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ABSTRACT 

Approaches to prepare spatially selective surfaces were developed in this dissertation for 

constructing nanopatterns of organic thin film materials. Nanoscale surface patterns were prepared 

using immersion particle lithography and scanning probe lithography combined with organothiol 

chemistry. Organic thin films and nanomaterials can be patterned with tunable periodicities and 

designed shapes by selecting the diameter of mesospheres used as surface masks or scanning probe 

lithography, respectively. The surface platforms of well-defined nanopatterns are ideal for high 

resolution investigations using scanning probe microscopy (SPM). Local measurements of surface 

properties and conductive properties combined with nanolithography were accomplished at the 

molecular level. 

Sample characterizations were accomplished with selected modes of SPM. Scanning probe 

studies can be used to probe the morphological and physical properties of samples, when spatially 

confined nanomaterials are prepared. Atomic force microscopy (AFM) can be used to analyze 

many types of samples in ambient and liquid environments. Arrays of nanostructures formed with 

newly designed molecules and porphyrins were fabricated using the spatial selectivity of chemical 

patterns prepared with nanolithography. The designed nanopatterns were evaluated for 

morphological details and physical properties.  

A newly designed bidentate organosulfur compound, i.e. 16-[3,5-

bis(mercaptomethyl)phenoxy] hexadecanoic acid (BMPHA), was selected for study.  The solution 

phase self-assembly onto Au(111) was investigated with scanning probe-based nanolithography 

and particle lithography. The two thiol groups of BMPHA were specially designed as surface 

linkers for improved stability. The orientation of BMPHA on Au(111) was investigated by 

referencing the heights of n-alkanethiols as an in situ molecular ruler. Protocols for patterning 
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porphyrin nanostructures i.e. nanodots and nanorods on Au(111) were developed based on 

protocols with immersion particle lithography. Porphyrins with and without a central metal ion, 

5,10,15,20-tetraphenyl-21H,23H-porphine (TPP) and 5,10,15,20-tetraphenyl-21H,23H-porphine 

cobalt(II) (TPC) were patterned using immersion particle lithography. Individual nanorods and 

nanodots of porphyrins were spatially isolated into well-defined, nanoscale arrangements directed 

by a template film of a nanopatterned thiol monolayer.  The conductivity of the nanostructures of 

the porphyrins was evaluated using conductive probe-atomic force microscopy (CP-AFM). The 

studies evaluate the applicability of nanolithography for preparing surface platforms for the 

measurements of morphological and physical properties at the nanoscale. 
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CHAPTER 1: INTRODUCTION 

Approaches were developed in this dissertation to prepare spatially selective surfaces for 

constructing assemblies of organic materials by combining particle lithography with molecular 

self-assembly. The surface platforms that were designed and constructed are potentially useful for 

investigating the surface orientation of selected molecules, providing a side-by-side comparison 

of surface properties at the molecular level. Surface templates were applied for evaluating 

electronic properties using conductive probe atomic force microscopy (CP-AFM). With nanoscale 

lithography, the size and shape of the nanopatterns can be controlled by selecting experimental 

conditions. Measurements with atomic force microscopy (AFM) provide molecular-level views of 

nanostructures and insight into the process of molecular self-assembly.  

1.1 Nanoscale studies using scanning probe microscopy (SPM) 

Molecular imaging studies began with scanning tunneling microscopy (STM) that enabled 

us to directly view the surface of semiconductor and metal samples. For STM, a sharp needle is 

brought very close (ca. one atomic diameter) to the surface to map the topography with subatomic 

resolution.1 Five years after the invention of STM, AFM was introduced.2 The invention of AFM 

expanded the application of scanning g probe microscopy (SPM) into studies with nonconductive 

samples. With the development of SPM, scientists have conquered the limitation of the Rayleigh 

wavelength of light for imaging resolution. Scanning probe techniques opened new possibilities 

for nanotechnology. In Chapter 2, the background and basic principles of SPM will be described 

along with the advanced modes of AFM used in this dissertation.       

1.2 Self-assembly of bidentate thiol on Au(111) studied with AFM3 

In Chapter 3, The solution-phase self-assembly of bidentate 16-[3,5-

bis(mercaptomethyl)phenoxy]hexadecanoic acid (BMPHA) on Au(111) was studied using 
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nanofabrication protocols with scanning probe nanolithography and immersion particle 

lithography. Molecularly thin films of BMPHA prepared by surface self-assembly have potential 

application as spatially selective layers in sensor designs. Either monolayer or bilayer films of 

BMPHA can be formed in ambient conditions, depending on the parameters of concentration and 

immersion intervals. Experiments with scanning probe-based lithography (nanoshaving and 

nanografting) were applied to measure the thickness of BMPHA films. The thickness of a 

monolayer and bilayer film of BMPHA on Au(111) were measured in situ with atomic force 

microscopy (AFM) using n-octadecanethiol as an internal reference. Scanning probe-based 

nanofabrication provides a way to insert nanopatterns of a reference molecule of known 

dimensions within a matrix film of unknown thickness to enable a direct comparison of heights 

and surface morphology. Immersion particle lithography was used to prepare a periodic 

arrangement of nanoholes within films of BMPHA. The nanoholes could be backfilled by 

immersion in a SAM solution to produce nanodots of n-octadecanethiol surrounded by a film of 

BMPHA. Test platforms prepared by immersion particle lithography enables control of the 

dimensions of surface sites to construct supramolecular assemblies. 

1.3 Measurement of spatially confined nanoclusters of porphyrins using CP-AFM 

The conductive properties of nanodots of model porphyrins were investigated using 

conductive-probe atomic force microscopy (CP-AFM) in Chapter 4. Porphyrins provide excellent 

model structures that can be used as potential building blocks for molecular devices. The 

conjugated, planar structure of porphyrins offers opportunities for tailoring the electronic 

properties. Two model porphyrins were selected, 5,10,15,20-tetraphenyl-21H,23H-porphine 

cobalt(II) (TPC) and its metal free analogue 5,10,15,20-tetraphenyl-21H,23H-porphine (TPP) for 

CP-AFM studies. Arrays of TPP and TPC nanodots were prepared within a dodecanethiol resist 
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on Au(111) using particle lithography. The nanopatterned surfaces exhibit millions of reproducible 

test structures in a periodic arrangement. Only a single measurement was made for each nanodot 

since the voltages used for CP-AFM measurements were found to damage the samples, evident in 

I-V profiles. The porphyrin nanostructures have slight differences in dimensions at the nanoscale, 

to enable size-dependent measurements of conductive properties. The size of the nanodots 

corresponds to ~ 3-5 layers of porphyrin. The conductivity along the vertical direction of the 

nanodots was measured by applying a bias voltage between the Au(111) surface and a metal-

coated AFM cantilever. The TPP nanodots exhibited semi-conductive profiles while the TPC 

nanodots exhibited profiles that are typical of a conductive film or molecular wire. The engineered 

nanostructures of porphyrins provide an effective platform for investigation and measurement of 

conductive properties. 

1.4 Nanorods derived from porphyrins characterized with CP-AFM 

In Chapter 5, protocols for preparing porphyrin nanostructures i.e. nanorods on Au(111) 

were developed based on immersion particle lithography. Porphyrins with and without a central 

metal ion, TPP and TPC were placed on surfaces using steps of solution immersion of a gold 

substrate masked with silicon mesospheres. Individual nanorods of porphyrins were spatially 

arranged into well-defined, nanoscale arrays directed by a template film of a nanopatterned thiol 

monolayer. A surface mask of silica mesospheres was used to prepare nanopores within an 

alkanethiol matrix film. Nanopores within a methyl-terminated alkanethiol matrix were backfilled 

with porphyrins by an immersion step. By controlling the concentration and immersion interval, 

nanorods of porphyrins were generated. The porphyrin nanorods exhibited slight differences in 

dimensions at the nanoscale, to enable size-dependent measurements of conductive properties. The 

conductivity along the horizontal direction of the nanorods was evaluated using CP-AFM. Changes 
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in conductivity were measured along the long axis of TPP and TPC nanorods. The TPP nanorods 

exhibited conductive behavior of a rectifier. The TPC nanorods exhibited typical behavior of a 

semi-conductive film. 

1.5 Synopsis 

Nanolithography combined with self-assembly can generate nanostructures with designed 

shapes and sizes. The nanostructures demonstrated in this dissertation include nanopatterns of 

alkanethiol SAMs and arrays of porphyrins in defined arrangements. For investigations using 

AFM, controlling the size and orientation of samples on surfaces provides advantages for 

nanoscale measurements. In Chapter 6, the key results of the dissertation are presented along with 

a discussion of future directions for research experiments. 
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CHAPTER 2: ATOMIC FORCE MICROSCOPY 

2.1 Overview of scanning probe microscopy 

Atomic force microscopy (AFM) can be used to image, measure, and manipulate 

nanomaterials at the nanometer size scale, including insulating and conducting materials. The 

surface structures and properties of the samples are studied with AFM through the extremely weak 

interactions (nanonewton or piconewton) between atoms of the sample and a miniaturized force 

sensor. The miniaturized force sensor is usually referred to as the AFM tip, has a radius of a few 

nanometers and is affixed at the end of a cantilever. When the AFM tip is brought close to the 

surface, the interactions between the tip and sample influences the motion or the deformation of 

the cantilever. During the scanning of the AFM tip over the sample, information of the interaction 

between the probe and surface is collected to provide a surface map. With a sharp probe, the 

surface morphology and properties can be acquired at the atomic scale for atomically flat samples. 

By modifying the AFM tips and instrument setup, specific properties of the sample can be acquired 

including electrical properties,4 mechanical properties,5 magnetic properties,6 thermal properties7 

and photochemical properties.8 Owing to the unique operation principal, AFM can be operated 

under controlled temperatures, as well as in ambient, liquid and vacuum environments.9 The 

capabilities and flexibility of AFM has been applied over broad areas in scientific research such 

as surface science, biology, material science and analytical chemistry.  

Atomic force microscopy was introduced by Binnig, Quate and Gerber in 1986.2  The idea 

of AFM was originated from scanning tunneling microscopy (STM), which is the predecessor of 

scanning probe microscopy (SPM) invented by Binning and Rohrer in 1982.1 In the first setup of 

AFM, an STM was used as a detector for tracing the motion of the AFM cantilever along the 

surface contour.2 In modern instruments, the scanners for AFM typically employ an optical-
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deflection configuration to trace the motion of the cantilever.10 The basic setup of an AFM is 

outlined in Figure 2.1. 

 

Figure 2.1 Basic setup of a tip-scan AFM. 

In a typical AFM system, a scanner made of piezoceramic controls the movement of an 

AFM cantilever in three dimensions by expanding and contracting proportionally to an applied 

voltage. There are two types of scanner constructed either by a tripod piezoceramic or tube-shaped 

scanner. The tube scanner design has three piezoceramic elements for scanning in the x, y or z 

direction,2 providing nanoscale control in three dimensions.11 An AFM cantilever with a sharp tip 

is used to scan the sample. The cantilever is typically made of silicon or silicon nitride with a tip 

radius of curvature on the order of nanometers. The interactions between the tip and the sample 

cause a deformation of the cantilever according to Hooke's law, when the tip is approached into 

the proximity of the surface.12 During the raster scanning of the tip over the surface, the cantilever 

bends according to the contour of the surface. A laser spot is shined on the back of the cantilever 
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and is reflected onto a position-sensitive photodiode detector to trace the motion of the tip. A 3-D 

image of the surface morphology can be mapped by AFM because of the motion of the tip moving 

in three dimensions.  

The force interactions between the tip and the sample during approach are shown in Figure 

2.2. No interactions between the tip and sample are present when they are separated by large 

distances. During the approach process, the attractive force increases between the tip and surface. 

The first interaction zone is known as the “non-contact” regime, in which the weak attractive forces 

are dominant. As the tip and sample get closer to each other, the attractive force increases rapidly 

until the repulsive force takes place at a distance of a few angstroms. The second interaction zone 

is called the “intermittent contact” regime. With intermittent contact, the strong attraction and 

weak repulsion are dominant. The third interaction zone is the “contact regime,” where the strong 

repulsion forces are dominant. The three major AFM modes are classified by the distance-

dependent operating regimes. 

 

Figure 2.2 Interactions as the tip approaches the sample. 
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2.2 Imaging modes of AFM 

The imaging modes of AFM are classified according to the forces established between the 

tip and surface. Three primary modes of AFM are contact mode (repulsion domain), tapping mode 

(weak repulsion and strong attraction domain) and non-contact mode (weak attraction dominant) 

each named according to the nature of the tip motion. 

2.2.1 Contact mode AFM and lateral force imaging 

In contact mode AFM, the tip gently touches the surface during raster scanning. There is a 

net repulsive force between the tip and the sample. The deflection of the cantilever is used as a 

feedback signal for mapping the contour of the surface morphology. For this reason cantilevers 

with a low spring constant, i.e. soft cantilevers, are used to boost the deflection signal. Contact 

mode AFM can be operated in two ways, constant height or constant force mode depending if 

directly using the deflection of the cantilever to map the surface contour or using the deflection as 

the feedback signal for the control system to keep the cantilever at a certain position, respectively. 

In constant height mode, the scanner is operated at a fixed height above the sample. The cantilever 

deflects according to the height change of the surface morphology during the scan. The topography 

image is mapped as the error signal which is generated by vertical movement of the reflected laser 

beam from the back of the cantilever. The constant height mode is usually used for imaging 

atomically flat surfaces, where vertical deflection of the cantilever and the exert force are small. It 

is sensitive to small changes in topography. In constant force mode, the scanner is operated at a 

certain distance from the surface. The scanner responds to the topography of the sample by 

compensating for the deflection of the cantilever during the scan. The error signal which is 

generated by vertical movement of the reflected laser beam from the back of the cantilever is used 

as the feedback to control the expansion and contraction of the piezoceramic in z-direction. The 
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force between the tip and sample is held constant by keeping the deflection of cantilever constant 

using the feedback loop. The topography image is generated by the output signal of the feedback 

circuit.  

Lateral force images can be simultaneously acquired with topography images using contact 

mode AFM. Lateral force images reveal the difference in surface chemistry. The AFM probe 

interacts with the tip in the lateral direction according to frictional forces. During the scan, as the 

tip constantly contacts with the sample, the cantilever is twisted by the lateral interactions.  The 

torsion of the cantilever generates a surface map of the frictional forces for identifying the surface 

chemistry of the sample.   

Example images of topography and the corresponding lateral force images acquired by 

constant force contact mode AFM are shown in Figure 2.3. A densely packed film of decane was 

formed on Au(111) surface by immersion lithography.13 A periodic arrangement of dark holes is 

observed throughout areas of the sample shown in Figure 2.3, a. The periodicity of the nanoholes 

measures 500 nm, which corresponds to the size of the silica mesospheres used as a surface mask. 

Sixty-two nanoholes are counted within a 5 × 5 µm2 frame, scaling to a surface density of 108 

nanoholes/cm2. The sum area of the uncovered nanoholes measured ~1 % of the entire frame. A 

trace amount of photocatalyst is loosely adsorbed on the decane film shown as bright dots in Figure 

2.3, a. Darker contrast, which corresponds to areas of the uncovered Au(111) surface, are vaguely 

apparent in the simultaneously acquired lateral force image (Figure 2.3, b.). The shapes of the 

fabricated nanoholes in decane film are clearly shown in a zoom-in view (Figure 2.3, c.). The shape 

of the silica mesospheres used as surface mask are not perfectly spherical. These periodic 

nanoholes within decane film offers a reference baseline to measure the thickness of the film in 

situ. Defects of gold substrate such as pinholes and scars are resolved in the area covered by decane 
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film. The uncovered bare gold areas are clearly shown with bright contrast in the simultaneously 

acquired lateral force image (Figure 2.3, d.). The hexagonal pattern of the nanoholes indicates the 

way the mesospheres are arranged on surface. An example cursor profile is shown in Figure 2.3, 

e., which is drawn from the white line in Figure 2.3, c. The thickness of the decane film measured 

1.8 ± 0.7 nm.   

 

Figure 2.3 Nanopatterns prepared in a decane thin film using particle lithography. (a) Topography 

image; (b) simultaneously acquired lateral-force image. (c) Higher magnification topography 

image; (d) corresponding lateral force image. (e) Height profile for the white line cross-section. 

(Sample courtesy: Ragains Group of Louisiana State University) 
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2.2.2 Tapping mode AFM and phase imaging 

Tapping mode is more commonly used for AFM imaging compared to contact mode 

imaging. With tapping mode, the lateral frictional force between the tip and the sample during 

imaging is absent to protect the sample, especially for soft samples.14 In tapping mode AFM, an 

additional piezoelectric actuator is connected to the cantilever for driving the tip to oscillate in a 

sinusoidal manner over the sample. The driving frequency of the piezoelectric actuator is chosen 

at or near one of the resonance frequencies of the cantilever. The amplitude of the oscillating tip 

is monitored as the feedback of the operating process. During each oscillation cycle, the tip travels 

within the attraction and repulsion force (intermittent contact regime in Figure 2.2) to touch the 

surface of the sample. Under the complex tip-sample interactions during imaging, the amplitude 

and phase of the oscillating cantilever change, therefore, topography and phase images are mapped 

simultaneously. Tapping mode AFM is also referred to as alternating contact AFM (AC-AFM).  

The feedback system for tapping mode is used to maintain a constant oscillation amplitude 

of the cantilever (the setpoint value). For this reason, amplitude images for tapping are not 

interpreted for data analysis. Similar to the deflection signal in contact mode AFM, the amplitude 

change caused by the interaction between the tip and the sample is called “error signal” and used 

as the input for the feedback system adjusting the amplitude in vertical scale to map the topography 

image. 

The phase image is generated by the phase shift signal of the oscillating cantilever when 

the tip interacts with the sample. Differences in viscoelasticity can be revealed in phase images 

which is complementary information to the morphology images.15 The phase shift is closely related 

to the amount of energy dissipated as the tip interacts with the sample. The areas with different 

viscoelasticity can be identified by the mapped phase shift in phase images.16-21  
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Example images of topography and corresponding phase images acquired by tapping mode 

AFM are shown in Figure 2.4. A cluster of body diagonal cubic Fe3O4 particles were imaged by 

tapping mode AFM in ambient conditions. The height information is shown in the topography 

image (Figure 2.4, a.). The morphology of the particles is not clearly shown in topography because  

 

Figure 2.4 Example tapping mode images. (a) Topography and (b) phase AFM images of cubic 

Fe3O4 particles (Sample courtesy: Lee Group of University of Houston) 

the height range of the imaged feature is too large to be fully expressed by the color scale.However, 

the shape of the particles is accurately mapped in the phase image (Figure 2.4, b.) as diagonal 

polyhedrons. The facets of the polyhedrons with different angles to the vertical tapping tip interact 

with the tip differently, thus the phase shift of the oscillating cantilever is sensitive to the tip-

sample force interactions.15 Thus, the surface features of the particles is better revealed in the phase 

image as compared to the topography image. 

2.3 Force-distance curve 

The force interactions between the AFM tip and the sample can be recorded at different 

distances in the cycle of approaching and retracting. A force-distance curve (force spectroscopy) 
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is a plot of cantilever deflection as a function of tip position in vertical direction. Forces are 

measured indirectly by using the stiffness of the cantilever according to Hooke’s law to calculate 

values from the measured deflection of the cantilever.22 Additional physico-chemiscal properties 

of the samples can be acquired at the nanoscale by interpreting the force-distance curve.12, 23-24  

A typical force-distance curve acquired in air is shown in Figure 2.5. When the tip is 

brought to the surface from a relatively far distance (a few hundreds of nm), no force interaction 

is between the tip and the sample is detected until the tip is attracted to the surface by van der 

Waals forces at a distance of in a few nm. The attraction between the tip and the sample causes the 

cantilever to bend to the surface. As the cantilever keeps pushing the tip to the sample, repulsive 

forces increase causing the cantilever to bend against the sample. In the retracting process, the 

repulsive force between the tip and sample decreases as the tip withdraws from the surface. The 

cantilever deflection is converted from bending against the surface to bending to the surface as the 

repulsive force decreases to zero and the adhesion force takes place before the tip leaves the 

surface. The adhesion force is due to the capillary force caused by the adsorbed layer of water on 

the surface.   

 

Figure 2.5  Force-distance curves for contact mode AFM acquired in air. 
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2.4 Liquid imaging 

Liquid imaging extends the application of AFM to high resolution imaging, in situ 

imaging,25 biological imaging,26 biophysics27 and nanografting.28 The experimental setup for 

liquid imaging is shown in Figure 2.6. The liquid cell is made from polycarbonate and can be used 

with a certain chemical solvents. The cell is mounted onto a regular AFM sample plate. The 

feeding syringe is connected to the liquid cell with 0.9 mm tubing for maintaining and replenishing 

the liquid level inside the AFM liquid cell for several hours for imaging or observing the kinetics 

of surface reactions.   

 

Figure 2.6 Experimental setup for AFM liquid imaging 

A major merit of liquid imaging is eliminating the capillary force between the tip and the 

sample. A typical force-distance curve acquired in liquid media is presented in Figure 2.7. 

Compared to the force-distance curve acquired in air (Figure 2.5), the capillary forces of attraction 

are substantially decreased in the retracting process when the tip is operated in liquid media. This 

is due to the absence of the adsorbed layer of water at the surface. The minimized capillary force 

facilitates the quality of AFM images owing to the overall lower forces exerted for imaging.22  

Molecular and atomic lattices can be resolved by AFM in liquid environment.29-31    

AFM tip
Feeding
syringe

Flow 
direction
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Figure 2.7 Force-distance curves for contact mode AFM acquired in ethanol. 

With the function of liquid imaging, advanced experiments can be performed with AFM. 

For example, biological samples under physiological conditions can be imaged.32-33 The surface 

reactions of organic molecules can be imaged in situ in liquid environments.25 Mechanical 

properties between biological molecules can be measured, such as the unfolding energy of DNA 

and binding energy of proteins.4  

2.5 Scanning probe fabrication 

              Nanopatterns can be accurately fabricated as templates to selectively graft molecules.34-

35 Atomic force microscope-based lithography methods can be applied to fabricate nanopatterns 

within organic thin films, while maintaining the capability of molecular-level imaging with the 

same probe used to fabricate the nanopatterns.36-37 Representative methods of scanning probe 

fabrication include nanoshaving,28 nanografting,38 dip-pen nanolithography (DPN),39 NanoPen 

Reader and Writer (NPRW),40 tip-directed material deposition,41 local oxidation 

nanolithography,42-43 local chemical or electrochemical lithography,44 tip-induced catalysis,45 and 
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thermal-mechanical based writing.46 Nanoshaving and nanografting will be introduced in this 

section in detail since these methods were applied in Chapter 3. 

2.5.1 Nanoshaving 

             Besides imaging the surface with a tip, AFM can also manipulate the surface material by 

applying a high force onto the tip. Nanoshaving was first reported in 1994 for a n-alkanethiol self-

assembled monolayer (SAM) on Au(111).47 In the following year, an octadecyltriethoxysilane 

SAM on mica was nanoshaved by the same approach.48 Since then, nanoshaving has been widely 

applied for nanoscale experiments49-50 and for constructing nanoscale features.51-52 Nanoshaving 

has three steps described in Figure 2.8. 

 

Figure 2.8 Steps of nanoshaving. (a) Surface characterization under low force. (b) Nanoshaving is 

accomplished by exerting high force onto selected area. (c) Returning to low imaging force, the 

nanoshaved patterns can be imaged with the same AFM tip. 

To accomplish nanoshaving, the probe is swept multiple times across a small region with 

a higher mechanical force applied to the AFM tip (Figure 2.8, b.). The sweeping action of the 

probe is used to remove or displace molecules of the matrix SAM. The area can be characterized 

in situ using the same probe by returning to low force for nondestructive AFM imaging (Figure2.8, 

c.). The amount of force that is required and the number of times needed to cleanly sweep an area 

needs to be evaluated for each experiment, depending on the sharpness of the probe. Nanoshaving 

can be done in either ambient air or in a liquid environment. In air, the molecules are displaced to 
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form piles at the edges of the nanoshaved patterns. In liquid media, the shaved molecules can be 

swept away to produce clean edges at the sides of nanopatterns. 

              A square nanoshaved pattern (200 × 250 nm2) was fabricated within a SAM of 1-

dodecanethiol on Au(111). The nanoshaved area is the dark square shown in the topography image 

(Figure 2.9, a.) and reveals the underlying gold substrate. To assess how effective the nanoshaving 

parameters were for removal of 1-dodcanethiol molecules from the Au(111) surface, the 

simultaneously acquired lateral force image is shown in Figure 2.9, b. The dark area of the square 

nanopattern located at the left side of the image indicates the exposed areas of the Au(111) 

substrate, which indicates clean removal of dodecanethiol molecules. The tip-surface interactions 

mapped in lateral force frames are distinct for the gold surface and methyl end groups of 

dodecanethiol. Two domains are clearly shown in the scanned frame, i.e., the dodecanethiol SAM  

 

Figure 2.9 Topography and lateral force AFM images of a nanoshaved square within 

dodecanethiol. (a) Topography image acquired in ethanol; (b) simultaneously acquired lateral 

force image; (c) cursor profile of the line drawn in (a). 

and the rectangular area of the Au(111) substrate in the topography and corresponding lateral force 

images. The thickness of dodecanethiol can be locally evaluated with a cursor measurement, 

referencing the uncovered area of the substrate as a baseline at the bottom of the nanoshaved square 

pattern (Figure 2.9, c.). The thickness of the dodecanethiol film measured 1.5 ± 0.2 nm, which is 

in close agreement with the value obtained by ellipsometry and simulation.53-55 A conservative 
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error term of 0.2 nm is reported due to the roughness of the underlying gold substrate, which is 

based on the height of a single gold terrace step. 

2.5.2 Nanografting 

              Nanografting is an AFM-based approach for fabricating nanopatterns within organic thin 

films using an AFM tip under force. The process of nanografting is shown in Figure 2.10, which 

was invented by Song Xu in 1997.28 Nanografting is accomplished in a liquid environment that 

contains the selected molecules for patterning. A single sweep of the selected area at high force is 

used to remove molecules of the matrix SAM simultaneously as molecules from solution self-

assemble onto uncovered areas of the substrate (Figure 2.10, b.). Returning to low force for in situ 

imaging, the nanografted patterns can be characterized using the same AFM tip (Figure 2.10, c.). 

 

Figure 2.10 Steps of nanografting. (a) Surface characterization is accomplished under low force 

while imaging in a solution containing thiol molecules. (b) Nanografting is accomplished by 

increasing the force applied to the AFM tip, free molecules from solution assemble onto the 

exposed substrate. (c) Returning to low force, the nanografted patterns can be imaged with the 

same AFM tip. 

When designing nanografting protocols, the analyst can choose from a range of 

commercially available thiol molecules with different lengths and head group chemistries.36 An 

example is shown in Figure 2.11 of nanografted pattern with height that is higher than the matrix 

monolayer. The topography and corresponding lateral force images of a logo of Louisiana State 

University schematic are presented in Figures 2.11, a. and 2.11, b., respectively. 
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Figure 2.11 A nanoscale Louisiana State University logo written with 16-mercaptohexadecanoic 

acid within a 1-dodecanethiol SAM. (a) Contact mode AFM topography for a 1.8 ×1.8 μm2 scan 

area; (b) corresponding lateral force image; (c) cursor profile of the line drawn in (a); (d) design 

used for nanografting. 

        Terrace steps of the general morphology of an n-alkanethiol SAM on Au(111) are apparent 

in the topography frame. The lateral force image more prominently reveals the pattern design, 

because the headgroups of the patterned areas are chemically different than the matrix SAM which 

provides frictional contrast. The acid headgroups of the nanopatterns exhibit strong tip-surface 

adhesion, producing line spike artifacts in the topography frames. The differences in surface 
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chemistry between the nanografted patterns (carboxylic acid headgroups) and the dodecanethiol 

matrix SAM (methyl headgroups) provide excellent contrast for the lateral force image of Figure 

2.11, b. The areas surrounding the pattern are methyl-terminated dodecanethiol and the patterns 

were written with carboxylic acid-terminated 16-mercaptohexadecanoic acid (MHA), which is 0.5 

nm higher than the matrix SAM. The height difference of the two molecules can be measured with 

a local cursor measurement shown in Figure 2.11, c. The height of the MHA molecules on Au(111) 

measured 2.0 nm. The script used to outline the nanopatterns is shown in Figure 2.11, d., with 

excellent correspondence between the design and resulting nanografted patterns for such small 

size scales. The linewidth achieved for this pattern was accomplished with a single sweep, 

measuring 20 nm in width. With an ultra-sharp AFM probe, the smallest feature produced with 

nanografting was an island of a 2 × 4 nm2 dot pattern, which is an area that would accommodate 

approximately 32 thiol molecules.56 

2.6 Conductive-probe AFM 

        An early and important variation of AFM is conductive-probe AMF (CP-AFM),57 also known 

as conducting (probe) AFM,58-62 conductive AFM63 and current sensing AFM.64-66 It is applied for 

current mapping and measurement at the nanoscale in addition to the regular topographic mapping 

and force measurement with a metal-coated AFM tip. The basic instrumental setup of CP-AFM is 

shown in Figure 2.12. A regular AFM tip made from silicon or silicon nitride (Si3N4) is coated 

with a thin layer (ca. 15 – 100 nm) of metal as an electrode. The metal used for coating an AFM 

tip includes Au,59, 63 Pt,59, 61-62 Ti,57 and Niobium nitride (NbN).67 A conductive (e.g. Au and 

graphite) or semi-conductive (e.g. silicon wafer) substrates are used as the other electrode for 

measuring conductivities of the samples by applying a voltage between the conductive tip and the 

substrate. The current flow through the tested material is mapped simultaneously with the 
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topography image by the tip constantly contacting the sample during raster scan under a certain 

voltage and loaded force. The local conductivity of tested material can be drawn from current-

voltage (I-V) curves, which are acquired by parking the conductive tip on a selected point of the 

sample and then recording the flow current during a voltage sweep.     

 

Figure 2.12 Instrumental setup for CP-AFM. 

        Since the first research using CP-AFM was published in 1993,57 various materials have been 

characterized by this technique including metal-oxide-semiconductors (MOSs),57-58, 60, 62, 65 

nanotubes,67-68 SAMs,63, 66, 69-73 molecular wires,61, 74 and polymers.64, 75 The operating 

environment of CP-AFM can be in ambient conditions, gas phase, UHV and liquid.59, 61 The liquid 

for CP-AFM imaging should be carefully selected. Dry toluene is a good choice for liquid CP-

AFM imaging.59, 61 

        As an alternative SPM technique for measuring conductive properties at the nanoscale, an 

advantage of CP-AFM compared to non-contact STM is prevention of the effect of a tunneling 

junction from to collect I-V curves.70-71 The direct contact between the conductive AFM probe and 

the sample simplify the interpretation of the electrical behavior owing to the absence of an 

additional tunneling gap. Another advantage of CP-AFM compared to STM is controlling the 
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mechanical load of the tip to the sample, which facilitates understanding the measured resistance 

or conductance.61, 70 For STM experiments, there is no contact between the tip and sample.61  

        Example images acquired with CP-AFM are shown in Figure 2.13. An organic thin film with 

periodic array of nanopores was fabricated on template-stripped gold (TSG) using immersion 

particle lithography. As CP-AFM is operated in contact mode, using deflection as the feedback 

signal, topography and lateral force images are simultaneously acquired with current image of the 

 

Figure 2.13 Simultaneously-acquired topography, current and lateral force images of patterned 

nanopores in an anisole thin film on Au(111) obtained with CP-AFM. (a) Topography image; (b) 

simultaneously acquired current image; (c) lateral force image; (d) height profile taken from two 

nanopores in topography image; (e) current profile taken from the same two nanopores in current 

image. (Sample courtesy: Ragains Group of Louisiana State University). 

same scanned area. A representative topography image is shown in Figure 2.13, a. The periodic 

nanopores are shown as black circular dots in a hexagonal arrangement. The areas of the nanopores 

are bare Au(111) which were protected by mesospheres during formation of the organic thin film. 
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The defects of Au(111) surface such as scars can be observed at the background. The current image 

of the same scanned area is shown in Figure 2.13, b. The conducting Au areas are clearly shown 

as the blue dots correspond to the nanopores in the topography image. The insulating background 

shown with orange contrast indicates the resistivity of the organic thin film.  In the lateral force 

image, shown in Figure 2.13, c., two distinct domains, i.e. bare Au(111) areas and organic thin 

film are presented as bright gold dots and dark brown background respectively. A representative 

cursor profile of height is shown in Figure 2.13, d., corresponding to the black line drawn in Figure 

2.13, a. The thickness of the film is 3.5 ± 1 nm from the cursor profile. The distance of the two 

measured nanopores measured 500 nm, which is determined by the diameter of the mesospheres 

used as surface mask. A cursor profile of the current measured from the same two nanopores is 

shown in Figure 2.13, e. The Au(111) areas show the highest current values in contrast to the 

background organic layer, which shows high resistivity.  

2.7 Self-assembled monolayers of organosulfur 

        Since R. G. Nuzzo and coworkers firstly reported the adsorption of organosulfur on gold 

surfaces in 1983,76 alkanethiol molecules have been widely used to form self-assembled 

monolayers (SAMs) on metal surfaces for surface modification. Studies have shown that n-

alkanethiol molecules are well ordered as a commensurate (√3×√3)R30° lattice on Au(111) with 

backbones tilted approximately 30° from surface normal (Figure 2.14).77-79 The application of 2D 

alkanethiol SAMs ranges from electronic devices to biosensor detection. The stability of 

organosulfur-based SAMs on noble metal surfaces is a concern which limits the reliability and 

durability of organic thin film materials.80 A potential drawback of applications of n-alkanethiol 

SAMs is degradation due to ultraviolet (UV) light, heat, and oxidation.80 Studies have shown that 

thiol SAMs formed with longer alkane chains are more thermally stable than those formed with 
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shorter chain lengths.81-83 Improved stability for organosulfur SAMs on noble metal surfaces can 

be achieved by anchoring more than one sulfur group to the metal surface atoms to form multiple 

anchoring points for each molecule.84 It has been reported that multidentate thiols improve the etch 

selectivity and increase the resist surface film quality, and the enhancement of stability originates 

from an entropy-driven chelate effect.85 In an alkanethiol-gold system, the exchange of sulfur 

atoms on a gold surface is a dynamic process during surface assembly.86 The formation of an initial 

sulfur-metal bond facilitates further bonding between other sulfur atoms to anchor multidentate 

thiol molecules on a gold surface. Studies using ellipsometry indicate that multidentate thiols have 

improved thermal stability compared to monodentate thiols.87,88-89 Electrochemical studies have 

shown that SAMs from multidentate thiols exhibit greater stability.90,91-92 

 

Figure 2.14 Model of n-alkanethiols SAMs on Au(111) surface.         

2.8 Particle lithography 

        Particle lithography is an example of natural lithography. It provides a generic approach for 

high-throughput fabrication of nanopatterns with nanoparticles,93-94 proteins,26 metals,95-97 and 

organic materials.98-99 It is an inexpensive and rapid method for fabricating a large array of 

nanostructures.   Nanolithography approaches which combine chemical synthesis with surface 

engineering can be applied for studying the effects of spatial confinement for surface-based 
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chemical reactions.13, 99 With particle lithography, a dried film of latex or silica spheres is used as 

a surface mask to designate the placement of molecular adsorbates. After the deposition of a matrix 

material, the spheres are then removed either by sonication or lift-off, leaving behind hexagonal 

arrays on surfaces. The exquisite small areas used to be protected by the spheres are available for 

further spatially confined deposition or reaction of studied materials.  Combining particle 

lithography with molecular self-assembly provides a practical strategy to prepare arrays of organic 

film-based nanostructures with regular geometries. Millions of nanopatterns can be generated 

using bench steps. 

        A close-packed arrangement of monodisperse silica or latex mesospheres is shown in the 

topography image in Figure 2.15, a. The close-packed mesospheres can be applied as a surface 

mask for nanolithography. The diameter of the mesospheres are 500 nm as shown in the cursor 

line profile (Figure 2.15, b.). The diameter of the mesosphere defines the periodicity of the 

patterned structures on surfaces. 

 

Figure 2.15 Mesosphere template of 300 nm latex used for particle lithography. (a) Hexagonal 

arrangement of the mesospheres is apparent in the AFM topography. (b) Height profile taken from 

the white line in (a).  
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CHAPTER 3: NANOSCALE LITHOGRAPHY MEDIATED BY SURFACE 

SELF-ASSEMBLY OF 16-[3,5-

BIS(MERCAPTOMETHYL)PHENOXY]HEXADECANOIC ACID ON 

AU(111) INVESTIGATED WITH SCANNING PROBE MICROSCOPY3* 

3.1 Introduction  

Considerable effort has been directed toward studies of monothiol-based self-assembled 

monolayers on gold; however, the surface self-assembly of multidentate thiol adsorbates has 

received far less attention, particularly at the molecular level. The stability of organosulfur-based 

adsorbates to oxidation, heat, and exposure to light can limit the durability of surface films.100-109 

Multidentate SAMs derived from thiol adsorbates exhibit enhanced thermal and chemical stability 

compared to those derived from n-alkanethiols.107, 110 Having additional thiol moieties in the 

headgroup of these adsorbates enables a chelate effect, which improves the stability of the films.111-

112   

Previously, we investigated the surface self-assembly of tridentate 1,1,1-

tris(mercaptomethyl)heptadecane with in situ studies using atomic force microscopy (AFM).25 The 

adsorption of tridentate adsorbates proceeds via a more complex assembly pathway than that of 

monothiols since the multidentate molecules require successive steps to form S–Au bonds to the 

surface. The bidentate molecule selected for this study is 16-[3,5-

bis(mercaptomethyl)phenoxy]hexadecanoic acid (BMPHA), shown in Scheme 3.1.113 The design 

of BMPHA incorporates two thiol groups placed at meta- positions of a phenyl moiety, connected 

by bridging methylene groups. The distance between the two thiol groups (5 Å) was designed to  

place the two sulfur atoms at binding sites of Au(111) without substantial torsional strain.100, 114 

* Chapter 3 previously appeared as Zhai, X.; Lee, H. J.; Tian, T.; Lee, T. R.; Garno, J. C., 

Nanoscale lithography mediated by surface self-assembly of 16-[3,5-

bis(mercaptomethyl)phenoxy]hexadecanoic acid on Au(111) investigated by scanning probe 

microscopy. Molecules 2014, 19 (9), 13010-26. It is reprinted by permission of MDPI Publisher 

(see page 100). 
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The molecular backbone of BMPHA consists of a chain of sixteen carbons terminated with 

carboxylic acid. The acid moiety can be used as a linker moiety for binding proteins115 or metals.116 

By changing immersion conditions, electrostatic interactions at the interface can produce head-to-

head linkages of acid endgroups to form bilayer films.117 

  

Scheme 3.1 Structure of 16-[3,5-Bis(mercaptomethyl)phenoxy]hexadecanoic acid (BMPHA). 

Scanning probe based protocols of nanoshaving and nanografting have been applied to 

measure the local thickness of organic films,117-119 for monitoring adsorption kinetics on 

surfaces,38, 120  to identify functional groups of n-alkanethiols,121-122 and to confine spatially the 

deposition of DNA,123-124 proteins,115, 125-126 and metals.116 Nanofabrication based on scanning-

probe methods requires steps of rastering the probe to write each pattern individually. A high-

throughput approach for nanolithography with organic thin films has been developed that can 

generate billions of circular nanopatterns at once, using surface masks of close-packed 
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monodisperse mesospheres. Particle lithography enables the manufacture of billions of regular 

nanopatterns with well-defined geometries based on solution self-assembly and steps of drying 

and evaporation.13, 127 Arrays of regularly-shaped nanostructures provide a foundation for further 

chemical reactions and are useful for local AFM characterizations. For example, the areas that 

were masked by mesospheres furnish exposed sites of Au(111) for depositing organothiols to 

generate multicomponent surface patterns with selected functional groups.  

The synthesis of multidentate thiol-based adsorbates offers opportunities for generating 

robust interfaces of well-defined structure and composition. In our experiments, nanostructures of 

BMPHA were prepared with closed packed silica spheres on Au(111). Essentially, our strategy 

was to construct spatially-selective containers of exposed sites of the substrate to direct the 

subsequent deposition of a second molecule. Samples prepared by nanolithography with organic 

thin films enable side-by-side comparisons of the surface structures of multidentate adsorbates 

versus n-alkanethiol monolayers (i.e., film thickness, periodicity, surface properties). Surface 

characterizations were accomplished using in situ imaging with AFM to provide fundamental 

measurements at the molecular level. Scanning probe based lithography experiments employed a 

liquid sample cell for AFM studies, since fresh reagents can be introduced to the system and step-

wise surface changes before and after nanofabrication can be monitored in situ. The multidentate 

SAMs provide a foundation for constructing more complex assemblies at the nanoscale. Side-by-

side imaging of the surface structures of BMPHA versus n-octadecanethiol were accomplished 

with AFM. A bilayer of BMPHA was formed on Au(111) by changing the immersion conditions 

(i.e., concentration and immersion time). The thickness of monolayer and bilayer BMPHA thin 

films on Au(111) was evaluated by measurements with nanoshaving, nanografting and immersion 

protocols with particle lithography.    
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3.2 Materials and methods 

3.2.1 Materials 

Octadecanethiol was purchased from Sigma Aldrich (St. Louis, MO) and used as received. 

The new adsorbate of interest, 16-[3,5-bis(mercaptomethyl)phenoxy]hexadecanoic acid 

(BMPHA) was synthesized as previously reported.113 Ethanol (200 proof) was obtained from 

Pharmco-AAper Alcohol and Chemical Co. (Shelbyville, KY) and used as the diluent for preparing 

thiol solutions. Gold pellets (99.99% purity) were purchased from Ted Pella (Redding, CA). 

3.2.2 Preparation of organic thin films on Au(111) 

To prepare films of BMPHA for scanning-probe based nanolithography protocols, 

commercially obtained gold substrates were rinsed with ethanol and submerged in thiol solutions 

for specifically designated immersion intervals. Films of BMPHA were rinsed with ethanol and 

then characterized with AFM with protocols of nanoshaving and nanografting. Flame-annealed 

gold films on mica substrates (150 nm thickness) were purchased from Agilent (Chandler, AZ). 

3.2.3 Preparation of template-stripped Au(111) 

Template-stripped gold (TSG) films on glass substrates were prepared as reported 

previously.128 Gold pellets were deposited in a high-vacuum thermal evaporator (Angstrom 

Engineering Inc., Kitchener, OR) at 10-7 Torr onto freshly cleaved pieces of Ruby muscovite mica 

(S&J Trading Inc., Glen Oaks, NY). The mica was preheated to 350°C prior to gold deposition 

using quartz lamps mounted behind the sample holder. A deposition rates of 3 Å/s was used to 

prepare films of 150 nm overall thickness. After deposition, the gold substrates were annealed at 

365°C under vacuum for 30 min and cooled to room temperature. The gold film was glued to glass 

slides as previously reported by Hegner et al.129 The gold substrates and glass slides were rinsed 

with deionized water and placed into a UV-ozone generator for 30 min. Epoxy (EPO-TEK, 
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Billerica, MA) was mixed (1:1) and immediately deposited onto the glass slides. The glass slide 

was placed onto the gold surface so that the drop of epoxy formed a thin film without any air 

bubbles. The samples were then heated in oven at 150°C for 2 h to anneal the epoxy. After cooling 

to room temperature, the glass pieces were carefully peeled from the mica to form TSG.  

3.2.4 Immersion particle lithography with masks of silica mesoparticles 

Size-sorted, monodisperse silica mesospheres (500 nm diameter, Thermo-Fisher Scientific, 

Waltman, MA) were deposited on TSG as surface masks for immersion particle lithography. 

Aqueous solutions of silica mesospheres were cleaned by centrifugation to remove surfactants or 

contaminants. A volume of 300 μL of the silica mesosphere solution was placed into a 

microcentrifuge tube and centrifuged for 20 min at 20,000 rpm. A solid pellet formed at the bottom 

of the centrifuge tube, and the supernatant was removed and replaced with deionized water. The 

pellet was resuspended with deionized water by vortex mixing. The washing cycle was repeated 

four times. Freshly-stripped pieces of TSG were cleaned by rinsing copiously with ethanol. A drop 

(10–15 μL) of the mesosphere solution was deposited onto the TSG substrates and dried under 

ambient conditions to form surface masks for nanolithography. The mesosphere masks were 

annealed by heating at 150°C for 12 h; the heating step enabled the masked substrates to be 

immersed in solvent solutions for preparing films on TSG. The mesospheres could be removed in 

a later step by sonication in ethanol. Further details for the procedure of particle lithography with 

immersion are described with Appendix D. 

3.2.5 Atomic force microscopy 

Models 5500 and 5420 scanning probe microscopes (Agilent Technologies, Chandler, AZ) 

equipped with PicoView v1.12 software were used for AFM characterizations. Images were 

acquired using contact mode in a liquid cell containing ethanolic solutions. Imaging and 
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nanofabrication were accomplished with silicon nitride tips with an average spring constant of 0.6 

N/m (Bruker Instruments, Camarillo, CA). A scan rate of 1 line/s with a typical image force less 

than 1 nN were used for AFM imaging. A liquid cell made from polycarbonate was used for 

nanoshaving and nanografting experiments. Digital images were processed and analyzed with 

Gwyddion v. 2.30.130  

3.2.6 Scanning probe-based nanolithography (nanoshaving and nanografting) 

Nanoshaving and nanografting experiments with SAMs were done as previously 

described.28, 131 To accomplish nanoshaving, the probe is swept multiple times across a small 

region with a higher mechanical force applied to the AFM tip. The sweeping action of the probe 

is used to remove or displace molecules of the matrix SAM. The area can be characterized in situ 

using the same probe by returning to low force for nondestructive AFM imaging. The amount of 

force that is required and the number of times needed to cleanly sweep an area needs to be 

evaluated for each experiment, depending on the sharpness of the probe. Nanoshaving can be done 

in either ambient air or in a liquid environment.  In air, the molecules are displaced to form piles 

at the edges of the nanoshaved patterns. In liquid media, the shaved molecules can be swept away 

to produce clean edges at the sides of nanopatterns. Nanografting is accomplished in a liquid 

environment that contains the selected molecules for patterning. A single sweep of the selected 

area at high force is used to remove molecules of the matrix SAM simultaneously as molecules 

from solution self-assemble onto uncovered areas of the substrate. Returning to low force for in 

situ imaging the nanografted patterns can be characterized using the same AFM probe. The 

fabrication step of nanografting is depicted in Figure 3.1. Advantages of nanoshaving and 

nanografting are that a liquid environment enables in situ studies of surface changes with high 
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resolution. The nanopatterns that are produced in the fabrication steps can be imaged under low 

force with the same AFM tip as a tool for imaging and nanofabrication. 

 

Figure 3.1 Operation of an AFM probe under force to accomplish nanografting. 

3.3 Results and discussion 

Several protocols with scanning probe microscopy were conducted to investigate the self-

assembly and surface morphology of BMPHA on Au(111) in a liquid environment. Our goal was 

to obtain side-by-side views of the morphology of BMPHA and n-alkanethiols films using AFM 

characterizations of grafted nanopatterns. The known height of n-octadecanethiol (ODT) was used 

as a nanoscale ruler to evaluate the thickness of BMPHA films prepared under selected conditions. 

Depending on the concentration and immersion intervals, either single or double layers of BMPHA 

could be generated. 
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3.3.1 Nanoshaving within a monolayer film of BMPHA 

A square nanoshaved pattern (200 × 200 nm2) within a SAM of BMPHA is shown in Figure 

3.2. The BMPHA film of the matrix area surrounding the nanoshaved hole was formed by 24 h 

immersion in 0.1 mM solution. The nanoshaved area is the dark square in the topography image 

(Figure 3.2, a.) and reveals the underlying gold substrate. The irregularly shaped bright patches at 

the top and bottom of the nanoshaved square are residues of BMPHA removed by the AFM probe. 

To assess how effective the nanoshaving parameters were for removal of BMPHA, the 

simultaneously acquired lateral force image is shown in Figure 3.2, b. The bright area of the square 

nanopattern located at the center of the image indicates the exposed areas of the substrate, which 

indicates clean removal of BMPHA. The tip-surface interactions mapped in lateral force frames 

are distinct for the gold surface and carboxylic endgroups of BMPHA. The thickness of the 

BMPHA film can be evaluated with a local cursor measurement, referencing the uncovered area 

of the substrate as a baseline at the bottom of the nanoshaved square pattern (Figure 3.2, c.). The 

thickness of the BMPHA SAM measured 2.0  ± 0.2 nm, which is in close agreement with the value 

obtained by ellipsometry.113 A conservative error term of 0.2 nm is reported due to the roughness 

of the underlying gold substrate, which is based on the height of a single gold terrace step. 

 Compared to monodentate n-alkanethiols, a higher force was required to shave away the 

multidentate BMPHA layer. For the example in Figure 3.2, the area was swept 20 times with 5 nN 

applied force. Typically, n-alkanethiols can be nanoshaved with 4-6 sweeps at forces between 0.2 

and 10 nN depending on the sharpness of the AFM probe. When nanoshaving n-alkanethiol SAMs 

in ethanol, the displaced molecules are often dissolved in the surrounding liquid media so that no 

residues are present at the edges of the patterns. However, with the bidentate example shown in 

Figure 3.2, BMPHA molecules formed aggregate assemblies that failed to dissolve fully in 
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ethanolic media. Intermolecular associations between the carboxylic acid groups and - 

interactions of the aromatic moiety of BMPHA are sufficiently strong to induce aggregation, as 

indicated by surface residues at the edges of the nanoshaved pattern. 

 

Figure 3.2 Nanoshaving within a BMPHA monolayer. (a) Topography view of nanoshaved square; 

(b) corresponding lateral force image; (c) height profile for the white line in (a). 

3.3.2 Nanografting n-alkanethiols within a monolayer of BMPHA 

 The thickness and quality of the bidentate BMPHA films were examined further using 

protocols of nanografting. Films of BMPHA were prepared on Au(111) by immersing a gold 

substrate into an ethanolic solution (0.1 mM) for 24 h. A nanopattern of n-octadecanethiol (ODT) 

was inscribed within a matrix of BMPHA (Figure 3.3) to enable a side-by-side comparison of the 

surface morphology. The nanopattern of ODT appears to be slightly shorter in height than the 
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surrounding areas of BMPHA (Figure 3.3, a.) revealing a recessed square region containing 

overlapping gold steps. The concurrently acquired lateral force image (Figure 3.3, b.) reveals 

distinct changes in the surface chemistry for the regions of the ODT nanopattern and BMPHA 

matrix. The horizontal lines are produced by the left and right raster pattern of the AFM probe. 

The expected height for a densely packed ODT monolayer is 2.1 nm, assuming a tilt angle of 28o. 

Residues of BMPHA are piled at the edges of the nanografted pattern and provide a distinct 

boundary around the inscribed region of ODT; therefore, comparison of the height differences at 

the pattern edges cannot be used to provide a reliable estimate of the BMPHA film thickness for 

this example. Comparing the cursor measurement in areas beyond the edges of the nanopattern 

reveals that the thickness of the BMPHA film is approximately the same as ODT, which would 

correspond to a monolayer.   

 

Figure 3.3 Side-by-side comparison of the surface morphology of ODT and a BMPHA monolayer 

prepared on Au(111). (a) Nanografted pattern of ODT (300 × 300 nm2) viewed with a contact-

mode AFM topography image acquired in ethanol; (b) corresponding lateral force image; (c) 

cursor profile for the line in (a). 
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The areas of BMPHA appear to have a rougher morphology in the areas surrounding the 

nanografted ODT pattern (Figure 3.3, a.). A few small adsorbates are present on the BMPHA areas, 

and the density of BMPHA is consistent with a loosely packed tailgroup assembly.31 The 

differences in tip-surface adhesive interactions are quite distinct in the lateral force image of Figure 

3.3, b. A monolayer of BMPHA would present carboxylic acid moieties at the surface, whereas 

the nanopattern of ODT is terminated with methyl groups, which produces distinct changes in 

color contrast for the lateral force frame. 

Protocols of nanoshaving and nanografting can be accomplished within the same 

experiment by rinsing and exchanging solutions with the AFM liquid sample cell. This protocol 

requires a stable imaging environment, since it is easy to perturb the sample to displace the tip 

away from the nanofabricated region. In the next in situ experiment, a 200 × 200 nm2 square of 

BMPHA molecules was nanografted within a naturally grown BMPHA SAM (Figure 3.4). The 

nanopattern can be vaguely distinguished near the center of the image, because the bottom corners 

of the pattern did not fill in completely. Otherwise, the height of the nanografted area matches the 

height of BMPHA and is not visible in the topography frame. After nanografting, the BMPHA 

solution was removed and replaced with clean ethanol to enable nanoshaving. A square area (200 

× 200 nm2) was swept at high force to disclose the underlying gold substrate at the left side of the 

image. The nanoshaved area is easy to distinguish as a dark square at the left side of the topography 

frame of Figure 3.4, a. Although mostly indistinguishable, the square pattern of BMPHA was 

nanografted immediately to the right of the nanoshaved pattern. The area in the center of the pattern 

with a nanografted pattern of BMPHA has the same surface chemistry (-COOH) as the surrounding 

matrix and cannot be clearly detected in the lateral force image (Figure 3.4, b.). However the 

nanoshaved square on the left side of the frame is readily identifiable with brighter color. 



37 

 

Figure 3.4 Fabrication of a nanoshaved square and nanografted pattern of BMPHA side-by-side 

within a monolayer film of BMPHA. (a) Contact-mode topography image acquired in ethanol; (b) 

lateral force frame; (c) cursor profile for the line in (a) drawn across both nanopatterns. 

Combining protocols of nanografting followed by nanoshaving is particularly useful to test 

if the nanografting solution interacts to bind to the surface of the matrix layer. A representative 

line profile across the nanoshaved area of Figure 3.4, a. shows that the thickness of the film 

measures 2.1 ± 0.2 nm, referencing the bottom of the nanoshaved area as a baseline (Figure 3.4, 

c.). This thickness corresponds to the expected height for a monolayer of BMPHA; consequently, 

there is no evidence of adsorption of the nanografting solution to the BMPHA matrix. For the 

nanografted area, no difference in height was detected for the nanografted patch of BMPHA versus 

the surrounding BMPHA film. This area can be detected using the vague dark outline of the bottom 
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corners of the nanografted square. Considering the overall theoretical molecular length of BMPHA 

(2.53 nm); the tilt angle for a BMPHA monolayer would measure ~34 degrees, assuming that both 

sulfurs of the bidentate molecule bind to the surface of gold.  

3.3.3 Nanografting ODT within a double layer of BMPHA 

A double layer film of BMPHA on Au(111) can be produced by changing the experimental 

parameters of concentration and immersion intervals. A bilayer of BMPHA was formed by 

immersion of a gold substrate in 5 mM ethanolic solution for 30 h. Nanopatterns were fabricated 

within a BMPHA bilayer using sequential steps of nanoshaving and nanografting prepared as 

shown in Figure 3.5. First, a rectangular area (200 × 300 nm2) was nanoshaved within the BMPHA 

film. Next, a solution of ODT (1 mM) was injected into the sample cell, and a smaller rectangle 

was nanografted to the right of the original nanoshaved area. At this concentration, we were unable 

to detect the growth of ODT within the nanoshaved area over a period of less than one hour. For 

the rectangular nanopattern on the right side of Figure 3.5, a., an aggregate of residue removed 

from the nanoshaved area persists near the bottom of the rectangle. The nanografted pattern of 

ODT has a taller mound of removed adsorbates at the top edge of the feature. Differences in surface 

adhesion are mapped in the lateral force frame of Figure 3.5, b., revealing different color contrast 

for the matrix of BMPHA, the nanoshaved area, the nanografted ODT pattern, and adsorbate 

residues. The patterns exhibit different depths within the BMPHA matrix, as shown with a 

representative line profile in Figure 3.5, c. The nanofabricated areas have heights that are shorter 

than the surrounding BMPHA film. The thickness of the BMPHA matrix film measured using the 

depth of the nanoshaved rectangle is 4.2 ± 0.2 nm, which corresponds to a bilayer. The difference 

in thickness for the nanografted pattern on the right measured 2.1 ± 0.2 nm, which is consistent 
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with the known thickness for a monolayer of ODT. Additional examples of nanoshaved and 

nanografted patterns produced within a BMPHA bilayer are provided in Appendix D. (Figure D1). 

 

Figure 3.5 A nanoshaved area and nanografted pattern of ODT placed side-by-side within a 

BMPHA bilayer. (a) Topography image; (b) lateral force frame; (c) cursor profile for (a); (d) 

proposed height model. 

A model for the heights of the nanoshaved and nanografted patterns is presented in Figure 

3.5, d. In the proposed model, a bilayer is formed by interactions between –COOH functional 

groups of BMPHA to form a head-to-head arrangement. Previously, double layers were detected 

with extended immersion or higher concentrations of acid-terminated n-alkanethiol SAMs, such 

as 11-mercaptoundecanoic acid and mercaptohexadecanoic acid.117 For this model the bilayer of 

BMPHA presents dithiol moieties at the interface.  Notably, no BMPHA bilayer structures were 
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observed when the SAMs were formed from 1 mM ethanolic BMPHA followed by ex situ rinsing 

with water, THF, and ethanol. 

3.3.4 Nanofabrication experiments with BMPHA using immersion particle lithography 

Using immersion particle lithography, periodic arrangements of nanostructures were 

produced through surface self-assembly of BMPHA and ODT on gold. Solution self-assembly of 

thiol-based molecules on gold substrates enables construction of thin films with well-defined 

dimensions and composition. Particle lithography enables exquisite design of interfacial chemistry 

by defining the surface coverage of component molecules.127, 132 For protocols with BMPHA, a 

mask of mesospheres was placed on template-stripped gold (TSG). Two immersion steps were 

used to prepare islands of ODT within a matrix monolayer of BMPHA. In the first immersion step, 

the masked TSG substrate was submerged in an ethanolic solution of BMPHA to prepare 

nanoholes. When the mesosphere mask was removed, a periodic arrangement of uncovered areas 

of substrate is disclosed (Figures 3.6, a.-3.6, c.). The nanoholes were filled in by a second 

immersion step with ODT (Figures 3.6., d-3.6, f.). This protocol produced circular islands of 

methyl-terminated ODT surrounded by a matrix monolayer of acid-functionalized BMPHA. 

Representative AFM images of samples prepared with the two immersion steps are 

presented in Figure 3.6; the top panels are views of the nanoholes within BMPHA produced by 

particle lithography, and the bottom panels were acquired for the same sample after backfilling 

with ODT. A periodic arrangement of nanoholes is shown in Figure 3.6, a.; the dark circles of the 

topography frame are areas of uncovered substrate and can be more clearly distinguished in the 

lateral force frame (Figure 3.6, a'.). There are approximately 25 nanoholes within the 3 × 3 µm2 

area, which would scale to an approximate surface density of 108 nanostructures/cm2. The spacing 

between nanopatterns measures 500 nm, matching the diameter of the silica mesospheres used for  
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Figure 3.6 Nanopatterns prepared with ODT and BMPHA using immersion particle lithography. 

(a) Nanoholes within BMPHA; (a') lateral force image; (b) successive zoom-in topograph; (b') 

lateral force image; (c) cursor profile for the line shown in b; (c') structural model of BMPHA 

nanostructures. (d) Nanoholes filled with ODT; (d') corresponding lateral force frame; (e) zoom-

in view of ODT nanopatterns; (e') lateral force image; (f) cursor profile for the line in (e); (f') 

chemical model of backfilled ODT within BMPHA. 
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patterning. With immersion particle lithography, the sizes of the nanoholes are exquisitely small 

because the areas where the beads make physical contact are much smaller than the periodicity of 

the mesosphere surface mask. The shape of the nanoholes is more clearly revealed in zoom-in 

views of Figures 3.6, b. and 3.6, b'. Six sites of nanoholes are shown within the 1.2 × 1.2 µm2 

frame, defining the areas where the mesospheres were displaced. The topography frames also 

resolve the shapes of the edges of steps and terraces of the gold substrate beneath the BMPHA 

film. The depth of the nanoholes measures 2.1 ± 0.2 nm, shown with a representative cursor profile 

in Figure 3.6, c. A side-view model for a monolayer of BMPHA with areas of uncovered gold is 

shown in Figure 3.6, c'.  

The nanoholes were backfilled with ODT by immersing the sample in a solution of 1 mM 

ODT in ethanol for 24h. Changes in surface morphology are readily apparent after backfilling, the 

locations of the circular holes are no longer visible in the topography frames of Figures 3.6, d and 

3.6, e. Since ODT and BMPHA are similar in height, there is no clear height difference revealed 

in the topographs, as shown with an example cursor profile in Figure 3.6, f. However, the 

simultaneously acquired lateral force frames disclose distinct differences in color contrast for the 

–COOH groups of BMPHA compared to methyl-terminated ODT. Lateral force images enable 

visualization of the locations and sizes of the ODT nanopatterns in Figures 3.6, d'. and 3.6e'. Using 

the lateral force frames, the surface coverage of methyl and acid headgroups was determined to be 

~5%. 

Immersion particle lithography was similarly applied for making islands of ODT within a 

bilayer film of BMPHA (Figure 3.7). The bilayer was produced by using higher concentration of 

4 mM BMPHA immersed for 30 h. Approximately 60 nanoholes of uncovered TSG are visible 

within a BMPHA bilayer for a 5 × 5 µm2 area, as shown in Figures 3.7, a. and 3.7, a'. The diameter  
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Figure 3.7 Nanopatterns prepared in a bilayer of BMPHA using immersion particle lithography. 

(a) Nanoholes exposing TSG within a BMPHA bilayer; (a') corresponding lateral force image; (b) 

zoom-in view; (b') lateral force image; (c) cursor profile for the line shown in b; (c') chemical 

model of BMPHA bilayer. (d) Nanoholes filled in with ODT; (d') corresponding lateral force 

frame; (e) zoom-in view of ODT backfilled nanopatterns; (e') lateral force image; (f) cursor profile 

for the line in (e); (f') chemical model of backfilled ODT within a bilayer of BMPHA. 
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of the nanoholes measures 110 ± 10 nm, with a surface coverage of 5%. A close-up view of three 

nanoholes is shown in Figures 3.7, b. and 3.7, b'., revealing a somewhat rougher texture at the 

surface of the BMPHA bilayer. The reference features of the underlying gold substrate cannot be 

distinguished in Figure 3.7, b. as was apparent for the monolayer film of BMPHA (Figures 3.7, a. 

and 3.7, b.). One might predict that a bilayer film would be less densely packed than a monolayer, 

and the surface morphology revealed in Figure 6, b. indicates that the packing density of the 

BMPHA bilayer has changed in comparison to a monolayer film. The depth of nanoholes formed 

within the BMPHA was measured to be 5.0 ± 1.2 nm (Figure 3.7, c.). This distance is slightly 

longer than expected for a double layer of BMPHA, possibly attributable to adsorbates on the 

surface of the bilayer. A model of the side-view of the BMPHA bilayer is presented in Figure 3.7, 

c'., showing head-to-head interactions between carboxylic acid groups that associate to form the 

double layer structure. 

After backfilling the nanoholes with ODT, the patterns still appear as holes within the 

matrix film of the BMPHA bilayer (Figures 3.7, d. and 3.7, e.). Images shown in the lower half of 

Figure 3.7 were acquired after 24 h immersion in 1 mM ODT in ethanol. The rougher texture of 

the BMPHA bilayer appears to be smoother because of additional steps of rinsing and sonication 

to remove loose adsorbates. Features of the underlying gold substrate such as step edges can be 

vaguely resolved for areas of the BMPHA bilayer in the zoom-in view of Figure 3.7, e. Chemical 

maps of the areas of nanopatterns with methyl headgroups are provided by the lateral force images 

(Figures 3.7, d'. and 3.7, e'.). The depth of backfilled nanoholes within BMPHA multilayer was 

measured to be 1.8 ± 0.2 nm (Figure 3.7, f.), which closely matches the expected difference in 

thickness between a BMPHA bilayer and ODT. The measurement of nanopattern depths 
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extrapolates to a local thickness of 3.9 ± 0.2 nm for a BMPHA bilayer. The proposed model for 

the height of the double layer pattern is shown in Figure 3.7, f'. 

3.4 Conclusions 

Protocols for AFM-based nanolithography as well as immersion particle lithography were 

used to evaluate the morphology and thickness of bidentate BMPHA on Au(111). The established 

thickness of monodentate ODT was used as a reference for in situ measurements of film thickness. 

Either monolayer or bilayer films of BMPHA can be formed on Au(111) by controlling the 

parameters of solution concentration and the duration of immersion in ethanolic solution. The 

thickness of monolayer films of BMPHA measured 2.0 ± 0.2 nm, which is consistent with previous 

measurements reported using ellipsometry. Assuming that both thiols of BMPHA bind to gold, 

this value would correspond to a tilt angle of 34° from the surface normal. Head-to-head 

dimerization between interfacial carboxylic groups can produce bilayers of BMPHA, as has 

previously been demonstrated for n-alkanethiols with carboxylic acid groups. Both monolayer and 

bilayer films of BMPHA could be generated using immersion particle lithography. Periodic island 

nanopatterns of ODT were grown within nanoholes of BMPHA, constructed with a successive 

step of sample immersion in SAM solution. Future directions for this research will be to develop 

protocols to compare the long-term stability of bidentate versus monodentate structures using 

nanofabricated test structures. 
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CHAPTER 4: CONDUCTIVE-PROBE MEASUREMENTS WITH 

NANODOTS OF FREE-BASE AND METALLATED PORPHYRINS 

4.1 Introduction 

As potential building blocks of the miniaturized electronics, the conductive properties of 

porphyrin assemblies are relevant for potential applications. The well-developed synthetic routes 

can be employed to design the molecular structure of porphyrins, such as the placement and nature 

of the substituents and central metal ions.133-137 Porphyrins have been investigated as potential 

building blocks in miniaturized electronics and photovoltaics.68, 138-141 

Investigations of the conductivity of porphyrins have focused mainly on single molecules 

using scanning tunneling microscopy (STM).142-147 However, conductive probe-atomic force 

microcopy (CP-AFM) has become a practical tool for characterizing the conductive properties of 

organic films and assemblies in ambient conditions.145, 148-154 Early studies focused on applying 

CP-AFM to detect the conductivity of thiol self-assembled monolayers (SAMs).61, 154-156 An 

advantage of using CP-AFM to measure the conductive properties of organic films in comparison 

to STM studies is to avoid the effect of the gap between the tip and the sample.154, 157 For AFM 

measurements, the tip is placed in direct contact with the sample, whereas STM measurements are 

made in non-contact mode, with the probe located a short distance from the sample. With AFM, a 

metal coated AFM probe is used as the top electrode which is placed at defined locations to record 

current-voltage (I-V) curves, while maintaining a controlled contact force and area between the tip 

and the sample.  

Among studies of the conductive properties for porphyrins, nanorods, nanowire and 

nanotubes were successfully synthesized and characterized.133, 158-162 Studies of the conductivity 

of porphyrin nanorods were reported by Schmab, et al.161, 163 Meso-tetrakis(4-sulfonatophney) 

porphine (TPPS4) was used to form nanorods with a well-defined height of 3.8 ± 0.3 nm and 



47 

lengths ranging from 0.2 to 2 µm. The photoconductivity of the nanorods formed with TPPS4 was 

characterized using an electrometer. The conductivity of nanorods of TPPS4 was studied using 

scanning tunneling microscopy in a UHV environment by Friesen, et al.162 The charge-carrier 

mobility of multiple wire-like porphyrin nanostructures formed with octaethylporphyrin 

containing selected metals was investigated by So, et al.164 The conductivities of zinc(II) 

metalloporphyrins were evaluated using single-wall carbon nanotubes for conductive probe atomic 

force microscope (CP-AFM) measurements by Tanaka, et al.68  

A limitation for improving the sensitivity of scanning-probe based conductive 

measurements is the availability of well-defined test platforms of sample materials. Porphyrins are 

difficult to pattern, because when assembled on surfaces the molecules do not form chemisorbed 

or covalent bonds with metal substrates. Rather, porphyrins tend to self-associate and bind together 

in a stacked arrangement to form overlapping layers of molecules to adopt a coplanar, physisorbed 

configuration on surfaces.165-166 Emerging practical approaches for preparing regularly shaped 

nanostructures with particle lithography have been demonstrated with organothiols and 

organosilanes.13, 167 We have developed a strategy to use alkanethiol nanopatterns prepared by 

particle lithography to spatially confine and define the locations for porphyrin deposition. 

For approaches based on particle lithography, samples can be prepared with a surface mask 

of monodisperse latex or silica mesospheres. After the particles are removed, exposed sites of the 

substrate are available for further steps of chemical reactions.167-169 Combining solution immersion 

with particle lithography provides a practical strategy to prepare arrays of porphyrin 

nanostructures. Millions of nanopores can be generated within organothiol or organosilane 

SAMs.3, 26, 96, 170 The nanopores provide a spatially-confined nano-sized container for depositing 

porphyrins. The array of porphyrin nanodots enable multiple test structures for reproducible CP-
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AFM measurements. A Pt coated AFM tip serves as the top electrode and the Au(111) substrate is 

the bottom electrode for measuring the conductivity through the nanodots. Methyl-terminated 

dodecanethiol was used as a resistive matrix surrounding the nanodots, minimizing non-specific 

adsorption over areas between nanopores.  

In this report, CP-AFM was used to measure the conductivity of porphyrin nanodots 

prepared within a resistive matrix of dodecanethiol on Au(111). The molecules selected are 

5,10,15,20-tetraphenyl-21H,23H-porphyrin cobalt(II) (TPC) and 5,10,15,20-tetraphenyl-

21H,23H-porphyrin (TPP), as symmetric model structures of free-base and metallated porphyrins.   

4.2 Materials and methods 

4.2.1 Materials 

Reagents such as 5,10,15,20-tetraphenyl-21H,23H-porphine cobalt(II) (TPC), 5,10,15,20-

tetraphenyl-21H,23H-porphine (TPP) ,1-dodecanethiol and dichloromethane were purchased from 

Sigma Aldrich (St. Louis, MO) and used as received. Ethanol (200 proof) was obtained from 

Pharmco-AAper Alcohol and Chemical Co. (Shelbyville, KY) and used as the diluent for preparing 

solutions of alkanethiols. Dichloromethane was purchased from Sigma Aldrich (St. Louis, MO) 

for dissolving porphyrins. Gold pellets (99.99% purity) were purchased from Ted Pella (Redding, 

CA). Ruby muscovite mica was purchased from S&J Trading Inc., (Glen Oaks,NY). 

4.2.2 Preparation of porphyrin solutions 

To prepare porphyrin solutions for making patterns of nanostructures on substrates, TPC 

and TPP were dissolved in dichloromethane (10-3 M) and then diluted with ethanol to a 

concentration of 10-7 M. Samples of each porphyrin were prepared by immersing the substrate in 

dilute solutions for 30 h. 
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4.2.3 Preparation of template-stripped Au(111) 

The process for preparing template-stripped gold (TSG) is described in a previous 

publication.3 A thin layer (150 nm) of gold was thermally deposited onto mica at 10-7 Torr using 

a high-vacuum thermal evaporator (Angstrom Engineering Inc., Kitchener, OR). Freshly cleaved 

Ruby muscovite mica was preheated to 350°C prior to gold deposition using quartz lamps at the 

back of the sample holder. The gold pellets were thermally evaporated and deposited onto mica at 

10-7 Torr with a deposition rate of 3 Å/s. After deposition, the gold films were annealed at 365°C 

in vacuum for 30 min and then cooled to room temperature before removal from the deposition 

chamber. The method for mechanical stripping was previously described by Hegner et al.129 First, 

the gold substrates and glass slides were cleaned with deionized water and placed into a UV-ozone 

generator for 30 min. Epoxy (EPO-TEK, Billerica, MA) was applied onto the cleaned glass slides 

and then attached onto the gold to make a glass-gold-mica “sandwich.” The sample was then 

heated in oven at 150°C for 2 h to anneal the epoxy. After annealing, the glass pieces were carefully 

peeled from the mica to produce TSG with atomically flat surfaces. 

4.2.4 Preparation of Porphyrin Nanostructures using Immersion Particle Lithography 

The nanopore templates within thiol self-assemble monolayers (SAMs) were made with 

the procedures described previously.3 Surface masks for immersion particle lithography were 

made by depositing monodisperse silica mesospheres (500 nm diameter, Thermo-Fisher Scientific, 

Waltman, MA) onto freshly stripped TSG. For cleaning the mesospheres, 300 μL of a suspension 

of silica mesospheres was transferred into a plastic microcentrifuge tube and centrifuged for 20 

min at 20,000 rpm. A solid pellet of the mesospheres formed at the bottom of the centrifuge tube. 

The supernatant was decanted and then deionized water was added to the centrifuge tube for 

rinsing. The mesospheres were resuspended into deionized water by vortex mixing. The rinsing 
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step was repeated four times. A volume of 15 μL of the mesosphere suspension was deposited onto 

TSG and dried in ambient conditions to form surface masks. Before immersing into thiol solutions, 

the surface masks were placed into an oven at 150°C for 12 h. This step is important for preventing 

the silica mesospheres from being displaced the substrate when immersed in solution. The samples 

were cooled to room temperature (25°C), then immersed into a 10-3 M ethanolic dodecanethiol 

solution for 24 h. Dodecanethiol SAMs formed on the exposed areas of the TSG surfaces around 

the areas protected by the mesospheres. Next, the mesospheres were removed in a subsequent step 

by sonication in ethanol. Nanopores were fabricated within a matrix film of dodecanethiol. The 

center-to-center spacing between the nanopores matches the diameter of the mesosphere masks 

(i.e. 500 nm). In the final step, the nanopores were submerged into a 10-7 M solution of TPC or 

TPP in dichloromethane/ethanol (1:10000 vol.) for 30 h to produce porphyrin nanodots. Samples 

were rinsed with ethanol and dried under argon. The uncovered areas of Au(111) that had been 

masked by mesospheres provided well-defined surface sites for directing the subsequent 

attachment and growth of porphyrin nanodots. 

4.2.5 Atomic force microscopy 

A 5420 scanning probe microscopy (Keysight Technologies, Santa Rosa, CA) installed 

with PicoView v1.12 software was used for scanning probe studies. Images were acquired using 

tapping mode in ambient conditions. Imaging was accomplished with rectangular shaped, 

ultrasharp silicon tips that have an aluminum reflex coating, with a spring constant of 48 N/m 

(Nanoscience Instruments, Phoenix, AZ). The scan rate was 1 line/s. Electrical measurements on 

porphyrin nanodots were performed with the same instrument equipped with conductive nose 

assembly (0.1 nA/V sensitivity) and a conductive sample plate. Conductive tips with platinum 
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coating (PPP-CONTPt, Nanosensors, Neuchatel, Switzerland) were used to acquire I-V curves. 

Gwyddion v. 2.32 was used to process and analyze the digital images.130 

4.3 Results and discussion 

Porphyrins with and without a central metal ion were patterned, 5,10,15,20-tetraphenyl-

21H,23H-porphyrin (TPP) and 5,10,15,20-tetraphenyl-21H,23H-porphyrin cobalt(II) (TPC) using 

steps of solution immersion of a gold substrate masked with silicon mesospheres. Protocols for 

patterning porphyrin nanodots and nanorods on Au(111) were based on immersion particle 

lithography. Individual nanodots of porphyrins were spatially isolated into well-defined, nanoscale 

arrangements within a templating film of a nanopatterned thiol monolayer with particle 

lithography. The nanodots of TPP and TPC are attached to areas of gold substrate, surrounded by 

an insulating film of dodecanethiol.  Nanopores within a methyl-terminated alkanethiol matrix 

were filled with porphyrin nanodots by immersing the substrates with dodecanethiol nanopatterns 

into solutions of TPP or TPC. The porphyrin nanodots were not completely monodisperse, and 

exhibited sufficient differences in dimensions at the nanoscale to enable size-dependent I-V 

measurements. 

4.3.1 Substrates with dodecanethiol nanopatterns formed on Au(111) 

Example images of the arrangement of nanopores within a matrix of dodecanethiols are 

presented in Figure 4.1. Broad regions of the sample exhibit areas of uncovered circles of gold in 

a periodic arrangement. A methyl-terminated self-assembled monolayer (SAM) formed 

surrounding the 500 nm mesospheres on Au(111) after 20h immersion into a solution of 

dodecanethiol. When the surface mask of 500 nm mesospheres was rinsed away nanopores within 

dodecanethiol were generated as shown in Figure 4.1. 
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Figure 4.1 Nanopores within dodecanethiol formed on Au(111). (a) Topography and (b) 

corresponding phase image; (c) zoom-in view; (d) cursor profile for the line in (c).  

A periodic arrangement of nanopores is observed throughout areas of the sample in Figure 

4.1, a. The nanopores arrange in a hexagonal pattern reflecting the way the mesospheres arranged 

on surface. The periodicity of the nanopores measures 500 nm, which corresponds to the size of 

the silica mesospheres used as surface mask. Within a 10 × 10 µm2 frame, there are 223 nanopores 

scaling to a surface density of 108 nanopores/cm2. The overall area of the uncovered nanopores 

measured ~1 % of the entire frame. The differences in surface chemistry between the nanopores 

and surrounding matrix are evidenced with the simultaneously acquired phase image (Figure 4.1, 

b.). Brighter contrast indicates the region of uncovered gold substrates within the nanopores. The 

actual shapes of the nanopores is revealed in a zoom-in view (Figure 4.1, c.). Circular shaped 
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nanopores provide a template area for further steps of patterning TPP and TPC. The depth of the 

holes measured 1.7 ± 0.2 nm, shown with a representative cursor profile in Figure 4.1, d. 

4.3.2 Nanopatterned dots of porphyrin 

The areas of uncovered gold substrate within the methyl-terminated thiol SAM were used 

as nano-sized containers to deposit TPP and TPC. Millions of nanostructures on the surface test 

platforms enable the evaluation of the reproducibility of multiple measurements, as well as the 

visualization of whether the sample was damaged by electrical pulses during I-V measurements. 

The morphologies of the nanostructures formed either by TPP or TPC were characterized by 

tapping mode AFM in ambient conditions. Dot-like surface structures of porphyrins formed 

primarily within the nanopores, indicating that the methyl-terminated SAM was an effective resist.  

 

Figure 4.2 Nanodots of TPP within dodecanethiol (representative views). (a) Topography and (b) 

corresponding phase image; (c) zoom-in view; (d) height profile across two nanodots in (c). 
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An array of nanodots of TPP (Figure 4.2) was formed by immersion of a nanopore template 

in 10-7 M solution for 30 h. The TPP nanodots are arranged in a hexagonal pattern with a few areas 

of missed nanopores. A few defects of gold substrate under the thiol SAM are resolved in the 

broader areas of the topography image of Figure 4.2, a. At the nanoscale, characteristics of the 

Au(111) substrate such as roughness, scars and gold terraces affect the packing of the mesospheres 

used for particle lithography to create a few defects. The distance between neighboring nanodots 

measure 500 nm, which is the diameter of the silica spheres used for particle lithography. Further 

details of the size, placement and shapes of the TPP nanodots are presented in the corresponding 

phase image (Figure 4.2, b.). A close-up of the nanodots is viewed in the topography image of 

Figure 4.2, c. The nanodots measure in 8 nm in height and are spaced 500 nm apart (Figure 4.2, 

d.). The nanostructures provide an excellent test platform for further studies with conductive probe 

AFM, because there are multiple, isolated nanocrystals for replicate measurements. 

 

Figure 4.3 Nanodots of TPC within dodecanethiol. (a) Topography and (b) corresponding phase 

image; (c) zoom-in view; (d) height profile across two nanodots in (c). 
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An array of TPC nanodots also was formed by immersion of a nanopatterned 

dodecanethiol/Au template in a 10-7 M solution of TPC for 30 h. The overall shapes and surface 

arrangement of TPC nanodots is indistinguishable from that of the TPP sample. Nanodots of TPC 

formed inside the nanopores (Figure 4.3), and mostly did not assemble on the areas of 

dodecanethiol. The distance between neighboring nanodots measures 500 nm, which is the 

diameter of the silica mesospheres used to fabricate the dodecanethiol template. The selectivity of 

the TPC binding to the areas of the nanopores is evident in the simultaneously acquired phase 

image (Figure 4.3, b.). The areas of dodecanethiol appear to be free of adsorbates or nanoparticles. 

The detailed morphology of a few TPC nanodots is shown in Figure 4.3, c. The example nanodots 

measure 7 ± 0.5 nm in height (Figure 4.3, d.). 

Within the same sample, the sizes of the TPP and TPC nanodots are slightly polydisperse, 

at the nanoscale. This is because the surface template of nanopores within dodecanethiol was not 

perfect at such small dimension. Slight imperfections in the sizes of the mesospheres or substrate 

defects cannot be perfectly controlled at the scale of less than 10 nm. The sizes of nanodots formed 

by TPP or TPC are compared in Figure 4.4. The average height of the TPP nanodots measured 6.4 

± 1.5 nm while the TPC nanodots measured 7.4 ± 3.1 nm. With a two sample t-test, the heights of 

the TPP and TPC nanodots are not significantly different with equal viabilities. The thickness of 

the nanodots measured ~ 7 nm, indicating multiple layers of porphyrin were deposited within the 

nanopores. The dimensions correspond approximately to 3-5 layers or stacks of porphyrins in a 

coplanar arrangement. The methyl-terminated areas of the surrounding matrix of dodecanethiol 

provide an effective resist layer, minimizing the non-specific adsorption of porphyrins in areas 

surrounding the nanoholes. Porphyrins have a planar structure that tends to bind to flat surface in 

a stacked arrangement, with the macrocycle of the molecules oriented parallel to the substrate. The 
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nature of surface attachment is physisorption, which is a relatively weak attachment for 

nanopatterning protocols. There are strong π-π interactions that drive macrocycles to bind together 

in a stacked arrangement, like a stack of coins. 

 

Figure 4.4 Heights of the nanodots of TPP and TPC. (a) Size distribution of TPP nanodots (n=76). 

(b) Height of TPC nanodots (n=73). The solid lines represent Gaussian fits of the data. 
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4.3.3 Conductive measurements with porphyrin nanostructures 

The conductivity of the nanodots was measured in the vertical direction through the layers 

of porphyrin using conductive probe AFM. A platinum coated AFM tip was used as an electrode 

and was placed on the nanodots to establish a closed circuit loop with the gold substrate for the 

current flowing through the nanodot. A single measurement was made for each nanodot, because 

the surface contact became oxidized after applying voltage. As a test, we evaluated the changes in 

measurements with multiple successive measurements, and have included example I-V spectra in 

Apendix E, Figures E1 and E2. 

Representative I-V curves of TPP nanodots and TPC nanodots are shown in Figure 4.5. To 

minimize the impact of the loading force and geometry of the tip on the current through the 

nanostructures,61, 171 the same tip was used to collect all the I-V curves with controlled load less 

than 1 nN. The TPP nanodots exhibit a typical I-V profile of a semi-conductive material (Figure 

4.5, a.). The maximum current measured through the TPP nanodot is 3 nA at 10 V. The current 

gradually decreases to zero when the voltage decreases from 10 V to 4 V in both negative and 

positive ranges. In between -4 V to +4 V, the TPP nanodots are relatively nonconductive. In 

contrast, the TPC nanodots show better conductivity in a relatively small voltage range, which is 

-2 V to +2 V. In this range, the maximum current through a TPC nanodot measured 10 nA at 2 V. 

The cobalt core in the molecular structure has a significant role in the conductive properties. The 

current gradually decreases to zero when the voltage was decreased from 2 V to 0 V in both the 

negative and positive ranges. The TPC nanodots with a cobalt ion coordinated to the macrocycle 

(Figure 4.5, b.) has a more conductive, wire-like profile than the semiconductive free-base 

porphyrin, TPP (Figure 4.5, a.). The magnitude of the measured currents and voltages are quite 

distinct depending on whether the nanodots contain a metal ion. 
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Figure 4.5 Example I-V curves for individual nanodots of (a) TPP and (b) TPC. 

The porphyrin nanodots are an excellent model surface structure for conductive probe 

measurements. The sizes of the nanodots have slight variability at the nanoscale, which enables 

size-dependent analysis. Further example I-V curves collected from the TPP and TPC nanodots 

are presented in Appendix E, Figure E3. 

Further analysis of the effects of the size of nanodots can be evaluated, as shown in Figure 

6. The heights of the nanodots were plotted versus conductance measurements from 78 TPC 

nanodots. The heights of the nanodots ranged from 2 to 20 nm. A clear trend is apparent that shows 

greater conductance for taller nanostructures of TPC. 

 

Figure 4.6 Heights versus the measured conductance of the TPC nanodots. (n = 78) 
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The conductance of the TPC nanodots was measured from the slopes of I-V curves. The 

conductivity of the nanodot formed by TPC molecules can be expressed as the slope of the linear 

portions of the plot. The conductivities observed from the three linear regions of a representative 

plot for TPC measured 1.18 S/m from 2 nm to 7 nm; 2.96 S/m from 7 nm to 11 nm; and 1.04 S/m 

for the range from 13 nm to 18 nm. 

4.4 Conclusions  

A new test platform is introduced for making conductive probe measurements of regularly-

shaped, small clusters of porphyrins. Periodic arrays of nanodots of porphyrins were prepared in 

nanopores formed within dodecanethiol/Au(111). Dot-like nanostructures of porphyrins with and 

without a metal center were self-assembled within nanopores prepared by immersion particle 

lithography. The conductivity profiles were measured and compared using CP-AFM for 3-10 nm 

nanodots of cobalt-coordinated and free-base porphyrins. Distinct I-V profiles were exhibited with 

TPC and TPP nanodots that were chosen as model systems. The key difference between the 

structures of the two selected porphyrins is the cobalt core. For TPP nanodots, profiles that are 

typical of semi-conductive films were observed. With cobalt-coordinated TPC nanodots, wire-like 

conductive profiles were exhibited. As might be predicted, the conductivity of TPC nanodots is 

greater than that of TPP nanodots. The approach described demonstrates the feasibility for 

sensitive measurements of the conductivity of multiple, replicate nanodots with CP-AFM.  
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CHAPTER 5: DISTANCE-DEPENDENT MEASUREMENTS OF THE 

CONDUCTANCE OF PORPHYRIN NANORODS STUDIED WITH 

CONDUCTIVE-PROBE ATOMIC FORCE MICROSCOPY  

5.1 Introduction 

Porphyrin molecules and associated derivatives are building blocks in molecular 

electronics, photovoltaic materials, and supramolecular designs.172 Nanorods of porphyrins have 

potential for applications including energy and electron transfer,135,173 chemical catalysis,174 

chemical sensors,175 optical devices,137 electronic devices,173 biological light-harvesting 

structures,173 gas storage, field-effect devices173 and chiroptical systems.175 The applications 

originate from the unique characteristics of porphyrins that include rigid and planar geometries, 

readily tailored spectroscopic and photochemical properties, multifunctionality, 

biocompatibility,175 and the ability to serve as an electron donor.135 The conductive properties of 

porphyrins and derived nanostructures have not been fully characterized or modeled. 

Methods of surface fabrication with porphyrin nanorods include surfactant-assisted self-

assembly (SAS),173 ionic self-assembly (ISA),176-177 mixed porphyrin self-assembly,178 sonication-

assisted self-assembly,135 and metal coordination-assisted self-assembly. Among the studies 

reported for porphyrin nanorods, rod-like aggregates derived from meso-tetra(4-sulfonatophenyl) 

porphyrin (TPPS4) are a well-studied example because of it is a biomimetic analog of 

photosynthesis systems.163, 176, 179-188 The heights and lengths of the TPPS4 nanorods range from 

several nanometers and from dozens of nanometers in diameter and up to several micrometers in 

length163, 174, 181, 187-188 The size and shapes of the nanorods derived from TPPS4 are due to a 

combination of molecular interactions including, Coulombic interactions, π-π interactions and 

intermolecular electrostatics.189   
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A self-assembled monolayer (SAM) of dodecanethiol on Au(111) was selected as an 

insulating layer between the porphyrin nanorods and the gold substrate for the CP-AFM 

measurements.190-192 A surface template of nanoholes was fabricated within a dodecanethiol SAM 

with immersion particle lithography.3 We have developed protocols with immersion particle 

lithography to prepare arrays of nanoholes within organic thin films on surfaces such as gold, mica 

and silicon.3, 13, 50, 99, 193 Typically, when a surface coated with mesoparticles is immersed in 

solutions, the particles are displaced. Therefore, an annealing step is critical for immersion particle 

lithography. The nanoholes formed within a SAM furnish spatially confined areas for growing 

porphyrin nanorods with one end connected to the gold surface. The surface-bound patterns 

provide an excellent measuring platform for evaluating conductivity along the length of porphyrin 

nanorods. In this report, the feasibility of making distance-dependent conductance measurements 

along the length of isolated nanorods is evaluated with CP-AFM for test platforms of TPP and 

TPC nanorods. 

A simple metallic porphyrin structure, 5,10,15,20-Tetraphenyl-21H,23H-porphine 

cobalt(II) (TPC), and the metal-free analogue 5,10,15,20-Tetraphenyl-21H,23H-porphine (TPP) 

were selected to construct rod-like nanostructures on template stripped gold (TSG) for 

measurements using conductive probe-atomic force microscopy (CP-AFM). The structures of TPP 

and TPC are shown in Scheme 5.1. The driving force for self-assembled nanorods of TPP or TPC 

is mainly dependent on single interactions i.e. π- π interactions.135 Unlike the TPPS4 

nanostructures, which aggregate in solution,194 the TPP and TPC nanorod structures formed on the 

surface of the substrate. The nanorod aggregates could be considered as model structures for 

gaining insight into lateral conductance of rod-like electronic building blocks in nanoscale with 

assistance of CP-AFM.  
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Scheme 5.1 Structures of (a) 5,10,15,20-tetraphenyl-21H,23H-porphyrin (TPP) and (b) 

5,10,15,20-tetraphenyl-21H,23H-porphyrin cobalt(II) (TPC). 

The self-assembled monolayer (SAM) of 1-dodecanethiol on Au(111) surface was selected 

as the insulator layer between the porphyrin nanorods and the gold electrode for the conductive 

measurement in lateral direction because of the high resistance in nanoscale measurement.70, 191 A 

periodic nanopore template was fabricated within a 1-dodecanethiol SAM by immersion particle 

lithography.3 Immersion particle lithography is widely employed to fabricate periodic nanopore 
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patterns in organic thin films on surfaces such as TSG and silicon wafer.3, 13, 50, 99, 195 The periodic 

nanopores on TSG surface offer spatially confined nanoareas for porphyrin nanorods to grow. 

With one end connected to the gold surface and the rest of the nanorod lying on the electrical 

insulated species, thiolate thin film, a measuring template for conductivity along the long axis of 

porphyrin nanorod is constructed. A platinum coated AFM tip can be applied to the other end of 

nanorod. With a bias voltage applied to either the gold surface or coated AFM tip, conductive 

measurements of porphyrin nanorods can be collected with a controlled mechanical load. By 

taking advantage of periodic nanopore templates, our work provides a practical simple method of 

measuring the current along the long axis of a porphyrin nanorods, compared to the methods 

developed using nanometer sized gap (nanogaps),196 break junctions,197 carbon 

nanotubes/nanowires.68   

Distinct conductive behavior was found between TPC and TPP nanorods. The TPC 

nanorods presented semi-conductive behavior in the testing voltage range with different 

conductance values under negative and positive biases. The TPP nanorods showed a rectifier 

behavior with an increased conductance value towards the end connected to the gold surface along 

the axial direction in positive bias.  In addition, the height and length of the nanorods formed by 

different porphyrin molecules are compared. TPC nanorods are shorter in height and longer in 

diameter in terms of morphology. Considering the feasibility of techniques that we employed in 

this study, the lateral conductive measurements of the isolated nanorods on nanopore templates 

with assistance of CP-AFM may be further studied with other porphyrins with different metal 

atoms who can form extended superstructures. 
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5.2 Materials and methods 

5.2.1 Materials  

5,10,15,20-tetraphenyl-21H,23H-porphine cobalt(II) (TPC), 5,10,15,20-tetraphenyl-

21H,23H-porphine (TPP) ,1-dodecanethiol and dichloromethane were purchased from Sigma 

Aldrich (St. Louis, MO) and used as received. Ethanol (200 proof) was obtained from Pharmco-

AAper Alcohol and Chemical Co. (Shelbyville, KY) and used as the diluent for preparing 1-

dodecanethiol solutions. Dichloromethane was purchased from Sigma Aldrich (St. Louis, MO) for 

dissolving porphyrins. Gold pellets (99.99% purity) were purchased from Ted Pella (Redding, 

CA). Ruby muscovite mica was purchased from S&J Trading Inc., (Glen Oaks, NY). 

5.2.2 Preparation of porphyrin solutions 

To prepare porphyrin solutions for making nanoaggregates on Au(111) substrates, TPC 

and TPP were separately dissolved in dichloromethane at the concentration of 10-3 M before they 

were diluted into 10-5 M with ethanol. The nanorods of each porphyrin were prepared by 

immersing the substrates into final solutions for 42 h. The nanoaggregates of TPP shown in Figure 

S1were made by depositing aged final solution on the substrates. 

5.2.3 Preparation of template-stripped Au(111) 

Template-stripped gold (TSG) films were prepared using thermal evaporation as 

previously described.3 In brief, gold slugs were deposited onto freshly cleaved Ruby muscovite 

mica substrates in a high-vacuum thermal chamber (Angstrom Engineering Inc., Kitchener, OR) 

at 10-7 mm Hg. Prior to gold deposition, the mica substrates were preheated to 350°C using quartz 

lamps mounted at the back of the sample holder. The deposition rate of gold was 3 Å/s for the final 

thickness of 150 nm. After deposition, the gold substrates were annealed at 365°C under vacuum 

of 10-7 mm Hg for 30 min and then cooled to room temperature. The gold films were glued to glass 
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slides using epoxy as previously reported by Hegner et al.129 The gold substrates and glass slides 

were cleaned by rinsing with deionized water followed by 30 min treatment in a UV-ozone 

generator. Epoxy was mixed (1:1 by weight) and immediately applied onto the cleaned glass slides. 

The glass slides were placed onto the gold surfaces with a thin layer of epoxy formed between the 

glass and gold surfaces without any air bubbles. The mica-gold-glass sandwiches were then heated 

in oven at 150°C for 2 h to anneal the epoxy. After cooling to room temperature, the glass pieces 

were mechanically removed from the mica surfaces to obtain TSG. 

5.2.4 Preparation of Porphyrin Nanostructures within Thiol Nanoholes 

Immersion particle lithography was used to prepare arrays of nanoholes on Au(111) as 

previously reported.3 Silica mesospheres (500 nm diameter) were cleaned by centrifugation to 

remove surfactants or charge stabilizers. A 300 μL aqueous suspension of silica mesospheres with 

the concentration of 2% was transferred into a microcentrifuge tube and centrifuged for 20 min at 

20,000 rpm. A solid pellet formed at the bottom of the centrifuge tube, and the supernatant was 

decanted. The centrifuge tube was refilled with deionized water and the pellet was resuspended by 

vortex mixing. The washing cycle of mesospheres was repeated four times. Cleaned silica 

mesospheres (20 µL) were deposited onto freshly striped TSG as surface masks for subsequent 

steps of solution immersion. The surface masks of silica spheres were dried under ambient 

conditions, then heated at 150°C for 12 h. The heating step helps prevent the mesospheres from 

being displaced from the surface during immersion in solutions. The samples were cooled to room 

temperature (25°C), then immersed into a dodecanethiol ethanolic solution (10-3 M) for 24 h. Self-

assembled monolayers (SAMs) of dodecanethiol formed on the exposed areas of the TSG surfaces 

surrounding the areas protected by the mesospheres. Next, the mesospheres were removed by 

sonication in ethanol. Arrays of nanoholes were fabricated within the dodecanethiol SAM.  
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The samples of nanoholes formed on Au(111) were submerged in a 10-7 M solution of TPC 

or TPP for 42 h to obtain porphyrin nanorods. In the final step, the samples of porphyrin 

nanostructures were rinsed with ethanol to remove loosely bound aggregates, then dried in air. The 

uncovered areas of Au(111) that had been masked by mesospheres provided well-defined surface 

sites for directing the subsequent attachment and growth of porphyrin nanorods. 

5.2.5 Atomic force microscopy 

A Keysight 5420 scanning probe microscope (Keysight Technologies, Santa Rosa, CA) 

with PicoView v1.12 software was used for scanning probe characterizations. Images were 

acquired using tapping mode in ambient conditions. Imaging was accomplished with rectangular 

shaped ultrasharp silicon tips (Nanoscience Instruments, Phoenix, AZ) that have an aluminum 

reflex coating, with a spring constant of 48 N/m. The scan rate was 1 line/s. Electrical 

measurements with porphyrins were done with the same instrument equipped with conductive nose 

assembly (0.1 nA/V sensitivity) and conductive sample plate. Conductive tips (PPP-CONTPt, 

Nanosensors, Neuchatel, Switzerland) with a platinum coating were used to take the I-V profiles. 

Topography and phase images were processed with Gwyddion v. 2.32, which is an open-source 

software available from internet.130 

5.3 Results and discussion 

Nanorods of porphyrins were prepared on a template of nanoholes within a dodecanethiol 

film on Au(111) using steps of immersion particle lithography. A description of the method for 

preparing patterns of nanorods is outlined in Supporting Information, Figure S1. Model structures 

of 5,10,15,20-tetraphenyl-21H,23H-porphyrin cobalt(II) (TPC), and the metal-free analog 

5,10,15,20-tetraphenyl-21H,23H-porphyrin (TPP) were selected for studies with CP-AFM. The 

structures of TPP and TPC are shown in Scheme 5.1. 
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The morphology of the nanorods formed by either TPP or TPC were characterized by 

tapping mode AFM in ambient conditions (Figure 5.1). Individual porphyrin nanorods are visible 

throughout the surface, predominantly binding at sites of the gold nanoholes. Characteristics of 

 

Figure 5.1 Nanorods of TPP grown in nanoholes within dodecanethiol. (a) Arrangement of 

nanorods shown with a topography image; (b) simultaneously acquired phase image; (c) 

localization of nanorods within nanopores (topography view); (d) corresponding phase image. 

the gold surface, such as domain boundaries, scars and holes, are apparent in the background of 

the topography images (Figures 5.1, a. and 5.1, c.). The periodic arrangement of nanoholes can be 

discerned as bright circular dots in the corresponding phase images (Figures 5.1, b. and 5.1, d.). 

The nanoholes are uncovered areas of substrate where the silica mesospheres were displaced. The 

distance between neighboring nanoholes is 500 nm as determined by the diameter of the 

monodisperse mesospheres used as surface mask. The nanoholes were protected from deposition 
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of dodecanethiol by the mesospheres, and areas surrounding the nanoholes present methyl groups 

of the dodecanethiol SAM that was used as a resist. The nanoholes are exquisitely small (~100 nm 

in diameter, and 1.5 nm in depth) and are designed to define spatial selectivity for depositing 

porphyrins.132 

In most of the nanoholes, one or more nanorod is present and connected to an area of bare 

gold. A few of the nanorods are present on the SAM matrix areas, which most likely grow in defect 

areas. Closer details of the nanorods are revealed in Figures 5.1, c. and 5.1, d. Among the seven 

nanoholes, five of them contain TPP nanorods. Two of the nanoholes are unfilled and four free 

nanorods are lying on areas of the SAM. We hypothesize that the nanorods of porphyrins were 

directly grown at the areas of bare Au(111) during the immersion process, since shorter immersion 

times lead to shorter nanostructures of nanodots. To evaluate if nanorods formed in solution, a 

drop of similarly aged TPP solution was  deposited onto the surface. Nanorods did not form on the 

surface. (Appendix F, Figure F, 2.). The drop-deposition experiment indicates that the nanorods 

did not form in solution during the immersion step, but rather that the rod-like shapes grew from 

the surface over a time period of 42 h.  

The nanopatterning process for preparing nanorods was repeated with TPC using the same 

concentration of the porphyrin solution and 42 h immersion period. Rod-shaped nanostructures of 

TPC were also reproducibly grown from the gold surface (Appendix F, Figure F, 3.). The 

dimensions of a TPC nanorod can be derived from cursor profiles taken in the longitudinal and 

orthogonal directions. The size distribution of the nanorods were compared for TPP and TPC 

(Appendix F, Figure F, 4.). The dimensions of the TPP nanorods were measured from 64 cursor 

profiles from several areas of a sample. The average length of the TPP nanorods is 160 ± 41 nm. 

The average height of the TPP nanorods measured 6 ± 1 nm. The dimensions of TPC nanorods 
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were collected from 82 measurements from several areas of a sample. The TPC nanorods measured 

130 ± 49 nm, with heights of 3 ± 1 nm. The shape of AFM probes influences the sizes that 

measured, particularly for lateral dimensions. Sharper probes produce more accurate 

measurements. 

A representative TPP nanorod is shown in Figure 5.2. The nanorod has one end connected 

to the area of a nanohole. The rest of the nanorod is lying on the dodecanethiol SAM which serves 

as an insulating matrix. The placement of the nanorod within the nanohole is also visible in the 

corresponding phase image (Figure 5.2, b.). The size of the individual nanorod from the cursor 

line profiles indicates a length of 160 nm and height of 6.6 nm. 

 

Figure 5.2 Close-up of an individual TPP nanorod. (a) Topography image; (b) corresponding phase 

image; (c) cursor profile of a transverse section of a nanorod; (d) cursor profile of a longitudinal 

section of a nanorod. 



70 

The conductivity along the length of the nanorods was measured using CP-AFM. A 

platinum coated AFM tip was placed at selected points along the nanorod with a controlled load 

to measure the distance-dependent current. Three testing points were selected along the nanorod 

to collect the I-V curves (Figure 5.3, a.). The points selected include each end of the porphyrin 

where one end is in contact with the matrix SAM and the other is in direct contact with the gold 

substrate. One test point was located between the two ends. At each of the three sites the voltage 

was swept from -10 to +10 V and the resulting current was measured (Figure 5.3, b.). 

 

Figure 5.3 Distance-dependent measurements of conductivity along a TPP nanorod. (a) A TPP 

nanorod localized in a nanohole. The colored dots indicate the testing points on the nanorod where 

I-V curves were collected; (b) I-V curves collected from selected locations along the TPP nanorod 

shown in corresponding colors. 
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Trends of the conductive properties correspond to the testing positions. Current-voltage 

curves indicate an increase in conductance as the tip is moved closer towards the Au surface. The 

current at 10 V increases along the horizontal direction of the TPP nanorod. In reverse, the 

conductance of the nanorod decreases as a function of the testing distance. The highest current at 

-10 V remained same during this experiment. The onset of the turn on current occurs at a lower 

voltages as the tip is moved closer to the end of the TPP nanorod that is attached to gold. 

Similar measurements were done for a cobalt-coordinated TPC nanorod localized on a 

nanopore. The morphology of an individual TPC nanorod on a nanopore is shown in Figure 5.4. 

The defect of the gold substrate under the thin dodecanethiol SAM can be seen in both topography 

and the corresponding phase images (Figures 5.4, a. and 5.4, b.). In the phase image, the bare gold 

area of the nanopore can be discerned as a dark circle. The dimensions of the TPC nanorod 

measured 230 nm in length and the height is 16 nm (Figure 5.4, c.). 

 

Figure 5.4 Close-up of an individual TPC nanorod. (a) An individual TPC nanorod shown with a 

topography image; (b) corresponding phase image; (c) cursor profile of a transverse section of the 

nanorod; (d) cursor profile of a longitudinal section. 
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Conductive measurements were conducted on the TPC nanorod with CP-AFM (Figure 

5.5). Six testing points along the TPC nanorod were chosen for the I-V curves shown in Figure 

5.5a. Distinct differences of the I-V profiles were observed for the TPC nanorods (Figure 5.5, b.) 

compared to TPP (Figure 5.3, b.). In the -2.4 v to +2.4 v range, semi-conductive profiles are shown 

for each of the six I-V curves shown in Figure 5.5, b. The conductance measured from the positive 

voltage range is larger than that measured from the negative voltage range. The highest currents 

are -10 nA and +10 nA at -2.4 V and +2.4 V, respectively. The metallic core in the cobalt-

coordinated TPC is greater compared to the TPP nanorod. 

 

Figure 5.5 Distance-dependent measurements of conductivity along a TPC nanorod. (a) A TPC 

nanorod localized within a nanopore. The points on the nanorod represent the testing sites where 

the I-V curves were collected; (b) I-V curves collected from selected locations on TPC nanorod 

shown in corresponding colors.  
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To evaluate the conductive behavior of the two types of nanorods, the conductance at 

selected testing points on TPC and TPP nanorods were calculated. (The conductance was measured 

as the slope of the linear parts of each I-V curve.) Since both TPC and TPP have semi-conductive 

profiles, the conductance was categorized for the negative and positive regions of the curves (Table 

5.1). The values of the TPP nanorods are expressed in the pico Siemens range which is a thousand 

times lower than that of the TPC nanorods. A general trend is revealed as the tip is moved along 

the length of the nanorods, in which the conductance increases as the probe is moved further away 

from the gold substrate. When one considers the larger size of the coated AFM probe, it appears 

that there is spatial overlap when six or more measurements are taken side-by-side. The values 

acquired in the positive voltage side are higher than the values acquired from the negative voltage 

side. 

Table 5.1 Conductance measurements at selected points along TPP and TPC nanorods. 

Measuring 

Pointa 

 TPP  TPC 

Negative 

Bias (pS) 

Positive 

Bias (pS) 

Negative 

Bias (nS) 

Positive 

Bias (nS) 

1 6 6 10 51 

2 12 32 11 74 

  32 28 32 12 80 

4 14 51 14 32 

  54 23 59 10 51 

  65 25 92 10 51 
a Numbers 1 to 6 indicate the measuring points from the end away from the gold surface (1) to the 

end in contact with the gold surface (6). 

The feasibility of measuring conductance along the length of nanorods with CP-AFM was 

demonstrated, facilitated by the localization of the nanorods on uncovered areas of gold substrates. 

Arrays of TPP and TPC nanopores ensured multiple, reproducible measurements with I-V profiles. 

The properties of porphyrins at the nanoscale furnish important information for future applications. 
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5.4 Conclusions 

Rod-shaped nanostructures of TPP and TPC were placed within nanoholes fabricated 

within a dodecanethiol SAM prepared by immersion particle lithography. The geometry of the 

nanorods enables multiple, distance-dependent measurements of nanoscale conductance using CP-

AFM. The nanorods of TPP exhibit conductive profiles of an insulating material. Nanorods of TPC 

show semi-conductive behavior in the longitudinal direction with the onset of the turn-on currents 

shifting to zero volts as the testing point approaches the end in contact with gold electrode. The 

strategies described herein enable measurements with a reproducible surface test platform for 

future studies to characterize more complex molecules.  
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CHAPTER 6: CONCLUSIONS AND FUTURE PROSPECTUS 

Nanofabrication based on scanning probe lithography and particle lithography were 

developed and applied to create nanostructures within organothiol SAMs on Au(111) surfaces. 

Well studied n-alkanethiols were used as an internal reference for locally measuring the orientation 

of a newly designed multidentate thiol on Au(111). Structural templates fabricated within 

organothiol SAMs with assist of closed packed monodisperse spheres as surface mask were used 

to spatially confine the aggregation of porphyrins at the nanoscale for conductive measurements 

with AFM. Particle lithography offers the advantages of high throughput, and reproducibility for 

fabricating dimension tunable nanostructures. Patterned surfaces were used to chemically define 

the attachment of designed nanomaterials. With the advanced scanning probe measurements, 

properties of samples were measured at molecular level. Although the discussion and results 

presented in this dissertation focused on selected nanomaterials, the applicability of the methods 

is more generic. The techniques developed in this dissertation will be applicable to investigations 

of the properties of thin films and surface self-assembly for studies in the future.  

6.1 Self-assembly of bidentate thiol on Au(111) studied with AFM 

 Protocols for AFM-based nanolithography as well as immersion particle lithography were 

used to evaluate the morphology and thickness of bidentate BMPHA on Au(111). The established 

thickness of monodentate ODT was used as a reference for in situ measurements of film thickness. 

Either monolayer or bilayer films of BMPHA can be formed on Au(111) by controlling the 

parameters of solution concentration and the duration of immersion in ethanolic solution. The 

thickness of monolayer films of BMPHA measured 2.0 ± 0.2 nm, which is consistent with previous 

measurements reported using ellipsometry. Assuming that both thiols of BMPHA bind to gold, 

this value would correspond to a tilt angle of 34° from the surface normal. Head-to-head 
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dimerization between interfacial carboxylic groups can produce bilayers of BMPHA, as has 

previously been demonstrated for n-alkanethiols with carboxylic acid groups. Both monolayer and 

bilayer films of BMPHA could be generated using immersion particle lithography. Periodic island 

nanopatterns of ODT were grown within nanoholes of BMPHA, constructed with a successive 

step of sample immersion in SAM solution. Future directions for this research will be to develop 

protocols to compare the long-term stability of bidentate versus monodentate structures using 

nanofabricated test structures. 

6.2 Measurement of spatially confined nanoclusters of porphyrins using CP-AFM 

A new surface test platform was introduced for making conductive probe measurements of 

regularly-shaped, small clusters of porphyrins. Periodic arrays of nanodots of porphyrins were 

prepared in nanopores formed within dodecanethiol/Au(111). Dot-like nanostructures of 

porphyrins with and without a metal center were self-assembled within nanopores prepared by 

immersion particle lithography. The conductivity profiles were measured and compared using CP-

AFM for 3-10 nm nanodots of cobalt-coordinated and free-base porphyrins. Distinct I-V profiles 

were exhibited with TPC and TPP nanodots that were chosen as model systems. The key difference 

between the structures of the two selected porphyrins is the cobalt core. For TPP nanodots, profiles 

that are typical of semi-conductive films were observed. With cobalt-coordinated TPC nanodots, 

wire-like conductive profiles were exhibited. As might be predicted, the conductivity of TPC 

nanodots was shown to be greater than that of TPP nanodots. The approach described demonstrates 

the feasibility for sensitive measurements of the conductivity of multiple, replicate nanodots with 

CP-AFM. 
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6.3 Nanorods derived from porphyrins characterized with CP-AFM 

Rod-like nanostructures formed by TPP and TPC molecules were attached to 

gold nanopores within a 1-dodecanethiol template fabricated by immersion particle lithography. 

The nanorods of TPP present rectifier conductive profiles in the longitudinal direction. In addition, 

the nanorods of TPC have shown semi-conductive behavior in the longitudinal direction with the 

onset of the turn-on currents shifting to zero volts when the testing point approaches to the end in 

contact with gold electrode. The strategy outlined in this study may be flexible enough to construct 

nanofabricated building blocks for molecular electronics and to provide a platform to 

electronically characterize more complex structures. 

6.4 Future prospectus 

Organic thin films are crucial for the production of biosensors,198-200 corrosion-resistant 

surfaces,201-202 medical203 and electronic devices.204 Platforms for emerging technologies will 

require robust organic films that are resistant to environmental effects such as heat and oxidation. 

For example, diazonium salts provide thin films with higher thermal and oxidative stability than 

thiol-based self-assembled monolayers (SAMs). The stability of multilayers derived from 

alkyldiazonium salts has been demonstrated.205-207 Polyphenylene multilayers derived through the 

grafting of aryldiazonium salts have demonstrated stability at temperatures up to 700 K under 

ultra-high vacuum and remain stable in laboratory air for months.208 Investigations of 

photografting reactions at the molecular level can help to fine tune the quality of the organic films 

and to achieve better control of surface reactions. 

6.4.1 Design of a transparent AFM sample cell for liquid imaging  

   Protocols will be developed for in situ studies in liquid media to enable time-lapse AFM 

imaging. Liquid environments expand the capabilities of AFM protocols that will provide insight 
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into dynamic processes at the molecular level. Liquid imaging provides intrinsic advantages for 

AFM studies, particularly for conducting in situ investigations of chemical or biochemical 

reactions. Strong capillary interactions between the tip and sample that are present in ambient air 

can be reduced or eliminated in liquid media.209 Liquid media helps to improve the resolution of 

AFM experiments since the amount of force applied between the tip and sample can be greatly 

reduced.210 The investigation of surface changes throughout the course of chemical self-assembly 

reactions have been monitored with AFM in liquid media.211 Injecting solutions into a liquid 

sample cell enables protocols for AFM-based nanografting.212  

A transparent sample cell will be designed to enable irradiation of samples. A prototype 

sample cell that enables irradiation of the sample with visible light from a fiber optic cable below 

the sample stage is shown in Figure 6.1, which is made of machined polycarbonate. A glass sample 

 

Figure 6.1 Designs for home-built AFM sample stages. (a) Home-constructed sample stage for 

AFM photoimaging (prototype). A prism is embedded within a transparent polycarbonate block to 

direct light through the sample. (b) Design for proposed sample cell to be machined in glass or 

quartz material. 
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stage will need to be constructed for irradiation of samples from the side or top of the stage to 

enable in situ studies for protocols with photocatalytic surface reactions. The design of a glass 

sample cell is shown in Figure 6.1, b. The transparent sample cell will include a circular reservoir 

for the reagent solution, approx. 7 cm in diameter with a thickness of 1.5 cm. Two holes will be 

drilled in the sides of the sample container (1 mm diameter) for connecting tubing. Plastic tubing 

is used to introduce reagents or for rinsing protocols for reaction steps. A light strip from a light-

emitting diode (LED) source encapsulates the sample cell as a light source. This will ensure that 

the light intensity of irradiation is evenly dispersed within the entire cell. Three magnetic pellets 

are embedded at the edge of the sample cell for mounting the stage onto an AFM scanner. 

6.4.2 Studies of the mechanism and kinetics of photocatalytic reactions on Au(111) 

While the kinetics and mechanisms of film growth of SAMs derived from n-alkanethiols have 

been well-studied,213 analogous investigations of the surface assembly of photografted diazonium 

salts on surfaces have not yet been reported. To understand more completely the surface structure 

and assembly process of photografting diazonium salts, studies of surface reactions will be 

accomplished with time-lapse AFM, within a liquid environment. By using a transparent cell for 

liquid AFM studies, fresh reagents can be introduced to the system to enable monitoring of surface 

changes over time (Figure 6.2). My strategy will be to use dilute solutions of reagents to carefully 

control the reaction conditions and to localize the sites of reactions to well-defined, discrete local 

areas of the surface obtained with nanofabrication protocols. 
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Figure 6.2 Setup for time-lapse AFM in liquids. 

The surface will be imaged in liquid before injecting a solution of diazonium salts. After 

injecting a solution of diazonium salt with Ru(bpy)3
2+,which is the photocatalyst into the sample 

cell, visible light will be turned on. The free radical is generated by activated Ru(bpy)3
2+. 

Configuration changes of adsorbates on surfaces will be observed in a time-lapse fashion. The 

thickness of the adsorbates can be measured precisely at the nanoscale. Kinetic trends for the 

adsorption of free radical will be expressed with the increases in surface coverage as time 

progresses. From the rate of surface change, interactions between neighboring molecules will be 

disclosed from AFM images captured over time.  

Photografting of diazonium salts onto gold surfaces provides an excellent model reaction 

for studies of photocatalytic reactions. In situ studies with AFM protocols will uncover 

mechanistic aspects of thin film growth and guide the design of methods for photografting other 

molecules, such as (primary alkyl halides, phthalimide esters, diaryliodonium salts and aryl 

iodides). Evidence suggests a solid link between the mechanism and kinetics of surface reactions 

with the properties of thin films.  
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Methods for direct in situ observation and measurement of how molecules react with 

surfaces offer interesting and valuable opportunities for chemical research. Invention of an AFM 

liquid cell for imaging reactions initiated by photocatalysis offers a new approach for nanoscale 

studies of the mechanisms and kinetics of surface reactions that has not previously been reported. 

Protocols with nanoshaving and nanografting will be developed to gain insight into the growth and 

physical characteristics of organic thin films. 
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APPENDIX B: OPERATING PROCEDURE FOR SCANNING 

TUNNELING MICROSCOPY IN AMBIENT ATMOSPHERE 

In Scanning Tunneling Microscopy (STM), a bias voltage is applied between a sharp, 

conducting tip and the sample. When the tip approaches the sample, electrons “tunnel” through 

the narrow gap, either from the sample to the tip or vice versa, depending on the bias voltage. The 

tunneling current is held constant throughout the scan, magnitude difference in the tunneling 

current. The interaction is between single atoms in the sample and tip, giving STM remarkable 

high lateral resolution.  

Nose assembly and multi-purpose scanner 

             The Agilent multi-purpose scanner, when equipped with an STM nose assembly (Figure 

B1), can be used for STM.  

  

Figure B1 Scanner and nose assembly for STM. Insert is the STM nose assembly. 
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Tips preparation for STM 

        Agilent STM tips are pre-cut of chemically etched lengths of 0.25 mm OD, 80% platinum-

20% iridium wire (Figure B2). If the wire tip is damaged it can be trimmed and used again (Figure 

B3).  

 

Figure B2 Pre-cut STM tips. Insert is a close-up view of a STM wire picked with pliers. 

1. Use the pointed tweezers to carefully pick up a piece of wire (tip). 

2. Hold the end of the wire tightly with the pliers. 

3. Holding the tip with the pliers, move the cutters at a length of approximately 4 mm, as 

obliquely as possible (in a very sharp angle). 

4. Close the cutters until you can feel the wire, but do not cut it. 

5. To obtain the required sharpness, the wire needs to be torn off by pulling the wire cutter quickly 

away from you, rather than cutting cleanly through the wire. 
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6. Use the pointed tweezers to hold the tip wire right behind the tip. 

7. Release the flat pliers. 

8. Insert the tip into the nose assembly. Grasp the tip with pointed tweezers, then insert it into the 

hollow tube until it protrudes approximately 2 mm. 

9. Place the scanner onto the microscope base. 

 

Figure B3 Tip preparation. 

Mount sample onto sample plate 

10. Prepare the sample and place it on a sample stage. The sample must be electrically isolated 

from the sample. 

11. Attach an electrode from the sample plate to the sample. Lift the spring-loaded electrode clip 

on the sample stage and insert the electrode under it.  Connect the electrode to the sample, 

ensuring good contact (Figure B4).  
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Figure B4 Sample plate connection. Insert is the backside of the boxed area, shows the 3-pin socket 

plugged with the 3-pin EC connector. 

12. Plug the 3-pin EC connector of the Aux cable plate into the 3-pin socket on the back of the 

sample stage. Plug the other end of the Aux cable into the Aux socket on the microscope base. 

Note: The sample plate cable can transfer low levels of electric noise to the sample. During 

very high resolution imaging this can affect images quality during high resolution imaging 

(usually less than 1 μm2 area). First plugging the sample plate cable to the flexible 3-wire 

umbilical included with the sample plate is recommended. The umbilical should then be 

plugged in to the microscope base.  

STM imaging procedure 

13.  In PicoView 1.12, choose Mode > STM. 
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14. In the Servo window enter the Sample Bias Voltage. Typical values are 50-200 millivolts 

(0.05-0.2 V). A positive bias indicates current flow from the tip to the sample, and vice versa 

for negative bias (Figure B5).  

 

Figure B5 Servo window settings for STM imaging. 

15. Enter the Setpoint current, in nanoamps, that the system will try to hold constant during 

scanning. Atypical setting is 1-2 nA. 

16. Enter the I and P gains for the z-servo, which will dictate how quickly the system will adjust 

to changes in tunneling current. Typical values are 1-2 % for both gains. 

17. In the Realtime Images window choose to display images for Current and Topography. 

18. In the Scan and Motor window set the scan Size and Speed. A scan Speed of 1 ln/s is a good 

starting value. 

19. Using the Close switch on the HEB, lower the scanner until the tip is close to, but not touching, 

the scanner. The video system is not useful in the STM as the tip is essentially vertical, so view 

the tip from the side of the microscope and bring it as close to the sample as you can. Be certain 

to not drive the tip into the sample. To be safe you can make the approach length longer, which 

will just extended time to the approach. 
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20. Click the Approach button in PicoView’s toolbar. The scanner will lower until the Setpoint 

current is reached. 

21. For lowest current operation, once engaged reduce the Setpoint value until the indicator in the 

Servo window changes from green to red. Then increase the Setpoint until the indicator in the 

Servo window just turns green. For rougher surfaces you may need to increase the setpoint 

current slightly more. 

22. In the Scan and Motor window click the Up or Down arrows to begin the scan.   
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APPENDIX C: OPERATING PROCEDURE FOR ANGSTROM THERMAL 

EVAPORATOR 

Angstrom thermal evaporator is used to make gold thin films on substrates. Usually, the 

substrates are silicon wafer and muscovite mica. The gold thin film made by Angstrom thermal 

evaporator is monocrystalline Au(111) surface. [The location of the gold evaporator is in CMB 

454] 

Safety grounding 

A grounding probe is fastened to the back of the system frame. It is required of all operators 

to ground the high voltage leads inside the chamber connected to the electron beam as soon as any 

chamber door is opened. Residual voltages at these leads could be potentially harmful. 

 

Figure C1 Grounding probe. 

Preparing the instrument 

1. Turn on the gas source. 
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Figure C2 Location of the gas source. 

2. Turn on the cooling water source. 

 

Figure C3 Location of the cooling water source. 

3. Turn on the main disconnect.  
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Figure C4 Location of the main disconnect. 

4. Level the pneumatic gas shut off knob. 

 

Figure C5 Location of the pneumatic gas shut off knob. 
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Editing Parameters within the Inficon Deposition Controller 

 

Figure C6 Control panel of SQC-310C deposition controller. 

To edit a parameter in any menu, turn the control knob to scroll to the desired parameter, 

and press the Edit soft key. The cursor will move to the parameters value. Turn the control knob 

to set the desired parameter value. The soft key functions in Edit mode are as follows: 

Next: Store and move to next parameter for editing. It will just move to the next 

parameter if no change has been entered. 

Cancel: Stop editing, do not store and return the selected parameter to its previous value. 

Enter: Save the value entered, ends editing for selected parameter. 

1. Press Next Menu until the Film Menu soft key is displayed. Press Film Menu to view a list 

of stored films. Turn the setting knob to scroll to an entry in the list that is currently labeled 

<Empty> to create a new film. 

Soft keys 

Control 
knob 



112 

2. Press the Create soft key to create a default film at that location. Note the film number that 

you just created (or you can edit film name by pressing Edit Name key). Press the Edit soft 

key. Enter parameter values in the required fields below. (typical parameters: [film name], p 

Term 20, I Term 0.5, D Term 0, Material Gold, Film Tooling 95) 

 

Figure C7 Editing film parameters. 

Press the Main Screen soft key to return to the main screen. 

3. Press the Process Menu soft key to view a list of processes. Turn the setting knob to scroll to 

an entry in the list that is labeled <Empty> if you wish to create a new process and press the 

Create soft key (or you can edit film name by pressing Edit Name key). Press the Select soft 

key to make the new process the active process.  
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Figure C8 Process menu. 

4. Press the Edit soft key to view a list of layers in the selected process. The layer list should be 

blank if it is a new process. Press Insert New, and then scroll down the list of films to the 

film you just created. Press Insert Normal to insert the selected film as Layer 1.1. The 

display returns to the Layer Select menu.  

 

Figure C9 Layer menu. 
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5. Press Main Screen soft key to return to the main menu screen. 

6. In the main menu screen press the Next Menu soft key one time. Make sure that Automatic 

mode is active (Auto/Manual) NOT Manual mode (Manual/Auto). 

7. Click Edit soft key to type in initial rate (3 Å), film thickness (2.000 kÅ), change start mode 

to auto, turn on sensor 2, and source 2. 

8. Press the Next Menu soft key to return to the main menu screen. 

 

Figure C10 Deposition interface. 

Mounting substrate and depositing metal 

1. Bring the precut mica, depositing metal (gold pellets), clean gloves, sharp tip tweezers 

into glove box.  

2. When the chamber door is opened a probe must be touched to both of the high voltage 

copper conductors that are connected from the chamber feed through to the electron beam 

gun. This is illustrated in Figure C11. 
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Figure C11 Probe touching high voltage conductor. 

3. Fix the freshly cleaved mica onto the sample plate using the clips. (Note: choose thicker 

piece of mica, clean side up.) 

4. Mount the sample plate onto the holder inside depositing chamber. (Note: clean mica side 

faces down, turn sample plate to lock) 

5. Close shudder. 

6. Mount the crucible onto source 2(corresponds to sensor 2, right side one) or source 3 

(corresponds to sensor 1, left side one).  

7. Put 6 gold pellets on crucible. (Note: this number for gold pellets is empirical for a 200 

nm thick gold film. Different number for other thickness may apply) 

8. Close chamber. 

9. Turn on the turbo pump. Wait until the pressure inside the chamber decreases to 10-7 torr 

to initiate depositing process for gold (usually it takes 12 h) or to 10-6 torr for aluminum 

(usually it takes less than 1h).  
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Deposition process 

1. Preheat the sample stage at 325 C for 30 min. Use arrows on substrate temp to set green 

value. Press substrate heater (green button).  Press start on vacuum pump.  

 

Figure C12 Operating panel for angstrom thermal evaporator. 

2. Turn off the heater. [When heating up the substrate, the pressure in the chamber went up to 

2.9 x 10-6 torr. Do not start deposition process until the pressure goes back to 10-7 torr. It will 

be about one hour after the heater turned off.] 

3. Check source 2 sensor 2 settings then press the Start soft key to begin.  

4. When the process is finished, turn on the sample heater again to 365 C to anneal the Au(111) 

film under vacuum for 30 min.  

5. Turn off the heater by pressing the green button. Allow about 2 hours for the substrate to cool 

down. 

6. To take your sample out of the chamber, press the Start/Stop button on the vacuum pump 

controller to initiate the venting process.  
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7. After the chamber is vented, open the chamber. Carefully remove the substrate after the 

sample holder cooled to room temperature. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure C13 Real size of the mica substrate (4.7 in./12cm in diameter).  
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APPENDIX D: SUPPLEMENTAL INFORMATION FOR NANOSCALE 

LITHOGRAPHY MEDIATED BY SURFACE SELF-ASSEMBLY OF 16-

[3,5-BIS(MERCAPTOMETHYL)PHENOXY]HEXADECANOIC ACID ON 

AU(111) INVESTIGATED WITH SCANNING PROBE MICROSCOPY3* 

 

 

Figure D1 Nanopatterns fabricated by scanning probe based nanolithography within a bilayer of 

16-[3,5-bis(mercaptomethyl)phenoxy]hexadecanoic acid (BMPHA). (a) Side-by-side views of 

nanoshaved and nanografted patterns. These figures present a zoom-out view of Figure 3.5(a) 

Contact-mode topography image acquired in ethanol. The areas 1, 2 and 3 are nanoshaved regions; 

areas 4 and 5 are nanografted patterns of n-octadecanethiol (ODT). (b) Simultaneously acquired 

lateral force image; (c) cursor profiles corresponding to the red and blue lines in (a). The blue line 

reveals depth of the nanoshaved area, the red line profiles the depth of nanografted pattern. The 

bilayer of BMPHA was prepared by immersion of a Au(111) substrate in 5 mM ethanolic BMPHA 

solution for 30 h. The concentration of ethanolic ODT solution used for nanografting was 1 mM. 
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Figure D2 Steps for preparing nanopatterns of thiol-based films using immersion particle 

lithography. (a) A surface mask of close-packed mesospheres was prepared on template-stripped 

gold, and annealed for 12 h at 150 C. (b) The masked substrate was immersed in an ethanolic 

solution of dilute multidentate thiol. (c) The mask of silica spheres was removed by rinsing and 

sonication. The uncovered pore areas can be filled with a second molecule, such as n-alkanethiols 

with a further immersion step. 
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APPENDIX E: SUPPLEMENTAL INFORMATION FOR CONDUCTIVE-

PROBE MEASUREMENTS WITH NANODOTS OF FREE-BASE AND 

METALLATED PORPHYRINS 

 

Figure E1 Successive voltage sweeps taken from an individual TPP nanodots, to evaluate changes 

after multiple measurements. (a) The first five I-V profiles taken from a nanodot with 6 nm height; 
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Figure E1 Successive voltage sweeps taken from an individual TPP nanodots, to evaluate changes 

after multiple measurements. (b) The first five I-V profiles taken from a nanodot with 7 nm height. 



122 

 
Figure E2 Successive voltage sweeps taken from an individual TPC nanodots, to evaluate changes 

after multiple measurements. (a) The first five I-V profiles taken with a TPC nanodot with 6 nm 

height; 
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Figure E2 Successive voltage sweeps taken from an individual TPC nanodots, to evaluate changes 

after multiple measurements. (b)The first five I-V profiles taken from a TPC nanodot with 7 nm 

height. 
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Figure E3  Example I-V curves for (a) TPP nanodots and (b) TPC nanodots with selected heights. 

Distinct differences in the conductivity of TPP and TPC at the nanoscale are shown by the I-V 

curves collected from individual nanodots. Nanodots of TPP exhibit semi-conductive I-V profiles, 

whereas TPC nanodots have wire-like characteristics. The cobalt atom coordinated to the 

porphyrin structure increases the conductivity of the nanodots.  
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APPENDIX F: SUPPLEMENTAL INFORMATION FOR DISTANCE-

DEPENDENT MEASUREMENTS OF THE CONDUCTANCE OF 

PORPHYRIN NANORODS STUDIED WITH CONDUCTIVE-PROBE 

ATOMIC FORCE MICROSCOPY 

 

Figure F1 Steps of immersion particle lithography with porphyrins. (a) Mesospheres were 

deposited on Au(111) to form a surface mask; (b) nanoholes within a dodecanethiol SAM formed 

on Au(111) after immersing the masked surface in a dodecanethiol solution and then rinsing  away 

the mesospheres from the surface; (c) porphyrin nanorods grow on the exposed Au(111) sites after 

an immersion step. A nanopore array was fabricated within dodecanethiol on Au(111). The steps 

of fabricating the nanopore array was described in previous work (Figure F1a).3 The gold substrate 

masked with silica mesospheres was then submerged in ethanol containing dodecanethiol to 

prepare nanoholes within the thiol SAM. When the mesosphere mask was removed, a periodic 

arrangement of uncovered areas of substrate was disclosed as circular nanoholes. The array in thiol 

SAM on Au(111) was used to direct the growth of nanorods by immersing the template into the 

solution of TPC or TPP (Figure F1b). After the immersion of the template, porphyrin nanorods 

grew from the bare Au(111) area (Figure F1c). This protocol produces the porphyrin nanorods 

with one end connected to the bare gold areas and the remainder of the nanorod lying on the 

dodecanethiol SAM. The discrete circular areas of Au(111) serve as an electrode for CP-AFM. A 

platinum coated AFM tip serves as the other electrode for measuring the conductivity of the 

nanorods. 
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Figure F2 Control experiment to evaluate whether the nanorods form in solution or are grown from 

the surface. The experiments reveal aggregates of TPP were formed on gold by depositing 5 µL 

10-5 M TPP solution. Nanorods were not observed. (a) A wide view of TPP aggregates shown with 

a topography frame; (b) corresponding phase image; (c) close up view of TPP aggregates; (d) 

simultaneously acquired phase image. Images were acquired by tapping mode AFM in ambient 

conditions. (e) Cursor profile of the black line in (c); (f) cursor profile of the blue line in (c); (g) 

cursor profile of the red line in (c). 
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Figure F3 With extended immersion intervals of the substrate TPC nanorods were formed. (a) 

Topography frame; (b) An individual TPC nanorod shown in the white frame in (a). The 

topography images were acquired with tapping mode AFM in ambient conditions. Nanorods of 

TPC formed on gold by immersing a freshly stripped gold substrate in a TPC solution (10-5 M for 

42 h). The TPC molecules were dissolved in dichloromethane at 10-3 M and then diluted to 10-5 M 

in ethanol. (c) Cursor profile of a cross section of the TPC nanorod which corresponds to the blue 

line in (a). (d) Cursor profile of a longitudinal section of the TPC nanorod which corresponds to 

the black line in (b). 
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Figure F4 Histograms of the length and the height of TPP and TPC nanorods. (a) Length of TPP 

nanorods (n=64); (b) height of TPP nanorods (n=64); (c) length of TPC nanorods (n=82); (d) height 

of TPC nanorods (n=82). The solid lines represent the fit of the data to a Gaussian distribution. 

The accompanying values represent the means and standard deviations of the fits. The dashed lines 

in (d) are fitted with a double Gaussian distribution. 
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