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Abstract 

 Chlorinated aromatics undergo surface-mediated reactions with metal oxides to 

form environmentally persistent free radicals (EPFRs) which can further react to 

produce polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs).  Previous 

work using laboratory-made fly ash surrogates composed of transition metal oxides 

deposited on silica powder has confirmed their ability to mimic fly ash in the production 

of PCDD/Fs.  However, little is known about the propensity of alumina and 

aluminosilicates to form PCDD/Fs.  Cooperative catalysis between transition metals in 

the formation of PCDD/Fs has also seen little research.  

 A fly ash sample containing both alumina and mullite, an aluminosilicate, was 

tested for PCDD/F formation ability and compared to PCDD/F yields from the thermal 

degradation of 2-monochlorophenol (2-MCP) precursor over γ-alumina, α-alumina, and 

mullite.  A series of fly ash surrogates with varying amounts of co-deposited iron (III) 

oxide and copper (II) oxide, both known to increase PCDD/F formation individually, 

were also investigated.  A packed-bed flow reactor was used to investigate the thermal 

degradation of 2-MCP over the various catalysts at 200-600 ⁰C.   

Fly ash gave similar PCDD/F yields to surrogates made with similar transition 

metal content.  γ-alumina, which is thermodynamically unfavorable, was very 

catalytically active and gave low PCDD/F yields despite a high destruction of 2-MCP.  

Mullite and α-alumina, the thermodynamically favorable form of alumina, yielded higher 

concentrations of dioxins and products with a higher degree of chlorine substitution than 

γ-alumina.  The data suggests that certain aluminas and aluminosilicates, commonly 
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found in fly ash, are active in the formation of PCDD/Fs in the post-flame cool zones of 

combustion systems and should be considered as additional catalytic surfaces active in 

the process.  The bimetallic surrogates were found to be extremely catalytically active, 

suggesting synergistic effects between Fe and Cu in real incineration systems.  Under 

oxidative conditions, the bimetallic surrogates completely catalytically oxidize the 2-

MCP precursor and exhibit low yields of PCDD/Fs.  Under pyrolytic conditions, the 

bimetallic surrogates give extremely high yields of PCDD/Fs.  The comparisons 

between transition metal and non-transition metal effects on PCDD/F formation 

represents a new step forward in our understanding of PCDD/F emissions from 

incineration systems. 
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Chapter I. Introduction 

1.1  Background and Significance 

 Polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), along with 

other dioxin-like compounds, are of particular 

interest because of their extreme toxicity to 

mammals.  Dioxins are teratogenic, mutagenic, 

and carcinogenic.1-4  Dioxins are also commonly 

associated with combustion output, such as fine 

and ultrafine particulate matter, which has particle 

diameters below 2.5 (PM2.5) and 0.1 (PM0.1) 

micrometers, respectively.  This association gives 

them the unique ability to bypass the defenses of 

the human respiratory system and deposit deep 

within lung tissue (see Figure 1.1).   

In addition to inhalation, humans also encounter dioxins and dioxin-like 

compounds through ingestion.  Lack of a biodegradation pathway causes dioxins to 

persist in biological systems.  Due to this persistence and their lipophilic nature, dioxin-

like compounds tend to biomagnify.5, 6  Dioxins work their way up a food chain, 

increasing in concentration with each new trophic level.7, 8 

The vast majority of dioxin-like compounds in the environment originate from 

anthropogenic sources.9-18  As seen in Figures 1.2 and 1.3, the primary origin of 

PCDD/Fs can be traced to the formation of halogenated aromatics and metal-rich fly 

 

Figure 1.1.  Fine (PM2.5)  and 

ultrafine (PM0.1) particulate matter is 

able to penetrate human respiratory 

defenses19 
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ash in the postflame, cool zone of incineration systems.  The formation of PCDD/Fs in 

combustion processes is a preventable hazard to human health and, therefore, the 

study of PCDD/F formation and ways to inhibit the formation are of utmost importance. 

 

 

Figure 1.2.  The small hydrocarbons from thermal degradation reactions can 

condense to form halogenated aromatics in the postflame zone19 

 

Figure 1.3.  Inorganic carbon and metals can condense to form fly ash in the 

postflame zone19 
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1.2  PCDD/F Formation Pathways 

 The basic structure of PCDDs and PCDFs is shown in Figure 1.4.  PCDD/Fs can 

be formed by way of three primary pathways:  gas-phase formation involving organic 

precursors, de novo formation from inorganic components, and surface-mediated 

reactions between organic precursors and catalytic metal oxides.  

 

1.2.1  Gas-Phase PCDD/F Formation 

 Homogeneous reactions involving various organic precursors can lead to the 

formation of gas-phase PCDD/Fs.22-24  Gas-phase formation of PCDD/Fs typically takes 

place at higher temperatures between 400-800⁰C and is responsible for approximately 

30% of total PCDD/F emissions.25, 26  Chlorinated phenols and benzenes are the most 

common PCDD/F precursors.  Condensation of precursor-derived radicals is the 

accepted mechanism for gas-phase PCDD/F formation.27-29  Polychlorinated 

dibenzofurans are formed from condensation of substituted phenyl radicals.  In the case 

of dibenzo-p-dioxins, two gas-phase pathways exist.  Reactions between chlorophenoxy 

radicals and substituted phenyl radicals lead to the formation of chlorinated dibenzo-p-

dioxin.  Radical-molecule reactions involving chlorophenoxy radicals forms 

 

Figure 1.4.  Basic structure of a) PCDDs and b) PCDFs depicting numbered 

substituent positions 
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nonchlorinated dibenzo-p-dioxin.  Other precursor-derived radicals, such as phenoxyl 

diradicals, have been investigated as potential PCDD/F intermediates. 

1.2.2 De Novo Pathway 

 The de novo pathway yields PCDD/Fs from inorganic combustion byproducts at 

post-flame conditions.  In the de novo pathway, the reaction between elemental carbon, 

oxygen, and chlorine is catalyzed by transition metals to form PCDD/Fs.  The de novo 

formation of PCDD/Fs involves chlorination reactions of a carbon matrix followed by 

oxidation to liberate PCDD/Fs and other chlorinated species.30-37  Transition metals 

have been shown to affect PCDD/F formation by way of de novo synthesis.34, 38-41  In 

particular, transition metal chlorides have seen wide use as de novo catalysts. 

1.2.3 Surface-Mediated Precursor Pathway 

 In postflame, cool zones of an incinerator, where temperatures fall between 200-

600ºC, reactions between precursor molecules, such as chlorinated benzenes or 

phenols, are catalyzed by transition metal-oxides.42-55  These surface-mediated 

reactions are responsible for up to 70% of all combustion-generated dioxins.20, 25  

Because it generates the largest portion of dioxins, the transition metal-mediated 

pathway requires the most attention. 

The organic radicals that form during incineration of chlorinated hydrocarbons 

should be short-lived, but electron paramagnetic resonance (EPR) studies have shown 

that they can persist for days or weeks.50  A mechanism was deduced in which 

transition metal oxides that are present in both the waste and/or the combustion reactor 

stabilize the free radicals and, in fact, catalyze their formation.50, 56, 57  This mechanism 
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yields pollutant-particle systems that have been termed environmentally persistent free 

radicals (EPFRs).56 

The interaction between 2-monochlorophenol (2-MCP) and transition metal-

oxides begins with physisorption.  The hydroxyl group of the 2-MCP forms a hydrogen 

bond with a hydroxyl group on the surface of the transition metal-oxide.  Chemisorption 

of 2-MCP takes place as a covalent bond forms between 2-MCP and the transition 

metal oxide leading to the loss of a water molecule.50, 58  Another possible orientation for 

chemisorption produces a bidentate surface-bound species through the loss of two HCl 

molecules.  The bidentate model of chemisorption is only exhibited by chlorinated 

benzenes; chlorinated phenols almost exclusively follow the adsorption pathway shown 

in Scheme 1.1.59, 60 

 

 

Scheme 1.1.  Formation of an EPFR through the adsorption of 2-MCP on a transition 
metal oxide surface.  The symbol, n, represents the initial oxidation state of the metal.21 
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Electron-transfer between the transition metal and the oxygen on 2-MCP reduces 

the metal and creates an oxygen-centered radical.  The radical is further stabilized 

through electron-exchange to create a carbon-centered radical on the ring of 2-MCP.  

The adsorption of 2-MCP on a transition metal-oxide produces environmentally 

persistent chlorophenoxy radicals.50  These EPFRs that are bound to the transition 

metal-oxide surface are very stable and resistant to reaction. 

 

EPFRs associated with a metal oxide substrate are precursors to PCDD/Fs.  

EPFRs can react to form dioxins by way of two different mechanisms:  (1) the Langmuir-

Hinshelwood mechanism, in which two adjacent surface-bound EPFRs react and (2) the 

Eley-Rideal mechanism in which a surface-bound EPFR reacts with a gas-phase 

precursor molecule.20, 59, 61-63  The Langmuir-Hinshelwood mechanism is characterized 

by an organic ring-closing reaction involving oxygen.  This reaction, between two 

 

Scheme 1.2. Following the Langmuir-Hinshelwood mechanism, adjacent 
chlorophenoxy radicals react to form a PCDF.20 
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adjacent surface-bound EPFRs, leads to the formation of a polychlorinated 

dibenzofuran (see Scheme 1.2).  Chlorination/dechlorination reactions take place prior 

to desorption to form a range of PCDFs.  

 

Surface-bound chlorophenoxy radicals react with surface-bound hydroxyl groups 

to form a surface-bound chlorohydroxyphenoxy species (see Scheme 1.3).  This 

species is a reactant in the Eley-Rideal mechanism.  The Eley-Rideal mechanism is a 

competitive reaction that can take place depending on the identity of the dioxin 

 

Scheme 1.3.  Surface-bound chlorophenoxy radicals react with surface-bound 
hydroxyl groups to form a chlorohydroxyphenoxy species. 

 

 

Scheme 1.4.  Formation of dibenzo-p-dioxin or a PCDD is determined by which 
hydroxyl group initiates the reaction.20 
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precursor.  This reaction involves a surface-bound species reacting with certain gas-

phase precursor molecules to form a surface-bound chlorohydroxy biphenyl ether, 

which undergoes ring-closing to form dibenzo-p-dioxin or a PCDD20 (see Scheme 1.4). 

The formation of chlorobenzenes and chlorophenols is due to cleavage of the 

chlorophenoxy radical from the transition metal-oxide surface.  Whether the chlorinated 

aromatic maintains its hydroxyl group depends upon the cleavage site.  If cleavage 

occurs at the bond between the carbon on the ring and the oxygen, then the oxygen 

stays on the transition metal surface and the expelled species forms a polychlorinated 

benzene.  If cleavage occurs at the bond between the transition metal and oxygen, then 

the oxygen stays with the chlorinated aromatic and forms a polychlorinated phenol. 

 Chlorination during the pyrolysis of 2-MCP is carried out by hypochlorite species 

adsorbed onto the transition metal surfaces.  Surface-bound hypochlorite ions are 

formed in the presence of O2, which explains why higher yields of highly chlorinated 

species are formed from oxidative decomposition rather than pyrolytic decomposition. 

1.3 Disagreement Between Lab-scale and Full-scale Experiments 

Analysis of full scale combustion systems tends to show significantly higher 

yields of PCDFs over PCDDs.9, 12, 64-70  Research with chlorinated precursors has 

attempted to replicate this ratio with no success.20, 21, 59, 63, 71-73  The ratio of PCDDs to 

PCDFs is affected by the identity of both the precursor and the metal oxide.  Previous 

experiments in the Dellinger group have shown a difference in PCDD to PCDF ratios by 

using chlorinated benzenes as the dioxin precursor.  Chlorophenoxy radicals from the 

chemisorption of chlorophenols have been shown to favor reaction with gas-phase 
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chlorophenols rather than reaction with other nearby chlorophenoxy radicals.  This 

means that pyrolysis of chlorophenols yields higher amounts of PCDDs than PCDFs.  

Chlorobenzenes in the gas phase do not react with surface-bound chlorophenoxy 

radicals.  This means that combustion of chlorobenzenes yields low concentrations of 

PCDDs and much higher concentrations of PCDFs. 

1.4 Disadvantages to Model Fly Ash Surrogates 

 To fully understand the mechanism and yields of PCDD/Fs on the surface of fly 

ashes, model fly ash surrogates have been investigated.  Using a bottom up approach, 

systems containing either iron or copper oxides impregnated onto a silica matrix were 

studied extensively and these transition metal oxides were found to contribute to 

PCDD/F formation.20, 21, 38, 41, 71, 72, 74  The initial focus on iron and copper oxide was due 

to their relative high concentrations in fly ashes and their known redox properties.38, 75-77  

These fly ash surrogates were appropriate tools to formulate a reaction mechanism 

because they are uniform throughout and their chemical makeup is easily reproducible, 

as opposed to fly ash, whose metal-content can vary wildly depending on its source.  

The immense focus on transition metals discounts the presence of aluminum-containing 

compounds in fly ashes. 

 Aluminas and aluminosilicates are major components of fly ashes where the 

aluminum concentration can reach 13-16% by mass.78  Surprisingly, there are very few 

studies on the surface-mediated formation of PCDD/Fs over alumina, though it is known 

to be catalytically active.79  In here, we are presenting pioneering studies on the 

contribution of aluminas and aluminosilicates to PCDD/F emissions.  We have chosen 
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to study PCDD/F formation from 2-MCP precursor over the following systems:  γ-

alumina, α-alumina, mullite, and a fly ash sample.  2-MCP was selected due to its 

extensive use in PCDD/F research leading to well characterized product profiles and 

high yields.  Mullite is an aluminosilicate that is commonly found in fly ash and can 

reach concentrations of up to 20% by mass.80  α-alumina is the most thermodynamically 

stable form of alumina and, unlike γ-alumina, can be found in fly ashes.  Although γ-

alumina does not occur in fly ash, it is known for possessing strong catalytic activity. 

 While PCDD/F formation from organic precursors over alumina is a new area of 

research, the use of alumina in other areas of PCDD/F research is well documented.  

Due to its prevalence in real fly ash samples, alumina has been used as a support for fly 

ash surrogates in de novo PCDD/F formation experiments.81, 82  Fly ash surrogates 

made by Schoonenboom et al. consisted of KCl and CuCl2 impregnated onto alumina 

along with a carbon source.  Alumina has been shown to have promoting effects on de 

novo formation of PCDD/Fs. 

 Reactions involving PCDD/Fs and PCDD/F precursors on alumina have focused 

on its ability to dechlorinate certain compounds.83, 84  Schoonenboom et al. investigated 

the ability of alumina to dechlorinate octachlorinated PCDD/Fs and found the activity of 

alumina to vary based on its acidity.  Qian et al. report that alumina has a suppressing 

effect on the formation of PCDD/Fs from a pentachlorophenol precursor which is likely 

due to its dechlorinating ability. 

 The use of monometallic surrogates also discounts the presence of synergistic 

effects between various components in real world fly ash.  The effects of cooperative 
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catalysis on PCDD/F formation have not been studied and could lead to a greater 

understanding of the roles that various metals play in these reactions.  In real fly ash, 

various transition metals cohabitate particle surfaces.  Following previous work with 

Fe2O3 and CuO monometallic surrogates, we investigated the effects of Fe/Cu 

bimetallic surrogates on surface-mediated PCDD/F formation. 

 Both iron and copper are known catalysts in various PCDD/F formation 

pathways.  While copper tends to be more catalytically active than iron, iron is typically 

present in fly ash in much higher concentrations than copper.75-77  Both Fe2O3 and CuO 

have been shown to form phenoxyl-type EPFRs as intermediates in the formation of 

PCDD/Fs.57, 60, 85  Bimetallic catalysis between iron and copper has displayed 

synergistic effects in a variety of applications,86-93 but has never been applied to 

PCDD/F formation. 

1.5  Research Aims 

 The goal of this work is to investigate (i) the contribution to PCDD/F formation 

from aluminum-containing compounds in fly ash, specifically alumina and 

aluminosilicates, and (ii) the synergistic effects on PCDD/F formation from Fe/Cu 

bimetallic model fly ash surrogates.  The data obtained from individual fly ash 

components will also be used to determine whether prediction of PCDD/F yields on fly 

ash is possible. 
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Chapter II. Experimental 

2.1  System for Thermal Diagnostic Studies 

The System for Thermal Diagnostic Studies (STDS) was designed to facilitate 

the efficiency and reliability of thermal decomposition analysis.1  The STDS is able to 

simulate a variety of incineration conditions through the control of temperature, gas flow 

rate, and fuel injection rate.  The system is modular in nature, being composed of 

several instruments that are each responsible for specific duties.  A diagram of the 

STDS can be viewed in Figure 2.1.  The instrument can be seen in Figure 2.2. 

 

Figure 2.1. Block diagram of the System for Thermal Diagnostic Studies (STDS) 

 

Figure 2.2.  The current form of the STDS 
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All reactions take place in a packed-bed, plug flow quartz reactor, as seen in 

Figure 2.3, heated by an electric furnace manufactured by Omega.  The furnace is 

capable of maintaining temperatures between 

30-1000 ⁰C to simulate various post-

incineration conditions or areas of a flame.  The 

reactor and furnace are held within a Varian 

3800 Gas Chromatograph oven.  The purpose 

of this housing is to provide a constant and 

controllable temperature outside the furnace 

and to heat the transfer-lines leading to and 

from the quartz reactor.  The gas 

chromatograph also has a heated injector 

system of its own that allows fast and reproducible injections.  The exit port of the first 

gas chromatograph leads to the injection port of a second gas chromatograph of 

identical make and model.  The transfer line that connects the two gas chromatographs 

consists of deactivated, silica-lined stainless steel guard column wrapped in heat rope 

and well-insulated with fiberglass.  The transfer line is capable of maintaining 

temperatures up to 240 ºC, but is typically kept at 185 ºC during reactions to prevent 

condensation of combustion products during transport. 

The second gas chromatograph performs the separation of the decomposition 

products.  The column installed in the gas chromatograph is a 30 m, 0.25 mm i.d., 0.25 

µm film thickness HP-5MS (Agilent).  A Varian Saturn 2000 Mass Spectrometer is 

 

Figure 2.3  Inside view of the reactor 
and furnace housed within a GC oven 
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installed on the second gas chromatograph and serves to analyze the decomposition 

products.  The Saturn 2000 is equipped with an ion trap and an electron multiplier 

detector.  Mass spectra were taken from 40 to 450 amu. 

The temperature program for the first gas chromatograph consists of a constant 

flow rate and constant temperature that is dependent on the vaporization temperature of 

the chemical precursor.  The flow rate for the reaction gas is 13.2 mL/min of carrier gas 

and the first oven and injector are kept at 185 ºC to maintain the organic precursor, 2-

monochlorophenol (2-MCP), in the gas phase.  The temperature program for the 

second gas chromatograph begins at -60 ºC and the mass spectrometer is deactivated 

during a 75 minute collection phase.  During this phase, 2-MCP is automatically injected 

into the first gas chromatograph with a syringe pump at a rate of 0.18 microliters per 

hour.  The 2-MCP is vaporized and passes through and interacts with a catalyst 

substrate in the quartz reactor.   

The quartz reactor is packed with an appropriate mass of catalyst to give a 

catalytic bed length of 3.5 mm.  The catalytic bed is packed on both ends with fine 

quartz wool and has an average volume of 0.044 cm3. 

The combustion products, along with any unreacted precursor, are transferred 

into the head of the capillary column in the second gas chromatograph and 

cryogenically trapped at -60 ºC.  At the end of the 75 minute collection phase, the 

syringe is retracted from the first gas chromatograph and the transfer line is retracted 

from the second gas chromatograph.  The instrument now enters the 

separation/analysis phase.  The second gas chromatograph begins heating its column 
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and the mass spectrometer detector is turned on.  The oven heats to 300 ºC at a rate of 

15 ºC per minute and then holds for 6.00 minutes. 

The injection rate of the syringe pump was calculated so as to maintain a 

constant 2-MCP concentration of 50.0 ppm within the catalytic bed.  The size of the 

catalytic bed in the reactor and the flowrate of the carrier gas are used to calculate the 

precursor concentration in the gas phase. 

The experiments are performed using a carrier gas of either ultrapure helium or a 

mixture of 20% oxygen in helium.  The pure helium simulates incineration in an oxygen-

starved environment, also known as pyrolytic conditions.  The oxygen mixture simulates 

incineration in a well-mixed, aerated environment, also known as oxidative conditions. 

Standards of dioxins were purchased from Cambridge Isotope Laboratories.  

Retention times for analytes were confirmed using an identical temperature program 

without the 75 minute collection period. 

The following equation was used to determine the percent yields of the various 

products: 

   % yield = [product]A / [2-MCP]0 

where [product] is the moles of product formed and [2-MCP]0 is the total number of 

moles of 2-MCP that is injected into the reactor.  The molar stoichiometric ratio of 

reactant to product, A, is equal to 1 for chlorobenzenes and chlorophenols and equal to 

2 for dioxins.  Every plotted point on the percent yield graphs represents the average of 

four experimental runs.  All error bars represent one standard deviation. 
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2.2  Fly Ash Desorption   

The STDS was used to analyze the inherent dioxin content of the fly ash prior to 

introduction of additional dioxin precursor.  The desorption procedure follows the same 

steps for loading the reactor and activating the sample under air flow for 1 hr.  The 

desorption was performed at various temperatures to ensure that activation at 450 ⁰C 

would sufficiently clean the surface of adsorbed dioxin.  Both fresh fly ash and a sample 

that had undergone activation were used.  The sample would first be subjected to air 

flow for 1 hr at 250 ⁰C and then the process would be repeated on the same sample 

while increasing the temperature in 50 ⁰C increments. 

2.3  ICP-OES Digestion & Analysis   

Prior to elemental analysis, the fly ash was digested in a mixture of HNO3, HCl, 

and HF (Fisher) in a CEM Mars 5 Microwave Reaction System.  Approximately 100 mg 

of flyash was digested in 10.00 mL of a 3:1:1 ratio of HNO3, HCl, and HF.  The CEM 

Mars 5 was programmed to ramp to 200 ⁰C over 5.0 minutes and then to hold for 25 

minutes.  The microwave program was run on the fly ash samples two times to ensure 

there was no residue remaining on the reaction vessels.  Without the use of hydrofluoric 

acid in the reaction matrix, complete digestion cannot be attained and a residue of silica 

and alumina will always remain.  If one does not need quantitative information on Si/Al 

content, then simply digesting in concentrated nitric acid is sufficient to digest other 

elements and leech any transition metals out of the sample.  Prior to ICP-OES analysis, 

the samples must be diluted to approximately 5% total acid content to prevent 

damaging the instrument.  ICP-OES analysis was performed on a Spectro Ciros CCD. 
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2.4  XRD Analysis 

The fly ash was analyzed with a Bruker-Siemens D5000 XRD using Cu-Kα 

radiation and a solid state detector while operating in θ-2θ mode with a diffraction angle 

scanning range of 10-45⁰ at a rate of 1⁰ min-1.  Diffrac AT software was used to 

qualitatively analyze the crystalline components within the fly ash. 

2.5  XPS Analysis 

Elemental composition of the fly ash surface was determined using a Kratos 

Axis-165 XPS using a monochromatic Al-Kα radiation source.  Survey scans were taken 

over the range of 0-1000 eV with a step size of 1 eV and a dwell time of 70 ms.  High 

resolution scans were taken of various elements of interest using a step size of 0.1 eV 

and a dwell time of 100 ms.  The Kratos charge neutralizing module was used to 

remove the effects of the surface charge on the sample.  Kratos Vision software was 

used to match peaks with their corresponding elements. 

2.6  SEM-EDS Analysis 

The particle morphology of the fly ash was investigated using a Hitachi S-3600N 

Variable Pressure scanning electron microscope with an integrated EDAX energy 

dispersive spectroscopy system.  The acceleration voltage was 20 kV and images were 

taken at magnifications of x500 and x1500.  To ensure better quantification of element 

concentration, the fly ash was not coated with any conductive substance.  Leaving the 

sample uncoated leads to decreased image quality, but the images still easily allow 

identification of particle size and shape.  Team EDS Software Suite was used to identify 

peaks and quantify elemental composition. 
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2.7  BET Analysis 

A Quantachrome Autosorb-1 was used to analyze the surface properties of the 

catalytic material.  Samples were dried under air at 120 ⁰C for 12 hrs prior to analysis to 

ensure removal of all adsorbed moisture.  A 10-point isotherm was constructed using 

nitrogen as the sorbent gas on a dried powder sample.  Surface area, total pore volume, 

and average pore diameter were calculated using the Brunauer-Emmett-Teller method. 

2.8  Fly Ash Surrogate Preparation 

The Fe/Cu mixed metal oxide catalysts were prepared using incipient wetness 

co-impregnation.  Silica gel (mesh 100-125) was used as the support matrix.  Iron (III) 

nitrate (Fe(NO3)3·9H2O) (Sigma-Aldrich) and copper (II) nitrate (Cu(NO3)2·2.5H2O) 

(Sigma-Aldrich) were used as transition metal oxide precursors.  The metal nitrates 

were dissolved in an appropriate volume of water to allow incipient wetness and the 

solution was left on the silica gel for 24 hrs.  A rotary evaporator was used to remove 

the water and deposit the metal nitrates followed by 12 h in a 120 ⁰C drying oven.  

Calcination in air at 450 ⁰C for 5 h leads to the oxidation of the metal nitrates and the 

formation of the transition metal oxides. 

2.9 References 

1. Rubey, W. A.; Grant, R. A., Design Aspects of a Modular Instrumentation System 
for Thermal Diagnostic Studies. Review of Scientific Instruments 1988, 59, (2), 
265-269. 
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Chapter III. Results 

3.1 Fly Ash Characterization 

3.1.1 Fly Ash Desorption   

In an effort to keep experimental procedures consistent with previous work, the 

activation phase of the experimental procedure was tested on the fly ash to ensure it 

would fully desorb any adsorbed dioxins inherent to the sample.  The results show that 

the majority of the small concentration of dioxins on the fly ash is desorbed when 

exposed to air flow for 1 hr at 450⁰C.  The fly ash that had already undergone activation 

showed no increase of dioxin desorption with temperature.  While the concentration of 

dioxins inherent to the fly ash is too small to cause any major interference with the 

concentrations being formed during catalysis, the prior desorption of the fly ash surface 

will lead to more accurate results.  The activation step of the experimental procedure 

was kept consistent with previous work.  PCDD/F desorption over the entire studied 

temperature range can be seen in Figure 3.1. 

 

 

Figure 3.1. PCDD/F background emissions from fly ash 
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3.1.2 Elemental Analysis of Fly Ash   

The elemental composition of the studied fly ash 

in this work is presented in Table 3.1.  The composition 

is quite typical compared to other fly ashes presented in 

literature1-5 with iron being the most abundant transition 

metal component at ~4.5% by mass.  The concentration 

of other transition metals falls within bounds typically 

found in fly ashes. From the perspective of PCDD/F 

formation, the concentration of copper in fly ashes is of 

importance, as copper is considered one of the most 

potent PCDD/F formation catalysts and has been 

studied extensively in the past.6-10 The fly ash studied in 

here contains only 0.02 % Cu, which is within the range 

observed in fly ashes from waste incineration processes. Copper concentration can be 

as high as ~4.5%, especially in e-waste reclamation systems.11  Since iron content is so 

dominant in the fly ash, it is anticipated to be a driving force in PCDD/F formation from 

precursors. Our previous experiments have been performed using a Fe2O3/silica system 

containing 5% iron oxide that translates to ~3.5% Fe in the synthetic fly ash (see Table 

3.1), and showed a high yield of PCDD/Fs from such systems.10, 12, 13 

 The two other primary components of fly ash, as listed in Table 3.1, are Al and 

Si.  Though the concentrations of those elements are high, little is known on their 

propensity to catalyze the formation of PCDD/Fs from precursors.  These two elements, 

Si and Al, form the inorganic matrix of the fly ashes and are usually in the form of 

Table 3.1.  Elemental 
composition of fly ash and 

fly ash surrogates 

  
Fly Ash 

Surrogates 
 Fly 
Ash 

Si 44.41 46.49 

Al - 10.43 

Fe 3.50 4.46 

Ti - 1.01 

Ca - 0.28 

Mg - 0.16 

Mn - 0.034 

Cu 3.99 0.020 

Zn - 0.016 
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oxides. SiO2 is believed to be inert in the PCDD/F formation; however, other forms of 

the oxide can exist.   

3.1.3 X-ray Crystallography of Fly Ash   

The x-ray diffraction spectrum obtained from fly ash is shown in Figure 3.2.  XRD 

analysis of the fly ash confirmed the majority of Si is present in the form of quartz (SiO2). 

The presence of aluminosilicates has also been detected in the form of mullite 

(Al6Si2O13). Silica and mullite are commonly found in fly ashes in considerable quantities 

as they are formed during the particle inception process during cooling in the post-flame 

zone from vaporized Si and Al from fuel. Though no crystalline forms of aluminum 

oxides were detected (except of aluminosilicates), it does not exclude small crystallite or 

amorphous phases of other aluminum oxides to be present.  In particular, one would 

anticipate α-alumina to be present, as this is the most thermodynamically stable form of 

aluminum oxides. 

 

 

Figure 3.2.  XRD peak analysis of crystalline phases in the studied fly ash 
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3.1.4 X-ray Photoelectron Spectroscopy of Fly Ash 

 X-ray photoelectron spectroscopy (XPS) is an instrumental technique that will 

yield information about the identity and oxidation state of surface elements.  The 

technique has a penetration depth of 1-10 nm and was used to qualitatively identify the 

surface species on the fly ash.  A survey scan confirmed the presence of large amounts 

of carbon (C-C bonds), oxygen (SiO2, Al2O3, and C-O bonds), and silicon (SiO2).  High 

resolution scans were focused on various elements of particular interest.  The presence 

of both Al2O3 and Fe2O3 were confirmed on the surface of the fly ash particles and their 

spectra can be seen in Figures 3.3 and 3.4.  XPS typically has a detection limit of ppth.  

The presence of copper oxide on the surface of the fly ash could not be confirmed due 

to the concentration falling below the detection limit. 

 

 

Figure 3.3.  High-resolution x-ray photoelectron spectrum of fly ash centered on 

signal region for alumina 
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3.1.5 Electron Microscopy of Fly Ash 

 Scanning electron microscopy was used to take images of the fly ash to 

investigate the size of the particles and their morphology.  Figures 3.5 and 3.6 show 

images taken at x500 and x1500 magnification.  While there are some larger 

agglomerates, most of the fly ash particles fall below 10 micrometers.   

 

 

Figure 3.4.  High-resolution x-ray photoelectron spectrum of fly ash centered on 

signal region for iron (III) oxide 
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Figure 3.5.  SEM image of fly ash 

particles at x500 magnification.  Scale 

bar is equal to 100 µm. 

 

Figure 3.6.  SEM image of fly ash 

particles at x1500 magnification. Scale 

bar is equal to 10µm. 
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Energy-dispersive x-ray spectroscopy (EDS) was 

used to obtain elemental information that could be correlated 

with the ICP-OES data.  EDS has a typical penetration depth 

of 0.5-3 micrometers.  Because most of the fly ash particles 

are thicker than 3 micrometers, there may be some degree 

of error in the EDS data.  Table 3.2 shows the EDS data 

compared to the ICP-OES results.  Similar transition metal 

values indicate that these elements are closer to the surface.  

The large discrepancy in silicon content is likely due to a 

majority of silicon being nearer to the core of the particles 

where the technique cannot penetrate.  The full EDS 

spectrum can be viewed in Figure 3.7. 

  

 

 

Figure 3.7.  Energy-dispersive x-ray spectrum of fly ash 
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Table 3.2.  Quantitative 

elemental analysis from 

EDS and ICP-OES 

techniques. 

  

Weight % 

EDS ICP-OES 

O 47.89 - 

Si 21.06 46.49 

Al 13.33 10.43 

Fe 6.75 4.46 

Ca 4.41 0.28 

K 1.99 - 

C 1.22 - 

Ti 1.19 1.01 

Mg 0.96 0.16 

F 0.52 - 

Na 0.36 - 

Cu 0.33 0.02 
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3.1.6 Surface Morphology of Fly Ash   

Surface area of the fly ash has been found to be relatively small at 13.65m2/g 

(see Table 3.3) when compared to the aluminas and aluminosilicates.  Similarly, the 

mullite sample has a very small surface area of <2m2/g.  In addition to their extremely 

low surface area, fly ash and mullite also have low total pore volume of 6.49x10-3cm3/g 

and 7.44x10-4cm3/g, respectively.  Due to their low surface area and pore volume, both 

the fly ash and mullite can be considered systems without significant pore structure.  

Thus, surface activity in these two catalysts is most likely related to the external surface 

of the particles.  The average pore diameter of α-alumina is ~2 Å and though the pore 

system is very well developed, it is essentially not accessible for aromatic molecules 

(>2.5Å).  It is difficult to consider the overall surface area of α-alumina as a contributing 

factor, as most of the surface is unavailable.  Therefore, α-alumina has available 

surface area similar to that of fly ash and mullite. 

 

 

Table 3.3.  Surface morphology parameters of materials used in the experiments 

Sample 

Surface 
Area 

(m2/g) 

Total Micropore Volume 
(cm3/g) 

Average Pore Diameter 
(Å) 

 Fly Ash 13.65 6.49 x 10-3 19.03 

 α-Alumina 175.70 9.49 x 10-3 2.16 

 γ-Alumina 267.50 1.29 x 10-1 19.37 

 Mullite 1.57 7.44 x 10-4 21.28 
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3.2 Thermal Degradation of 2-Monochlorophenol over Fly Ash 

3.2.1 Pyrolytic Conditions 

The product yields from the surface-mediated pyrolysis of 2-MCP over fly ash are 

presented in Figures 3.8-3.10 as a function of temperature.  The decomposition of 2-

MCP reaches 90% between 250-300 ºC and reaches a maximum of ~98% at 500 ºC. 

The yields of chlorinated benzenes can be seen in Figure 3.8.  MCBz, DCBz, and 

TriCBz were obtained with yields of 0.002%, 0.005%, and 0.00003% respectively, at 

250ºC.  The yields of MCBz and DCBz both increased with increasing temperature, 

reaching maximum yields of 0.001% and 0.00008% at 500ºC respectively.  The yield of 

TriCBz did not significantly change with temperature. 

The yields of chlorinated phenols can be seen in Figure 3.9.  DCP and TriCP 

were obtained with yields of 0.04% and 0.0002% respectively, at 250ºC.  The yields of 

DCP and TriCP both reached maximum yields of 0.07% and 0.004% respectively, at 

350ºC.  The lower temperature of formation indicates that the chlorination of the 2-MCP 

precursor is a simple reaction that requires little energy. 

The yields of PCDD/Fs can be seen in Figure 3.10.  DF, DD, MCDF, MCDD, 

DCDF, and DCDD were obtained with yields of 0.000008%, 0.0002%, 0.0001%, 

0.0001%, 0.0001%, and 0.0001%, respectively, at 250ºC.  DF and DD both increased 

significantly with increasing temperature, reaching maximums of 0.002% and 0.02% at 

550ºC, respectively.  The yield of MCDD plateaued at 0.002% at 400⁰C.  Table 3.4 

gives the yields of all chlorinated benzenes, phenols, and dioxin products. 
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Figure 3.8.  Chlorinated benzene yields from the pyrolysis 

of 2-MCP over fly ash. 
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Figure 3.9.  Chlorinated phenol yields and precursor 

conversion from the pyrolysis of 2-MCP over fly ash. 
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Figure 3.10.  Major PCDD/F yields from the pyrolysis of 2-MCP over fly ash. 
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Table 3.4.  Dioxin and nondioxin products from the pyrolysis of 2-MCP over fly ash. 

  

Reaction Temperature (⁰C) 

250 300 350 400 450 500 

MCB 0.0015 0.036 0.034 0.0025 0.016 0.023 

2-MCP 6.2 9.9 7.2 6.7 4.6 2.4 

DCBz 0.005 0.034 0.05 0.0055 0.019 0.021 

DCP 0.0038 0.028 0.065 0.013 0.014 0.0058 

TriCP 0.00016 0.0011 0.0041 0.00021 0.00029 0.00063 

DF 0.00011 0.00025 0.00069 0.0018 0.0042 0.012 

DD 0.0019 0.025 0.073 0.16 0.27 0.13 

MCDF 0.00027 0.001 0.0041 0.0066 0.0089 0.0033 

MCDD 0.0014 0.023 0.1 0.094 0.11 0.011 

DCDF 0.00049 0.0019 0.0073 0.0055 0.0056 0.00089 

DCDD 0.0032 0.0024 0.011 0.0093 0.0031 0.00068 

bdl - Below Detection Limit 
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3.2.2 Oxidative Conditions 

The product yields from the surface-mediated oxidation of 2-MCP over fly ash 

are presented in Figures 3.11-3.13 as a function of temperature.  The decomposition of 

precursor was less than under pyrolytic conditions at low temperatures.  Thermal 

degradation of 2-MCP reached approximately 70% between 250-300ºC but surpassed 

pyrolytic conditions to a maximum of >99.5% at 550ºC. 

The yields of chlorinated benzenes can be seen in Figure 3.11.  MCBz and DCBz 

were obtained with yields of 0.0009% and 0.1% respectively, at 250ºC.  The yields of 

MCBz and DCBz both increased with increasing temperature, reaching maximum yields 

of 0.03% and 1.8% at 450ºC respectively.  No higher chlorinated species were formed. 

The yields of chlorinated phenols can be seen in Figure 3.12.  DCP was the only 

chlorophenol product and was obtained with a yield of 0.1% at 250ºC.  The yield of DCP 

reached a maximum of 0.9% at 350ºC, indicating a lower temperature required for 

chlorinating the 2-MCP precursor. 

The yields of PCDD/Fs can be seen in Figure 3.13.  DF, DD, MCDF, MCDD, 

DCDF, and DCDD were obtained with yields of 0.00005%, 0.000003%, 0.002%, 0.1%, 

0.002%, and 0.01% respectively, at 250ºC.  All dioxin products increased with 

temperature to reach maximums at 450⁰C.  DD and DF were formed in the least 

amounts.  The two chlorinated dibenzo-p-dioxin species, MCDD and DCDD were 

formed in the highest concentrations, reaching yields of 0.8% and 0.1% respectively.  

Table 3.5 gives the yields of all chlorinated benzenes, phenols, and dioxin products. 
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Figure 3.11.  Chlorinated benzene yields from the 

oxidation of 2-MCP over fly ash. 
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Figure 3.12.  Chlorinated phenol yields and precursor 

conversion from the oxidation of 2-MCP over fly ash. 
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Figure 3.13.  Major PCDD/F yields from the oxidation of 2-MCP over fly ash. 
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Table 3.5.  Dioxin and nondioxin products from the oxidation of 2-MCP over fly ash. 

  

Reaction Temperature (⁰C) 

250 300 350 400 450 500 550 

CBz 0.00086 0.0012 0.0063 0.0074 0.036 0.014 0.024 

2-MCP 30 33 22 11 2 1.6 0.31 

DCBz 0.11 0.15 0.31 0.94 1.8 0.27 0.85 

DCP 0.12 0.37 0.89 0.61 0.27 0.13 0.079 

DF 0.000049 0.000087 0.0002 0.0004 0.002 bdl 0.0027 

DD 0.000003 0.000019 0.00013 0.00017 0.0009 0.00036 0.00067 

MCDF 0.0015 0.0015 0.0018 0.0044 0.021 0.0065 0.016 

MCDD 0.12 0.15 0.13 0.31 0.82 0.34 0.51 

DCDF 0.0016 0.0045 0.0027 0.042 0.039 0.0071 0.018 

DCDD 0.014 0.022 0.021 0.06 0.092 0.025 0.043 

bdl - Below Detection Limit 
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3.3 Thermal Degradation of 2-Monochlorophenol over α-Alumina 

3.3.1 Pyrolytic Conditions 

The product yields from the pyrolysis of 2-MCP over α-alumina are shown in 

Figures 3.14-3.16.   The α-alumina was less active than γ-alumina in the destruction of 

2-MCP precursor.  While α-alumina was more active than fly ash at low temperatures, it 

did not reach the same destruction capacity as fly ash at high temperatures.  Thermal 

degradation of 2-MCP reached 84% at 250ºC and increased to >90% at 550ºC. 

MCBz, DCBz, and TriCBz were obtained with yields of 0.002%, 0.01%, and 

0.00003% respectively, at 250ºC (see Figure 3.14).  TeCBz, PentaCBz, and HexaCBz 

were identified in low yields and only formed at temperatures >350⁰C.  Chlorobenzene 

yields did not change significantly with temperature. 

DCP and TriCP were obtained with yields of 0.01% and 0.0002% respectively, at 

250ºC (see Figure 3.15).  Chlorophenols were formed in higher concentrations than 

chlorobenzenes.  The yields of DCP and TriCP both increased with increasing 

temperature, reaching maximum yields of 0.05% and 0.005% respectively, at 500ºC. 

DF, DD, MCDF, MCDD, DCDF, and DCDD, TriCDD, and TeCDD were obtained, 

with low yields, at 250ºC (see Figure 3.16).  The nonchlorinated DF and DD increased 

across the entire temperature range and reached maximums of 0.0006% and 

0.00008%, respectively, at 550⁰C.  Chlorinated dioxins reached local maximums 

between 300-350⁰C and then began increasing rapidly at 550⁰C.  Table 3.6 gives the 

yields of all chlorinated benzenes, phenols, and dioxin products. 
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Figure 3.14.  Chlorinated benzene yields from the 

pyrolysis of 2-MCP over α-alumina. 
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Figure 3.15.  Chlorinated phenol yields and precursor 

conversion from the pyrolysis of 2-MCP over α-alumina. 
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Figure 3.16.  Major PCDD/F yields from the pyrolysis of 2-MCP over α-alumina. 
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Table 3.6.  Dioxin and nondioxin products from the pyrolysis of 2-MCP over α-alumina. 

  

Reaction Temperature (⁰C) 

250 300 350 400 450 500 550 

CBz 0.0016 0.0012 0.00074 0.00084 0.00085 0.0012 0.0026 

2-MCP 16 16 8.2 16 9 7.9 9.9 

DCBz 0.012 0.0097 0.013 0.013 0.01 0.0095 0.0068 

DCP 0.011 0.019 0.013 0.016 0.0089 0.051 0.035 

TriCBz 0.000032 0.000041 0.000042 3.6E-05 0.000059 0.00033 0.00017 

TetraCBz bdl bdl bdl 0.00012 0.0002 0.00019 0.00014 

TriCP 0.0002 0.0011 0.00053 0.0018 bdl 0.0054 0.0037 

PentaCBz bdl bdl 0.000035 8.7E-06 bdl 0.00012 0.00015 

HexaCBz bdl bdl 0.000055 6.5E-05 0.00011 5.9E-05 6.6E-05 

DF 0.000011 0.000032 0.000014 4.9E-05 0.000039 0.00022 0.00063 

DD 8.3E-07 3.4E-06 1.9E-06 1.1E-05 5.8E-06 6.9E-05 8.1E-05 

MCDF 0.000075 0.00012 0.000068 9.8E-05 0.000079 0.00046 0.00044 

MCDD 0.001 0.0022 0.0013 0.0016 0.00094 0.002 0.0049 

DCDF 0.00015 0.00023 0.00015 0.00032 0.00019 0.00029 0.00025 

DCDD 0.00031 0.00062 0.0015 0.00057 0.000093 0.00025 0.00054 

TriCDD 0.00022 0.00042 0.0015 0.00039 0.00013 0.00072 0.00036 

TetraCDD 0.00016 0.00028 0.00062 0.0001 0.00005 0.00012 0.00019 

bdl - Below Detection Limit 
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3.3.2 Oxidative Conditions 

The product yields from the oxidation of 2-MCP over α-alumina are shown in 

Figures 3.17-3.19.   The α-alumina was less active than γ-alumina in the destruction of 

2-MCP .  While α-alumina was more active than fly ash at low temperatures, it did not 

reach the same destruction capacity as fly ash at high temperatures.  Oxidative 

conditions led to α-alumina being less active at lower temperatures and more active at 

higher temperatures.  Thermal degradation of 2-MCP began at approximately 75% but 

increased to >96% at 550ºC. 

Oxidative conditions led to a greater variety of chlorinated products (see Figure 

3.17).  MCBz, DCBz, TriCBz, TeCBz, and HexaCBz were obtained with yields of 

0.001%, 0.04%, 0.00003%, 0.0002%, and 0.00005% respectively, at 250ºC.  All 

chlorobenzenes showed increased yields with increased. 

DCP and TriCP were obtained with yields of 0.03% and 0.003% respectively, at 

250ºC.  Chlorophenols were formed in higher concentrations than chlorobenzenes (see 

Figure 3.18).  The yields of DCP and TriCP increased with increasing temperature, 

reaching maximum yields of 0.5% and 0.1% respectively, at 450ºC. 

DF and DD were the lowest concentration dioxin congeners, (see Figure 3.19) 

but increased and reached maximums of 0.001% and 0.0005%, respectively, at 550⁰C.  

MCDD was the highest concentration product formed and reached a maximum yield of 

0.3% at 500⁰C.   The higher chlorinated dibenzo-p-dioxins showed no significant 

increase of yield with increased temperature.  Table 3.7 gives the yields of all 

chlorinated benzenes, phenols, and dioxin products. 
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Figure 3.17.  Chlorinated benzene yields from the 

oxidation of 2-MCP over α-alumina. 
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Figure 3.18.  Chlorinated phenol yields and precursor 

conversion from the oxidation of 2-MCP over α-alumina. 
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Figure 3.19.  Major PCDD/F yields from the oxidation of 2-MCP over α-alumina. 
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Table 3.7.  Dioxin and nondioxin products from the oxidation of 2-MCP over α-alumina. 

  

Reaction Temperature (⁰C) 

250 300 350 400 450 500 550 

CBz 0.00076 0.00092 0.00085 0.0012 0.0036 0.0081 0.0091 

2-MCP 19 24 19 16 13 6.1 3.1 

DCBz 0.041 0.059 0.041 0.05 0.045 0.13 0.12 

DCP 0.032 0.099 0.19 0.24 0.53 0.38 0.29 

TriCBz 0.000026 0.00012 0.00015 0.0003 0.0047 0.02 0.024 

TetraCBz 0.00016 0.00042 0.00046 0.0019 0.0031 0.0082 0.0029 

TriCP 0.0031 0.011 0.018 0.033 0.13 0.087 0.051 

PentaCBz bdl 0.00021 0.00066 0.0016 0.006 0.0093 0.0066 

HexaCBz 0.000046 0.000054 0.000089 0.00011 0.00019 0.00026 0.0002 

DF 0.0000087 0.000021 0.000028 0.000038 0.00031 0.00082 0.00095 

DD 0.0000008 0.0000068 0.000055 0.00012 0.00037 0.00054 0.00048 

MCDF 0.000086 0.00022 0.00064 0.00081 0.0033 0.0068 0.0081 

MCDD 0.0018 0.018 0.064 0.11 0.18 0.33 0.16 

DCDF 0.00017 0.0029 0.0062 0.0031 0.0068 0.041 0.027 

DCDD 0.0011 0.0061 0.011 0.0066 0.0071 0.015 0.014 

TriCDD 0.0013 0.0023 0.0022 0.0024 0.0014 0.003 0.0032 

TetraCDD 0.00033 0.00023 0.00025 0.00034 0.00026 0.00022 0.00023 

bdl - Below Detection Limit 
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3.4 Thermal Degradation of 2-Monochlorophenol over γ-Alumina 

3.4.1 Pyrolytic Conditions 

The product yields from the surface-mediated pyrolysis of 2-MCP over γ-alumina 

are presented in Figures 3.20-3.22 as a function of temperature.  γ-Alumina was 

extremely active in the decomposition of 2-MCP and reached >99.9% destruction 

efficiency across the entire range of 250-550 ⁰C.  The high catalytic activity of γ-alumina 

also led to low product yields. 

The yields of chlorinated benzenes can be seen in Figure 3.20.  MCBz, DCBz, 

TriCBz, TeCBz, PentaCBz, and HexaCBz were obtained with yields of 0.002%, 0.01%, 

0.000004%, 0.00002%, 0.00005%, and 0.00002% respectively, at 200ºC.  All 

chlorobenzene yields stayed constant at higher temperatures. 

The yields of chlorinated phenols can be seen in Figure 3.21.  DCP and TriCP 

were obtained with yields of 0.0001% and 0.00001% respectively, at 200ºC.  The yields 

of DCP and TriCP both increased slightly with increasing temperature, reaching 

maximum yields of 0.01% and 0.002% respectively, at 400ºC. 

PCDD/F yields were extremely low over γ-alumina (see Figure 3.22).  DF, DD, 

MCDF, MCDD, DCDF, DCDD, TriCDD, and TeCDD were obtained with yields of 

0.00008%, 0.000001%, 0.00007%, 0.0005%, 0.00009%, 0.00002%, 0.00007%, and 

0.00004% respectively, at 200ºC.  All dibenzo-p-dioxins had constant yields across the 

entire temperature range.  The nonchlorinated DF and, to a lesser degree, DCDF were 

the only dioxin products to show a significant increase.  Table 3.8 gives the yields of all 

chlorinated benzenes, phenols, and dioxin products. 
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Figure 3.20.  Chlorinated benzene yields from the 

pyrolysis of 2-MCP over γ-alumina. 
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Figure 3.21.  Chlorinated phenol yields and precursor 

conversion from the pyrolysis of 2-MCP over γ-alumina. 
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Figure 3.22.  Major PCDD/F yields from the pyrolysis of 2-MCP over γ-alumina. 
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Table 3.8.  Dioxin and nondioxin products from the pyrolysis of 2-MCP over γ-alumina. 

  

Reaction Temperature (⁰C) 

250 300 350 400 450 500 550 

CBz 0.0022 0.0017 0.0024 0.0021 0.0022 0.003 0.004 

2-MCP 0.066 0.018 0.086 0.087 0.064 0.067 0.14 

DCBz 0.016 0.012 0.016 0.0096 0.0094 0.011 0.011 

DCP 0.00066 0.0012 0.0063 0.01 0.003 0.0037 0.0079 

TriCBz 6.80E-05 3.40E-06 3.80E-05 1.90E-05 2.10E-05 3.10E-05 1.20E-05 

TetraCBz 1.40E-04 6.30E-05 8.50E-05 5.20E-05 5.30E-05 7.50E-05 4.90E-05 

TriCP 0.00023 0.00077 0.00077 0.0021 0.002 0.00052 0.00072 

PentaCBz 0.00022 0.00013 0.00015 0.00015 0.00011 0.00022 0.00015 

HexaCBz 0.00011 0.00008 0.000073 3.7E-05 0.000072 0.00015 8.2E-05 

DF 8.70E-06 0.00E+00 0.00E+00 0.00E+00 3.60E-04 1.50E-03 5.80E-03 

DD 7.60E-07 4.00E-07 6.00E-07 5.90E-07 7.60E-07 8.30E-07 1.20E-06 

MCDF 8.40E-05 7.00E-05 9.20E-05 9.70E-05 1.50E-04 1.90E-04 3.00E-04 

MCDD 4.60E-04 2.80E-04 3.50E-04 5.30E-04 5.80E-04 6.60E-04 7.80E-04 

DCDF 1.70E-03 8.60E-05 1.70E-04 1.50E-04 1.50E-04 1.20E-04 2.00E-04 

DCDD 1.50E-03 4.20E-05 1.00E-04 1.10E-04 5.40E-05 9.20E-05 1.10E-04 

TriCDD 1.10E-04 7.20E-05 1.00E-04 1.00E-04 7.80E-05 9.30E-05 1.60E-04 

TetraCDD 4.40E-05 bdl 4.00E-05 3.90E-05 3.90E-05 4.40E-05 bdl 

bdl - Below Detection Limit 
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3.4.2 Oxidative Conditions 

The product yields from the surface-mediated oxidation of 2-MCP over γ-alumina 

are presented in Figures 3.23-3.25 as a function of temperature.  The reaction gas did 

not have an effect on the destruction of the 2-MCP precursor.  Thermal degradation of 

2-MCP reached >99.9% across the entire temperature range of 250-550ºC.  The high 

catalytic activity of the γ-alumina led to low product yields. 

The yields of chlorinated benzenes can be seen in Figure 3.23.  MCBz and DCBz 

were obtained with yields of 0.0007% and 0.02% respectively, at 250ºC.  The product 

profile was more limited under oxidative conditions.  The higher catalytic activity under 

oxidative conditions likely resulted in less opportunity for chlorination of products.  The 

yields of MCBz and DCBz increased slightly with increasing temperature, reaching 

maximums at 475ºC of 0.02% and 0.2% respectively. 

The yields of chlorinated phenols can be seen in Figure 3.24.  DCP was obtained 

with a yield of 0.0005% at 250ºC.  The yield of DCP increased slightly with increasing 

temperature, reaching a maximum of 0.001% at 500ºC. 

The yields of PCDD/Fs can be seen in Figure 3.25.  DF, DD, MCDF, MCDD, 

DCDF, and DCDD were obtained with yields of 0.00004%, 0.0000005%, 0.0004%, 

0.006%, 0.002%, and 0.005% respectively, at 250ºC.  Dioxin products were extremely 

low for γ-alumina.  Most of the dioxin products showed no significant increase across 

the temperature range.  MCDD increased slightly with increasing temperature, reaching 

a maximum yield of 0.01% at 450ºC.  Table 3.9 gives the yields of all chlorinated 

benzenes, phenols, and dioxin products. 
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Figure 3.23.  Chlorinated benzene yields from the 

oxidation of 2-MCP over γ-alumina. 
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Figure 3.24.  Chlorinated phenol yields and precursor 

conversion from the oxidation of 2-MCP over γ-alumina. 
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Figure 3.25.  Major PCDD/F yields from the oxidation of 2-MCP over γ-alumina. 
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Table 3.9.  Dioxin and nondioxin products from the oxidation of 2-MCP over γ-alumina. 

  

Reaction Temperature (⁰C) 

250 300 350 400 450 500 550 

MCB 0.00071 0.0014 0.0019 0.0032 0.0031 0.0098 0.0034 

2-MCP 0.012 0.041 0.0069 0.0062 0.12 0.088 0.016 

DCBz 0.022 0.027 0.039 0.027 0.062 0.1 0.05 

DCP 0.00046 0.00021 0.00036 0.00028 0.0013 0.00057 0.0003 

DF 0.000042 0.000031 0.000092 0.00012 0.00021 0.00025 0.00012 

DD 5E-07 1.6E-07 7.2E-07 6.3E-07 1.6E-06 5.4E-07 8.3E-07 

MCDF 0.00045 0.00044 0.00049 0.00071 0.0007 0.00086 0.00094 

MCDD 0.006 0.0022 0.0052 0.0059 0.014 0.007 0.01 

DCDF 0.0016 0.00051 0.00089 0.0012 0.002 0.0016 0.0017 

DCDD 0.0047 0.0017 0.0018 0.002 0.0018 0.0038 0.0037 

bdl - Below Detection Limit 
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3.5 Thermal Degradation of 2-Monochlorophenol over Mullite 

3.5.1 Pyrolytic Conditions 

The product yields from the surface-mediated pyrolysis of 2-MCP over mullite are 

presented in Figures 3.26-3.28 as a function of temperature.  Mullite was fairly active in 

the destruction of 2-MCP precursor under pyrolytic conditions.  Thermal degradation of 

2-MCP was >95% at 250ºC and increased to >99.9% at 500ºC. 

The yields of chlorinated benzenes can be seen in Figure 3.26.  MCBz, DCBz, 

TriCBz, TeCBz, and PentaCBz were obtained with yields of 0.003%, 0.01%, 0.00006%, 

0.00004%, and 0.00003%, respectively, at 250ºC.  HexaCBz was formed in extremely 

small amounts starting at 300⁰C.  The yields of all chlorinated benzenes showed no 

significant change with increased temperature. 

The yields of chlorinated phenols can be seen in Figure 3.27.  DCP was formed 

in small concentrations at various temperatures with no clear trend.  No other 

chlorinated phenols were formed. 

DF, DD, MCDF, MCDD, DCDF, DCDD, TriCDD, and TeCDD were obtained with 

yields of 0.0001%, 0.000001%, 0.0001%, 0.0003%, 0.0001%, 0.0001%, 0.0001%, and 

0.00004% respectively, at 250ºC (see Figure 3.28).  DF, MCDF, and DCDF yields 

increased with temperature and reached maximums of 0.01%, 0.002%, and 0.001% at 

600⁰C.  MCDD was the second highest product yield and reached a maximum of 0.01% 

at 600⁰C.  All other chlorinated dibenzo-p-dioxins showed no significant increase with 

temperature.  Table 3.10 gives the yields of all chlorinated benzenes, phenols, and 

dioxin products. 
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Figure 3.26.  Chlorinated benzene yields from the 

pyrolysis of 2-MCP over mullite. 
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Figure 3.27.  Chlorinated phenol yields and precursor 

conversion from the pyrolysis of 2-MCP over mullite. 
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Figure 3.28.  Major PCDD/F yields from the pyrolysis of 2-MCP over mullite. 
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Table 3.10. Dioxin and nondioxin products from the pyrolysis of 2-MCP over mullite. 

  

Reaction Temperature (⁰C) 

300 350 400 450 500 550 600 

CBz 0.0029 0.0025 0.0035 0.0035 0.0031 0.0041 0.005 

2-MCP 5 5.3 5.4 3.5 bdl 0.15 bdl 

DCBz 0.012 0.012 0.011 0.015 0.011 0.016 0.011 

DCP bdl bdl 0.021 bdl 0.01 bdl 0.016 

TriCBz 6.70E-05 7.10E-05 6.40E-05 7.60E-05 7.90E-05 7.30E-05 8.70E-05 

TetraCBz 5.60E-05 5.50E-05 5.70E-05 8.20E-05 7.70E-05 6.20E-05 8.70E-05 

PentaCBz 7.00E-05 6.20E-05 8.70E-05 1.30E-04 1.40E-04 1.20E-04 2.90E-04 

HexaCBz 3.90E-05 4.10E-05 3.10E-05 5.70E-05 1.00E-04 5.80E-05 2.80E-04 

DF 1.50E-04 1.30E-04 3.40E-04 3.20E-04 1.80E-03 2.00E-03 1.20E-02 

DD 6.40E-07 8.90E-07 1.50E-06 1.20E-06 4.80E-06 5.70E-06 2.20E-05 

MCDF 7.90E-05 9.20E-05 1.80E-04 1.40E-04 3.80E-04 3.50E-04 1.90E-03 

MCDD 0.00042 0.00057 0.001 0.00063 0.0017 0.0015 0.0072 

DCDF 8.60E-05 9.40E-05 2.00E-04 1.20E-04 2.00E-04 1.70E-04 1.00E-03 

DCDD 2.70E-05 7.10E-05 1.30E-04 5.10E-05 1.80E-04 4.40E-05 1.60E-04 

TriCDD 7.60E-05 1.00E-04 1.70E-04 1.00E-04 1.50E-04 1.10E-04 1.60E-04 

TetraCDD 3.90E-05 4.20E-05 4.90E-05 4.30E-05 4.70E-05 4.20E-05 6.00E-05 

bdl - Below Detection Limit 
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3.5.2 Oxidative Conditions 

The product yields from the surface-mediated oxidation of 2-MCP over mullite 

are presented in Figures 3.29-3.31 as a function of temperature.  The decomposition of 

precursor was less than under pyrolytic conditions at low temperatures.  Under oxidative 

conditions, mullite had similar catalytic activity to α-alumina.  Thermal degradation of 2-

MCP reached approximately 70% at 250ºC and increased to >98% at 600ºC. 

The yields of chlorinated benzenes can be seen in Figure 3.29.  MCBz, DCBz, 

TriCBz, TeCBz, and PentaCBz were obtained with yields of 0.001%, 0.001%, 0.0001%, 

0.00004%, and 0.00003% respectively, at 200ºC.  Tri-, Te-, Penta-, and HexaCBz 

reached maximums of 0.001%, 0.002%, 0.001%, and 0.001%.  No other chlorinated 

benzene surpassed the yield of DCBz, which stayed constant. 

DCP and TriCP were obtained with yields of 0.01% at 200⁰C and 0.01% at 

200ºC, respectively.  Chlorophenols were produced in much higher concentrations than 

chlorobenzenes (see Figure 3.30).  The yields of DCP and TriCP increased with 

temperature, reaching maximum yields of 0.2% and 0.05% respectively, at 500ºC. 

Under oxidative conditions, mullite showed similar patterns of dioxin formation to 

α-alumina (see Figure 3.31).  DF, DD, MCDF, MCDD, DCDF, DCDD, TriCDD, and 

TeCDD were obtained with yields of 0.0005%, 0.000001%, 0.0001%, 0.001%, 0.0001%, 

0.0001%, 0.0002%, and 0.0001% respectively, at 200ºC.  All dioxin congeners showed 

increased yields with increased temperatures but the mono- and dichlorinated species 

had the highest concentrations.  Table 3.11 gives the yields of all chlorinated benzenes, 

phenols, and dioxin products. 
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Figure 3.29.  Chlorinated benzene yields from the 

oxidation of 2-MCP over mullite. 
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Figure 3.30.  Chlorinated phenol yields and precursor 

conversion from the oxidation of 2-MCP over mullite. 
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Figure 3.31.  Major PCDD/F yields from the pyrolysis of 2-MCP over mullite. 
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Table 3.11.  Dioxin and nondioxin products from the oxidation of 2-MCP over mullite. 

  

Reaction Temperature (⁰C) 

300 350 400 450 500 550 600 

CBz 0.0013 0.0016 0.0017 0.0024 0.0039 0.01 0.0031 

2-MCP 12 7.9 11 9.3 3.8 7.4 1.6 

DCBz 0.0076 0.0075 0.0086 0.0083 0.0094 0.014 0.004 

DCP 0.099 0.14 0.052 0.24 0.19 0.24 0.11 

TriCBz 0.00045 0.00015 0.00012 0.00012 0.00035 0.0016 0.0012 

TetraCBz 0.000038 0.000094 0.00014 0.00018 0.00058 0.0033 0.0018 

TriCP 0.0058 0.016 0.0061 0.023 0.048 0.045 0.019 

PentaCBz 0.000029 0.00012 0.00028 0.00022 0.00076 0.0062 0.0011 

HexaCBz bdl 0.00039 0.00025 0.00011 0.0005 0.0061 0.00067 

DF 0.00026 0.0008 0.00068 0.00077 0.0015 0.0039 0.001 

DD 1.90E-06 4.30E-06 4.30E-06 1.90E-05 6.40E-05 3.10E-04 9.40E-05 

MCDF 0.00012 0.00015 0.00018 0.0006 0.0016 0.011 0.0065 

MCDD 0.001 0.017 0.012 0.06 0.047 0.33 0.087 

DCDF 0.00015 0.0003 0.00044 0.0011 0.0023 0.019 0.014 

DCDD 0.00032 0.0016 0.00087 0.0032 0.0042 0.013 0.0021 

TriCDD 0.00073 0.0014 0.00071 0.0027 0.0018 0.0026 0.00043 

TetraCDD 6.10E-05 7.70E-05 7.40E-05 1.10E-04 1.30E-04 4.20E-04 9.50E-05 

bdl - Below Detection Limit 
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3.6 Thermal Degradation of 2-Monochlorophenol over a 1% Fe2O3 + 4% CuO / 
silica Surrogate 

3.6.1 Pyrolytic Conditions 

The product yields from the surface-mediated pyrolysis of 2-MCP over a 1% 

Fe2O3 + 4% CuO / silica surrogate are presented in Figures 3.32-3.34 as a function of 

temperature.  The surrogate was fairly active in the destruction of 2-MCP precursor 

under pyrolytic conditions.  Thermal degradation of 2-MCP was >95% at 200ºC and 

increased to >99.9% at 300ºC. 

MCBz and DCBz were obtained with yields of 0.002% and 0.00004%, 

respectively, at 200ºC (see Figure 3.32).  TriCBz, TeCBz, and PentaCBz were obtained 

with yields of 0.00007%, 0.0002%, and 0.0003% at 250ºC, 225ºC, and 250ºC, 

respectively.  Only MCBz and DCBz exhibited clear trends between yield and 

temperature, reaching maximums of 0.007% and 0.0007%, respectively, at 275ºC. 

The yields of chlorinated phenols can be seen in Figure 3.33.  DCP was obtained 

with a maximum yield of 0.03% at 225 ºC.  TriCP was formed in a small temperature 

range between 300-400 ºC and reached a maximum yield of 0.005%. 

The yields of PCDD/Fs can be seen in Figure 3.34.  DF, DD, MCDF, MCDD, 

DCDF, DCDD, and TriCDD were obtained with yields of 0.0003%, 0.0002%, 0.005%, 

0.3%, 0.05%, 0.03%, and 0.0009%, respectively, at 200ºC.  MCDD and DCDD reached 

maximum yields of 1.3% at 225⁰C and 0.16% at 250⁰C, respectively.  DCDF was the 

primary PCDF and reached a maximum yield of 0.13% at 250⁰C.  All other PCDD/Fs 

showed no significant increase with temperature.  Table 3.12 gives the yields of all 

chlorinated benzenes, phenols, and dioxin products. 
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Figure 3.32.  Chlorinated benzene yields from the 

pyrolysis of 2-MCP over a 1% Fe2O3 + 4% CuO / silica 

surrogate. 
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Figure 3.33.  Chlorinated phenol yields and precursor 

conversion from the pyrolysis of 2-MCP over a 1% Fe2O3 

+ 4% CuO / silica surrogate. 
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Figure 3.34.  Major PCDD/F yields from the pyrolysis of 2-MCP over a 1% Fe2O3 + 

4% CuO / silica surrogate. 
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Table 3.12.  Dioxin and nondioxin products from the pyrolysis of 2-MCP over a 1% Fe2O3 + 4% CuO / silica surrogate. 

  

Reaction Temperature (⁰C) 

200 225 250 275 300 350 400 

CBz 0.0022 0.0046 0.0018 0.0071 0.011 0.0072 0.0079 

2-MCP 4 4.9 2 0.25 0.052 0.052 0.011 

DCBz 0.000036 0.00043 0.00011 0.00074 0.00069 0.00023 0.0002 

DCP 0.018 0.032 0.016 0.0089 0.0013 0.0037 0.00055 

TriCBz bdl bdl 0.000067 bdl 0.00025 0.00015 9.6E-05 

TetraCBz bdl 0.00018 0.00019 bdl 0.00026 0.00026 0.0002 

TriCP bdl bdl bdl bdl 0.0016 0.0054 0.001 

PentaCBz bdl bdl 0.00027 bdl 0.0003 0.00034 0.00027 

HexaCBz bdl bdl bdl bdl bdl 0.00011 bdl 

DF 0.00027 0.00046 0.00058 0.00043 0.0003 0.0003 0.00057 

DD 1.50E-04 5.60E-04 5.40E-04 1.70E-04 5.90E-05 1.60E-05 3.50E-05 

MCDF 0.0047 0.013 0.01 0.0038 0.0019 0.00062 0.00095 

MCDD 0.26 1.3 0.56 0.39 0.067 0.017 0.025 

DCDF 0.053 0.13 0.13 0.025 0.011 0.002 0.0021 

DCDD 0.034 0.093 0.16 0.084 0.023 0.0026 0.0029 

TriCDD 0.00085 0.0013 0.00089 0.0022 0.00086 0.00029 bdl 

bdl - Below Detection Limit 
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3.6.2 Oxidative Conditions 

The product yields from the surface-mediated oxidation of 2-MCP over a 1% 

Fe2O3 + 4% CuO / silica surrogate are presented in Figures 3.35-3.37 as a function of 

temperature.  The catalyst was extremely active in the decomposition of the precursor 

under oxidative conditions and displayed >99.9% conversion across the entire 

temperature range. 

The yields of chlorinated benzenes can be seen in Figure 3.35.  Lower 

chlorinated benzenes had higher concentrations at lower temperatures with MCBz and 

DCBz reaching maximum yields of 0.005% at 275⁰C and 0.001% at 250⁰C, 

respectively.  From 350-450⁰C, higher chlorinated benzenes were the most prevalent.  

All chlorinated benzenes showed decreasing yields at temperatures above 500⁰C. 

The yields of chlorinated phenols can be seen in Figure 3.36.  DCP and TriCP 

exhibited high yields with maximums of 0.05% and 0.07%, respectively, at 250ºC.  

Chlorophenols were produced in much higher concentrations than chlorobenzenes.   

The yields of PCDD/Fs can be seen in Figure 3.37.  Under oxidative conditions, 

the 1% Fe2O3 + 4% CuO / silica surrogate yielded low concentrations of PCDD/Fs.  

MCDD and DCDD were the most prevalent congeners with maximum yields of 0.04% at 

275⁰C and 0.03% at 250⁰C, respectively.  TriCDD and DCDF also showed significant 

increase with temperature and held maximums of 0.007% and 0.004%, respectively, at 

250⁰C.  Table 3.13 gives the yields of all chlorinated benzenes, phenols, and dioxin 

products.
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Figure 3.35.  Chlorinated benzene yields from the 

oxidation of 2-MCP over a 1% Fe2O3 + 4% CuO / silica 

surrogate. 
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Figure 3.36.  Chlorinated phenol yields and precursor 

conversion from the oxidation of 2-MCP over a 1% 

Fe2O3 + 4% CuO / silica surrogate. 
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Figure 3.37.  Major PCDD/F yields from the oxidation of 2-MCP over 1% Fe2O3 + 

4% CuO / silica surrogate. 

70x10
-3

60

50

40

30

20

10

0

P
e

rc
e

n
t 

Y
ie

ld

500400300200

Reaction Temperature (°C)

 DF

 DD

 MCDF

 MCDD

 DCDF

 DCDD

 TriCDD

 TeCDD



 

73 
 

 

Table 3.13.  Dioxin and nondioxin products from the oxidation of 2-MCP over a 1% Fe2O3 + 4% CuO / silica surrogate. 

  

Reaction Temperature (⁰C) 

200 225 250 275 300 350 400 

CBz 0.0014 0.0028 0.0045 0.0048 0.0012 0.0014 0.0015 

2-MCP 0.062 0.053 0.07 0.13 0.027 0.011 0.051 

DCBz 0.00042 0.00078 0.0014 0.0013 0.00024 0.0008 0.00091 

DCP 0.00096 0.0043 0.046 0.0074 0.00036 0.0004 0.0004 

TriCBz 0.00013 0.00018 0.00028 0.0011 0.00029 0.0012 0.0014 

TetraCBz 0.00021 0.00025 0.00028 0.0015 0.0004 0.0024 0.0019 

TriCP bdl 0.0059 0.073 0.015 bdl bdl bdl 

PentaCBz 0.00027 0.0003 0.0003 0.00087 0.00031 0.0013 0.0011 

HexaCBz 0.00026 0.00035 bdl 0.0012 bdl 0.0014 0.0015 

DF 0.00012 0.0004 0.00037 0.00065 0.00011 6.6E-05 8.7E-05 

DD 3.50E-06 1.10E-05 1.50E-05 2.00E-05 3.60E-06 2.50E-06 1.60E-06 

MCDF 0.00037 0.00038 0.00063 0.00055 0.00026 0.00026 0.00019 

MCDD 0.015 0.018 0.03 0.042 0.0061 0.0054 0.0031 

DCDF 0.0016 0.0011 0.0044 0.0021 0.0011 0.001 0.001 

DCDD 0.0019 0.0043 0.034 0.0057 0.0022 0.0012 0.00073 

TriCDD bdl 0.0019 0.007 0.002 0.00061 0.00017 bdl 

TetraCDD bdl 9.00E-05 4.80E-04 bdl bdl 1.20E-04 bdl 

bdl - Below Detection Limit 
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3.7 Thermal Degradation of 2-Monochlorophenol over a 2.5% Fe2O3 + 2.5% CuO / 
silica Surrogate 

3.7.1 Pyrolytic Conditions 

The product yields from the surface-mediated pyrolysis of 2-MCP over a 2.5% 

Fe2O3 + 2.5% CuO / silica surrogate are presented in Figures 3.38-3.40 as a function of 

temperature.  The surrogate was fairly active in the destruction of 2-MCP precursor 

under pyrolytic conditions.  Conversion of 2-MCP was 96% at 200ºC and increased to 

>99.0% at 300ºC. 

The yields of chlorinated benzenes can be seen in Figure 3.38.  While MCBz was 

the most prevalent with a maximum of 0.07% at 400⁰C, higher chlorinated species also 

exhibited high yields, such as TeCBz (0.002% at 400⁰C), PentaCBz (0.001% at 300⁰C), 

and HexaCBz (0.003% at 300⁰C). 

The yields of chlorinated phenols can be seen in Figure 3.39.  DCP was obtained 

with a yield of 0.06% at 200ºC and exhibited a downward trend in yield with increasing 

temperature.  TriCP reached a maximum yield of 0.09% at 300⁰C and also exhibited a 

general decrease in yield with increasing temperature. 

The yields of PCDD/Fs can be seen in Figure 3.40.  MCDD was the most 

prevalent congener with a maximum yield of 4.4% at 300⁰C.  DCDF and DCDD were 

also obtained in significant yields with maximums of 0.8% and 0.6%, respectively, at 

300ºC.  Table 3.14 gives the yields of all chlorinated benzenes, phenols, and dioxin 

products.
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Figure 3.38.  Chlorinated benzene yields from the 

pyrolysis of 2-MCP over a 2.5% Fe2O3 + 2.5% CuO / 

silica surrogate. 
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Figure 3.39.  Chlorinated phenol yields and precursor 

conversion from the pyrolysis of 2-MCP over a 2.5% 

Fe2O3 + 2.5% CuO / silica surrogate. 
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Figure 3.40.  Major PCDD/F yields from the pyrolysis of 2-MCP over a 2.5% Fe2O3 + 

2.5% CuO / silica surrogate. 
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Table 3.14.  Dioxin and nondioxin products from the pyrolysis of 2-MCP over a 2.5% Fe2O3 + 2.5% CuO / silica surrogate. 

  

Reaction Temperature (⁰C) 

200 250 275 300 325 350 400 

CBz 0.002 0.0024 0.0034 0.008 0.0022 0.0098 0.066 

2-MCP 14 2.5 3.2 0.79 0.27 1.5 0.085 

DCBz 0.000016 0.00024 0.0007 0.0012 0.00034 0.00067 0.0079 

DCP 0.062 0.026 0.025 0.061 0.0025 0.019 0.0046 

TriCBz 0.000096 0.00011 0.00011 0.0011 8.3E-05 0.00021 0.0028 

TetraCBz 0.00024 0.00024 0.00021 0.0013 0.00019 0.0003 0.0017 

TriCP 0.018 0.03 0.0012 0.094 bdl 0.007 0.019 

PentaCBz 0.00031 0.00038 0.00034 0.0012 0.00027 0.00038 0.00096 

HexaCBz 0.00055 0.00039 0.00096 0.0025 0.00056 0.00038 0.00063 

DF 0.00046 0.0006 0.00064 0.0055 0.0014 0.0017 0.0047 

DD 4.40E-04 3.20E-04 7.50E-04 3.20E-03 1.10E-04 2.00E-03 8.70E-04 

MCDF 0.015 0.0082 0.015 0.063 0.0021 0.023 0.015 

MCDD 1 0.5 1.8 4.4 0.1 1.4 0.72 

DCDF 0.15 0.16 0.19 0.75 0.0076 0.27 0.075 

DCDD 0.069 0.18 0.2 0.62 0.012 0.2 0.2 

TriCDD 0.00046 0.0048 0.0016 0.06 bdl 0.0052 0.027 

TetraCDD bdl 2.40E-04 bdl 1.40E-02 bdl 7.20E-05 2.30E-03 

bdl - Below Detection Limit 
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3.7.2 Oxidative Conditions 

The product yields from the surface-mediated oxidation of 2-MCP over a 2.5% 

Fe2O3 + 2.5% CuO / silica surrogate are presented in Figures 3.41-3.43 as a function of 

temperature.  Similar to the 1% Fe2O3 + 4% CuO / silica surrogate, this catalyst was 

extremely active in the decomposition of 2-MCP precursor with a conversion of >99.5% 

across the entire studied temperature region. 

The yields of chlorinated benzenes can be seen in Figure 3.41.  All chlorinated 

benzenes were obtained across the entire temperature range, but higher chlorinated 

benzenes were found in greater yields.  TeCBz, PentaCBz, and HexaCBz were 

obtained with maximums of 0.01% at 400⁰C, 0.006% at 400⁰C, and 0.01% at 500⁰C, 

respectively. 

The yields of chlorinated phenols can be seen in Figure 3.42.  Chlorophenols 

exhibited higher yields than benzenes at lower temperatures with TriCP reaching a 

maximum of 0.05% at 250⁰C and decreased at higher temperatures.  The yield of DCP 

decreased sharply across the entire temperature range. 

The yields of PCDD/Fs can be seen in Figure 3.43.  Under oxidative conditions, 

the 2.5% Fe2O3 + 2.5% CuO / silica surrogate showed similar yields of PCDD/Fs to the 

1% Fe2O3 + 4% CuO / silica surrogate.  Most congeners held maximum yields at 250⁰C.  

Higher chlorinated species, like DCDD, DCDF, TriCDD, and TeCDD were more 

prevalent than usual.  Table 3.15 gives the yields of all chlorinated benzenes, phenols, 

and dioxin products. 
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Figure 3.41.  Chlorinated benzene yields from the 

oxidation of 2-MCP over a 2.5% Fe2O3 + 2.5% CuO / 

silica surrogate. 
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Figure 3.42.  Chlorinated phenol yields and precursor 

conversion from the oxidation of 2-MCP over a 2.5% 

Fe2O3 + 2.5% CuO / silica surrogate. 

0.001

0.01

0.1

P
e

rc
e

n
t 

Y
ie

ld
/C

o
n

v
e

rs
io

n

500400300200

Reaction Temperature (°C)

 2-MCP

 2,4+2,6-DCP

 2,3,6+2,4,6-TriCP



 

80 
 

 

Figure 3.43.  Major PCDD/F yields from the oxidation of 2-MCP over a 2.5% Fe2O3 

+ 2.5% CuO / silica surrogate. 
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Table 3.15.  Dioxin and nondioxin products from the oxidation of 2-MCP over a 2.5% Fe2O3 + 2.5% CuO / silica surrogate. 

  

Reaction Temperature (⁰C) 

200 250 300 350 400 450 500 

CBz 0.0022 0.0009 0.00094 0.0033 0.0011 0.003 0.0012 

2-MCP 0.25 0.017 0.013 0.014 0.013 0.015 0.022 

DCBz 0.00032 0.0012 0.0018 0.0036 0.0025 0.0021 3.8E-05 

DCP 0.011 0.0035 0.0017 0.0015 0.00059 0.00066 0.00089 

TriCBz 0.00011 0.0017 0.0019 0.0038 0.0052 0.0037 0.00051 

TetraCBz 0.00025 0.0031 0.0023 0.0062 0.011 0.0069 0.0017 

TriCP 0.039 0.051 0.0062 0.013 0.0035 0.0032 0.018 

PentaCBz 0.00033 0.0018 0.00072 0.0021 0.0055 0.0038 0.0028 

HexaCBz 0.00071 0.0082 0.00032 0.0019 0.0082 0.0073 0.01 

DF 0.000041 0.00013 4.6E-06 9.7E-05 7.7E-05 bdl 3.6E-05 

DD 2.40E-06 3.30E-06 2.00E-06 2.30E-06 1.90E-06 1.70E-06 2.30E-06 

MCDF 0.00039 0.00095 0.00023 0.00026 0.00016 bdl 0.00012 

MCDD 0.011 0.013 0.006 0.0071 0.0041 0.0034 0.0051 

DCDF 0.0027 0.017 0.0015 0.0017 0.0013 0.0038 0.0014 

DCDD 0.0069 0.027 0.0057 0.012 0.00045 0.0061 0.001 

TriCDD 0.0012 0.014 0.0014 0.0096 bdl bdl bdl 

TetraCDD 6.80E-04 5.30E-03 1.00E-04 2.90E-03 bdl bdl bdl 

bdl - Below Detection Limit 
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3.8 Thermal Degradation of 2-Monochlorophenol over a 4% Fe2O3 + 1% CuO / 
silica Surrogate 

3.8.1 Pyrolytic Conditions 

The product yields from the surface-mediated pyrolysis of 2-MCP over a 4% 

Fe2O3 + 1% CuO / silica surrogate are presented in Figures 3.44-3.46 as a function of 

temperature.  The surrogate was fairly active in the destruction of 2-MCP precursor 

under pyrolytic conditions.  Thermal degradation of 2-MCP was 90% at 200 ºC and 

increased to >99.9% at 450ºC. 

The yields of chlorinated benzenes can be seen in Figure 3.44.  The two most 

prevalent chlorinated benzenes were MCBz and HexaCBz, which exhibited slight 

increases in yields with increasing temperature and reached maximums of 0.07% and 

0.2%, respectively, at 550⁰C. 

The yields of chlorinated phenols can be seen in Figure 3.45.  DCP and TriCP 

were formed in extremely high concentrations at lower temperatures.  DCP and TriCP 

reached maximums of 0.3% and 2.1%, respectively, at 250⁰C. 

The yields of PCDD/Fs can be seen in Figure 3.46.  The 4% Fe2O3 + 1% CuO / 

silica surrogate was extremely active in the formation of PCDD/Fs from 250-300⁰C.  The 

most prevalent congeners were MCDD, DCDD, and DCDF with maximums yields of 

3.6% at 275⁰C, 0.5% at 300⁰C, and 0.5% at 250⁰C, respectively.  Table 3.16 gives the 

yields of all chlorinated benzenes, phenols, and dioxin products. 
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Figure 3.44.  Chlorinated benzene yields from the 

pyrolysis of 2-MCP over a 4% Fe2O3 + 1% CuO / silica 

surrogate. 
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Figure 3.45.  Chlorinated phenol yields and precursor 

conversion from the pyrolysis of 2-MCP over a 4% Fe2O3 

+ 1% CuO / silica surrogate. 
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Figure 3.46.  Major PCDD/F yields from the pyrolysis of 2-MCP over a 4% Fe2O3 + 

1% CuO / silica surrogate. 
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Table 3.16.  Dioxin and nondioxin products from the pyrolysis of 2-MCP over a 4% Fe2O3 + 1% CuO / silica surrogate. 

  

Reaction Temperature (⁰C) 

200 250 275 300 350 400 450 

CBz 0.0019 0.0028 0.0028 0.011 0.0034 0.0069 0.016 

2-MCP 10 5.2 7.4 2.5 1.5 0.21 0.035 

DCBz 7.20E-05 0.00049 0.00022 0.0016 0.00067 0.00049 0.0019 

DCP 0.052 0.27 0.072 0.17 0.014 0.0028 0.001 

TriCBz 7.70E-05 0.00017 0.0001 0.00073 0.00017 0.00039 0.00097 

TetraCBz 0.00023 0.0006 0.00021 0.00097 0.0004 0.0011 0.002 

TriCP 0.022 2.1 0.011 0.65 0.046 0.018 0.11 

PentaCBz 0.00047 0.0022 0.00029 0.0017 0.00099 0.0019 0.0068 

HexaCBz 0.0028 0.017 0.00041 0.0085 0.003 0.0052 0.035 

DF 0.00072 0.00081 0.00079 0.012 0.049 0.099 0.036 

DD 9.90E-05 4.90E-04 8.30E-04 1.20E-03 4.60E-04 1.20E-03 2.50E-04 

MCDF 0.0043 0.018 0.025 0.028 0.03 0.026 0.006 

MCDD 0.25 0.99 3.6 1.4 0.21 0.27 0.03 

DCDF 0.055 0.47 0.44 0.36 0.049 0.048 0.012 

DCDD 0.023 0.28 0.35 0.49 0.028 0.013 0.011 

TriCDD 0.00076 0.017 0.0042 0.075 0.0013 0 0.0029 

TetraCDD 1.30E-04 1.70E-03 0 1.30E-02 0 0 6.70E-04 

bdl - Below Detection Limit 
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3.8.2 Oxidative Conditions 

The product yields from the surface-mediated oxidation of 2-MCP over a 4% 

Fe2O3 + 1% CuO / silica surrogate are presented in Figures 3.47-3.49 as a function of 

temperature.  This catalyst was similar to the other bimetallic catalysts and was 

extremely active in the degradation of 2-MCP precursor.  Conversion of 2-MCP was 

>99.5% over the entire temperature range. 

The yields of chlorinated benzenes can be seen in Figure 3.47.  Total chlorinated 

benzene yield peaked between 350-400⁰C with higher chlorinated species like TeCBz, 

PentaCBz, and HexaCBz reaching yields of 0.01% at 350⁰C, 0.006% at 400⁰C, and 

0.01% at 400⁰C, respectively. 

The yields of chlorinated phenols can be seen in Figure 3.48.  Chlorophenols 

were produced in higher concentrations than chlorobenzenes.  TriCP had a maximum 

yield of 0.22% at 250⁰C and exhibited a general decrease in yield with increasing 

temperature. 

The yields of PCDD/Fs can be seen in Figure 3.49.  Under oxidative conditions, 

the 4% Fe2O3 + 1% CuO / silica surrogate showed higher PCDD/F yields than the other 

bimetallic surrogates.  DCDD, MCDD, and TriCDD were the most prevalent congeners 

with maximum yields of 0.2%, 0.1%, and 0.08%, respectively, at 250⁰C.  Table 3.17 

gives the yields of all chlorinated benzenes, phenols, and dioxin products. 
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Figure 3.47.  Chlorinated benzene yields from the 

oxidation of 2-MCP over a 4% Fe2O3 + 1% CuO / silica 

surrogate. 
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Figure 3.48.  Chlorinated phenol yields and precursor 

conversion from the oxidation of 2-MCP over a 4% 

Fe2O3 + 1% CuO / silica surrogate. 
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Figure 3.49.  PCDD/F yields from the oxidation of 2-MCP over a 4% Fe2O3 + 1% 

CuO / silica surrogate. 
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Table 3.17.  Dioxin and nondioxin products from the oxidation of 2-MCP over a 4% Fe2O3 + 1% CuO / silica surrogate. 

  

Reaction Temperature (⁰C) 

200 250 300 350 400 450 500 

CBz 0.0018 0.0062 0.0012 0.0064 0.0028 0.0015 0.0007 

2-MCP 0.55 0.12 0.015 0.012 0.01 0.018 0.0088 

DCBz 0.00036 0.001 0.00081 0.0062 0.0028 0.00082 2.7E-05 

DCP 0.025 0.039 0.0038 0.00072 0.0008 0.0019 0.001 

TriCBz 0.00031 0.00047 0.00089 0.0056 0.0037 0.0012 0.00054 

TetraCBz 0.00042 0.00056 0.0012 0.014 0.0089 0.0024 0.0012 

TriCP 0.17 0.22 0.15 0.0024 0.013 0.014 0.023 

PentaCBz 0.00067 0.00046 0.00066 0.0052 0.0064 0.0017 0.0011 

HexaCBz 0.0069 0.0026 0.0016 0.0079 0.011 0.0027 0.0012 

DF 0.000094 0.000034 0.000027 5.6E-05 0.00034 7.1E-05 0.00013 

DD 5.90E-06 1.10E-05 3.50E-06 2.30E-06 2.10E-06 5.30E-06 2.30E-06 

MCDF 0.0012 0.0018 0.00038 0.00023 0.0003 0.0012 0.00027 

MCDD 0.074 0.12 0.02 0.007 0.0046 0.014 0.0052 

DCDF 0.034 0.035 0.0044 0.0075 0.0023 0.0098 0.0063 

DCDD 0.097 0.22 0.039 0.015 0.0018 0.018 0.0031 

TriCDD 0.073 0.075 0.028 0.015 0.00055 0.0074 0.00054 

TetraCDD 4.90E-02 1.10E-02 4.70E-04 4.10E-03 1.90E-04 3.00E-03 1.90E-04 

bdl - Below Detection Limit 
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Chapter IV. Discussion 

 Many researchers have shown before, that metal oxides catalyze the formation 

of PCDD/Fs.1-3  Interactions between substituted aromatic precursors and metal oxide 

surfaces lead to the formation of surface-bound EPFRs, through the reduction of the 

metal active site.4, 5  Condensation of EPFRs with each other or with gas phase 

precursors gives way to a PCDD/F.1, 6-8 

4.1 PCDD/F Formation on Aluminas and Aluminosilicates 

 Decomposition profiles of 2-MCP over studied surfaces varied significantly (see 

Figure 4.1). The highest 2-MCP destruction yield was observed for γ-alumina (>99.9% 

destruction over studied temperature range) and the fly ash surrogate 5% Fe2O3/Silica 

(>90% destruction).  It is evident, that these two catalysts are very active and 

catalytically oxidize 2-MCP on their surfaces at temperatures below 250 ⁰C. The 

significantly higher surface area of γ-alumina is a contributing factor to its activity in the 

degradation of 2-MCP. 

For the fly ash, α-alumina, and mullite, a gradual increase of 2-MCP degradation 

with increasing reaction temperature was observed, however, temperatures above 400 

⁰C are required to achieve ~95% degradation.  A close to linear dependence of 2-MCP 

degradation within the entire temperature range was observed for α-alumina, mullite, 

and fly ash (see Figure 4.1).  Though the degradation at 250 ⁰C was much lower for the 

fly ash, stronger temperature dependence resulted in higher conversions at 

temperatures above 450 ⁰C.   
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The 2-MCP decomposition over fly ash differed from that of the Fe2O3/silica 

surrogate despite having a similar concentration of iron.  Because iron is known to be 

particularly active in this temperature region, it seems likely that not all the iron in the fly 

ash may be available as active surface sites or it is present in a different coordination 

environment.  This correlates with XPS results that show a weak iron signal under high-

resolution scan.  With a total surface area of 13.65m2/g and a relatively small pore 

volume of 6.49x10-3cm3/g, the inner pore system of the studied fly ash is not 

significantly developed. While iron oxide could be present on the interior surface of the 

fly ash pores, and therefore hidden from XPS analysis, the available surface sites would 

be sparse and the average pore diameter (~19Å) would interfere with desorption of any 

PCDD/F products. 

 

Figure 4.1. 2-MCP oxidative decomposition over the Fe2O3/silica surrogate, fly ash, 

α-alumina, mullite, and γ-alumina 
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The high catalytic activity of γ-alumina is related to the surface sites in its crystal 

structure.  Along with surface hydroxyl groups, γ-alumina has Al3+ Lewis acid sites that 

aid in adsorption of substituted organic species.9, 10  High temperature pretreatment of 

the catalyst prior to the experiment removes hydroxyl coverage from the surface and 

increases the number of Al3+ sites available for adsorption of the precursor.  Catalytic 

oxidation research suggests the catalytic activity of γ-alumina increases as the ratio of 

these two types of surface sites approaches one.10, 11  Activation of the catalyst at 450 

⁰C prior to each experiment leads to approximately twice as many hydroxyl sites as 

Lewis acid sites.12   

The lower activity of α-alumina and mullite, when compared to γ-alumina, is due 

to a difference in their active sites.  The surface of α-alumina likely has a greater degree 

of hydroxyl group coverage and removing them to expose Al3+ Lewis acid sites could 

possibly require more extreme pretreatment conditions than on the γ-alumina surface.  

Lower catalytic activity on aluminas with higher ratios of hydroxyl groups to Lewis acid 

sites has been observed.10, 11  The surface of mullite contains Si-bound hydroxyl groups 

and Al-bound hydroxyl groups.  While chemisorption of 2-MCP can take place on the Si-

bound hydroxyl groups to form chlorophenolate species13, 14, electron transfer to form an 

EPFR does not occur.  Al-bound hydroxyl groups would be the primary sites for EPFR 

formation on the mullite surface and condensation could involve chemisorbed species 

on Si-bound hydroxyl groups. 

Destruction of 2-MCP resulted in formation of PCDD/Fs for all studied systems.  

Briefly, the surface-mediated mechanism for PCDD/F formation consists of the 

chemisorption of a precursor molecule to the catalytic surface to form an 
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environmentally persistent free radical (EPFR).  The EPFRs are then able to react with 

each other to form PCDFs or upon further transformation react with gas-phase 

precursor molecules to form PCDDs.1  According to this mechanism, only simple 

PCDDs and PCDFs such as dibenzo-p-dioxin (DD), 2-monochlorodibenzo-p-dioxin (2-

MCDD), dibenzofuran (DF) and 4,6-dichlorodibenzofuran (4,6-DCDF) are anticipated to 

be formed from 2-MCP as a result of the direct condensation reactions.  Indeed, such 

species were the dominant PCDD/F observed products, while small yields of higher 

chlorinated (tri- and tetraCDD) were also detected.  The total PCDD/F product yields are 

presented in Figure 4.2 as a function of temperature under oxidative conditions.  

  

A stark contrast in the yields of PCDD/Fs was observed for different aluminas.  

The analysis of the reaction products for γ-alumina has indicated very low yields of 

 

Figure 4.2. PCDD/F yields from the oxidation of 2-MCP over the Fe2O3/silica 

surrogate, fly ash, α-alumina, mullite, and γ-alumina 
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PCDD/Fs in the studied temperature region with a maximum at ~450 ⁰C (0.01% yield of 

dibenzo-p-dioxin).  Though the result is surprising, it is not entirely unanticipated.  The 

high activity of γ-alumina, in the decomposition of 2-MCP, results in an unfavorable 

condition for surface condensation processes.  It is likely that PCDD/F products are 

formed in the highly developed pore system – this is supported by observation of EPFR 

formation over γ-alumina.15  With an average pore diameter of ~19 Å, precursor 

molecules are able to enter but PCDD/F products would be trapped (“ship-in-a-bottle” 

effect) and prone to secondary decomposition processes. 

2-MCP oxidation over α-alumina produced PCDD/Fs with yields up to ~0.3% 

(see Figure 4.2).  The maximum formation was observed at 500 ⁰C, a temperature 

higher than the maximum yield temperatures for copper oxide and iron oxide surrogates 

(350 ⁰C and 450 ⁰C, respectively).6-8  Smaller yields and shift of the maximum formation 

towards higher temperature indicates α-alumina is less active in the formation of 

PCDD/Fs compared to the transition metal ions such as copper and iron.  However, in 

spite of its lower activity, aluminum-containing compounds are found in fly ash in 

concentrations many times higher than transition metals, therefore their contributions 

cannot be discounted.  This is also true for mullite, which exhibited a similar yield of 

PCDD/Fs to α-alumina (~0.3% at 550 ⁰C).  The higher temperature of maximum yield 

compared to α-alumina indicates that mullite active sites have higher activation energy, 

likely due to the differences in the coordination environment of active sites. One can 

assume a similar mechanism of PCDD/F formation is taking place on both α-alumina 

and mullite surface as on transition metal oxides.  Although future work using model fly 

ashes containing aluminas and aluminosilicates could better quantify the contributions 
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from these compounds, they could be the primary contributors to PCDD/F formation 

under certain incinerator conditions. 

Formation of an EPFR contains a key step involving transfer of an electron from 

the chemisorbed precursor to the metal center, thereby reducing the metal.1, 4, 5  

Aluminum is less likely to accept an electron compared to transition metal oxides such 

as iron and copper.  Patterson, et al. investigated the formation of surface-bound 

radicals on alumina.  Reaction between phenol and γ-alumina yields phenoxyl radicals 

that are consistent with those formed on transition metal oxides.15  The fate of the 

transferred electron was found to reside in F-centers.  F-centers are crystallographic 

defects where a missing anion is replaced by an electron.  These defects allow alumina 

to accept an electron from chemisorbed precursors and form surface-bound radicals.  

Decay of phenoxyl radicals on γ-alumina exhibit two distinct rates.15  Phenoxyl radicals 

likely have different decay rates based on the identity of their alumina adsorption site.  

In γ-alumina, there are both Al3+ Lewis acid adsorption sites and hydroxyl groups that 

initiate hydrogen bonding.9, 16, 17  The ratio of these sites is heavily dependent on 

pretreatment conditions, with higher temperatures leading to less hydroxyl groups and 

more Lewis acid sites.12 

The EPA Test Burn Installation fly ash was used to compare the formation of 

PCDD/F with surrogate samples (see Figure 4.3).  Observed maximum PCDD/F yield of 

~1.0% at 450 ⁰C is significantly higher than both mullite and α-alumina and even slightly 

higher than the Fe2O3/silica surrogate (a maximum yield of ~0.6%).  This is surprising 

as iron oxide is known to strongly contribute to PCDD/F formation in the post-

combustion cool zone.  The studied fly ash contains iron, mullite, and amorphous 
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alumina.  However, PCDD/F yields over fly ash are almost 80% higher compared to iron 

oxide surrogate and show a different formation temperature profile (see Figure 4.3).  A 

further discourse between the activity of iron oxide and studied fly ash is more evident 

when comparing the congener pattern formed from 2-MCP reaction.  Fly ashes 

produced mainly 2-MCDD, while iron oxide formed a mixture of 4,6-DCDF, DF, DD and 

2-MCDD.  Fly ash also formed small amounts of dichlorodibenzo-p-dioxin, a secondary 

chlorination product that also formed on all aluminum-containing catalysts.  The 

congener profile from fly ash, containing secondary chlorination products and higher 

ratios of PCDD:PCDF, matches more closely to the congener profiles of the aluminas.  

The fly ash exhibits the higher yields of transition metal oxides and the congener profile 

of aluminum-containing compounds, implying synergistic effects involving transition 

metal oxides increasing the catalytic activity of aluminum active sites.  

 

 

Figure 4.3. PCDD/F yields from the oxidation of 2-MCP over α-alumina and mullite 
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This observation is significant from the perspective of potential predictive models 

of PCDD/F formation based on fly ash composition as well as understanding the factors 

governing their yields. The presence of high concentration of metal (iron in this case) 

does not necessary translate to similar catalytic activity observed on pure metal oxide 

compositions.  One of the potential explanations is surface availability of such metal 

oxides.  Lab-made surrogates have their entire transition metal content on the surface 

and available for adsorption.  In real fly ash, a portion of the metal oxides is contained 

within the particle, covered by other components, and is not available for precursor 

adsorption.  At the same time, we have shown both alumina and aluminosilicates to 

affect the formation of PCDD/Fs. 

4.2  Predicting PCDD/Fs in Fly Ash 

The ability to predict PCDD/F yields on fly ash is extremely valuable as a way to 

lower costs and time in analyzing physical samples.  The congener profile and PCDD/F 

yields from fly ash are related to the catalytic sites available on the fly ash surface.  The 

components of fly ash, and their active sites, are directly related to incinerator feedstock 

makeup.  The sum of PCDD/F yields from the Fe2O3/silica surrogate, α-alumina, and 

mullite is shown in Figure 4.4 alongside the total PCDD/F yield from fly ash.  Currently 

referred to as the ‘predicted yield,’ this sum represents the three primary PCDD/F 

contributors found in this particular fly ash.  The fly ash and the predicted yield share a 

similar maximum yield and temperature formation profile.  The slight shift in the 

maximum is attributed to the higher temperatures required by aluminas and 

aluminosilicates to form PCDD/Fs.  The high baseline at low temperatures seen in the 

predicted yield is due to higher concentrations of PCDFs resulting from Fe2O3 activity. 
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These results indicate that combustion-generated particulate matter can be 

viewed as a sum of its parts with regard to PCDD/F formation.  The additive and 

possibly cooperative effects from the complex mixture of transition metals, alumina, and 

aluminosilicates leads to a significantly higher PCDD/F yield than any one component.  

 

For aluminas and aluminosilicates, which form a primary portion of the bulk 

structure of fly ash, the number of active sites far surpasses the concentration of 

organic species.  For this reason, the PCDD/F yields from pure samples of aluminas 

and aluminosilicates were not adjusted before summing.  For trace components, whose 

 

Figure 4.4. Comparison of PCDD/F yields from fly ash and predicted yields from a 

sum of studied fly ash components 
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number of active sites is more heavily dependent on their concentration on the fly ash 

surface, adjustments to the PCDD/F yields could lead to a more accurate prediction. 

The sum of only three components should not detract from the large number of 

other factors that affect PCDD/F formation, including:  surface area, catalytic site 

availability, reaction atmosphere, pressure, etc., but instead emphasize the importance 

of the fly ash chemical makeup on its ability to form PCDD/Fs.  Once such effects are 

well understood, a mathematical equation can be designed that accurately identifies the 

expected PCDD/F surface concentrations and other quantifiable data like PCDD/PCDF 

ratios through input of the concentrations of various fly ash components.  In a simple 

form, the equation will be a sum of yields from various components weighted based on 

each components concentration in the combustion system.  Factors such as differing 

product profiles, surface availability, and catalytic synergy between components would 

allow the equation to grow to a more complex state. 

4.3  Fe/Cu Synergy in PCDD/F Formation 

 Fly ash is a complex mixture of components whose concentration can vary 

widely based on incinerator feedstock.  Knowing how multiple components affect each 

other, either synergistic or inhibitive, is paramount to understanding the formation of 

PCDD/Fs on fly ash surfaces.  Synergistic effects between Fe and Cu in multicatalysis 

have been observed in a wide variety of applications.18-25  Even in reactions where one 

catalyst was inactive on its own, synergistic effects were exhibited upon its addition to a 

bimetallic system.19 
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While most applications involve nanoparticles of metallic Fe and Cu, this work 

focused on Fe2O3 and CuO co-impregnated onto silica powder to simulate the structure 

of fly ash.  Previous research involved monometallic fly ash surrogates containing 5% 

w/w of either Fe2O3 or CuO.  For the sake of comparison, three bimetallic surrogates 

were made with a total of 5% w/w metal oxide and varying ratios of co-impregnated 

Fe2O3 and CuO.  The three bimetallic surrogates contained Fe2O3:CuO ratios of 4, 1, 

and 0.25, which corresponds to Fe:Cu ratios of 1.8, 0.44, and 0.11, respectively.  

The mechanism for EPFR formation on individual transition metal oxides has 

been thoroughly characterized.4, 5, 26, 27  This mechanism can be applied to bimetallic 

surfaces as well.  Intermediate species on bimetallic surfaces have not been 

investigated and their structure and lifetimes are unknown.  On monometallic 

surrogates, phenoxyl-type radicals are the intermediates that condense to form 

PCDD/Fs.  Phenoxyl-type radicals are likely formed on the bimetallic surrogates.  The 

synergistic effects between the iron active sites and the copper active sites likely arise 

from the structure of the metal oxides on the surrogate surface.  The proximity of the 

two metal oxides would affect the condensation of the surface-bound intermediates and 

the catalytic activity of the metal oxide active sites.  Characterization of the surface of 

both fresh and used bimetallic surrogates using XPS and SEM-EDS would assist in 

gaining insight to the way in which the two metals influence each other when in close 

proximity. 

In past research, monometallic Fe2O3 and CuO surrogates have exhibited 

different PCDD/F yields and congener profiles even when reacting with the same 
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precursor.  In reactions involving 2-MCP, CuO surrogates yield congener profiles with 

much higher ratios of PCDDs.  Fe2O3 surrogates yield approximately equal quantities of 

PCDDs and PCDFs, which also leads to higher overall PCDD/F yield than their CuO 

counterparts.  Using this distinction, it is possible to determine how Fe and Cu are 

influencing the reaction in a bimetallic system.  

The conversion of 2-MCP over the three studied bimetallic Fe/Cu surrogates is 

shown in Figures 4.5 and 4.6.  For reference, previously obtained results from 

monometallic surrogates are also included on the graph.  Under pyrolytic conditions, the

 

 

Figure 4.5. Pyrolytic degradation of 2-

MCP over three bimetallic catalysts.  

Monometallic catalyst data for reference. 
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Figure 4.6. Oxidative degradation of 2-

MCP over three bimetallic catalysts.  

Monometallic catalyst data for reference 
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bimetallic surrogates act in a similar manner to their monometallic counterparts in the 

catalytic oxidation of 2-MCP (see Figure 4.5).  All three bimetallic surrogates are 

extremely catalytically active under oxidative conditions and convert >99.5% of the 2-

MCP precursor across the entire measured temperature range (see Figure 4.6). 

 This significant increase in activity is exclusive to the bimetallic surrogates.  

Monometallic surrogates show only a small increase in activity between pyrolytic and 

oxidative conditions.  The bimetallic cooperativity between the Fe2O3 and the CuO in 

oxidative conditions is expressed primarily through a fast 2-MCP destruction rate. 

The total PCDD/F yields from the bimetallic surrogates are shown in Figure 4.7.  

There is an inverse relationship between the conversion of 2-MCP and the formation of 

PCDD/Fs.  Under oxidative conditions, the rate of destruction of 2-MCP surpasses the 

rate of condensation of PCDD/F intermediates.  Similar to γ-alumina, the bimetallic 

surrogates completely oxidize 2-MCP and its associated surface-bound intermediates 

before they can further react to form PCDD/Fs.  The synergistic effects between the 

Fe2O3 and the CuO are easily seen under pyrolytic conditions by their high yields of 

PCDD/Fs.  In the absence of oxygen, the rate of catalytic oxidation of 2-MCP is 

suppressed and the rate of condensation of surface species increases.  A high 

concentration of PCDD/Fs is the result of more condensation of surface-bound 

intermediates.  The yield of PCDD/Fs increases with increasing Fe2O3 concentration.   

The congener profiles of the three bimetallic surrogates contains higher quantities of 

PCDDs than PCDFs.  PCDD:PCDF ratios of 10 or more match results obtained from 

monometallic CuO surrogates, but the total PCDD/F yield shows a clear relationship 
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with increasing Fe2O3 concentration.  Deng, et al., studying bimetallic catalyzed 

formation of carbon nanotubes, found that some metals are better at catalyzing 

nucleation and some are better at catalyzing growth of nanotubes.20  By combining the 

best performing metal from each category, a bimetallic catalyst that exhibited the 

strengths of each metal was formed.  Siriwardane, et al. found that mixtures of Fe2O3 

and CuO were extremely active in the release of O2 for chemical looping combustion, 

while individually Fe2O3 exhibited low activity and CuO experienced agglomeration 

problems.25  In the Fe2O3 + CuO bimetallic catalysts studied in this work, CuO is 

influencing the congener profile while the synergistic effects of Fe2O3 are causing an 

overall increase in PCDD/F yield.  EPFRs formed on CuO tend to undergo Eley-Rideal 

reactions with gas phase precursors to form higher yields of PCDDs.  The addition of 

Fe2O3 does not affect this preference for Eley-Rideal type reactions but it does provide 

higher concentrations of EPFRs to undergo these condensation reactions with gas 

phase precursors, thereby leading to higher overall yields of total PCDD/Fs. 

The location and structure of the transition metal oxides on the silica powder is 

currently unknown.  Due to their synergistic effects, the Fe2O3 and CuO are likely in 

close proximity to each other in mixed nanoparticles on the surface of the fly ash 

surrogate.  Wojciechowska, et al. showed that bimetallic catalysts of Cr2O3 and CuO 

experienced charge transfers from Cr to Cu.28  The charge transfer goes to the metal 

with higher redox potential.  Even if one component is inactive in reaction, as was the 

case with the Cr2O3/CuO catalyst, the synergistic effects still lead to an increase in 

catalytic activity for the active sites.  In the case of the Fe/Cu bimetallic catalyst, charge
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Figure 4.7.  Total PCDD/F yields from the thermal degradation of 2-MCP over Fe/Cu bimetallic catalysts. 
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transfer would travel from Cu to Fe.  After charge transfer, the highly oxidized Cu sites 

would be very catalytically active towards formation of surface-bound radicals. 

4.4.  Lab-scale vs. Full-scale Results 

 While an overall conversion of 5% precursor to dioxin may seem absurdly high to 

take place in a full-scale reactor, these synergistic reactions are only occurring in certain 

regions of an incineration system.  In a well-mixed reactor, temperatures and oxygen 

concentration will be lower farther from the flame.  ‘Pyrolytic pockets’ will develop that 

are poorly-mixed.  Poorly-mixed regions are going to be oxygen starved and have 

cooler temperatures.  Conditions in poorly-mixed regions are ideal for transition metal 

oxides to produce high yields of PCDD/Fs.  Non-transition metal oxides, like aluminas 

and aluminosilicates, produce high yields of PCDD/Fs in the well-mixed regions when 

exposed to higher concentrations of oxygen and higher temperatures.  Particulary high 

yields from bimetallic catalysts at low temperatures under pyrolytic conditions are a 

possible cause for unexplained PCDD/F formation in full-scale incinerators. 

Comparing and contrasting individual lab-scale experiments to full-scale 

emissions leads to the false assumption that the two sets of results should match when 

in actuality, the full-scale system should be viewed as a wide range of conditions and 

reactions that would be almost impossible to mimic in a lab-scale experiment. 
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Chapter V.  Conclusions 

 Non-transition metals have been largely discounted in the past as 

nonparticipants in the formation of PCDD/Fs.  While this may be true for some non-

transition metals that are prevalent in fly ash, as in the case of SiO2, other common 

components, such as aluminas and aluminosilicates, do play roles in PCDD/F 

formation.  Particularly under oxidative conditions and at the higher temperatures of the 

cool zone range, aluminas and aluminosilicates can make significant contributions to 

PCDD/F formation.  Specifically, α-alumina and mullite, both found in real world fly ash, 

exhibited maximum PCDD/F yields of 0.4% from the catalytic oxidation of 2-MCP.  A 

real world fly ash sample containing both alumina and mullite reached a maximum of 

1.0% PCDD/F yield.  The mechanism for PCDD/F formation on aluminum-containing 

compounds has not been completely investigated.  Similar to transition metal oxides, 

the initial step involving a surface-bound radical does take place on aluminas and 

therefore it can be inferred that condensation of surface-bound radicals is still the 

primary pathway for PCDD/F formation on these components. 

 The ability to predict PCDD/F yield from incineration systems would provide a 

fast and cheap alternative to real-time analysis for quantitative, and possibly qualitative, 

information about PCDD/F emissions.  By taking into account the inorganic makeup of a 

fly ash, accurate predictions can be made about the PCDD/F concentration on the fly 

ash.  This was very simply exhibited by summing the PCDD/F yields of α-alumina, 

mullite, and a Fe2O3/silica surrogate and comparing it to the real fly ash that contained 

alumina, mullite, and a similar concentration of Fe2O3.  This simple sum matches 
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surprisingly close to the real fly ash in both total PCDD/F yield and temperature of 

maximum formation. 

 Model fly ash surrogates have been criticized for their inability to mimic real fly 

ash in the formation of PCDD/Fs.  By studying Fe/Cu bimetallic surrogates, we have 

found that synergistic catalytic effects are one area of PCDD/F formation that has 

received little consideration.  Fly ash is a complex mixture of many metals and studying 

them individually ignores their group interactions. 

The mechanism of PCDD/F formation on bimetallic catalysts is still unknown but 

results indicate that copper sites are controlling the precursor condensation congener 

profiles matching those of monometallic copper oxide surrogates.  The concentration of 

iron sites has a direct relationship with the total PCDD/F yield, indicating a synergistic 

effect that increases the activity of the copper sites. 

The synergistic effects of Fe/Cu bimetallic surrogates under pyrolytic conditions 

are a step towards completing our understanding of PCDD/F formation.  The 

development of pyrolytic pockets containing these cooperative metals in incineration 

systems is a likely cause of unexplained PCDD/F emission spikes. 
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