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ABSTRACT 

Nanostructures of organosilanes, thin metal films, and protein nanopatterns were prepared 

and analyzed with atomic force microscopy (AFM). Organosilanes with designed functional 

groups were used to selectively pattern green fluorescent protein at the nanoscale using protocols 

developed with particle lithography. Mesospheres are deposited onto a substrate to produce a 

surface mask. Organosilanes are deposited to form a matrix film surrounding nanopores for 

depositing proteins. The nanopatterns were characterized using AFM, after steps of particle 

lithography for directly visualizing surface changes. Studies with AFM also provide a compelling 

tool for teaching undergraduates to introduce concepts of nanoscience.  

An undergraduate laboratory was developed with particle lithography to introduce the 

concepts of nanoscience and surface chemistry. Nanopatterns of organosilane films are prepared 

using protocols of particle lithography. An organic thin film is applied to the substrate using steps 

of either heated vapor deposition or immersion in solution. At the molecular level, two types of 

sample morphology can be made depending on the step for depositing organosilanes. Experience 

with advanced AFM instrumentation is obtained for data acquisition, digital image processing and 

analysis. Skills with chemical analysis are gained with bench methods of sample preparation. 

Concepts such as the organization of molecules on surfaces and molecular self-assembly are 

demonstrated with the visualization of nanopatterns prepared by students. Experiments with 

particle lithography can be used as a laboratory module or for undergraduate research projects, and 

are suitable for students with a multidisciplinary science background. 

The kinetics and properties of thin gold films during dewetting were studied using AFM. 

Thin films of gold with varying initial thickness were first deposited onto fire polished glass slides 

and imaged with AFM. Next, the films were annealed for two hours, and then imaged after 
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annealing. Gold islands with varying degrees of separation were formed. Surface plasmon 

spectroscopy was also used to analyze the gold films. To further this study, a kinetic study was 

done. Two gold thin films of 10 nm each were imaged after being annealed for 15, 30, 45, 60 and 

120 minutes. It was found that after the first 15 minutes of annealing, gold islands were observed.  
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  INTRODUCTION 

 Protocols were developed for investigations with patterned nanomaterials including 

organic thin films, protein nanopatterns and gold films using scanning probe microscopy (SPM). 

Nanopatterns of organosilanes can be prepared to define exquisite nanopatterns for the 

development of well-defined surfaces. Selected imaging modes were used during the course of the 

dissertation research to characterize samples, including tapping mode, contact mode and force 

modulation microscopy. In addition, a nanoscale laboratory module was developed for 

undergraduate students to open opportunities with nanopatterning and the atomic force microscope 

for the undergraduate curriculum.  

Nanopatterning of proteins have been applied to create biochips, biosensors,3, 4 and tissue 

engineering, 5 as well as for the study of cells.6 Protein-protein interactions can be studied at the 

nanoscale using SPM in nondestructive, ambient and liquid environments. Methods used for the 

study of proteins at the nanoscale include microcontact printing, 7-10 nanoimprint lithography, 11-13 

electron beam lithography14-16 and scanning probe microscopy. 17, 18 

1.1 Surface Studies at the Molecular Level with Atomic Force Microscopy 

 Research in fields including biology, electronics, medical diagnostics, and organic films 

have been advanced by the sensitive measurement capabilities of SPM instruments. One of the 

main studies used with an AFM are performed on organic thin films. 19-22 Electronic properties of 

surfaces can also be ascertained from AFM measurements.23-25 Magnetic properties of surfaces 

can be investigated from AFM data as well.26, 27  

A chemically or mechanically sharpened probe is used with AFM to scan over the sample 

to provide detailed information of the forces between the sample and the tip. Resolution of the 

AFM is not limited by the diffraction of light when compared to traditional light microscopes; 
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resolution can be achieved at the molecular level. At least 50 measurement modes of AFM have 

been invented which measure the forces between the tip and the sample. There are three general 

imaging modes: contact, non-contact, and intermittent contact depending on how the tip is operated 

to scan over the sample. Detailed discussion on these selected modes will be presented in Chapter 

2. 

1.2 Experimental Approaches for Patterning and Imaging at the Nanoscale 

 Details of the imaging modes used in this dissertation are presented in Chapter 2 as well as 

details of the methods used for nanopatterning with particle lithography. Particle lithography with 

organosilanes was used to prepare nanopatterns on silicon substrates. High throughput patterning 

of substrates can be achieved with small amounts of dilute reagents. With particle lithography, 

substrates can be patterned with a resist and an active area for the selective patterning of proteins. 

The instrument set-up and operation for force spectroscopy and in situ sample modulation also 

will be described in Chapter 2. 

1.3 Protein Patterning using Organic Thin Films 

 A number of methods have been reported for patterning proteins for the interface of sensing 

surfaces and testing platforms. An overview of protein patterning methods is presented in Chapter 

3. Methods reported for protein patterning include photolithography, colloidal lithography, 

electron-beam lithography, microcontact printing, nanoimprint lithography, stencil lithography, 

biased induced lithography and nanografting. Patterning proteins can also be done with an atomic 

force microscope (AFM) tip, such as with dip-pen nanolithography. Examples for each method 

will be described. 
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1.4 Nanopatterning of Green Fluorescent Protein using Particle Lithography 28  

 Nanoscale surface patterning of green fluorescent protein (GFP) was achieved using 

particle lithography as detailed in Chapter 3. During the initial step a film of (3-mercaptopropyl) 

trimethoxysilane with a reactive sulfhydryl head group was deposited onto the substrates 

(microscope glass coverslips). Next a solution of size-sorted mesospheres was deposited on top of 

the film and dried in ambient conditions. During the drying process, capillary action as the solvent 

dries draws the mesospheres together into a hexagonal arrangement. Treatment with UV-ozone 

exposure was used to etch away areas of the silane film that were not protected by the mesospheres. 

The samples were then placed into a solution of 2-[methoxy(polyethyleneoxy)6-9propyl] 

trichlorosilane (MPT-silane) to form a resist to prevent protein binding. Subsequently, GFP was 

covalently linked to the prepared nanopatterns to generate an array of protein nanopatterns. 

1.5 Undergraduate Laboratory for the Preparation of Organosilane Nanopatterns29  

 An undergraduate laboratory module for the preparation of nanopatterns of 

octadecyltrichlorosilane is presented in Chapter 4. A few basic steps are described for preparing 

reproducible arrays of silane nanopatterns. Monodisperse size-sorted mesospheres (latex or silica) 

can be used to create arrangements of rings or holes with nanoscale dimensions. Areas of the 

substrate in direct contact with the mesosphere masks are protected from silane deposition. Silanes 

are deposited surrounding the mesospheres to form a film with nanopatterns. 

1.6 Investigations of Gold Island Dewetting30  

 Atomic force microscopy studies was performed on thermally induced island formation in 

thin gold films deposited on fire-polished glass substrates.   High-resolution AFM was used to 

determine the morphology of Au films prepared by electron beam deposition onto fire-polished 
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glass slides.  The microstructure of films with a nominal thickness in the range of 2 nm to 15 nm 

was measured before and after annealing at 550 °C in an argon/hydrogen atmosphere for 1 hour.  

In addition, the films were probed using surface plasmon resonance spectroscopy in order to obtain 

a secondary characterization of the effects of annealing.  Although annealing induced granularity 

in all of the films studied, films with thicknesses of 5 nm or less where found to be somewhat more 

resilient to the anneal treatment.  These thin films exhibited a close-packed grain structure that 

almost completely covered the substrate.  In contrast, films having thicknesses of 7 nm and greater 

exhibited well defined post-anneal island separation.  Our observations suggest that thermally 

induced de-wetting is suppressed in the thinner films.  

1.7 Conclusions and Future Directions 

 The AFM provides a tool to characterize the properties of surfaces and to conduct 

experiments at the nanoscale using new measurement modes. Conclusions are presented in Chapter 

6 for the dissertation. Particle lithography when combined with organosilanes deposition can be 

used to prepare exquisite arrangements of nanopatterns on surfaces. Particle lithography can also 

be used as an educational tool for undergraduates to learn basic chemistry techniques for 

nanoscience studies. Learning methods of particle lithography provides hands on laboratory skills 

that can be used in future research and careers. 
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 EXPERIMENTAL APPROACHES WITH SCANNING PROBE 

MICROSCOPY FOR THIN FILM AND PROTEIN INVESTIGATIONS 

 

Studies at the nanoscale were accomplished using measurement and imaging modes of 

scanning probe microscopy (SPM). Advantages of using an SPM system include imaging in 

ambient conditions where an ultra-high vacuum environment is not needed. Experiments can also 

be done in liquid environments to simulate biological conditions and in situ processes.  

2.1 Overview and History of SPM 

The atomic force microscope is part of the scanning probe microscope family that includes 

the scanning tunneling microscope (STM) as well as the nearfield optical scanning microscope 

(NSOM). The class of microscopes have an ultra-sharp tip or probe to scan across the surface in a 

raster pattern. During scans, a computer is used to control and monitor the position of the tip as it 

is placed on or near the surface. The STM was invented by Gerd Binning and Heinrich Rohrer in 

1981 at IBM Laboratories.31 Later came the invention of the NSOM which was reported in 1984.32 

In 1986, the AFM was introduced by Gerd Binning, Calvin Quate, and Christopher Gerber.33 Since 

its invention, the AFM has become an invaluable tool for studies at the molecular and micron 

scale. New modes have been developed with AFM for measuring forces and accomplishing AFM-

based nanolithography.34-36   

2.2 Imaging Principle of AFM 

 Samples that can be analyzed with AFM include organic thin films,23, 37-39 biological 

specimens,40, 41 polymers,42 and solid state materials.43 A major advantage of using an AFM is that 

samples do not have to be conductive or magnetic as required for electron microscopy. 

Additionally, the AFM can be operated in a range of environments including ambient, vacuum, 

and liquid. Resolution limits for the AFM have been reported to be roughly 0.01 nm vertically and 

0.1 nm laterally when using an ultra-sharp tip.44 
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 A representation of the basic set up is shown in Figure 2.1 for a tip-mounted AFM scanner. 

A laser diode is focused onto the back of the cantilever near the tip. The laser light deflects off the 

reflective coating on the backside of the tip to a position sensitive photodetector. A feedback loop 

is maintained between the computer and the piezoceramic scanner. As the tip is scanned across the 

surface, the movement in relation to the surface topography and other forces that are incurred 

between the tip and the sample is tracked by the detector. A feedback loop continuously adjusts 

the piezoceramic scanner to maintain either a constant force (contact mode) or constant amplitude 

(intermittent contact mode) during imaging. Digital signals from the photodiode are then sent to 

the controller and to a computer for processing and real time adjustments during the scanning 

process. 

 There are several types of AFM probes that can be used to investigate sample properties, 

depending on the selected imaging mode and instrument configuration. Most probes are made from 

silicon (Si) or from silicon nitride (Si3N4) and either have a pyramid shaped tip or a stylus probe 

Figure 2.1: Basic setup of a tip-mounted AFM. 
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shaped tip. The apex of the tips can be made from carbon nanotubes, certain metals or even 

diamond, depending on the needs of the experiment. Typically the apex of a tip is ~10 nm. The 

tips are attached to a flexible cantilever. The backside of the cantilever has a thin metal layer of 

either gold or other reflective metal that will deflect the laser signal.45 For magnetic imaging 

modes, the tip is constructed with a magnetic metal coating. 

2.3 Contact and Frictional Force Modes of AFM 

Contact mode and frictional force microscopy are the two main modes used with an AFM 

operated in continuous tip-surface contact. For contact mode, a tip is placed on a surface and 

continuously scanned in contact with the sample. Using a force setpoint determined by the 

operator, the tip and the sample force is adjusted during scanning by the feedback loop and 

adjustments to the z piezo. As the tip moves up and down on the surface, the laser spot moves up 

and down in a likewise fashion on the position sensitive photodiode to produce a topography 

image. When the tip moves up, the z piezo will move the tip away from the surface. However, 

when the tip is scanned over a depression, the laser spot will move downwards on the position 

sensitive photodiode. To counteract the tip movement the z piezo feedback loop will change the 

force applied between the tip and sample.  

The incremental changes to the x, y, and z piezo are controlled during the entire scanning 

process using the feedback loop of the software and the instrument. Using the quadrants of the 

photodiode represented in Figure 2.1 a mathematical representation for topography is (A+B)-

(C+D). Simultaneously an error or deflection image is produced and shows the amount of voltage 

the instrument has to apply to the piezo to return the forces back to the original force set point. In 

addition to moving up and down during scanning, the tip will move side to side as repulsive and 

attractive forces between the tip and sample. Frictional force images are produced from the signals 
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as the tip twists in relation to these forces and show a difference in surface chemistry. A 

mathematical way to present this is by using the letters of each quadrant of the photodiode 

presented in Figure 2.1; (A+C)-(B+D) will represent the lateral force signals. 

Examples of contact mode images of nanopores within a thin film of 

octadecyltrichlorosilane (OTS) are shown in Figure 2.2. The topography image (Figure 2.2A)   

 

shows the heights of the features on the surface; the lighter color for the areas indicate taller 

features; whereas the areas with darker color reveal shallower features. Lateral forces images 

(Figure 2.2B) are simultaneously acquired during scanning and the color scale shows differences 

in surface chemistry for areas of the sample. The average film thickness of the OTS monolayer is 

roughly 1 nm high as can be seen from the cursor profile in Figure 2.2 C. 

The first use of contact mode was reported in 1986 from IBM laboratories by Binning, 

Quate, and Gerber during which the researchers imaged aluminum oxide surfaces.33 Subsequently 

atomic resolution was achieved when Binning et. al. reported images of a graphite surface in 

1987.44 The first biological surface imaged with contact mode was polyalanine in 1989 by Drake 

et. al.46 Since then true atomic resolution has been obtained in previously reported studies.47-49  

Figure 2.2: Nanopores within a thin film of octadecyltrichlorosilane viewed with contact mode 

AFM.  (A) Topography frame; (B) Lateral force image; (C) Cursor profile for the line in A.  
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2.4 Force Spectroscopy  

Force spectroscopy is used to measure the forces between the tip and the sample. Force 

measurements can be used to determine quantitative information about certain types of binding 

interactions of samples. Mechanical properties of biological systems,50-53 polymers,54 and thin 

films have been reported.55-57 During data acquisition, a force distance curve is generated as the 

tip approaches the surface in the z direction. Using Hooke’s Law, 𝐹 = −𝑘𝑥, forces between the 

tip and sample can be quantified. In this law, F is the force that the tip applies to the surface; 𝑘 is 

the spring constant of the cantilever; and 𝑥 is the cantilever deflection that is measured by the 

instrument. The tip is approximated to be a spring and the force is assumed to be directly 

proportional to the tip deflection. A typical force distance curve is presented in Figure 2.3 of 

nanopores within an OTS matrix with the approach curve in blue and the retraction curve in red. 

When the tip is far away from the surface, it does not experience any long range attractive or 

repulsive forces (regime 1). As the tip nears the surface, long range attractive forces start to interact 

with the tip and the tip “snaps to” the surface (regime II). As the tip is continued to be pressed onto 

the sample surface, the long-range attractive forces are replaced by short-range repulsive forces 

and the force against the tip increases (regime III). When the tip is pulled away from the surface, 

after a maximum is reached, the short range repulsive forces begin to decrease (regime IV). Once 

the repulsive forces have dissipated, there are attractive forces that hold the tip until it “snaps 

away” from the sample (regime V) showing the attractive forces. Finally the tip is withdrawn far 

enough away from the surface that there are no net forces acting on the tip (regime VI).  
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Figure 2.3: Force-distance curves obtained in air for a Si3N4 tip on an OTS thin film.  

2.5 Tapping Mode AFM and Phase Imaging 

 Another primary mode of SPM used in this dissertation is tapping mode or intermittent 

contact mode.58 A possible drawback for contact mode is for softer samples to be damaged when 

imaged due to shear forces. In tapping mode a tip “taps” the surface during scanning which 

minimizes the forces applied to samples.59, 60 Intermittent contact mode has therefore been used to 

image samples such as proteins, 61-63 nanoparticles, 64, 65 cells, 66-68 and polymers.59, 69  For tapping 

mode the tip is driven to oscillate near its resonant frequency. During scanning, an alternating 

current (AC) is used to drive a signal in a piezoceramic actuator that is mounted in the nosecone 

assembly.  

Tips for tapping mode generally have a higher aspect ratio and higher spring constants than 

for contact mode imaging. Typical resonance frequencies of tapping mode tips can range from 50-
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400 kHz with spring constants of 10-50 N/m. During scanning, a lock-in amplifier is used to 

monitor changes in the amplitude of the tip in relation to the driving AC signal. The feedback loop 

will then adjust the z piezo of the scanner to return tip amplitude back to the original driving signal. 

The error signal for tapping mode is generated by the difference in the amplitude of the tip from 

the amplitude set point of the driving signal.  

 During imaging, phase images are simultaneously acquired with topography and amplitude 

images. A difference in the phase angle between the driving AC signal and the output of the phase 

of tip are monitored by the lock-in amplifier and are converted into phase images. Differences of 

sample and tip surface adhesion and viscoelasticity can be evaluated from changes in the phase lag 

(Figure 2.4).  

 

Figure 2.4: Operating principle of tapping mode atomic force microscopy.  

Fibrinogen bound within nanopores formed in a film of 2-[methoxy(polyethyleneoxy)6-9 

propyl] trichlorosilane (MPT-silane) are viewed with tapping mode AFM in Figure 2.5. The 
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heights and surface features are presented in the topography channel (Figure 2.5A).  Brighter areas 

correspond to taller surface features while darker areas represent areas with lower topological 

features. In Figure 2.5B phase images show viscoelastic differences between the tip and the sample 

during imaging. The brighter areas reflect the bound protein to the sample while the darker areas 

correlate to the MPT-silane matrix. The height profile for the white line drawn in the topography 

image is shown in Figure 2.5C. The average heights are roughly 3.5 nm which roughly corresponds 

to one layer of fibrinogen in a side orientation on the surface.70 

2.6 Particle Lithography Combined with Silane Deposition   

 Particle lithography,71 has been used to pattern self-assembled monolayers,72 porphyrins,73 

nanoparticles,74 metals,75 and polymers.76 The advantages of using particle lithography include 

long range ordering of the particle mask, and the use of simple benchtop techniques and basic lab 

equipment to reproducibly make patterns at the micro and nanoscale.77, 78 The sizes and periodicity 

of the patterns can be tuned by selecting the sizes of mesospheres used for the particle mask, 

ranging from 50 nm to microns.79  

For protocols with particle lithography, a surface mask is prepared on a flat substrate by 

drying a suspension of either latex or silica spheres. During the drying step, capillary forces pull 

Figure 2.5: Tapping mode AFM micrographs of fibrinogen bound inside nanopores of MPT-silane 

viewed with tapping mode AFM.(A) Topography image of fibrinogen immobilized onto MPTMS 

nanopores. (B) Corresponding phase image of (A). (C) Cursor profile of the white line in (A). 
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the mesospheres together into a close packed arrangement (Figure 2.6).80 After drying there are 

trace amounts of water trapped in the meniscus sites at the base of the mesospheres. The minute 

amount of water defines the sites where hydrolysis and condensation of organosilanes will occur. 

During either vapor deposition or immersion protocols, the organosilanes will intercalate between 

the mesospheres and cover the unmasked areas of the surface. The mesospheres protect small local 

areas where direct contact provides a surface mask. The amount of water present on the substrate 

defines the amount of self-polymerization of the silane on the substrate.81 Substrates that only have 

trace amounts of water on the surface will form a monolayer when immersed into a dilute solution 

of silanes, forming nanopores where the mesospheres were located.72  Because trace amounts of 

water aid in the hydrolysis of the silanes, anhydrous or dry solvents are used for the immersion 

protocols. If excess water is present at the base of the mesospheres multilayers of OTS are observed 

to produce nanorings.72, 82 Periodic arrays of nanostructures provide exposed local surface sites 

that can be used to bind another silane with selected head group chemistry.  

 

Figure 2.6: Close packed mesospheres on glass. Oil immersion micrograph (100×). 

2.7 Application of Particle Lithography for Patterning Proteins 

Combining particle lithography with immersion or vapor deposition of self-assembled 

monolayers (SAMs) enables surfaces to be tailored for selective protein attachment. Self-

assembled monolayers are formed when the organothiols or organosilanes form a two-dimensional 
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arrangement on the surface. Organothiol and organosilane SAMS have been previously reported 

for the attachment of proteins.83 Thiol SAMs have been patterned on gold, silver, and other coinage 

metals. The sulfur end group of thiols attach by chemisorption to metal surfaces.84, 85 Silane SAMs 

have been prepared on gold, glass, mica, quartz, indium-tin oxide, as well as silicon surfaces.72, 86 

A siloxane network is formed by Si-O-Si crosslinking of the silanes to the surface (Figure 2.7).87 

Typically, for protein immobilization and patterning, a surface is functionalized with two 

chemistries. The first is a protein resistant layer usually having either a methyl, hydroxyl or 

ethylene glycol group. The second molecule will have reactive head groups for binding proteins. 

Organosilanes were used in protein binding experiments due to the inherent thermal stability and 

also for designing chemistries suitable for glass or quartz substrates. 

 

Figure 2.7 Mechanism of organosilane self-assembly on a silicon surface 

A well-studied silane, octadecyltrichlorosilane (OTS), has been used to prepare SAMs on 

Si substrates.87, 88 Due to the three chlorines on the OTS molecule, it is highly reactive in the 

presence of water and will polymerize.88  When silanes come into contact with water either in the 

liquid or vapor phase, the chlorines will hydrolyze and form silanol groups. Upon exposure to a 

hydroxylated surface, the silanols will either react with hydroxyl groups on the surface to form 

covalent bonds, or horizontally polymerize and react with other silanes in solution to form Si-O-

Si bridges. A densely packed OTS monolayer is formed with an orientation of approximately 12° 

from the surface normal.88  
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Protein patterning on surfaces was first described in 1985 by Haddon and Lamola for use 

as an electronic biomolecular device.89 The first surface to be functionalized with a monolayer of 

protein was reported by MacAlear and Wehrung in 1978.90  A protein layer was patterned for use 

as a biomolecular circuit. Methods that have been reported for generating micro and nano sized 

protein arrays on surfaces include microfluidic patterning,91-93 photolithography,94-96 electron-

beam lithography,81, 97 microcontact printing,98-100 dip-pen nanolithography101, 102 and particle 

lithography.1, 103-105 83, 106, 107 

2.8 Force Modulation Microscopy 

Force modulation microscopy (FMM), invented in 1991 by Maivald and Hansma et. al.,108 

is used to image changes in surface elasticities during AFM imaging. During contact mode 

imaging, a modulated force is applied to the surface and the response of the tip is monitored using 

the photodiode. Quantitative elasticity and viscoelasticity measurements can be obtained using the 

FMM mode. Additionally Young’s modulus can be quantified for certain materials using FMM. 

Since its invention FMM has been used to image samples including biological,109-111 thin organic 

films,110, 112, 113 and polymers.114-118 

 For FMM the AFM is operated in contact mode. However, during imaging a driving 

frequency in the z direction is applied to a piezoactuator either in the tip holder assembly or in the 

sample stage.62, 113, 116, 119 A variation on FMM was invented by Li et. al.  in which an AC current 

was applied to the tapping mode nosecone as the tip was scanned in contact mode across the 

sample.120 As the tip is raster scanned across the sample a lock-in amplifier monitors the response 

of the tip and sample to the driving signal. Two different channels are monitored in this mode, 

amplitude and phase response of the tip. Amplitude images display the elastic response of the tip 
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and sample contact. Phase images display the viscoelastic response of the tip and sample contact 

area.  

2.9 Dynamic Lateral Force Modulation Atomic Force Microscopy 

 Dynamic lateral force modulation AFM (DLFM-AFM) or shear force modulation, is 

similar to FMM however, instead of the sample being modulated in the z direction, the sample is 

modulated in the x or y direction during scanning. Two different instrument configurations can be 

used for DLFM. The first uses a piezoactuator mounted in the sample stage to move the sample in 

the x or y direction.121 However, the second method uses a specially designed nosecone with a 

piezoceramic material mounted to the side of the tip holder (Figure 2.8). Notice that at the base of 

the tip holder there is a grey line. This line is the piezo that is attached to the side of the tip holder. 

When an AC current is passed through the piezoactuators, the stage or the tip moves parallel to the 

scan direction of the sample. Localized shear forces can be analyzed using this method. For 

example, glass transition temperatures have been found for certain polymer samples,122-124 

characteristics of metal thin film contamination,121 and viscoelasticity of cells.125 Details and 

application of DLFM-AFM to image materials and instrument set up are presented in Appendices 

A and B.  

 

 

Figure 2.8 Piezo tube scanner with DLFM nosecone attached 
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  PROTEIN PATTERNING USING ORGANIC THIN FILMS 

3.1 Introduction 

Proteins are part of the biochemical pathways for functions such as tissue construction,126, 

127 cellular functions, 128, 129 antibody and immune response,130 and regulating osmotic pressure.131 

Protein patterns can be useful for molecular-level studies of the kinetics and properties of proteins. 

Protein patterns are currently used for biointerfaces, biosensors, and drug-screening.132-135  

 An inherit challenge for producing protein patterns is the fragility of proteins and a 

tendency to denature in chemical environments. When dispersed in a solution, protein samples 

dried on surfaces tend to self-aggregate and form clusters. For samples that are dried, proteins bind 

through attractive forces that can be ionic, hydrophobic, or van der Waals forces.136-138 Proteins 

can denature and lose the tertiary structure upon drying on a surface. An example atomic force 

microscopy (AFM) image of protein aggregation, even at dilute concentrations as shown in Figure 

3.1 as reported by Ngunjiri et al.1 The AFM results demonstrate that even with incomplete surface 

coverage, proteins bind together and form aggregates on surfaces of mica. To overcome the 

challenges with depositing protein on surfaces, new strategies in protein patterning apply chemical 

approaches for surfaces with organothiol and organosilane self-assembled monolayers (SAMs). 

Methods have been developed for selective patterning of protein on patterns of SAMs. Two types 

of chemistries have been employed to pattern proteins. Organosilane SAMs bind to glass, metal 

oxides, mica or silicon substrates through a silanol bond. Organothiol chemistry has a sulfur group 

to bind to coinage metals such as gold or silver.  

 



18 

 

 Surfaces are patterned with two distinct regions of functional SAMs, a matrix region and 

reactive sites of patterns. The matrix region has a protein resistant layer to prevent nonspecific 

adsorption of proteins. A general relationship between the wettability of the surface correlated to 

a stronger absorption of proteins, reported by Sigal et al.139 Matrix surfaces can be either methyl-

terminated or present oligomers of ethylene glycol at the interface.140-143 Self-assembled 

monolayers that have a tripropylene sulfoxide group have also been found to resist protein 

adsorption.144 The reactive layer proveds a protein attractive region to bind proteins to the surface. 

Surfaces presenting amino, carboxylic acid, and thiol groups have been used with linker 

chemistries to attach proteins to patterns of SAMs.  

 Techniques have been developed to produce patterns of proteins on SAM surfaces with 

micro- and nanometer resolution. Two approaches to this challenge are to either directly graft 

proteins to the surface or to use the proteins to write or inscribe the patterns. Direct grafting of 

proteins has been reported using methods of photolithography,95, 145-147 colloidal lithography,1, 27, 

70 electron-beam lithography,15, 148-150 microcontact printing,100, 151-154 nanoimprint lithography,96 

stencil lithography,155, 156 biased induced lithography,157-160 and nanografting.161-165 Patterning 

proteins can also be done with an AFM tip, such as with dip-pen nanolithography.101, 166, 167 One 

of the early examples of preparing protein patterns was reported in 1978 by MacAlear et. al.90 A 

Figure 3.1: Ferritin deposited onto a mica surface, imaged in ambient conditions with 

tapping mode AFM. (A) At saturation surface coverage; (B) Aggregation persists with 

lower surface coverage. (C) Combined cursor profiles for A and B. Reprinted with 

permission from Ngunjiri et al.1  
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protein layer was deposited onto a clean silicon wafer with a native oxide layer. A photoresist was 

deposited onto the top of the protein layer. Micropatterns of proteins were produced using an 

electron beam to irradiate away areas of the sample to create patterns.  

3.2 Patterning Proteins using Photolithography 

 Photolithography is a widely used patterning techniques used to pattern proteins. 

Photolithography methods use light, usually ultraviolet (UV), to make 3D structures on surfaces. 

A polymer is initially deposited on a substrate and then a photoresist containing the pattern is 

placed on top of the polymer. A glass slide with a pattern is made by depositing chromium onto 

the glass. When the polymer is exposed to UV light, it will react and either become etched away 

or the chemical functionality will change and become dissolvable in the development step. 145, 168, 

169 

 The ease of surface modification using a surface mask combined with light irradiation of 

the sample makes photolithography a practical method for protein patterning. Photolithography 

can be applied to change the functional groups of surfaces. For example, thiol groups on a surface 

can be turned to sulfonates.170  An arylzide when exposed to light can be functionalized to a nitrene 

group that can bind to a CH bond in a molecule.171, 172 Caging chemistry can also be used. When 

exposed to light, the cage molecule is decomposed to a ketone and a carbon dioxide.173-176 

Diazirine, which absorbs light at 350 nm, can be used to attach proteins with covalent bonds.177, 

178  

3.3 Protein Patterning with Stencil Lithography 

 For Stencil lithography, a stencil is used to block and control the flux of molecules. Unlike 

photolithography, microcontact printing, or nanoimprint lithography the stencil is not in physical 
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contact with the sample.179 The method can be applied to fragile substrates such as thin glass 

microscope coverslips that could crack and break. 

 Methods of stencil lithography have been used for protein patterning. Stencil lithography 

was used to pattern IgG by Huang et al.155Stencils were prepared using low-pressure chemical 

vapor deposition on silicon nitride substrates. Once the stencils were made, they were placed over 

a substrate with PDMS. The PDMS that is not masked by the stencil was exposed to oxygen plasma 

treatment and became hydrophilic. Next, the solution containing the protein was put into the 

chamber on top of the hydroxylated PDMS. Next the solutions were analyzed using SPM and 

fluorescence microscopy.  

Protein patterns of IgG were produced using stencil lithography.155A PDMS stamp was 

irradiated with plasma to hydroxylize areas through a stencil. Next an amino terminated silane was 

bound to the hydroxylated surface. Bis(sulfosuccinimidyl)suberate was used to bind the amine on 

the silane to the amine of anti-mouse IgG. Heights of the prepared samples displayed one protein 

binding to the nanodots. Subsequent immobilization of mouse IgG showed the bonding of an 

antibody to the anti-mouse IgG.155 

A parylene-C membrane was used to pattern substrates for protein patterning with stencil 

lithography, reported by Wright et al.180 The method is advantageous because the membrane that 

was used as a mask is flexible. Using the membrane enables a reusable stencil to be used. Texas 

Red-BSA was deposited onto the substrate through the stencil. Once the stencil was removed a 

second protein, FITC-BSA was incubated on the patterns. The method provided a protocol for 

patterning two different proteins on one substrate.  
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Advantages of stencil lithography for protein patterning include the ease of the procedure, 

the capability of the stencil to be moved while deposition takes place, as well as the reusability of 

the stencil Potential disadvantages are the clogging of the membrane as well as the stability of the 

membrane. With advances in UV and plasma treatment of substrates, stencil lithography is 

becoming a more viable option for routine patterning of substrates with proteins.  

3.4 Patterning SAMs and Proteins using Particle Lithography 

 Particle lithography also referred to as colloidal lithography,181 nanosphere lithography,75, 

182 evaporative lithography,183 and natural lithography,71 uses a surface template of either latex or 

silica spheres to create patterns onto a surface. Particle Lithography has advantages of using small 

volumes of dilute reagents, high throughput, and reproducibility of nanostrucres. A solution of 

spheres was deposited onto a surface as described in an early report by Deckman and Dunsmuir.71 

As the solvent dried and evaporated, capillary forces pulled the spheres together into close-packed 

arrays. The substrate area that is in contact with the base of the particle was protected from further 

functionalization by the surface mask of spheres. By changing the size of the particles used, the 

surface density of patterns can be controlled. The smaller the size of the spheres, the greater the 

number of nanopatterns within a certain area.82 

 Particle lithography was used to pattern ferritin onto gold, mica(111), and glass surfaces, 

as reported by Ngunjiri et al.1 Nanorings of ferritin were produced on each of the substrates. At a 

certain protein:sphere ratio, the surface coverage of the proteins was greater for nanopatterns 

prepared on glass followed by mica and then gold. Changing the concentration of protein resulted 

in protein patterns of nanopores with a film of bovine serum albumin (BSA) that formed in the 

interstitial sites between the spheres (Figure 3.2 A-D). The ratio could be tuned to produce 

nanorings of the BSA (Figure 3.2 E-H).  



22 

 

 

Figure 3.2: Nanostructures of IgG on mica obtained by varying the concentration of spheres to 

protein. (A) AFM topograph of pore-shaped nanostructures, 10 x 10 µm2. (B) Zoom-in image of 

pore nanostructures, 6 x 6 µm2. (C) View of pore morphology. (D) Cursor profile of the white line 

in (C). (E) Ring nanostructures produced with a lower protein to sphere ratio. (F) Zoom-in image 

of E. (G) Three dimensional view of an individual nanoring of protein. (H) Height profile along 

the white line in (G). Used with permission from reference 184.184   

 

Colloidal lithography was used to prepare micro and nanosized protein patterns by Singh 

et al.185 Colloidal suspensions formed on gold were sputtered onto glass substrates to create an 

area for protein binding. Areas of the glass that were protected by the spheres was used as the 

protein resist. Bovine serum albumin was bound to the exposed areas of the substrate and results 

were confirmed with fluorescence microscopy.  

 Gold nanodots that were patterned through a polystyrene-block-poly[2-

vinylpyridine(HAuCL4)0.5] copolymer onto glass coverslips were used for particle lithography by 

Arnold et al.186 Plasma treatment was used to remove the block copolymer leaving behind a 

hexagonal array of gold nanodots. By changing the composition of the copolymer, the distribution 

between the nanodots could be controlled. Distances between the gold nanodots were roughly 28 
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nm apart enabling one integrin molecule to be bound to each of the nanodots for cell patterning. 

Subsequently, MC3T3-osteoblasts were attached to the prepared nanostructures.  

 Charged polystyrene spheres were deposited on top of a thin film of gold in a study by 

Agheli et al.187 The sample was then heated, leading to a deformation of the polystyrene spheres 

into disks. Next, an argon ion beam was used to etch away the gold that was not covered by the 

melted polystyrene to produce gold islands with a radius of 124 nm. Next, ferritin was bound to 

the exposed nanodisks that were crosslinked with laminin. The binding orientation of laminin was 

determined since the nanodisks were smaller than the length of laminin.  

Ring patterns of ferritin were produced onto freshly cleaved mica (0001).27 A solution of 

protein was mixed with a solution of mesospheres. As the solvent dries capillary action pulls the 

mesospheres together in a hexagonal close packed array. The proteins in the solution will form a 

ring around the base of the mesospheres. Individual ferritin proteins can be seen in the ring 

nanopattern. A new imaging mode, magnetic sample modulation, was used to image the protein 

nanopatterns under an applied magnetic flux.  

Fibrinogen was patterned using particle lithography.70 Three different packing densities 

were used to create nanostructures that were 100, 250, and 500 nm apart. In the studies it was 

noticed that MPT terminated silanes would cross react with another silane in the backfilling step. 

A novel method was developed to produce a monolayer of the protein binding silane first and then 

deposit the mesospheres on top of the formed monolayer. Next, UV-ozone treatment was used to 

irradiate the area that was not protected underneath the mesospheres. The mesospheres are left on 

the substrate and the sample is placed into a solution of dilute MPT-silane. The MPT-silane creates 

the protein resist around the active silane pillars. Surface coverage of the protein increased as the 

size of the mesospheres decreased.  
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3.5 Application of Electron Beam Lithography for Patterning Proteins 

 Electron beam lithography is a method to pattern substrates with high spatial resolution of 

approximately 5-10 nm.188  In electron beam lithography (EBL), a high energy beam of electrons 

is focused onto the surface. The molecules that are on the surface can either be irradiated away or 

can be oxidized using EBL. 189 Electron beam lithography was used to pattern proteins by 

Christman et. al. in 2009.81 In this method a polyethylene glycol (PEG) chain was functionalized 

with one of four protein linking chemistries. After subsequent binding of the functionalized PEG 

to the surface, areas were irritated with an electron beam which caused the PEG to crosslink.  

 One of the challenges of electron beam lithography is that the high energy beam needed to 

design the patterns can be harmful to biological molecules and could cause damage. Electron beam 

lithography was applied to produce patterns of antibodies on silicon substrates for protein 

immobilization by Lau et al.16 Using polymers that contain a trehalose side chain can stabilize 

proteins in certain environmental conditions.190-192 First a PEG-silane was deposited onto silicon 

substrates through immersion. Next, a solution with either anti-interleukin 6 or antitumor necrosis 

factor alpha as well as PolyProtek and ascorbic acid was spin-coated onto the sample. An electron 

beam was used to irradiate away the molecules that were not crosslinked to the surface. 

Multicomponent systems could be fashioned using the spin coating procedure.  

 Protein nanopatterns were made using EBL to create platforms to differentiate between 

normal and breast cancer cells, as reported by Horzum et al.193 Indium tin oxide substrates were 

first coated with an amino-terminated silane to facilitate protein binding. Fibronectin binding 

regions with a K-casein background were used as the proteins that differentiated the surface 

morphology for cell attachment. It was found that breast cancer cells could grow on the non-

adhesive regions better than normal mammalian epithelial cells.  
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 Electron beam lithography has advantages including high spatial resolution, range and 

sizes of patterns that can be written and high resolution. However the cost of an electron beam 

system is relatively expensive and the deposition step must be done in a high vacuum environment.  

3.6 Protein Patterning using Microcontact Printing 

 Microcontact printing has been used to pattern proteins at the micron scale.127, 154, 194 

Nanoscale patterning of proteins was later achieved in 2002 by Delamarche et al.195, 196 For 

microcontact printing, a master pattern is made with PDMS to make the stamp. Next, the stamps 

are inked in a protein solution. The inked stamp is then placed on a substrate to physically transfer 

the protein to the surface. When the stamp is removed the transferred protein is bound by physical 

absorption of the protein to the substrate. Physisorption may not be a good option for studies where 

forces are measured between the protein and sample, such as for AFM characterizations. 

Advancements with microcontact printing have been done by adding a reactive silane to the surface 

before stamping with protein. In this approach, the protein will react with the patterns of active 

silane to form a covalent bond with the surface.  

 A pyramidal PDMS stamp was used to pattern rabbit IgG onto a silicon substrate by 

Filipponi et al.197 The sample was then exposed to anti-rabbit IgG. The PDMS mold was made 

using photolithography and etching in basic solution. The PDMS stamp was then formed with the 

Si master. The stamp was incubated with rabbit IgG and placed onto a glass cover slip. Patterns of 

protein were confirmed using fluorescence microscopy. Subsequent binding of anti-rabbit IgG was 

done with an incubation step.  

To understand the role of the extracellular proteins with myotube patterning, a study was 

done by Duffy et al using microcontact printing.198 Glass slides coated with PDMS were placed 

into contact with a PDMS stamp that was coated with protein. Selected proteins were used to create 
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patterns for cell attachment.  Patterns with a range of line widths were used to test for myotube 

formation after cell differentiation. The production of myotubes increased when the surfaces were 

patterned with laminin. 

  Complex features of multiple proteins were produced using microcontact printing and 

plasma initiated protein patterning as reported by Segerer et al.199 Prepared templates were used to 

create gradient dispersions of fibronectin. By placing an inked stamp with one protein in contact 

with the substrate, and then treating the substrate with oxygen plasma a second protein can be 

placed in the area on the outside of the substrate that is exposed to a solution of the second protein. 

Once the stamp was removed, the areas that were protected by holes in the stamp can be filled with 

a third protein. A replica of the university logo was patterned using Alexa-488 and Alexa-647 

fibrinogen with microcontact printing.  

Methods using microcontact printing enable relatively large areas to be patterned in one 

step. Possible disadvantages of microcontact printing when used with protein patterning is that 

EBL is required to design patterns for stamps. When used to pattern proteins, force has to be 

applied to the stamp for the pattern to transfer which can lead to denaturation.200 With continued 

use of the PDMS stamp the polymer can start to break down and the patterns can be deformed 

under pressure.201 

3.7 Protein Patterning Using Imprint Lithography 

 For imprint lithography the stamp is not made from PDMS and id usually made of silicon. 

The master templates are fashioned by e-beam lithography or deep-UV photolithography to obtain 

nanosized patterns. Calibration gratings have been used to create imprint masters. The master is 

transferred to a polymer to create the stamp. A master can be hot embossed into a poly(methyl 

methacrylate) (PMMA) glass and then used as the transfer stamp.200  
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 Nanoimprint lithography was used to pattern streptavidin onto a modified niobium oxide 

substrate by Falconnet et al.96 A Si template with the pattern was placed into a PMMA polymer 

solution that was deposited onto the niobium oxide substrate. Once the pattern was transferred the 

area was opened using oxygen reactive ion etching (RIE) treatment. The sample was placed into a 

solution of a copolymer of PLL-g-PEG/PEG-biotin. The remaining PMMA was then removed 

using acetone. The surface was passivated with PLL-g-PEG as a protein resist. In the final step, 

streptavidin was bound to the biotin functionalized PLL-g-PEG polymer.  

Nanoimprint lithography was used to pattern biotin-streptavidin to attain  line patterns that 

were 75 nm wide, by Hoff et al.202 A Si substrate was patterned by EBL to make a template. The 

template was placed against a PMMA surface and heated to 175 °C with pressure for five minutes. 

When the mold was separated from the PMMA surface, the excess was removed with an oxygent 

plasma and the uncovered areas were passivated by polymer from the passivating CHF3 that was 

used in the etching process. Once the exposed areas were passivated the areas of PMMA that did 

not react were removed by rinsing with acetone. An aminosilane was bound to the exposed areas 

to facilitate protein binding.   

 Protein patterning with nanoimprint lithography addresses challenges with microcontact 

printing by advancing the resolution of the features to the nanoscale. The Si template needs to be 

made in a clean room environment using EBL. Removing the molds still pose challenges for 

nanoimprint lithography, especially when used over a larger area. Surfaces used with nanoimprint 

lithography need to be as flat as possible to have effective transfer of the pattern from the stamp 

to the substrate.189, 200 
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3.8 Protein Patterning with Microfluidic Devices 

 Microfluidic devices operate by taking advantage of the capillary forces of liquids.203 A 

stamp with channels is placed onto a substrate and a liquid is introduced on the side of the stamp. 

Capillary action will pull the liquid through the channels and particles that are contained in the 

liquid will deposit onto the substrate. Typically the molds with the channels are made from PDMS. 

Microfluidic systems have advantages due to the small amount of reagent that is needed for 

patterns to be produced.  

 Microfluidic systems were used to pattern proteins such as IgG as reported by Delamarche 

et al.204, 205 Surfaces of gold, glass, and polystyrene were used for patterning. The microfluidic 

channels were prepared using a PDMS stamp. The substrates were activated with a 

hydroxylsuccinimidyl ester to bind to the amino groups of the proteins. Surfaces of 1 mm2 could 

be patterned with IgG by this approach.  

 Selected substrates were tested for protein adsorption after being transferred by PDMS or 

solvent-extracted PDMS, as reported by He et al.206 Fluorescence intensity was used to determine 

the capability of the substrates and the channels to enable protein to move through the channels. 

Once conditions were optimized a two-step immunosensosr was developed. In the first step anti 

C-reactive protein was immobilized on the surface using microfluidic channels. Next the surfaces 

were cleaned and the areas that were not covered by the protein were passivated. Next, another 

microfluidic stamp was placed perpendicular to the first set of channels. Certain concentrations of 

FITC labeled C-reactive protein solution was introduced to flow through each of the channels 

creating a platform for evaluating concentration vs. fluorescence intensity.  

 Microfluidic devices have advantages since small amounts of reagents are needed to 

produce the protein patterns. A range of designs can be made using the microchannels.  
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3.9 Scanning Probe Based Approaches for Patterning Proteins 

  Nanoscale studies and manipulation have advanced to achieve atomic resolution with 

atomic force microscopy (AFM).33, 44 There are several approaches for scanning probe lithography 

(SPL) at the nanoscale, including dip-pen nanolithography (DPN), bias induced lithography,158, 

159, 207, 208 and nanografting.18, 209, 210 

 To accomplish dip-pen nanolithography, a tip that is inked in a solution of analyte to be 

deposited onto the substrate is used to write patterns, as reported by Mirkin et al.211 Typically the 

ink is a thiol molecule that will physisorb onto a gold substrate. Patterns are written using a 

computer program to trace the trajectory of the tip. The time that the tip is one spot controls the 

size of area of the transfer for the diffusion-limited process of DPN.212 

 Protein arrays were designed using dip-pen nanolithography for the detection of Human 

Immunodeficiency Virus Type 1 from a plasma sample by Lee et al.213 Nanodots, (~60 nm in 

diameter) of 16-mercaptohexadecanoic acid (MHA) were deposited onto a gold thin film using dip 

pen nanolithography. The areas that were not patterned were passivated with a PEG-alkythiol film. 

Next, mouse anitbodies to the HIV-1 p24 antigen were deposited onto the substrate to bind to 

MHA. Subsequently, the sample was placed in a plasma solution containing HIV-1 p24. A 

sandwich assay was formed using gold nanoparticles that were functionalized with anti HIV-1 p24 

antibodies to amplify the height signal.    

 Nanopipetting can be accomplished using a modified AFM probe for dispensing liquids. 

An AFM tip containing a reservoir to hold a solution to be patterned was dispensed, as reported 

by Fabié et al.214At the apex of the tip a small hole is drilled for the liquid to dispense through the 

tip on to the surface. The hole was produced using a focused ion beam milling procedure. 
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Fluorescent proteins were patterned through a tip with an aperture of 760 nm. It was estimated that 

there are roughly 60 proteins per spot when this tip was used.  

 Nanografting is an AFM-based method for patterning organothiol SAMs and proteins.215 

A gold surface was coated with a PEG-thiol or methyl-terminated thiol monolayer. When the films 

are imaged under high force, the molecules can be removed from the surface under the mechanical 

force of the tip. When this is done in liquid media containing a dilution solution of another thiol 

molecule patterns are produced along the scanning path of the AFM probe. After the methyl or 

PEG terminated thiol is removed under force, the protein binding thiol that is in solution will then 

replace the surface molecules. Patterns can be produced through a computer program to design the 

shapes and sizes of surface features. After SAM patterns are made a protein can be bound to the 

protein adhesive sites of nanopatterns.18, 209 

Nanopatterns of staphylococcal protein A were produced on a gold substrate using in situ 

nanografting within a liquid environment, as reported by Ngunjiri et al.209 Octadecanethiol was 

deposited onto gold substrates to form a protein resist. Nanografting was used to remove selected 

areas of octadecanethiol molecules with an AFM probe under force, and replace it with a 11-

mercaptoundecanoic acid. Linking chemistry with EDC/NHS was done in a liquid cell for 30 

minutes. Staphylococcal protein A was then introduced and bound to the primary amine of the 

protein. After the attachment of immunoglobulin G to the nanografted area characterizations were 

done with AFM Surface reactions were done in situ and monitored by AFM at each step. 

Sequential AFM images of the nanographting steps are shown in Figure 3.3  
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 Nanografting was used by Bano et al. to pattern single stranded DNA and then to bind a 

protein with a complimentary DNA tag.216 First a thin film of an ethylene glycol-terminated 

Figure 3.3: Steps of in situ nanografting and protein patterning viewed with liquid AFM. (A) Surface of an 

octadecanethiol SAM deposited on gold, before fabrication steps,  topography frame. (B) Simultaneously aquired 

lateral force image of A. (C) Nanografted patterns of 11-mercaptoundecanoic acid within the octadecanethiol 

monolayer. (D) Correspondign lateral force image of C. (E) Binding of staphylococcal protein A after activation 

of MUA nanopatterns with EDC/NHS coupling. (F) Lateral force image of E. (G) Covalent attachment of 

immunoglobulin G onto the staphylococcal protein A. (H) Simultaneously acquired lateral force image of G. 

Used with permission from reference 2.2  

Topography Lateral Force 
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alkythiol was prepared on a gold substrate. Next, nanografting was done in a solution of single 

stranded DNA. A streptavidin conjugate protein attached to the complimentary single stranded 

DNA was then immersed on the substrates. The single stranded DNA bound to the complimentary 

single stranded DNA on the surface which covalently bonded the protein to the surface. Further 

modification with ant streptavidin was found to bind to the modified streptavidin areas. An SPM-

based method to pattern proteins at the nanoscale using an AFM probe was done using oxidative 

lithography, reported by Martinez et al.217 Ferritin was patterned at the nanoscale using oxidative 

lithography. A silicon oxide substrate was coated with a monolayer of OTS. During imaging, a 

voltage was applied to the tip to oxidize the surface. In the oxidation step, the OTS was removed 

leaving areas of bare substrate.218-220 Subsequent immersion in an amine-terminated silane 

provided sites for the ferritin to bind. Lines of protein nanopatterns as small as 10 nm were formed 

using oxidative lithography.  

Scanning probe based lithography can be used to pattern proteins at the nanoscale for high 

resolutions studies of biochemical reactions. In situ studies can be accomplished in liquid media 

to investigate biological processes. However, with SPL, patterns have to be written sequentially, 

one at a time.  

3.10 Conclusion 

 A number of methods have been developed to pattern proteins at the micro- and 

nanoscale. Depending on the desired pattern geometry, surface chemistry and proteins selected for 

patterning methods can be done using organothiol and organosilane chemistries. Approached with 

electron beam and photolithography approaches provide high throughput for wider areas of the 

surface. Methods with scanning probe lithography, nanoimprint, stencil methods provide local 

areas of small patterns. Particle lithography, microcontact printing, and microfluidic lithography 
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can provide arrays of nanopatterns over wider areas of the surface. Studies of protein patterning 

can be applied to cellular level studies as well as for studies of protein-protein dynamics. 
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 NANOPATTERNS OF GREEN FLUORESCENT PROTEIN PRODUCED 

WITH PARTICLE LITHOGRAPHY 

4.1 Introduction 

Controlling the orientation, surface density and the self-aggregation of proteins is 

increasingly becoming a consideration for the design of biosensors. The interface for biosensors is 

often a film of protein prepared by drying a drop of protein suspension on a glass surface. The 

dried sample may contain multiple layers of proteins, thus it is difficult to assess protein orientation 

and binding efficiency. For this strategy of sample preparation the self-aggregation of proteins and 

the lack of unfilled areas of the surface do not provide a measurement baseline. With the drop-

deposition approach, not all of the proteins are available for binding other biomolecules for assay 

due to the high density of adsorbates.  

Patterning strategies have been applied to improve the design of biosensors based on 

proteins. Protein patterns have been made using electron beam lithography, 221-223 microcontact 

printing, 224, 225 microfluidic channels, 226, 227 and photolithography.169, 228 Additionally the 

application of self-assembled monolayers (SAMs) as linker groups and matrix films have been 

used with scanning probe based methodologies such as with dip-pen nanolithography,229-232 bias-

induced oxidation lithography,233 imprint lithography96, 234 and nanografting.2, 163, 235-237 

Nanopatterning protocols based on scanning probe lithography can be time consuming and cannot 

be easily replicated over broad areas of a substrate. For high throughput, methods of particle 

lithography have been developed to pattern proteins for areas that span millimeter to centimeter 

dimensions.1, 70, 107, 238-241  

Green fluorescent protein (GFP) has been isolated from the jellyfish Aequorea victoria and 

is useful in studies of cellular processes and the interactions of proteins.242-245 The crystal structure 

of GFP was reported and solved in 1996 to be an 11-stranded β-barrel with an α-helix that runs up 
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the axis of the cylinder.246 Studies with micro and nanometer scale patterns of fluorescent proteins 

have included strategies with block copolymers,247 colloidal lithography,241 photocatalytic 

patterning,248 and electron beam lithography.249  

Although GFP is widely used in fluorescence studies with proteins, there are relatively few 

studies reported with characterizations using atomic force microscopy (AFM). Histidine tagged 

GFP was bound to mica to form a monolayer as reported in a study by Liu et al.250 Conditions 

were established to determine the minimum amount of time and concentration that were needed to 

prepare a single layer of protein. The intra-molecular mechanics of a single GFP molecule was 

investigated using atomic force spectroscopy by Wang et al.251 The C-terminus end of the protein 

was attached to the AFM tip while the N-terminus end of the protein was attached to a modified 

glass slide. As tensile force was applied the protein was stretched. Reproducible force versus 

extension curves were found and the intermolecular strength was measured.   

With studies that use AFM to characterize biomolecules, the method of preparing samples 

should be robust and reproducible, and enable the protein to withstand forces applied by the tip. 

Sample preparation protocols with nanopatterning offer control of the surface coverage of protein 

and can provide a way to limit adsorption to a single layer with designed linker chemistries. Using 

particle lithography only small volumes of reagents are needed for making protein nanopatterns. 

Millions of regularly spaced nanopatterns of organosilanes can be made with exquisitely uniform 

geometries at the nanoscale.252, 253 The size of the particles used as a surface mask defines the 

packing density of nanopatterns. With sufficiently small nanopatterns, studies of individual 

proteins can be done with AFM. 

Protein patterning can be accomplished by designing a surface template of organosilanes 

with reactive sites for binding biomolecules and well-defined areas that resist binding of protein. 
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For successful patterning, an effective resist layer is required to prevent nonspecific binding of 

protein on areas throughout the surface. Methoxy groups of MPT-silane have been widely used 

for resisting protein adsorption however this poses a problem for protocols with particle 

lithography using immersion steps. Oligo(ethylene glycol) terminated silanes become sites that react 

with other organosilanes to form multilayers rather than provide selectivity for inserting a second 

molecule. For this reason, a protocol was developed to pattern the reactive sites for binding as the 

first step, and then in a separate step the sites between the reactive nanopatterns were backfilled 

with the MPT-silane matrix after UV-ozone treatment.  

 In our strategy for defining a biointerface at the nanoscale, green fluorescent protein was 

selectively patterned onto glass slides. We chose GFP because the structure has been previously 

reported and due to the fluorescent properties. Using particle lithography to design the biointerface, 

discrete areas of mercaptosilane were prepared for binding protein within a resist layer of the MPT-

silane. Nanopatterns of mercaptosilane furnished sites to bind sulfo-SMCC that can link to the 

primary amine of lysine residues of GFP. Studies with AFM were used to evaluate the efficiency 

and selectivity of linking proteins after key steps in preparing GFP nanopatterns.  

4.2 Experimental Section 

4.2.1 Materials and Methods 

Glass coverslips were used as substrates for preparing protein patterns (12 mm, VWR). 

Substrates were cleaned with piranha solution made with sulfuric acid (ACS reagent 95%) and 

hydrogen peroxide (30%). Anhydrous toluene (Sigma-Aldrich) was used for preparing solutions 

of organosilanes. Silica mesoparticles (500 nm) were obtained from Fisher Scientific. Ethanol 

(ACS reagent grade) was used for rinsing samples (Pharmco-Aaper, TX). Deionized water was 

used both for rinsing and to make phosphate buffered saline (PBS, pH 7.4) from a Direct-Q3 
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system (18 MΩ; Millipore, Bedford, MA). Green fluorescent protein was obtained from Molecular 

Probes (Eugene, OR). The organosilane reagents 2-[methoxy (polyethyleneoxy)6-9propyl] 

trichlorosilane (MPT-silane) and (3-mercapto propyl)trimethoxysilane (MPTMS), were used as 

received (Thermo Fisher Scientific, Inc., Rockford, IL). Sulfosuccinimidyl-4-(N-

maleimidomethyl)cyclohexane-1-carboxylate (sulfo-SMCC) was used as a linker to bind GFP to 

glass substrates. 

4.2.2 Preparation of the substrates 

Glass substrates were first rinsed in ultrapure water and dried with nitrogen. The substrates 

were then placed in piranha solution (3:1 solution of sulfuric acid to hydrogen peroxide) for 90 

min. Piranha solution is highly corrosive and should be handled with care. Next substrates were 

rinsed copiously with high purity water and dried with nitrogen. The clean slides were used 

immediately for patterning organosilanes. 

4.2.3 Steps of particle lithography used to pattern organosilanes 

A film of MPTMS was prepared on glass slides using vapor deposition [Figure 4.1A]. The 

thiol terminated layer of MPTMS will be used for attaching protein. Substrates were placed on a 

platform inside a sealed reaction vessel. A small volume (400 μL) of neat MPTMS was added. 

The vessel was heated in an oven at 70 °C to generate a vapor of MPTMS. After 4 h the samples 

were removed and rinsed with ultrapure water, sonicated in ethanol for 30 min and then dried with 

nitrogen.  

In the second step, an aqueous solution (0.1%) of 500 nm silica spheres was placed on the 

surface of the MPTMS film [Figure 4.1B]. Samples were dried in a refrigerator (4 °C) for 16 h. 

Next, the samples were placed in a UV-ozone chamber for 30 min. With UV-ozone treatment, 

areas of MPTMS are decomposed to form silanol functional groups which can be rinsed away.254 
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However, areas of MPTMS which are covered with silica spheres are protected from irradiation 

and persist on the surface to form circular nanopatterns. After UV-ozone treatment, the samples 

were immediately placed into a solution of MPT-silane in anhydrous toluene (1%) for 5 h. The 

areas that were etched away with UV-ozone were filled with MPT-silane to form a resist layer 

with methoxy terminated MPT-silane surrounding the MPTMS nanopatterns [Figure 4.1C]. After 

5 h of immersion, the substrates were rinsed in ultrapure water. To remove the mesosphere mask, 

samples were rinsed and sonicated in ethanol for 30 min. In the final step, the samples were rinsed 

and sonicated in water for 30 min and dried with nitrogen.  

4.2.4 Selective attachment of GFP to nanopatterns of MPTMS 

The surface templates prepared with defined nanopatterns of organosilanes were used to 

attach single layers of GFP [Figure 4.1D]. The samples were placed into a 1 mM solution of sulfo-

SMCC prepared in PBS buffer (pH 7.4) for 1 h. Next, the samples were rinsed with PBS to remove 

any unbound sulfo-SMCC linker that might be remaining on the surface. The samples were then 

placed in a jar containing a solution of GFP (0.5 mg/mL in PBS) for 50 min.  Lysine residues of 

GFP bind to the N-hydroxysulfosuccinimide ester (NHS-ester) of the sulfo-SMCC linker 

presented at the areas of nanopatterns. For scanning probe studies, the samples with GFP were 

rinsed with PBS followed by a solution of 0.1% Tween 20 detergent and ultrapure water. Rinsing 

steps are critical for analysis of samples at the nanoscale to remove possible contaminants. 
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Figure 4.1: Steps for preparing a spatially selective template for patterning GFP with particle lithography. 

(A) A film of MPTMS was formed on a clean glass substrate using vapor deposition. (B)  A mask of silica 

spheres was placed on top of the prepared MPTMS film. (C) After treatment with UV-ozone the samples 

were immersed in a solution of MPT-silane to backfill areas that were etched away. (D) A sulfo-SMCC 

linker was used to attach GFP selectively to areas with –SH groups at the interface. Image is not drawn to 

scale. 



40 

 

4.2.5 Atomic Force Microscopy 

  Scanning probe microscopy studies were done after successive steps of sample 

preparation. A model 5500 atomic force microscope (AFM) was used for imaging, equipped with 

PicoView v. 1.18 software (Keysight Technologies, Santa Rosa, CA). Contact mode in ambient 

conditions was used for imaging organic thin films. A commercially available soft probe was used 

for contact mode studies, (Budget Sensors) with a resonance frequency around 13 kHz and an 

average spring constant of 0.2 N/m. Tapping mode in ambient air was used for imaging the protein 

nanopatterns to preserve the sample structure. Probes for tapping mode had a resonance frequency 

around 300 kHz and an average spring constant of 40 N/m (Budget Sensors). Minimal image 

processing was done using Gwyddion (v. 2.44) which is freely available and is supported by the 

Czech Metrology Institute.255 Surface coverage of the nanopatterns was estimated using pixel 

counting with FIJI software which converts the images to black and white with a user-defined 

threshold.256  

4.3 Results 

4.3.1 Characterization of orgaosilane nanopatterns 

Images of the nanopatterns surrounded by a MPT-silane resist that were acquired using 

contact mode AFM are shown in Figure 4.2. Approximately 40 nanopatterns can be viewed in the 

topography image of Figure 4.2(A), which would scale to ~108 patterns per cm2. The nanopatterns 

are the sites where the silica spheres were displaced, and are filled with MPTMS. Multiple areas 

of the sample were imaged, and the AFM frames that are shown are representative of the sample 

morphology throughout the entire sample. The dark areas reveal the location of holes containing 

MTPMS surrounded by the lighter colored areas of MPT-silane.  
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The arrangement of nanopatterns is more clearly evident in the corresponding lateral force 

image shown in Figure 4.2(B). The spacing between nanopatterns measures ~500 nm, which is 

attributable to the size of the silica particles used as a surface mask. The differences in surface 

groups are shown in the lateral force frame, the bright spots have –SH groups for binding GFP, 

and the darker areas are regions of the MPT-silane matrix which will resist protein adsorption. The 

mechanisms and resistivity of proteins to the methoxy groups of MPT-silane have been previously 

reported.257-261 The circular nanopatterns of MPTMS will provide discrete sites for linking GFP to 

form single layers of protein. 

An individual nanopattern of MPTMS is shown in Figure 4.3, acquired with tapping mode 

AFM in ambient conditions. With a close-up view, the heights of the matrix and nanopatterns are 

mostly indistinguishable. The wider areas clearly show that the circular nanopatterns are shallower 

than the matrix. The depth of the nanopatterns measured 1.6 ± 0.5 nm (n = 63) for cursor 

measurements of multiple areas. The error term is the value of the standard deviation. The circular 

shape of the area of MPTMS is apparent in the topography frame in Figure 4.3(A), this is the 

region of MPTMS that was protected from UV-ozone irradiation by a silica sphere.  
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Figure 4.2: Nanopatterns of MPTMS within a film of MPT-silane prepared using particle 

lithography, as viewed with contact mode AFM images.(A) Wide area of the sample viewed with 

a topography frame (4 × 4 μm2); (B) simultaneously acquired lateral force image. 

Differences in the surface chemistry of the nanopatterns and matrix area are revealed in the 

simultaneously acquired lateral force image [Figure 4.3B]. There are distinct differences in tip-

surface interactions between matrix areas and the –SH nanopatterns of MPTMS. An example 

height profile along the white line drawn across the nanopattern is shown in Figure 4.3C. The 

average diameter of the nanopores measured 94 ± 20 nm which is much smaller than the size of 

the silica spheres used as a surface mask. The size of the nanopatterns of MPTMS represents the 

actual area of contact of the spheres with the surface. The spacing between nanopatterns is 
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determined by the size of the particles used to form a surface mask. An estimate of surface 

coverage was obtained by pixel counting, approximately 4.4% of the surface is covered with 

MPTMS nanopatterns as active areas for binding GFP. The small holes surrounding the 

nanopattern result from natural defects in the glass cover slides.  

Figure 4.3: Single nanopattern of MPTMS characterized with contact mode AFM.(A)  Close up 

topography view of a single nanopattern of MPTMS; (B) corresponding lateral force image; (C) 

cursor profile for the white line in (A). 



44 

 

4.3.2 Evaluating the selectivity of nanopatterns for binding GFP 

  The samples prepared with MPTMS nanopatterns within a matrix of MPT-silane were used 

as a surface template for attaching a linker molecule to bind GFP. Samples were immersed in a 

solution of sulfo-SMCC in PBS and then transferred to a solution of GFP. After attaching protein, 

the nanopatterns of GFP were imaged with tapping mode AFM [Figure 4.4] to evaluate the 

selectivity of protein binding. Taller features are apparent in the topography frame [Figure 4.4(A)] 

for most of the sites of MPTMS nanopatterns. There are approximately 98 nanopatterns within the 

6 × 6 μm2 frame.  

Figure 4.4: Surface changes after binding GFP to MPTMS 

nanopatterns.  (A) Nanopatterns of GFP viewed with tapping mode, 

6 × 6 μm2 topography frame; (B) simultaneously acquired phase 

image. 
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Green fluorescent protein appears to bind predominantly to the nanopatterns sites of 

MPTMS. Any nonspecific adsorption of GFP on the areas of MPT-silane in between the 

nanopatterns is not discernable at this magnification. The arrangement of circular GFP 

nanopatterns is apparent in the phase image shown in Figure 4.4(B). Phase images are acquired 

simultaneously with topography images, and sensitively disclose the elastic response of surface 

features. Differences in softness between the matrix film and GFP are mapped for corresponding 

areas shown in the topography frame. The size and shape of the nanopatterns is quite regular for 

such small-sized patterns and the spacing between patterns corresponds to the periodicity and 

packing of the mask of silica spheres used for particle lithography. 

Close-up views of an individual nanopattern after binding GFP are presented in Figure 

4.5(A). The nanopattern appears to have a cluster of GFP, the morphology of the proteins resemble 

nanoparticles, with a spherical shape. The spherical shapes are attributable to AFM imaging 

artifacts, because the shape of the apex of the AFM tip is convoluted with the shape of very small 

surface features. Sharper probes will provide images which more closely resemble the true protein 

morphology. At this magnification the nonspecific adsorption of a few isolated proteins can be 

detected in areas around the MPTMS nanopatterns. Intricate details of the shapes and arrangement 

of GFP within a single nanopattern are revealed in the phase image of Figure 4.5(B). The bright 

colored areas are GFP and have distinct differences in morphology compared to the surrounding 

areas of the oligo(ethylene glycol) terminated silane matrix. 
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4.3.3 Analysis of protein dimensions with GFP nanopatterns 

There are two lines of evidence that GFP was bound to MPTMS nanopatterns. First, the 

surface morphology of the MPTMS nanopatterns has changed. The size and shape of adsorbates 

was larger for the areas of nanopatterns after treatment with the linker chemistry and GFP. Second, 

the height of the nanopatterns is greater after binding protein. The height of the nanopatterns 

increased after treatment with linker chemistry and GFP to reveal clusters of adsorbates that are 

taller than the matrix film. The distribution of the height measurements of nanopatterns before and 

after binding protein is detailed in Figure 4.6. The average height of the nanopatterns was derived 

using AFM cursor measurements of multiple areas. The depth of the nanopores are fairly uniform 

[Figure 4.6(A)] which suggests that the MPT-silane matrix is relatively homogeneous in thickness. 

Figure 4.5: Magnified views of an individual GFP nanopattern acquired with tapping mode AFM. 

(A) Close up of an MPTMS nanopattern with GFP attached, topograph 500 × 500 nm2; (B) 

corresponding phase image; (C) Example cursor profile for the line in A.



47 

 

There is a broader range of heights for the nanopatterns after binding GFP [Figure 4.6(B)] because 

the proteins assemble with different orientations such as side-on or end-on. 

The average depth of the nanopores containing MPTMS measured 1.6 ± 0.5 nm (n = 63). 

After treatment with a linker molecule (sulfo-SMCC, 0.83 nm) and attaching GFP, the height of 

the nanopatterns measured 6.8 ± 1.3 nm (n = 52). The dimensions reported for GFP measure 4.2 

nm in length and 2.4 nm in diameter.262, 263 Taking into consideration the length of the linker 

molecule, the height of the nanopatterns correspond to an end-on orientation for GFP, with the 

longer portion of the protein oriented vertically with respect to the substrate. The variability in 

measured values in Figure 4.6 can be attributed partially to the roughness of the glass substrate. 

Also, the protein may not be oriented fully in the vertical direction, there may be proteins that have 

 

Figure 4.6: Size analysis of nanopatterns.  (A) Depth of nanopatterns of MPTMS; (B) change in height 

after binding GFP. 
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a side-on or canted orientation depending on the self-aggregation and surface density of protein 

within the MPTMS sites.  

4.4 Summary and Conclusions 

Nanopatterns of organosilanes prepared with particle lithography can be used effectively 

to direct the adsorption of proteins onto selected areas of glass surfaces. Nanopatterns of GFP were 

prepared using a linker group and a spatially selective surface template. The selectivity of the 

biointerface at the nanoscale was evaluated with ex situ AFM studies, revealing that a single layer 

of protein was bound preferentially to areas of MPTMS nanopatterns. The designed surface with 

defined nanopatterns of protein provide an excellent platform for measuring the dimensions of 

GFP, assessing surface orientation, and viewing surface density using AFM. Future studies will 

be developed with smaller size particles for the surface mask, as well as in situ studies of protein 

binding reactions in buffer.  
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 PREPARATION OF OCTADECYLTRICHLOROSILANE 

NANOPATTERNS USING PARTICLE LITHOGRAPHY:  AN ATOMIC 

FORCE MICROSCOPY LABORATORY 

5.1 Introduction 

Scanning probe microscopy (SPM) has increasingly become integrated in undergraduate 

laboratories and research activities.264-266 However, it can be challenging to find very small size 

samples for SPM studies to provide an interesting “hands-on” experience with nanoscience. We 

have found that undergraduates can easily prepare nanostructures of organosilanes on surfaces 

using lab protocols based on particle lithography to demonstrate chemistry reactions at the 

nanoscale. To accomplish nanoscale lithography, a film of latex or silica spheres is used as a 

surface mask to make nanopatterns of organic thin films, such as octadecyltrichlorosilane 

(OTS).267 Using either vapor deposition or immersion protocols of particle lithography, molecules 

of OTS bind to masked substrates in areas between the spheres to form regular circular patterns 

that are suitable for scanning probe analysis. Experiments with SPM provide students with training 

and experience with nanoscience, molecular self-assembly, chemistry lab protocols, instrumental 

analysis, digital image processing, as well as data interpretation.  

Particle lithography offers high throughput as well as control of surface density, which is 

ideal for patterning organic thin films. The dimensions of nanopatterns prepared with particle 

lithography are at the level of a few nanometers to the molecular thickness of films, providing an 

excellent model sample for undergraduate studies. The steps for sample preparation provide 

students with basic chemistry skills, and generate highly reproducible results at the nanoscale. 

To evaluate the samples of organosilane nanopatterns, instruments are needed that have 

resolution beyond the optical microscope to view features that are smaller than the wavelength of 

light. Analysis with an atomic force microscope (AFM) requires little sample preparation and can 

provide results with nanometer resolution.268-270 The benefits of using an AFM in the 
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undergraduate teaching curriculum have been reported previously.271-275 To demonstrate 

interdisciplinary topics in surface science and chemistry, nanofabrication of organic thin films 

offers practical and relatively inexpensive methods for undergraduate studies. 

In the experiments described, particle lithography was used to prepare nanopatterns with 

octadecyltrichlorosilane (OTS). To produce regularly spaced patterns of uniform geometry at the 

nanoscale, monodispersed latex or silica beads were used as a surface mask. Two methods of 

depositing OTS are demonstrated to make ring-shaped nanopatterns or nanoholes within an OTS 

matrix film. Undergraduates enjoy characterizing the nanopatterns that they have prepared and 

learning how to image their samples with AFM. Nanoscience is an interdisciplinary field, therefore 

the laboratory introduces concepts in chemistry and surface science, as well as instrumental 

approaches for instrumental analysis of samples. 

5.2 Experimental Methods and results 

Two preparation methods will be described for preparing OTS nanopatterns on silicon 

substrates. An overview of the process for vapor deposition of OTS is shown at the top of Figure 

5.1, and the steps for an immersion method are shown in the bottom panels. In both methods, trace 

amounts of water are important in determining the shape of OTS nanopatterns.276 Water is essential 

for initiating the hydrolysis of OTS, however if too much water is present on the surface then self-

polymerization takes place to generate multilayers. The location of small amounts of water on the 

surface surrounding the particle mask determines the reaction sites for hydrolysis and condensation 

of OTS.253    
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Figure 5.1: Nanopatterns prepared using particle lithography combined with (top) vapor deposition 

and (bottom) immersion of a particle mask in an OTS solution. The AFM topography frames (1×1 

µm2) were acquired in ambient air. 

 Undergraduate students prepared samples using silicon substrates. Silicon wafers were 

cleaned with Piranha solution, rinsed with ultra-pure water and dried. For nanoscale studies with 

AFM, samples must be free of contaminants so the cleaning procedure is critical for successfully 

preparing samples for experiments. Organochlorosilanes spontaneously form cross-linked films 

on surfaces of mica, glass, metal oxides and silicon [Figure 5.2]. When siloxane films are formed 

from OTS there is a competition for the Si-O bridges to form links to the substrate, cross-links to 

adjacent molecules and for producing free hydroxyl groups. Self-polymerization can occur when 

excess water is present to generate multilayered surface structures. 

Two methods for particle lithography will be demonstrated to show how small changes in 

the procedure for depositing OTS can dramatically influence the shapes of the nanopatterns that 

are made. With vapor deposition of OTS, ring-shaped nanopatterns were formed with a multilayer 

formed at the edges of the nanoholes. With a solution immersion step for silane deposition, 
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nanoholes within a film of OTS were produced. Both methods produce areas of uncovered 

substrate that can be filled with new molecules to prepare more complex patterns. 

 

5.3 Preparation of a Surface Mask with Size-Sorted Latex or Silica Particles 

The first step of sample preparation is the same for both procedures of particle lithography, 

preparation of a mask of monodisperse spheres on a flat substrate. An aliquot of the latex or silica 

spheres was cleaned by centrifugation in water. After centrifuging, the pellet was resuspended in 

high purity water for three washing cycles. Next a drop of the mesosphere solution was placed 

onto each substrate so that the entire surface was covered by the solution. A droplet of 20 µL will 

cover an area of 1×1 cm2. The solution was dried on the substrates for at least 6 h. A view of a 

surface mask prepared with 495 nm latex spheres is shown in Figure 5.3. The latex beads 

Figure 5.2: Self-assembly of organosilanes forms a cross-linked film on a silicon surface. 
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spontaneously pack into a hexagonal arrangement on flat surfaces, and furnish a suitable mask for 

producing uniform nanopatterns of organosiloxanes. 

The area of the sample shown in Figure 5.3 is a view of the topmost layer of latex for the 

surface mask, however the layer at the bottom of a multilayered film is the template for particle 

lithography. When an aqueous suspension of monodisperse latex or silica beads is dried, a close-

packed arrangement of spheres forms spontaneously to form a periodic arrangement. The spacing 

between nanopatterns can be selected by changing the diameter of particles used as a surface mask. 

5.4 Hazards 

 Personal protective equipment should be used throughout the experiment, including apron 

or lab coat, goggles and gloves. Samples should be prepared in a well-ventilated area such as fume 

hoods. Chemical waste should be disposed according to the material safety data sheet 

specifications found for each material. Piranha solution is corrosive. Care should be taken when 

handling Piranha solution to avoid skin contact.  

Figure 5.3: Arrangement of spheres for a surface mask of 495 nm diameter latex 

viewed with an AFM topography frame (2×2 µm2). 
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5.5 Particle Lithography Combined with Vapor Deposition of OTS 

 To prepare samples using particle lithography with vapor deposition of OTS, the masked 

substrates were placed on a platform in a sealed container with neat silane. The reaction vessel was 

sealed and placed in a 70 °C oven for 15 h. In the final step, the latex mask was removed by rinsing 

and sonication. Ring shaped nanopatterns were formed with a multilayer of OTS surrounding the 

edges of the nanoholes where latex spheres were displaced. 

A sample was prepared using 300 nm latex as a surface mask, as shown in Figure 5.4. The 

ring shapes are formed by the self-polymerization of OTS in areas of the water meniscus 

surrounding the base of the spheres. The arrangement of regularly shaped rings is apparent in the 

topography frame (4×4 µm2) of Figure 5.4A. The locations of each ring nanopattern are sites where 

a latex particle was displaced. The area of contact between a sphere and a planar surface is quite 

small, however the spacing between nanopatterns corresponds to the 300 nm diameter of the latex 

mask.  Within the frame of Figure 5.4 A, there are 664 nanopatterns, which scales to 2.64 ~109 

nanostructures for a 1×1 cm2 sample.   

A hexagonal arrangement of the nanorings is evident in the magnified view of Figure 5.4B. 

The center of the rings are deeper than the areas surrounding the nanopatterns. The area of actual 

contact between the latex spheres and the surface produces sites of uncovered substrate as a 

baseline for cursor measurements of film thickness.  



55 

 

 

Figure 5.4: Nanostructures of OTS prepared using particle lithography combined with vapor 

deposition.(A) Arrangement of ring nanostructures viewed with a topography image (5×5 μm2); 

(B) Magnified view (1×1 μm2); (C) cursor profile for the white line in B. 

The heights for the nanopatterns is indicated with an example line profile (Figure 5.4C) 

drawn across four nanopatterns. The layer of OTS forming the rings is taller than the matrix film 

formed in between the circles. The thickness of the rings measured 9.1 ± 0.7 nm (n= 50). The 

theoretical height of OTS oriented perpendicular to the substrate is 2.1 ± 0.3 nm.277 Considering 

this value, the height of the nanorings corresponds to approximately 3-4 layers of polymerized 

OTS in the meniscus areas of the latex mask. The regions of OTS between the ring nanopatterns 

has a relatively uniform thickness and matches the thickness of a monolayer. The area of uncovered 
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substrate within the rings measures 64.3 ± 9.2 nm (n=84) in diameter, furnishing exquisitely small, 

uniform holes for depositing new molecules or nanomaterials.278-280 

5.6 Immersion Particle Lithography 

When a masked substrate is placed into a solution of ethanol or water, we have observed 

that latex and silica beads will rapidly detach from the surface. To accomplish particle lithography 

with an immersion step the particle mask can be temporarily annealed to the surface by heating. 

With further sonication and rinsing the particles can be removed later on. Immersion of substrates 

in organosilane solutions is the optimal procedure to prepare high quality monolayer films. 

Immersion steps enable optimization of parameters such as concentration, duration of exposure, 

and trace amounts of water in the solvents,  

For immersion particle lithography a substrate masked with silica spheres was placed into 

an oven at 150° C overnight, to temporarily anneal the beads to the surface. After cooling, the 

annealed sample was placed into solution of OTS (0.1%) in toluene and left to react for 8 h. The 

samples were then rinsed with ultrapure water and alternately washed in ethanol and water for 10 

min each to remove the silica particles.  

With immersion particle lithography, a film of OTS punctuated with small holes was 

produced as shown with a representative topography image in Figure 5.5. Multilayers of OTS did 

not form, the thickness of the film appears to be homogeneous throughout the sample [Figure 

5.5A]. The dark circular areas of nanoholes are sites of the uncovered substrate where the silica 

particles were displaced. The absence of a ring of multilayered OTS reveals that there was no water 

meniscus surrounding the particles of the mask, indicating that the heating step removed trace 

residues of water. There are 104 nanoholes visible within the 5× 5 µm2 frame of Figure 5.5A, this 
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scales to 4.16 × 109 nanopatterns per cm2 for the surface density. A few bright spots of adsorbates 

are present on areas of the matrix film, these can mostly be removed by additional rinsing steps.  

 

Figure 5.5: Nanoholes within a film of OTS produced by immersion particle lithography.   

(A) Location of nanoholes over a 5×5 μm2 area, topography image acquired in air; (B) Zoom-in 

view of the hexagonal arrangement of nanoholes (1.3×1.3 μm2); (C) Cursor profile for the white 

line in B.  

A close-up view of the arrangement of seven nanohole patterns is shown in Figure 5.5B. 

Unlike the ring nanopatterns in Figure 5.4, with an immersion step nanoholes were formed when 

the particle mask was removed. The bottom of the nanoholes are uncovered areas of the silicon 

substrate which were protected by the silica particles of the surface mask. The nanoholes are 
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surrounding by a film of methyl-terminated OTS which furnishes an excellent resist layer for 

further chemical steps. The average thickness of the OTS film measured 1.2 nm ± 0.2 nm (n=50) 

Considering that the theoretical height of a densely packed OTS monolayer when it is oriented 

perpendicular to the surface is 2.1 ± 0.3 nm,277 the average value indicates incomplete surface 

coverage. An example cursor profile drawn across three nanohole patterns is shown in Figure 5.5C. 

The spacing (center to-center) between nanoholes measures ~500 nm which matches the diameter 

of the silica spheres used as a surface mask.  

5.7 Changes in Nanopatterns with an Immersion Step versus Vapor Deposition of OTS 

A side-by-side comparison of nanopatterns prepared with particle lithography is shown in 

Figure 5.6 for samples made with steps of immersion or vapor deposition. The images disclose 

remarkable uniformity for the shapes and periodicity of the nanopatterns. However, the deposition 

method produces somewhat different morphologies for either ring shapes [Figure 5.6A] or 

nanoholes [Figure 5.6B] within a film of OTS. The results shown are representative images of 

areas throughout the sample, and the shapes of the nanopatterns are reproducible for preparing 

multiple samples. When preparing nanorings with vapor deposition, the heights of the rings will 

change according to the size of the particle masks. Larger particles produce taller rings because 

there is more liquid in the sites of the meniscus surrounding the base of the spheres. However, with 

immersion particle lithography the size and geometry of the nanoholes is consistent even when 

changing the diameter of the particle mask. 
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Figure 5.6: Comparison of samples prepared with particle lithography using (A) vapor deposition 

of OTS (600×600 nm2); (B) immersion of masked substrates in solution. Topography views were 

acquired in air (1.3×1.3 µm2). 

5.8 Conclusion 

Experiments using particle lithography were described for teaching skills of sample 

preparation and instrumental analysis to undergraduates. Students gain valuable hands-on 

experience with an AFM as well as learn chemistry and nanoscience concepts about how 

molecules arrange on surfaces. The experiments can be used as an independent study for 

undergraduates or for laboratory experiments. Undergraduates at Louisiana State University have 

tested the protocols in physical chemistry labs, learning the techniques in a single afternoon 

session. Students enjoyed the activities of visualizing the nanopatterns that they prepared 

themselves as well as having an opportunity for characterizing samples with advanced 

instrumentation. 

  



60 

 

 THICKNESS-DEPENDENT THERMAL DEWETTING OF Au FILMS ON 

GLASS 

6.1 Introduction 

 It is well known that the microstructure of metal films are sensitive to a variety of 

deposition parameters, including deposition method (thermal vs. sputtering), deposition rate, 

substrate surface characteristics, and substrate temperature.281 Post deposition processing can also 

have profound effects on the film morphology. For instance, annealing the films at elevated 

temperatures can completely change their microstructure.282-287 Annealing has been used to 

processes thin metal films for purposes of nanostructuring, determining the interfacial energies, as 

well as small scale mechanical testing.8  

 Thermal annealing works by producing lateral mass diffusion in the metal film in order for 

the system to lower the surface free energy.282-287 Solid state mass diffusion can change the 

microstructure of the film and, under the proper conditions, can induce a film to de-wet from the 

substrate. Typically voids at grain-boundaries, pinholes and even gas bubbles are the site of pore 

nucleation.288 From pinhole formation thermal de-wetting proceeds by the formation of tiny 

clusters that evolve into well-defined islands thus exposing the underlying substrate. Indeed, solid 

state de-wetting has been extensively studied in gold films deposited on a variety of substrates. 281, 

282, 288-296  

 One of the earliest reports of de-wetting during thermal annealing was by Faraday in 

1857.291 He found that when gold leaf was examined under a microscope after being annealed at 

high temperature, a greater amount of white light was transmitted from holes that were present in 

pre-annealed gold leaf. Typically, voids in solid films start at one of three areas: grain-

boundaries,293, 297-300 from pore nucleation at the film-substrate interface,301-303 or from areas of 

high stress at grain boundary triple junctions.304 After voids have been nucleated in the film, they 
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can grow285, 301 and form islands.305 As the void regions spread, material that is displaced is 

incorporated into the island structures. Of course, the details of thermally induced island growth 

depends on many physical parameters such as the surface tension in the film, the adhesion between 

the film and the substrate, and the vapor pressure of the film.281, 285, 290, 306-309   

 The optical properties of thin gold films can also change after annealing.294, 310-312 Indeed, 

the morphological characteristics of the films can be probed using surface-enhanced infrared 

absorption (SEIRA) and surface-enhanced Raman scattering.313-315 For example, by measuring the 

change in the surface plasmon resonance in gold films, the adsorption of sub-monolayer organic 

thin films on the gold surface can be detected.296, 312, 316  

In the present work we present a detailed study of the effects of thermal annealing on Au 

films on glass as a function of the nominal pre-annealed film thickness. Surface morphology before 

and after annealing was monitored using atomic force microscopy. Surface plasmon of the films 

were also monitored before and after annealing of the thin films. To further investigate island 

development a time dependent study was conducted on two 100 Å films was imaged after 

subsequent annealing every fifteen minutes.  

6.2 Experimental Details  

6.2.1 Preparation of the Thin Films 

Cover glass slides (Thomas Scientific, Red Label) were cleaned via 5 minutes of sonication 

in boiling ultrapure water followed by sonication in methanol. Just prior to the Au deposition the 

clean glass slides were fire-polished in a propane flame. Gold films ranging in thicknesses from 

2.0 nm to 15 nm were deposited at room temperature in a vacuum of ~1 μTorr via electron beam 

evaporation of 99.999% Au. Typical deposition rates were ~ 0.1 nm/s. The films were annealed 
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by placing them in a horizontal tube furnace at 550 C for 60 minutes in an argon/hydrogen gas 

flow. 

6.2.2 Atomic Force Microscopy 

  Both the pristine and annealed gold films were characterized using contact mode atomic 

force microscopy on a 5420 Agilent scanning probe microscope (Agilent Technologies, Chandler, 

AZ). Triangular MSCT tips from Bruker were used with force constants ranging from 0.030- 0.60 

N/m and resonance frequencies ranging from 4-160 kHz (Burker, Camarillo, CA). Images were 

processed using Gwyddion 2.31 open source software, which is supported by the Czech Metrology 

Institute.317 Surface coverage as well as average height measurements were also conducted in 

Gwyddion by masking the gold islands with a height filter.  

6.2.3 UV-Vis-NIR Analysis.  

Surface plasmon changes from pre- and post-annealed films were monitored using a Cary 

5000 UV-Vis-NIR spectrophotometer (Chandler, AZ). Spectra were collected from 300-2000 nm 

range under a nitrogen environment. The detector crossover from NIR to UV-Vis was set to 800 

nm. All samples were measured using a double beam design with a fire-polished glass slide as the 

blank.  

6.2.4 Kinetic Study of Film Development 

  Two films, 100 Å thick were placed in a tube furnace. Both films were heated and annaled 

for 15, 30, 45, 60, and 120 minutes. After each successive annealing the two films were imaged 

by atomic force microscopy. Three topography images ( 2 × 2 µm2) from each film during each 

annealing were imported into FIJI.318 The image was converted to 8-bit format and then made into 

a binary image using the thresholding tool. Grain analysis was then completed using built in 
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software in FIJI and surface coverage was calculated. Particles on the edges of the frame were 

excluded from analysis due to variability.  

6.3 Results and Discussion 

 Shown in Figure 6.1 are AFM images of pristine Au films of varying thickness. The 2.5 

nm thick film has significant voids but otherwise shows little spheroid granularity. The bare 

substrate can be seen in parts of the image between the grains as evidenced by the lateral force 

image. Large clumps of gold can also be seen speckled throughout the topograph image. In 

contrast, the 15 nm film has a relatively well-defined spheroid granular texture with a typical grain 

diameter of approximately 40 nm. These grains are somewhat larger than those observed in the 

unnealed 2.5 nm film. The 10 nm film microstructure appears to be a convolution of the 2.5 nm 

and 15 nm film morphologies. Although all three films appear to almost completely cover the 

substrate surface, none of them, in fact, were electrically continuous.319 As can be seen in the AFM 

images, the gaps between the grains in the 10 nm and 15 nm films, are very small and beyond the 

resolution of the instrument. Because we were unable to image the substrate between the grains, 

the profile traces represent the surface roughness rather than the actual grain heights. It is well 

known that the morphological details of a pristine film can greatly influence the formation of the 

post-annealed microstructure281, 282, 288-296 and the post-anneal electrical properties.38,39 In this 

regard one might expect the effects of annealing will be substantially different between the 2.5 nm 

film and the 15 nm film, and, indeed this is what we observed. 
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Figure 6.1: Un-annealed gold films on fire-polished glass obtained in contact mode. The films 

were thermally deposited at room temperature.  

  

In Figure 6.2 we present AFM images of annealed Au films of varying initial thickness. 

The pre-anneal film thickness was determined from a quartz crystal deposition monitor during the 

deposition of the Au. Note that annealing generally enhances the granularity of all of the films as 

is evident by the increased circularity of the grains. Interestingly, the surface coverage of the two 

thinnest films (2.5 nm and 5 nm) is ~99%, suggesting that the Au did not completely de-wet the 

glass substrate during the high-temperature anneal. When these two films are viewed with the 

simultaneously acquired lateral force images, edges of the grains can be seen, but the surface of 

the substrate cannot be distinguished. In contrast, the post-anneal coverage decreases abruptly for 

films with initial thickness greater than ~5 nm. Indeed, these thicker films exhibit well-separated 



65 

 

Au islands with little or no Au material remaining in the intra-grain gaps as evidenced by the 

contrast in the corresponding lateral force images. By increasing the initial film thickness by only 

2.5 nm, the surface area coverage of the gold islands fell from ~99% in the 5 nm film to ~66% in 

the 7.5 nm film. Films with initial thicknesses greater than 5.0 nm show islands with relatively 

flatter tops after annealing.312, 320 

In Figure 6.3 we plot the surface coverage as a function of the initial film thickness for all 

of the films in this study. The coverage data suggests that the films exhibit a de-wetting threshold 

at a critical thickness of about 6 nm. Films thinner than this will not de-wet under the the particular 

annealing conditions used in this study. Thicker films clearly do de-wet and ironically, the plot 

clearly shows that the surface coverage of these annealed films decreases with increasing initial 

thickness.312 The height of the islands must simultaneously increase with increasing initial 

thickness in order to conserve mass, unless, of course, mass is lost to evaporation during the anneal. 

The latter possibility can be ruled out by the fact that, at the annealing temperature of 550 C, the 

vapor pressure of Au is of the order of 10-14 Torr.321 In Figure 6.4 we plot the average Au island 

height as a function of initial thickness. As expected, there is a positive correlation between the 

island heights and the initial film thickness.312, 320  
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Figure 6.2: Annealed Au films of varying initial deposition thickness obtained in contact mode. 

Topographs with corresponding lateral force, and cursor profile of the white line drawn in the 

topograph.  
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Figure 6.3: Surface coverage of annealed Au films as a function of the initial un-annealed film 

thickness.The lines are provided as a guide to the eye.  
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Figure 6.4: Average island height in annealed Au films as a function of the pre-anneal film 

thickness.  The dashed line is provided as a guide to the eye. 

 

The Au film morphology was also explored using surface plasmon resonance spectroscopy 

in the UV-Vis-NIR spectral range. Shown in Figure 6.5 are the extinction spectra of several Au 

films before and after annealing. Note that the un-annealed films all exhibit a broad absorption 

peak centered at a wavelength of ~700 nm and have an extended near infrared absorption tail. The 

un-annealed films also show a local adsorption minimum in the 500-550 nm range. In contrast, the 

annealed films show a much sharper absorption peak near 550 nm and very little absorption beyond 

800 nm. Interestingly, the spectra of the annealed 2.7 nm and 5.3 nm are almost identical. Note, 

however, that films thicker than ~ 6 nm have a significantly stronger overall absorption than those 
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of the two thinner films. We believe that this abrupt increase in the amplitude of the absorption 

peak reflects the de-wetting transition. In addition to the enhancement of the absorption peak, 

increasing film thickness shifts the peak to shorter wavelengths.322,41  Rycenga et. al. and Mayer 

et. al. have attributed this to a charge separation in islands with sharper corners.323, 324 Indeed, 

when observed through the AFM data, as the initial film thickness increases, the islands become 

rounder with fewer sharp corners.  

 In order to verify that post-annealed film images reflected the steady-state morphologies 

of the system we performed a series of AFM scans at preset annealing durations. Two gold films, 

each 10 nm thick, were annealed under the conditions used in this study for 15, 30, 45, 60, and 120 

minutes. Shown in Figure 6.6 are the topographs of the films after the stated annealing times. Each 

film was removed at the stated annealing times and then imaged. The films were then returned to 

the furnace for further annealing. As can be seen from the two upper panels, the Au islands are 

well formed after only 15 minutes of annealing at 550 C. Although there are some minor changes 

in the island distributions as the annealing time is increased, the dewetting transition occurs quite 

early in these relatively thick films and their structure remains relatively constant from thereon.  

These measurements show that even if Au films with thicknesses less than 6 nm eventually dewet 

and form microstructure similar to their thicker counterparts, the dewetting timescale is least an 

order of magnitude longer than that of the films in Figure 6.6. 

6.4 Conclusions 

 We have shown that thermally-induced island formation in thin gold films deposited on 

fire-polished glass slides is sensitive to the film thickness. Films having thicknesses less than ~6 

nm do not thermally de-wet when annealed at 550 C. In contrast, thicker films exhibit a well-

defined de-wetting behavior in as little as 15 min of annealing. We have demonstrated that by 
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varying the preanneal Au film thickness, islands of differing sizes and separation can be formed 

using identical anneal protocols. It should prove interesting to see if similar thickness dependencies 

of the de-wetting behavior of Au films occurs on other substrates.  
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Figure 6.5: UV-vis spectra of Au films of varying initial 

thickness before (upper panel) and after (lower panel) 

annealing. 
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Figure 6.6: AFM images of two 10 nm-thick Au films after the indicated 

annealing times. The annealing temperature was 550C.  
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 CONCLUSIONS AND FUTURE DIRECTIONS 

Particle lithography with organosilanes can be used to prepare nanopatterns for a range of 

silicon based substrates such as mica, glass, and silicon wafers. The shape of nanopatterns that are 

produced depends on the protocol for applying organosilanes, such as heated vapor deposition or 

immersion protocols. The protocols for particle lithography are highly reproducible, once the 

method parameters have been optimized.  

Proteins can be precisely positioned onto surfaces using patterning techniques of particle 

lithography and silane deposition. Nanopores within a thin film of silane were used as reaction 

sites for the selective binding of green fluorescent protein. When investigated with AFM, high 

spatial selectivity of the protein was observed for binding within the nanopores rather than the 

matrix film of MPT-silane. The nanopatterns were used to assess the orientation of proteins at the 

molecular level. 

Future studies will focus on protein binding using in situ AFM in buffer solutions using a 

liquid sample cell. During in situ imaging, the sulfo-SMCC solution will be introduced in the 

sample chamber to react for 1 h. During incubation of the sulfo-SMCC the maleimide functional 

group will bind to the –SH group of MPTMS nanopatterns. Next, ultrapure water will be 

introduced to clean the surface of excess sulfo-SMCC that did not react. Once the excess sulfo-

SMCC chemical is rinsed away, a dilute solution of GFP in PBS will be introduced to the sample 

cell. Imaging will be accomplished concurrently throughout the steps of binding protein, to directly 

view the changes in surface topography. Care should be given during the imaging steps to not lose 

the area of interest during successive imaging and with the introduction of new solvents.  

 To further advance the study of fluorescent proteins, samples can be prepared with multiple 

densities of nanopatterns on a single substrate. When the protein nanopatterns are produced on 
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glass or quartz slides, fluorescent proteins can be detected with microscopy and fluorometry to 

determine the relationship between packing density of the nanopatterns of protein and fluorescence 

intensity. A brighter fluorescent protein or quantum dots should be used for fluorescence studies.  

 Studies of protein-protein interactions can be accomplished with protein nanopatterns 

using AFM studies. After a target protein is bound to the substrate, in situ AFM studies can be 

done to determine binding kinetics of protein-protein interactions. With particle lithography, 

multiple test sites can be visualized within the same experiment to view the binding of a second 

protein, antibody, or small molecule as it is introduced. Platforms can be developed to investigate 

immune-response of proteins. After patterning a recognition protein, a receptor protein can then 

be introduced to test activity for binding. By patterning a fluorescently tagged recognition protein 

on the surface, a biological analyte can be bound to the recognition protein. Changes in the 

fluorescence signal will be altered. With this design, a biological sensing device can be made based 

on the patterning technology of particle lithography and organosilane deposition.  

 Advanced AFM imaging modes of force modulation microscopy and dynamic lateral force 

modulation microscopy can be used to investigate the surface properties of proteins that have been 

bound to organic thin films. Using dynamic lateral force modulation, shear forces between the tip 

and sample can be minimized. Samples which are “stickier” can be imaged in tapping mode as 

well as with force modulation AFM. The intermittent tapping of the AFM probe minimizes the 

forces of shear and stress that can damage fragile proteins. Studies can be designed using dynamic 

lateral force modulation (DLFM). Quantitative information can be acquired with DLFM to 

elucidate the Young’s modulus of proteins. 

Particle lithography with organosilanes can be used for lab methods for teaching 

undergraduate students about nanoscience. Nanopatterns of rings or nanopores can be prepared 
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and used in the teaching laboratories of undergraduates. The high reproducibility of protocols with 

particle lithography will help for students learning basic bench top methods of chemistry. The 

patterns provide a robust and interesting sample for students to image when they are beginning to 

learn to use an AFM. Experiments were described for use in undergraduate teaching laboratories. 

During the experiment students gain valuable hands on experience with organosilanes, atomic 

force microscopy, and the preparation of samples for nanoscience experiments. The procedures 

can be done with basic laboratory equipment found in most chemistry laboratories.  

At Louisiana State University, undergraduates have successfully prepared nanopatterns 

using methods of particle lithography. In addition, students in the physical chemistry laboratory 

receive hands on demonstrations and instruction with AFM. Exit surveys from the class show that 

students enjoyed the experience and learned from hands on exposure to AFM and surface science. 

By providing laboratory training with AFM, students will be better prepared for a career in science 

and the rapidly advancing fields of surface science and nanoscience. The goal of the laboratory is 

to generate interest in the nanoscience and inspire students to become involved in chemistry 

studies.  

The formation of gold islands was studied on gold thin films after annealing for two hours. 

Films with an initial thickness of less than 5.0 nm were found to not form distributed islands. 

However, films that were initially 7.5 nm to 15 nm did form well dispersed islands after annealing.   

Further investigations conducted annealing on 10 nm thickness films after 15 min of annealing. 

Surface plasmon resonance spectra were observed to shift to a shorter wavelength as the island 

height increased.  

Future studies will be conducted to determine the effect of longer annealing times on gold 

thin films. It is hypothesized, based on the correlation observed, that thicker films will yield taller 
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and more dispersed islands after annealing. Additional studies will also be conducted on other 

metal thin films. Aluminum and silver will also be investigated. By understanding the nature of 

the thin film and how it behaves under annealing conditions, surface characteristics can be 

investigated for further development for superconducting films and electronic devices. Finally, a 

mixture of metal thin films in different ratios will be investigated for dewetting characteristics and 

will be investigated for superconductivity behavior.  

Additionally, metal films can be studied using advanced imaging modes of atomic force 

microscopy. Conductive probe measurements will be done with thin metal films before and after 

annealing to determine how the conductivity of the substrates changes and deduce if surface 

coverage of the islands has an effect on conductivity properties of the films. Correlations can also 

be investigated between island height and the conductivity of the islands.  

Kelvin probe microscopy studies can also be performed on the substrates to determine the 

work function of the material and the surface potential. Correlations will be investigated between 

the initial height of the thin film before annealing and after annealing as well as a height of the 

formed islands compared with the surface potential and work function. Furthermore, mixed films 

will be studied to see how the work function will change with varying degrees of annealing. Studies 

with AFM will be used to evaluate the effect of ratios in metal films and thickness on surface 

potential and the work function. 
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APPENDIX A: PROCEDURE FOR LATERAL FORCE MODULATION MICROSCOPY 

 Dynamic lateral force modulation microscopy (DLFM) is a type of force modulation 

microscopy. Instead of the tip or the sample vibrating in a perpendicular direction, for lateral force 

modulation the tip and sample are operated in a direction parallel to the sample. Surface properties 

such as shear stress can be calculated using this method.325 Contact stiffness can also be deduced 

using this DLFM.326 The DLFM mode of AFM can be used for samples that tend to be “sticky” to 

keep the tip from binding to the surface.  

A.1 Hardware Set-up for Agilent 5500 SPM 

A. For DLFM, connect BNC cables as shown in Figure A1.  

B. Connect a BNC cable from the AUX output of the scanner electronics box to the Phase 

input of the MAC/AC controller.  

C. Connect a second BNC cable from the Amplitude output of the MAC/AC controller to the 

AUX IN of the PicoSPM II controller. Make sure to use the DLFM nosecone shown in 

Figure A.1.  

PicoSPM II 
Controller 

AUX 
IN 

Z IN SYNC 
MAC Z IN 

DRIVE-
IN 

DEFLECTION 

AMPLITUDE PHASE 

MAC/AC 
Controller 

Head Electronic 
Box 

CANTILEVER AUX 

Figure A.1 Cable connections for DLFM. 
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D. Use the DLFM nosecone with the Keysight 5500 AFM multipurpose scanner for DLFM 

imaging (Figure A2).  

E. Connect the two cables between the PicoSPM II controller, MAC/AC controller, head 

electronic box as show in Figure A1.  

F. Use a silicon nitride contact cantilever (MSCT, Bruker Probes) with force constants of 

0.01-0.6 N/m for DLFM imaging. 

G. Place the scanner in AFM set up following contact mode instructions in the Keysight 

operation manual.  

H. Adjust the photodiode so that the Deflection signal is -1 and the LFM is 0 on the scanhead 

electronics controller.  

A.2 Software Set-up 

A. Launch the Picoview v1.18 software. Under main menu, select contact mode parameters 

for the Keysight 5500 AFM multipurpose scanner.  

B. Create eight channels on the second monitor including trace and retrace of topography, 

Aux BNC (amplitude) and HEB Aux (phase) on the top/bottom row. The last two channels 

can be set for deflection and friction of either the trace or retrace signal.  

C. Open the AFM AC Mode Tune window and set up the frequency range between 0 to 500 

kHz.  

D. Enter 0 for the Force Setpoint and then start to approach. 

E. Image the sample to find an area of interest.  
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A.3 Frequency Sweep 

A. Under the AC Tune window, check the box for drive on. Make sure AAC is listed as the 

drive mechanism. Set drive percentage to 1%.  

B. Click the Manual Tune button in the AC Tune window to acquire a frequency spectrum 

with the vibration of the tip lateral in relation to the surface.  

C. Adjust the Drive On until significant, detectable peaks are observed for the frequency 

sweep, typically around 1 V. Save the frequency sweep as a .txt file for later import into 

Microsoft Excel for graphing purposes.  

 

 

D. Choose a resonance frequency in the frequency sweep by moving the vertical red line on 

top of the resonance peak that has good phase separation. A.4 DLFM imaging 

Figure A.2: Spectra obtained from DLFM. Frequency sweep from 0 to 500 kHz.  One prominent peak 

is observed at 191.382 kHz in the frequency sweep (top panel). Corresponding phase spectra (bottom 

panel.) Drive percent was set to 8%.    
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A. Start acquiring DLFM images changing the Integral (I) Gain, the Proportional (P) Gain, 

the Driving Frequency and the Force Sepoint to tune the images.  

B. When running experiments, compare spectra and images with the AC Drive on and the AC 

Drive off. This can be used to test the experimental setup. 

C. During the course of the experiment, try changing resonance frequencies in the frequency 

sweep and compare the DLFM results.  

 

Figure A.3: Imaging window for DLFM AFM.  The red box displays the DLFM amplitude (left) 

and DLFM phase (right) for the trace scan (top panel) and the retrace scan (bottom panel).  
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APPENDIX B: FORCE MODULATION AFM STUDIES OF PROTEINS 

Dynamic lateral force modulation microscopy was used to image nanopatterns of green 

fluorescent protein bound to MPTMS nanopatterns within a film of 2-[methoxy 

(polyethyleneoxy)6-9propyl]trichlorosilane (MPT-silane). For DLFM imaging the tip is scanned 

across the surface in a raster pattern, as an AC bias is applied to a piezoceramic actuator within 

the nosecone of the scanner. The tip is driven to move in a direction which is perpendicular to the 

sample. Topography, amplitude, and phase information is acquired simultaneously with DLFM. 

Surface structures of green fluorescent protein (GFP) viewed with DLFM are shown in Figure B.1. 

The brighter areas are clusters of GFP in the topography frame (Figure B.1A). The shapes and 

arrangement of GFP are clearly apparent in the simultaneously acquired amplitude and phase 

images (Figures B.1B and B.1C).  

 

Figure B.1: Green fluorescent protein imagined with DLFM  [A] Topography frame; [B] 

Corresponding amplitude and [C] phase image (6 × 6 µm2).  

 

Amplitude images do not detect differences in height, instead, changes in the amplitude of 

tip oscillation indicate the elastic response of tip-surface interactions. The phase images do not 

correlate with a specific surface property because it is difficult to interpret changes in the phase 
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angle of the tip-sample vibration. However, phase images can provide sensitive detection of edge 

effects and sample morphology. 

A close up scan of a single GFP cluster is presented in Figure B.2. An individual protein 

cluster is observed in the topography frame (Figure B.2A). Height scaling differences in the 

topography frame make it difficult to visualize details of the sample morphology. However, 

detailed features of the sample are apparent in the simultaneously acquired phase and amplitude 

channels. The cluster has a round shape, which can be attributed to the convolution of the shape 

and size of the probe scanned over a very small surface feature.  

 

Figure B.2: An individual protein nanocluster imaged with force modulation AFM. [A] A 

nanocluster of protein shown with a topography frame; [B] Simultaneously acquired amplitude 

image; [C] Phase channel (500 × 500 nm2).  

. 
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APPENDIX C: ADDITIONAL INFORMATION FOR INSTRUCTORS29 

C.1 Preparation of Substrates 

Silicon wafers (1×1 cm2) (Ted Pella, Inc., Redding, CA) were rinsed with ultrapure water 

(18 MΏ, Millipore, Bedford, MA) then dried and placed in a clean glass jar containing Piranha 

solution. Piranha solution is a 3:1 (v/v) solution of sulfuric acid and hydrogen peroxide (30%). 

Peroxide should always be added very slowly to the acid because heat is released. You should 

handle Piranha solution with caution and use personal protective equipment. Be sure to dispose of 

the solution according to safety guidelines. Substrates were immersed in Piranha solution for 1.5 

h, then rinsed with ultrapure water. After drying, the sample can be stored in a petri dish until 

needed. Glass slides can also be used as substrates and can be prepared using the same procedure 

as the silicon wafers. Freshly cleaved mica also is a suitable substrate for particle lithography. 

C.2 Preparation of Mesosphere Masks 

Monodisperse, size-sorted particles were used as a surface mask for particle lithography. 

The particles were washed to remove surfactants and possible contaminants using rinsing and 

centrifugation. A drop (300 μL) of an aqueous solution of latex or silica particles (Duke Scientific, 

Waltham, MA) was placed into a centrifuge tube, and then filled to a volume of 1 mL with 

ultrapure water. The solution was centrifuged for 10 min at 14,000 rpm to form a pellet. The 

supernatant was decanted to leave a precipitate at the bottom of the tube. Ultrapure water was used 

to refill the centrifuge tube and the pellet was resuspended with vortex mixing. The process was 

repeated four times. After the last rinsing step, the same quantity of water from the original droplet 

was added to maintain the initial concentration. In the next step, the solution of particles (10 μL) 

was deposited onto the Si substrate to ensure that the surface was fully covered by the solution. 

The substrate was then dried in ambient air. 
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C.3 Heated Vapor Deposition of OTS 

 After drying, the samples were placed on a platform in a container with neat OTS. A sealed 

glass jar or plastic container is suitable as a homebuilt vapor deposition chamber. We made a 

platform of aluminum foil to keep the OTS liquid from touching the samples. The sealed container 

was heated at least 8 h at 70° C to generate a vapor. In the next step, to remove the particle masks, 

samples were rinsed with water and then sonicated in ethanol for 3 min. Next samples were 

sonicated in fresh ethanol for 15 min, then further rinsed with ethanol and water. After drying, the 

sample can be imaged with AFM. If the surfaces appear dirty, further steps of cleaning and 

sonication can be used as needed. Samples prepared on mica substrates should not be sonicated, 

instead, the samples can be immersed in clean solvent to remove particles of the surface mask.  

C.4 Immersion of Particle Masks in OTS Solution 

A problem we have encountered when immersing a masked substrate in organosilane 

solutions is that the particles rapidly detach from the surface. We have solved this problem by 

heating the samples before the immersion step to temporarily anneal the spheres to the substrate. 

Latex spheres do not work well for an immersion step because the polymeric particles melt and 

become deformed. Silica spheres retain their original shape and work well for immersion particle 

lithography with an annealing step. 

The silicon substrates masked with monodisperse silica particles was heated at 150°C for 

12 h. After annealing, the samples were cooled to room temperature. The samples were then 

immersed in an OTS solution (0.1%) in toluene for 8 h. Afterwards, the samples were rinsed with 

successive steps of sonication in water and ethanol to remove the particle mask. 
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C.5 Atomic Force Microscopy 

 Samples were imaged using either contact mode or tapping mode AFM. A Keysight model 

5420 or 5500 microscope (Keysight Technologies, Chandler, AZ) was used for AFM studies. 

Commercial soft tips were used for contact mode AFM which had an average spring constant of 

0.5 N/m (Veeco Probes, Santa Barbara, California). For tapping mode experiments, the spring 

constant of the tip was 48 N/m with a resonant frequency of 190 KHz (Nanosensors PPP-NCL-20, 

Neuchatel, Switzerland). Digital image processing was done using Gwyddion, which is freely 

available on the internet and is supported by the Czech Metrology Institute.255 Surface coverage 

estimates were done by converting the images into a black and white image and counting pixels 

with UTHSCA Image Tool.327 
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APPENDIX D: THERMAL K DETERMINATION OF THE TIP FORCE CONSTANT 

 To obtain quantitative measurements of the interaction forces between the AFM tip and the 

sample, the tip spring constant must be measured. Due to manufacturing differences, the average 

value of the tip spring constants reported by the manufacturer are not exactly precise for each 

probe. For accurate measurement of the spring constant of the tip, a software tool is built into the 

Keysight 5500 scanning probe microscope. The method models the tip as a thermal oscillator using 

a triple lock-in amplifier. The protocol for obtaining the spring constant of a tip is outlined as 

follows from imaging modes that apply contact mode. A force distance curve is used to obtain the 

deflection sensitivity of the photodiode.  

A. Do the test with a sample that is a hard, clean surface, such as mica or bare silicon.  

B. Set up the instrument for contact mode imaging. Deflection should be approximately -1 V 

and lateral force should be approximately 0. 

C.  With the Spectroscopy window, take a force distance curve. Set the max force to 4 and 

check the “relative” box. This will limit the amount of force that is measured to be 

approximately four volts to protect the tip from damage. 

D. Once the force distance curve is obtained, right click the approach curve in the retractive 

regime and click “add ruler.” This option is shown in Figure D.1. 

E. Drag the top dot of the ruler along a straight part of the repulsive regime.  

F. Once the ruler is added, right click again and click “Deflection Sensitivity” To calculate 

the deflection sensitivity of the cantilever.  
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G. Once that is calculated, click on the advanced tab.  

H. Click on Thermal K.  

I. From the window, click Full Span, then Optimize, then compute. The full range of the 

cantilever will be acquired, then optimize the signal. Once the signal is optimized, the 

force constant can be computed. Once this process is done, click apply. Double check 

that the cantilever shape is the correct one of the probe you are using, i.e. rectangular or 

pyramid (Figure D.2). 

 

Figure D.1: Once the force distance curve is obtained, right click and select add ruler.   
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J. Once the force constant has been applied, a force distance curve can be obtained on a 

feature of interest in the spectroscopy tab and model fitting can be applied as shown in 

Figure D.3 

 

 

 

 

 

Figure D.2: Example spectra for Thermal K window.  
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.  

  

Figure D.3: Plug-ins to calculate different fits to the 

force distance curve.  
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APPENDIX E: PERMISSION TO REPUBLISH FIGURES 

Permission for works used in reference for Figure 3.1 and Figure 3.2 as found at 

http://www.futuremedicine.com/page/Permissions. 

“Are you planning on using our material in a Thesis/dissertation? 

If you are using figure(s)/table(s), permission is granted for use in print and electronic versions 

of your thesis/dissertation 

A full text article may be used only in print versions of a dissertation/thesis. Future Medicine Ltd 

does not permit the reproduction of full text articles in electronic versions of theses or 

dissertations.” 

Permission for works used in reference for Figure 3.3. 
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