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ABSTRACT 

Chemically patterned surfaces were fabricated using a combination of molecular self-

assembly and particle lithography to generate billions of nanostructures of organosilane self-

assembled monolayers (SAMs). Monodisperse mesospheres were used as surface masks to prepare 

nanostructures on flat surfaces using the simple benchtop chemistry steps of mixing, centrifuging, 

evaporation, and drying. Periodic arrays of well-defined organosilane nanostructures serve as 

discrete surface sites for the selective deposition of polymers and magnetic nanoparticles. 

 In this dissertation, particle lithography approaches for surface patterning provide new 

directions for studying surface chemistry at the molecular-level using high resolution 

investigations with scanning probe microscopy (SPM). Atomic force microscopy (AFM) can be 

used to analyze samples in ambient and liquid environments. The solvent responsive nature of 

OTS nanostructures were investigated using in-situ liquid imaging with AFM. AFM provides 

unique capabilities for molecular visualization and ultrasensitive measurements of changes in 

heights, widths and surface coverage of the swollen OTS nanostructures with nanoscale resolution. 

Ring nanostructures of OTS presented a 3D interface for studying the interaction of solvents at the 

molecular level.  

The vibrational response of patterned magnetic Fe3O4 nanoparticles in response to an 

applied external magnetic field was detected using magnetic sample modulation AFM (MSM-

AFM). The vibration of Fe3O4 nanoparticles can be detected with a nonmagnetic AFM tip operated 

in continuous contact mode. In MSM-AFM, an AC current applied to the wire coil solenoid within 

the special sample plate drives the actuation of magnetic nanomaterials that are attached to 

surfaces. The magnetic Fe3O4 nanoparticles were induced to vibrate in the presence of externally 

applied electromagnetic field. Parameters such as frequency and magnetic field strength can be 
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tuned in-situ to study dynamic changes in the vibrational response of samples. The AFM tip serves 

as a force and motion sensor for mapping the vibrational response of magnetic nanomaterials. The 

information  acquired  from  MSM  images  includes  the  distribution  of  individual  magnetic 

domains  as  well  as  spectra  of  the  characteristic  resonance  frequencies  of  the  vibrating 

magnetic nanomaterials. 
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CHAPTER 1: INTRODUCTION 

The drive for miniaturization of devices has resulted in focused efforts for developing 

technologies for manufacturing at the nanoscale.1,2 In addition, unique phenomena have been 

revealed at the nanoscale for certain materials which are distinct from the bulk properties. 

Properties at the nanometer scale often cannot be described with the laws of classical mechanics, 

but instead, follow the rules of quantum mechanics. A fundamental challenge for nanofabrication 

is to engineer surfaces with specific surface chemistry in addition to controlling the distribution of 

chemical functional groups.3, 4 ,5   

Particle lithography, also known as nanosphere lithography (NSL), or colloidal lithography 

can be applied to manufacture one, two and three dimensional nanostructures. Particle lithography 

offers advantages of being inexpensive, easy to implement, requires relatively simple bench 

chemistry protocols, with high throughput. The fabrication of nanostructures on planar surfaces 

also provides possibilities for the investigation of size-dependent properties of nanomaterials.6,7,8 

Nanostructures have potential applications in sensors,9,10 catalysis,11 molecular separation,12 and  

electronic devices.13 This dissertation describes nanoscale fabrication methods that combine 

particle lithography with molecular self-assembly to prepare spatially selective surface structures. 

With particle lithography, the density, surface coverage, sizes and spacing between the 

nanopatterns can be controlled by selecting the diameter of mesospheres used as surface masks. 

The arrays of nanopatterns serve as well-defined test platforms for fundamental investigations of 

changes in properties at the molecular level using advanced imaging modes of atomic force 

microscopy (AFM). 
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1.1 Nanoscale Studies Using Scanning Probe Microscopy (SPM) 

The main application of AFM is for high resolution imaging of nanomaterials and surfaces 

including metals,14 polymers,15 biomolecules such as DNA,16,17 RNA,18 proteins,19 and cells.20 

Studies with AFM span over a range of interdisciplinary fields such as biophysics,21 chemistry,22,23 

biology,24,25 life sciences, polymer science,26 material science,27 biomedical engineering, 

nanotechnology, biotechnology, molecular electronics.28 Chapter 2 includes a brief history of SPM 

as well as the operating principles of the measurement modes used in this dissertation. The sample 

preparation of surface test platforms using particle lithography for AFM studies is also summarized 

in Chapter 2. 

1.2 Solvent Responsive Behavior of Octadecyltrichlorosilane (OTS) Multilayers 

An emerging challenge for nanoscale measurements is to capture and quantify the 

magnitude of structural changes in response to environmental changes. Certain environmental 

parameters can affect the nanoscale morphology of samples, such as changing the pH, solvent 

polarity, ionic strength, and temperature. We prepared test platforms of n-octadecyltrichlorosilane 

(OTS) ring nanostructures to study surface morphology changes at the nanoscale in selected liquid 

media compared to dry conditions in air. Particle lithography combined with organosilane vapor 

deposition was used to fabricate nanostructures of regular dimensions. Multilayer nanostructures 

of OTS were used as a test platform for scanning probe studies of solvent-responsive properties 

where the sides of designed ring structures expose a 3D interface for studying the interaction of 

solvents with molecular side groups. In dry, ambient conditions, nanostructures of OTS were first 

imaged using contact mode atomic force microscopy (AFM). Next, ethanol or buffer was 

introduced to the sample cell, and images were acquired using the same probe. We observed 

substantial changes in the lateral and vertical dimensions of the ring nanostructures in AFM 
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topography frames; the sizes of the rings were observed to swell by tens of nanometers. Even after 

heat treatment of samples to promote cross-linking, the samples still evidenced swelling in liquid 

media. This research will have consequences for studies of the properties of nanomaterials, such 

as solvent-responsive organic films and polymers. 

In Chapter 3, ring nanostructures of octadecyltrichlorosilane (OTS) were prepared on 

Si(111) surfaces using designed protocols of particle lithography combined with vapor deposition. 

Liquid imaging with AFM enabled in-situ investigations of the solvent responsive nature of OTS 

nanostructures. The OTS nanorings furnish a robust surface platform that can sustain multiple 

successive measurements with scanning probe microscopy. Ring nanostructures of OTS presented 

a 3D interface for studying the interaction of solvents at the molecular level. Nanoscale details of 

the swollen structures were quantified for the first time, with respect to differences in height, width 

and surface coverage under confined dimensions of OTS ring nanopatterns. 

1.3 Dynamic Studies of the Vibrational Response of Iron Oxide Nanoparticles Using      

      Magnetic Sample Modulation (MSM-AFM) 

Properties and size-dependent effects of magnetic nanoparticles can be studied using 

magnetic measurement modes of atomic force microscopy (AFM). Particle lithography was used 

to produce arrays of nanostructures on flat surfaces using a few basic steps. Monodisperse 

mesospheres were used as a surface mask to guide the deposition of magnetic nanoparticles. With 

a mixture approach of “two-particle” lithography, 2D arrays of nanopatterns were generated 

yielding control over the surface coverage, size, and periodicity of samples. Magnetic sample 

modulation (MSM-AFM) was used to detect the vibration of patterned Fe3O4 nanoparticles in 

response to an applied external electromagnetic field. The vibration of Fe3O4 nanoparticles was 

detected by a nonmagnetic AFM tip to map changes in the frequency and amplitude of the vibrating 
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samples. The nonmagnetic AFM tip serves as a motion sensor for mapping the vibrational response 

of magnetic nanomaterials at the level of individual Fe3O4 clusters and nanoparticles.  

Experimental results for magnetic mapping of the iron oxide nanoparticle clusters using 

magnetic sample modulation AFM (MSM-AFM) will be presented in Chapter 4. The hybrid 

imaging and measurement mode of MSM-AFM uses a MAC-mode sample plate to actuate the 

magnetic nanoparticles. An AC current is applied to the wire coil solenoid within the MAC-mode 

sample plate to drive the actuation of magnetic nanomaterials that are attached to surfaces. The 

AFM tip is used to detect the sample vibration.  Instead of using a magnetically coated AFM probe 

as a magnetic sensor, MSM requires a non-magnetic probe for contact mode AFM to characterize 

the vibration of ferromagnetic nanoparticles responding to the flux of an AC electromagnetic field. 

The feedback for MSM-AFM is configured for contact mode imaging, and the probe is scanned 

slowly across the vibrating samples. Parameters such as frequency and magnetic field strength can 

be tuned in-situ to study dynamic changes in the vibrational response of samples. 

Studies with the MSM mode reveal how the composition and size of nanoparticles affects 

the vibration in response to a magnetic field. The MSM imaging mode provides characterizations 

at the level of individual nanoparticles for detecting changes in vibrational resonance signatures in 

response to an AC electromagnetic flux, as well as revealing differences in vibration amplitude 

versus the strength of magnetic field. 

1.4 Synopsis 

Particle lithography combined with the self-assembly of organosilanes was used to 

generate nanostructures with designed interfaces and sizes. The surface arrays demonstrated in this 

dissertation include nanopatterned surfaces of OTS multilayer assemblies and nanoscale arrays of 
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magnetic iron oxide nanoparticle clusters. A conclusion summary and future prospectus for the 

research experiments of this dissertation are presented in Chapter 5. 
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CHAPTER 2: EXPERIMENTAL APPROACH WITH ATOMIC FORCE MICROSCOPY 

2.1 History of Atomic Force Microscopy 

During the 1980s the field of surface science was revolutionized by the invention of the 

scanning tunneling microscope,29 (STM) and the atomic force microscope (AFM).30 The AFM 

was invented in 1986 by Gerd Binnig, Calvin Quate, and Christopher Gerber.30 Since then it has 

become a powerful, widely used and versatile tool for the nanoscale imaging of surfaces15, 31, 32, 33, 

34 and for the measurement of intermolecular and surface forces.35,36,37,38,39,40,41  The visualization 

of individual atoms and atomic vacancies within an atomic lattice was achieved with STM for the 

first time by Binnig and Rohrer.29, 42 Today, STM is used routinely to image surfaces with atomic 

and molecular resolution,43, 44 however, STM has the inherent limitation of the requirement of 

surfaces to be atomically flat and conductive. The development of AFM overcomes the limitation 

of requiring that surfaces be conductive and has contributed to the study of diverse samples such 

as imaging non-conductive or insulating materials, in addition to chemical and biological systems. 

Experiments with AFM can be accomplished under ambient conditions and in liquids.  

An advantage of AFM is that the samples can be probed in air, vacuum and liquid with 

capabilities for dynamic studies to monitor changes in surface morphology that evolve over time 

using time-lapse AFM. The resolution achieved with AFM is 0.1 nm for the x and y directions 

(depending on tip radius), and 0.01 nm in the z direction.24, 45  AFM images contain 3D information 

about the sample surface, whereas SEM and TEM provide 2D maps of sample surface 

morphology. Thus, AFM has become a valuable tool for interdisciplinary research efforts, in 

chemistry, physics, engineering,46 life sciences,47 materials science, electrochemistry, polymer 

science,48 biophysics, nanotechnology and biotechnology.24 
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2.2 Imaging Principle of Atomic Force Microscopy 

Achieving high resolution images with AFM requires an ultrasharp tip attached to a flexible 

V-shaped or rectangular cantilever. The cantilevers typically have lengths ranging from 10-200 

µm and widths of 20-40 µm. Probes for AFM measurements are usually made of silicon (Si) or 

silicon nitride (Si3N4) and typically have a diameter less than 30 nm.49 The geometries of the apex 

of the tips are usually square-based pyramids or cylindrical cones. Tips may be composed of 

diamond and other conducting or semi-conducting materials depending on the operating mode of 

AFM to be used. For high resolution imaging of individual proteins, tips made up of carbon 

nanotubes with diameters around 2 nm are used for tapping mode.50 Tips are chosen based on the 

type of sample and the nature of the tip-sample interaction under investigation. Tips for AFM have 

specific shapes, spring constants, and composition depending on the selected measurement mode.  

The AFM tip is used to record and map the interaction between the probe and sample 

surface as it is scanned over the surface. The main forces contributing to the cantilever deflection 

include (Coulomb) electrostatic repulsive forces and attractive and van der Waals forces between 

the atoms within the tip and the atoms of the sample surface. In conventional AFM operational 

modes, a tip located at the end of a cantilever is either scanned over the surface in permanent 

contact, non-contact, or is driven to vibrate to gently tap the sample. Key components for an AFM 

are a microfabricated tip and a tube shaped piezoelectric scanner. High resolution images are 

attained when an ultrasharp AFM tip attached to a flexible cantilever and accurate ceramic 

piezoelements enable the sample to be scanned in the x-y direction with sub-nanometer precision. 

Piezoelectric materials used to fabricate AFM piezoscanners include barium titanate and lead 

zirconate titanate which expand and contract when a potential is applied. The scanner converts 

electric signals from AFM control electronics into mechanical scanning motion in the lateral 
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direction of the sample. AFM images are also affected by a number of nonlinear properties that 

are inherent to piezoelectric material, including hysteresis, creep, and drift.51 The set-up for AFM 

is shown in Figure 2.1. 

 

Figure 2.1 Instrumental set-up for an atomic force microscope 

 Piezoscanners should be regularly calibrated every few months for reliable spatial 

measurements with AFM. The piezoceramic tube scanner consists of several piezoelectric 

elements to move the probe along the x, y, and z directions.52 To calibrate the scanner, a calibration 

grating NT-MDT TGQ1 with a 20-nm feature height and a 3-μm period was used as an imaging 

sample in contact mode AFM and the sample was scanned using the constant-force as the feedback 

Diode Laser
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Cantilever

AFM tip
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control. A regular contact mode AFM probe with a nominal spring constant of 0.2 N/m and 

resonance frequency of 13 kHz was used for raster scanning. A raster scan was attained by 

applying a triangular waveform to the x-axis (fast axis) and a very slow ramp signal to the y-axis 

(slow axis) of the scanner. In the z direction, a feedback loop is used to control the voltage applied 

to the z electrode. As the tip is scanned across the surface, feedback system feeds a voltage to the 

z electrode to maintain constant force between the tip and sample. The use of feedback controllers 

in damping and linearizing the piezoelectric tube scanner has been shown to be successful in 

attaining fairly faithful AFM images.  

  For imaging with AFM, a red diode laser (670 nm) beam focused on the back of the 

cantilever is reflected to the four quadrant position sensitive photodiode detector. As the tip is 

scanned in a raster pattern across the sample in a line-by-line fashion, changes in deflection or 

oscillation amplitude of the tip are monitored and detected in the position sensitive photodetector. 

Digital AFM images are a convolution of the geometry of the sample and tip. Lateral resolution of 

the AFM image depends on the dimensions of the tip, wider probes produce broader features.53, 54 

The effects of tip-sample convolution can be minimized by using a sharp AFM probe or by using 

deconvolution algorithms.55, 54  

Depending on the instrument configuration and AFM imaging mode, surface properties 

that can be measured include magnetism,56 friction,57 elastic compliance,58 conductance,59 

morphology,60 piezoresponsive properties,61 electrostatics,62 and spectroscopic properties.63, 23, 64, 

65  There are three most general imaging modes of AFM based on the position of AFM tip with 

respect to the sample surface: contact, non-contact and intermittent-contact. In contact mode AFM, 

the AFM tip remains in constant contact with the sample surface during imaging, whereas in non-

contact mode, the tip is maintained at a certain distance from the sample. For intermittent-contact 
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modes, the tip is driven to oscillate at or near its resonance frequency and gently “taps” the sample 

during scanning; intermittent-contact mode is frequently referred to as tapping-mode AFM.  

2.3 Contact Mode and Lateral Force Imaging in Air 

Contact mode is routinely used to image hard and stable samples which are unaffected by 

the tip-sample frictional force interactions. Typical forces applied in constant force mode are in 

the order of nN depending on the type of the tips chosen with different spring constants. As the 

name suggest, in contact mode, the AFM tip is in constant contact with the surface during the raster 

scanning motion. As the tip is scanned in contact with the sample, the bending of the cantilever 

will produce a change in the deflection of the laser spot focused on the photodetector. Due to 

surface features, small changes in cantilever deflection lead to vertical displacements of the laser 

spot on the position sensitive photodiode. Also, torsional twisting of the AFM tip due to frictional 

forces influences the lateral motion of the laser spot on the detector. The lateral force mode of 

imaging is sensitive to differences in chemical composition and mechanical (friction) properties 

of the sample.66 Lateral force images map the changes in frictional force between the tip and the 

sample as it is scanned in contact with the surface.57  The piezoelement move in z-direction to 

maintain a constant force between the tip and sample via an electronic feedback loop. As the tip is 

scanned across the surface, a voltage is applied to the z-electrode to maintain constant force 

between the tip and sample. Thus topography images are generated by using a calibrated sensitivity 

value to convert piezo voltage to real height data, while lateral force images are formed due to 

torsional twisting of the cantilever caused by the frictional force between the tip and sample. For 

contact mode AFM, topography, deflection and lateral force images are acquired simultaneously. 

Deflection image shows the error signal associated with the feedback loop. The deflection signal 

(error signal) is small when the parameters during imaging are optimized. 
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Figure 2.2 Ring nanostructures of OTS on Si(111) acquired using contact mode AFM (A) 

zoom in topography, (B) deflection or error signal, and (C) lateral force images 

 Figure 2.2 represent ring shaped OTS nanostructures on Si(111) acquired using contact mode in 

air. Three types of images can be acquired simultaneously with contact mode AFM: topography, 

deflection, and lateral force as shown in Figure 2.2. The topography image in Figure 2.2 (A) reveal 

brighter and taller ring shaped multilayers of OTS nanostructures while the dark area around each 

ring is a monolayer of OTS. The AFM deflection image in Figure 2.2 (B) represents the error 

signal associated with the AFM feedback loop. The deflection signal (error signal) is small when 

the parameters during imaging are optimized. Therefore, the deflection images are usually not 

reported in the literature. Lateral force images in Figure 2.2 (C) are used to distinguish differences 

of chemical functionalities at the interface. Quantitative nanoscale measurements of friction can 

be derived from lateral force images.57, 67 Contact mode can achieve true atomic resolution at 0.01 

nm vertically and 0.1 nm laterally.68, 69, 70   

2.4 Contact Mode Imaging in Liquid  

The high shear forces acting on the scanning tip in contact mode can damage delicate and 

soft samples. To overcome this problem, either soft cantilevers with small spring constants can be 

used to reduce the amount of force exerted on the sample or alternatively, one can perform contact 

mode in liquid media. Liquid media enables the use of smaller forces as well as reducing the stick-
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slip adhesion forces, to provide higher resolution images.70 Liquid imaging in contact mode is 

accomplished using a liquid cell as shown in Figure 2.3. Experiments in the liquid media are 

usually carried out with solvents that are optically transparent, and have a relatively slow rate of 

evaporation, e.g. water, ethanol, butanol or buffer solutions. The chosen solvents must be 

compatible and nondestructive for the sample material. Imaging in liquid media can be less 

destructive for soft and sticky biological samples, and provides a means to study in-situ, the 

dynamic changes at the molecular-level dimensions. Samples can be imaged using pH buffered 

conditions at ambient temperatures. The highest resolution reported for biological imaging with 

liquid AFM is on the order of 7 Å laterally, and ~1 Å for vertical resolution.71, 72 

 

Figure 2.3 Photograph of AFM liquid cell sample plate 
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The pH and ionic strength of the liquid media influences adhesive interactions between the tip and 

sample which affects the resolution. To balance the van der Waals and electrostatic interactions 

between the tip and the sample, the pH and ionic strength of the imaging media can be adjusted in 

the buffered solutions.71  

2.5 Force Spectroscopy Measurements with AFM in Air and in Liquid 

The differences between contact mode imaging in air and liquid are apparent from force curves 

in respective media. Figure 2.4 represents the force distance curves obtained in air and liquid media 

in contact mode. For contact mode in air, as the tip approaches the sample it experiences attractive 

forces near the surface due to an adsorbed water layer present on all surfaces in ambient air. The 

water film produces stick-slip adhesion due to capillary and frictional forces in the range of 100 

nN.73 Surface attraction and capillary forces operating between the tip and sample leads to overall 

higher forces while imaging in air. High shear force can damage delicate samples. Force curves 

are a plot of cantilever deflection as a function of tip position along the z-axis.  

Figure 2.4 Force versus distance curves for contact mode AFM acquired in air and liquid 

Capillary forces are greatly reduced by immersing both the tip and sample in liquid.74 The 

capillary forces of attraction are substantially decreased when the tip is operated in liquid media 

as evident from Figure 2.4. In liquid media, the force between the tip and sample are greatly 

reduced to minimize sample perturbation, dampen vibrations, leading to reduced acoustic noise, 

and also to prevent damage to the sample.75 Typical force settings used for operating in air can 
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range from 1 to 10 nN, whereas force settings less than 1 nN can be applied for imaging in liquid 

environments. Forces are measured using the stiffness of the cantilever according to the Hooke’s 

law relationship to derive values from the measured deflection of the lever. The force exerted by 

the tip is calculated from Hooke’s law as  

F = - kz 

where F is equal to the force applied to the tip from the sample, k is the spring constant of the 

probe’s cantilever and z is the cantilever deflection in the z-direction perpendicular to the surface. 

According to the Hooke’s law, the force of the AFM tip will change proportionally with tip 

displacement. 

2.6 Tapping-Mode and Phase Imaging 

Tapping mode (TM-AFM) is useful for gentle and nondestructive imaging of soft and easily 

deformable samples such as biologically relevant surfaces76, 33, 77 and soft polymer interfaces.78 In 

tapping mode, the tip intermittently taps the sample as it is scanned across the surface. The tip is 

driven to oscillate near its resonance frequency to achieve this tapping motion. The tip is driven to 

oscillate by a piezoceramic actuator 79 or by an external AC electromagnetic field, as with magnetic 

acoustic AFM or MAC-mode.80 A stiff cantilever (higher force constant) is most commonly used 

for tapping-mode with the typical resonant frequency range from 160 to 300 kHz. Frictional and 

shearing forces which are acting on the tip in contact mode are eliminated in tapping mode, due to 

the oscillation of the AFM tip, thus preventing the damage of the delicate sample features on the 

surface.81  

Two distinct mechanisms have been developed to drive the actuation of the AFM tip for 

tapping-mode. For acoustically driven vibration (AAC AFM) the tip is attached to a small 

piezoceramic actuator to cause mechanical vibration of the AFM tip. This setup can be problematic 
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when imaging in liquids. Vibration of both the liquid and the liquid cell assembly make it difficult 

to locate and select a resonance frequency for imaging. Selective vibration of the tip can be 

achieved by applying an AC magnetic field to a magnetic lever (MAC AFM). If the cantilever is 

coated with a magnetic material, the tip will be driven to vibrate to minimize problems for imaging 

in liquids. 

The feedback signal for controlling the probe position with TM-AFM is obtained by 

maintaining a constant amplitude setting for tip deflection, rather than using a force setpoint.82, 83, 

84 The measured amplitude (output signal) is compared to the amplitude setpoint value, which is 

the driving AC input signal. Simultaneously acquired information with tapping-mode include 

topography and phase images.85, 86 Digital images of the sample topography are obtained by 

recording the changes in the voltages applied by the feedback loop to maintain a constant 

amplitude signal at the photodiode detector. Amplitude images in tapping-mode are not recorded, 

because amplitude is used for positional feedback. Phase images are obtained from mapping the 

phase lag between the AC input signal which drives the oscillation with reference to the output 

signal detected due to cantilever oscillation. The phase lag of the oscillation relative to the driving 

AC input signal is used to generate phase images that are measured sensitively with a lock-in 

amplifier within the AFM controller. Material properties such as viscoelasticity, adhesion and 

softness are mapped by recording the difference between the phase angle of the signal that drives 

the tip oscillation relative to changes resulting from tip interactions with the sample.87, 88 Thus 

AFM phase imaging is a useful tool for nanoscale  chemistry  studies  for  mapping  compositional  

differences  of  polymer  blends,89  and organic thin films.90, 91 
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Figure 2.5 Nanopores within OTS filled with UTS on Si(111) imaged with tapping mode 

AFM. (A) UTS filled OTS nanopores are not clearly resolved in the topography image; (B) phase 

images distinctly reveal the hexagonal arrangement of seven nanopores filled with UTS 

Simultaneously acquired tapping mode images of topography and phase for UTS filled 

OTS nanopores are shown in Figure 2.5. Using immersion particle lithography, OTS nanopores 

were backfilled with UTS. The differences in height between UTS and OTS areas are not clearly 

resolved in the topography frame of Figure 2.5 (A), due to the similarity in the molecular lengths. 

The hexagonal arrangement of seven nanopores were clearly resolved in the phase images of 

Figure 2.5 (B). The tip interacts differently with the OTS matrix and UTS nanopores, which present 

different terminal functional group chemistries. Changes in the phase of tip oscillation between 

the methyl terminated OTS and vinyl terminated UTS, with respect to the driving signal are plotted 

as a phase image. This change in the phase of oscillation arises from changes in the energy 

dissipation between the sample and the probe. 
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2.7 Magnetic Sample Modulation AFM (MSM-AFM) 

            Magnetic sample modulation, MSM-AFM is a hybrid of contact mode AFM combined 

with selective actuation of magnetic samples.92 For MSM-AFM, the instrument is operated in 

contact mode and a nonmagnetic tip is used to map the locations and motion of magnetic 

nanomaterials that are driven to vibrate on surfaces. A special sample plate is used for MSM called 

the MAC-mode sample plate. A photograph of the underside of the sample plate is shown in Figure 

2.6.  

 

Figure 2.6 Photograph of MAC-mode sample plate 

For operating the MAC-mode sample stage an AC current is applied to a wire coil solenoid to 

generate an oscillating magnetic field. The parameters of the AC current generates a magnetic field 

which alternates in polarity and strength. The strength of the magnetic field increases 

proportionately as the current is increased. This increase or decrease in field strength can be 

adjusted according to the frequency and amplitude parameters of the driving current.  
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Figure 2.7 Instrument set-up for magnetic sample modulation (MSM-AFM). A non-

magnetic AFM tip, scanned across the sample surface, tracks the physical vibration of the 

nanoparticles as they are induced to vibrate due to the flux of the magnetic field 

Samples are placed on the upper side of the MAC-mode stage close to one end of the 

solenoid to experience the strongest flux of the AC electromagnetic field as illustrated in Figure 

2.7. The oscillating electromagnetic field causes magnetic nanomaterials to vibrate. With MSM-

AFM the size and location of magnetic domains can be detected, as well as information of the 

magnetic response and mechanical resonances of sample vibration. The image channels obtained 

are topography, MSM amplitude and MSM phase. When an AC current is applied to the solenoid, 

the frequency of the AC field causes a switching of the north and south poles of the magnetic field 

produced by the solenoid to create a flux. Magnetic nanomaterials on the surface are driven to 
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align with the flux of the switching magnetic field to induce vibration. Thus, the periodic motion 

of the sample vibration can be tracked by changes in the deflection of the tip. The changes in phase 

angle and amplitude as the tip interacts with the vibrating sample are plotted as a function of tip 

position to generate MSM-phase and MSM-amplitude images. The amplitude and phase 

components of the tip motion are tracked during the scan by a lock-in amplifier to generate spatial 

maps of the magnetic domains. As an AC current is applied to the solenoid, magnetic 

nanomaterials are driven to vibrate in response to the magnetic flux and are detected using a soft 

non-magnetic probe.  

For an MSM-AFM experiment, typically, the surface is first scanned in conventional 

contact mode to acquire topography and lateral force images. The same area of the surface is then 

scanned again while applying an oscillating electromagnetic field. The change in polarity drives 

magnetic nanoparticles to selectively vibrate in response to the flux of the oscillating magnetic 

field. When an electromagnetic field is applied to samples, only the magnetic domains vibrate, 

providing selective contrast for areas that are in motion. The differences for images with and 

without an applied magnetic field are used to map the response of magnetic samples. Changes in 

the phase and amplitude of vibrating nanomaterials are mapped relative to the driving AC signal. 

Since a lock-in amplifier is used to acquire the amplitude and phase components of the deflection 

signals, slight changes in tip movement are sensitively detected. Dynamic studies of single 

nanoparticles can be accomplished by parking the probe on nanostructures and sweeping the field 

strength and frequency parameters. In comparison to conventional macroscopic magnetic 

measurement approaches, the field strength for MSM-AFM is on the order of 0.05 to 0.6 Tesla. 

Nanomaterials that have been investigated using MSM-AFM include iron oxide and intermetallic 

nanoparticles,93 magnetic nanostructures patterned on surfaces,92 and ferroproteins.94  
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Table 2.1 AFM imaging modes used for dissertation research 

 Imaging mode Feedback Information obtained Probe type 

Chapter 3 contact mode 

and 

liquid imaging 

cantilever 

deflection 

 

 

topography 

and 

lateral force 

Si or Si3N4 

Chapter 4 contact mode 

and 

magnetic sample 

modulation 

(MSM-AFM) 

cantilever 

deflection 

 

 

topography and 

MSM amplitude and  

MSM phase  

(of magnetic nanoparticles) 

non-magnetic 

soft 

commercial 

tip 

 

2.8 Self-Assembled Monolayers of Organothiols and Organosilanes 

Complex living organisms found in nature are produced by self-organization and self-

construction for billions of years. Inspired by nature, scientists started developing ways to design 

complex structures using molecular building blocks through self-assemblies. To date, to produce 

nanostructures approaches such as photolithography and electron-beam lithography have been 

used. However, the complexity of the process combined with high equipment costs makes the 

conventional lithographic techniques unfavorable for many researchers. Nanofabrication using 

molecular self-assembly on surfaces typically occurs with a liquid phase on a smooth surface to 

produce nanostructures with long-range order. Molecular level self-assembly involves 

noncovalent or weak covalent interaction, typically van der Waals, electrostatic, and hydrophobic 

interactions or interfacial hydrogen bonding.95, 96 Self-assembly is a versatile nanofabrication 

technique and may become the future technology for generating nanostructures such as nano-

wires, nanotubes, gels, meshes, spheres, and nanoporous materials on a large scale through cost-

competitive and relatively fast processes.97 Examples of self-assembled nanostructures are 

monolayers of liposomes and micelles,98 crystallized proteins,99 colloidal particles,100 and block 

copolymers.101, 102 Thiols and silanes are the most commonly used molecules in self-assembly,103 
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although other molecules such as proteins,99 collagen peptides,104 and block copolymers105 have 

also been widely used. This phenomenon of self-organization has developed into a subject of 

interdisciplinary research with overlapping areas as observed in physical, chemical and biological 

systems. 

 

Figure 2.8 General structure of self-assembled monolayer 

Self-assembled monolayers (SAMs) of thiols and silanes are used as model systems for 

fundamental surface studies and has led to numerous practical applications.106, 107 Surface films of 

SAMs are made up of molecules that spontaneously form ordered molecular assemblies at a 

surface.103 Monolayers that are single molecule thick are formed by spontaneous adsorption of 

long-chain amphiphilic molecules that have both hydrophilic and hydrophobic functionalities at 

surfaces.108 Figure 2.8 represents the general structure of SAMs. Common to all SAM systems is 

a surface-active head group (green dots) that attaches to its corresponding substrate through 

specific chemical interactions, the second molecular part is the alkyl chain with its inter-chain van 

der Waals interactions which are the main forces in the simple alkyl chains, third is the tunable 
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terminal functional group (purple dots). The spontaneous assembly is driven by the affinity of a 

reactive headgroup for the surface while interactions between neighboring molecules drives the 

organization of the assembly in the lateral directions. The tunable terminal functional moieties 

such as methyl, amine, glycol, vinyl, mercapto, etc., provide numerous possibilities for generating 

SAM nanostructures with designed selectivity and reactivity. The result of the adsorption process 

is an ultrathin monolayer with a thickness that is dictated by the length of the alkyl chain. Many 

self-assembled monolayer (SAM) systems have been studied over the years.103, 109, 110  

Organothiol SAMs adsorbed on gold surfaces are made up of long-chain alkanethiolates 

with SH headgroup at the end of an alkane chain.111 The formation of SAMs on gold is a relatively 

simple, self-assembly process which is primarily driven by the attachment of the sulfur atom to 

the gold surface. Once the thiol molecules are chemisorbed on the gold surface, the alkyl chains 

of the molecules organize themselves laterally through van der Waals interactions to form a stable, 

densely packed monolayer. Organothiol SAMs form a commensurate (√3×√3)R30° lattice on 

Au(111) with backbones tilted approximately 30° from surface normal.112 Thiol SAMs on gold 

have been used to selectively attach proteins,113 metals,114 and cells.115 The advantages that the 

thiol-gold combination offers, has led to the incorporation of molecules as electronic components 

for molecular electronics.116, 117, 118 

Organosilane SAMs are generated by covalent bonding of alkyltrichlorosilanes RSiX3 

(where R is an alkyl chain and X is chloride) to hydroxylated silica surfaces. Films of OTS are 

chemically robust, resist oxidation, and thermal degradation due to the covalent  nature  of  the  

siloxane  network  which  links  the  molecules  to  the  substrate  and  to neighboring molecules.119 

Organosilane SAMs can be prepared from solution120, 121 or vapor phase122, 123 to form densely 

packed monolayers. The experimental parameters such as the amount of water,119, 121, 124  
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temperature,125, 126, 127 the choice of solvent,125, 128 adsorption time, the type of organosilane 

molecule chosen,129, 130 and the chemical nature of the surface,120, 129 greatly affect the molecular 

density and the quality of silane monolayer. Organosilane SAMs were formed on flat substrates 

such as silicon oxide, metal oxides, quartz, glass, gold and mica.103 Organosilane SAMs are used 

for sensors,131, 108 molecular electronic devices,132 lubricants,133 and semiconductor coatings.134  

 

Figure 2.9 Mechanism of surface self-assembly of trichlorosilanes 

The general steps of the hydrolysis of trichlorosilanes to form SAMs on surfaces is depicted 

in Figure 2.9.119, 135 The role of trace amounts of water during surface self-assembly of 

trichlorosilanes to form a uniform monolayer was first studied by Jacob Sagiv in 1980. First, 

trichlorosilane molecules react with a trace amount of water on the surface to form silanol 

molecules. Subsequently, silanol molecules adsorb to surface reactive sites and then undergo a 

condensation reaction with free hydroxyl groups on the surface. Next, each hydrolyzed silane 

molecule forms siloxane bonds to anchor to the surface and also connect to neighboring molecules 

to form a network of Si - O - Si bridges. The alkyl chains adopt an all-trans configuration with tilt 

angle values reported that range from 0 to 15°.103 The thickness of the OTS monolayer ranged 

from to 2.25 to 2.81 nm.136 Trichlorosilanes are highly reactive in the presence of water and can 

form multilayers through self-polymerization either on the surface or in solution, depending on 

experimental conditions.137, 138 In this dissertation, patterned OTS monolayer and multilayer 

assemblies were prepared using particle lithography. The next section gives an overview of 

colloidal self-assembly for nanofabrication of patterned surfaces. 
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2.9 Nanofabrication of Patterned Surfaces Using Particle Lithography 

Nanofabrication technology employs techniques like photolithography,139 interference 

lithography,140 (IL) electron beam lithography,141 (EBL) focused ion beam lithography,142, 143 

(FIB) where the tools are used to mould, pattern, erode or etch base materials to produce 

nanostructures with the desired geometry. Considerable research efforts have also been invested 

over the years to develop new techniques like self-assembly, nanosphere lithography,144 (NSL) 

soft lithography,145 to build organized arrays of nanostructures from smaller elements and base 

materials. Since 1995, nanosphere lithography has been applied to manufacture one-, two-, or 

three-dimensional nanostructures as shown by literature reports in Figure 2.10.  

 

Figure 2.10 Number of papers/year related to NSL, as retrieved by Scifinder Scholar (July 2013) 

Nanolithography based on colloidal particles is inexpensive, easy to implement, has high 

throughput involving simple bench top chemistry protocols.146 Particle lithography also known as 
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colloidal lithography,147 nanosphere lithography,148 or natural lithography149 is an inexpensive 

fabrication method for producing regular and well-ordered surface patterns. Particle lithography 

provides a number of advantages such as uniform geometry, high throughput, and reproducibility. 

The process of particle lithography is divided into two steps, the first of which is the preparation 

of surface mask. A suspension of monodisperse mesospheres made up of either polystyrene latex 

or silica is deposited on a flat surface. Upon drying, the mesospheres naturally self-assemble into 

a close-packed arrangement on flat surfaces. In the second step, desired materials are deposited 

thorough the interstices of the mesosphere surface masks to produce nanostructures with precise 

spatial positioning. The surface mask is subsequently removed by steps of rinsing and sonication 

in a suitable solvent to generate an array of nanostructures on the substrate. The surface 

nanopatterns generated with particle lithography correspond to the diameter and periodicity of the 

mesospheres used for the mask. Therefore, the spacing and size between the nanopatterns can be 

selected by choosing the diameters of mesospheres. The tunable terminal functional moieties 

provide possibilities for generating SAM nanostructures with designed selectivity and reactivity. 

Particle  lithography has been used to pattern nanomaterials such as nanoparticles,150 proteins,151 

organosilanes,152, 153 and metals.154, 155 

In this dissertation, organosilane SAMs composed of octadecyltrichlorosilane (OTS) were 

prepared by a combination of particle lithography along with self-assembly. Particle lithography 

approaches were used to prepare organosilane nanoring and nanopore geometries using procedures 

with vapor deposition or immersion steps. Examples of the two types of nanostructures generated 

after each process are shown in Figure 2.11. An AFM image of a surface mask of latex 

mesospheres is shown in Figure 2.11a. After the removal of latex mask, OTS nanorings were 

formed with vapor deposition (Figure 2.11b) and OTS nanopores were formed with immersion 
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particle lithography (Figure 2.11c). The ring nanostructures were used as 3D test platforms to study 

the solvent responsive properties of OTS multilayers. The OTS nanopores were functionalized 

further with specific chemical groups to attach nanoparticles. The properties of surfaces coated 

with SAMs can be tailored by the selection of molecular endgroups to provide spatially selective 

sites for further adsorption of nanomaterials. 

 

Figure 2.11 Nanostructure geometries formed using particle lithography with OTS. (a) 

Surface mask of 200 nm mesospheres; (b) OTS ring nanostructures formed after vapor deposition; 

(c) OTS nanopore structures formed with steps of immersion particle lithography 
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CHAPTER 3: SOLVENT-RESPONSIVE PROPERTIES OF 

OCTADECYLTRICHLOROSILOXANE NANOSTRUCTURES INVESTIGATED 

USING ATOMIC FORCE MICROSCOPY IN LIQUID* 

3.1 Introduction 

An important direction for nanoscale studies is to investigate structural changes for 

materials in response to environmental parameters, such as with effects of light, heat, pH changes, 

or in different solvents. Liquid atomic force microscopy (AFM) has been applied for nanoscale 

studies of biological samples in their native environment,15,156,157 in situ studies of the effects of 

different liquid media such as with changes in pH or ion concentration,158,159,160 for in situ studies 

of electrochemical reactions,161,162,163 and for observing time-lapse images of progressive surface 

changes caused by chemical reactions.164,165,166 Wettability studies of the interaction of liquids with 

self-assembled monolayers have been fundamental for understanding the properties of organic thin 

films.167,168,169,170,171 However, the actual physical changes of surfaces coated with organic films 

and nanostructures have not been well documented regarding solvent-responsive properties. 

Applications are being developed for stimuli-responsive materials which respond to 

changes in environment, particularly for polymer samples.172,173,174,175 As an example application, 

encapsulation and release of a fluorescent dye was accomplished by changes in swelling of 

polymer nanocapsules induced by altering the solvent.176 A surface sensing platform was 

developed based on actuation of nanoparticles coupled to polymer brushes which respond to 

changes in the solution pH or solvent.177,178 Solvent-responsive changes in friction coefficients 

were reported for patterned polymer brushes comprised of polystyrene.179  

* Chapter 3 previously appeared as Kulkarni, S. A.; Lyles, V. D.; Serem, W. K.; Lu, Lu.; Kumar, 

R.; Garno, J. C. Solvent-responsive properties of octadecyltrichlorosiloxane nanostructures 

investigated using atomic force microscopy in liquid, 2014. It is reprinted by permission of 

American Chemical Society Publications (see page 81). 
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The swelling and collapse of poly(methyacrylic acid) polymer brushes was detected with AFM in 

response to changes in solution pH.180 Samples that respond to changes in pH include poly(2(tert-

butylamino)ethyl methacrylate polymer brushes,181 polyampholyte polymer brushes of diblock 

copolymers,182 poly(N,N-dimethylaminoethyl methacrylate) grafted polythiophene,183 

amphiphilic block copolymers of poly(styrene-b-acrylic acid),184 poly(allylamine hydrochloride)-

containing polyelectrolyte multilayer films,185 polystyrene-b-poly(4-vinylpyridine) block 

copolymers,186 and poly(methacrylic acid) brushes.187 The swelling of polymer brushes consisting 

of poly(N-isopropyl acrylamide) and poly(acrylic acid) was evaluated in response to changes in 

pH and temperature.188 Photografted films of poly(acrylic acid) were reported to swell in response 

to changes in pH when characterized with Fourier transform infrared spectroscopy.189 

Hydrophobic and electrostatic interaction forces were mapped using chemical force microscopy 

for a film of stimuli-responsive copolymers in response to changes in salt concentration.190  

Solvent-induced swelling of alkoxysilane thin films on silicon has been detected using 

techniques such as neutron and X-ray reflectivity.191 For organosilane films or polymers, the 

reactivity of side groups for further reaction steps is greatly influenced by the choice of solvents. 

The solvent responsiveness of structures assembled with Au nanoparticles and CdTe nanowires 

with a poly(ethylene glycol) bridge were reported to change conformation in different solvents, 

which altered the distance between the nanoparticles and nanowires.192 The swelling of PEG 

linkers caused by interactions with solvents were shown to affect the distance of the gap between 

the nanoparticles and nanowires to influence measurements of the plasmon-exciton interactions. 

It has been difficult to directly visualize subsurface changes for organic films using AFM 

studies, because only the upper surface can be examined locally with probe-based techniques. 

Changes below the surface of a film that are caused by solvent penetration typically cannot be 
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detected with AFM. In this report, we have designed a 3D interface to study the effects of solvent 

penetration within multilayer nanostructures of octadecyltrichlorosiloxane (OTS). Samples were 

compared in air and liquid media using AFM studies with the same probe and sample. At the 

nanoscale, substantial changes were observed for the physical shapes and heights of OTS 

nanostructures that depend on the solvent and intervals of immersion.    

3.2 Materials and methods 

3.2.1 Materials and reagents  

             Particle lithography with vapor deposition was used to generate organosilane nanopatterns 

on surfaces, as previously reported.193,153 Pre-cut single sided, boron-doped polished Si(111) 

wafers (Ted Pella, Redding, CA) were used as substrates. Pieces of Si(111) were cleaned by 

immersion in a 3:1 (v/v) piranha solution for 2 h. Piranha solution consists of sulfuric acid and 

hydrogen peroxide (Sigma-Aldrich, St. Louis, PA) which is highly corrosive, and should be 

handled carefully. After acid cleaning, the substrates were rinsed with deionized water and dried 

in air. Monodisperse latex mesospheres, 200 nm diameter (Thermo Scientific, Waltham, MA) were 

used as surface masks for patterning. Octadecyltrichlorosilane (OTS) was purchased from Gelest 

(Morrisville, PA) and used without further purification.  

3.2.2 Atomic Force Microscopy 

            Samples were characterized using a model 5500 scanning probe microscope (Agilent 

Technologies, Chandler, AZ). Images were acquired by contact mode AFM using V-shaped 

cantilevers with oxide-sharpened silicon nitride probes which had an average force constant of 0.5 

N/m (Model MSCT, Veeco Probes, Santa Barbara, CA). Images were processed using Gwyddion 

open source software, which is freely available on the Internet and supported by the Czech 

Metrology Institute.194 Analysis of surface coverage was accomplished with multiple images by 

manually selecting a threshold value to convert images to black and white frames, and counting 
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pixels using the UTHSCSA ImageTool program, developed at the University of Texas Health 

Science Center, San Antonio, Texas and available from the Internet 

(http://compdent.uthscsa.edu/dig/itdesc.html). 

3.3 Results and Discussion 

Nanopatterns of OTS were prepared to furnish reproducible 3D surface geometries as a 

reference shape for quantitatively evaluating molecular-level changes in selected liquid 

environments. To prepare the nanorings, monodisperse latex spheres were used as a surface mask 

(Figure 3.1A) for subsequent deposition of OTS from the vapor phase. After removal of the mask 

of latex particles, organosilanes persist on the surface to form a periodic array of ring-shaped 

nanostructures with periodicity corresponding to the initial diameter of the latex spheres (Figure 

3.1B). Circular sites of a liquid meniscus surround the base of each bead, which provides sites for 

growth of OTS.153  

 

Figure 3.1 Basic steps for preparing OTS ring nanostructures using particle lithography. 

(A) A surface mask of latex particles was prepared. (B) After vapor deposition of OTS, the mask 

was removed by solvent rinses to reveal a periodic arrangement of ring-shaped nanostructures. 
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Views of as-prepared nanostructures of OTS are shown in Figure 3.2, comparing images 

side-by-side that were acquired in air and ethanolic media. The same sample and AFM probe were 

used for the data panels of Figure 3.2, before and after the sample was immersed in ethanol. 

Although the images were collected sequentially, there were no prominent defects evident to use 

as landmarks for in situ imaging. The top row shows representative images acquired in ambient 

air. There are 278 nanorings packed closely within the 4×4 um2 topography frame in Figure 3.2A, 

which would scale to an approximate surface density of 109 nanostructures/cm2.  

 

Figure 3.2 . Side-by-side comparison of OTS nanostructures prepared with 200 nm latex 

spheres imaged in air (top row) and with immersion in liquid media (bottom row). (A) Topograph 

in air; (B) Zoom-in topography frame; (C) simultaneously-acquired lateral force image; (D) Height 

profile for the white line shown in B. (E) Topography frame of the same sample subsequently 

acquired  in ethanol using the same AFM probe; (F) Zoom in topograph; (G) corresponding lateral 

force image; (H) Line profile for F. 

There are a few areas that are missing nanostructures where the close-packed spheres of 

the latex mask were not perfectly pressed against the surface; approximately 9% of the surface has 

missing nanostructures. Zooming in for a closer view of the shapes of the nanostructures (Figures 

3.2B - 3.2C) the edges of the ring nanostructures are quite distinct for both the topography and 
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corresponding lateral force frames acquired in air. The shapes of the rings conform to the sites of 

the water meniscus formed between the latex beads and the substrate where multiple layers of OTS 

were produced by self-polymerization. The areas in the center of the rings pinpoint the locations 

where the latex beads made direct contact with the surface, whereas the areas between the rings 

have a vapor deposited monolayer of OTS. Multilayers formed only in the circular areas of the 

meniscus between the latex spheres and the surface. The differences in height for the center of the 

rings compared to the areas between the rings are apparent in the representative line profile of 

Figure 3.2D. The spacing between the nanorings (center-to-center) measures 202 ± 4 nm, closely 

matching the diameter of the latex spheres used as a surface mask. The areas in the center of the 

rings reach the baseline of the substrate, whereas between the rings the film thickness measures 

about 3 ± 1 nm, which is in general agreement with the expected value of 2.26-2.76 nm reported 

previously for a densely-packed monolayer of OTS which depend on conditions of sample 

preparation.195,196,197,136 The average height of the nanorings when imaged in air measured 10 ± 2 

nm, which corresponds to at least 4-5 molecular layers of OTS. However, depending on the amount 

of crosslinking there may be as many as 20 layers if the molecules are arranged in a compressed, 

side-on packing arrangement.  

When the same sample was immersed in ethanol the dimensions of the OTS nanorings 

were observed to change considerably in height, width and surface coverage, as shown in Figures 

3.2E - 3.2G. The swelling of the OTS nanorings is readily apparent, particularly when comparing 

images in Figure 3.2B (air) versus 3.2F (ethanol). The gaps between the rings have become 

narrower in Figure 3.2F, such that some of the rings are touching. The same effect was observed 

for experiments with multiple samples and probes, and therefore the changes cannot be simply 

ascribed to imaging artifacts; particularly since the same AFM tip was used for all of the frames 
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shown in Figure 3.2. To evaluate the surface changes quantitatively, the surface coverage of the 

brighter areas was estimated using pixel counting. For the sample imaged in air ~53% of the 

sample was covered with the taller regions of OTS nanorings. When the sample was immersed in 

ethanol the surface coverage increased to 77% for the thicker regions. The swelling of the rings is 

also evident in the lateral force images comparing Figures 3.2C (air) with 3.2G (ethanol). Although 

the changes may not be discernible at the macroscopic level with more commonly used approaches 

for characterizations of thin film materials, changes of a few nanometers are quite prominent when 

investigated with AFM. The height of the areas of the nanorings has doubled, to measure 20 ± 2 

nm as shown with a representative line profile in Figure 3.2H. Thus, the interaction of the solvent 

with the 3D surface of the OTS nanorings produced significant changes in the molecular 

conformation which expanded the overall height and lateral dimensions of the ring nanostructures. 

Although the sample was prepared using only OTS, there are three distinct domains revealed 

in the lateral force images and cursor profiles of Figure 3.2: the uncovered Si(111) areas at the 

center of the nanorings which were protected by the latex masks, the OTS multilayers which form 

the nanorings, and the interstitial regions between the rings. The thickness of the interstitial areas 

between the nanorings corresponds to a monolayer. Within these areas, the molecules are densely 

arranged in a nearly upright orientation, presenting methyl groups at the interface. One would 

expect that for a monolayer of OTS the effects of the solvent would be negligible and changes in 

thickness would not be detected. However, for the taller areas of the nanorings the measured 

thickness indicates that a multilayer structure was formed. A different surface chemistry is 

presented at the interface of the nanorings than for the methyl-terminated areas in between, 

evidenced by the differences in color contrast with the lateral force images, Figures 3.2C and 3.2G. 

The crosslinked arrangement of layered molecules with Si-O-Si bridges is not close-packed so that 
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solvent molecules can penetrate between the layers. When the samples were dried and solvent is 

not present, the packing between layers of the nanorings is condensed and the nanostructures 

compress into structures with shorter heights. Swelling of the nanorings was observed regardless 

of the size of the nanostructures. A further control experiment was done for a sample prepared 

using a larger diameter surface mask of 300 nm mesospheres, results are shown in Supporting 

Information, Figure A1.  

 

Figure 3.3 Comparison of annealed samples of OTS nanorings imaged in air (top row) and 

ethanol (bottom row). (A) OTS nanorings imaged in air after annealing; (B) zoom-in topography 

view; (C) corresponding lateral force image for B; (D) cursor profile for the line drawn in B. (E) 

Nanorings of OTS acquired in ethanol after an annealing step; (F) Zoom-in topography view in 

ethanol; (G) corresponding lateral force frame for F; (H) cursor profile for F. 

The effects of annealing the OTS nanostructures were evaluated with AFM experiments to 

determine whether crosslinking between strands would take place. In previous reports, an 

annealing step has been applied with organosilane films to remove ethanol molecules at the surface 

and interface and to promote dehydration of trapped water molecules in between 

multilayers.198,199,200 The nanostructures were annealed at 120 o C for 2 h, then imaged in air and 

ethanol (Figure 3.3). The results in the top row reveal the arrangement and shapes of the annealed 
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rings acquired in ambient conditions (Figures 3.3A - 3.3C). Within the close-up view (1×1 µm2), 

20 nanopatterns are aligned with well-defined periodicity (Figure 3.3B); and the corresponding 

lateral force image is shown in Figure 3.3C. A representative line profile (Figure 3D) reveals that 

the thickness of OTS in areas between the rings is taller than within the very center of the rings 

where the mesospheres made contact with the substrate. Thus, multilayers formed in the meniscus 

sites and the gaps between the rings appear to have a monolayer of OTS. The height of the rings 

in air measured 10 ± 1 nm, which is comparable to the measurements of the as-prepared sample. 

An annealing step thus did not produce a detectable change in the thickness of the nanostructures 

in air when evaluated with AFM studies. When the annealed sample was imaged in ethanol, 

(Figures 3.3E - 3.3G) swelling of the nanorings was still detected. For the wider view of Figure 

3.3E, differences in the size of the rings are not easily detectable compared to the same size view 

of Figure 3.3A acquired in air. However, the changes become visible with a zoom-in view (Figure 

3.3F). There are 20 nanopatterns shown within the 1×1 µm2 area (Figures 3.3F - 3.3G) which are 

taller and wider than the same size area viewed in ambient air (Figures 3.3B - 3.3C). The height 

of the rings when imaged in ethanol increased to 12 ± 2 nm (Figure 3.3H). 

Comparing the surface changes of nanostructures in ethanol for the annealed sample (Figure 

3.3F) versus the as-prepared sample of Figure 3.2F indicates that there is less swelling for the 

annealed nanostructures. The annealing step removed residual traces of water and solvents from 

the surface, and provided a way to fully dry the sample. In ethanol, somewhat less swelling was 

observed because permeation of ethanol into the multilayers decreased, this is most likely 

attributable to further cross-linking of the film. The images shown in Figures 3.3E - 3.3G were 

acquired within a few hours of ethanol immersion. A longer immersion step was tested to evaluate 

whether the swelling of the nanostructures would increase with more time.   
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The annealed OTS nanostructures were immersed in ethanol for 40 h (Figure 3.4). The 

annealed sample of OTS nanorings imaged in air are shown in the top row of Figure 3.4, and the 

bottom row has images of the same sample after prolonged 40 h immersion in ethanol. The wide 

area (4×4 µm2) frames (Figures 3.4A versus 3.4E) do not reveal detectable changes in the sizes 

and shapes of the OTS nanorings at this magnification. However, at higher magnification (1×1 

µm2) the zoom-in views disclose changes in the sizes of the rings caused by swelling (Figures 3.4B 

versus 3.4F).  

 

Figure 3.4 Changes of an annealed sample of OTS nanorings after prolonged soaking in 

ethanol for 40 h. (A) Nanorings of annealed OTS nanorings imaged in air; (B) zoom-in topography 

view; (C) lateral force image for B; (D) height profile for the line in B. (E) Nano structures of 

annealed OTS after 40 h immersion in ethanol; (F) zoom-in view; (G) lateral force image for F; 

(H) height profile for line in F. 

The lateral force frames (Figures 3.4C versus 3.4G) more clearly reveal the changes in the shapes 

of the rings caused by swelling; the rings become wider and have a round appearance after 

prolonged soaking in ethanol. The height of the rings in air measured 10 ± 1 nm (Figure 3.4D) 

compared to 15 ± 3 nm (Figure 3.4H) after soaking in ethanol. A slight distortion of the circular 

ring shapes is observed in Figures 3.4F and 3.4G, however the swelling of the rings is still clearly 
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detectable compared to the dried sample shown in Figure 3.4B.  The same tip and sample were 

used for the sequential experiments. The surface coverage of the annealed OTS nanorings after 40 

h immersion in ethanol measured 59 ± 1 %.  

              Structural changes of OTS nanostructures for studies in ethanol are presented side-by-

side in Figure 3.5. The swelling of OTS multilayers was found to be reversible; the same sample 

could be cycled by steps of drying and ethanol immersion to reveal compressed, compact 

nanostructures in air and swollen, enlarged rings in ethanolic media. The 3D representations 

provide a clear picture of the morphology changes in thickness and lateral dimensions.  

 

Figure 3.5 Structural changes of OTS nanorings imaged in air (left column) compared side-

by-side with views in ethanol (right column). The images are 600 x 600 nm2 in dimension.  (A) 

Freshly prepared sample in air; (B) same sample imaged in ethanol. (C) Annealed sample imaged 

in air; (D) annealed sample immersed briefly in ethanol. (E) Annealed sample before immersion; 

(F) Annealed sample after 40 h immersion in ethanol. 
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The topography views are shown in pairs, imaged using the same AFM probe to provide a 

systematic comparison. A freshly prepared sample imaged in air and ethanol is compared in 

Figures 3.5A and 3.5B. After annealing (120oC for 2 h), the views in air and ethanol are shown in 

Figures 3.5C and 3.5D, respectively. With longer soaking in ethanol, an annealed sample is 

compared in air versus ethanol in Figures 3.5E and 3.5F.  

              A summary of the dimensions measured for OTS nanorings is presented in Table 3.1 for 

the tested sample conditions. Significant swelling of both the vertical and lateral dimensions of 

OTS nanostructures was detected in ethanolic media for the freshly prepared and annealed 

nanostructures. The changes were reversible, when the sample was removed from ethanol and 

dried the nanorings returned to the compressed state. The annealed nanorings were observed to 

increase in dimension in ethanolic media; however, the annealed samples did not expand and grow 

to be as large as the freshly-prepared nanostructures. The surface coverage of freshly prepared 

nanorings increased from 53% (air) to 77% in ethanol, compared to 59% for the annealed sample. 

The freshly prepared sample doubled in thickness, growing from 10 nm to 20 nm in height, 

whereas the annealed sample after 40 h immersion in ethanol measured 15 nm in height. 

Table 3.1 Measurements of OTS nanorings imaged with AFM in air or ethanol 

Sample description Width of 

nanorings* (nm) 

Height* (nm) Surface coverage (%) 

Freshly prepared sample in air 26 ± 4.5 10 ± 2 53 ± 1.1 

Freshly prepared sample in ethanol 100 ± 9.3 20 ± 2 77 ± 0.3 

Annealed sample in air 26 ± 4.5 10 ± 1 53 ± 0.9 

Annealed sample in ethanol 85 ± 18 12 ± 2 64 ± 1.0 

Annealed sample in air 28 ± 12 10 ± 1 53 ± 2.2 

Annealed, soaked 40 h in ethanol 56 ± 16 15 ± 3 59 ± 1.0 

* Average of 100 measurements ± standard deviation. 
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The solvent responsive properties of OTS nanostructures were further evaluated in aqueous 

media (Figure 3.6) in a phosphate-buffered saline solution (PBS). Imaging with liquid AFM 

requires a solvent that does not evaporate quickly, so aqueous solutions were used for our studies.  

 

Figure 3.6 Nanorings of OTS imaged in PBS, pH 7. (A) Topography view, 4×4 µm2; (B) 

Zoom-in topograph, 2×2 µm2; (C) Close-up topography frame, 1×1 µm2; (D) Lateral force frame 

for C; (E) Cursor profile for the line in C. 
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    The nanorings swelled to completely fill the areas in between to form expanded surface 

structures. The successive zoom-in topographs of Figure 3.6 reveal nearly hexagonal shapes as the 

multilayers of OTS expand to fill the spaces between the nanopores. A cursor line across three 

nanorings (Figure 3.6E) profiles the approximate shapes of the surface features, however it is likely 

that the AFM probe does not touch the bottom of the substrate at the centers of the nanopores. The 

thickness of the nanorings is greater than 10 nm; however an average measurement was not 

obtained for this sample because of the significant swelling at the centers of the rings. 

For dried samples of OTS nanorings, the multilayer areas of the nanorings form 

compressed and compact structures. When the surfaces are wet, solvents intercalate between the 

polymer strands to generate larger structures, increasing as much as two-fold in overall 

dimensions. The expansion of the polymerized molecule into an extended upright configuration 

in 3D would fill a volume resembling a cone. A rough approximation of the structural changes in 

multilayer rings is represented in Figure 7. Calculations of changes in volume show an increase 

of greater than 700% comparing the dried sample in air versus ethanol (calculations are explained 

in Supporting Information, Figure A2). The samples which were annealed to induce cross-linking 

do not expand as much as the fresh sample, an increase in the volume of the nanorings measured 

240% for the annealed sample, even after longer immersion in ethanol. Greater swelling of OTS 

rings in lateral dimensions was observed in water compared to ethanolic media. The monolayer 

areas of OTS between rings most likely do not change height when immersed in liquids, because 

it is already in a close-packed arrangement. It has previously been reported for surfactant films 

that there is little or no solvent penetration into a surface monolayer, which maintains its thickness 

and other physical properties after wetting.201 Further directions for this research will be to 

evaluate the surface changes in solvents with different polarity, pH or ionic strength.  
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Figure 3.7 Approximate representation of molecular changes for solvent-responsive OTS 

nanostructures. In air, (top) the multilayers condensed into a compact structure. When immersed 

in ethanol (middle) the polymer strands stretched to form taller and wider structures. In aqueous 

media (bottom) the strands expand further in lateral directions. 

3.4 Conclusion 

Nanolithography enables molecular-level control of the spacing and composition of 

patterned elements for AFM studies in liquid media. Particle lithography combined with vapor 

deposition was used to fabricate ring-shaped nanopatterns of OTS with well-defined 3D 

geometries and periodicity. In liquid media, solvents or buffer penetrate between the polymer 

strands of OTS multilayers to change the physical sizes and shapes of nanostructures. The heights 

and widths of multilayer OTS nanostructures increased substantially when immersed in ethanol or 

buffer, compared to samples that were dried in air. Even after heating, swelling was evident for 

annealed OTS nanorings immersed in ethanolic media. Samples dried and imaged in air had 

relatively similar heights and sizes; whereas after immersion in ethanol the OTS nanostructures 
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swelled and increased in dimension. Future directions for this research will be to develop AFM-

based protocols to evaluate stimuli-responsiveness of nanostructures in response to pH, light and 

temperature. 
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CHAPTER 4: INVESTIGATION OF THE VIBRATIONAL RESPONSE OF 

PATTERNED ARRAYS OF Fe3O4 NANOPARTICLE CLUSTERS USING MAGNETIC 

SAMPLE MODULATION AFM (MSM-AFM) 

4.1 Introduction 

Magnetic nanoparticles have promising potential for applications such as high-density data 

storage,202,203 nanoscaled magnetic sensors,204 nanoelectronics,205 sensing,206 magnetic 

information storage,203 nonvolatile magnetic random access memory (MRAM) 207 and magnetic 

refrigeration systems.208 Magnetic nanoparticles have been applied in biological and biomedical 

assays and devices.209,210 Nanoparticles can be used as efficient diagnostic tools in magnetic 

resonance imaging, magnetic separation of biological targets,211 and as therapeutic agents for 

hyperthermic tumor treatments,212,213 drug, and gene delivery.214, 215 The size, shape and properties 

of magnetic nanoparticles are critical characteristics for designing applications. 

Several strategies have been used to prepare assemblies of magnetic nanoparticles onto 

planar substrates.207,216,217 Forces such as hydrogen-bonding,218 covalent bonding,219 as well as 

electrostatic and van der Waals interactions220 are used to direct the assembly of nanoparticles.221 

Chemical patterning or surface electrostatic interactions have been applied to create specifically 

patterned nanoparticle assemblies. Techniques that were used to deposit magnetic nanoparticles 

on substrates include gas phase deposition,222 layer-by-layer assembly,223 Langmuir-Blodgett 

techniques,224,  225,  226 microcontact printing,227 capillary filling,227 drop-casting,220 and self-

assembly at the liquid-air interface.228 Magnetic interactions were also used to assemble magnetic 

nanoparticles, in which an externally applied magnetic field was applied to control the local 

arrangement.229, 230, 231 Structural patterns such as chains, columns and labyrinths have been 

observed using magnetic field assisted methods.232 Nanolithography technologies, such as e-beam 
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lithography,233, 234 X-ray lithography,235 optical lithography236, 237 and scanning probe-based 

lithography238, 239 also have been used to pattern magnetic nanoparticles. 

Particle lithography is based on simple steps of conventional bench chemistry procedures 

of mixing, centrifuging, evaporation and rinsing to produce arrays of Fe3O4 nanoparticles. For 

particle lithography, monodisperse, spherical particles are used either as a mask or a template to 

produce nanostructures. Particle lithography is a facile approach for patterning metal 

nanoparticles.92,150 Particle lithography has been applied to generate arrays of nanostructures of 

polymers,240, 241 proteins,242,243 metals,244, 245, 246, 247, 248 quantum dots,249, 250, 150  and self-assembled 

monolayers.251,252  

In our experiments with “two-particle” lithography our experimental strategy was to 

construct periodic arrays of Fe3O4 nanoparticle clusters as a well-defined test platform for scanning 

probe studies.150 Characterizations were accomplished using magnetic sample modulation (MSM), 

a hybrid imaging mode of atomic force microscopy (AFM).92 The instrument configuration for 

MSM-AFM has been applied for selective magnetic imaging of electrolessly deposited iron-oxide 

capped nanostructures formed on organosilane nanopatterns 92 and for imaging nanostructures of 

ferritin.94 Relatively monodisperse, hydrophilic, and single-crystalline ferrite microspheres were 

prepared by a solvothermal reduction method. Magnetic Fe3O4 particles with a size range of 70-

135 nm were synthesized via a solvothermal method by modified reduction reactions between 

FeCl3 and ethylene glycol. The arrays of Fe3O4 nanoparticles on glass substrate exhibit periodicity 

spanning micrometer-sized areas. The density and surface coverage of the arrays can be controlled 

by selection of the diameters of the mesospheres. Structural latex masks with a diameter of 1 µm 

were used for patterning to pattern Fe3O4 nanoparticles on a glass substrate. 
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4.2 Experimental Details 

4.2.1 Materials and Reagents. 

Glass substrates were cleaned by immersion in piranha solution for 1 h. Piranha solution is a 

mixture of sulfuric acid (96%, EMD Chemical Inc., Gibbstown, NJ) and hydrogen peroxide (30%, 

Sigma-Aldrich) at a ratio of 3:1 (v/v). Piranha solution is highly corrosive and should be handled 

carefully. Monodisperse latex mesospheres, 1 µm in diameter (Thermo Scientific, Waltham, MA) 

were used as received. 

4.2.2 Preparation of Fe3O4 Nanoparticles 

Our modified recipe of the procedure reported by Deng et al 253 yielded spherical Fe3O4 

nanoparticles with diameters of 100, 125, 135, nm.  This involved charging a round bottom flask 

with iron chloride (1.4 g, FeCl3.6H2O) and sodium acetate (3.6 g) sequentially dissolved in 15 mL 

of ethylene glycol.  Addition of sodium acetate rapidly turned the orange FeCl3.6H2O solution to 

brown color.  The solution was stirred for an additional 30 min and then injected at once into a 

round-bottomed flask containing a vigorously stirred solution of PVP (0.40 g) in 35 mL of ethylene 

glycol heated to 180 °C.  The mixture was then vigorously stirred at 180 °C for 4–24 hours during 

which a black precipitate was obtained.  The black precipitate was washed multiple times with 

ethanol, Milli-Q water and dried under vacuum at room temperature.  Agitation (stirrer speed), 

temperature, and reaction time were the process parameters that were varied to obtain Fe3O4 

nanospheres of desired diameters.  

4.2.3 Procedure for “Two-particle” Lithography  

            The key steps for “two-particle” lithography are illustrated in Figure 4.1. First, an aqueous 

solution of monodisperse latex was centrifuged at17000 rpm for 10 min to remove surfactants or 

other stabilizers. The pellet was then re-suspended in deionized water for one rinsing cycle by 
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centrifugation. Next, the rinsed pellet of mesospheres was resuspended in the desired volume of 

an aqueous solution containing Fe3O4 nanoparticles. A small volume (20 µL) of the mixture of 

nanoparticles and mesospheres in a given ration were deposited onto the cleaned glass substrate. 

The droplet of sample was then dried in air at room temperature for 12 h. After the samples were 

dried, the larger mesospheres were removed by gently pressing a piece of scotch tape onto the 

glass substrate. In the tape removal step, the nanoparticles remained attached to the surface in 

patterned arrangements that conform to the periodicity of the latex surface mask. 

 

Figure 4.1 Basic steps for preparing Fe3O4 nanoparticles using “two-particle” lithography. 

A) A mixture of latex spheres and nanoparticles was deposited on the substrate; B) After drying 

the sample, the mask was removed with scotch tape to reveal a periodic arrangement of Fe3O4 

nanoparticle clusters 

4.2.4 Atomic Force Microscopy  

               Samples were characterized with a model 5500 scanning probe microscope (Keysight 

Technologies, Santa Rosa, CA). Nonconductive V-shaped cantilevers made of silicon nitride 

having low force constants ranging from 0.1 to 0.5 Nm− 1 (Veeco Probes, Santa Barbara, CA) were 

used for imaging samples. A plastic nosecone assembly without metal components and the 

magnetic AC mode (MAC-mode) sample plate was used for mounting probes on the scanner for 
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MSM-AFM studies. Images were processed using Gwyddion, a freely available open source 

software supported by the Czech Metrology Institute.194 

The MSM setup is a hybrid of contact-mode AFM combined with selective actuation of 

magnetic samples (Figure 4.2).92 First, the sample surface is scanned in contact-mode without 

applying the electromagnetic field, for acquiring conventional topography and lateral force images. 

For the second pass on the same area, an alternating electromagnetic field was applied by the 

sample stage with average field strengths ranging between 0.01 to 0.2 T. Only the magnetic 

domains are driven to vibrate when an alternating electromagnetic field is applied to samples 

which provides selective contrast for areas that are in motion. The vibration of samples is detected 

with amplitude and phase signals, which are acquired simultaneously with MSM-topography.  

 

Figure 4.2 Instrument set-up for magnetic sample modulation AFM. [A] An AC magnetic field 

induces actuation of magnetic nanoparticles on a surface. A soft, nonmagnetic tip is operated in 

contact mode as a force and motion sensor. [B] Photo of solenoid embedded with the sample plate. 
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4.3 Results and Discussion 

4.3.1 Nanopatterns of Fe3O4 Nanoparticles Visualized with Contact-Mode AFM  

Initial characterizations of the array of Fe3O4 nanoparticle clusters were acquired using 

contact-mode AFM (Figure 4.3). Clusters of Fe3O4 nanoparticles as well as individual 

nanoparticles in a few areas between the clusters furnish a test sample for evaluating size effects 

(Figure 4.3A). Adventitiously, the shapes and locations of the clusters of Fe3O4 nanoparticles as 

well as smaller individual Fe3O4 nanoparticles are revealed in the simultaneously acquired lateral 

force image (Figure 4.3B). The presence of the smaller nanoparticles in areas between the clusters 

is more clearly viewed in the lateral force frames which distinctly reveal the edges and shapes of 

the smaller nanoparticles. The height of three nanoparticle clusters measured using the substrate 

as a baseline is plotted in Figure 4.3C, referencing white line in Figure 3A. The average height of 

the nanoparticle clusters measured 78 ± 2 nm from an average of 100 data points. Each 

Fe3O4nanoparticle cluster is spaced approximately 1 µm apart, corresponding to the size of the 

latex mesospheres used for patterning (1 µm diameter). 

 

Figure 4.3 Clusters of magnetic Fe3O4 nanoparticles prepared on a glass substrate viewed 

with contact mode AFM images. A) Arrangement of clusters of nanoparticles viewed with the 

topography channel; B) corresponding lateral force image; C) Height profile for white line in A. 
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4.3.2 Selective Actuation of Magnetic Samples using MSM-AFM 

The test sample of nanopatterned clusters and Fe3O4 nanoparticles were imaged with and 

without an applied electromagnetic field, as shown in Figure 4.4. Simultaneously acquired 

topography, MSM-amplitude and MSM-phase frames, respectively are presented for a 6 × 6 μm2 

area of the surface (Figure 4.4). When the oscillating magnetic field was turned off there are no 

features or shapes evident in the amplitude or phase channels (top row, Figures 4.4A, 4.4B, 4.4C). 

 

Figure 4.4 Clusters of Fe3O4 nanoparticles prepared on glass imaged with and without an 

applied electromagnetic field using MSM-AFM. The top row were acquired in the absence of 

magnetic field: [A] Topography image; simultaneously acquired [B] amplitude; and [C] phase 

image. The bottom row of frames were acquired with and applied AC electromagnetic field: [D] 

Topography image; [E] corresponding MSM-amplitude; and [F] MSM-phase channels. 

In the absence of an external magnetic field the nanoparticles do not vibrate. During the scan when 

AC current is applied to the solenoid to generate the flux of a magnetic field, the magnetic areas 

on the sample are induced to vibrate. When the AFM tip comes into contact with a vibrating area 
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of the sample, the probe is driven to vibrate. The vibration of the tip is monitored using a lock-in 

amplifier to generate images of the changes in the amplitude and phase motion of the AFM probe. 

Topography images are acquired concurrently with MSM amplitude and phase images (Figures 

4.4D, 4.4E, 4.4F). For this example, comparing the topography frames with (Figure 4.4A) and 

without (Figure 4.4D) an applied field does not reveal any discernable changes. The two frames 

are mostly identical.  

4.3.3 Dynamic Changes in MSM-AFM Images with Frequency 

A frequency sweep can be acquired with MSM-AFM by placing the AFM tip directly on a 

vibrating nanoparticle cluster and measuring the amplitude as the frequency is ramped (Figure 

4.5). When the probe is placed on the substrate in areas where there is no magnetic sample, the 

frequency sweep is a flat line. The frequencies we selected include the prominent resonance peak 

at 60.04 kHz and the shoulder peak shown at 56.48 kHz. No prominent peaks were detected for 

the region of 100-600 kHz. The profile of a single resonance suggests that the nanocluster is 

vibrating as a solid block rather than having multiple vibrating domains. 

 

Figure 4.5 Frequency sweep acquired by placing the AFM probe on a vibrating Fe3O4 nanocluster. 
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Experimental parameters such as the driving frequency and applied field strength for MSM 

imaging can be optimized based on the information obtained from frequency sweeps. As the 

samples are scanned with MSM, parameters such as the field strength and driving frequency can 

be used to optimize image resolution. 

Images acquired with MSM-AFM using two selected frequencies, with an applied 

magnetic field strength of ~0.12 T are shown in Figure 4.6. Changing the frequency at selected 

intervals during data acquisition of an MSM-AFM image enables a side-by-side comparison of the 

vibrating nanoparticle clusters with chosen parameters (Figure 4.6A). For the top row of images 

(Figure 4.6A) the frequencies were changed in situ without halting data acquisition. The 

topography frame of Figure 4.6A does not show any noticeable changes as the frequency parameter 

is changed in situ, however, the simultaneously acquired amplitude and phase channels reveal 

distinct differences as the frequency is increased to 56.48 and 60.04 kHz. At frequency 0 kHz there 

was no vibration of the Fe3O4 nanoparticle clusters, shown in the upper portion of the frames of 

Figure 4.6A. The upper part of the amplitude and phase frames do not display the shapes or 

locations of the nanoparticle clusters which are apparent in the corresponding topography image. 

Mapping of magnetic domains was initiated when the frequency was increased to 56.48 kHz, as 

evident in the middle portion of the MSM-amplitude and MSM-phase images of Figure 4.6A. As 

the frequency was changed incrementally during image acquisition with MSM-AFM, the 

vibrational amplitude of the sample changed accordingly. Interestingly, the much smaller 

individual nanoparticles also become visible at higher frequency in the MSM frames. For the 

frames acquired at 56.48 kHz improvements in the resolution of the phase image (right panel) are 

apparent with clearly defined edges and shapes. Thus, the resolution of phase images does not 

necessarily improve with higher amplitude response. At the resonance frequency of 60.04 kHz, 
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magnetic features are apparent for both the amplitude and phase frames shown in the lower portion 

of Figure 4.6A. In the frequency sweep of Figure 4.5, the maximum amplitude response was 

detected at 60.04 kHz. Correspondingly, the best resolution for the amplitude frames was detected 

at the resonance frequency. This indicates that at resonance, the probe detected a greater 

displacement attributable to stronger sample vibration. 

 

Figure 4.6 Magnetic nanoparticle clusters of Fe3O4 prepared on glass imaged at selected 

frequencies. [A] The top row indicates changes for images as the frequency was changed in situ. 

From left to right, topography, amplitude and phase channels are presented. [B] Frames in the 

center row were acquired at a frequency of 56.48 kHz; [C] Images in the bottom row were acquired 

at the resonance frequency of 60.04 kHz. 
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Images of the sample of Fe3O4 nanoparticle clusters acquired with the magnetic field 

actuated at a single frequency throughout the entire scan are shown in Figures 4.6B-4.6C. Note 

that the topography frames (left images) are indistinguishable at the selected frequency parameters. 

The tip is driven to vibrate when it encounters vibrating Fe3O4 nanoparticle clusters. Changes in 

the motion of the tip-surface contact are compared to the driving signal and are plotted in amplitude 

and phase channels to generate surface maps of magnetic response (Figures 4.6B and 4.6C), which 

demonstrates the mapping capabilities of the MSM-AFM imaging mode. Amplitude and phase 

channels are compared side-by-side for the chosen frequencies in the center and left hand columns, 

respectively. In these examples, the fine details of small adsorbates are revealed, to detect these 

features in the topography frames would require image processing with saturated color scales.       

4.3.4 Effect of Field Strength for MSM-AFM Images 

     

Figure 4.7 Changes in MSM frequency spectra as the strengths of the applied 

electromagnetic field varied.  A) White arrow in topography image showing the AFM tip placed 

on a Fe3O4nanoparticle cluster; B) corresponding MSM amplitude and; C) MSM phase channels. 

Example topography, amplitude, and phase images acquired concurrently with the magnetic field 

turned on are presented in Figure 4.7. The tip-sample resonance frequency was maintained at 60.04 

kHz during acquisition. Within a single scan, the magnetic field strength was changed from 0 T, 

0.05 T, and 0.12 T respectively, without halting data acquisition (Figure 4.7A). The topography 

frame in Figure 4.7A, does not reveal significant changes with increasing field strengths. The 
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MSM amplitude (Figure 4.7B) and MSM phase (Figure 4.7C) channels sensitively reveal the 

location of Fe3O4 nanoparticles and clusters relative to the glass substrate. When the field strength 

was 0 T, no vibrations were detected by the tip shown in the upper region of Figures 4.7B and 7C. 

However, as the field strength was increased to 0.05 T, the locations of vibrating nanoparticles 

become apparent. As the field strength was further increased to 0.12 T, the amplitude of the 

vibrating nanoparticle clusters increases to show sharper contrast in the lower part of the MSM 

amplitude and MSM phase images. As the magnetic field strength was increased, smaller 

individual nanoparticles surrounding the clusters are detected in the MSM amplitude and phase 

channels.  

We observed that as nanoparticles decrease in size, a larger field strength is required to 

induce vibration. Smaller nanoparticles may not be detected at the lower field strengths, depending 

on the nature of surface attachment. For strongly bonded nanoparticles or samples with embedded 

nanoparticles, vibration cannot be detected with MSM-AFM. Interestingly, nanoparticles that are 

barely discernable in the topography image are readily visualized in the MSM amplitude and phase 

frames. 

The capability of MSM to map magnetic domains with dynamic parameters is 

demonstrated in Figure 4.7. Information about the location and relative vibrational response of the 

magnetic domains can be acquired. As the magnetic field strength is ramped particles can be 

shaken loose from the substrate and displaced with the scanning motion of the tip as it is operated 

in contact-mode. Therefore, in conducting experiments we begin with lower field strengths and 

increase the parameter to evaluate an optimum setting. Phase images present the fine details of 

surface shapes, such as for defining the boundaries and lateral dimensions of nanoparticle cluster. 
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Depending on the size of the nanoparticles, smaller nanomaterials can be detected at higher field 

strengths, as revealed in the MSM-amplitude and MSM-phase channels. 

 

Figure 4.8 Overlay of MSM frequency spectra as the field strength was increased. 

A comparison of frequency profiles acquired in a selected sample location when the probe 

was placed directly on top of a nanoparticle cluster is shown in Figure 4.8. Essentially, the AFM 

tip was parked on a single nanoparticle cluster and frequency spectra were acquired at selected 

field strengths. An overlay of the amplitude vs frequency spectra with incremental changes in the 

field strength with neatly symmetric peak profiles demonstrate that the primary resonance 

frequency. A prominent resonance peak was observed between 50 and 70 kHz. (The peak location 

is 60 kHz) does not shift. The amplitude axis corresponds to the z displacement of the AFM tip, 

and was ranged from 0 to 5.0 nm for this experiment. Typically, the spectra will reveal a prominent 

resonance peak and multiple smaller peaks, depending on the complexity of the sample. The 

amplitude peak height increased proportionately as the field strength was ramped. An amplitude 



56 

response of 2.3 nm was observed when the applied field was set at 0.05 T and a higher amplitude 

response of 5.0 nm was obtained when the magnetic strength was increased to 0.12 T.  Sufficient 

force must be applied to the tip to hold the probe in contact with the vibrating nanoparticle. 

4.4 Conclusion 

Clusters of magnetic Fe3O4 nanoparticles were patterned on glass substrates and studied 

with MSM-AFM. Information of the location of individual magnetic domains can be detected with 

MSM-AFM, the nanoparticles vibrate in response to the flux of an AC generated electromagnetic 

field generated below the sample stage. Spectra of the characteristic resonance frequencies of the 

Fe3O4 nanoparticle clusters can be acquired. Dynamic studies with MSM-AFM show an increase 

in the vibration amplitude with an increase in the magnetic field strength. The resonance profiles 

of the frequency spectra are not identical for nanoparticles of different sizes, further experiments 

are being designed to systematically evaluate the size-dependent resonance profiles for 

nanoparticles according to changes in size and composition. Future studies include imaging 

mixtures of Fe3O4 nanoparticles with differences in composition and size to evaluate the resonance 

signatures in response to an applied magnetic field. These studies will lead to new information 

about how individual and clusters of magnetic nanoparticles respond to the flux of an AC 

electromagnetic field. 
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CHAPTER 5: CONCLUSIONS AND FUTURE PROSPECTUS 

Chemically patterned surfaces were fabricated using a combination of molecular self-

assembly and particle lithography to generate billions of nanopatterns of organosilane self-

assembled monolayers (SAMs). The nanoscale patterns can be tailored to attach nanoscale 

materials by selecting the designed surface chemistry. Investigations of the solvent responsive 

properties of OTS multilayers was achieved using contact mode AFM imaging in liquid. Studies 

of surface properties such as wettability or swelling that change upon stimulation by heat, light, 

pH, electric field, temperature, or solvents are helpful in development of responsive materials. 

Responsive surfaces are commonly prepared using SAMs or polymer thin films. 

Chemically functionalized surfaces prepared with OTS multilayers provide a well-defined 

3D interface of spatially confined nanostructures with nanoscale dimensions for studying the effect 

of solvents for producing changes in surface morphology. High-resolution images acquired with 

AFM provided a means to measure and quantify the swelling of nanopatterned surfaces at 

nanoscale dimensions. Future studies will be designed for in-situ investigation of the stimuli-

responsive nature of nanostructures in response to pH, light and temperature. Measurements with 

AFM provide a framework for in situ studies of stimuli responsive behavior of organic thin film 

materials. 

Magnetic nanoparticles have potential as building blocks of the future nanoscale devices, 

however, development of strategies for processing nanoparticles has become a challenge. 

Application of self-assembly for patterning nanoparticles is a practical approach for high-

throughput manufacturing. Magnetic properties and structural effects can be studied at the level of 

individual nanoparticles using advanced modes of AFM.  
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Magnetic sample modulation AFM (MSM-AFM) provides capabilities for imaging 

magnetic nanoparticles. Magnetic nanoparticles with a dimensions as small as 0.8 nm to as large 

as magnetic clusters of 100 nm nanoparticles have been detected with MSM-AFM. Periodic arrays 

of magnetic iron oxide nanoparticles prepared using an approach of “two-particle” lithography 

method were used as test platforms for dynamic experiments with MSM-AFM. Protocols were 

developed to observe and quantify the vibrational response of the magnetic nanoparticles with in-

situ modulation of parameters such as the frequency and magnetic field strength of the applied 

electromagnetic field. Sensitively mapping the distribution and locations of magnetic 

nanoparticles provided a detection mechanism using the MSM-AFM mode. Dynamic 

measurements with MSM-AFM showed an increase in the vibration amplitude of magnetic iron 

oxide nanoparticle clusters with increases in the magnetic field strength within the patterned Fe3O4 

nanoparticles. Future studies include imaging mixtures of magnetic nanoparticles with mixed 

compositions and sizes to test the differences in resonance signatures in response to an applied 

magnetic field. Studies with MSM-AFM will provide information about how magnetic 

nanoparticles respond to an externally applied AC electromagnetic field. 
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APPENDIX A: LETTER OF PERMISSION 
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APPENDIX B: SUPPLEMENTAL INFORMATION FOR SOLVENT-RESPONSIVE 

PROPERTIES OF OCTADECYLTRICHLOROSILOXANE NANOSTRUCTURES 

INVESTIGATED USING ATOMIC FORCE MICROSCOPY IN LIQUID 

Supporting Information is provided with AFM images for a control experiment with a sample 

prepared using a surface mask of 300 nm diameter mesospheres (Figure B1).  

           

Figure B.1 Side-by-side comparison of OTS nanostructures prepared with 300 nm latex spheres 

imaged in air (top row) and with immersion in liquid media (bottom row). (A) Zoom-in topography 

frame; (B) simultaneously-acquired lateral force image; (C) Height profile for the white line shown 

in A. (D) Zoom in topography frame of the same sample subsequently acquired  in ethanol using 

the same AFM probe; (E) corresponding lateral force image; (F) Line profile for white line shown 

in D. 
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Calculations for estimated changes in the nanopattern volume in ethanol are provided in Figure 

B2 

 

Figure B.2. (A) Representation of an OTS nanoring for a sample dried in air; (B) Representation 

of the 3D volume of the swelling of a nanoring in a sample exposed to ethanol. 

Calculation of percent change in volume for OTS ring nanostructures 

Each nanoring in the sample exposed to air can be described as a cylinder of radius ra and 

height Ha (see Figure A2.A). The volume of this cylinder is given by p r
a

2
H
a
  

In the case of the nanoring exposed to ethanol, the base attached to the substrate remains 

the same but the top expands. If 2re is the width of the top layer and He the height, we can 

approximate this to a section of a right circular cone of radius re and height He+x, from which a 

right circular cone of radius ra and height x has been subtracted (see Figure A2.B). We can obtain 

x by solving the following equation: 

H
e
+ x

r
e

=
x

r
a
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The total volume of the nanoring is then given by: 
1

3
p[r

e

2
(H

e
+ x)- r

a

2
x] 

             The percent increase in volume attributed to ring swelling: 

Percent increase (%) = 
𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑛𝑎𝑛𝑜𝑟𝑖𝑛𝑔 𝑖𝑛 𝑒𝑡ℎ𝑎𝑛𝑜𝑙−𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑛𝑎𝑛𝑜𝑟𝑖𝑛𝑔 𝑖𝑛 𝑎𝑖𝑟

𝑣𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑛𝑎𝑛𝑜𝑟𝑖𝑛𝑔 𝑖𝑛 𝑎𝑖𝑟
 x 100 

Table B1 Calculation of percent change in volume for OTS ring nanostructures 

Sample Description Volume increase in liquid (%) 

Freshly prepared OTS nanorings 730 

Sample after annealing 240 

Annealed sample after longer immersion 

in ethanol 

246 
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