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ABSTRACT 
 

In the present work, an apertureless atomic force microscope (AFM) tip-enhanced laser 

ablation (TELA) system was developed and investigated. An AFM was coupled to an optical 

parametric oscillator (OPO) wavelength tunable laser for sample ablation with a submicron 

sampling size. The AFM was used to image the surface and hold the AFM tip 10 nm above the 

sample surface. The AFM tip is coated with a layer of gold with a thickness of 35 nm. The incident 

laser wavelength was tuned in the visible and near-infrared (IR) region and focused on the AFM 

tip. With the tip-enhancement effect, ablation craters on the surface with a submicron size were 

obtained. The mechanism of TELA was investigated using anthracene and three laser dyes: 

rhodamine B, methylene blue, and IR 797 chloride. All samples were prepared in thin films and 

the laser energy was set just below their far-field ablation threshold. The wavelength was tuned 

from 450 to 1100 nm to cover the visible and near-IR range. It was found that ablation is 

independent of the absorption of the compounds. The ablation crater volume was measured and 

found to have a maximum at 500 nm and an approximately linear drop to 800 nm. Craters could 

not be produced between 800 and 1200 nm and were slightly smaller at 450 nm compared to 500 

nm. Apertureless TELA was then performed to sample plasmid DNA with 532 nm, which resulted 

in a sampling volume of 0.14 µm3 with 12% in variation. The captured DNA was amplified and 

the amount of sample transferred from each ablation crater was quantitated at 20 ag/spot.  
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CHAPTER 1. INTRODUCTION 
 

The work discussed in this thesis is aimed at small-scale sampling of biomolecules. For tissue 

cells, the commonly used analysis methods are based on bulk analysis where the result is obtained 

by averaging the data from all the cells. Thus, the chemical information from single cells is lost 

during the bulk analysis approach. Alternatively, single cells can be targeted at smaller sampling 

scales, which can facilitate a more accurate and precise characterization of a given cell. Atomic 

force microscopy (AFM) tip-enhanced laser ablation (TELA) was used in this work for large 

biomolecule sampling with a sub-micron size. The challenges in exploring the small sized world 

are introduced. An overview of AFM and near-field effect is also covered in this chapter. 

1.1 Exploring the Nano-world 

As a unit of length measurement, the nanometer (nm) is a well-known quantity. The diameter 

of an atom is a tenth of a nanometer and the atomic nucleus size is roughly one hundred thousand 

times smaller. The diameter of an electron is less than a millionth of a nanometer.1  

After the famous talk “There’s Plenty of Room at the Bottom” given by Richard Feynman at 

Caltech in 1959,2 the nanometer has become more than a length unit but rather the core of the new 

fields of nanoscience and nanotechnology. Nanoscience is the science of nano-structures and 

measuring of the properties of matter at the nanometer level, and manipulation and handling of 

nano-materials.3 Three main challenges for exploring nano-world were claimed, especially for the 

field of information processing: miniaturization in solid-state technology, complexity in chemistry, 

and numerically intensive computation.3  

The rapid development in modern nanoscience and nanotechnology has achieved many 

milestones in size reduction and capability improvement of computers.4-7 In addition, there have 

been great contributions to the fields of medicine, environment, energy, and materials.8 To explore 
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the nano-scale, tools with nanometer or sub-nanometer precision are necessary. The major tools in 

nanoscience and nanotechnology include beam methods,9-14 probe methods,15-17 computational 

methods,18-20 and new materials.21-23 Beam methods are the typical fabrication approach for nano-

patterning whereas computational methods are used for theoretical studies. New nano-materials 

with appropriate properties are also needed. Among these tools, probe methods with the ability to 

provide direct surface information of the sample at the nanometer scale have drawn great attention 

for decades. AFM has become one of the essential tools to explore the nano-world.  

1.2 Atomic Force Microscopy 

AFM is a high resolution imaging technique that was first introduced in 1986 by Binning and 

coworkers.24 In contrast to conventional optical microscope techniques, AFM imaging utilizes a 

probe to scan a surface by the physical interaction between the probe and surface down to atomic 

level resolution.  

Another approach to achieve atomic level resolution is the electron microscope, which utilizes 

a focused electron beam to interrogate the sample.25-26 Two commonly used techniques in electron 

microscopes are scanning electron microscopy (SEM) and transmission electron microscopy 

(TEM). An advantage of AFM imaging over SEM and TEM is that AFM can simultaneously 

provide measurements in the X, Y, and Z axes. A resolution comparison of AFM to SEM, TEM, 

and conventional optical microscopy is shown in Figure 1.1.27  
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The working principle of an AFM is similar to that of a stylus profiler that uses a sharp tip 

dragged along a surface. There is a mirror mounted on the back of the stylus that reflects a light 

source onto a detector. When the stylus is scanned over the surface, the motion of the cantilever is 

monitored by the movement of the reflected light to build up a map of the sample height. This 

surface profiling strategy was applied to develop the scanning probe microscope (SPM) which 

includes two primary forms, AFM and scanning tunneling microscopy (STM).28 In 1982, STM 

was developed and was used to determine the distance between a tip and a conductive surface by 

measuring the tunneling current.29-30 Unlike STM, AFM does not require a conductive surface.  

AFM imaging techniques are based on the direct physical interaction between a sharp tip and 

the surface. A schematic of the AFM working principle is shown in Figure 1.2. An AFM system 

consists of a cantilever and a tip which are mounted to a piezoelectric actuator, a laser, and a four-

segment photodiode detector that is position sensitive.31 The laser beam is directed to the back of 

the cantilever and reflected to the photodetector. This process requires alignment of the laser beam 

by reading the photodiode signal to confirm that the laser is reflected onto the center of the detector. 

Figure 1.1. Resolution comparison of different microscopy techniques 
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The sample is mounted on a three-dimensional scanner stage where voltage is applied for precise 

movement at sub-nanometer resolution.32 

When the AFM probe comes into contact with the surface, the cantilever bends which results 

in laser beam deflection in both vertical and horizontal directions.33 With the photodiode detecting 

the signal, the movement of the cantilever is measured and recorded through computer software. 

This feedback also enables the control at either a constant force or a constant height above the 

surface. In the former case, the height deviation is recorded whereas the deflection force is obtained 

in the latter.31 In both cases, the topography of the surface is mapped.  

 

Figure 1.2. Working principle of the AFM 
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1.2.1 AFM Operation Modes 

An AFM can be operated in three modes: contact, non-contact, and tapping, which are based 

on different interaction forces between the AFM tip and the surface. These interactions include 

attractive forces due to van der Waals interactions, electrostatic and chemical forces, repulsive 

forces due to hard sphere repulsion and Coulomb interactions.34 The interaction force curve plotted 

as a function of the distance between the tip and the surface is shown in Figure 1.3. The three AFM 

modes are also depicted in this Figure. Details of each mode are discussed below. 

 

 

 

Figure 1.3. Interatomic force curve as a function of the distance between the tip and the surface 
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Contact Mode 

Contact mode was the first operational mode developed for AFM. Here, the AFM tip is in 

physical contact with the surface during the scanning process. The main interaction between the 

tip and the surface is the repulsive force, which is depicted in Figure 1.3. A schematic of contact 

mode AFM operation is shown in Figure 1.4a. Either the height or force of the cantilever is held 

constant in this mode. 

 

Figure 1.4. Operation modes of AFM: a) contact mode, b) non-contact mode, c) tapping mode 
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In constant height mode, the height of the AFM probe does not change when scanning across 

the surface. A bend or twist of the cantilever results in laser deflection which provides a measure 

of the displacement of the cantilever to map the topography of the sample. However, if the AFM 

tip is scanned over excessively steep parts of the surface, the tip may get damaged if it hits the 

surface with too much force.35 

In constant force mode, the cantilever is held at a constant force according to the laser 

deflection. By applying the required voltage, the actuator attached to the cantilever moves the tip 

up or down to compensate for the deflection change during the scan. In this case, the voltage 

applied to the actuator contains the surface topography information. Constant force mode has a 

larger height measuring range than constant height mode but has slower scan rates.36 

Contact mode AFM imaging requires direct contact with the surface, which makes it difficult 

to image soft materials. The lateral movement of the tip against the surface may result in shear 

forces, which may alter the surface and distort the image topography.31 Despite the limitations, 

contact mode AFM is a widely used measurement tool for nano-materials37-39 and biological 

materials.40-42 

Non-contact Mode 

AFM non-contact mode uses a small cantilever oscillation amplitude. The cantilever oscillates 

at its resonant frequency without direct contact with the surface. The tip is placed close to the 

surface with a distance of 10-15 nm31 and the oscillation usually requires a amplitude around 10 

nm.43 The dominant interaction is the attractive van der Waals force, which is shown in Figure 1.3. 

A schematic of non-contact mode AFM scanning is depicted in Figure 1.4b. 

In non-contact mode, the amplitude, phase, or frequency of the cantilever oscillation changes 

due to the interaction force between the tip and the surface. These changes are monitored through 
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the laser deflection measured on the quadrant photodiode. The cantilever is returned to its original 

oscillation set point through a feedback loop. This process is similar to constant force contact mode 

AFM where the tip is maintained at a fixed distance above the surface. The feedback signal is used 

to generate the topography of the surface. 

Non-contact AFM imaging can be used for soft materials with higher resolution due to the 

lower repulsive force compared to contact mode imaging. Because the tip is not in contact with 

the surface, the lateral force while scanning is minimized and both tip and surface damage is 

minimized. Non-contact mode imaging is widely used for a variety of materials, such as semi-

conductors,44-46 polymers,47-48 and biological samples.49-50 In addition, non-contact AFM is a 

powerful tool for determination of tip-sample interactions.51 However, under ambient conditions, 

the surface is usually covered with a contamination layer. In this case, non-contact mode imaging 

requires a stiff tip and great care since the tip can be trapped by the contamination layer due to the 

capillary force, which results in significant resolution degradation.52 

Tapping Mode  

Tapping mode AFM is based on an intermediate contact between the probe and surface, which 

can be envisioned as a combination of contact and non-contact modes. The main interaction forces 

are both repulsive and attractive forces acting between the tip and the sample, as shown in Figure 

1.3. Tapping mode and non-contact mode AFM are known as dynamic AFM techniques. Similar 

to non-contact mode, the cantilever in tapping mode AFM oscillates close to its resonant frequency. 

However, the amplitude of oscillation in tapping mode is usually larger than in non-contact mode, 

which results in the probe periodically touching the surface. A schematic of tapping mode AFM 

is shown in Figure 1.4c. 
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In tapping mode AFM, the amplitude of the cantilever oscillation is set to a constant value. 

When the probe is scanned over the surface, the intermittent tip and surface contact changes the 

amplitude from the oscillation set-point. Similarly to non-contact mode AFM, the deviation is 

monitored by the laser deflection, which generates an error signal. Once the error signal is received, 

the feedback loop adjusts the tip-to-sample distance to compensate for the amplitude change. The 

error amplitude signal is collected and represents the topography of the surface. 

Tapping mode has become a widely used AFM imaging technique because it overcomes the 

surface contact problems encountered in both contact and non-contact mode AFM. Because the 

tip touches the surface only occasionally, the contact time between the tip and the surface is 

minimized, which reduces the lateral force compared to contact mode. The low lateral force 

reduces surface damage, which facilitates imaging of soft, elastic, and adhesive materials. In 

comparison to non-contact mode, the probe can penetrate a contamination layer in tapping mode 

without being trapped because the restoring force of the cantilever can withdraw the probe from 

the surface. Thus, tapping mode can improve the imaging resolution under ambient conditions. 

These advances make tapping mode AFM a widely applied technique for a large variety of 

materials.27 

1.2.2 Applications of AFM 

AFM was widely used in nanoscience and nanotechnology due to its high lateral resolution. 

Analysis of various samples can be achieved by AFM. The main applications of AFM are surface 

imaging, mechanical studies, nano-manipulation, and nano-machining, which are introduced in 

the following sections. 

A variety of sample species can be imaged by AFM such as semiconductors,45, 53 polymers,54-

56 and biological materials.42, 57-59 Semiconductor surfaces such as silicon materials have been 
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imaged by AFM at atomic resolution. For example, AFM imaging of Si(111) at atomic resolution 

was reported from two different groups in 1995.45, 60 In both cases, AFM imaging was operated 

under ultrahigh vacuum (UHV) in non-contact mode to avoid surface damage. The Si(111) 

topography was similar to that obtained with STM imaging; however, fine control of the force 

gradient applied to the tip was required to avoid image distortion.45, 60 To improve imaging, a high 

stiffness (~1800 N/m) cantilever with was developed in 2000.44 The quartz tuning fork cantilever 

is more stable in small amplitude oscillation, which improved the image quality and enabled direct 

observation of subatomic Si(111) features.53 

AFM has been widely used for imaging of polymer membranes. The diameter of individual 

membrane pores can be measured by AFM, which allows the determination of the pore size 

distribution.56 However, only those pores with openings on the membrane surface can be measured. 

Therefore, the measured mean pore size may not agree with the results from membrane transport 

and porosimetry methods.61-62 In addition, because AFM imaging can measure the height on the 

surface, it can help monitor the physical change in the roughness of the polymer membrane surface 

during membrane development. 63  

Biological materials such as DNA and RNA have been imaged by AFM64-66 and various 

structures observed under ambient or aqueous conditions.66-67 For example, AFM imaging was 

used to observe double helix DNA structures,68 supercoiled DNA,69 self-assembling RNA,70 and 

chromosome-related structures.71 The recently developed high-speed AFM has allowed 

observation of dynamic processes of nucleic acids with an imaging rate over 25 fps.72 This 

technique can facilitate direct visualization of dynamic structure changes and dynamic processes 

of DNA and RNA, which leads to better understanding of nucleic acids operation and function.  
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AFM can be used to measure surface forces with 10 pN resolution.73 With the feedback from 

the interaction forces between tip and surface, mechanical properties such as roughness, hardness, 

elasticity, and intermolecular forces can be investigated.  

Surface height measurement by AFM can be used to determine the roughness of the surface 

with atomic resolution.74 AFM has been employed to quantify the roughness of semiconductors,75-

76 metal oxides,77-78 ceramics,79-80 polymers,81-83 and biological materials.84-85 

In AFM nanoindentation, the probe approaches the surface with a gradient force, which can be 

used to determine the surface hardness of metals86 and polymers.87 The elasticity of biological 

materials can also be obtained by AFM nanoindentition.88-89 Single cell penetration was performed 

on a with an AFM tip,41 the schematic of which is shown in Figure 1.5. Figure 1.5 a-d illustrates 

the process of approaching, touching, deforming, and penetrating the cell membrane, respectively, 

which are also depicted on the left as the points A-D on the force-displacement curve. The 

 

Figure 1.5. AFM tip penetration through a cell membrane 
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inflection point between points C and D is the point of cell membrane penetration. The 

corresponding force of this point can be used to determine the elasticity of the cell membrane. 

Intermolecular forces of biomolecules, such as proteins and genomic materials, can be 

measured with contact mode AFM. A biomolecule attached to the AFM probe can be stretched 

when the cantilever is raised with a gradient force. The force required to overcome intermolecular 

interactions, such as covalent bonding, hydrogen bonding, and van der Waals interactions, can be 

determined. Applications include protein unfolding,90 binding forces in single and double stranded 

DNA and RNA,91-93 and measuring binding forces between G-C and A-T base pairs.94 

With the ability of apply small forces, AFM has become a flexible tool for nanomanipulation 

such as sample cutting, pushing and pulling, and picking and displacing materials. AFM can be 

used to cut nanostructures such as biomolecules and for carbon nanofabrication.95-97 DNA and 

chromosomes can be cut in a process that involves three steps.65 First, the biomolecule is imaged 

in tapping mode. Then, the tip is scanned back and forth in contact mode like a saw. Afterwards, 

the result is checked by tapping mode imaging. AFM cutting and isolation of single DNA strands 

with a sharp silicon tip was reported.98-100 A knife-edged tip was developed to improve the cutting 

efficiency.101 AFM cutting of carbon nanotubes with a metal-coated tip was reported.102-103  

Nanomanipulation has been used for studies of nanoparticles, nanorods, and nanotubes.104-108 

The pushing and pulling process is done in contact mode where small forces are applied. For 

example, AFM was used to move a 20 nm wide carbon nanotube with a force of 54 nN.104 AFM 

was used to push a carbon nanotube to create an electrical contact with two gold electrodes109 and 

to assemble gold nanoparticles to form a nanowire.110 Nanomanipulation has also been performed 

with biomolecules.101, 111-112 
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Compared to pushing and pulling, nanomanipulation involving picking up nano-objects 

remains challenging. AFM tips can be used to pick up DNA by adsorption.113-114 A tweezer-shaped 

tip was used to grab chromosome pieces by physically clamping them.115 A two-tip AFM system 

picking and displacing of nanotubes was developed.116 A schematic is shown in Figure 1.6. The 

tips pick up the target like a tweezer with a force of 52 nN. 

1.2.3 Challenges  

AFM is widely used for imaging, force measurement, and nano fabrication for a variety of 

samples with a nanometer scale resolution.64, 117-118 However, with all of these achievements 

several challenges remain and further improvements are desired. 

 

Figure 1.6. Pick nanomanipulation of nanotube by a two-tip AFM nano-tweezers 
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All measurements and measurement instruments will encounter artifacts. AFM imaging, as an 

instrument based on the measurement of interaction forces between tip and surface, also has the 

inevitable challenge of artifacts.  

One of the common artifacts found in AFM imaging is produced by the probe during a surface 

scan. To acquire accurate nanostructure size information, the radius of the probe must be small. 

An AFM tip may become dull, contaminated, or broken during use,119 which may generate artifacts. 

A schematic of various imaging artifacts is shown in Figure 1.7. If the probe becomes blunt during 

scanning, raised structures will be imaged larger than expected and holes smaller than expected. 

Spherical nanoparticles with 2 nm diameter have a measured height of 2 nm but a diameter of 10-

20 nm when imaged with a blunt probe.120-121 If the tip breaks during a scan, additional artifacts 

 

Figure 1.7. AFM imaging artifact due to blunt tips 
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can be introduced. Broken tips may be spiked or have attached debris producing double or multiple 

tips, which results in copies of the true structures in the AFM image.122 In addition, tip 

contamination from soft materials may degrade the image quality.123 Thus, to minimize these 

imaging artifacts, AFM probes with high stiffness and small tip diameter are desired.  

Other artifacts can be introduced through environmental vibrational noise such as floor 

vibration and acoustic vibration. To minimze vibrational noise, instruments can be placed on an 

isolation table and in an acoustic shileding cabinet. 

An additional challenge is 3D imaging. AFM imaging has been used to resolve chemical 

structures such as pentacene molecules adsorbed on copper with molecular resolution.124 However,  

imaging performed in constant height mode has limited planar analysis. A strategy to overcome 

this limitation is to scan over the same line on the surface multiple times at different constant 

heights to create the 3D image.125-127 However, these approaches still lack the precision required 

for molecular resolution. 

Another challenge for AFM imaging is chemical identification.128 An AFM can measure the 

phase shift of the cantilever oscillation for phase imaging, which provides limited information on 

sample composition, adhesion, friction, viscoelasticity, and other factors.129 However, phase 

imaging depends on many factors.130 Other AFM techniques can differentiate samples by their 

thermal and conductive characteristics.131-133 However, all these approaches have limited chemical 

identification ability. To conquer this challenge, AFM has been integrated with other techniques 

such as spectroscopic methods, which will be discussed in the next section. 
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1.3 Optical Near-field AFM 

The optical near-field effect can be used to couple spectroscopic methods with AFM and to 

affect surface modification. The resolution limit of far-field optical spectroscopy is set by the 

diffraction limited spot diameter (DS) given by:134  

𝑑𝑚𝑖𝑛 =  
𝜆

2NA
         (1.1) 

In this equation, 𝜆 is the wavelength of the light and NA is the numerical aperture. In order to 

obtain smaller light beam, a high numerical aperture lens is required and a smallest size of ~𝜆/2 

can be approached in conventional optical microscopy. 

In 1928, Synge and co-workers developed a theory of illumination through a subwavelength 

sized aperture placed at a distance smaller than the wavelength (z ≪ 𝜆) to achieve high resolution 

in the optical near-field below the diffraction limit of the far-field optical system. This field 

extinguishes rapidly with the increasing distance.135 This scheme was demonstrated  with a 

scanning probe microscopy metal coated optical fiber with an aperture in the center to reach a 

resolution of 𝜆/20136 and 𝜆/16137 in 1984.  

When the near-field effect is used with AFM, a technique called scanning near-field optical 

microscopy (SNOM) is established. There are two modes for SNOM: aperture and apertureless. 

In aperture SNOM (a-SNOM), the light is directed through a fine pulled optical fiber to illuminate 

a small area of the surface,138 while in apertureless SNOM or scattering SNOM (s-SNOM), a sharp 

metal coated AFM tip acts as an antenna for field enhancement.139 When the SNOM tip is 

irradiated while a few nanometers from a surface, an evanescent electric field is formed with the 

size dependent on the diameter of the aperture (a-SNOM) or the radius of the AFM tip (s-SNOM). 
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The resolution of SNOM is below the diffraction limit whereas the detection can still be in the far-

field. The working schematic of both a-SNOM and s-SNOM is depicted in Figure 1.8.  

Several optical spectroscopy techniques have been coupled with near-field AFM to provide 

high-resolution sample characterization such as Raman, IR, and fluorescence spectroscopy.140-141 

In addition, near-field AFM can be coupled to laser desorption and ablation .142  

1.3.1 Near-field Spectroscopy 

The SNOM or the tip-enhanced techniques has been used for chemical identification.143-145 

Several tip-enhanced spectroscopic approaches have been developed by coupling with Raman 

spectroscopy,146-149 infrared,150-153 and fluorescence154-155 for material characterization or chemical 

mapping of a variety of samples of inorganic, polymer, and biological materials.  

The idea of coupling Raman spectroscopy to scanning probe microscopy was introduced in 

1985.156 In 2000, tip-enhanced Raman spectroscopy (TERS) was demonstrated.157-160 TERS is 

 

Figure 1.8. Working principle of a) aperture SNOM and b) apertureless SNOM 
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widely used for chemical identification at molecular resolution.149 Many efforts have been 

undertaken to improve the Raman scattering enhancement in the past several decades, which have 

made TERS a high resolution imaging technique to study the chemical distributions in a sample.149 

TERS is particularly suitable for graphitic materials such as carbon nanotubes and graphene.161-163 

Moreover, TERS is widely used for biological systems such as proteins, collagen, bacterial and 

viruses, DNA, and RNA.164-166 For example, TERS has been used for sequencing single stranded 

RNA.167  

AFM can also be coupled with fluorescence spectroscopy, which is called tip-enhanced 

fluorescence (TEF). The enhancement of TEF makes it possible to measure excitation and 

emission at the nanometer scale. TEF microscopy has been used for one-photon fluorescence 

images with a resolution below 10 nm155 and can be coupled with tapping mode AFM to 

simultaneously obtain the topography and fluorescence mapping of a surface.168 TEF has been 

used for chemical identification for a variety of materials such as semiconductors, thin organic 

films, and carbon nanotubes.169-171  

IR absorption spectroscopy can be used for chemical identification and structural studies.172 

When AFM is coupled to IR spectroscopy, two techniques with high spatial resolution result. IR 

scattering scanning near-field microscopy (IR s-SNOM) and AFM-IR.173 A schematic of these two 

approaches is depicted in Figure 1.9.  

IR s-SNOM is based on the working principle of s-SNOM shown in Figure 1.9a. IR s-SNOM 

uses an interferometer that measures the amplitude and phase change of the scattered light when 

the AFM tip is in proximate to the sample within the near-field regime. These changes can be 

recorded as a function of the refraction index of the local complex, which can be used for chemical 

identification. The phase and amplitude of the scattered light are not simple functions of absorption, 
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which means the spectra from IR s-SNOM cannot be directly compared to conventional far-field 

IR absorption spectra.173 Another challenge of IR s-SNOM is that the signal is typically much 

lower than the scattered background.174 IR s-SNOM has been reported for characterization of 

various sample species such as small molecule thin films,175 graphene,176-177 and biological 

materials.178-179  

The working principle of AFM-IR is different from IR s-SNOM. In AFM-IR, the AFM 

cantilever works as a near-field detector for the measurement of the IR absorption of the surface.151-

152 A schematic of AFM-IR is shown in Figure 1.9b. A wavelength tunable pulsed IR laser is used 

to illuminate sample typically through an optical transparent prism at the total internal reflection 

angle. The AFM tip is operated in contact with the surface to measure the localized thermal 

expansion of the surface due to IR absorption, which results in changes to cantilever oscillation. 

 

Figure 1.9. Schematics of a) IR s-SNOM and b) AFM-IR 
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As discussed in Section 1.2.1, the oscillation change of the cantilever is transduced into laser 

deflection, which is detected by the photodiode. In most cases, the oscillation amplitude is directly 

proportional to the amount of light absorbed.180 Thus, a local IR absorption spectrum can be 

generated as a function of the cantilever oscillation amplitude change, which is directly 

comparable to the conventional far-field IR absorption spectra. The spatial resolution of AFM-IR 

is independent of the incident IR laser beam size, but dependent on the AFM tip radius, which 

allows sample analysis at the nanometer scale.151 AFM-IR was recently reported for chemical 

identification and species mapping of polymers,152 quantum dots,181-182 semiconductors,183 

pharmaceuticals,184-185 and biological materials.186-187 

1.3.2 Near-field Laser Ablation 

Both a-SNOM and s-SNOM can be coupled with pulsed lasers for laser desorption and 

ablation.188-189 Laser-induced desorption and ablation can both result in particle removal from 

surfaces while desorption isolates individual atoms, molecules, or ions.190 In near-field laser 

ablation, the laser interaction between the tip and surface may result in sample removal at sub-

micrometer resolution, which can be used for nano-fabrication on the surface to create nanometer 

sized patterns.191 Near-field laser ablation has been used for sample extraction, which has the 

potential for further separation and purification of the extracted sample. In addition, the ablated 

materials can be analyzed by other highly sensitive instruments, which can provide additional 

chemical and structural information.192 

Nanomachining 

The ability to fabricate structures and devices at the nanometer scale has drawn much attention 

in the field of nanoscience and nanotechnology. As an alternative to photolithography, AFM near-

field laser ablation is capable of surface modification for a variety of samples such as photoresists, 
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photosensitive polymers, and metals.191 For example, a 543 nm He-Ne pulsed laser was directed 

through an aperture SNOM metalized probe to nano-fabricate a feature on a poly(DR1-MMA) 

photosensitive polymer surface with a resolution of 100 nm.193 Apertureless AFM near-field laser 

ablation has been employed for nanomachining of metal surfaces.194-195 For instance, an 800 nm 

femtosecond pulsed laser was used for nano-patterning letters and curves on a gold surface at a 

resolution of 10 nm.194   

AFM Near-field Ablation with Mass Spectrometry 

Mass spectrometry (MS) is one of the most powerful techniques for chemical identification 

and quantification of complex samples.196-200 A mass spectrometer is used to determine the mass 

of charged atoms or molecules based on the mass to charge ratio (m/z), which can generate a mass 

spectrum.201-202 In addition, fragmentation of ions can be used for structure determination.203 

Sample analysis by mass spectrometry includes extraction, ionization, and detection. If the sample 

can be extracted and ionized, the mass spectrum from an array of positions can be combined and 

a mapping of each selected m/z can be generated. This approach is called imaging mass 

spectrometry (IMS) which also provides chemical identification.204-206 High spatially resolvation 

sampling and ionization methods are desired to provide more accurate and precise mapping in 

IMS.207  

Two of the conventional extraction methods for IMS utilize a focused ion beam or pulsed laser 

to bombard or irradiate the material. The former approach is called secondary ion mass 

spectrometry (SIMS), which has sub-micrometer spatial resolution.208-209 However, SIMS requires 

high vacuum and is only suitable for atoms, small molecules, or low molecular weight 

biomolecules (< 1500 Da), since it is a hard ionization method which can fragment large 

molecules.210-211 Laser desorption and ablation can sample large biomolecules under ambient 
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conditions for IMS.212 However, the laser spot size is diffraction limited. Therefore, ambient high 

spatial resolution sampling is a challenge for IMS. 

Proximal probe thermal desorption under ambient conditions coupled with mass spectrometry 

analysis was reported in 2010.213 In this approach, a probe tip with a diameter of 1.6 mm was 

placed in contact with the surface and heated to 350 ℃ for thermal desorption of analytes from a 

thin film chromatography plate. The desorbed material was ionized by electrospray (ESI) and 

atmospheric pressure chemical ionization (APCI) and then sent to the mass spectrometer for 

identification.213 An AFM tip was later used for proximal probe thermal desorption of a caffeine 

thin film. The tip was heated to 350 ℃ and a sampling resolution ~250 nm was achieved.214 

However, since the heated probe temperature is around 350 ℃, the application is limited to 

relatively low mass species, which can be vaporized by heating.215 

Near-field laser ablation sampling with a-SNOM under vacuum was first employed with mass 

spectrometry in 1998.216 In this approach, acetylcholine and dihydroxybenzoic acid were ablated 

by a 337 nm nitrogen pulsed laser through a SNOM aperture with a resolution ~1 µm and detected 

by a time-of-flight (TOF) mass spectrometer. The first use of a-SNOM sampling under ambient 

conditions coupled with MS analysis was reported in 2001.217 A 355 nm pulsed laser was directed 

through an approximately 170 nm diameter aperture of a SNOM probe to ablate a bis(triazenes) 

thin film in the near-field regime. In this work, the near-field ablation formed a crater of 200 nm 

diameter with 20 nm in depth on the surface with a volume of 60,000 nm3 where an estimated 1.7 

amol of sample was ejected. A heated 20 cm long capillary with an inner diameter of 20 µm was 

connected to an electron ionization (EI) source and the other end of the capillary was placed close 

(< 5 µm) to the SNOM probe to aspirate the ablated material into a quadrupole mass spectrometer. 

Individual ablated bis(triazenes) were detected by MS.217 To achieve higher sensitivity, an ion trap 
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time of flight (IT-TOF) mass spectrometer was employed for the detection of the ablated 

material.218-219 

Apertureless AFM near-field laser ablation sampling coupled to mass spectrometry has been 

demonstrated.220-221 For example, an AFM was coupled to a quadrupole ion trap mass spectrometer 

for detection of ablated rhodamine 6G.221 In this approach, a 532 nm nanosecond pulsed laser was 

focused onto a gold coated AFM tip, which created craters 150 nm diameter with 3 nm depth on 

an indium tin oxide (ITO) coated glass coverslip.189 The ablated material was aspirated into a 

capillary, which was connected to an ion trap spectrometer. Both the topography acquired by AFM 

scanning and mass spectrometry chemical imaging of the rhodamine 6G thin film with the spatial 

resolution of 2 µm were obtained.221 

Apertureless tip-enhanced laser ablation was coupled with inductively coupled plasma mass 

spectrometry (ICP-MS) to acquire the elemental distribution of the ablated material.222-225 A sharp 

silver needle with a diameter of ~ 150 nm was placed 200 nm above the surface and a 532 nm laser 

was used for tip-enhanced laser ablation at ~150 nm resolution. Soft samples such as plants and  

gel were ablated under ambient condition.223 The ablated material was transferred into an ICP-MS 

by an argon carrier gas. Further investigations of the tip diameter and tip-to-sample distance were 

carried out with a gold thin film.226     

Apertureless tip-enhanced laser ablation sample transfer for off-line matrix assisted laser 

desorption/ionization (MALDI) MS was demonstrated previously.207, 227 The off-line sampling 

approach benefits from additional separation and purification steps for the extracted materials. In 

this approach, the laser was directed onto a gold coated AFM tip which was ~ 10 nm above the 

surface. A metal ribbon was placed 300 µm above the surface and 100 µm horizontally from the 

AFM tip. Lasers with wavelengths of 355 and 532 nm were used for sampling intact small and 
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large biomolecules with the molecular weights up to ~6000 Da (insulin).227 In addition, the 

wavelength of 1064 nm was employed for lipid removal from a rat brain tissue section.207 The 

captured material was then dissolved and deposited on a MALDI target with a matrix for MALDI 

analysis. The transfer efficiency of this approach for rhodamine 6G was 3 %.227 

1.4 Research Objective 

The objective of this research was to develop a tip-enhanced laser ablation system for sample 

ablation and capture. The mechanism behind this approach was investigated. The application of 

the TELA system was applied to genomic material ablation and capture.  

The instrumentation is described in detail in Chapter 2, which includes two main parts: the 

AFM and the laser system. The wavelength dependence of the TELA system was evaluated and is 

discussed in Chapter 3. In this work, the laser wavelength was tuned in the visible and near-IR 

range to investigate ablation at different wavelengths. Two different sample types were selected 

for the wavelength dependence studies. The ablation efficiency of each wavelength was evaluated 

based on the volume of the ablated crater on the surface. Application of the TELA system for 

sampling DNA with a 532 nm laser is discussed in Chapter 4. The captured DNA was amplified 

by PCR and nested-PCR.   
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CHAPTER 2. INSTRUMENTATION 
 

This chapter contains brief description of the instruments used in this research. Tip-enhanced 

laser ablation is a technique based on the coupling of an AFM instrument with a laser system. The 

details of the AFM instrument and lasers used in this research are discussed. 

2.1 Atomic Force Microscopy 

There are two main purposes for the AFM system used in the work described below. First, 

AFM is used obtain surface images, which helps locate the target of interest for tip-enhanced laser 

ablation. The other use of the AFM is to place a conductive AFM tip above the surface for laser 

ablation. AFM working principles are discussed in Chapter 1. 

AFM System 

The AFM system is a modified Anasys (Santa Barbra, CA, USA) afm+ with a sample stage 

modified for laser access. A photograph of the AFM system is shown in Figure 2.1 and a 

photograph of the AFM head and the tip is shown in Figure 2.2. A bright field 10× optical 

microscope with resolution of approximately 1.5 µm is used to view the AFM cantilever with the 

probe. A red diode laser is directed onto the back of the cantilever and is reflected onto a quadrant 

photodiode detector to monitor the cantilever movement. The stage has a motorized XYZ stage 

for coarse control and a piezoelectric XYZ stage for precise control of scans. The motorized stage 

has an 8 × 8 mm range and 1 µm resolution whereas the piezoelectric stage has a resolution of 1 

nm.  

A surface image can be generated using contact, non-contact, and tapping modes discussed in 

Section 1.2.1 down to 10 nm resolution, which depends on the radius of the AFM tip used for 

imaging. The system allows acquisition of AFM images with a XY scan range at 100×100 µm and 

Z measuring range over 7 µm. The AFM system can also perform thermal analysis in nanoTA 
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mode228 in which a resistively heated thermal probe is placed in contact with the surface and heated 

up to approximately 400 ℃. During the temperature ramp, the deflection of the cantilever is 

monitored to measure the local thermal properties of the material.  

  

 

 

Figure 2.1. Photograph of the AFM system used for tip-enhanced laser ablation  
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AFM Probes 

The AFM probes used in the research described below are gold-coated silicon tips (ACCESS-

NC-GG, Applied Nanostructures, Mountain View, CA, USA). These probes are manufactured 

from low resistivity (0.010-0.025 Ω/cm) n-type antimony doped single crystal silicon in the shape 

 

Figure 2.2. Photograph of the AFM head, probe, and sample stage 
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of a triangular pyramid. The probe cantilever is 140 µm long, 50 µm wide, and 5 µm thick. The 

configuration of the tip is depicted in Figure 2.3. The tips are between 14 to 16 µm tall and the 

apex half-cone angle of the tip is 15⁰. The center axis of the probe is tilted tip at an angle of 28⁰ 

with respect to the cantilever normal axis. This design allows direct optical line of sight to the tip 

for laser irradiation. The silicon has a radius of 6 nm and a 35 nm thick gold vapor deposition 

coating gives a tip radius of 40 nm. The spring constant and resonant frequency are 60 N/m and 

300 kHz, respectively.  

2.2 Lasers 

Nd:YAG Laser 

The Minilite I laser (Continuum, San Jose, CA, USA) is a 532 nm frequency doubled Nd:YAG 

laser and the configuration is depicted in Figure 2.4. This laser is pulsed with a width of 5 ns. The 

maximum energy output of the laser is 100 mJ with a repetition rate up to 15 Hz. 

 

 

 

Figure 2.3. Configurations of the AFM tip 
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Optical Parametric Oscillator Laser  

The optical parametric oscillator (OPO) laser system is a wavelength tunable system (Opolette 

HE 335 LD, OPOTEK, Carlsbad, CA, USA). The pump laser is a 355 nm Nd:YAG third harmonic 

laser. The non-linear crystal used to generate the signal and idler output is made of the barium 

boron oxide (BBO). The BBO crystal is mounted on a motorized stage, which is controlled by 

software for rotation. Both signal (410-710 nm) and idler (710-2400 nm) wavelengths can be used 

as the output of the OPO. This system has a wavelength tuning range of 410-2400 nm, which 

covers part of the visible and near-IR range with an accuracy of 1 nm. The pulse width of the 

 

Figure 2.4. Schematic of the Nd:YAG laser 
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output laser is 7 ns, and the maximum repetition rate is 20 Hz. The wavelength tuning curve is 

shown in Figure 2.5 and the maximum output energy is 9.4 mJ at 530 nm.  

2.3 Tip-enhanced Laser Ablation  

A photograph of the tip-enhanced laser ablation configuration is shown in Figure 2.6. The 

system is mounted on a vibration isolation table (TMC, Peabody, MA, USA), minimizes AFM 

imaging artifacts caused by vibrational noise. The laser beam is steered by two silver-coated 

broadband mirrors and focused 1 cm beyond the AFM tip using a 25 cm CaF2 lens. The laser is 

directed at an angle of 10º with respect to the table surface and 45º to the axis of the cantilever. 

 

Figure 2.5. OPO tuning curve 
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The polarization of the laser was adjusted using a half wave plate. The laser output was attenuated 

with a Glan-Thompson polarizing prism.  

Samples used in the experiments were prepared by deposition on a glass cover slip, which was 

affixed to a 1.5 cm diameter 2 mm thick round metal plate with a double-sided tape. The plate was 

mounted on the AFM sample stage for imaging and ablation. The AFM images reported below 

were obtained in tapping mode. For ablation, the target of interest was selected and the tip was 

brought above the target ~ 10 nm. The AFM was operated in tapping mode during laser ablation. 

 

Figure 2.6. Photograph of the tip-enhanced laser ablation system 
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An interval of 1 s between laser shots was used to irradiate the tip. Craters formed on the surface 

by tip-enhanced laser ablation were imaged in AFM tapping mode. For capture of the ablated 

material, a 300 µm wide silver ribbon was placed 300 µm above the surface and 100 µm away 

from the AFM cantilever.  
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CHAPTER 3. MECHANISTIC STUDIES OF TIP-ENHANCED LASER 

ABLATION 
 

The role of laser wavelength in AFM-TELA was studied and is discussed in this chapter. The 

wavelength tunable OPO was used to irradiate a gold-coated silicon AFM probe held 15 nm above 

the surfaces of anthracene, rhodamine B, methylene blue, and IR 797 which have different 

maximal optical absorption. The absorption of laser energy by the tip at 532 nm is sufficiently high 

to result in melting of the gold coating and increases the diameter of the tip from 100 nm to 

approximately 1 µm. The ablation crater volume was measured and found to have a maximum at 

500 nm and an approximately linear drop to 800 nm. Craters could not be produced in the near-IR 

range of 800-1200 nm. The crater size is not dependent on the optical absorption of the surface 

and the mechanism of ablation is postulated to be the result of a ballistic effect or direct thermal 

transfer through the tip in contact with the surface. 

3.1 Introduction 

The combination of AFM with atomic and molecular spectroscopy results in a powerful tool 

for chemical analysis.144-145, 229 Both aperture and apertureless SNOM were developed for chemical 

identification with high spatial resolution due to the near-field effect.141, 230-232 Both aperture and 

apertureless SNOM are used for fluorescence,166 TERS,146, 166, 233 IR151, 173, 234 and 

electroluminescence spectroscopy.235 These tip-enhanced spectroscopy methods bring the size 

scale for chemical analysis into the range below 100 nm.  

                                                           
 

 Some portions of the work reported in this chapter previously appeared as Cao. F.; 

Donnarumma, F.; Murray, K. K., Wavelength Dependent Atomic Force Microscope Tip-enhanced 

Laser Ablation, published in the Applied Surface Science.261 Reprinted by permission of Elsevier. 
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Tip enhancement can also be used for chemical sampling and material modification below 100 

nm.236 Laser ablation can be accomplished using aperture systems to couple nanosecond,237-239 

picosecond,217 or femtosecond240-243 pulse width lasers. Apertureless laser ablation has been 

demonstrated with nanosecond lasers.189, 227, 244 The ablated material was characterized using mass 

spectrometry207, 217-218, 245-246 as well as optical emission spectroscopy.247-248  

The mechanism of near-field laser ablation may result from thermal expansion of the tip, 

ballistic ablation, or photothermal ablation.142, 238-239 Evidence for thermal expansion of an aperture 

tip leading to surface indentations has not been found.238 Direct heat transfer from the tip to the 

surface at atmospheric pressure is believed to be inefficient; a more probable mechanism is ballistic 

ablation in which molecules adsorbed on the tip or atoms from the tip coating are ejected and 

impinge on the sample causing sputtering of the material below. Ballistic heating was postulated 

as the mechanism of material removal from van der Waals solids with relatively low enthalpy of 

sublimation such as anthracene.239 Ablation of materials with higher sublimation enthalpy such as 

the chloride salt rhodamine dye is more consistent with a photothermal mechanism in which the 

laser energy is absorbed by the substrate and converted to vibrational energy that leads to 

ablation.238 With the photothermal mechanism, the wavelength dependence of the ablation tracks 

the molecular absorption of the substrate thin film.  

In this chapter, a study of the wavelength dependence of apertureless tip-enhanced laser 

ablation of anthracene and three organic dyes is presented. The efficiency of laser ablation was 

studied using the volume and size of craters produced on surfaces with the optical parametric 

oscillator (OPO) laser, which allowed wavelength tuning in the 450-1200 nm range, covering the 

visible and near-infrared spectrum. The results were used to elucidate the mechanism of tip-

enhanced laser ablation. 
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3.2 Experimental 

The tip-enhanced laser ablation system configuration described in Chapter 2 was used for the 

experiments described in this section. The AFM was operated in tapping mode both for imaging 

as well as tip-enhanced laser ablation. The amplitude sensitivity of the tip was 6-7 nm/V and an 

amplitude set point of 1 V was selected to keep the tip oscillating between 0 and 15 nm from the 

surface during ablation. A Glan-Thompson polarizer was used to adjust the laser energy. The 

energy was set to 300 μJ/pulse for anthracene, 100 µJ/pulse for rhodamine B, and 150 µJ/pulse for 

methylene blue and IR 797 organic dyes ablation. Each crater was obtained from 3 laser shots with 

a 1 s delay between each shot. Three dimensional images were constructed from the AFM data 

using custom software written in LabVIEW (National Instruments, Austin, TX, USA), which was 

also used to calculate crater and rim volumes.  

The AFM probes were imaged by scanning electron microscopy (Quanta 3D FEG FIG/SEM, 

FEI, Hillsboro, Oregon, USA) and energy dispersive X-ray (EDX) spectroscopy was used to 

determine the elemental composition of the probe surface. 

Thin films of pure compounds were used as test surfaces for the tip-enhanced laser ablation. 

Anthracene (99%; Sigma Aldrich, St. Louis, MO, USA) was dissolved in dichloromethane (99.9%; 

Sigma Aldrich) at a concentration of 1 mg/mL. Rhodamine B (Fluka, St. Louis, MO, USA), 

methylene blue (Sigma-Aldrich), and IR 797 chloride (80 % dye content, Sigma-Aldrich) were 

prepared in methanol (LC-MS grade, Sigma-Aldrich) at a concentration of 1 mg/mL. The films 

were formed by depositing 3 µL of the solution on a glass cover slip and allowing the solvent to 

evaporate. The thickness of the films was estimated to be around 1 µm. Absorption spectra of each 

organic dye solution at a concentration of 10 µg/mL in methanol were obtained with an ultraviolet-
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visible spectrophotometer (Cary 50 Bio, Varian, Palo Alto, CA, USA) at a scanning range from 

400 to 1100 nm using a scanning speed of 600 nm/min. 

3.3 Anthracene Ablation 

The effect of laser irradiation on the AFM tip was evaluated using scanning electron 

microscopy (SEM). Figure 3.1 shows a SEM image of an AFM tip before and after laser irradiation 

Figure 3.1. Atomic force microscope tips imaged by scanning electron microscopy a) new tip, b) 

tip after one laser shot, c) ten laser shots, and c) 1000 laser shots. 
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at a wavelength of 532 nm and fluence of 4 kJ/m2. The diameter of a tip at its apex prior to 

irradiation is around 100 nm (Figure 3.1a), which is consistent with the manufacturer specified 

diameter of 80-90 nm. The images in Figure 3.1b-d depict a probe tip irradiated with a single laser 

shot, 10 shots, and 1000 laser shots, respectively. The tips often fracture and are unusable after 

several thousand laser shots. In these images, the surface of the tip that was exposed to the laser is 

on the right and this surface appears to be modified to the greatest extent by the laser. After a single 

laser shot, the tip diameter was 800 nm at its apex (Figure 3.1b) and after 10 laser shots, the 

diameter was approximately 1 µm (Figure 3.1c). Additional laser shots did not significantly 

increase the diameter; for example, after 1000 shots (Figure 3.1d) the tip diameter remained 

approximately 1 µm. There are some surface ripples observed on some of the irradiated tips, for 

example in Figure 3.1b, that appear to be laser induced periodic surface structures.249 Such 

structures are often observed on surfaces irradiated with ps or fs laser pulses, but can also be 

observed with ns laser pulses.250 The structures observed in Figure 3.1b have a spacing of 

approximately 500 nm and are oriented perpendicular to the laser polarization, suggesting that 

these are near-subwavelength ripples.251  

Figure 3.2. Laser ablation crater in anthracene obtained at 532 nm wavelength a) AFM image, b) 

profile, and c) three-dimensional plot. 
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An AFM image and corresponding contour plots for a representative crater formed on 

anthracene by tip-enhanced laser ablation are shown in Figure 3.2. The laser wavelength was 532 

nm and the fluence was 4 kJ/m2. Figure 3.2a depicts an AFM image obtained in tapping mode 

using a tip that was irradiated with several hundred laser shots and therefore is expected to have a 

tip diameter of approximately 1 µm. The depth profile of the crater along the red line shown in 

Figure 3.2a is depicted in Figure 3.2b and a 3-D representation of the crater is shown in Figure 

3.2c. This crater has a measured depth of 130 nm, diameter of approximately 1 µm, and a 

somewhat triangular shape that may reflect the triangular pyramid shape of the AFM tip. There is 

a rim around the crater that is 20 to 40 nm higher than the surrounding surface and may have been 

formed by melting and resolidification of the anthracene. 

The rim material could be removed from the crater after repeated AFM scans in tapping mode. 

Figure 3.3 depicts tapping mode AFM images of an anthracene crater formed by 3 laser shots at 

Figure 3.3. AFM images of laser ablation craters in anthracene at 532 nm: a) first scan, b) second 

scan c) third scan, d) fourth scan. 
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532 nm and 4 kJ/m2 fluence. Figure 3.3a was obtained directly after ablation and Figures 3.3b–d 

depict the second, third, and fourth scans of the same crater. In Figure 3.3a, the volume of the 

crater below the level of the surrounding material was 0.03 μm3 whereas the volume of the rim 

was 0.1 μm3, three times larger than the crater. The large volume of the crater rim, combined with 

the apparent ease with which it is removed, suggests that the rim material is less dense than the 

underlying film. An AFM phase image of the crater (Figure 3.4) is consistent with softer and less 

dense rim material. Subsequent scans of the crater led to measured crater volumes of 0.03, 0.04, 

and 0.05 μm3 and rim volumes of 0.02, 0.003, and 0.001 μm3 (Figures 3.3b–d). The measured 

crater depth with respect to the surrounding material was 140 nm after the first scan, 150 nm in 

the second scan, and 160 nm in the third and fourth scans. Similar micrometer scale tip-enhanced 

patterning was observed on silicon surfaces irradiated with an infrared fiber laser and was 

attributed to laser-induced thermal oxidation.252 In consideration of the effect described above, the 

Figure 3.4. Phase (left) and topography (right) image of a tip-enhanced laser ablated anthracene 

crater. 
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crater volume measurements for all the remaining experiments were obtained from the third AFM 

scan images. 

Ablation craters on anthracene thin films were obtained with a range of wavelengths in the 

visible and near-IR region. Figure 3.5 shows AFM images of craters in an anthracene thin film 

obtained at wavelengths between 450 and 700 nm in steps of 50 nm. The corresponding contour 

plot is displayed below the AFM image. The laser fluence was 4 kJ/m2 at all wavelengths. The 

crater volume corresponding to the images shown in Figure 3.5 is plotted as a function of 

wavelength in Figure 3.6. The crater volume produced by a specific AFM probe at a particular 

wavelength is reproducible, but there is a variation from probe to probe. However, in all cases, the 

maximum crater volume was observed near 500 nm wavelength and crater formation was found 

to be relatively efficient in the wavelength range from 450 to 600 nm. Craters were not observed 

between 800 and 1200 nm. Figure 3.7 shows a plot of crater volume as function of wavelength for 

a different AFM tip. The crater volume is smaller than that depicted in Figure 3.5, but the trend is 

similar.  

Previous studies have suggested that the dominant mechanisms for aperture tip-enhanced 

ablation are either photothermal or ballistic heating.238 The wavelength dependence of the crater 

size depicted in Figure 3.6 is not consistent with a photothermal mechanism in which the tip 

enhances photon absorption by the substrate. The absorption maximum of anthracene is below 250 

nm in the UV; the absorption in the 400 to 1200 nm of the visible and near IR is negligible.253 The 

trend in Figure 3-6 is more consistent with the ballistic heating mechanism that was suggested for 

aperture mode desorption of anthracene.239 Here, the gold from the tip or adsorbed water or other 

compounds is desorbed from the laser-heated tip and impinges on the anthracene surface to eject 

secondary material. With the apertureless tip operated in tapping mode there is an additional 
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possibility of heating the tip and melting by contact with the anthracene film. The tip is heated to 

the melting point of gold, which is around 1200 K for gold nanoparticles,254 thus the tip may 

transfer thermal energy directly to the anthracene by contact. There also may be an additional 

contribution through convective heat transfer through the air.255
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Figure 3.5. AFM topography and 3-D view of anthracene craters with laser wavelength at a) 450, b) 500, c) 550, d) 600, e) 650, and f) 

700 nm 
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Figure 3.6. Laser ablation crater volume in anthracene as a function of wavelength. 

 

Figure 3.7. Anthracene crater volume plotted against wavelength from 500 nm to 1200 nm with a 

100 nm step. 
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All of these heat transfer mechanisms are consistent with the formation of the crater rim on the 

anthracene surface. The absorption of gold in the visible and near-IR results from the plasmon 

resonance and is dependent on the size and shape of the AFM tip as well as the dielectric properties 

of surrounding medium.256 For gold thin film, the plasmon resonance is strongly related to the 

thickness of the film.257 For gold coating on silica nanoparticles, it was found that the resonance 

is dependent on the fractional surface coverage and tends to shift to the red on increased fractional 

coating.258 The wavelength response that we observe is consistent with absorption of the laser 

energy by the thin gold film on the AFM tip and suggests that strong enhancement may be 

achievable with a thinner or even partial coating of gold on the tip. 

 The anthracene crater appears to be formed by laser heating of the tip followed by ballistic 

heat transfer and/or heating, either by contact of the tip with the surface or by convective heat 

transfer. The absorption of laser energy by the tip is consistent with plasmon absorption of the thin 

film of gold on the AFM tip. However, for aperture SNOM near-field ablation of rhodamine B, 

the mechanism was suggested to be an optical absorption of the material.238 Therefore, three 

organic dyes was used in the work described below for further exploration of the mechanism of 

TELA. 

3.4 Organic Dye Ablation 

Tip-enhanced laser ablation of IR 797 chloride, rhodamine B, and methylene blue thin films 

was evaluated in the wavelength range from visible to near-IR. The surface was imaged in tapping 

mode in order to select a flat surface for tip-enhanced laser ablation. The laser energy was adjusted 

to avoid far-field ablation. Topographic and 3-D images of IR 797, rhodamine B, and methylene 

blue craters are depicted in Figure 3.8, 3.9, and 3.10, respectively. Around the craters from all the 

samples a rim was observed, which is believed to be formed by melting and resolidification or 
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laser induced surface foaming.259-260 At wavelengths from 450 to 600 nm, the average height of 

the rim for IR 797, rhodamine B, and methylene blue was 105 nm, 60 nm, and 80 nm, respectively. 

The rim height difference may be due to the different melting points of IR 797 (MP ~120 ℃), 

rhodamine B (MP ~210 ℃), and methylene blue (MP ~190 ℃), with a lower melting point resulting 

in more melted material. A ripple structure was observed at wavelengths of 450-550 nm for 

rhodamine B, for example at the up-right corner of the crater shown in Figure 3.9. Larger scale 

AFM images of this structure are shown in Figure 3.11 and were observed over an area of 20 × 20 

µm. The distance between the features was approximately 300 nm. This structure was only 

observed on rhodamine B film at wavelengths of 450-550 nm.  

The volume of the organic dye craters was obtained to evaluate the tip-enhanced laser ablation 

efficiency. The wavelength was tuned from 450 to 800 with 50 nm steps. The mean depth and 

volume of each crater is shown in Table 3.1. In all cases, no craters were observed in the near-IR 

wavelength region whereas in the visible wavelength range, the maximum crater volume was 

observed near 500 nm wavelength and crater formation was found to be relatively efficient from 

450 to 550 nm. 
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Figure 3.8. AFM topography and 3-D view of IR 797 craters with laser wavelength at a) 450, b) 500, c) 550, d) 600, e) 650, and f) 700 

nm. 

Figure 3.9. AFM topography and 3-D view of rhodamine B craters with laser wavelength at a) 450, b) 500, c) 550, d) 600, e) 650, and 

f) 700 nm. 
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Figure 3.10. AFM topography and 3-D view of methylene blue craters with laser wavelength at a) 450, b) 500, c) 550, d) 600, e) 650, 

and f) 700 nm. 

Figure 3.11. Images of ripple structures after tip-enhanced laser ablation on rhodamine B thin film with laser wavelength of 500 nm at 

energy of 100 µJ after 1 shot with image size of a) 3×10 µm and b) 20×20 µm. 
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The wavelength dependence of tip-enhanced laser ablation was evaluated by plotting the 

calculated crater volume corresponding to Figure 3.8, 3.9, and 3.10 as a function of wavelength 

(solid circle with black line) with the optical absorbance (solid square with grey line) in Figure 

3.12 for rhodamine B (a), methylene blue (b), and IR 797 chloride (c), respectively. Absorption of 

each sample was measured in the wavelength range from 400 to 1100 nm. Baseline subtraction 

was performed using the absorption of methanol solvent. The absorption maximum for rhodamine 

B solution was around 550 nm and low absorption was observed in the range of 600-800 nm. The 

absorption of the methylene blue has a maximum at 650 nm and low absorption between 400 and 

550 nm and 700 and 800 nm. IR 797 chloride displayed a broad absorption compared to the other 

Table 3.1. Mean depth and volume of ablation craters obtained at different wavelengths by tip-

enhanced laser ablation 
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dyes. Two main absorption peaks were observed for IR 797, with the absorption maximum around 

800 nm and a second peak around 680 nm whereas low absorption was observed below 600 nm. 

  

  

Figure 3.12. Tip-enhanced laser ablation crater volume (black line) and dye absorbance (grey line) 

as a function of visible and near-IR wavelength for a) rhodamine B, b) methylene blue, and c) IR 

797. 
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The above data offer additional insights into the mechanism of tip-enhanced laser ablation. 

The thermal expansion of the probe was previously considered among the possible crater formation 

mechanisms and it was excluded for aperture SNOM laser ablation.238 However, thermal 

expansion of the gold coated silicon AFM tip used in this work may contribute to the overall 

ablation crater formation. The tip thermal expansion was calculated assuming gold expanding 

against a rhodamine surface. The length of the AFM tip is approximately 15 µm and the thermal 

expansion coefficient of gold is 14 × 10-6 K-1 at 293 K. A previous report showed that the gold 

coating of the AFM tip melts during 532 nm irradiation,261 which implies the temperature of the 

tip reaches the melting point of gold (1337 K). Thus, the length thermal expansion of the tip can 

be calculated to be approximately 200 nm. The AFM tip has an average spring constant of 60 N/m 

and the additional energy applied to the sample surface due to the thermal expansion of the gold 

coated tip can be calculated to be ~1.2 pJ. The crater volume of the rhodamine B sample at 500 

nm is 0.016 µm3, which corresponds to ~40 amol. The molar heat capacity of rhodamine B at 298 

K is 700 JK-1mol-1,262 and the 1.2 pJ energy applied onto the 40 amol rhodamine B due to tip 

thermal expansion would result in a temperature increase of 43 K, which is not enough to cause 

the melting or sublimation.  

Crater formation by the force of the AFM tip due to thermal expansion was also evaluated. The 

force-displacement curve of the tip on a rhodamine B surface is shown in Figure 3.13. The drop in 

force after point A was due to the attractive force of the sample surface interacting with the AFM 

tip. The additional force applied to the sample due to the thermal expansion of the tip is about 12 

µN based on the tip spring constant.  If this force was sufficient to cause indentation, the plot 

would show a drop in force due to the relaxation of the bending cantilever, which was not observed. 

The rhodamine surface did not indent well past the 12 µN (point B in the plot) and no crater was 
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observed in an image obtained after the experiment, leading to the conclusion that the tip thermal 

expansion does not lead to surface indentation.  

Previous studies suggested that the mechanism of aperture SNOM laser ablation involves 

either photothermal or ballistic effects.263 If a photothermal mechanism is responsible, the 

absorption of the surface should affect the ablation process. The above results show that the 

absorption of the surface is not correlated with crater size in apertureless tip-enhanced laser 

ablation of organic dyes. The crater volume plotted against wavelength in Figure 3.12 for 

rhodamine B, methylene blue, and IR 797 are similar with the largest craters observed at around 

500 nm. At the same time, the absorption spectra of the three dyes are quite different. Rhodamine 

Figure 3.13. Force-displacement curve of the AFM tip approaching rhodamine B surface. 
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B has a maximum absorption around 550 nm. On the other hand, methylene blue and IR 797 had 

in relatively smaller craters at wavelengths close to their respective absorption maxima. These 

results suggest that a ballistic effect may be the main mechanism for apertureless tip-enhanced 

laser ablation of organic dyes and that photothermal effects linked to the nature of the surface are 

not required for ablation.  

The results shown in Figure 3.12 are similar to those observed for anthracene wavelength 

dependent tip-enhanced laser ablation in this chapter. The largest craters were obtained at 

wavelengths near the plasmon resonance of gold is located. If it is assumed that the gold absorbs 

all of the incident laser energy, the kinetic energy of ejected gold atoms can be estimated. The 

melting point of rhodamine B is ~480 K and its molar heat capacity at room temperature is ~700 

JK-1mol-1.262 In order to melt the 40 amol of rhodamine B in the crater, an energy of 5 pJ is required. 

The velocity of gold atom plume is ~5000 m/s under vacuum.264 To achieve the required energy 

of 5 pJ, a gold mass of 0.4 fg must be ejected from the tip surface at this velocity. The melted gold 

on the AFM tip can be approximated a 1 µm diameter hemi-sphere 10 nm above the surface. The 

crater diameter of rhodamine B is 500 nm. When the center of the crater and the gold sphere are 

aligned, a spherical cap surface area on the gold sphere can be considered as the source for 

generation of the atoms. This spherical cap surface area is 0.16 µm2, which is equivalent to a 0.45 

fg monolayer of gold atoms, which is in the same order of magnitude as the required mass. Thus, 

a mechanism where ejected gold atoms ablate material from the surface is plausible.  

AFM was operated in tapping mode for tip-enhanced laser ablation. Because the gold coating 

on the tip melts, the tip at the melting point of gold is in contact with the surface. Therefore, heat 

transfer from the AFM tip to the sample surface by direct contact needs to be considered. The 

thermal conductivity of rhodamine B has not been reported in the literature; however, the thermal 
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conductivity for some nitric265 and chloride salts266 is reported to be ~0.5-1 Wm-1K-1 and this value 

has been used for the calculations below. The rhodamine crater at 500 nm has an area of 0.25 µm2 

and a depth of 110 nm and the energy required for melting the material inside the crater is 5 pJ 

(vide supra). Assuming the heat is completely transferred to the rhodamine B, the thermal diffusion 

time required to melt the rhodamine B at a depth of 110 nm is ~5 ns according to Fourier’s law.267 

The tip oscillates at a frequency of 300 kHz. Defining the contact time of the tip with the sample 

surface as the time in which the tip-surface distance is < 1 nm, the contact time is ~160 ns per 

oscillation, which is 30 times longer than required for melting the crater. Therefore, crater 

formation due to direct heat transfer from the tip cannot be excluded. 

3.5 Summary 

In this chapter, the wavelength dependence of crater formation by tip-enhanced laser ablation 

in the visible and near-IR range was described. The wavelength for maximum crater size was 

around 500 nm and the crater volume decreased linearly between 500 and 800 nm regardless of 

the sample. No crater was observed in the near-IR range from 800 to 1200 nm in all cases. The 

crater formation is not dependent on the optical absorbance of the material as would be expected 

for photothermal ablation. The likely mechanisms for crater formation by TELA are ballistic 

ejection of gold atoms from the tip surface and heat transfer from the tip contact with the surface.  

The ability to tune the crater size with wavelength suggests potential utility of the method for 

laser nanomachining of surfaces. Because the material removal is dependent on the wavelength, 

the size and volume of the crater on surface could be adjusted by tuning the wavelength of the 

incident laser beam.  

The results suggest some potential improvements for tip-enhanced laser ablation sampling 

through more efficient energy absorption by the tip and by more efficient ballistic ablation 
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compared to direct contact heating. First, efficient absorption of energy by the tip at 500 nm is 

consistent with the plasmon resonance of a thin film (ca. 10 nm) or partially coated tip. This thin 

coating or partial coating of the tip may be induced by laser heating and melting or ablation of the 

gold on the tip surface (see Fig 3.1). A tip coating less than the initially 35 nm thick coating used 

in this study might allow lower laser energy to produce efficient ablation. Second, the use of a 

spherical particle AFM tip may be effective at providing more surface area for ballistic ejection of 

material. This could increase the amount of ballistic ejected material compared to the melted 

material that is not removed from the sample and therefore is not efficiently sampled. Microspheres 

have been used as AFM force measurement tips268 and could provide greater surface area for 

ejection of material and enhanced heat transfer. 
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CHAPTER 4. TIP-ENHANCED LASER ABLATION AND CAPTURE OF 

DNA 
 

The goal of the research described in this chapter was to utilize AFM tip-enhanced laser 

ablation to sample intact plasmid DNA for polymerase chain reaction (PCR) amplification. The 

wavelength of the incident laser was 532 nm, which is efficient for tip-enhanced laser ablation. A 

7.1 kbp green fluorescent protein (GFP) plasmid DNA deposited on a glass coverslip was ablated 

and captured on a metal ribbon 300 µm above the surface. The ablation craters had diameters from 

1-2 µm and an average value of 0.14 µm3. PCR and nested PCR were employed for the 

amplification of the ablated DNA. The quantity of material from each ablation crater for PCR 

amplification was 20 ag. The sampling and amplification efficiency was estimated at 0.01 %. 

4.1 Introduction 

Atomic force microscopy (AFM) has been widely used in the study of nucleic acids and 

chromosomes due to its unique capabilities of imaging and characterization.64-66 AFM has been 

used to image DNA and RNA molecules with nanometer spatial resolution.64, 66-67 With AFM 

imaging, various structures and topologies of DNA and RNA can be observed for three-

dimensional characterization of nucleic acids and their polymeric form, which can lead to a better 

understanding of their genomic function. High-speed AFM can facilitate direct visualization of 

dynamic structure changes and dynamic processes of DNA and RNA at high imaging rates.72 

AFM-based spectroscopic techniques such as TERS facilitate direct sequencing of single strand 

DNA and RNA.166, 171, 269  

AFM can measure the mechanical characteristics of single molecules of DNA and RNA. When 

the AFM tip is placed in contact with a DNA or RNA, a single molecule can be attached to the 

AFM tip allowing measurement of the adhesive forces between complementary strands.270 With 
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this approach, the elastic behavior of both single and double stranded DNA and RNA were 

measured by stretching the strands.91-93 The pair binding strength between each nucleic acid base 

pair was measured by unzipping the double stranded DNA.94 

TELA can be used for sampling material on the submicron scale192 and was used for surface 

nanopatterning,191 to create ions for mass spectrometry,216, 271 ablate neutrals for post-ionization 

mass spectrometry,217, 272 and ablate material for off-line mass spectrometry.227 TELA is capable 

of removing peptides and proteins from a surface without fragmentation.227  

In the work described in this chapter, TELA was used for ablation and capture of DNA. A 532 

nm wavelength laser was used with a gold-coated AFM tip to ablate and capture plasmid DNA 

that was amplified by polymerase chain reaction (PCR) and nested PCR to evaluate the integrity. 

The transfer efficiency of the ablated DNA was estimated by comparison to known concentrations 

of the plasmid. 

4.2 Experimental 

The tip-enhanced laser ablation system configuration described in Chapter 2 was used for all 

the experiments for this section. The studies in Chapter 3 showed that the sharp tip of the probe is 

altered by interaction with the laser and the diameter of the tip after exposure to the pulsed laser is 

approximately 1 µm. The wavelength of the laser was set to 532 nm which is near the maximum 

for laser ablation efficiency while at the same time allowing comparison with studies using a 

frequency doubled Nd:YAG laser. The laser was mildly focused onto the target to avoid far field 

ablation and a pulse energy of 600 µJ was used for the experiments described below. A 25 × 500 

µm silver ribbon was positioned 300 µm above the AFM tip to capture the ablated material. Three 

dimensional images were constructed from the AFM data using custom software written in 

LabVIEW, which was also used to calculate crater and rim volumes. 
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Green fluorescent protein (GFP) plasmid was cloned from pBABE GFP (Addgene plasmid 

#10668, Cambridge, MA, USA). Working solutions of the plasmid were prepared in nuclease-free 

molecular biology grade water (HyClone, Logan, UT, USA) at concentrations of 92 ng/µL and a 

volume of 2 µL was pipetted onto a glass coverslip. The sample was dried at room temperature 

before laser ablation. Ablation craters were obtained using 10 laser shots with a 1 s delay between 

each shot. The material captured on the ribbon was extracted into 20 µL of water and PCR 

amplification was performed using primer F1/R1 (Table 4.1) with a thermal cycler (iCycler, Bio-

Rad, Hercules, CA, USA).  

PCR amplification was carried out with a ReadyMix PCR Kit (KAPA Biosystems, Boston, 

MA, USA) which contains DNA polymerase in reaction buffer, dNTPs (0.2 mM of each dNTP), 

MgCl2 (1.5 mM), and stabilizers. Each PCR reaction solution contained 0.6 μL of DNA template, 

1.5 μL of F1/R1 primers (10 μM), and 7.9 μL of nuclease-free biology grade water to reach a final 

volume of 20 μL. PCR cycling comprised one initial denaturation cycle at 95 ℃ for 1 min, 9 cycles 

of polymerase activation at 95 ℃ for 1 min, 50 ℃ for 30 s, 72 ℃ for 20 s, followed by 30 cycles 

of amplification at 95 ℃ for 20 s, 50 ℃ for 30 s, and 72 ℃ for 20 s. Nested PCR amplification was 

carried out first with primer F2/R2 (Table 4.1) and the products from the first amplification were 

again amplified with primer F1/R1 using the same PCR procedure. Nested PCR included one cycle 

of initial denaturation at 95 ℃ for 1 min, 9 cycles of polymerase activation at 95 ℃ for 1 min, 50 ℃ 

for 30 s, 72 ℃ for 20 s, followed by 20 cycles of amplification at 95 ℃ for 20 s, 50 ℃ for 30 s, and 

72 ℃ for 20 s. TAE buffer stock solution was prepared by using 40 mM tris-aminomethane (Bio-

Rad) and 1 mM EDTA (Bio-Rad) with the pH adjusted to 8.5 using acetic acid (Fisher Scientific, 

Pittsburgh, PA, USA). PCR products were mixed with ethidium bromide (Invitrogen, Carlsbad, 

CA, USA) and electrophoretically separated in a 1.8 % agarose gel I (Fisher) for one hour at 80 
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volts in TAE buffer. Amplicon sizes were determined by comparison with a 100 bp molecular 

ruler (EZ Load, Bio-Rad). Gels were imaged with a gel imager (Gel Doc EZ Imager, Bio-Rad). 

 

Table 4.1. Primer sequences 

 

 

4.3 TELA for DNA 

GFP plasmid was used to evaluate the efficiency of DNA ablation and capture and the integrity 

of the captured DNA using tip-enhanced laser ablation. A 2 µL volume of GFP plasmid in water 

at a concentration of 92 ng/µL was deposited on a glass cover slip and dried before the cover slip 

was mounted on the AFM sample stage. Tapping mode AFM images are shown in Figure 4.1. The 

features in Figure 4.1a are approximately 30 µm long and 500 nm in height and likely result from 

aggregation of the DNA on the cover slip that form when the solvent evaporates from the deposited 

droplet. The morphology of dried DNA deposits depended on the solvent and solution 

concentration.273 For the solutions used in this study, the coarse morphology of the DNA deposit 

was a branched dendritic structure with 10 µm wide spines. 

Primer 5’-3’ Sequence Product Size (bp) 

F1 CCATCCTGGTCGAGCTGGAC 160 

R1 TAGGTCAGGGTGGTCACGAG  

F2 ATGGTGAGCAAGGGCGAG 260 

R2 GACTTGAAGAAGTCGTGCTG  
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Figure 4.1b shows an expanded AFM image of the region that was sampled by tip-enhanced 

laser ablation. Three spots were ablated on the surface and these are indicated with arrows in the 

image. Each of the ablation craters was formed by 10 laser shots and has a similar elliptical contour 

with the major axis perpendicular to the cantilever axis. The depth profile corresponding to the red 

and blue lines in Figure 4.1b is shown in Figure 4.1c. This crater has a depth of approximately 300 

nm with a major axis of 1.7 μm and a minor axis of 1 µm and a volume of 0.16 μm3. A crater rim 

50-100 nm higher than the surrounding surface was observed for each spot. Crater formation was 

observed previously261 and may be the result of melting and resolidification of the material 

Figure 4.1. Topography of GFP plasmid a) before and b) after tip-enhanced laser ablation, c) depth 

profile along the red and blue line across the ablated crater, and d) three-dimensional plot of the 

crater. 
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surrounding the crater. The depth profile before and after ablation is shown in Figure 4.2 and a 

three-dimensional representation of the crater is shown in Figure 4.1d. The dashed and solid lines 

represent the surface height before and after tip-enhanced laser ablation, respectively. A clear 

formation of the crater with a depth around 300 nm was observed after ablation.  

Plasmid DNA was collected from multiple spots of the GFP plasmid for PCR amplification. 

Material was ablated from ten spots with 10 laser shots per spot in a 20 × 20 µm region and 

collected on the metal ribbon above the AFM tip. A representative AFM image of an ablated region 

scanned after sampling is shown in Figure 4.3. The spots were ablated at 1 Hz repetition rate and 

had similar elliptical contours. The depth profile corresponding to the indicated line in Figure 4.3a 

Figure 4.2. AFM topography of GFP sample surface before (dashed line) and after (solid line) tip-

enhanced laser ablation  
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is shown in Figure 4.3b. The craters had an average depth of 208 ± 15 nm, a major axis of 1.5 ± 

0.14 µm, and a minor axis of 0.6 ± 0.1 µm. The average volume was 0.14 μm3 with a relative 

standard deviation of 12 %. 

PCR amplification was performed on the collected material which was transferred into 20 μL 

water by depositing the ribbon in a 300 µL microcentrifuge tube and vortexing for 30 s. A 0.6 µL 

aliquot of each sample was added to the PCR reaction mixture. Primers F1 and R1 listed in Table 

4.1 were used for the PCR amplification. A representative agarose electrophoresis gel of PCR 

amplified products is shown in Figure 4.4. Molecular weight markers with 100 bp per step were 

loaded on the center and flanking lanes (labelled L). Three samples from the three sets of ten 

ablated spots were amplified and loaded on the left half of the gel (Lanes B, C and D). Negative 

controls were created by running the amplification steps with water in place of plasmid DNA. A 

negative control run before the plasmid DNA is in Lane A and a second run after the plasmid DNA 

is in Lane E. The lanes on the right half of the gel were loaded with serial dilutions of the plasmid 

equivalent to 6000, 600, 60, 6, and 0.6 ag (Lanes F–J respectively). The amplification product for 

Figure 4.3. Topography (a) and depth profile (b) after ten spots were ablated from the GFP plasmid 

sample surface. 



62 

the PCR reaction was a fragment 160 bp in length. The negative controls do not display any 

detectable band whereas the three lanes with the captured samples display bands at the expected 

160 bp at the same position as the dilution series. 
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Figure 4.4. Electrophoresis gel of PCR products. Negative control before (Lane A) and after sampling (Lane E); Lanes B, C, and D 

correspond to three ablated and collected samples, Lanes F–J correspond to serial dilutions of GFP DNA with amounts  6000, 600, 60, 

6, and 0.6 ag respectively, and Lane L is a 100 bp molecular weight ladder. 
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The band intensity for Lanes F-J in Figure 4.4 was integrated and a calibration curve was 

constructed (Figure 4.5). Using this calibration, the quantity of collected DNA for lanes B, C, and 

D corresponds to 2, 6 and 10 ag, respectively. Only 3 % of the captured material was used for PCR 

amplification, therefore, the total amount collected for each sample was 70, 200 and 320 ag, 

respectively. The quantity of DNA ablated and capture from each ablation spot was approximately 

20 ± 13 ag/spot. Based on the calibration, the negative control corresponded to less than 0.3 ag. 

The average crater volume of 0.14 µm3 which corresponds to 100 fg at 1.7 g/cm3 DNA density.274 

The biomolecule transfer efficiency of was measured at 3 %,227 suggesting that either transfer, 

extraction, or amplification of the DNA is two orders of magnitude less than anticipated. 

Figure 4.5. Calibration curve for GFP plasmid from the integrated gel band signal  
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The specificity of the ablated and captured plasmid DNA amplification step was assessed using 

nested PCR. Aliquots of captured DNA were first amplified using primers F2 and R2 (Table 4.1) 

with a product length of 260 bp. The resulting PCR products were amplified with primers F1 and 

R1 (Table 4.1) to generate a 160 bp product, which minimized the non-specific amplification of 

the captured DNA. An agarose gel electrophoresis separation of the nested PCR products is shown 

in Figure 4.6 with products from the captured samples in Lanes B, C, and D. Negative controls run 

before and after sample capture are in Lanes A and E, respectively. A 6 fg quantity of plasmid was 

loaded in Lane F as a positive control. A molecular weight ladder with 100 bp steps was in the two 

lanes labelled Lane L. A 160 bp band is visible in the 3 samples lanes (B, C, and D) and the positive 

control in Lane F. No band was observed in in the negative control Lanes A and E, confirming that 

Figure 4.6. Electrophoresis gel of nested PCR products. Negative control A) before (Lane A) and 

after sampling (Lane E), Lanes B, C, D are replicate laser ablated and collected samples, Lane F 

is positive control, and Lane L is a 100 bp molecular weight ladder. 
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the tip-enhanced laser ablation collected material corresponds to GFP plasmid DNA. The intensity 

of the nested PCR bands in the ablated and captured samples is consistent with the quantity found 

in the PCR amplification. 

The tip-enhanced laser ablation of plasmid DNA provided a sufficient quantity of intact 

material for PCR amplification experiments. This suggests that the ability to ablate and capture 

intact DNA using tip-enhanced laser ablation is comparable to that reported previously using far-

field laser ablation.275-278 For example, 600 bp dsDNA was ablated and captured intact using a 581 

nm visible laser and a water-ice matrix.275 Ablation and capture of intact 1000 bp single stranded 

DNA was achieved using a rhodamine 6G matrix and a 532 nm pulsed laser.278 Pulsed 2.94 µm IR 

lasers were used to ablate and ionize intact 500 bp dsDNA277 and ablate and capture a intact 3200 

bp double-stranded DNA plasmid.276  

The lower than anticipated quantity of DNA recovered and amplified may be due to several 

factors including inhomogeneous distribution of the DNA in the deposited sample, DNA 

fragmentation during the ablation process, DNA degradation on the surface, or inefficient 

extraction. The quantity of DNA recovered was estimated with the assumption that the sample 

deposit was homogeneous; however, if the ablated material was not as dense as assumed or if it 

was a mixture of DNA and non-DNA material, this could lead to a lower recovery. TELA sampling 

was achieved for proteins up to 5.7 kDa without fragmentation.227 The mass of the analyte in this 

work is much higher (i.e. 7.1 kbp, equal to over 4.5 million Da), and fragmentation cannot be 

excluded. DNA degradation on the AFM target surface could arise from deoxy-ribonucleases or 

oxidation. Although the presence of deoxy-ribonucleases is unlikely, the plasmid DNA was 

exposed to ambient air for several hours, which may lead to oxidation. Whereas dry DNA is stable 
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at room temperature for weeks,279-280 wet samples such as those used in this work can degrade.279 

Finally, inefficient extraction of DNA from the capture surface cannot be ruled out.  

AFM imaging of genomic material and TELA sampling can be performed using the same tip 

with minimal carryover between sampling and imaging as evidenced by Lane E in Figure 4.4 and 

Figure 4.6 which corresponds to the negative control after sampling. Capture of DNA with an 

AFM tip was reported using a tweezer-type AFM probe to clamp and pick up chromosome 

fragments.115 While the approach is effective at sampling DNA from a surface, it requires different 

tips for imaging and extraction. DNA sampling and imaging with a single tip can be achieved with 

adsorption,281 although achieving reproducible results can be challenging.282 Both the tweezer and 

adsorption approaches require direct contact between the sample and the AFM tip. 

4.4 Summary 

In this chapter, tip-enhanced laser ablation was demonstrated for DNA sampling followed 

by PCR and nested PCR amplification of the collected material. Sampling of a 7.1 kbp GFP DNA 

plasmid was achieved and amplification of fragments up to 260 bp was demonstrated. Craters with 

1-2 µm in diameter and depth of 200 nm were obtained. No carryover of the sample was observed 

for DNA sampling by TELA. The sampling and amplification efficiency was estimated at 0.01%. 

Whereas TELA can sample genomic material from volumes below 1 µm3, improvement in 

transfer efficiency will be necessary for DNA sequencing which requires picogram quantities of 

DNA.283-286 Future efforts will focus on improving the capturing step of TELA as well as testing 

integration with other AFM based DNA manipulation techniques. 
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CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS 
 

In this dissertation, atomic force microscopy tip-enhanced laser ablation (AFM TELA) was 

described. An OPO wavelength tunable laser was directed onto a gold-coated AFM tip, which was 

held close to a surface to generate tip-enhanced laser ablation for ambient sample removal with a 

sampling size at the sub-micrometer level. The wavelength dependence of TELA was studied, 

which was used to elucidate the mechanisms behind this approach. TELA was applied to DNA 

ablation and capture for amplification. 

The wavelength dependence of TELA for an anthracene thin film is described in Chapter 3. 

The wavelength was tuned from 450 to 1200 nm to cover both visible and near-IR region, where 

the absorbance of anthracene is low. The volume of the crater formed by TELA was largest at 500 

nm and no crater formation was observed in the near-IR region of 800-1200 nm. The trend of crater 

formation with wavelengths was found to be consistent with the absorption of the gold on the AFM 

tip. The mechanism of TELA for anthracene ablation may be due to a ballistic effect, where the 

gold or molecules adsorbed on the AFM tip are ejected and hit the surface causing heating and 

ejection of the surface material. In addition, since the AFM tip was operated in tapping mode, heat 

transfer through direct contact between the probe and the surface may also occur. 

The wavelength dependence of TELA system was also investigated with three organic dyes, 

which have different optical absorption and relative high sublimation enthalpy, as discussed in 

Chapter 3. Three dyes, rhodamine B, methylene blue, and IR 797 chloride with different absorption 

maxima in the visible and near-IR were studied in the wavelength range from 450 to 800 nm. In 

all cases, the maximum volume of the crater was around 500-550 nm and no crater formed in the 

near-IR region. The crater formation does not track the absorption spectra except for rhodamine 

B, which absorbs well around 550 nm. Instead, the results for all three organic dyes were consistent 
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with the plasmon absorption of the gold AFM tip, which agrees with the result found for anthracene. 

Therefore, the mechanism of TELA of organic dyes is likely a ballistic effect or thermal transfer 

through the tip in contact with the surface. 

TELA sampling and capture was employed for a 7.1 kbp GFP DNA sample, which is described 

in Chapter 4. The DNA plasmid was ablated at 532 nm with a sampling volume around 0.14 µm3 

and captured on a metal ribbon with no carryover observed. Both PCR and nested-PCR 

amplification were employed for the captured DNA and strands up to 260 bp were observed. The 

quantity of the transferred plasmid DNA form each ablation crater was 20 ag. The transfer and 

amplification efficiency was estimated to be around 0.01 %. 

One of the future directions of this research will focus on improving the transfer efficiency of 

the TELA system by using a droplet instead of the metal ribbon. The composition of the droplet 

can be adjusted to suit the polarity of the target material, where better capture efficiency may be 

achieved for TELA sample transfer. Figure 5.1 represents a configuration of droplet capture for 

TELA system. The capillary has an O.D. and I.D. of 360 µm and 50 µm, respectively. A droplet 

with a diameter of approximately 400 µm has a volume of 35 nL was delivered to the cleaved 

capillary. The pumping speed of the solution must be adjusted to compensate for the evaporation 

of the droplet under ambient conditions. Another challenging of this approach is the dilution of the 

captured material. 
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A second future direction will focus on sampling genomic material from single cells or tissue 

samples with TELA. Biological samples are typically analyzed in bulk and the collected data are 

averaged assuming homogeneity of the cellular material. However, heterogeneity of individual 

cells is an important factor in proteomics, lipidomics, metabolomics, and genomics at the single 

cell level.287-290 In particular, analysis of DNA and RNA at the single cell level can provide new 

perspectives and advances to the understanding of biological ecosystems and organisms.287, 291-292 

Conventional single cell analysis requires single cell sorting and isolation where the spatial 

information of individual cells is missing.287 Laser capture microdissection (LCM) can keep the 

spatial information of cells for single cell sampling293-294 at a resolution of 3-5 µm.295 With the 

ability of 1 µm sampling size demonstrated, TELA can be a potential ambient sampling tool for 

precise extraction of genomic material directly from tissue sections for further PCR amplification 

or single cell sequencing.  

Figure 5.1. Scheme of droplet capture for tip-enhanced laser ablation 
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A third future direction will focus on employing TELA for nanomachining. Since the size of 

the crater formation is most likely dependent on the absorption of the AFM tip instead of the 

material, nano-machining in different sizes for different surfaces could be achieved by tuning the 

wavelength of the laser. Figure 5.2 shows the preliminary data of nanomachining by TELA on a 

silicon wafer. The wavelength was tuned to 500 nm with laser energy of 150 µJ. The crater 

formation from left to right was obtained with 10, 20, and 30 laser shots. The diameter of the 

craters was measured to be less than 200 nm. TELA may be an additional potential tool for 

nanomachining among tip-based nanofabrication methods.191 

 

 

  

Figure 5.2. Silicon wafer ablation by tip-enhanced laser ablation at 500 nm 
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