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ABSTRACT 

In this research, an infrared laser at a wavelength of 3 µm was used to ablate material from 

tissue sections for biomolecule analysis. Pulsed infrared (IR) irradiation of tissue with a focused 

laser beam efficiently removed biomolecules, such as proteins, enzymes, DNA, and RNA from 

tissue sections for further analysis. In a proteomics project, matrix-assisted laser 

desorption/ionization mass spectrometry imaging (MALDI-MSI) was used to determine regions 

of interest (ROI) for laser ablation. The matrix was then washed off. By overlaying the MSI 

generated heat-map, the section was sampled using IR laser ablation and custom stage-control 

software. Two ROI were selected and ablated from the same tissue section after MALDI-MSI. 

More than 700 proteins were identified in each region. A comparison of molecular localization 

and activity of identified proteins from two regions was performed. IR laser ablation was used to 

transfer enzymes while retaining their enzymatic activity. Three different laser fluences were used 

for ablating two enzymes: trypsin and catalase. Approximately 75% of the enzyme was transferred 

for all the fluences tested. According to fluorescence quantification, around 35% of the captured 

trypsin and 51% of the captured catalase were active after laser ablation. Regions were ablated and 

captured from frontal cortex and cerebellum of rat brain tissue sections and catalase activity was 

measured from the ablated material without further sample preparation. The catalase activity in 

the two regions was consistent with previously published data, demonstrating transfer of active 

enzymes from tissue. IR-laser ablation was used for sampling DNA and RNA. To test ablation 

transfer of large DNA, a 3200 base pair plasmid was used and evaluation of DNA quality after 

laser ablation was accomplished by comparing the sequencing performance of samples obtained 

from laser ablation and a control plasmid. Consistent results for intact DNA were obtained when 



xv 

 

the laser fluence was below 24 kJ/m2. Regions 1 and 4 mm2 square were ablated from rat brain 

and kidney tissue sections. Ablated material was amplified using polymerase chain reaction (PCR) 

with four primers from two genes. For RNA sampling, human kidney total RNA was used. The 

integrity of the RNA after laser ablation was monitored by gel electrophoresis. Low and high 

energy thresholds were determined, indicating the range in which intact RNA transfer could be 

achieved at the highest efficiency. Areas 2 mm2 square were ablated from the rat brain tissue. After 

RNA purification and reverse transcription, mRNA was amplified and quantified using 

quantitative PCR with two genes. 
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CHAPTER 1 INTRODUCTION 

Identification and quantification of biomolecules, such as proteins, metabolites, DNA, and 

RNA in tissue is necessary for disease diagnosis, prognosis and drug development.1-6 Biomolecule 

analysis generally starts with tissue homogenization and cell lysis. For example, tissue may be 

snap-frozen, pulverized into powder, and extracted with solvent targeting the biomolecule of 

interest.7 Alternatively, tissue can be immersed in a lysis buffer and homogenized by vortexing or 

bead-beating and the biomolecules extracted and purified using in-house developed protocols or 

commercial extraction kits.8-10 These methods are challenging due to a sampling mixture of both 

healthy and diseased cells, which leads to dilution of information from heterogeneous samples.11-

12 Homogenization of bulk tissue leads to loss of localization information from the heterogeneous 

microenvironment of biomolecules in tissue.13-16  

Biological imaging methods, such as in vivo and in vitro techniques, can identify 

biomolecules while maintaining localization information.17-31 In vivo imaging does not require 

dissection, but often provides limited chemical information. For example, X-ray scans use 

electromagnetic radiation to produce images of bones and dense material inside the body.18 

Magnetic resonance imaging (MRI) is based on sensitivity to the presence and properties of water 

in a magnetic field.21 A positron emission tomography (PET) scan detects radioactive chemical 

injected into the blood.19   

In vitro imaging is usually performed in tissue sections dissected from the organ of intertest. 

Most in vitro imaging uses detection probes and requires prior knowledge of the targets to design 

the probes.  These methods typically measure specific molecules such as proteins, DNA, or RNA, 
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thus limiting broad analysis.32 For example, immunostaining can provide localization and relative 

concentration information for on order ten targets per tissue section, such as DNA and proteins.33 

An in situ hybridization of RNA usually can visualize fewer than ten transcripts simultaneously in 

the same tissue sample.34-35 High throughput untargeted biomolecule imaging can be achieved by 

mass spectrometry imaging (MSI). MSI can analyze thousands of molecules, such as lipids, 

metabolites, peptides, and proteins in the same tissue section simultaneously.36-37 However, 

detection of low and medium abundant species from tissue is challenging38 and biological imaging 

is typically semi-quantitative rather than quantitative.39  

Localized biomolecule analysis can be achieved after sampling populations of targets cells 

from tissue sections using various localized sampling methods. The sampling of material allows 

further processing prior to analysis, such as separation, purification, and digestion. The collected 

material is ready for proteomics, lipidomic, metabolomic, and genomic analysis.40-41 Localized 

sampling avoids loss of information from localized biomolecules in heterogeneous samples.  

The goal of the research described in this dissertation is to develop methods to collect 

biomolecules from regions of interest (ROI) in tissue sections for analysis by various analysis 

techniques. The sampling method developed is based on infrared (IR) laser ablation and capture. 

In this chapter, localized sampling techniques are discussed, such as liquid extraction, manual 

microdissection, laser capture microdissection, and laser ablation. The biomolecule analysis 

methods mass spectrometry, gel electrophoresis, polymerase chain reaction, and genomic 

sequencing, and the coupling of localized sampling with these methods is also discussed. 
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1.1. LOCALIZED SAMPLING METHODS 

Liquid Surface Extraction  

Liquid surface extraction indicates techniques where a solvent is delivered to the surface 

of a tissue section. The solvent can be manually deposited with a micropipette or capillary or with 

an automated system. The extraction process requires different volumes of solvent and extraction 

time depending on the analyte of interest. The solvent can either be deposited on the surface for 

the desired amount of time or it can be continuously delivered and removed. In the first case, once 

the extraction is complete the solvent and extracted material is collected for off-line analysis.42 In 

the second case, continuous delivery allows on-line analysis of the extracted material.43-44 Liquid 

surface extraction has been used to extract proteins, lipids, and drugs from tissue sections for 

analysis.45-47 

A schematic of a typical off-line system is shown in Figure 1.1. The extraction solvent can 

be delivered using a pipette or automated system. A volume of several µl extraction solution is 

placed on the tissue surface. After extraction on the tissue section for several seconds, the droplet 

is pipetted in and out of the tip several times. The pipette tip is in contact with the tissue surface 

during the extraction process.42 Off-line collection can also be performed by automated systems 

such as a robotic actuator with appropriate pipette tips.45, 47-50  The robotic arm picks up a pipette 

tip and moves it to a 96-well plate containing the extraction solvent. Extraction buffer is loaded 

into the pipette tip. The arm then moves the tip to the tissue surface. Less than 1 µl extraction 

solvent is dispensed on the tissue. After extraction, the solution is aspirated back into the tip and 

it is ready for biomolecule analysis. Low volumes (<1 µl) of extraction solvent are used in the 

automated system, which leads to smaller extraction spots (0.5 mm in diameter) than that from 



4 

 

manual disposition (1-2 mm in diameter).47 Automated systems are able to keep the liquid on the 

tissue surface as long as 30 s, which may lead to more efficient extraction.47  Using this technique, 

hundreds of unknown proteins can be identified in tissue sections.51  

 

 

Figure 1.1 Schematic of an off-line liquid extraction system 

Liquid surface extraction also can be performed on-line.43, 52 In this case, the extraction 

solvent is continuously delivered and the solvent and extracted material removed. Figure 1.2 shows 

a schematic of a liquid micro-junction surface sampling probe (LMJ-SSP).46, 53 The LMJ-SSP has 

two coaxial tubes with the extraction solvent is delivered to the tissue through the coaxial tubes 

and forms a micro-junction between the probe and sample surface. Continuously, the extraction 

solvent with samples is removed through the inner tube and delivered to the downstream 

instrumentation for analysis. The sampling spot size of LMJ-SSP is approximately 0.6 mm. 
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Figure 1.2 Schematic of LMJ-SSP 

Manual Microdissection 

Manual microdissection is the extraction of tissue material using a needle or a scalpel under 

an optical microscope.54 A thin plastic film such as Parafilm can be used to assist the cutting and 

selection of the tissue pieces.55  

Manual microdissection is often guided by a defined shape or an ROI determined by 

pathology or histology using immunochemistry imaging under a stereomicroscope.54 Manual 

microdissection can be performed with a sharp implement, such as an injection needle.56  

Recently, an automated manual microdissection system was developed which included a 

camera to guide the dissection process.57 The cutting device comprises a blade and a pressure 

controller, which allows precise cutting of the tissue. Extraction solvent is supplied at the blade-

tissue interface and aspirated to collect the material for analysis.58  
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Parafilm assisted microdissection (PAM) was developed to improve the efficiency of 

manual microdissection.55 PAM employs a Parafilm layer deposited on a microscope slide before 

mounting the tissue section. The Parafilm serves as a support to prevent the tissue from contacting 

the glass surface, which facilitates removal of the tissue sections after cutting.55, 59-60 A grid with 

1 mm squares is used as guide to locate ROI and assist microdissection.61 PAM was used to collect 

material from benign and tumor regions of tissue sections and proteins were identified in these 

regions.60  

For many biomolecule analysis methods, sufficiently pure populations of cells can be 

provided by manual microdissection;54-55, 59-60, 62-63 In a study comparing liquid extraction to 

manual microdissection, 2-5 times more proteins were identified in the latter.64 However, the 

technique is labor intensive and often has limited reproducibility.54, 62  

Laser Capture Microdissection 

Laser capture microdissection (LCM) is a method for small-scale tissue sampling for 

extraction of homogeneous cell populations from tissue samples.65-70 The first LCM technique to 

be developed uses an infrared laser and thermoplastic to select tissue regions.71 The tissue section 

on a microscope slide is covered by a plastic cap with a thin thermoplastic film (Figure 1.3a & b). 

An IR laser is focused on the film to melt and fuse with the tissue in selected regions. The melted 

film adheres to the tissue (Figure 1.3c). When the cap is removed from the tissue section, the 

selected region is peeled off with it, as shown in Figure 1.3d.  
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Figure 1.3 Schematic of IR-LCM 

The second LCM technique to be developed uses a highly focused UV laser (UV-LCM) to cut 

the boundary of a tissue region. The laser beam irradiates the back of the microscope slide in 

transmission geometry mode. In one UV-LCM configuration, the sample faces upwards with 

which allows cutting and subsequent catapulting of the sample into a collector cap, which may 

contain a liquid or an adhesive substrate (Figure 1.4a).72 Alternatively, the tissue can face 

downwards with the laser irradiating from the top (Figure 1.4b), which allows gravity to help 

detach the microdissected ROI.73 In either case, detachment can be accomplished by irradiating 

the tissue with an unfocused beam, which produces a force that may free the cut region (laser 

pressure catapulting).74 UV-LCM requires the tissue to be mounted on polyethylene naphthalate 

(PEN) or polyethylene terephthalate (PET) membrane microscope slides with tissue thickness 

below 15 µm.75-82  
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Figure 1.4 Schematic of UV-LCM 

Both IR- and UV-LCM have been widely used to collect material from tissue sections for 

protein and metabolite identification and quantification and for genomic sequencing and 

expression.83-86 LCM has a spatial resolution of hundreds nanometers range and can extract as little 

as a few cells from a tissue section.67, 87-88 It is thus possible to perform analysis on single cells.67  

Sampling time for LCM varies from 20 minutes to one hour, depending on the number of cells, 

tissue type, and type of microscope slide used.41, 67, 89-90 A common difficulty is the inability to 

completely remove the selected cells from the tissue section91 which may result from improper 

slides75 or incomplete dehydration.77  LCM dissected material often requires cell lysing for 

subsequent analysis. 41, 67, 89-90 
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Laser Ablation 

Laser ablation is a laser micro-sampling technique which uses a pulsed UV,92-93 visible,94 

or IR95-102 laser to irradiate the regions of tissue section in transmission (Figure 1.5a)41 or reflection 

geometry (Figure 1.5b),96 which can be used to remove the material for on-line and off-line 

biomolecule analysis. Here, the ROI are converted to small particles that are ejected from the slide 

into a plume directly into a capture system or analysis system.  

 

Figure 1.5 Schematic of laser ablation 

Laser ablated material can be captured in a liquid droplet,97 a flowing liquid bridge,101 

micro-junction,94 liquid vortex,103 filter,96 or centrifuge tube with buffer solution.41 Laser ablation 

systems can be used for either off-line or on-line analysis. 

 Liquid droplet capture is achieved by suspending a solvent droplet from a capillary and 

suspending it above the laser ablation plume. By applying an electric field between the sample and 

the collection droplet, the transfer efficiency of droplet capture can be as high as 50%.97 The 

transfer efficiency of droplet capture also can be improved by aspiration, or a potential applied to 

the inlet of the capillary.104-105  
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 A flowing liquid bridge can be used as a capture device,100-101, 106 which can be constructed 

using two capillaries with narrow gap,100-101 and allows on-line continuous analysis. The transfer 

efficiency can be 20% by applying high voltage to the capillary.106  

Both liquid micro-junction capture 94, 107-108 and vortex sampling 93, 103 allow continuous 

on-line biomolecule analysis, which uses a LMJ-SSP probe (Figure 1.2). A wall-less liquid micro-

junction is formed between the sampling end of the probe and the tissue/sample surface. Vortex 

sampling employs a stable vortex, or whirlpool at the sampling end of the LMJ-SSP probe to 

capture laser-ablated material into the inner tube. For micro-junction sampling, the laser is directed 

from the bottom of the sample, and the probes are used to collect ablated material from the top; 

whereas for vortex sampling, the laser is directed at the top of the samples, and the probes are used 

to collect ablated material from the bottom. The vortex sampling also uses gravity and swirling 

vortex to assist capturing. The reported transfer efficiency is 24%, which is double the liquid 

micro-junction capture efficiency.103  

Laser ablation plumes also can be collected in a vacuum aspirated tube with filter.40, 96 An 

open end of a tube with 0.2 µl bed volume of C18 stationary phase material was mounted at the 

end of the tube and vacuum was applied to the other end of the tube. The transfer efficiency was 

11 ± 8% for peptides.96 This technique was used to collect proteins from rat brain tissue sections.96  

Unlike LCM, laser ablation does not require that tissue samples be mounted on membrane 

coated microscope slides.40-41 Samples can be ablated using reflectron mode from different 

surfaces.40 In addition, IR laser ablation does not require a separate cell lysis step.41  
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1.2. BIOMOLECULE ANALYSIS 

Biomolecule analysis techniques refer to a set of methods, assays and procedures that 

enable identification and quantification of biomolecules such as proteins, lipids, metabolites, DNA, 

and RNA. Most of these techniques, such as mass spectrometry, fluorescence analysis, 

electrophoresis and genomic amplification and sequencing, can be used after localized sampling. 

In this section, the biomolecule analysis methods used in the subsequent chapters are described.  

The application of localized sampling for biomolecule analysis is discussed. 

Mass Spectrometry  

Mass spectrometry (MS) is one of the most widely used techniques for identification and 

quantification of proteins, lipids, drugs, metabolites, and other biomolecules. In a typical MS 

procedure, molecules in a sample are ionized and sorted according to mass-to-charge ratio (m/z) 

in mass analyzer. Finally, the ions are detected by the detector. Results are displayed as spectra of 

relative abundance of ions as a function of m/z. A variety of ion sources have been developed,109 

such as electron ionization (EI), inductively coupled plasma (ICP), matrix-assisted laser 

desorption/ionization (MALDI), and electrospray ionization (ESI).110-113 MALDI and ESI are two 

widely used ionization methods for biomolecule analysis because they are capable of ionizing 

large biomolecules without fragmentation.110-113  

There are many different mass analyzers, which employ electric and magnetic fields to 

separate ions. For example, a magnetic sector uses a  magnetic field in a direction perpendicular 

to ion motion that causes the ions to travel in a circular path.114 A time-of-flight (TOF) mass 

analyzer measures the time it takes ions with different masses but the same kinetic energy to move 

through a field-free region.115 Trapped ion mass analyzers, such as the Paul trap, Orbitrap, or 
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Fourier-transform ion cyclotron resonance (FT-ICR) Penning trap, trap and separate ions by m/z 

using electric and magnetic fields.116-119 Quadrupole mass analyzers are used as  a mass filter in 

which ions with selected m/z can pass quadrupole rods with applied static and radio frequency 

potentials; quadrupole mass analyzers are often combined with other mass analyzers for ion 

separation.119 

MALDI uses a laser to desorb and ionize compounds from a surface.120 The matrix is 

typically a UV energy absorbing aromatic acid. A small quantity of sample and excess matrix is 

mixed and co-crystallized on a metal target for analysis. The matrix absorbs the pulsed laser energy 

which leads to desorption and ionization (Figure 1.6). MALDI allows analysis of proteins over 

100,000 Da in mass.121  

 

Figure 1.6  Schematic of MALDI 

MALDI also can be used as an imaging technique122 which shows the relative abundance 

of detected ions in the different location of the tissue section. The MALDI laser is raster scanned 

across the tissue from a regularly spaced array of positions. After that, a series of different mass 
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spectra are obtained from different positions of the tissue section. The molecular information of 

the selected m/z encoded at each location is extracted and plotted to create ion images that can be 

directly correlated with the location and amount of specific biological molecules. The result of a 

MALDI MSI experiment is represents as a 2-dimensional heat-map, where each pixel represented 

the signal intensity of a specific mass window extracted from all the spectra recorded. MALDI 

MSI allows imaging of tissue samples with a broad molecular weight range123 with applications to 

analysis of drugs, metabolites, lipids, and proteins.36, 124-126 In a MALDI MSI experiment, thin 

tissue section is mounted on a conductive microscope slide. MALDI matrix is sprayed on the 

surface of the tissue section prior to imaging. Although MALDI MSI can detect only most 

abundant ions and semi-quantitatively,127-128 it can be used to localize ROI for localized sampling 

methods.55, 59, 129 

ESI mass spectrometry for large molecule identification was developed in the late 1980s 

by Fenn and co-workers.130 A solution in a narrow bore capillary or needle is raised to a few 

kilovolts potential. Highly charged droplets are ejected from capillary tip due to the high surface 

charged and the subsequent solvent evaporation results in highly charged molecules. Capillary 

heating and heated nitrogen gas flow assists desolvation. The multiply charged ions enter the mass 

spectrometer for m/z separation and detection (Figure 1.7). An advantage of ESI is the generation 

of multiple charged molecules, which enables analysis of  large molecules in a mass spectrometer 

with limited m/z range.113  
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Figure 1.7 Schematic of ESI 

Mass spectra (MS) only show the molecular weight of biomolecules. Tandem mass 

spectrometry (MS/MS) that involves multiple steps of mass spectrometry provides structural 

information of the analytes.131-132 In tandem mass spectrometry, ions are first separated by m/z in 

the first stage of MS. Ions with certain m/z are selected and fragmented. Those fragments ions are 

then separated by m/z in the second stage of mass spectrometry. There are several fragmentation 

methods, such as collision-induced dissociation (CID), electron capture dissociation (ECD), and 

electron transfer dissociation (ETD).131 Tissue samples usually contain a complex mixture of 

biomolecules. Separation systems, such as high-performance liquid chromatography mass 

spectrometry (HPLC-MS) and ion mobility (IM) mass spectrometry are able to improve 

biomolecule identification and quantification from tissue extracts.133-135 

There are two main workflows for mass spectrometry-based proteomics: top-down and 

bottom-up.136-137 In top-down proteomics, intact proteins are ionized and introduced into the mass 

spectrometer and fragmented, followed by mass measurement of the product ions. In bottom-up 
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proteomics, proteins are digested into peptides using proteolytic enzymes.137 This can be done 

either before or after protein isolation. The peptides are identified and quantified using MS or 

MS/MS. The identified peptides are assigned to proteins through database searching.138  

Gel Electrophoresis 

Gel electrophoresis is an analytical method that can be used for separation of DNA, RNA, 

proteins, and other biomolecules.139-143 Gels can be made of agarose or polyacrylamide or starch. 

An electric potential is applied to the gel. DNA and RNA are negatively charged in solution and 

loaded onto the gel. The detergent SDS is mixed with proteins and applies a negative charge to 

each protein in proportion to its mass. Additionally, SDS is also able to denature proteins. The 

negatively charged and denatured proteins are loaded onto the negative end of the gel. The 

molecules travel through the gel at a speed that is inversely related to their size and molecular 

weight. Therefore, the smaller molecules travel a longer distance through the gel. After separation, 

the molecules with different sizes form distinct bands on the gel that can be used to determine the 

molecular weight and a standard ladder mixture with known molecular weights is loaded into the 

gel in a separate lane. The molecular weight of the samples is obtained by comparing their bands 

to the ladder.142  

Gel electrophoresis can be used to identify proteins according to their molecular weight, 

but it can be challenging for analysis of larger proteins.144-145 For genomic analysis, gel 

electrophoresis can be used to determine the integrity of DNA or RNA. In the case of DNA, 

samples are loaded into the gel along with positive control DNA. Assessing DNA integrity can be 

achieved by comparing the bands of the sample and intact DNA.146-147 In the case of RNA, intact 

total RNA has intense bands due to the 28S and 18S ribosome RNA. A 2:1 ratio of 28S is a good 
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indication of intact RNA and a ratio lower than 2 indicates degradation,143, 148-149 although this can 

be a highly variable metric.150-151 The RNA integrity number (RIN) is an integrity criterion that 

takes into account the entire electrophoretic trace. RIN values can range from 1-10, with 1 

indicating degraded RNA and 10 representing intact RNA.151  

  Gel electrophoresis is often used as a separation technique prior to mass spectrometry 

analysis: protein mixtures are separated by gel electrophoresis and proteins of interest are extracted 

from the gel bands.144-145 However, many workflows use liquid chromatography to the exclusion 

of gel electrophoresis.152  

Polymerase Chain Reaction 

Polymerase chain reaction (PCR) is used to amplify DNA.153-154 PCR uses DNA primers 

which are short single strands of DNA (18-28 nucleotides) whose sequence matches a DNA 

template region. PCR uses cycles of heating and cooling and a heat-stable DNA polymerase for 

DNA replication (Figure 1.8). The DNA is heated to 94-98 °C, which causes the DNA strands to 

separate. This step is called denaturation. The temperature is cooled to 50-65 °C to enable the 

primers to anneal to the template DNA. After annealing, the temperature is raised to 72-80 °C and 

a new strand of DNA is created using free nucleotides and DNA polymerase enzymes. The 

procedure is repeated until the desired quantity of DNA is obtained.153 The final products can be 

accessed by gel electrophoresis. By comparing with a DNA ladder, the size of the PCR products 

can be determined. 
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Figure 1.8 Schematic of PCR  

Real-time PCR, also is known as quantitative PCR (qPCR), is a technique based on PCR 

in which the amplification of targeted DNA is monitored during the process. Therefore, qPCR can 

be used to quantify DNA as well as RNA. However, RNA quantification requires reverse 

transcription to synthesize DNA from an mRNA template prior to quantification. The synthetic 

DNA is called complementary DNA (cDNA)155 and can be amplified and quantified as DNA. The 

qPCR process uses thermal cycling and fluorescent labeling for quantification.156-159 The free 

nucleotides do not fluoresce; fluorescence obtains on attachment to the DNA strand (Figure 1.9).160 

A qPCR experiment is displayed as plot of fluorescence signal as a function of amplification cycles. 

A cycle threshold (Ct) is the cycle number when fluorescence is detected, and a large Ct indicates 

a lower mRNA quantity for given number of cycles. In a qPCR experiment, reference genes are 

usually amplified and quantified with genes from the sample and the Ct number is normalized to 

the reference genes.  
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Figure 1.9 Schematic of qPCR 

Sampling pure populations of cells is important for PCR analysis, because a few unwanted 

cells can produce interfering DNA after amplification.161 For genomic analysis, PCR is usually 

used for amplification. For RNA transcriptomic comparison, gene expression analysis (mRNA 

quantification) requires separation of cell populations from healthy and diseased tissue. The 

quantity of mRNA can be compared and putative mRNA biomarkers can be identified.162  

The quantity and integrity of RNA play a critical role in the accuracy and reproducibility 

of high throughput RNA analysis.163-171 Manual microdissection and LCM have been used to 

sample tissue material for genomic analysis, but LCM has in general better precision and 

effectiveness. Rapid sampling of LCM increases the reproducibility due to variability of gene 

expression in small samples.67 Protocols for qPCR from LCM samples have been reported75 and 

high quality RNA has been obtained from LCM down to the single cell level.172-173  

Genomic Sequencing 

Genomic sequencing is a process of determining the order of nucleotides in DNA or 

RNA.174-175 There are two widely used sequencing methods: Sanger sequencing and next 

generation sequencing (NGS).176 Sanger sequencing is a chain termination method.176  In a typical 
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Sanger sequencing experiment (Figure 1.10), double stranded DNA to be sequenced is heated to 

separate it into single stranded DNA. A primer is annealed to the DNA region to be sequence. and 

DNA polymerase and modified chain terminating dideoxynucleotides (ddNTPs) are added. The 

four ddNTP (ddTTP, ddATP, ddGTP, ddCTP) lack hydroxyl groups, thus no further nucleotides 

can be added after them. In Fig. 10, blue indicates ddTTP; green indicates ddATP; yellow indicates 

ddGTP; and red indicates ddCTP. In each reaction, the dNTP is attached to the DNA by the 

polymerase and terminated when a ddNTP attaches. The DNA fragments are separated according 

to their lengths and the sequence is read from the fluorescence signal. Fluorescent ddNTP has also 

been used. In this case, each type of ddNTP has a different fluorescence tag; thus, only one reaction 

is needed. 

 

Figure 1.10 Schematic of Sanger sequencing 

NGS platforms perform massively parallel sequencing, during which millions of DNA 

fragments are sequenced simultaneously.177-178 Although there are many different NGS platforms, 

they all share some similar attributes (Figure 1.11).179-180 The first step of NGS is library 
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preparation, where double stranded DNA is fragmented by an enzyme or sonication. Short, double 

stranded DNA adaptors are ligated to these DNA fragments. The second step is amplification, 

where the ligated DNA fragments are embedded on a micro-bead (emulsion PCR) or glass slide 

(bridge PCR), and the DNA fragments amplified by a polymerase-mediated reaction. The third 

step is sequencing, which varies for different platforms.181 Accordingly, each NGS platform has 

specific biases and limitations and it is necessary to choose a platform appropriate for a specific 

applications.182 

 

Figure 1.11 Schematic of NGS 

Compared to Sanger sequencing, NGS is simpler and faster.175, 179  NGS does not require 

knowledge of the DNA sequence. However, NGS has a shorter read length compared to Sanger 

sequencing, which results in higher average error rate.177, 183 Even so, the combination of LCM 

and NGS can be used to determine the entire transcriptomes of specific tissues. For example, a 

protocol has been developed for transcriptomic profiling of human skin biopsies using LCM and 

NGS184 and LCM was coupled with NGS for transcriptional profiles of brain tissue to study 

Alzheimer’s disease.185  
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1.3. OBJECTIVE 

The overall goal of this research was to develop an IR laser-based sampling technique for 

biomolecule analysis that is compatible with multiple analysis methods. The specific components 

of the project were to use infrared laser ablation sampling with 1) LC-MS/MS and MALDI MSI; 

2) enzyme sampling; 3) DNA sequencing and PCR; and 4) RNA and qPCR. Details of the IR laser 

ablation system and analysis instrumentation are described in Chapter 2. The mass spectrometry 

study is described in Chapter 1, the enzyme in Chapter 4, the DNA study in Chapter 5, and the 

RNA study in Chapter 6.  
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CHAPTER 2 INSTRUMENTATION 

In the research described in this dissertation, IR laser ablation was used to transfer ROI 

from tissue sections. The wavelength was set at 2.94 μm to overlap with the OH stretch 

absorption.186 The laser was operated in a raster mode and ROI is converted to small particles.187-

188 The removal of material as particulate appears to protect fragile biomolecules from 

fragmentation allowing the capture of intact biomolecules.41 

MALDI MSI was used for ROI selection. MALDI MSI allows imaging of tissue samples 

with an upper mass range limit of tens of thousands of Dalton123 with applications for analysis of 

analytes including drugs, metabolites, lipids and proteins.36, 124-126 HPLC-MS/MS was employed 

for proteomics analysis, providing protein identification and quantification high accuracy and 

reproducibility.189-191 For genomic analysis, Sanger sequencing was used because it is inexpensive 

and has higher average error rate than next generation sequencing.177, 183 Gel electrophoresis has  

been used to access the integrity of DNA sampled using laser ablation.192-193 The integrity of RNA 

obtained from manual microdissection or LCM can also be assessed using gel electrophoresis prior 

to further analysis.194-199 In the work described in this chapter, microfluidic chip based 

electrophoresis was used to assess RNA integrity. Multiple regions from the electrophoretic trace 

were evaluated to determine an RNA integrity number (RIN). RIN values can range from 1-10, 

with 1 indicating highly degraded RNA and 10 representing fully intact RNA.151 Quantitative PCR 

(qPCR) was used for mRNA quantification because qPCR is fast, sensitive, specific and easy to 

perform compared to other RNA quantification methods, such as northern blotting or in situ 

hybridization.200  
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This chapter contains a discussion of instruments used in this research. A detailed 

explanation of IR laser ablation is presented. System parameters for ablation and capture are 

provided. 

2.1. INFRARED OPTICAL PARAMETRIC OSCILLATOR LASER  

A pulsed infrared optical parametric oscillator (OPO) was used in these studies as the 

pulsed light source for laser ablation. An OPO contains non-linear optical elements that shifts the 

photon energy of the input laser pulse.201 A high intensity laser beam at a certain frequency is 

directed into a non-linear optical crystal in an optical cavity and split into two beams which are 

collinear with input beam. The sum of the photon energies from the two new generated beams is 

equal to the input beam energy. The wavelength of signal can be tuned by changing the temperature 

of the crystal, by applying an electrical field, or by changing the angle between crystals and the 

input beam (angle tuning). In this work, angle tuning was used. 

In this research, an OPO from OPOTEK (Model 2731, Carlsbad, CA) was used. The 

wavelength of the pump laser used in this system is a 1,064 nm from a Nd:YAG laser. The non-

linear crystal used in this system is potassium titanyl phosphate (KTP) and the laser wavelength 

can be tuned from 2.7 to 3.1 µm by changing the crystal angle within the OPO cavity. The 

maximum laser repetition rate was 20 Hz with 7 ns pulse temporal width. The beam diameter is 3 

mm and the beam divergence is 10 (H) x 2 (V) mrad. The maximum laser pulse energy is 2 mJ 

without any attenuation. Laser energy attenuation was performed either with the laser software or 

an external optical element. The laser energy was measured using an energy meter (Model Gentec, 

Markham, Ontario, Canada).  
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For all the experiments, the laser wavelength was set to 2.94 µm to overlap the OH stretch 

absorption of water.202 Proteins, which have OH and NH groups can also absorb at this 

wavelength.202 Absorption at these wavelengths can produce ablation of proteins even in nominally 

dry samples.203   

2.2. IR LASER ABLATION AND TRANSFER 

Transmission geometry, where the laser passes through the microscope slide and impinges 

on the tissue from underneath, was used in all the experiments in this research. Figure 2.1 shows 

a schematic of the laser ablation and transfer configuration and Figure 2.2 shows the photograph 

of the system. Samples for ablation were deposited or mounted on microscope slides that were 

attached to a two-axis translation stage (LTA-HS, Newport, Irvine, CA) with the samples facing 

downward. The laser was focused with a 50-mm focal length lens and directed through the 

microscope slide at a 45° angle. Visualization of samples was achieved with a video camera 

(DCC1645C, Thorlabs, Newton, NJ) mounted above the translation stages (Figure 2.1a). Samples 

were ablated into a 300 µl microcentrifuge tube containing 200 µl capture solution. Various 

capture solutions were used for the different analytes. The distance between the surface of the 

capture solution and the microscope slide was approximately 5 mm (Figure 2.1b). If the distance 

was less than 5 mm, the laser tended to ablate the capture solution and contaminate the slide. Figure 

2.1c shows a tissue section above a capture tube that was irradiated by a single laser shot.  

Before ablation, the laser was aligned with the center of the capture tube. The laser was 

stationary during laser ablation and the microscope slide was translated in a linear serpentine raster 

pattern with a 100 µm line spacing. The speed of the stage was 1 mm/s. 
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Figure 2.1 Schematic of the laser ablation and transfer system: a) overview; b) detail of capture 

tube; c) tissue section after a single shot viewed from above the microcentrifuge tube. 

 

Figure 2.2 Photograph of laser ablation (a) and capture system (b). 
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2.3. ABLATION CONTROL SOFTWARE 

The elements of the ablation system were controlled and monitored using LabVIEW 

software (National Instruments, Austin, Texas, U.S.) The virtual instrument (VI) captured an 

image of the sample on the stage and selection of arbitrary regions for ablation. The VI controlled 

the laser on/off and the translation stages. 

A sample screenshot of the laser ablation control VI is shown in Figure 2.3. The four 

windows control the laser, translation stage, camera, and system calibration and ROI processing. 

The window at bottom left is the live camera and the window at bottom right is an image captured 

with the camera. There are three buttons in the laser control window for laser on/off, single shot, 

and capture ROI. The laser repetition rate can be adjusted in the laser control window. In the stage 

control window, the location of the tissue section with respect to the fixed laser and camera can be 

changed. In the camera control window, the resolution of the camera, frame rate of the video 

camera and exposure of the video camera can be adjusted. The top panel is used to calibrate the 

system and ROI processing. The system requires image registration prior to laser ablation. A single 

shot is made on the sample surface. The length and width of the ablated spot, as well as the location 

of the ablated spot (in pixels) are input into the VI for calibration. The speed of the translation 

stage can be varied between 100 µm/s and 5 mm/s. In the work described below a speed of 1 mm/s 

was used. The divider is used to determine the spacing between the raster lines. For example, if 

the single shot was 200 × 300 µm and 2 is used as the divider, spacing between the raster lines is 

150 µm. In capture mode, the translation stage is rastered and the laser fires when it is within the 

boundary of the selected ROI. The precision determines the laser turn-on point. For example, if 

80% precision is used, the laser is turned on when at least 80% of the laser spot is within the ROI.  
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Figure 2.3 Screenshot of laser ablation control software 

2.4. LASER ABLATION WORKFLOW 

An IR laser ablation experiment can be accomplished using the following steps. The first 

step is sample pretreatment. Tissue samples are mounted on a microscope slide using a cryostat. 

Test samples in solution are deposited on the microscope slide using a pipette. Prior to laser 

ablation, the tissue or dried droplet samples are vacuum dried for 1-10 minutes. A 300 µl 

microcentrifuge tube with capture solution is placed in a holder and the microscope slide with 

sample is installed on the translation stage. The tissue section is then moved into the view of the 

camera and an image is acquired. The ROI is selected using the drawing tool (Figure 2.3) and ROI 

processing can be used to determine the size of the ROI and the time required for ablation sampling. 

The ablation process is then initiated and after the ROI is ablated, the microcentrifuge tube is 

removed for further processing 
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2.5 MALDI TOF/TOF MS 

A Bruker Ultraflextreme MALDI TOF/TOF mass spectrometer was used in this work for 

protein identification (Chapter 1 and Chapter 4). This instrument equipped with a frequency tripled 

Nd:YAG 355 nm solid-state laser with a homogenized modulated beam (Smartbeam II) laser 

operating at 1-1000 Hz repetition rate. The laser spot size can be adjusted from 10-100 µm. The 

m/z range is up to 100,000 m/z. This Bruker Ultraflextreme MALDI TOF/TOF system was used 

for MALDI MSI (Chapter 1).  

2.6 UPLC-HDMSE   

A hybrid ion mobility quadrupole time-of-flight hybrid mass spectrometer (SYNAPT G2-

S HDMSE, Waters, Milford, MA) equipped with a nanoAcuity ultra-performance liquid 

chromatography (UPLC) system was used for protein identification and quantification (Chapter 

1). The instrument uses travelling wave ion mobility (IM) for gas-phase size-to-charge 

separation.204-205 The SYNAPT G2-S can acquire signal in data dependent acquisition (DDA) or 

data independent acquisition (DIA) modes. With DDA, the most abundant precursor ions are 

selected and fragmented.206 With DIA, all ions within a m/z range are fragmented 

simultaneously.207 Combined with UPLC, the SYNAPT G2-S can differentiate samples by 

retention time, size, and m/z. 

2.7 SANGER SEQUENCING 

The integrity of DNA templates was assessed by Sanger sequencing. Control and ablated 

DNA samples were processed using a sequencing kit (BigDye v3.1, Applied Biosystems, Foster 

City, CA), and reads were generated on an ABI 3130xl Genetic Analyzer fitted with 50-cm 

capillary arrays and a separation matrix POP-7 polymer. The ABI 3130xl Genetic Analyzer uses 
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capillary electrophoresis to separate DNA fragments which are generated from the first step of the 

Sanger sequencing. The system uses laser induced fluorescence detection. 

Sequence data were analyzed with Sequencing Analysis Software v5.3 (Applied 

Biosystems) and aligned against a reference sequence. Chromatograms were viewed using 

Geneious software.208 The quality of DNA was evaluated with regard to the base call quality value 

(QV) score and continuous read length (CRL) of the chromatograms.209-210
 The QV is defined by  

                  QV = −10 × log10 𝑃𝑒  (2-1)  

where Pe is the probability that the base call is an error.211 A QV equal to or greater than 20 (QV20+) 

corresponds to a 1% probability of incorrect nucleotide identification and indicates a high quality 

base call. The CRL represents the longest uninterrupted stretch of bases with QV higher than a 

specified limit (QV 20). 

2.8 BIOANALYZER 

RNA concentration and integrity were assessed using an Agilent Bioanalyzer 2100 

(Agilent, Santa Clara, CA) in Chapter 6 with an RNA 6000 Pico Kit (Agilent). This system uses 

microfluidic chip-based electrophoresis to separate RNA or DNA samples by molecular weight 

and uses laser induced fluorescence detection. The bioanalyzer is used to quantify RNA or DNA 

with respect to a standard RNA/DNA ladder run concurrently on the chip. In each assay (Figure 

2.4), a typical trace displays the fluorescence intensity of the eluting components, with the lower 

marker eluting first (~22 s), followed by smaller RNA fragments collectively labeled as the 5S 

region (~24-28 s) and finally the peaks for the 18S (~40 s) and 28S subunits (~48 s).  The software 

assesses features of the regions the electrophoretic trace to determine an RNA integrity number 
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(RIN) which can range from 1-10, with 1 indicating highly degraded RNA and 10 representing 

fully intact RNA.151 

The commercial RNA 6000 Pico Kit is designed for low concentration RNA samples and 

has a quantitative range from 50 to 5000 pg/µL, detection limit of 200 pg/µL, and reproducibility 

of 20%. This kit is sensitive to common contaminants, such as salts, free nucleotides, solvents, 

detergents, DNA, or proteins, necessitating care in its use. 

 

Figure 2.4 Sample electropherogram detailing the regions that are indicative of RNA quality 

2.9 PCR 

DNA was PCR-amplified with a thermal cycler (iCycler, BioRad, Hercules, CA) in 0.  For 

qPCR, the cDNA generated using a reverse transferase reaction from the captured RNA was 

quantified by qPCR with a real-time PCR system (QuantStudio 6 Flex, Applied Biosystems) 
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(Chapter 6). The instrument collects fluorescence data following each PCR extension step. This 

instrument also performs a melt curve analysis to assess the qPCR final product. A single 

absorption peak indicates a pure final product whereas multiple peaks indicate multiple final 

products for a specific primer. 

2.10 QUBIT 

DNA concentration was determined using fluorometric quantitation (Qubit 2.0, Thermo 

Fisher, Waltham, MA). The Qubit is a benchtop fluorometer for DNA, RNA, and protein 

quantification. The Qubit requires 1 µl of sample and takes 2 minutes for DNA and RNA 

quantification and 15 minutes for protein quantification. A Qubit dsDNA HS Assay Kit (Thermo 

Fisher) was used which is selective for double stranded DNA and accurate for initial sample 

concentrations from 10 pg/µl to 100 ng/µl. This assay is also tolerant of common contaminants, 

such as salts, free nucleotides, solvents, detergents, or proteins. 

2.11 FLUORESCENCE READER 

Enzyme activity, described in CHAPTER 4, was measured using a microplate reader (1420 

Plate Reader, GMI, Perkin Elmer Wallac, Ramsey, MN) which can measure fluorescence, 

luminescence, and absorbance. Different microplates between 1-835 wells can be scanned. Up to 

10 samples can be scanned with 1 minute.  

2.12 TISSUE SAMPLES PREPARATION 

Rat tissue was obtained from the LSU School of Veterinary Medicine Division of 

Laboratory Animal Medicine in accordance with the requirements of the LSU Institutional Animal 

Care and Use Committee or purchased from Pel-Freez Biologicals (Rogers, AR). Rats were 
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exposed to carbon dioxide (5 psi) and brain or kidney were removed intact and snap-frozen in 

liquid nitrogen within 30 minutes. The tissue was stored at -80°C prior to sectioning.  

Frozen tissue samples were sectioned at -25°C using a cryostat (CM 1850, Leica 

Microsystems, Wetzlar, Germany). Optimal cutting temperature solution (OCT, Sakura Finetek, 

Torrance, CA) was used to fix one side of the sample to the cryostat support, avoiding contact of 

the OCT solution with the exposed side of the tissue. For laser ablation, sections were cut at 50 

µm thickness and mounted on plain microscope glass slides. For MALDI MSI experiments, frozen 

tissue samples were sectioned at a thickness of 10 µm and thaw-mounted on ITO coated 

microscope slides (University Wafer, South Boston, MA). 

2.13 CHEMICAL AND MATERIALS 

Sequencing grade modified trypsin was purchased from Promega (Madison, WI). Reagents 

DL-dithiothreitol (DDT, 98%), iodoacetamide (IAA, BioUltra, 99%), α-cyano-4-

hydroxycinnamic acid (CHCA), and ammonium bicarbonate (ABC, BioUltra, 99.5%) were 

obtained from Sigma-Aldrich (St Louis, MO). Trifluoroacetic acid (99.5%, LC-MS grade) and 

acetonitrile (99.9%, LC-MS grade) were obtained from Thermo Fisher Scientific. Bovine serum 

albumin (BSA) and glass microscope slides (25 × 75mm) were obtained from VWR (Radnor, PA). 

BSA from VWR was used as substrate for trypsin digestion. Ultrapure water (18 MΩ) was 

produced in house with a Barnstead nanopure diamond lab water system (Thermo Fisher 

Scientific). The ABC buffer was prepared at a concentration of 10 mM and corrected to a pH of 

7.4. Tissue-Tek OCT Compound (Catalog 4583) was purchased from Skura Finetek.  

A Bradford assay kit (Coomassie Plus, Thermo Fisher Scientific), which included 

Coomassie dye and BSA protein standard, was used to build calibration curves for protein 
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quantification. A fluorescent protease assay kit (Pierce, Thermo Fisher Scientific) included L-

(tosylamido-2-pheyl) ethyl chloromethyl ketone (TPCK) treated trypsin, fluorescein 

isothiocynante (FTIC) labelled casein, and tris buffered saline (TBS; 25 mM tris; pH 7.2, 150 mM 

NaCl). An Amplex red catalase assay kit (Life Technologies, Grand Island, NY) included Amplex 

red reagent, dimethylsulfoxide (DMSO), horseradish peroxidase, hydrogen peroxide, reaction 

buffer, and catalase. Sinapic acid (SA, Sigma-Aldrich, St. Louis, MO) matrix was prepared at a 

concentration of 10 mg/ml in 70:30 methanol with 0.1% TFA. TVLE buffer (10 mM Tris, 0.05 

mM EDTA) was made using 1 M Tris (pH 9) from Amresco (Solon, OH) and 500 mM EDTA and 

nuclease-free water from Ambion (ThermoFisher, Waltham, MA). Reagent suppliers for genomics 

analysis were listed in Table 2.1.  
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Table 2.1 Sources for laboratory supplies 

 

  

Company Location Item 
Catalog 
Number 

ThermoFisher 
Scientific  

Waltham, 
MA 

Human Kidney Total RNA AM7976 

RNA Storage Solution (stabilizes purified RNA) AM7000 

Water (nuclease-free) 10977023 

SuperScript III reverse transcriptase 18080085 

RNaseOUT recombinant ribonuclease inhibitor 10777019 

Random primers 48190011 

Oligo (dt) primers 12577011 

dNTP mix 18427013  

qPCR primers 10336022 

SYBR Select Master Mix 4472908 

MicroAmp 96-well plates N801-0560 

MicroAmp Optical adhesive film 4360954 

Plasmid pGEM-32Zf(+) Control DNA template P2411 

Amplitaq Gold PCR reagents 4398881 

BigDye sequencing reagent  

Corning Corning, NY 
Axygen Maxymum Recovery 0.2-ml tubes PCR-02-L-C 

Axygen Maxymum Recovery 0.5-ml tubes PCR-05-L-C 

Eppendorf 
Hauppauge, 
NY 

DNA LoBind 1.5-ml tubes 022431021 

DNA LoBind 2.0-ml tubes 022431048 

Zymo Research  Irvine, CA 

Direct-zol RNA MicroPrep kit with TRI-Reagent R2060 

ZR BashingBead Lysis Tubes S6003-50 

DNA/RNA Shield (sample preservation solution)  R1100-50 

Agilent 
Technologies  

Santa Clara, 
CA 

RNA 6000 Pico kit 5067-1513 

Sakura Finetek 
Torrance, 
CA 

Tissue-Tek O.C.T. Compound 4583 

Promega 
Madison, 
WI 

Plasmid pGEM-3Zf(+) control DNA template P2411 
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CHAPTER 3 MALDI DIRECTED LASER ABLATION TISSUE 

MICROSAMPLING WITH DIA MASS SPECTROMETRY 

A multi-modal workflow for mass spectrometry imaging was developed that combines 

MALDI imaging with protein identification and quantification by liquid chromatography tandem 

mass spectrometry (LC-MS/MS). Thin tissue sections were analyzed by MALDI imaging and the 

regions of interest (ROI) were identified using a specially-designed selections algorithm. A mid-

infrared laser at 3 µm wavelength was used to remove the ROI from the tissue section after MALDI 

imaging. The captured material was processed using a single-pot solid-phase-enhanced sample 

preparation (SP3) method and analyzed by LC-MS/MS using DIA-MS to identify and quantify 

proteins; more than 600 proteins were identified. Using the post-translational modifications chain, 

isoform, loss of the initial methionine, and acetylation, fourteen MALDI MSI peaks were 

identified. Comparison of the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of 

the identified proteins was achieved through an evolutionary relationships classification system. 

3.1. INTRODUCTION 

Matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI) is a 

powerful tool to visualize the spatial distribution of a wide range of molecules in tissue sections.125, 

212-216 MALDI MSI has been used as a complementary tool to histology,36 and applications include 

biomarker discovery,217 disease classification, tumor heterogeneity,215, 218 and monitoring of 

distribution of drug and drug metabolites in tissue to assess different stages of the drug discovery 

and development.219 One of the major challenges of MALDI-MSI is in identifying compounds 

because many compounds tissue lead to ion suppression that can obscure signal from low abundant 

proteins.38, 216  
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Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) is able to 

provide identification and quantification of a large number of biomolecules from tissue extracts 

but it can be difficult to preserve the localization information. Coupling MALDI MSI and LC-

MS/MS in a single workflow has the potential to broaden the capabilities of mass spectrometry 

imaging.36, 213, 215, 217, 220 In this workflow, MALDI MSI can be used to locate ROI and LC-MS/MS 

can identify and quantify biomolecules.221  

Technologies that are capable of extracting discrete amounts of material from a tissue 

section are required to bridge MALDI MSI and LC-MS. As described in Chapter 1, liquid 

extraction is one of the techniques that can sample proteins from tissue section ROI.50, 222 Localized 

sampling also can be achieved by manual microdissection, where a small portion of the tissue 

section is removed using pipette or needles under microscope.54, 56 Manual microdissection can be 

performed on a tissue section which is mounted on a microscope slide covered by a parafilm layer 

(parafilm assisted microdissection).55 An alternative to manual microdissection is laser capture 

microdissection (LCM), which employs a focused UV laser to cut the boundary of the ROI from 

a tissue section.67, 223-224 Laser ablation and capture is another laser assisted technique that can be 

used to collect small regions from tissue section, where ROI are irradiated using a focused pulsed 

laser.100, 225  

In the work described below, a workflow was developed using MALDI MSI coupled with 

laser ablation sampling with UPLC-HDMSE MS/MS for protein identification and quantification. 

Here, image contours generated from MALDI MSI were used to define ROI. Following that, laser 

ablation was used to ablate and capture ROI from the same tissue section after MALDI MSI. 

Bottom up protein identification and label-free quantification were achieved using data 
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independent and data dependent acquisition tandem mass spectrometry. The list of identified 

proteins was used for identification of MALDI MSI peaks.  

3.2. EXPERIMENTAL 

Prior to MALDI MSI, tissue sections were vacuum dried for 10 min and washed with 70% 

ethanol for 45 s and 95% ethanol for 45 s to remove lipids and salts. After washing, the tissue 

sections were vacuum dried for another 10 min before matrix application. Sinapic acid was sprayed 

on tissue section using in-house built nebulizer that has been described previously.226  

The MALDI images of selected m/z values were normalized to the total ion current (TIC) 

and created using FlexImaging software. Firstly, the MALDI images were smoothed with 

Gaussian blur using Adobe Photoshop cs6 and contour filters were selected according to mean (µ) 

and standard deviation (σ) of the image histogram. Protein quantification using MALDI MSI was 

achieved by ImageJ (National Institutes of Health, Bethesda, Maryland, U.S.). 

Single-pot solid-phase-enhanced sample preparation (SP3) was used for tissue digestion . 

227 Magnetic carboxylate modified particles (SpeedBeads, GE Life Sciences, Chicago, IL) and 

carboxylate-modified magnetic particles (Sera-Mag, GE Life Sciences) were mixed in a ratio of 

1:1 (v/v), washed with water three times, and reconstituted in water at a concentration of 20 µg/µl. 

Protein disulfide bond reduction was achieved by adding DL-dithiothreitiol (DTT, Sigma-Aldrich) 

to each sample tube to a final concentration of 10 mM followed by incubation at 100 °C for 45 

min and cooling at room temperature for 15 min. Alkylation was performed by adding 

iodoacetamide (IAA, Sigma-Aldrich)  to each sample to a final concentration of 20 mM followed 

by incubation in the dark for 30 min.  After reduction and alkylation, 2 µl of the bead solution was 

added to each sample. ACN was added immediately after to a final concentration of 60% (v/v). 



38 

 

Afterwards, the samples were incubated at room temperature for 20 min, and then incubated on a 

magnetic rack for 2-5 min until the beads settled at the magnets. Protein clean-up was achieved by 

adding 70% ethanol, incubating for 5 min off the magnetic rack, and then incubating on the 

magnetic rack for another 2 min. This procedure was repeated twice with 70% ethanol and once 

with ACN and samples were finally dried at 37 °C. Samples were re-suspended in 10 µl ammonium 

bicarbonate buffer and sonicated for 5 min prior to trypsin digestion.  

Trypsin (Promega, Madison, WI) digestion was performed with an enzyme to protein ratio 

of 1:20 (v/v). Samples were incubated at 37 °C overnight and shaken at 300 rpm with a thermal 

mixer. After that, the same clean-up steps performed earlier for the proteins were repeated before 

recovering the peptides. Peptide recovery was achieved by adding 10 µl 0.1% formic acid followed 

by sonication for 5 min. Afterwards, the samples were incubated on the magnetic rack for 2-5 

minutes and the supernatant was collected, avoiding aspiration of any beads. Tryptic peptides 

obtained from SP3 were vacuum dried and stored at -20 °C prior to analysis.  

Rat brain digests were analyzed with the LC-MS/MS. ProteinLynx Global Server (PLGS 

Ver. 2.5.2; Waters) was used for peptide identification with the following parameters: 

UniprotKB/Swiss-Prot Rattus norvegicus proteome database; maximum number of missed 

cleavages: 2; precursor mass tolerance: 5 ppm; fragment mass tolerance: 5 ppm; Minimum 

fragment ion matches per peptide: 3; fixed modification: carbamidomethyl C; variable 

modification: oxidation M; false positive rate: 5. Identified peptides with at least 5 amino acid 

length were used for blast analysis using an in-house software228 and UniprotKB/Swiss-Prot Rattus 

norvegicus proteome database. The database was modified using PIT in order to include single 

protein entries with the following post translational modification: chain, initiator methionine, 
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signal peptide and transit peptide. Proteins with at least two matched peptides were considered as 

identified proteins. 

Functional annotation was performed using Database for Annotation, Visualization and 

Integrated Discovery (DAVID) 6.8 bioinformatics resource.229-230 The Kyoto Encyclopedia of 

Genes and Genomes (KEGG) database was used for pathway analysis. KEGG pathways with at 

least 5 proteins and p-value < 0.05 were considered. Proteins in the same pathway were output into 

the Search Tool for Recurring Instances of Neighboring Genes (STRING) version 10.5 to generate 

protein-protein interaction networks.231 The interaction includes physical and functional 

associations; only the interactions among identified proteins were considered. The minimum 

required interaction score was set at 0.4 (medium confidence). Label-free protein quantification of 

UPLC-HDMSE results was performed by summing of the signal from the three most abundant 

unique peptides.  

3.3. RESULTS AND DISCUSSION 

Three tissue sections from the same rat were used to obtain MALDI images. Two of the 

sections were consecutive and mounted on the same ITO slide and imaged sequentially. The third 

tissue section was not consecutive and was mounted on a separate ITO slide. Over 30 MALDI 

MSI peaks in the range from 3,000 m/z to 30,000 m/z were observed in each rat tissue section mass 

spectrum.  

Figure 3.1 shows 14 representative MALDI images. The images can be sorted into three 

general types: homogeneous signal throughout, signal most intense in the corpus callosum and 

hippocampus, and signal least intense in the corpus callosum and hippocampus. For example, 

homogeneous images (blue) were generated from 8,569, 14,041 and 17,139 m/z. Images at 14,122, 
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14,132, 14,192, 14,211, 18,401, and 28,217 m/z (green) showed intense signal over the corpus 

callosum and hippocampus regions whereas images at 15,193, 15,845, 17,737, 21,912 and 22,092 

m/z (magenta) had relatively low signal over the corpus callosum and hippocampus regions. 

 

Figure 3.1 Representative MALDI image of rat brain tissue sections showing the distribution of 

signals of (a) 8569, (b) 14,041, (c) 14,122, (d) 14,132, (e) 14,192, (f) 14,211, (g) 15,193, (h) 

15,845, (i) 17,139, (j) 17,737, (k)18,401, (i) 21,912, (m) 22,902, and (n) 28,217 m/z. 

Figure 3.2 shows MALDI MSI ROI contours generated from the images in Fig. 1. The 

images were smoothed by Gaussian blur. Radius 10 was used, which equals a Gaussian blur kernel 

with 21 *21 pixels corresponding to 4.2 mm * 4.2 mm. This radius gave the best smoothing effect 

for MALDI images obtained in this experiment. Contour filters were drawn according to mean (µ) 

and standard deviation (σ). Three levels were drawn: µ-1.28σ (lower 80% quantile), µ (mean) and 

µ+1.28σ (upper 80% quantile). The homogeneous (blue) images at 8,569, 14,041 and 17,139 m/z 

have corresponding homogeneous contours that largely span the entire brain. The intense corpus 

callosum/hippocampus images (green) produced ROI centered on those regions, whereas the weak 
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signal corpus callosum/hippocampus images (magenta) produced ROI excluding those regions. 

The corpus callosum and hippocampus region ROI were used to guide laser ablation sampling. 

 

Figure 3.2 Contour maps obtained from MALDI MSI with color shade indicating the three levels: 

light shade is upper 80% quantile, mid-color intensity indicates mean, and dark indicates lower 

80% quantile. 

For all three tissue sections, the ROI were selected using the 14,122 m/z (Figure 3.2c and 

Figure 3.3a) image which corresponds to myelin basic protein isoform 4 (MBP, Uniprot: 

P02688).226, 232-233 The upper 80% quantile (light green) was used as a guide for ROI selection. Fig. 

3b shows an optical microscope image of a tissue section after laser ablation. Three contiguous 

areas were ablated and captured from each tissue section at a laser fluence of 20 kJ/m2. Two of 

those areas encompassed the corpus callosum and hippocampus region in a 7 mm2 total area and 

were collected in one tube as ROI 1. The third region covered a 4 mm2 mid-brain region of low 

signal and was collected in a separate tube as ROI 2. The ROI 1 and ROI 2 samples were digested 

using the SP3 method described above and analyzed using UPLC-HDMSE. 
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Figure 3.3 (a) Contour of MALDI MSI at 14,122 m/z; (b) bright-field microscope image of laser 

ablated rat brain tissue. location 1, corpus callosum (7 mm2); location 2, hypothalamus (4 mm2 

square). 

Figure 3.4 shows representative MS and MS/MS spectra from ROI 1. Product ions were 

correlated with their corresponding precursor ion with PLGS using the LC retention time and IM 

drift time. Fig. 3-4b shows a tandem MS spectrum that corresponds to the triply-charged precursor 

ion at 446 m/z (Fig.4a), [M+3H]3+. A series of immonium ions and consecutive singly/doubly 

charged y-series ions was observed from y5 to y11 corresponding to the peptide 

YLATASTMDHAR. This peptide is unique to the myelin basic protein family (all MBP isoforms).  
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Figure 3.4 Representative UPLC-HDMSE mass spectra from analysis of an ROI 1 tissue section. 

a) MS of the MBP unique peptide YLATASTMDHAR; b) MS/MS spectrum of the triply charged 

peptide. 



44 

 

Peptides and proteins identified in ROI 1 and ROI 2 in three replicate tissue sections are 

summarized in Table 3.1. An average of 398 proteins were identified in the 7 mm2 ROI 1 and an 

average of 268 proteins were identified in the 4 mm2 ROI 2. A total of 3024 peptides were 

identified, about 7% of which were found in all samples. A total of 636 proteins were identified, a 

third of which were found in all samples. Unique peptides and proteins were also identified in each 

sample. About 45% of the identified peptides and 31% of the identified proteins were found in 

only 1 of the 6 samples. some peptides and proteins were common to multiple sampling sections 

and positions. For example, hemoglobin, actins and tubulins were found in all regions and sections, 

most likely because they are highly expressed and relatively ubiquitous in tissue. The number of 

proteins identified is lower than that reported previously for infrared laser ablation and capture 

from brain tissue using five times more starting material as in this work.228  

Protein quantification can be achieved by UPLC-HDMSE and MALDI MSI. Laser ablation 

sampling and UPLC-HDMSE allows precise relative quantification 234 of MBP protein family (all 

MBP isoforms) in the selected region. MBP quantification using MALD MSI was achieved by 

summing the pixel intensity of the 14,122 m/z signal (MBP-4) within each ROI. The quantities of 

MBP in ROI 2 are 13 ± 4% in ROI 1 from UPLC-HDMSE. For UPLC-HDMSE, no identified 

peptides were unique to MBP-4 since four isoforms of MBP share around 80% identical sequence. 

Therefore, MBP quantification using UPLC-HDMSE was performed by summing the three most 

intense peaks that are unique to the MBP family instead of MBP-4. The quantities of MBP in ROI 

2 are 60 ± 5% of that found in in ROI 1 from UPLC-HDMSE.  
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Table 3.1 Summary of peptides and proteins identification in three tissue sections. 

Peptides 

Tissue ROI 1 ROI 2 ROI 1 and ROI 2 
ROI 1 
Only 

ROI 2 
Only 

Section a 720 668 339 381 329 

Section b 1312 637 412 900 225 

Section c 2021 1002 598 1423 404 

Tissue ROI 1 ROI 2 

Section a Only 176 668 

Section b Only 774 637 

Section c Only 1481 1002 

Common to three  
tissue sections 

1481 1002 

Proteins 

Tissue ROI 1 ROI 2 ROI 1 and ROI 2 
ROI 1 
Only 

ROI 2 
Only 

Section a 277 232 194 83 38 

Section b 384 256 230 154 26 

Section c 533 315 283 250 32 

Tissue sections ROI 1 ROI 2 

Section a Only 40 50 

Section b Only 147 74 

Section c Only 296 133 

Common to three  
tissue sections 

237 182 

 

Molecular weights (MW) from proteins identified with UPLC-HDMSE were used for 

MALDI MSI peak identification. The MALDI MSI m/z peaks were compared against the list of 

protein molecular weights and a peak was considered to be a potential hit if it was within 500 ppm 

of a protein mass. Only singly charged protonated molecules were considered in this search. Seven 

MALDI MSI peaks have been identified. With consideration of PTMs, such as chain, isoforms, 

loss of the initial methionine and acylation, 14 MALDI MSI peaks were identified in total. 

Potential assignments of MALDI MSI peaks are summarized in the Table 3.2. 
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Table 3.2 Summary of all MALDI peaks assigned based on LC-MS/MS analysis of the laser 

ablated extracts including MW of the identified proteins, MW difference (ΔM) between MALDI 

peaks and MW of identified proteins, Uniprot accession number and protein names 

Fig.1 
MALDI 

MSI 

MW 

(Da) 

ΔM 

(ppm) 

Accession  

No. (Uniprot) 
Protein ROI 1 ROI 2 

a 8569 8565 350 P62982 Ubiquitin-40S ribosomal protein S27a X  

a 8569 8565 350 Q63429 Polyubiquitin-C X  

a 8569 8565 350 P0CG51 Polyubiquitin-B X  

b 14,041 14,044 285 Q64598 Histone H2A type 1-F-Chain (2-130) X  

b 14,041 14,045 356 A9UMV8 Histone H2A.J X  

d 14,132 14,135 283 Q00729 Histone H2B type 1-A-Chain (2-127) b X X 

d 14132 14138 495 P0CC09 Histone H2A type 2-A b X  

e 14,192 14,194 211 Q00728 Histone H2A type 4 ab X  

c 14,122 14,121 0 P02688-4 Myelin basic protein isoform 4 ab X X 

f 14,211 14,211 70 P02688-4 Myelin basic protein isoform 4 X X 

i 17,139 17,136 117 P02688-3 Myelin basic protein isoform 3 ab X X 

k 18,401 18,398 109 P02688-2 Myelin basic protein isoform 2 X X 

k 18,401 18,401 54 P45592 Cofilin-1-Chain (2-166) X  

g 15,193 15,197 329 P01946 Hemoglobin subunit alpha-1/2-Chain (2-142) X X 

h 15,845 15,847 189 P02091 Hemoglobin subunit beta-1 a X X 

j 17,737 17,743 395 P10111 
Peptidyl-prolyl cis-trans isomerase A-Chain (2-

164) 

X  

l 21,912 21,914 137 Q99P82 Claudin-11 a X  

m 22,092 22,089 91 Q99P82 Claudin-11 b X X 

n 28,217 28,213 106 P68511 14-3-3 protein eta X X 

n 28,217 28,213 106 P61983 14-3-3 protein gamma ab X X 
aloss of initial methionine; bacetylation; 

In addition, five MALDI imaging peaks were identified by more than one protein. This 

may be due to isobaric species and low mass resolution, which was previously reported in MSI 

experiments.235 This situation has consequences with regard to the identification of MALDI MSI 

peaks as well as cross-correlation of quantitative data between imaging and LC-MS/MS. High 

resolution instruments may be able to separate isobaric species. 

Localized sampling of tissue proteins may provide additional information about the 

protein-protein interactions within specific pathways. To demonstrate this, a pathway analysis of 

the combined protein lists of the three tissue sections was performed using the DAVID 
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bioinformatics resource and STRING. MBP is associated with Alzheimer’s disease (AD).236-238 

Therefore a pathway analysis using this protein is a good illustration. Figure 3.5 shows the network 

of protein-protein interaction pathways in ROI 1 (a) and ROI 2 (b) related to AD (KEGG ID: 

05010). The full names of the proteins are listed in Table 3.3. Six of the proteins were only 

identified in ROI 1. The protein ndufs1 is deficient in patients with AD.239 Three proteins were 

identified in ROI 2. The protein Mapk1 is also implicated in AD.240 An additional pathway analysis 

was performed using a protein list obtained by merging the proteins identified in ROI 1 and ROI 

2; the resulting network plot is displayed in Figure 3.5c. This combined region plot is similar to 

what would be expected from an analysis of the entire rat brain section without regard to the 

different concentrations of proteins in the different parts of the brain.  

 

Figure 3.5 KEGG pathway of Alzheimer's disease using proteins identified in (a) ROI 1 and (b) 

ROI 2 (c) ROI 1 and ROI 2 
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Table 3.3 Full names of the proteins in Figure 3.5. 

Abbreviation Uniprot 

Accession 

Protein Name 

Atp5o Q06647 ATP synthase subunit O, mitochondrial 

Atp5a1 P15999 ATP synthase subunit alpha, mitochondrial 

Atp5b P10719 ATP synthase subunit beta, mitochondrial 

Atp5h P31399 ATP synthase subunit d, mitochondrial 

Cox2 P00406 Cytochrome c oxidase subunit 2 

Ndufs 1 Q66HF1 NADH-ubiquinone oxidoreductase 75 kDa subunit, mitochondrial 

Ndufs 9 Q5BK63 NADH dehydrogenase [ubiquinone] 1 alpha subcomplex subunit 9, 

mitochondrial 

Gapdh P04797 Glyceraldehyde-3-phosphate dehydrogenase 

Ppp3ca P63329 Serine/threonine-protein phosphatase 2B catalytic subunit alpha 

isoform 

Ppp3cb P20651 Serine/threonine-protein phosphatase 2B catalytic subunit beta 

isoform 

Sdha Q920L2 Succinate dehydrogenase [ubiquinone] flavoprotein subunit, 

mitochondrial 

Uqcrc 2 P32551 Cytochrome b-c1 complex subunit 2, mitochondrial 

Uqcrc 1 Q68FY0 Cytochrome b-c1 complex subunit 1, mitochondrial 

Cox4i1 P10888 Cytochrome c oxidase subunit 4 isoform 1, mitochondrial 

Mapk1 P63086 Mitogen-activated protein kinase 1 

Plcb1 P10687 1-phosphatidylinositol 4,5-bisphosphate phosphodiesterase beta-1 

3.4. SUMMARY 

MALDI imaging directed mid IR laser ablation was used for protein identification and 

quantification from rat brain tissue sections. Tissue sections were imaged using MALDI and ROI 

were located from Gaussian smoothing and contour tracing. The upper 80% quantile of the 

MALDI image from MBP-4 was used as the guide for ROI selection: A 7 mm2 area of the corpus 

callosum and hippocampus region and a 4 mm2 from mid-brain were ablated and transferred. For 

MALDI imaging quantification, the amount of MBP-4 in ROI2 was 87± 4% lower compared to 

that in ROI1. For LC-MS/MS quantification, the amount of MBP (all isoforms) in ROI2 was 34± 

5% lower compared to that in ROI1. More than 600 proteins were identified. Molecular weights 

of these proteins and selected post-translationally modified proteins were used to identify MALDI 
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MSI peaks. Chain, isoform, loss of the initial methionine, and acetylation PTMs were included, 

resulting in 14 MALDI MSI peaks identified out of 30 peaks. KEGG pathways of the identified 

proteins were identified to demonstrate localized protein-protein network interactions. MALDI 

MSI directed laser ablation coupled with LC-MS/MS may be used to further investigate protein-

protein networks by linking protein interactions to their localization in tissue. 
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CHAPTER 4 INFRARED LASER ABLATION AND CAPTURE OF 

ENZYMES WITH CONSERVED ACTIVITY* 

This chapter describes the use of IR laser ablation at 3 µm wavelength to extract enzymes 

from tissue section and quantitatively determine their activity. Experiments were conducted with 

trypsin, which was ablated, captured and then used to digest bovine serum albumin (BSA). BSA 

digests were evaluated using matrix-assisted laser desorption ionization (MALDI) mass 

spectrometry (MS) and sequence coverage of 59% was achieved. Quantification was performed 

using trypsin and catalase standards and rat brain tissue by fluorescence spectroscopy. Both 

enzymes were reproducibly transferred with an efficiency of 75±8% at laser fluences between 10 

and 30 kJ/m2. Trypsin retained 37±2% of its activity and catalase retained 50±7%. The activity of 

catalase from tissue was tested using three consecutive 50 µm thick rat brain sections. Two 4 mm2 

regions were ablated and captured from the cortex and cerebellum regions. The absolute catalase 

concentration in the two regions was consistent with previously published data, demonstrating 

transfer of intact enzymes from tissue. 

4.1. INTRODUCTION 

Enzyme histochemistry combines the measurement of enzyme activity with localization 

information and serves as a link between biochemistry and morphology.241 Enzyme histochemistry 

is used in diagnostic pathology and pathobiology, as well as in experimental pathology.242 The 

activity of an enzyme is regulated at different levels from mRNA to post translational 

                                                 
* Some portions of the work reported in this chapter previously appeared as Wang, K., Donnarumma, F., 

Baldone, M. D., & Murray, K. K. (2018). Infrared laser ablation and capture of enzymes with conserved activity. 

Analytica chimica acta.337 Reprinted by permission of Elservier. 
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modifications243-244 and from molecular interactions between the cytoplasm and organelles to other 

regulation mechanisms in the extracellular matrix.245 Accordingly, the full picture of enzyme 

activity cannot be determined simply by total protein or mRNA quantification.  

Imaging of fresh frozen tissue sections and biopsies using methods such as fluorescent probes, 

chromogenic probes, and in situ zymography30-31 allows measurement of enzyme activity with 

localization information. In the case of fluorescent or chromogenic agents, probes can be sprayed 

on the tissue section before measuring the localized signal.246-247 After enzyme reaction on the 

surface of the tissue section, the localized indicator is activated based on enzyme activity.246-248 

Similarly, in situ zymography is an electrophoretic technique that uses fluorescent or chromogenic 

reactions.249 There are two general zymography methods:30, 250 tissue sections can be mounted on 

a glass slide coated with a fluorescent substrate, or first mounted on a slide, then immersed in a 

solution containing fluorescent substrate. Unlike fluorescent or chromogenic probes that are able 

to detect various enzymes,246-247, 251-252 the substrates used for zymography are typically protein 

based,253-254 such as gelatin or collagen, which make in situ zymography well suited for 

proteases.255 Imaging based methods require special probes, the design of which can be 

challenging due to time consuming steps and high costs256 and their potential for non-specific 

binding.257   

 Extraction of enzymes from small regions of tissue sections allows the measurement of 

localized enzyme activity.258-259 Regions of interest containing enzymes can be isolated via manual 

microdissection followed by extraction and analysis. Extraction from microdissected tissue allows 

measurement of isolated cell populations in solution rather than on the tissue section surface. This 

enables more flexibility in adjustment of reaction conditions such as temperature and pH, which 
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can play an important role on reproducibility of enzyme assay.260 In addition, extraction of 

enzymes can facilitate absolute quantification of their activity, whereas imaging techniques are 

often limited to relative quantification.261-263 Although regions of interest (ROI) can be isolated by 

manual microdissection, where the material is removed under an optical microscope,259, 264 this 

technique is somewhat labor intensive and has limited reproducibility.265  

An alternative dissection technique is laser capture microdissection (LCM),67 which has been 

discussed in detail in Chapter 1. An alternative to LCM is laser ablation and capture, where the 

region of interest is removed with a pulsed infrared laser41, 266 The ejected material is collected and 

biomolecules can be extracted without the need of cell lysis or addition of detergents.41, 266-267 The 

main absorber of infrared laser radiation in tissue is water, which has an absorption maximum at 

2.94 µm.186 The optical penetration depth is approximately 1 µm at room temperature, but 

increases with temperature, facilitating greater material removal at higher pulse energies.268 

Another tissue absorber is protein, which has OH and NH stretch absorbers at 3 µm and CH stretch 

absorbers at 3.4 µm. Absorption at these wavelengths can produce ablation of proteins even in 

nominally dry samples.203 Absorption of pulsed nanosecond mid-IR laser light is sufficiently rapid 

to produce a volumetric phase change and explosive boiling of the irradiated volume.269-270 The 

recoil stress of the phase explosion leads to the ejection of particulates with size distributions that 

vary with laser energy and the mechanical strength of the tissue.269, 271 The removal of material as 

particulates appears to protect fragile biomolecules from fragmentation allowing the capture of 

intact peptides, proteins,41 and DNA 267 from tissue using a nanosecond laser. Near-IR and mid-

IR picosecond lasers can even more efficiently produce explosive boiling in tissue and were used 

to ablate and capture cells, virus and proteins with conserved function and activity.272-274  
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In the work described below, enzymes from thin films as well as from tissue sections were 

ablated and captured using a nanosecond mid-IR laser, and their activity quantitatively assessed. 

Trypsin and catalase enzyme standards were laser ablated using a 3 μm wavelength laser and the 

transfer efficiency was measured using Bradford assay whereas the activity of trypsin was 

qualitatively assessed by using it to digest bovine serum albumin (BSA) before analysis by 

MALDI mass spectrometry. Quantitative assessment of the activity of trypsin and catalase 

standards after laser ablation was measured using fluorescence assays and the activity of catalase 

ablated and captured from rat brain tissue sections was determined.  

4.2. EXPERIMENTAL 

Enzymes were reconstituted in TBS or fluorescence reaction buffers and BSA was dissolved 

in 10 mM ABC buffer (pH 7.4) at a concentration of 0.5 mg/ml. Aliquots of the enzyme solutions 

were deposited on a plain microscope slide (cleaned with ethanol) and dried for 2 min under 

vacuum before ablation.  

For the trypsin experiment, control trypsin and trypsin obtained from laser ablation was used 

to digest BSA. Four aliquots of 50 µl BSA at a concentration of 0.4 mg/mL were used as the 

substrate for trypsin digestion. Disulfide bond reduction was achieved by adding DTT to each tube 

to a final concentration of 10 mM, and samples were incubated at 80 °C for 45 min. Alkylation 

was performed by adding IAA to a final concentration of 20 mM with incubation in the dark for 

30 min. Laser ablated and captured trypsin was vacuum dried and re-suspended in 2 µL of ABC 

buffer, and compared to control samples of trypsin without laser ablation. Samples were incubated 

in a 37 °C shaker at 600 rpm overnight. Mass spectra of the tryptic peptides were acquired using 

the Bruker Ultraflexetreme mass spectrometer operated in reflectron mode. Each spectrum was 
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produced by summing 500 individual spectra obtained at 1000 Hz repetition rate in partial sample 

random walk mode. Raw data were processed with FlexAnalysis 3.3 (Bruker). A tryptic peptide 

peak list was generated with maximum two missed cleavages, cysteine carbamidomethylation, and 

methionine oxidation. A mass tolerance of 250 ppm was used. 

Enzyme and protein concentrations were measured with a Bradford colorimetric assay.275 

Calibration curves for enzyme concentration were obtained in triplicate using control aliquots of 

the target enzyme (Figure 4.1 and Figure 4.2). Calibration curves for the ablated proteins were 

obtained in triplicate using BSA standards from the Bradford colorimetric assay.  

 

Figure 4.1 Calibration curve for the trypsin transfer efficiency test 
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Figure 4.2 Calibration curve for the catalase transfer efficiency test 

Trypsin activity was measured using the fluorescent protease assay kit according to the 

manufacturer’s protocol. Briefly, trypsin at a range of concentrations up to 5 mg/L was mixed with 

100 µL of fluorescein isothiocyanate (FTIC) labelled casein (100 mg/L in TBS) and incubated at 

room temperature. Fluorescence was measured after 60 min incubation using a microplate reader 

at excitation and emission wavelengths of 435 and 538 nm, respectively, and expressed as relative 

fluorescence units (RFU; Figure 4.3 and Figure 4.4).  

 

Figure 4.3 Calibration curve for the trypsin activity test 
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Catalase activity analysis was performed using the Amplex Red assay kit following the 

manufacturer’s protocol. Briefly, calibration curves were generated using catalase at 

concentrations ranging from 0 to 1 unit/mL (U/mL), where 1 unit is defined as the amount of 

enzyme that will decompose 1.0 µmole of H2O2 per minute at pH 7.0 at 25°C. Samples and 

calibrants were incubated with 40 µM H2O2 for 30 min at room temperature in the dark and then 

mixed with 100 µM Amplex Red reagent at 37 °C. Fluorescence emission was measured after 

incubation for 30 min and 45 min using a microplate reader (Wallac 1420 Victor 2; PerkinElmer, 

Waltham, MA). Excitation and emission wavelengths of 571 nm and 585 nm were used (Figure 

4.4). Background fluorescence was obtained from buffer-containing sample wells and subtracted 

from all data points. 

 

Figure 4.4 Calibration curve for the catalase activity test 
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4.3. RESULTS AND DISCUSSION 

Initial experiments were directed at qualitatively assessing the presence of enzymatic activity 

after IR laser ablation. These experiments were aimed at assessing the effect of laser sampling on 

enzymes in absence of the tissue matrix. Trypsin (2 µL, ~1000 ng) was deposited on a microscope 

slide, vacuum-dried, and the thin film was completely ablated at a laser fluence of 18 kJ/m2 and 

collected in a 200 µl volume of ABC buffer. Aliquots of BSA were either digested with the ablated 

and captured trypsin or with a control solution containing the same amount of enzyme deposited 

on the slide before ablation. BSA digests were analyzed by MALDI mass spectrometry. Figure 4.5 

shows representative mass spectra of BSA tryptic peptides obtained using ablation capture and 

control trypsin. The peaks corresponding to protonated tryptic peptides with the intensity > 1,000 

are indicated with red circles. The laser ablated trypsin yielded a similar spectrum compared to the 

control with respect to the number and m/z of the peaks, although the intensity was about half as 

large. A total of 42 tryptic peptides, corresponding to 61% sequence coverage, were identified for 

the control, whereas 44 peptides, corresponding to 59% sequence coverage, were identified with 

the ablated trypsin. The signal intensity and lower sequence coverage may result from either low 

efficiency of trypsin ablation and capture or from loss of enzyme activity of the ablated and 

captured trypsin. 
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Figure 4.5 MALDI mass spectra of BSA tryptic peptides (red circles) obtained from (a) trypsin 

control and (b) laser ablation transferred trypsin.  

The ablation and capture transfer efficiency can be defined as the ratio of the captured enzyme 

(both active and inactive) to the quantity of material ablated. To determine the capture efficiency, 

thin films of trypsin and catalase were ablated at various laser energies and the total protein was 

determined by Bradford assay. Dried sample deposits containing 4 µg of trypsin were ablated at 

laser fluences of 10, 18, and 26 kJ/m2 and the enzyme was captured in TBS buffer. A Bradford 

assay was used to measure the trypsin concentration from 3 replicate samples at each laser energy 

and from control samples. Figure 4.6a shows the transfer efficiency of trypsin (Dark gray) and 
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catalase (light gray). The resulting transfer efficiency was approximately 73 ±9% at all fluences: 

74 ± 8 % at 10 kJ/m2, 71 ± 6 % at 18 kJ/m2, and 74 ± 13 % at 26 kJ/m2. The transfer efficiency for 

catalase was measured in a similar manner. Sample deposits containing 0.5-unit catalase were 

ablated and captured in buffer and analyzed by Bradford assay. The measured transfer efficiency 

was similar to that recorded for trypsin: 73 ± 7 % at 10 kJ/m2, 79 ± 5 % at 18 kJ/m2, and 75 ±7 % 

at 26 kJ/m2. 

Experiments were performed to determine the activity of the laser ablation transferred 

enzymes using a protease fluorescence assay. Sample deposits containing 4 µg trypsin were 

ablated and captured at laser fluences of 10, 18, and 26 kJ/m2 and captured in TBS buffer. Figure 

2b shows the trypsin activity (dark gray) obtained with the fluorescence assay: 44 ± 1% at 10 kJ/m2, 

35 ± 2% at 18 kJ/m2, and 32 ± 2% at 26 kJ/m2 compared to the activity of the control. To determine 

the activity of the laser ablation captured catalase, samples containing 0.5 U catalase were ablated 

and captured in the assay kit buffer solution. Figure 4.6b shows the activity of the catalase (light 

gray) determined by fluorescence assay: 57 ± 7% at 10 kJ/m2, 54 ± 7% at 18 kJ/m2, and 40 ± 7% 

at 26 kJ/m2. These results indicate that approximately 37±2% of the transferred trypsin is active 

and approximately 50±7% of the transferred catalase is active and the activity is approximately 

one third lower at the highest laser energy. The loss of activity may result from heating and 

denaturation of the enzyme during laser ablation. Although infrared laser ablation has previously 

been shown to transfer proteins and DNA intact,266-267 the heating may be great enough to denature 

a fraction of the enzyme molecules.  
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Figure 4.6 Transfer efficiency and activity of enzyme ablated at laser fluences of 10, 18, 26 kJ/m2: 

(a) enzyme transfer efficiency; (b) Enzyme activity. Dark gray indicates trypsin; light gray 

indicates catalase. 

The trypsin activity results described in Figure 4.6b are consistent with previous studies using 

picosecond mid-infrared laser ablation of protein with conserved activity.276-277 The study using 

picosecond laser also demonstrated that the enzymes in human plasma ablated with a picosecond 

laser are still active. The 70% transfer efficiency of protein material reported in our research is 

similar to that previously observed for mid-IR picosecond laser ablation capture of intact bacterial 

cells that subsequently were used to grow bacterial colonies.273  



61 

 

The effect of laser ablation on the activity of enzymes captured from tissue was studied using 

thin tissue sections. Here, the IR laser system was used to ablate material from sections of rat brain 

tissue mounted on microscope slides. Rat brain tissue sections 50 µm thick were used. This allowed 

retrieval of more material per unit area compared to thinner samples. It was found that a fluence 

of 10 kJ/m2 was not sufficient to completely ablate the tissue, therefore a fluence of 18 kJ/m2 was 

used for these studies. Two spots of 4 mm2 area from each tissue section (three tissue sections in 

total) were ablated and captured in 100 µl of reaction buffer. The captured material was divided 

into a 50 µl aliquot for total protein analysis by Bradford assay and a 25 µl aliquot for catalase 

activity determination. Figure 4.7a shows a bright-field microscope image of a sagittal tissue 

section with the ablated areas, corresponding to the frontal cortex (Section 1) and the cerebellum 

(Section 2). The samples obtained from the cerebellum and frontal cortex yielded 2.7 ± 0.1 µg and 

2.5 ± 0.1 µg total protein, respectively. According to manufacturer’s protocol, the catalase activity 

of the ablated and collected tissue was measured after 30 and 45 min. At 30 min, the catalase 

activity obtained from the cerebellum region was 11.2 ± 0.7 mU/mm2 from the frontal cortex 8.0 

± 0.7 mU/mm2. At 45 min, the activity was 10.7 ± 0.7 mU/mm2 from the cerebellum and 7.5 ± 0.7 

mU mm2 from the frontal cortex (Figure 4.7b). The catalase activity was normalized to the total 

protein in the captured sample to allow quantitative comparison of the activity in the different brain 

regions. The cerebellum catalase activity was 16.3 ± 0.3 and 16.0 ± 0.2 U/mg for 30 and 45 min, 

respectively, whereas the frontal cortex activity was 12.5 ± 0.3 and 12.0 ± 0.3 U/mg.  
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Figure 4.7 (a) Bright-field microscope image of laser ablation sampled rat brain tissue (1) frontal 

cortex and (2) cerebellum and (b) catalase activity from a fluorescence assay frontal cortex (gray) 

and cerebellum (light gray) at 30 and 45 min.  

Taking into consideration the inhomogeneous water content of tissue samples278 and the 

mechanical strength of the tissue matrix,269 tissue samples may not be ablated as efficiently as pure 

enzymes. Nonetheless, the quantity of catalase captured from tissue is generally consistent with 

previously reported results, suggesting that the efficiency of transfer of active enzyme from tissue 

is comparable to that from dried-droplet samples. However, it must be noted that measuring 
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catalase activity in tissue poses several challenges. For example, the absolute activity in several 

brain compartments can vary as a function of rat age.279 For this reason, the variation in catalase 

activity reported in various studies can be significant. The catalase activity in male albino Wistar 

rats was reported by Homi et al. to be 1.9 U/mg in the cortex and 3 U/mg in the cerebellum280 and 

Jayaraman et al. reported values of 3 U/mg in the cortex and 4 U/mg in the cerebellum.281 Siqueira 

et al. reported catalase activity equal to 0.4 U/mg in the cortex and 0.8 U/mg in the cerebellum of 

male Wistar rats.279 Kazi et al. reported 1 U/mg in the cortex and 1.5 U/mg in the cerebellum of 

female Wistar rats.282 Compared to the data above, Fortunato et al. reported lower absolute values 

of catalase in Wistar rat cortex and cerebellum. Using 6 animals in each control group, they 

reported values for the cortex differing over 5 times from each other, with numbers ranging from 

0.0002 to 0.001 U/mg. In the cerebellum, they reported values differing over 20 times from each 

other, with values ranging from 0.0002 to 0.0035 U/mg.283 In the IR laser ablation study a different 

breed of rat was used, which may explain the higher catalase activity measured. In addition, 

catalase activity was measured using laser ablated extract from consecutive sections of the same 

rat brain whereas the published literature reports activity from multiple animals. The catalase 

activity obtained from ablated and captured sample replicates was measured with relative standard 

deviation ranging from 1 to 2.5% which demonstrates the high reproducibility of the method. 

4.4. SUMMARY 

The results above demonstrate that enzymes can be IR laser ablated and captured from 

solid samples and from tissue while maintaining activity. The transfer efficiency of total protein 

was approximately 75±8% with about 2.5 µg protein obtained from 4 mm2 of rat brain tissue, 

results which are consistent with previous studies of laser ablation transfer of proteins.266 

Approximately one-third of the captured trypsin and one-half of the captured catalase retained 
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enzyme activity as determined by fluorescence assay. The enzyme catalase was ablated and 

captured from rat brain tissue and the absolute activity measured was consistent with that 

anticipated for the different regions of the brain, suggesting that active enzymes can be efficiently 

ablated and captured from tissue. Due to the fast sampling speed, measurement of laser ablated 

and captured endoproteases and oxidoreductases can be used as a complementary tool to 

pathohistological evaluation of tissue in application such as surgery and tissue classification.  

Future work will combine enzyme assays with liquid chromatography and mass 

spectrometry for protein identification266 and with polymerase chain reaction for DNA analysis267 

of laser ablated and captured tissue. Whereas the current speed of both laser and translation allows 

for fast sampling for off-line analyses of mm2 sized ROI, compatibility of the laser ablation system 

with mass spectrometry imaging will require a faster repetition rate laser as well as a smaller spot 

size to increase the lateral resolution.  
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CHAPTER 5 INFRARED LASER ABLATION SAMPLE TRANSFER 

OF TISSUE DNA FOR GENOMIC ANALYSIS* 

This chapter describes the work using infrared (IR) laser ablation to remove DNA material 

from tissue sections mounted on microscope slides with subsequent capture in a solvent-containing 

microcentrifuge tube. Experiments conducted with a 3200-bp double-stranded plasmid DNA 

template demonstrated IR-laser ablation transfer of intact DNA. The transfer efficiency and the 

molecular integrity of the captured DNA were evaluated using Sanger sequencing, gel 

electrophoresis, and fluorimetric analysis. The plasmid DNA was reproducibly transferred with an 

efficiency of 59±3% at laser fluences between 10 and 20 kJ/m2 at 3 µm wavelength. IR laser 

ablation sample transfer was then used to ablate and capture DNA from 50-µm thick rat brain and 

kidney tissue sections. DNA was extracted from the captured material using five commercial DNA 

extraction kits that use significantly divergent methodologies, with all kits recovering sufficient 

DNA for successful amplification by the polymerase chain reaction (PCR). Four sets of primers 

were used, targeting one region of the CYP 11b2 gene (376 bp) and three different regions of the 

Snn1g gene (298 bp, 168 bp and 281 bp). The PCR results were not consistently reliable when 

using un-purified ablation samples; however, after extraction, all samples produced PCR products 

of the expected size. This work expands the sampling capabilities of IR laser ablation, 

demonstrating that DNA can be isolated from tissue samples for genomic assays. Due to the small 

size of the ablated regions (1 mm2), this technique is useful in sampling discrete cell populations 

from tissue sections. 

                                                 
* Some portions of the work reported in this chapter previously appeared as Wang, K., Donnarumma, F., 

Herke, S. W., Herke, P. F., & Murray, K. K. (2017). Infrared laser ablation sample transfer of tissue DNA for genomic 

analysis. Analytical and bioanalytical chemistry.267 Reprinted by permission of Springer. 
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5.1. INTRODUCTION 

Collecting informative DNA and RNA from heterogeneous bulk tissue sections is 

challenging due to the sampling of non-target cells, which can make it difficult to interpret 

molecular profiling data.11-12 Sampling populations of target cells from selected regions of interest 

in the section is a strategy that can address this problem.284-288 For example, cells can be isolated 

by manual microdissection34 where a small portion of the section is removed using a modified 

Pasteur pipette or needle under an optical microscope or stereomicroscope.54, 289 For many 

molecular analysis applications, sufficiently pure population of cells can be provided by manual 

microdissection;63 however, the technique is labor intensive and has limited reproducibility.54, 62 

Laser capture microdissection (LCM) has become a routine method for small-scale tissue 

sampling for extraction of homogeneous cell populations from tissue samples.65-68 LCM can be 

performed with two basic configurations: IR capture; and, ultraviolet (UV) cutting.72 The IR-LCM 

system was developed in 1996 and uses a thin thermoplastic film that covers the tissue section or 

cells on a microscope slide in a modified optical microscope.71 A near-IR laser is focused onto the 

film, which melts and fuses with the cells and tissue. When the film is removed from the slide, the 

cells adhere with a strength that exceeds their adhesion to the slide; thus, the isolated region 

remains with the film and can be extracted for further analysis. UV-LCM was developed in 1998 

and uses a UV laser to cut the boundary of a region of interest; detachment is accomplished by 

applying a pulse with the same laser to the center of the region.72 The microdissected tissue is 

collected in a microcentrifuge tube cap containing a capture solvent or an adhesive substrate. 

Biomolecules are then extracted from the captured material. 
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For localized sampling of genomic material from heterogeneous tissue sections, both UV 

and IR laser microdissection are effective techniques for analysis of DNA and RNA.65, 68, 83 

Nonetheless, several limitations of LCM have been noted,77, 290 such as the inability to completely 

remove the selected cells from the tissue section.91 This may result from improper tissue mounting 

on slides75 or incomplete dehydration.77  Tissue sections must typically be limited to a maximum 

thickness of 15 µm, and it is difficult to prevent cross-contamination between the collected samples 

and neighboring regions.75, 83 Finally, expert manual operation and specialized consumables (e.g., 

coated microscope slides) are required.76, 82 

An alternative to both IR and UV laser microdissection is laser ablation sampling of 

localized areas in tissue sections.41 By continuous pulsed IR irradiation of an area of interest with 

a focused laser beam, it is possible to efficiently remove biomolecules from a surface for on-line 

and off-line analysis of peptides and proteins.100, 291-292 Mid-IR lasers are highly efficient at 

ablating biomolecules from tissue sections.41, 98, 266, 293  because mid-IR lasers can break up tissue 

and cellular structures (e.g., connective tissue, cellular membranes, and organelle membranes) 

while preserving biomolecule integrity, samples collected through IR laser ablation do not require 

cell lysis for downstream analysis.41 

In this chapter, ablation of intact plasmid DNA using a 3 μm wavelength mid-IR laser is 

described. After capture, the DNA was both sequenced directly and amplified by PCR.  IR laser 

ablation sample transfer was performed with rat kidney and brain tissue sections and the genetic 

material was amplified with PCR. 
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5.2. EXPERIMENTAL 

The commercially-supplied plasmid pGEM DNA template (3197 bp) was provided in TE 

buffer (10 mM Tris, 1 mM EDTA, pH 7.5) at ~200 ng/µL. Aliquots of 2 µL were deposited onto 

a plain microscope slide (pre-cleaned with ethanol) and allowed to dry for 2 min under vacuum 

before ablation. Before sampling, tissue sections were dehydrated with a series of ethanol and 

chloroform washes to remove lipids and salts: 70% ethanol for 1 min; 95% ethanol for 1 min; and, 

100% chloroform for 1 min. Slides were dried under vacuum for 30 min prior to sampling. 

pGEM DNA concentrations after laser ablation were determined using fluorometric 

quantitation. Prior to measurement, plasmid DNA templates (control and ablated samples) were 

linearized by a restriction enzyme double-digest to eliminate interference by supercoiling. 

Digested DNA fragment sizes were confirmed by gel electrophoresis (sodium borate running 

buffer and 2% agarose gels).294-295 Data from the Qubit assay were tested for statistical significance 

(p<0.05) with an analysis of variance (ANOVA) test in SAS 9.4. Genomic DNA samples from rat 

tissue were extracted with commercial DNA extraction kits. 

To purify the captured genomic DNA from material obtained from tissue sections, five 

commercial DNA isolation kits (representing a wide array of methodologies) were used according 

to the protocols of the manufacturers. Briefly, three kits bind DNA to spin-columns, where two 

kits use either magnetic or non-magnetic beads. The kits differ as to whether they use proteinase 

K, DTT, or beta-mercapta-ethanol. Other differences include special digestion buffers and the use 

of pre-wash as well as wash buffers prior to elution of the DNA. 

DNA material collected from rat kidney and brain tissue was PCR-amplified (using four 

sets of primers; Table 5.1) on a thermal cycler using either the raw ablated samples or ablated 
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samples that were subsequently processed with a commercial DNA extraction kit. PCR reactions 

used 10 µL of DNA template and 15 µL of a master-mix for a final concentration of 2.5 mM MgCl2, 

1X buffer, 200 µM each dNTP, and 1 µM each of forward and reverse primers, with 1.25 units of 

polymerase (AmpliTaq Gold). PCR cycling conditions: [initial denaturation, 1X] 95°C (1 min); 

[polymerase activation, 9X] 95°C (1 min), 60°C (30 s), 72°C (1 min); and, [amplification, 32X] 

95°C (20 s), 60°C (30 s), 72°C (1 min). PCR products were electrophoresed in 2% agarose sodium-

borate gels (stained with ethidium bromide) and visualized on the BioRad ChemiDoc XRS+ 

system. Amplicon sizes were determined by comparison with the EZ Load 100-bp PCR Molecular 

Ruler. 

Table 5.1 Primer information. CYP11b2 indicates gene Rattus norvegicus hydroxysteroid 11-beta 

dehydrogenase 2 gene; Snn1g indicates gene amiloride-sensitive sodium channel subunit gamma 

gene. 

Gene Name Sequence Product 

CYP11b2 
Forward: TTC TTT CCA ACG GTC ACT CC 

Reverse: TAC CAC AAC CAC CCA GTC CT 
376 bp 

Snn1g set 1 
Forward: AAA TCT TAC GGA GGC CCT TG 

Reverse: CTC TGG CTT CCC AAG AGA TG 
298 bp 

Snn1g set 2 
Forward: CAA TAC CCC AGT CCC TGG TA 

Reverse: GCC TGG ATT CTG CTA TGC TC 
168 bp 

Snn1g set 3 
Forward: CCA AAC CTG ACG ACC TGA GT 

Reverse: AGT CAG ATG AGG AGG GCA TC 
281 bp 

 

5.3. RESULTS AND DISCUSSION 

Initial tests were conducted at laser fluences of 18, 24 and 36 kJ/m2 (in duplicate) to assess 

the ability of the IR laser to transfer DNA without fragmentation. A double-stranded, 3197-bp 

plasmid DNA template (2 µL, ~400 ng) was deposited on a microscope slide and vacuum-dried. 
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The dried residue was entirely ablated, transferring it to PCR tubes containing 200 µL of TVLE 

buffer. For a control, 2 µL of the same template was directly added to a PCR tube with 200 µL of 

TVLE buffer. After sequencing, chromatograms of the ablated samples and control were compared 

with regard to the per-base quality value scores (QV20) and contiguous read length (CRL). Figure 

5.1 shows representative regions of the chromatograms. 

DNA sequencing results were not distinguishable between the control and ablated samples 

obtained at 18 kJ/m2 or 24 kJ/m2; however, data quality was lower for samples ablated at 36 kJ/m2. 

For example, the QV20 values for samples obtained at fluences of 18 kJ/m2 (922±4 bp) and 24 

kJ/m2 (895±21 bp) were comparable to those of the control (898±7 bp). By contrast, samples taken 

at 36 kJ/m2 (468±39 bp) had QV20 values that were nearly 50% lower than the control, resulting 

in much shorter reads with the QV scores falling to <10 (90% accuracy) after only 600 bp (Fig. 

1b). Similarly, CRL values obtained at fluences of 18 kJ/m2 (916±12 bp) and 24 kJ/m2 (915±5 bp) 

were comparable to the control (915±5 bp), whereas those for samples obtained at 36 kJ/m2 

(485±53 bp) were nearly 50% lower than for the control. 

Based on the Sanger sequencing results, laser fluences ≤24 kJ/m2 had no discernible effect 

on the integrity of the plasmid DNA and its individual nucleotides. However, the sequencing 

results with samples obtained at 36 kJ/m2 suggest that the higher laser fluence may have either 

fragmented the DNA or damaged individual nucleotides. These effects are most likely due to 

thermal or mechanical processes because the mid-IR wavelength used in this experiment does not 

provide sufficient energy to a single photon to trigger photochemical dissociation.202, 296-297 
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Figure 5.1 Segments of Sanger sequencing chromatograms of pGEM plasmid: a) 1 to 40 bp; b) 

570 to 610 bp; c) 750 to 790 bp. Control indicates DNA without the laser ablation. Dark blue 

indicates QV < 20, blue indicates 20 < QV < 40 and light blue indicates QV > 40. 

The transfer efficiency of the ablation process was assessed, using pGEM plasmid DNA 

and three laser fluences. Preliminary work demonstrated that laser fluences below 10 kJ/m2 were 

not able to completely ablate dried DNA samples, and the sequencing results showed that laser 

fluences in excess of 24 kJ/m2 could be damaging; hence, laser fluences of 10, 15 and 20 kJ/m2 (in 

triplicate) were used to measure transfer efficiency. Control and ablated samples were first double-

digested (to minimize bias in the concentration estimates due to supercoiling298 and then 

concentrations were estimated with the Qubit dsDNA HS Assay Kit. To verify that samples were 

not otherwise degraded, digested samples were also electrophoretically separated in a 2% agarose 
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gel (Figure 5.2), with all samples displaying fragments of the expected lengths (379 bp, 1150 bp 

and 1668 bp). Molecular ladders include the BioRad EZ Load 100-bp PCR Molecular Ruler 

(outside lanes) and the NEB Quick-Load Purple 2-Log DNA Ladder (center). Fluorimetric 

quantification yielded an average of 123 ng of DNA for the three energies tested:  10 kJ/m2, 120±9 

ng; 15 kJ/m2, 129±13 ng; 20 kJ/m2, 120±13 ng and 209±3 ng for the control. Analysis of variance 

yielded a p-value of 0.88, which indicates that the difference in DNA yield was not statistically 

significant among the runs. Defining the transfer efficiency as the ratio of the recovered material 

to the control, an average transfer efficiency of 59±3% was obtained. 

 

Figure 5.2 Agarose gel electrophoresis image of digested DNA template samples obtained from 

three different laser fluences and control. All samples were double-digested into three fragments: 

379 bp, 1150 bp and 1668 bp.  

The initial experiments with pGEM plasmid DNA provided proof-of-concept results but 

represent an ideal situation in which only DNA was present on the slide. To confirm the 

effectiveness of IR-laser ablation for the transfer of genomic material from tissue, rat brain tissue 
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sections mounted on a microscope slide as a test sample were used. To monitor potential 

contamination, negative controls (blank microscope slides) were included in the experimental 

design. IR laser ablation samples and negative controls were amplified using four sets of primers 

targeting two different genes. One primer was designed for the hydroxysteroid 11-beta 

dehydrogenase 2 gene (CYP 11b2), producing an amplicon of 376 bp. The other three primers 

targeted the amiloride-sensitive sodium channel subunit gamma gene (Snn1g), producing three 

amplicons of different sizes: 298 bp (Snn1g 1), 168 bp (Snn1g 2) and 281 bp (Snn1g 3). Snn1g 

Set 1 and Set 2 are 600 base pairs apart, and Snn1g Set 2 and Set 3 are 2400 base pairs apart. 

Ten spots of 4 mm2 area were ablated and captured using TVLE buffer. These samples 

were amplified without further purification, and the PCR products were loaded on a 2% agarose 

gel (Figure 5.3). Overall, amplification of the un-purified ablation products was moderately 

successful. For instance, only Snn1g (set 2) generated the expected bands for all samples (Fig. 3d); 

by contrast, fewer than half of all other reactions generated a well-defined band and many non-

specific amplification products were seen as well. These results were consistent with the fact that, 

although IR laser ablation produces highly homogenized samples, the captured material includes 

not only DNA, but also proteins, extracellular matrix, and RNA. All of these additional cellular 

components can inhibit a PCR reaction.299 Therefore, the experiments were repeated with a DNA 

purification step to increase the specificity and effectiveness of the PCR amplification. 
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Figure 5.3 Agarose gel image of PCR products from rat brain tissue sections. Four primers: a) 

CYP 11b2 (376 bp); b) Snn1g 1 (298 bp); c) Snn1g 3 (281 bp); d) Snn1g 2 (168 bp). Numbers 1-

10 indicate samples; P indicates PCR Molecular Ruler; N indicates negative control. 

The number of cells ablated in these experiments was relatively low; thus, the small 

quantity of DNA captured (~1-12 ng) presented a challenge for extraction. It was unclear initially 

whether commercial DNA extraction kits had the capability to process such low levels of DNA. 

Thus, the efficiency of five commercial kits with laser-ablated samples was tested: two bead-based 

methods (ZymoBead Genomic DNA kit300 and MagneSil Genomic Fixed Tissue System301); and 

three column-based methods (ZR Genomic DNA,302 Quick Universal Miniprep,303 and Quick-

gDNA Microprep304). Spots with an area of 1 mm2 were collected from five consecutive rat kidney 

tissue sections at a fluence of 20 kJ/m2. The samples were pooled to create a master sample, which 

was mixed and divided into aliquots. Five aliquots per kit were used as technical replicates to test 
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the ability of each kit to yield purified DNA material from laser ablated and captured samples. 

DNA was quantified using a fluorometer and the same protocol used for the transfer efficiency 

experiments. 

All five kits provided usable amounts of DNA from the ablated samples, indicating that a 

specialized DNA extraction method is not needed to process such samples. However, the three 

column-based kits provided higher recoveries, averaging ~1.7 ng (ZR Genomic DNA kit, 1.5±0.1 

ng; Quick-gDNA Microprep, 1.6±0.2 ng (n=4); and, Quick Universal Miniprep, 2.0±0.3 ng), than 

the two bead-based approaches, which averaged only ~0.45 ng (ZymoBead, 0.3±0.1 ng; MagneSil, 

0.6±0.2 ng). With regard to the bead-based kits, the results for the MagneSil kit could be 

substantially improved if the protocol included the use of a rotator during the bead-incubation; 

using the manufacture’s protocol, the magnetic MagneSil beads immediately sank to the bottom 

of the assay tube, limiting their contact with the suspended DNA. By contrast, improvements are 

less obvious for the non-magnetic ZymoBeads because they tended to slide down the tube wall 

during pipetting steps, which necessitated leaving more supernatant behind. 

For each kit, the variance in DNA recovered from nearby spots on the same tissue section 

was also assessed. Here, from the same five sections noted above, 15 different areas on each 

section were ablated and captured at 20 kJ/m2. All kits showed a similar pattern of varying DNA 

recoveries across the tissue section, even though the technical replicates (see above) indicated 

fairly high precision for recovery from each kit. For example, Figure 5.4 shows that the quantity 

of purified DNA obtained by the Quick Universal Miniprep from each location ranged from 1 to 

12 ng. These data show that the ablation-capture technique is robust with regard to obtaining usable 

quantities of DNA regardless of where ablation occurs on the tissue section. 
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Figure 5.4 DNA recovered with the Quick Universal Miniprep kit. Top insert is an image of the 

rat kidney section after laser ablation. Positions 16 to 20 were used for the multiple kit evaluation 

experiments. 

Finally, four samples ablated from consecutive rat kidney tissue sections at 20 kJ/m2 were 

PCR-amplified before and after extraction with the Quick Universal Miniprep kit (Figure 5.5). 

Prior to DNA extraction, none of the samples produced detectable PCR product (left lane in each 

bracket); however, after DNA extraction, all samples displayed bands of the expected size. This 

result is consistent with the prior PCR results for rat brain tissue (Figure 5.3) because these samples 

were obtained from much smaller areas (1 mm2 vs. 4 mm2 areas). Again, the PCR results with 

ablated tissue indicates that PCR assays will benefit from further purification of the DNA in the 

ablated sample. 
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Figure 5.5 Agarose gel image of PCR products from rat kidney sections. Lane pairs 1-4 indicate 

samples. The left lane indicates sample without extraction and the right lane indicates sample with 

extraction. P indicates PCR Molecular Ruler; N indicates negative control. 

5.4. SUMMARY  

IR laser ablation sample transfer of DNA was evaluated using Sanger sequencing and PCR 

amplification. To determine the optimum ablation fluence, the 3 µm mid-IR laser was used to 

ablate plasmid DNA template. At high laser fluences (36 kJ/m2), the ablation resulted in damage 

of the recovered DNA, whereas the DNA was transferred intact and undamaged at lower fluences 

(≤24 kJ/m2). For the plasmid DNA, the transfer efficiency was estimated to be 59±3%. 

Ablation and transfer of intact DNA from rat tissue samples was achieved. PCR 

experiments demonstrated that further purification of DNA from laser ablated and captured 

samples is required to ensure consistent PCR results. However, experiments with five different 

commercial DNA extraction kits, with yields of ~1-12 ng from 1 mm2 areas, demonstrated that no 
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special extraction method is required. Following purification, four regions on two different genes 

for all the tested samples were amplified. 

This work expands the sampling capabilities of IR laser ablation, demonstrating that DNA, 

as well as proteins, can be isolated from tissue samples for further assays. Future experiments will 

be directed at providing a comprehensive tool for localized “-omics” investigations. 
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CHAPTER 6 RNA SAMPLING FROM TISSUE SECTIONS USING IR 

LASER ABLATION FOR QUANTITATIVE PCR*                            

This chapter describes the work to remove RNA material from discrete locations of frozen 

rat brain tissue sections using an IR laser at a wavelength at 3-µm in transmission geometry. The 

ablated plume was captured in a microcentrifuge tube containing RNAse-free buffer and processed 

using a commercial RNA purification kit. RNA transfer efficiency and integrity were evaluated 

based on automated electrophoresis in microfluidic chips. Using purified RNA, reproducible IR-

laser ablation of intact RNA was demonstrated with a transfer efficiency of 72±12% at laser 

fluences of 3-5 kJ/m2. For tissue sections, RNA was transferred with an efficiency of 79±14% 

using a laser fluence of 13 kJ/m2. RNA integrity was >90% of its original RIN value (~7) and the 

purified RNA could be used for a qPCR assay.  

6.1. INTRODUCTION 

Ribonucleic acid (RNA) is the link between the transcription of DNA and the expression 

of proteins,305-306 and can reveal or modify biological function throughout the protein synthesis 

process.307-308 As such, RNA biomarkers can be used for detection of a disease even before 

expression of the associated proteins. RNA-based therapeutics can alter the production of 

aberrantly expressed proteins. With the increasing availability of high-throughput RNA analysis 

techniques such as quantitative polymerase chain reaction (qPCR),309-310 microarray assays,311 and 

                                                 
* Some portions of the work reported in this chapter previously appeared as Wang, K., Donnarumma, F., 

Herke, S. W., Dong, C., Herke, P. F., & Murray, K. K. (2019). RNA Sampling from Tissue Sections using Infrared 

Laser Ablation. Analytica Chimica Acta. Reprinted by permission of Elsevier. 
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next generation sequencing,4, 312-314 analyzing RNA extracted from tissue is becoming more 

valuable in disease diagnosis, prognosis, and drug development.315-318 

Analyte extraction and purification influences both the quantity and the integrity of RNA 

and plays a critical role in the accuracy and reproducibility of high throughput RNA analysis.163-

171 Isolation and purification of RNA generally starts with tissue homogenization and cell lysis. 

For instance, tissue samples may be snap-frozen, pulverized into powder, and extracted with 

guanidinium thiocyanate and phenol-chloroform mixtures.319-320 Alternatively, fresh or frozen 

tissue may be immersed in an RNA-stabilizing buffer and homogenized by vortexing or bead-

beating.321-322 The RNA can then be purified using a variety of in-house developed protocols or 

commercial RNA extraction kits.323-329 

Frozen or formalin-fixed paraffin embedded (FFPE) tissue is a common clinical sample 

type, and it is often critical to obtain RNA from a particular region of cells within a block. In this 

context, analysis of RNA presents challenges in maintaining analyte integrity as well as spatial 

localization.39  First, the sampling method must overcome the usual obstacles to the extraction of 

high-quality RNA such as tissue types recalcitrant to homogenization or rich in co-purifying 

biomolecules (lipids, proteins, DNA) as well as degradation by ribonucleases (RNase).323-324, 330-

331  RNases are of particular concern because they can rapidly digest the RNA and are ubiquitous 

in tissue and the environment; therefore, fast sample processing and an RNase-free work area are 

critical.170-171, 332 Second, the sampling method must permit analysis of multiple RNA targets from 

a limited number of cells in the specific region of interest.13, 39  To date, most sampling methods 

cannot fully resolve these issues simultaneously. For instance, nuclease-integrity can be assured 

by immediately immersing an entire tissue section in an RNA-stabilizing buffer and then 
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homogenizing the tissue by bead-beating, but this merges the transcriptomes from all cells in the 

section.171  Alternatively, single cell technologies can prevent the merging of transcriptomes, but 

each cell’s original location within the tissue section is unknown.13, 87, 333-334 Finally, techniques 

such as in situ hybridization28 and in situ sequencing29 can sample specific cells, but are limited in 

the number of RNA targets that can be assessed at one time.28, 39 

Laser capture microdissection (LCM) is an established method for excising localized 

regions of interest (ROI) from tissue sections for RNA extraction from as little as a few cells.67, 335 

With infrared LCM, the laser melts a thermoplastic film in contact with the tissue, causing it to 

stick to the film and allowing separation of the ROI from the remaining tissue.80  With ultraviolet 

LCM, the laser ablates the border of the ROI and the tissue is detached from the slide with a 

defocused pulse.80 The dissected material can be captured in a microfuge tube either cooled or 

containing a buffer for RNA stabilization or extraction.78-81 Sampling time for LCM varies from 

20 minutes to 1 h, depending on number of cells, tissue type, and type of microscope slide uses.41, 

67, 89-90 

Infrared (IR) laser ablation can be used to excise ROI from tissue sections with direct 

collection in an appropriate biomolecule-stabilizing buffer. IR lasers operating at a 3-μm 

wavelength ablate tissue efficiently due to the overlap with the OH-stretch of abundant 

biomolecule (e.g., H2O),95, 102, 336 and the method was used to sample tissues for large biomolecules 

such as proteins,41, 98, 266 biologically active enzymes,336-337 and DNA.338 Several characteristics of 

IR laser ablation may be particularly useful for RNA analysis of clinical samples: disruption of 

connective tissue and membranes permits RNA purification without a separate cell lysis step;41, 
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337-338  and, 1 mm2 regions can be sampled in under 60 s.41 Thus, IR laser ablation combines sample 

localization with rapid sampling of the ROI. 

In this work, IR laser ablation and capture was used to collect RNA from tissue. Thin fresh-

frozen tissue sections of rat brain were ablated at various laser fluences, and the RNA integrity, 

total RNA recovery, and sample transfer efficiency for the collected material was determined. 

Finally, RNA obtained by IR laser ablation was analyzed with a simple qPCR assay.  

6.2. EXPERIMENTAL 

For ablation of purified RNA, 1 µl (1 µg/µl) of human kidney total RNA was deposited on 

a microscope slide and vacuum-dried (1 min) prior to laser ablation. The ablated material was 

captured in RNA storage solution (1 mM sodium citrate, pH 6.4±0.2), and the samples were stored 

at -80°C prior to analysis. For tissue sections, the ablated material was captured in DNA/RNA 

Shield solution for stabilization of nucleic acids at room temperature; samples were stored at room 

temperature for up to one week until further analysis.  

Human kidney RNA samples were loaded on the Bioanalyzer chip with no further 

purification. The tissue samples (ablated and positive control) were first purified using the Direct-

zol RNA MicroPrep kit. The purification procedure was modified to minimize salt-carryover into 

the eluted sample. Without these modifications, the salt concentration exceeded the maximum 

allowed for the RNA 6000 Pico kit due to the relatively large sample volume. 

Briefly, the ablated tissue was captured in 200 µl of DNA/RNA Shield solution and 

transferred to a 0.5-ml tube and digested with Proteinase K (30 min, 55oC). Following 

centrifugation to pellet cellular debris, the cleared supernatant was transferred to a 2.0-ml tube 

containing ~800 µl of TRI-reagent and rotated in a 30oC oven (5 min). Following the addition of 
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1 mL of 100% ethanol, the tubes were briefly rotated in the oven to ensure thorough mixing. For 

each sample, a spin-column (Zymo IC, designed for low elution volumes) was loaded and 

centrifuged three times to filter the entire 2000 µl of RNA extraction reagents. Unless otherwise 

noted, centrifugation was performed at 15,000 rcf and limited to 15 s to prevent column drying, 

which can increase the salt in the final elution. Following the application of RNA wash buffer (400 

µl, 30 s), an in-column DNAse I digestion was performed (30oC, 15 min). After two applications 

of pre-wash buffer (400 µl), RNA wash buffer was applied three times (350 µl, 700 µl, and 350 

µl) to completely remove salt from the samples. After discarding the final flow-through, columns 

were centrifuged for 60 s to fully remove the RNA wash buffer. Finally, samples were eluted in 

15 µl nuclease-free water (60 s, 10,000 rcf) and stored at -80°C.  

Positive controls were generated by directly placing a frozen rat tissue section (~1 mg) into 

200 µL of DNA/RNA Shield solution. These samples were initially homogenized by brief 

vortexing and then completely homogenized in ZR BashingBead lysis tubes. Following 

centrifugation, the supernatants was transferred to 0.5 mL tubes and processed with the same 

workflow as the ablated samples. 

For choosing the optional capture buffers, RNA integrity was assessed by comparing the 

relative heights for the peaks associated with the ribosomal subunit 18S and 28S in control vs. 

laser ablated samples. However, the 28S:18S peak ratio can be a highly variable metric.150-151 Thus, 

RNA concentration and integrity for all other experiments were assessed using an Agilent 

Bioanalyzer 2100 with a RNA 6000 Pico Kit.  

Captured and purified RNA was reverse transcribed (SuperScript III) into cDNA. Samples 

were analyzed in triplicate by qPCR on a real-time PCR system (QuantStudio 6 Flex) using 22-µl 
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reaction volumes:  10 µl of 1X SYBR Select Master Mix; 1 µL each forward and reverse primer 

(10 µM, Table 6.1); and, 10 µl of cDNA template. Cycling parameters were: 1 cycle at 50°C (2 

min); 1 cycle at 95°C (10 min); and, 40 amplification cycles of 95°C (15 s) and 60°C (1 min). The 

specificity of the amplified product was assessed by a melt curve analysis. 

Table 6.1 Primer information 

Name Forward (upper) Reverse (lower) 

glyceraldehyde-3-

phosphate 

dehydrogenase 

(GPDH)  

GAAGGTCGGTGTGAACGGATT 
TGGAACATGTAGACCATGTA

GTTGAG 

myelin basic protein 

(MBP) 

AAG TCG CAG AGG ACC CAA 

GA [1] 

GGG TGT ACG AGG TGT CAC 

AAT GT 

6.3. RESULTS  

Initial experiments were performed to determine whether RNA could be captured intact 

using IR laser ablation and to quantify the ablation and capture efficiency. To assess RNA integrity, 

a commercially-purified stock of RNA (isolated from human kidney) was ablated at laser fluences 

ranging from 3 to 11 kJ/m2. For the positive control, a 1 µl aliquot of the RNA was added to 200 

µl of RNA storage solution. Bioanalyzer data for the ablated and control RNA samples were 

compared with regard to their RNA integrity number (RIN) and their electrophoretic traces. 

Representative electropherograms are shown in Figure 6.1. 5S ribosomal RNA peaks present from 

23-28 s, 18S peak presents at 40 s and 28S present at 48 s of the electropherograms. 

Initially, a tris-EDTA buffer (10 mM Tris, 0.05 mM EDTA, ~pH 8) was used as the capture 

buffer; however, the 28S peaks were consistently smaller than the 18S peaks when these samples 

were processed on the Bioanalyzer. By contrast, ablated samples captured in RNA storage solution 
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typically displayed 28S peaks of equal or greater intensity than the 18S peaks, indicating that this 

buffer promotes greater RNA stability than does the tris-EDTA buffer.  

RIN values were comparable between the positive control (RIN 8.8±0.4) and RNA ablated 

at low fluences (3 kJ/m2, RIN 8.6±0.2; and, 5 kJ/m2, RIN 8.1±0.2); however, RIN values were 

~30% lower for samples ablated at 7 and 9 kJ/m2 (RIN 6.8±0.1 and 6.3±0.4, respectively). At 11 

kJ/m2, fluorescence readings from the small RNA region of the electropherogram were extremely 

high, resulting in a RIN estimate of “N.A.” (not available). Manually increasing the threshold 

value151, 339 for the “5S Region Anomaly Threshold” from 0.5 (default setting) to 0.62 resulted in 

a RIN of 4.5±0.4, which was ~50% lower than RIN for the positive control.  

 

Figure 6.1 Agilent Bioanalyzer electropherograms of purified human kidney total RNA comparing 

RNA integrity number (RIN) values for a positive control (a) with RNA collected by infrared laser 

ablation at five different fluences (b-f: 3, 5, 7, 9, & 11 kJ/m2).  
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To summarize, with purified RNA, laser fluences of ≤5 kJ/m2 generated RIN and 

electropherograms similar to those of the positive control sample. By contrast, corresponding data 

for RNA obtained at laser fluences ≥7 kJ/m2 demonstrated that higher laser fluences caused 

degradation (i.e. fragmentation) of the purified RNA, although the RIN estimates (>5) indicated 

that the RNA could still be used for qPCR.194-195 As such, RNA appears to be more sensitive to IR 

laser ablation than was found for DNA, where a laser fluence of 24 kJ/m2 did not influence purified 

plasmid DNA integrity.338 These results may reflect the greater stability of double-stranded DNA 

compared to single-stranded RNA.340 

As assessed with the Bioanalyzer, recovery of high-quality purified RNA was the highest 

at 5 kJ/m2, and then progressively decreased with increasing fluences. Here, fluorescence readings 

from the entire electrophoretic trace (full trace) were compared with those from just the 18S and 

28S subunit (Figure 6.2). Both metrics indicated that increasing the laser fluence from 3 to 5 kJ/m2 

resulted in higher RNA recovery. By contrast, as the fluence increased from 7 to 11 kJ/m2, RNA 

recovery appeared to increase by the full trace metric whereas it decreased by the 18S/28S peak 

metric. These results reflect the fact that, upon degradation, 18S and 28S ribosomal RNA shifts 

towards the 5S region (Figure 6.1(d, f)) where the degraded fragments are retained in the 

calculation of total RNA.  
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Table 6.2 RNA recovery as a function of laser fluence 

Laser Fluence (kJ/m2) RNA (µg), full trace RNA (µg), 18S & 28S peaks 

3 0.50±0.09 0.17±0.02 

5 0.67±0.06 0.19±0.02 

7 0.72±0.11 0.11±0.02 

9 0.77±0.01 0.10±0.01 

11 0.88±0.06 0.07±0.01 

Positive control 0.83±0.19 0.30±0.02 

 

Transfer efficiency can be defined as the ratio of the quantity of material captured to the 

quantity originally deposited. To assess the capture efficiency, a 1 µg quantity of RNA in 1 µL of 

sodium citrate (pH 6.8) was deposited on a microscope slide and completely ablated into 200 µl 

of capture buffer. For the control, 1 µg of RNA was added to 200 µl of capture buffer. Transfer 

efficiency was quantified using Bioanalyzer data for samples ablated at fluences of 3 and 5 kJ/m2 

because they produced RIN similar to those of controls. The average transfer efficiency for purified 

RNA ranged from 72±12% (full trace) to 60±6% (18S/28S subunits). The RNA transfer efficiency 

determined here is similar to the IR laser ablation transfer efficiency determined for DNA (59±3)338 

and enzymes (75±8).337 

After demonstrating that RNA can be ablated and captured intact, IR-laser ablation and 

capture of RNA from tissue was tested. Consecutive rat brain tissue sections were used to evaluate 

the quality of the total RNA after laser ablation. A rat brain was sectioned along the frontal plane 

at a thickness of 50 µm, and consecutive sections were thaw-mounted on microscope slides for 

laser-ablation (samples) or placed in tubes immersed in dry ice (controls); all slides and controls 

were then stored at -80oC. For the ablation experiments, TRI-Reagent was initially used as the 
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capture buffer; however, the 28S peaks were consistently smaller than the 18S peaks. Ultimately, 

DNA/RNA Shield solution was used as the capture buffer because it maintained a more intense 

28S peak (vs. the 18S peak), which indicates better preservation of RNA. Tissue sections (~20 

mm2 each, estimated in ~1 mg) mounted on microscope slides were ablated in their entirety using 

a laser fluence of 13 kJ/m2; visual inspection of the slides indicated that 13 kJ/m2 was the minimum 

laser fluence required for complete tissue ablation. Concurrently with the ablated samples, control 

samples were homogenized in DNA/RNA Shield solution using a bead-beating protocol (Section 

2.3). 

The entire volume of each ablated and control sample was purified with the Direct-zol 

RNA MicroPrep kit. Prior to analysis, the purified samples were diluted in nuclease-free water to 

bring them into the Bioanalyzer quantitation range. Control samples processed with the bead-

beating method had a RIN of 7.4±0.3, whereas ablated and captured RNA had a RIN of 6.8±0.3 

(Figure 6.2). RNA concentrations were calculated with the area under the curve method using both 

the full electrophoretic trace as well as the signal only for 18S and 28S subunits. Transfer 

efficiencies ranged from 79±14% for the full trace (649±100 ng vs. 515±93 ng) to 71±7% for the 

18S-28S peaks (245±8.6 ng vs. 174±18 ng). 
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Figure 6.2 Representative electropherograms of RNA from 20-mm2 regions of paired consecutive 

50 µm tissue sections. (a) Positive control (RIN 7.4±0.3): purified RNA was diluted ~15-fold. (b) 

Infrared laser ablation (RIN 6.8±0.3): purified RNA was diluted ~8-fold. 

RNA samples with RIN>5 have been analyzed with microarray assays, qPCR, and RNA 

sequencing.194-195, 197-199, 341 In the results described above, RNA from ablated tissue sections had 

a RIN of ~7, representing only an 8% decrease compared with results for the conventional bead-

beating method. This RIN is generally consistent with RIN values reported previously for LCM, 

although results for LCM vary greatly depending on sampling conditions.78, 89, 335, 342-353 Complete 
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ablation occurred with 3-5 kJ/m2 for purified RNA; however, 13 kJ/m2 was required to completely 

ablate rat brain tissue sections. Nevertheless, at their respective laser energies, the captured RNA 

for both sample types had RIN values of ~7 and the associated electropherograms were similar 

(Fig. 1). It is possible that the higher amount of water present in the tissue allows the use of higher 

laser energies, which are required to overcome the tensile strength of the tissue itself, without 

compromising the stability of the RNA.202  

Finally, to augment the Bioanalyzer results, qPCR was used to assess the compatibility of 

laser-ablated RNA with downstream assays. RNA was laser-ablated from two discrete regions of 

rat brain tissue sections (Figure 6.3). Location 1 comprised two 4-mm2 crescents covering the 

corpus callosum region and location 2 comprised a 3-mm2 circle in the hypothalamus region. 

Following purification, the ablated RNA had intense 18S/28S peaks and good overall integrity 

(Location 1, RIN 7.4; Location 2, RIN 7.3). For qPCR, two sets of primers targeting two different 

genes were used. One primer was designed for the house-keeping gene glyceraldehyde-3-

phosphate dehydrogenase. The other primer targeted myelin basic protein (MBP), an important 

protein in the process of myelination of nerves in the nervous system. For both locations and both 

genes, the cDNA produced from the RNA generated Ct values between ~22-28 cycles (Figure 6.3a) 

and melt curves which indicated that each primer pair produced a single, specific final product 

(Figure 6.3b). 
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Figure 6.3 Analysis by qPCR of RNA derived from two locations (a, insert): Location 1, two 4-

mm2 crescents; Location 2, 3-mm2 circle. a – amplification curves; b – melt curves for two genes 

(MBP; GPDH). 

6.4. SUMMARY 

IR laser ablation was used to sample RNA from rat tissue sections. Using a fluence of 13 

kJ/m2, the transfer efficiency of RNA from rat tissue sections was 79%.  the RNA integrity was >90% 
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of its original RIN value (~7) and the RNA performed well in a qPCR assay. Finally, RNA samples 

were acquired from discrete sample locations at a sub-mm scale laser precision. 

These findings add RNA to the list of biomolecules, such as proteins, active enzymes, and 

DNA, that are amenable to sampling by IR laser ablation. Because the method combines micron 

spatial resolution with rapid sampling that completely disrupts tissue, IR laser ablation is 

particularly suitable for the molecular analysis of clinical tissue samples. Thus, when sampling at 

a sub-millimeter spatial resolution is sufficient, IR laser ablation may be a desirable option. Future 

experiments will be directed at integrating transcriptomics, genomics and proteomics from the 

same sample using laser-ablation. 
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CHAPTER 7: CONCLUSIONS AND FUTURE DIRECTIONS 

In this dissertation, the development of IR laser ablation for sampling material from tissue 

sections for biomolecule analysis was described. The significance of this work lies on the ability 

of IR laser to ablate proteins, enzymes, DNA and RNA intact at sub-millimeter resolution from 

tissue sections. An IR OPO system at a wavelength of 3 µm was focused on samples mounted on 

a microscope slide for laser ablation. The ablated material was captured by a microcentrifuge tube 

mounted 5 mm below the microscope slide and analyzed by mass spectrometry, Sanger sequencing, 

electrophoresis, PCR and qPCR. 

In the work described Chapter 1, tissue sections were imaged using a MALDI TOF MS to 

identify ROI based on localized signal intensity. Mid-infrared laser ablation sampling was used to 

sample the ROI on the same section. After determining the ROI by overlaying the MS imaging 

generated heat-map, the section is sampled using IR laser ablation and custom stage-control 

software. The ability of sampling arbitrary shapes from tissue sections using IR laser sampling was 

demonstrated. The IR sampling process can be guided by imaging. Masses of identified proteins 

and the corresponding sampling location were used to improve identification of MALDI imaging 

peaks. Comparison of cellular localization and activity of the proteins from the different regions 

was performed using GO ontology analysis.  

The ability of IR laser sampling of enzymes from tissue while maintaining enzyme activity 

was demonstrated in the work described in Chapter 4. Initial experiments were performed on 

trypsin and catalase thin film to qualitatively assess the presence of enzymatic activity after IR 

laser ablation using fluorimetric analysis. Around 75% transfer efficiency was achieved. 
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Approximately one-third of the captured trypsin and one-half of the captured catalase retained 

enzyme activity. The effect of IR laser ablation on the activity of enzymes captured from tissue 

was studied using thin tissue sections. The enzyme catalase was ablated and captured from rat 

brain tissue and the measured activity was consistent with that anticipated for the different regions 

of the brain. 

In the work described in Chapter 5, an IR laser was used to ablate DNA from tissue section. 

The transfer efficiency and the molecular integrity of the captured DNA was evaluated using 

Sanger sequencing, gel electrophoresis, and fluorimetric analysis. Initial experiments were 

performed on a 3200-bp double-stranded plasmid DNA template. It was found that intact DNA 

was reproducibly transferred with an efficiency of 59±3% at laser fluences below 20 kJ/m2. 

However, when the laser fluence was 36 kJ/m2, DNA may have either fragmented the DNA or 

damaged individual nucleotides. IR laser ablation was used to ablate and capture DNA from rat 

tissue sections and the extracted DNA was amplified by PCR. All samples produced PCR products 

of the expected size. 

Previously, IR laser ablation and transfer at 3 µm was used to isolate proteins, enzymes, 

and DNA from rat tissue sections. In the work described in Chapter 6, it was shown that the 

technique is also suitable for RNA analysis. Initial experiments were performed using human 

kidney RNA to determine whether RNA could be captured intact using IR laser ablation and to 

quantify the ablation and capture efficiency. A laser fluence of ≤ 5 kJ/m2 had no discernible effect 

on the integrity of the RNA. RNA obtained from laser fluences between 5 to 7 kJ/m2 showed 

degradation, but still can be used for qPCR. A laser fluence of 13 kJ/m2 was used to sample RNA 
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from tissue. 79% transfer efficiency was obtained. RNA integrity obtained from laser ablation was 

comparable to that derived from positive controls and mRNA was quantified using qPCR.  

One of the future directions is improving the spatial resolution of material transfer using a 

reflective objective with a high numerical aperture and long working distance. The relective 

objective contains a 100 mm diameter concave mirror and 25 mm diameter convex mirror. The 

Schwarzschild objective has only reflective elements, so it is achromatic and focuses all 

wavelengths equivalently. Using this system, a laser spot 10 µm in diameter was achieved from 

tissue sections at thickness of 5 µm, which allow the borders of ROI to be selected at single cell 

level. The Schwarzschild objective has a working distance of 98 mm. The system can be used for 

transmission geometry or reflectron geometry.  

A second direction will focus on utility of this technique to formalin-fixed paraffin-

embedded (FFPE) tissue specimens for protein, enzyme, DNA and RNA analysis. This has the 

potential to make tissue archival libraries more accessible to molecular biomarkers analysis. 

A third direction will focus on multi-omics analysis. MALD MSI is used to determine the 

ROI from tissue sections. The ROI from same or consecutive tissue sections are ablated and 

transferred. The proteins, metabolites, enzymes, DNA and RNA from single samples are analyzed 

and bioinformatics analysis can be achieved. 
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