystalline axis (a, b, and c) in relation to the 
laboratory frame (x, y and c), where φ0 is the relative angle of the α-axis away from the 
x-z plane. 
 
 The SSS polarization configuration is first studied, where E1 and E2 are s-

polarized and the ESFG s-polarized response is measured. For clarity, and SPS 

polarization configuration, for example, denotes incident fields E1 p-polarized and E2 s-

polarized with the ESFG s-polarized response measured. The plane of incidence in the 

x-z plane is defined such that an s-polarized pulse is perpendicular and a p-polarized 

pulse is parallel to the plane of incidence. The theoretical azimuthal angular 

dependence on ESFG for α-quartz in the SSS scheme is expected to be given by 

𝐼𝐸𝑆𝐹𝐺 = |
𝐿𝑦𝑦(𝜔𝐸𝑆𝐹𝐺)𝐿𝑦𝑦(𝜔800𝑛𝑚)𝐿𝑦𝑦(𝜔𝑉𝐼𝑆)𝜒𝑦𝑦𝑦

(2)
sin(3𝜑)

∆𝑘
|2                           (6.4) 

𝐿𝑦𝑦(𝜔𝑛) =
2𝑘0𝑧(𝜔𝑛)

𝑘0𝑧(𝜔𝑛)+𝑘𝑧(𝜔𝑛)
                                                   (6.5) 
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where 𝐿𝑦𝑦(𝜔) is the Fresnel transmission coefficient at frequency 𝜔 and ∆𝑘 is the wave 

vector mismatch of ESFG. The Fresnel coefficients can be calculated by Eq. 6.5 where 

𝑘0 is the wave vector in air. Due to the fact that we are spectrally below the α-quartz 

bandgap (off resonance), 𝜒𝑦𝑦𝑦
(2) = 𝜒𝑦𝑦𝑦𝑁𝑅

(2). Based on Eq. 6.4, the ESFG response in the 

SSS polarization scheme is expected to have a | sin 3𝜑 |2 dependence, where 𝜑 is the 

azimuthal angle. Therefore, as the crystal rotates 360° (or 2π radians) about the z-axis 

we would expect 6 minima and 6 maxima corresponding to an | sin 3𝜑 |2 intensity 

distribution.   

 The experimental azimuthal angular distribution of 𝐼𝐸𝑆𝐹𝐺 from α-quartz (0001) in 

the SSS polarization configuration is shown in Figure 6.4. The results clearly 

demonstrate a general | sin 3𝜑 |2 angular distribution over 1800. However, although Eq. 

6.4 predicts that 𝐼𝐸𝑆𝐹𝐺 should be zero at angles 00, 600, 1200, and 1800, the data shows 

small residual signals at these angles. The deviation from theory at these angles could 

be explained by the birefringence of the α-quartz causing slight rotations in the 

polarizations of the incident and ESFG signals occurring in the bulk. The experimental 

data for SSS can be fit to a simple sine function given by 

𝐼𝐸𝑆𝐹𝐺 ∝ |𝐴 + 𝐵 sin 𝑓𝜑|2                                                (6.6) 

where 𝐴 is an offset value and 𝐵 = 𝐿𝑦𝑦(𝜔𝐸𝑆𝐹𝐺)𝐿𝑦𝑦(𝜔800𝑛𝑚)𝐿𝑦𝑦(𝜔𝑉𝐼𝑆)𝜒𝑦𝑦𝑦
(2)

. The fit for the 

resulting SSS distribution is shown in Figure 6.4. Currently, this project is at the 

preliminary and exploratory stage. Additional work to be done includes calculating the 

Fresnel coefficients and incorporating birefringence into the ESFG polarization-

dependent models to account for the possibility of interference and polarization rotation 

in the bulk. 
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Figure 6.4. Azimuthal angular distribution of ESFG for SSS (red dots) and fit (blue 

dashed line) using Eq. 6.6 for where A=0.12±0.01, B=0.98±0.01, and f=2.89±0.01.  
 
 Additional work is being planned to extend these studies to other incident and 

outgoing polarization configurations in order to demonstrate a full understanding of the 

polarization-dependent and angular-dependent nonlinear response of α-quartz. Figure 

6.5 shows the preliminary angular distributions of 𝐼𝐸𝑆𝐹𝐺 for the PSS and PPS 

polarizations. In order to qualitatively compare the relative 𝜒(2) values, the angular 

distributions of 𝐼𝐸𝑆𝐹𝐺 are plotted normalized to the PSS maximum intensity. This 

qualitative information shows that 𝜒(2)  response for PSS and PPS are roughly an order 

of magnitude larger than the 𝜒(2) response for the SSS polarization configuration. 

Additionally, the maxima of the ESFG peaks for the PSS and PPS polarizations are 

approximately 𝜋/2 and 0 radians offset from the SSS peaks, respectively. This 

information is valuable in describing the second-order nonlinear response of α-quartz at 

different polarizations. It is clear from the experimental data that our ESFG optical setup 

is sensitive to changes in polarization and crystalline angle which are due to the 

structure of α-quartz. Future work will continue to investigate α-quartz and other 
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samples under varying azimuthal angle, optical wavelength, and polarization 

configuration. 

 
Figure 6.5. Angular distribution of 𝐼𝐸𝑆𝐹𝐺 as a function of azimuthal angle over 1800 for 
SSS (red), PSS (blue), and PPS (green) polarization configurations. 

 
6.4 Conclusion 

 The azimuthal angular-dependent electronic sum-frequency generation is 

measured⁡on α-quartz (0001) and the results are compared to theory derived from the 

trigonal point-group symmetry (D3). The ability to tune the broad probing energy 

bandwidth of ESFG by simply changing the temporal overlap of the two pulses is also 

shown. Our experimental data over 1800 in the SSS polarization scheme shows a 

general | sin 3𝜑 |2 dependence in accordance with the theory. In order to explore the 

relative 𝜒(2) contributions at different polarizations, the angular distribution of the ESFG 

signal is measured for the SSS, PSS, and PPS polarization configurations normalized to 

the maximum intensity under PPS. The results show that 𝜒(2) for PPS is roughly an 

order of magnitude larger than the 𝜒(2) for SSS. This is an important initial step for 
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developing future ESFG investigations on centrosymmetric and non-centrosymmetric 

crystals and nanomaterials. 
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Appendix A. TiO2-Au Nanoparticle Size and Morphology Analysis 

A.1 Additional TEM Images of TiO2-Au Nanocomposites2 

 Figure A.1 shows representative TEM images of the 9.9 ± 0.4 nm TiO2 

nanoparticles. The TiO2 nanoparticles have a significantly lower contrast under TEM 

compared to gold nanoparticles. The contrast of the TEM images of the TiO2 

nanoparticles is darkened for clarity. The TEM images are taken using a JOEL 100CX 

microscope with carbon-coated copper grids. Figures A.2, A.3, and A.4 show 

representative TEM images of the 1:1, 1:2, and 1:3 TiO2-Au nanocomposites, 

respectively. Figure A.5 shows the histograms of the size distributions of the (a) TiO2 

nanoparticles, as well as the (b) 1:1, (c) 1:2, and (d) 1:3 [TiO2]:[Au] nanocomposite 

samples, respectively. The experimental results of the histograms are fit to log-normal 

functions, as shown with the dotted black lines. The histograms show that the TiO2 

nanoparticles and the 1:1, 1:2, and 1:3 [TiO2]:[Au] nanocomposite samples all have size 

distributions that are clearly distinguishable.  

 

 
Figure A.1. Transmission electron microscopy images of 9.9 nm ± 0.4 nm TiO2 
nanoparticles sample. 
 

                                                           
Reprinted from Karam, T. E.; Khoury, R. A.; Haber, L. H., J. Chem. Phys. 144, 124704, 2016. With the permission of 
AIP Publishing.  
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Figure A.2. Transmission electron microscopy images of the 1:1 TiO2-Au 
nanocomposites sample. 
 

 
Figure A.3. Transmission electron microscopy images of the 1:2 TiO2-Au 
nanocomposites sample. 
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Figure A.4. Transmission electron microscopy images of the 1:3 TiO2-Au 
nanocomposites sample. 
 

 
Figure A.5. Histograms representing the size distributions of the (a) TiO2 nanoparticles, 
as well as the (b) 1:1, (c) 1:2, and (d) 1:3 [TiO2]:[Au] nanocomposite samples. The 
experimental results are fit to log-normal functions, shown by black doted lines. 
 
 The errors in the measured nanoparticle sizes are determined from the standard 

deviations after surveying more than 400 nanoparticles. The size of the gold 

nanocluster shell surrounding the TiO2 nanoparticle core is obtained from the increase 
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of the overall nanoparticle size. Table S4 lists the nanocluster shell sizes 𝑠 determined 

by the TEM measurements given by the radius increase with 𝑠 = 𝑟𝑇𝑖𝑂2−𝐴𝑢 −⁡𝑟𝑇𝑖𝑂2 where 

𝑟𝑇𝑖𝑂2−𝐴𝑢 is the average nanocomposite radius and 𝑟𝑇𝑖𝑂2 is the average radius of the TiO2 

nanoparticles. The errors in the sizes of the gold nanocluster shell surrounding the TiO2 

nanoparticle core are determined by error propagation from the standard deviations of 

the sizes of the TiO2 nanoparticles and the TiO2-Au nanocomposites.  

A.2 Au Nanocluster Morphology by Phonon Frequency Analysis 

 The acoustic phonon oscillation frequencies from the different TiO2-Au 

nanocomposites are compared to three different size-dependent models that are based 

on individual gold nanospheres, individual gold nanorods, and core-shell nanoparticles 

in order to assess the most likely description of the nanocomposite architecture. In the 

first model, the gold nanoclusters are assumed to form individual spheres tangentially 

adsorbed at the TiO2 nanoparticle surface. In this case, the theoretical sizes of the gold 

nanospheres can be calculated from the experimental values of the phonon oscillation 

frequencies using the solution of the Navier equation given by 𝜔0 = 𝑅𝑒𝜉0𝜈𝐿
𝑠/𝑟, where 𝜈𝐿

𝑠 

is the longitudinal sound velocity of the nanosphere, 𝑟 is the radius of nanosphere, and 

𝜉0 is the normalized frequency of the radial mode.1 This model has been successfully 

applied to free metallic nanospheres in water and embedded in glass.1, 2 The 

theoretically predicted gold nanocluster radii calculated from the experimental values of 

the oscillation frequencies using this model are shown in Table A.1 for 𝜈𝐿
𝑠 = 3240 m/s 

and 𝜉0 = 2.944 for the values for free gold nanospheres.1 However, the radii of the 

nanoclusters calculated from this model are larger by almost a factor of two compared 

to the sizes obtained from the TEM measurements, assuming this architecture. This 
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suggests that the gold nanoclusters on the TiO2 surface are not perfect spheres 

tangentially attached to the surface. In the second model of the acoustic phonon 

analysis, gold nanoclusters at the TiO2 nanoparticle surface are assumed to have rod-

like shapes. In this case, the lengths of the rods are calculated using an equation given 

by2,3 𝑇 = 2𝐿/√𝐸/𝜌, where 𝐸 is the Young’s modulus and 𝜌 is the density. The 

calculated values of the gold rod lengths 𝐿 determined from the experimental values of 

the oscillation periods 𝑇 are shown in Table A.1 for 𝐸 = 42 GPa and 𝜌 = 19.7 g/cm3. 

These values deviate from the sizes determined by the TEM measurements for the 

three TiO2-Au samples, so the nanoclusters are not well described using the nanorod 

model. In the final model of analysis, the TiO2-Au nanocomposites are assumed to have 

a core-shell architecture. In this case, the theoretical sizes of the gold nanoshells are 

calculated from the experimental values of the phonon oscillation frequencies using a 

model derived from the Helmholtz equation.4 Here, the equation of the size-dependent 

oscillation frequency is given by 𝜔0 =
2𝜈𝐿

𝑆𝛽𝑆

𝑅2
(3 − 4𝛽𝑆

2)1/2, where 𝑅2 is the sum of the core 

radius and the shell width, and 𝛽𝑆 is given by 𝜈𝑇
𝑆/𝜈𝐿

𝑆, where 𝜈𝐿
𝑆 and 𝜈𝑇

𝑆 are the 

longitudinal and transverse sound velocities in the gold shell, respectively, according to 

the heavy shell approximation. The calculated values of the shell widths 𝑤 are shown in 

Table A.1 using the experimentally measured phonon frequencies with 𝜈𝐿
𝑠 and 𝜈𝑇

𝑠  equal 

to 3240 m/s and 1200 m/s, respectively. The shell width 𝑤 equals 𝑅2 − 𝑅1, where 𝑅1 is 

the core radius. The calculated values of 𝑤 are larger than the experimental results 

obtained by TEM, which indicates that the nanocomposites are not accurately described 

by a core-shell architecture with a fully formed shell. However, previous studies show 

that very thin shells lead to larger oscillation periods than expected due to an 
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inhomogeneous and porous shell structure.4 Therefore, the size-dependent acoustic 

phonon frequencies are best described using a nanocomposite architecture composed 

of an inhomogeneous, porous gold shell made of aggregated nanoclusters surrounding 

the TiO2 core. More work is still needed to accurately determine the morphologies, size 

distributions, and separation distances of the gold nanoclusters adsorbed to the TiO2 

nanoparticle surface. 

Table A.1. The nanocluster shell sizes 𝑠⁡(𝑒𝑥𝑝𝑡) measured by TEM for the three TiO2-Au 
nanocomposite samples compared to theoretical size predictions from the 
experimentally measured acoustic phonon oscillations based on individual gold 
nanospheres of radius 𝑟⁡(𝑠𝑝ℎ𝑒𝑟𝑒), individual gold nanorods of length 𝐿⁡(𝑟𝑜𝑑), and TiO2-
gold core-shell nanoparticles of shell width 𝑤⁡(𝑠ℎ𝑒𝑙𝑙). 

 
 
 The lifetimes obtained from global analysis fits from the transient absorption 

spectroscopy results are listed in Table A.2 for the 1:1, 1:2, and 1:3 [TiO2]:[Au] 

nanocomposite samples. The acoustic phonon frequencies and the phonon damping 

times are also included for these three nanocomposite samples. The lifetimes 

corresponding to electron-phonon scattering, phonon-phonon scattering, the electronic 

interband transition, and the acoustic phonon damping are all shown to remain 

constant, to within experimental uncertainty, for the three size-dependent 

nanocomposites. The electron-transfer lifetimes and the acoustic phonon frequencies 

are observed to change significantly as the nanocluster gold shell surrounding the TiO2 

core is increased in size.  
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Table A.2. The lifetimes obtained from the global analysis of the transient absorption 
results are listed for the different TiO2-Au nanocomposite samples. The phonon 
frequencies and phonon damping times are also shown for the three nanocomposite 
samples. 
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Appendix B. Additional In-situ SHG Results 

B.1 TEM Images and Size Distributions of Gold Nanoparticles  

 Figures B.1, B.2, B.3, B.4, and B.5 show additional representative TEM images 

of gold nanoparticles synthesized from 25, 30, 35, 40, and 50 μL of precursor gold 

seeds, respectively, where the growth process is monitored using in-situ SHG. The TEM 

images are taken using a JEOL-1400 microscope with carbon-coated copper grids.   

 
Figure B.1. Additional TEM Images of gold nanoparticles prepared using 25 μL 
precursor seeds. 
 

 

Figure B.2. Additional TEM Images of gold nanoparticles prepared using 30 μL 
precursor seeds. 
 

 
Figure B.3. Additional TEM Images of gold nanoparticles prepared using 35 μL 
precursor seeds. 
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Figure B.4. Additional TEM Images of gold nanoparticles prepared using 40 μL 
precursor seeds. 
 

 
Figure B.5. Additional TEM Images of gold nanoparticles prepared using 50 μL 
precursor seeds. 
 
  The nanoparticle diameter histograms measured with TEM are fit to log-normal 

functions, shown by dotted lines in Figure S6. The sizes obtained from the fits are 93.2 

± 4.0 nm, 89.4 ± 4.3 nm, 74.3 ± 5.3 nm, 71.3 ± 4.8 nm, and 64.7 ± 5.0 nm for the 

nanoparticles prepared with 25, 30, 35, 40, and 50 μL precursor gold seeds, 

respectively. Due to the reduced volume and lack of fast stirring in this synthesis in a 

quartz cuvette with a small stir bar, smaller nanoparticles (21 ± 3 nm making up less 

than 15% of the nanoparticles) can be seen in the TEM images from secondary 

nucleation reactions. These smaller nanoparticles are caused by the slower stirring 

speeds in the optical cuvette and are not observed under the faster stirring conditions 

when doing with nanoparticle synthesis in vials with larger stir bars. The overall optical 

properties of each sample are dominated by the larger nanoparticles as shown by the 

accurate Mie theory fitting and the larger SHG signals.1,2 
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Figure B.6. Size distributions for gold nanoparticles prepared with (a) 25 μL, (b) 30 μL, 
(c) 35 μL, (d) 40 μL, and (e) 50 μL precursor gold seeds, respectively, and fit with log-
normal distributions (dotted lines). 
 
B.2 Analysis of Extinction Spectra and SHG Spectra 

 Figure B.7 shows the experimental extinction spectra (red line) and the 

corresponding Mie theory fits (black line) for the nanoparticle samples synthesized with 

30, 35, 40, and 50 μL precursor gold seeds with Mie theory sizes of 89, 76, 72, and 66 

nm, respectively. The measured diameters from experiment are in good agreement with 

the diameters obtained from Mie theory analysis.3,4 The concentrations determined from 

fitting the final extinction spectrum to Mie theory are 4.46 x 109, 4.54 x 109, 6.45 x 109, 

7.60 x 109, and 1.08 x 1010 nanoparticles/mL for the samples with 25, 30, 35, 40, and 50 

μL of precursor gold seeds, respectively, using the prepared initial gold seed solution 

with a concentration of 6.67 x 1011 nanoparticle/mL. The final nanoparticle 

concentrations are approximately equal to the values obtained when assuming every 

colloidal seed grows into a larger nanoparticle according to the seed-mediated 

nanoparticle growth reaction. Figure B.8 shows SHG spectra at selected reaction times 

during the nanoparticle growth process. The SHG spectra are fit with Gaussian 

functions with a center wavelength of 400.0 nm and a full width at half-maxima of 4.8 

nm, which are in good agreement with our previous SHG studies.5  
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Figure B.7. Final extinction spectra for gold nanoparticles fit using Mie theory for sizes 
of (a) 89, (b) 76, (c) 72, (d) and 66 nm prepared using 30, 35, 40, 50 μL precursor gold 
seeds, respectively. 
 

 
Figure B.8. SHG spectra for gold nanoparticles prepared using (a) 30, (b) 35, (c) 40, 
and (d) 50 μL precursor gold seeds at selected reaction times. 
 
 Figure B.9 shows additional in-situ extinction spectra at selected reaction times 

for gold nanoparticle samples synthesized from 30, 35, 40, and 50 μL precursor seeds. 

The growth dynamics follow a trend where a broadened red-shifted extinction peak is 
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observed at early times followed by a narrowing and blue-shifting in the extinction, 

which is attributed to a rough surface becoming more smooth and reducing in sample 

polydispersity over time.6,7  

 
Figure B.9. In-situ extinction spectra for gold nanoparticles synthesized from (a) 30, (b) 
35, (c) 40, (d) and 50 μL precursor gold seeds at selected reaction times. 
 
B.3 Tabulated Growth Lifetimes from SHG Fits 

 The size-dependent growth dynamics of the gold nanoparticles are fit using an 

exponential function to obtain the growth lifetimes. Table B.1 shows the tabulated 

growth lifetimes 𝜏, amplitudes 𝐴, and offsets 𝑦0 from the corresponding fits given by the 

equation, 𝐸𝑆𝐻𝐺(𝑡) = 𝑦0 + 𝐴𝑒−
𝑡

𝜏, with the fits shown in Chapter 3. The combined in-situ 

SHG setup and in-situ extinction spectroscopy setup is shown in Figure B.10. 
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Table B.1. Reaction growth lifetimes obtained from fitting the in-situ SHG time trace. 

 
 

 
Figure B.10. In-situ SHG and extinction experimental setup. 
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Appendix C. Additional LSMO/STO Results 

C.1 LSMO/STO Structures 

 The bulk rhombohedral structure of crystalline LSMO (R3̅C) is shown in Figure 

C.1.1 The bulk structure of STO is shown in Figure C.2.2 The self-assembled LSMO 

prepared by our collaborators under oxygen deficient conditions possess a 8-10 unit cell 

interfacial region where the space group is Imma.3  

 
Figure C.1. Bulk structure of LSMO with space group R3̅C.  
 

 
Figure C.2. Bulk Structure of STO with space group Pm3m. 
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Figure C.3. Interfacial region of LSMO grown on an STO substrate with an Imma space 
group. 
 
C.2 Tabulated Fitting Results 
 The biexponential function used to fit the excited-state dynamics of LSMO/STO 

in Chapter 4 is given by Eq. C.1 where 𝐴𝑒𝑝, 𝜏𝑒𝑝, 𝐴𝑝𝑝, and 𝜏𝑝𝑝 represent the amplitude 

and lifetime of the electron-phonon coupling as well as the amplitude and lifetime of the 

phonon-phonon coupling, respectively.  

𝑅(𝑡) = 𝑦0 + 𝐴𝑒𝑝𝑒
(−𝑡/𝜏𝑒𝑝) + 𝐴𝑝𝑝𝑒

(−𝑡/𝜏𝑝𝑝)                              (C.1) 

The power dependent lifetimes and amplitudes are presented in Table C.1.   

Table C.1. Power-dependent lifetimes obtained from biexponential fitting 

 
 
The fast and slow residual oscillations obtained after subtracting the biexponential fitting 

are fit with Eq. C.2 and Eq. C.3, respectively.  

𝑅(𝑡) = 𝑦0 + 𝐴𝑠𝑙𝑜𝑤𝑒
(−𝑡/𝜏𝑑𝑠𝑙𝑜𝑤) sin(2𝜋𝑓𝑠𝑙𝑜𝑤𝑡 + 𝜑)                         (C.2) 
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𝑅(𝑡) = 𝑦0 + 𝐴𝑓𝑎𝑠𝑡𝑒
(−𝑡/𝜏𝑑𝑓𝑎𝑠𝑡) sin(2𝜋𝑓𝑓𝑎𝑠𝑡𝑡 + 𝜑)                          (C.3) 

Where 𝐴𝑠𝑙𝑜𝑤, 𝜏𝑑,𝑠𝑙𝑜𝑤, and 𝑓𝑠𝑙𝑜𝑤 are the slow oscillation amplitude, damping lifetime, and 

frequency while 𝐴𝑓𝑎𝑠𝑡, 𝜏𝑑,𝑓𝑎𝑠𝑡, and 𝑓𝑓𝑎𝑠𝑡 are the fast oscillation amplitude, damping 

lifetime, and frequency, respectively. The tabulated fittings for these parameters used to 

fit the fast and slow oscillations are shown in Table C.2 and C.3, respectively.  

Table C.2. Tabulated fitting parameters for fast phonon oscillations.  

 
 
Table C.3. Tabulated fitting parameters for slow phonon oscillations.  
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Appendix D. Ultrafast Melting Dynamics of Aluminum and Silicon 

D.1 Tabulated Fitting Values 

 The power-dependent lifetimes and reflectivity constants from the ultrafast 

reflectivity measurements of the Al thin film sample, corresponding to Figure 5.5, are fit 

to the single-exponential function ∆𝑅 = 𝐴 + 𝐵𝑒(−
𝑡

𝜏
)
, where  𝐴, 𝐵, and 𝜏 are the offset, 

amplitude, and electron-phonon coupling lifetime. Table D.1 shows these fitting values 

and corresponding errors. 

Table D.1. Tabulated fitting values for heating and melting dynamics on the aluminum 
thin film.  

 
 
 The power-dependent lifetimes and reflectivity constants obtained from fitting the 

ultrafast reflectivity time traces from Si, corresponding to Figure 5.7, using the same 

single-exponential function, are listed in Table D.2 along with errors. 
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Figure D.2. Tabulated fitting values for heating and melting dynamics on Si (001) single 
crystal.  
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