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ABSTRACT 

 The reaction kinetics and some applications in the field of microfluidics for thiol-

acrylate Michael addition polymerizations using multifunctional monomers have been 

researched and are presented here.  The polymerization rate constants for base-

catalyzed systems were found to increase with increasing thiol and acrylate 

functionality, which was attributed to the intramolecular interactions between functional 

groups.  The nucleophile-initiated thiol-acrylate Michael addition polymerization kinetics 

were monitored via FTIR, and it was determined that the increase in the rate of reaction 

in these multifunctional systems was significantly less dramatic than the increase 

observed in monofunctional systems.  While no radical polymerization was observed 

during most typical thiol-acrylate Michael addition reactions, spontaneous radical 

polymerization can occur in certain systems where the Michael addition rate is low, such 

as towards the end of nucleophile-initiated reactions, base-catalyzed reactions with low 

base concentrations, and reactions performed using monomers with low functionality. 

 Several material properties of a thiol-acrylate microfluidic resin (TAMR) were 

investigated including the cure kinetics, hydrophilicity, solvent absorption, and elastic 

modulus.  The material was shown to cure at 50 °C in 3 hours or at room temperature in 

10 hours.  The water contact angle of these materials was shown to vary based on the 

hydrophilicity of the resin curing surface, but it is generally lower than other microfluidic 

materials, such as poly(dimethylsiloxane) (PDMS).  The swelling of TAMR in a variety of 

solvents was quantified and determined to be superior to PDMS in organic solvents.  

The elastic modulus of TAMR was shown to vary with cure time and resin formulation 

with a maximum of ~10.5 MPa for the systems studied.  A simple surface modification of 
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the TAMR was performed using a thiol-acrylate Michael addition reaction between thiol 

groups on the resin surface and a modifying acrylate.  Two microfluidic applications of 

TAMR have been presented.  The first is a fluorescence-based bacterial detection 

device which uses the selective binding of bacteria to an antibody bound to the TAMR 

surface to confirm the presence of the pathogen.  The second device uses a thiol-

acrylate hydrogel in combination with TAMR to produce a gradient-generating 

microfluidic device for studying algal chemotaxis. 
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CHAPTER 1. INTRODUCTION 

1.1 Thiol-Ene Chemistry 

 First appearing in a 1905 report by Posner1, thiol-ene chemistry is not a recent 

development, but it has only been in the past twenty years that the majority of 

applications for these versatile reactions have been reported.  In general, a thiol-ene 

reaction involves the formation of a carbon-sulfur bond between a thiol group (R-SH) 

and a carbon-carbon double bond (alkene).  Although Posner is generally credited with 

the discovery of thiol-ene reactions, the addition of sulfur to ene groups had been taking 

place since the 1830s in the vulcanization of rubber, which was first patented by 

Goodyear in 1844.2  Early examples of thiol-ene polymerizations by Marvel et al. 

appeared in the late 1940s and early 1950s,3-4 but significant progress was not made 

until the 1970s with several works by Morgan et al.5-6 on the photo-initiated curing of 

thiol-ene systems.  After another period of little progress, thiol-ene chemistry made a 

comeback in the 1990s, mainly due to the efforts of Jacobine et al.7-9  Finally, after a 

large volume of work from Hoyle, Bowman, and others10-18 in the early 2000s, the 

scientific community realized the potential of this chemistry. 

 There are two main types of thiol-ene reactions, the first of which is a radical 

process illustrated in Scheme 1.1.  Depending on the structures of the thiol and ene, 

this reaction can be used to produce polymers or perform click type coupling reactions.  

The reaction can be initiated using a thermal or photo-radical initiator, but irradiation 

with ultraviolet (UV) light is sufficient to form a thiyl radical from a thiol group.  The thiyl 

radical formed in the initiation step goes on to add across the double bond of an ene 

group to form the most stable radical.  This newly formed radical will abstract the proton  
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from a thiol group to from a new thiyl radical (chain transfer step) that can start 

propagation again.  Termination of the propagating radical can occur through several 

radical coupling pathways.   

 
Scheme 1.1 General thiol-ene radical polymerization mechanism where I-I indicates a 

radical initiator 
 
 The remainder of this document will focus on polymer synthesis using thiol-ene 

reactions, but the applications of thiol-ene click coupling are a major area of study as 

well.14, 19-20 

 Scheme 1.1 demonstrates that thiol-ene radical polymerizations will proceed via 

a step-growth mechanism, as first predicted by Kharasch et al.,21 since both functional 

groups must come together to form the new bond and the reaction of monofunctional 
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monomers only gives a small molecule.  However, while polymer formation occurs in a 

stepwise fashion, the mechanism has characteristics of a chain-growth system since an 

initiating radical will propagate and chain transfer continuously until a termination event 

occurs.  Also, these reactions do not exhibit the traditional second-order overall kinetics 

associated with step-growth polymerizations.  Depending on the structure of the ene 

and thiol groups, the polymerization kinetics may be independent of the ene or thiol 

concentration.15, 22  If the propagation step proceeds significantly more rapidly than the 

chain transfer step (see Scheme 1.1), then the rate limiting step will only depend on the 

thiol group concentration.  If the chain transfer step and propagation step occur at 

roughly the same rate, then the reaction will be half order in both ene and thiol.   

 The difference in the rates of the propagation and chain transfer steps depends 

on the stability of the carbon-centered radical formed after the addition of a thiol group 

to an ene, the electron density of the ene, and the availability of the thiol hydrogen.  

More stabilized radicals have a decreased rate of chain transfer and thus have higher 

propagation to chain transfer ratio (kp/kCT).  The same is true for thiols where the thiol 

hydrogen is only mildly acidic and thus cannot be abstracted easily.  Enes with 

increased electron densities give higher kp values.  The combination of all of these 

factors ultimately determines the kp/kCT and thus the kinetics by which these reactions 

proceed.  Given the same thiol, acrylates and allyl ethers have kp/kCT >10 and show 

thiol-dependent kinetics while vinyl ethers and norbornenes have kp/kCT
 ~1 and depend 

on both thiol and ene concentrations.  The overall rate of polymerization follows the 

trend where norbornene > vinyl ether > acrylate > allyl ether.22  More acidic thiols, such 
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as mercaptopropionates and thioglycolates have increased reactivity compared to alkyl 

thiols and more rapid chain transfer steps.12, 23 

 An interesting situation arises if the ene used in the polymerization is able to 

homopolymerize via a radical mechanism (Scheme 1.2).  Acrylates are frequently cured 

on their own using a radical-chain-growth mechanism, and when combined with thiols, 

the thiol-ene step growth mechanism and the hompolymerization of the acrylate 

compete.  Using an alkyl thiol, the ratio of the acrylate homopolymerization rate 

constant to the chain transfer to thiol rate constant was found to be 1.5.24 

 
Scheme 1.2 Thiol-ene radical polymerization with ene homopolymerization 

 The combination of these two mechanisms leads to changes in properties with 

changing thiol/acrylate ratios.  As thiol content is increased, the glass transition 

temperature and storage modulus decrease because of the decrease in crosslink 

density associated with a shift towards the step-growth mechanism.24-25  Enes that 
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homopolymerize can be added to typical thiol-ene systems to give a variety of network 

structures and material properties based on the competing reaction mechanisms.26-27 

 Compared to typical radical polymerizations of alkenes, thiol-ene reactions have 

a number of important advantages.  Perhaps the most interesting feature of radical 

polymerizations involving thiols is that they are not affected by oxygen inhibition.12, 23, 25, 

28  Scheme 1.3 illustrates how the addition of a thiol circumvents the typical pathway of 

oxygen inhibition in the radical polymerization of enes.  Without the presence of thiols, 

molecular oxygen will react with a carbon-centered propagating radical to form a peroxy 

radical, which is much less reactive than the carbon radical.29-30  However, if thiol 

groups are present, the peroxy radical can abstract a thiol hydrogen to give a thiyl 

radical, which can continue propagation. 

 
Scheme 1.3 Oxygen inhibition in thiol-ene systems 

 Thiol-ene radical polymerizations can be initiated using typical radical initiators, 

but they are not required since the sulfur-hydrogen bond of thiols can be cleaved using 

UV light.12, 19, 23-24, 31-33  Using 254 nm light, the reaction can be initiated without the 

need for photoinitiators which improves aging properties and maximum cure depths, 

although the process is not as efficient as with an initiator.12, 31  The gelation of thiol-ene 

materials occurs at higher conversion than with other radical ene polymerizations due to 

the step-growth network formation process.  This prevents the network from 

accumulating stresses, leads to low shrinkage, gives nearly homogenous materials, and 

O2
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promotes higher conversion of functional groups.12, 19, 23, 27  Two notable disadvantages 

of thiol-ene chemistry are the inability to store thiols and enes together and the odor 

associated with thiols.  When mixed, thiol-ene systems have very poor shelf lives before 

spontaneous polymerization occurs.  This could be due to several possible 

circumstances including a base-catalyzed addition reaction if the ene is electron 

deficient, the decomposition of peroxide or hydroperoxide impurities to generate 

radicals, the ineffectiveness of some types of radical inhibitors found in enes due to the 

lack of oxygen inhibition, or a ground-state charge transfer complex forming between 

thiol end ene which generates radicals.12, 34-38 

 Early applications of thiol-ene chemistry focused on the coatings industry where 

research by Morgan and others attempted to highlight the benefits of this new 

technology, especially its insensitivity to oxygen.12, 39-40  Although their efforts to get 

thiol-ene polymerizations adopted on a large scale were unsuccessful, the ability to cure 

these systems in thin layers without excluding oxygen is an area of renewed interest 

today.31, 41-43  Thiol-ene systems have been used as adhesives for a number of years, 

most notable by Norland Products, who sell them commercially.44-46  This chemistry has 

also been used to produce optical materials with high glass transition temperatures and 

refractive indexes.12, 47-50  Another exciting application of thiol-ene chemistry is in the 

production of polymer dispersed liquid crystal (PDLC) systems.12, 51-55  One application 

of these materials is in “smart” windows that can switch between transparent and 

opaque when an electric field is applied.  Some other applications of thiol-ene chemistry 

include energy absorbing materials,56-58 frontal polymerization systems,59-60 and 

hydrogels.61-64 
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1.2 Thiol-Michael Additions 

 The second main type of thiol-ene reaction is the thiol-Michael addition reaction, 

which proceeds via an anionic mechanism.  In general, a Michael addition is the 

addition of a nucleophile to an electron deficient carbon-carbon double bond and was 

named after Arthur Michael who originally described them in 1887.65  Classic Michael 

additions involve carbanion based nucleophiles like enolates, but other nucleophiles can 

undergo the reaction as well, although they are frequently called “Michael-type” 

additions.66  Unlike the carbon centered anions in classic Michael additions, some 

nucleophiles do not have to be charged to add to the olefin, such as amines or 

phosphines, but thiols must be deprotonated in order to react.  There is a discrepancy in 

the literature as to when the first thiol-Michael addition was reported.  A 2013 review by 

Nair et al. cites a 1964 article by Allen et al. on the addition of alkyl thiols to a variety of 

calcones,67-68 while a 2010 review by Hoyle et al. cites a 1947 article by Hurd and 

Gershbein on the reactions of several mercaptans with acrylic derivatives.19, 69-70  One 

possible explanation for this inconsistency is that only the 1964 paper actually describes 

the reaction as a Michael addition.  Regardless of their reasoning, the 1940s papers 

clearly demonstrate the base-catalyzed addition of a thiol to carbon-carbon double 

bonds. 

 Scheme 1.4 illustrates the general mechanism for the base-catalyzed thiol-

Michael addition reaction.  In the initiation step, the thiol is deprotonated by a base to 

form a thiolate anion.  This is followed by the propagation step where the thiolate adds 

to an electrophilic ene to form a stabilized carbanion.  Next, the carbanion will 

deprotonate the base catalyst, which was protonated in the initiation step, to regenerate 
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it.  An alternative mechanism proposed by Chan et al. involves initiation of the 

polymerization reaction by a nucleophile as shown in Scheme 1.5.18  The first step 

involves the nucleophile adding to the carbon-carbon double bond in much the same 

way that the thiol does in the propagation step.  The strongly basic carbanion produced 

by the addition of the nucleophile deprotonates a thiol to give the reactive thiolate that 

adds to another ene to start the cycle over again.  Commonly used initiating 

nucleophiles include primary or secondary alkyl amines, bicyclic amidines, and 

phosphines.  One disadvantage of the nucleophile-initiated mechanism is that some of 

the ene groups are used up in the initiation process, and these addition products will 

exist as an impurity in the polymer, but the concentration of nucleophile used is typically 

extremely small. 

 
Scheme 1.4 General base-catalyzed thiol-Michael addition mechanism 

 As with the radical thiol-ene mechanism, the thiol-Michael polymerizations 

proceed via a step-growth mechanism; however, since the chain transfer step is a 

proton transfer to a strong carbanion base, the rate-limiting step is exclusively the 

propagation step.  The nucleophile-initiated reaction has chain polymerization properties 
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similar to the radical thiol-ene mechanism since the anion can undergo propagation and 

chain transfer continuously.   

 
Scheme 1.5 General nucleophile-initiated thiol-Michael addition mechanism 

 Nucleophile initiated thiol-Michael additions typically have much higher reaction 

rates than base-catalyzed reactions since the equilibrium between thiolate and base lies 

further to the right when the primary base responsible for the thiol deprotonation is a 

carbanion.  Additionally, the most available acidic proton for the carbanion to abstract 

after the propagation step is the thiol proton instead of the protonated amine catalyst.  

Scheme 1.6 illustrates some of the differences between the nucleophile-initiated and 

base-catalyzed reaction pathways.  It is important to note that the propagation reaction 

and therefore the rate-limiting step in the polymerization are the same regardless of 

which pathway is used.  The reactivity of enes in thiol-Michael polymerization reactions 

increases with decreasing electron density of the carbon-carbon double bond.  Some 

commonly used enes in thiol-Michael additions are, in order of decreasing reactivity, 

maleimides, vinyl sulfones, acrylates, crotonates and methacrylates.67  Thiol reactivity is 
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largely dependent on the pKa of the thiol with thioglycolates reacting faster than 

mercaptopropionates, which in turn react more quickly than alkyl thiols.18 

 
Scheme 1.6 Mechanistic differences between the two thiol-Michael addition reactions 

 Some of the benefits of thiol-Michael addition polymerizations include room 

temperature curing, a wide variety of commercially available monomers, solvent 

optional reactions, low hazard monomers and initiators, high conversions, and mild 

radical-free conditions.66  Thiol-Michael addition polymerization reactions have been 

used to produce antimicrobial materials,71 microparticles,72 crosslinked biomaterials for 

tissue repair,73-75 microfluidic resins,76-77 hydrogels,78-80 block copolymers,81-82 grafted 

polymers,83-84 star polymers,85-87 dendritic polymers,88-89 polymer-biomolecule 

conjugates,90-92 biodegradable polymers,93 and many other interesting products.20, 66-67 
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CHAPTER 2. THE KINETICS OF THIOL-ACRYLATE POLYMERIZATION 

REACTIONS USING MULTIFUNCTIONAL MONOMERS 

2.1 Chapter Summary 

 Kinetic studies were performed on thiol-acrylate Michael addition polymerizations 

using a variety of multifunctional monomers and two different reaction mechanisms.  

The effect of secondary acrylate functionality in multifunctional acrylates was found to 

be consistent with observations made for monofunctional monomers.  Increasing the 

thiol or acrylate functionality was found to increase the rate constant for polymerization 

in base-catalyzed systems.  The primary reason for this is likely to be intramolecular 

effects increasing the reactivity of the functional groups, but the increase in thiol 

reactivity could also be caused by an entropic effect of having multiple groups held 

together in close proximity.  The initial polymerization rates of trifunctional monomers 

were determined in the nucleophile-initiated thiol-acrylate Michael addition 

polymerization reaction.  As in monofunctional systems, the change in mechanism gave 

faster polymerization rates, but the increase was not nearly as dramatic.  The increase 

in viscosity associated with the gelation of multifunctional systems likely hinders the 

diffusion of the active species and causes the decrease in rate.  The absence of radical 

polymerization processes during thiol-acrylate Michael addition polymerizations was 

confirmed, but radical polymerizations appear to initiate when the rate of the Michael 

addition is low.  Any significant radical polymerization will dramatically affect the network 

structure, properties, and functional group conversion in the material, so this finding is 

especially important for making thiol-acrylate materials. 
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2.2 Introduction 

 The thiol-acrylate Michael addition reaction is a useful tool for click-type 

functionalization and making polymer materials; however, surprisingly little is known 

about the reaction kinetics, especially outside of model systems.  Probably the most 

significant reports on this topic were published by Chan et al. in 2010,18 in which the 

differences between the base-catalyzed and nucleophile-initiated mechanisms were 

explored, and by Kilambi et al. in 2007 and 2008,94-95 where the effect of monomer side 

groups on the reaction kinetics was investigated.  While these reports made significant 

contributions towards understanding of factors that affect the rate of thiol-acrylate 

Michael addition reactions, these studies were conducted using model systems where 

monofunctional monomers were used almost exclusively.  This only addresses the 

behavior of these reactions when used as a functionalization technique and does not 

confirm if the same trends will be observed when making thiol-acrylate polymeric 

materials which require the use of multifunctional monomers.   

 The genesis of this project was the general observation that thiol-acrylate 

polymer systems using one acrylate, pentaerythritol triacrylate (PETA), gelled more 

quickly than those using trimethylolpropane triacrylate (TMPTA), even though the same 

thiol and amine concentrations were used.  Even more interesting was that the two 

monomers only differed by one functional group at one position, a hydroxyl group on 

PETA, and a methyl group on TMPTA (see Scheme 2.1).  One possible explanation 

was that the increased viscosity of PETA, due to hydrogen bonding, caused the mixture 

to physically gel sooner than TMPTA.  The other possibility was that for whatever 

reason, PETA was reacting faster than TMPTA under the same conditions.  In order to 
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answer that question and others, the kinetics of thiol-acrylate polymerization were 

investigated for a variety of thiol and acrylate monomers. 

2.3 Materials and Methods 

2.3.1 Materials 

 Pentaerythritol triacrylate (PETA) and trimethylolpropane triacrylate (TMPTA) 

were purchased from Alfa Aesar.  Triethylamine ≥99% (TEA) was purchased from 

Sigma Aldrich and Alfa Aesar.  Trimethylolpropane tris(3-mercaptopropionate) 

(TMPTMP) was purchased from Evans Chemetics, Sigma Aldrich, and TCI America.  2-

ethylhexyl 3-mercaptopropionate ≥97% (EHM) was acquired from TCI America.  Glycol 

di(3-mercaptopropionate) (GDMP) and Ethoxylated trimethylolpropane tris(3-

mercaptopropionate) 700 (ETMPTMP 700) were generously donated by Evans 

Chemetics.  SR454, SR499, and SR502 were purchased from Sartomer, and tris (2-

hydroxy ethyl) isocyanurate triacrylate (TITA) was generously donated by Sartomer.  

Ebecryl 53 (EB53) was acquired from Cytec.  Trimethylolpropane ethoxylate triacrylate 

average Mn ~912 (TMPETA 912), 1,4-butanediol diacrylate 90% (BDDA), pentaerythritol 

tetraacrylate (PETTA), pentaerythritol tetrakis(3-mercaptopropionate) >95% (PETMP), 

hexylamine 99% (HAm), dipropylamine 99% (DPA), triphenylphosphine ≥95% (TPP), 4-

tert-butylcatechol ≥98% (TBC), 4-methoxyphenol 99% (MEHQ), and 2,2,6,6-

tetramethylpiperidine 1-oxyl 98% (TEMPO) were purchased from Sigma Aldrich.  See 

Scheme 2.1 for reagent structures. 
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Scheme 2.1 Reagent structures 
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2.3.2 Experimental Methods 

Acquiring FTIR Spectra 

 A Bruker Tensor 27 Fourier transform infrared (FTIR) spectrometer equipped 

with a Pike Miracle single-bounce diamond attenuated total reflectance (ATR) cell was 

used to track the conversion of thiol and acrylate groups over time.  The thiol and 

acrylate were added sequentially to a glass vial with the denser monomer on the 

bottom.  This was done to prevent mixing the two components prematurely since if an 

amine is added to a mixed sample, local gelation can occur and prevent a homogenous 

mixture from forming.  Once the two monomers were added, the FTIR spectrometer 

was prepared.  The instrument was fitted with a liquid sample cell to contain the 

monomer mixture around the ATR crystal, and a blank was performed on the empty 

cell.  Once the instrument was set up, the necessary volume of amine was pipetted into 

the monomers.  In the case of triphenylphosphine (TPP), which is a solid, it was 

dissolved in acetone at 10% then pipetted into the monomers.  The vial was capped, 

inverted several times, and shaken to ensure thorough mixing.  An aliquot of the mixture 

was removed from the vial and placed into the FTIR sample cell as quickly as possible.  

The FTIR was set to acquire spectra at a regular interval for a set duration, for example 

every 60 seconds for two hours.  Data was acquired between 650 and 4000 cm-1 with a 

resolution of 4 cm-1.  Sixteen scans were taken for each spectrum, and all of the 

reactions were performed at room temperature. 

FTIR Data Processing 

 Once the FTIR data was acquired, the data was processed using Bruker’s FTIR 

software package, Opus.  A 9-point smooth was performed on the spectra and baseline 
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correction was done using 10 iterations of the concave rubber band correction with 64 

baseline points.  As part of the acquisition process, the software was set to perform a 

CO2 peak correction, so one was not done during the post-acquisition processing.  After 

the smooth and baseline correction, the area under the peaks of interest was 

determined using the built in integration program.  The thiol group concentration was 

monitored using the S-H stretching peak centered at 2573 cm-1.  The acrylate group 

concentration was tracked using the C=C stretching vibration doublet centered at 1625 

cm-1, and the C=C-H out of plane bending vibration at 810 cm-1 was used as a 

supplemental peak (see Figure 2.1).  The bounds for each peak were determined 

visually, and method B was used in the Opus integration protocol.  Using a macro 

generously provided by Bruker, the spectra were sequentially integrated and the results 

printed to a text file for further analysis. 

Calculations and Data Fitting 

 After processing the data and performing the integrations using OPUS, the 

resulting text files were imported into Microsoft’s Excel.  Conversion of both thiol and 

acrylate groups was determined according to the formula 

Percent Conversion =  
M0−Mt

M0
× 100          Eq. 2.1 

where M0 is the initial monomer peak area and Mt is the peak area at time t.  The first 

spectrum acquired was set as time zero, and it is assumed that no conversion of 

functional groups occurred before this time.  However, this assumption is not strictly 

true, since some small amount of time passes from when the components are mixed to 

when the first spectrum is acquired, but this is unavoidable and has a minimal impact on 

the data analysis.  In order to find monomer group concentrations, the concentration at  
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Figure 2.1 Example FTIR peaks for a) the thiol S-H bond stretching and b) the acrylate 

C=C bond stretching 

b)

a)
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time zero was set to the theoretical initial concentrations (moles functional groups/kg), 

and then the percent conversion was used to determine the amount of monomer that 

reacted over a given time interval. 

2.4 Kinetic Fitting 

2.4.1 Base-Catalyzed Reactions 

 Base-catalyzed thiol-acrylate polymerizations are known to proceed via an 

anionic step-growth mechanism,18 and thus the basic rate equation is that of a step-

growth polymerization,66, 96-97 

Rate = k[RSH][RCH = CH2]          Eq. 2.2 

where k is the rate constant, [RSH] is the thiol group concentration, and [RCH=CH2] is 

the acrylate group concentration.  However, since the thiol group is not the reactive 

species, as shown in Scheme 1.4, it must be replaced by the thiolate anion 

concentration to give 

Rate = k[S−][RCH = CH2]         Eq. 2.3 

where [S-] is the thiolate anion concentration.  While this equation is now representative 

of the reaction behavior seen in thiol-Michael addition reactions, the thiolate anion 

concentration cannot be measured easily, which makes determining the rate constant 

more difficult.  However, a substitution can be made for [S-] by using the equilibrium 

equation between thiol groups and the base catalyst  

Keq =
[S−][HB+]

[SH][B]
          Eq. 2.4 

where [B] is the concentration of the base catalyst and [HB+] is the concentration of the 

protonated catalyst after reacting with a thiol group.  Since these reactions are 
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performed neat and the thiol-acrylate mixture is only moderately polar, the thiolate and 

protonated base will exist as a close ion pair instead of two individual compounds.97-98  

Considering this, Equation 2.4 can be rewritten to combine the thiolate and protonated 

base into one species [S-HB+].  This species is equivalent mechanistically to the [S-] 

concentration that appeared in the rate law described earlier.  Solving the modified 

Equation 2.4 for the active thiol species concentration and substituting that into 

Equation 2.3 yields Equation 2.5. 

Rate = kKeq[B][SH][RCH = CH2]         Eq. 2.5 

This equation can be simplified into Equation 2.6 by combining the terms that stay 

constant during the reaction, which include the equilibrium constant and the catalyst 

concentration, into one term that is designated kapp. 

Rate =  kapp[SH][RCH = CH2]          Eq. 2.6 

In order to find kapp using reaction data, the concentrations of thiol and acrylate groups 

over time need to be fit to an equation modeling their behavior.99  In the simplest case, 

where thiol and acrylate group concentrations are equal, the reaction behavior can be 

written as a differential equation with only one concentration (Eq. 2.7) where [M] is the 

concentration of either monomer at time t. 

−
d[M]

dt
=  kapp[M]2          Eq. 2.7 

Equation 2.7 can be solved by integrating between time zero and time t and [M]0, the 

initial monomer concentration, and [M].  After separation of variables, the integral can 

be written as Equation 2.8. 

∫ −
1

[M]2
d[M]

[M]t

[M]0
= ∫ kappdt

t

0
          Eq. 2.8 
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Solving the integral yields Equation 2.8, which can be used to find kapp by plotting the 

inverse of monomer concentration versus time and performing a linear fit to determine 

the slope. 

1

[M]t
= kappt +

1

[M]0
          Eq. 2.9 

Alternatively, Equation 2.9 can be rearranged into Equation 2.10, which can be fit using 

a non-linear approach. 

[M]t =
[M]0

1+[M]0kappt
          Eq. 2.10 

If the thiol and acrylate group concentrations are not equivalent at the start of the 

reaction, the simplified form used in Equation 2.7 is invalid; therefore, Equation 2.11 

must be used 

−
d[A]

dt
= kapp[A][B]         Eq. 2.11 

where the thiol and acrylate concentrations have been replaced by [A] and [B] and B is 

the monomer in excess.  In order to simplify the differential equation, a new term, Δ, is 

introduced, which is the difference between [B] and [A].  Replacing the [B] in Equation 

2.11 by (Δ + [A]) and integrating gives Equation 2.12. 

∫ −
1

[A](∆+[A])
d[A] =  ∫ kappdt

t

0

[A]t

[A]0
          Eq. 2.12 

This evaluates to Equation 2.13, 

1

∆
ln

[A]+Δ

[A]
|

[A]0

[A]t

= kappt|
0

t
          Eq. 2.13 

and after applying the limits of integration, the Δ inside the natural log terms is 

substituted for ([B] – [A]) at the appropriate times, zero or t, to give Equation 2.14. 
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ln
[B]t

[A]t
= kapp∆t + ln

[B]0

[A]0
          Eq. 2.14 

This equation can be used to find kapp by plotting the natural log of [B]t/[A]t versus time 

and dividing by Δ.  Solving for [A]t and replacing [B]t with (Δ + [A]t) yields Equation 2.15, 

which can be used to find kapp with a nonlinear least squares fitting routine.   

[A]t =
∆[A]0

[B]0ekapp∆t−[A]0
          Eq. 2.15 

 All linear fitting was performed using Excel’s built in “LINEST” function.  

Nonlinear fits were performed using Excel’s Solver function, which takes an initial value 

for a variable and alters it until a set of conditions are fulfilled, such as minimizing the 

residual sum of squares between a set of data and a fitting model by modulating the key 

variable in the fitting equation.  In this case, the acquired data was compared to points 

obtained from substituting the known values into a fitting equation (described below).  

The differences between the data points and the fit output points were taken, squared, 

and totaled.  Solver was used to alter the unknown fit parameter until the sum of 

squares was minimized using the GRG Nonlinear solving method.  Both the linear and 

nonlinear fits were used to find kapp using both the thiol and acrylate group 

concentrations for each system.  The kapp values obtained from using each monomer 

concentration profile were averaged for the linear and nonlinear fits.  These two values 

were then averaged to give the final kapp value reported for each experiment.   

 The base concentration used in each experiment was generally kept at a 

constant mole percent relative to thiol groups (except where otherwise noted), but this 

leads to different concentrations in mol/kg of amine, which was used for the data fitting 

process.  Therefore, for monomers with different molecular weights, the amine 
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concentrations actually vary.  To correct for this, the kapp/[B] will be compared for each 

system.  The initial rate and final monomer conversion were also used to compare the 

thiol-acrylate systems.  The initial rate was determined by plotting the monomer 

concentration versus time until 30% conversion was reached, or a minimum of 6 data 

points, and taking the slope of the resulting curve.  The final conversion after the 

experiment run time, 2 hours, was determined by averaging the last 5 conversion points 

for each functional group.  A minimum of three separate FTIR experiments were 

performed for each monomer system, the results were averages, and the standard 

deviation was reported as error.   

2.4.2 Nucleophile-Initiated Reactions 

 The rate law and fitting process described above only works for thiol-acrylate 

polymerizations that proceed via the base-catalyzed mechanism.  Polymerizations 

following the nucleophile-initiated mechanism have a different rate law, but it is 

unknown at this point.  Mechanistic factors that complicate the formation of an accurate 

rate law in nucleophile-initiated thiol-Michael additions include: the consumption of ene 

through initiation and propagation, the behavior of amines as both nucleophiles and 

bases at different points in the reaction, and the sequential nature of the nucleophile 

addition to give polymerization.  While the development of a rate law for this process 

would be a worthy venture, that problem will not be addressed here.  Since kapp cannot 

be determined without an accurate rate law, other metrics will be used to compare 

systems that proceed via this alternate mechanism such as the initial rate and the final 

conversion of functional groups. 
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 The initial rate was determined by plotting the monomer concentration versus 

time until 30% conversion was reached, or a minimum of 6 data points, and taking the 

slope of the resulting curve.  The final conversion after the experiment run time, 2 hours, 

was determined by averaging the last 5 conversion points for each functional group.   

2.4.3 Monomer Purity 

 The monomers used in this study were all commercially available and used as 

received without any further purification.  Unfortunately, multifunctional thiol and acrylate 

compounds are not available in highly pure forms, and the purity of these compounds is 

generally not well reported.  Pentaerythritol triacrylate (PETA), for example, is sold as 

technical grade with a definite molecular weight and structure listed, but it actually is a 

complex mixture of reaction products.100  The primary impurities in PETA are the 

diacrylate and tetraacrylate associated with under and over esterifying pentaerythritol 

with acrylic acid.  Other minor impurities include Michael addition products between the 

pentaerythritol alcohol and the acrylic acid double bond, the esters produced using that 

product, and dimers.  Trimethylolpropane tris(3-mercaptopropionate) (TMPTMP), which 

is a trifunctional thiol, is produced by esterifying trimethylolpropane with 

mercaptopropionic acid.  The major impurity in TMPTMP is mercaptopropionic acid, 

which was present at a concentration of 7% in one commercially-obtained sample.  All 

of the other thiols and acrylates used in the following studies are likely to have similar 

impurities to the ones discussed above. 

 Therefore, due to the uncertain purity of the reaction components, the rate 

constant values obtained in this study are almost certainly not the true values for the 

pure monomer systems; however, the value of these results lies within the insight they 
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provide into the reaction behavior of these compounds in real world applications.  

Comparing the obtained rate constants, and other parameters, across a variety of 

different thiols and acrylates with large structural and functionality differences should 

allow some general trends to be observed.   

2.5 PETA v TMPTA: The Effect of Monomer Side Groups 

 The kapp/[B] was determined for both PETA and TMPTA when reacted with 

TMPTMP in a theoretical 1-1 functional group ratio using 0.33 mol% TEA relative to thiol 

groups.  As shown in Table 2.1, PETA is in fact reacting more quickly with TMPTMP 

than TMPTA is under the same conditions.  The kpp/[TEA] value obtained for PETA is 

nearly twice that of TMPTA, as is the initial rate of the reaction.  This leads to an 

average overall conversion of 68 ± 2% in 2 hours with PETA as compared to 53 ± 1% 

with TMPTA.   

Table 2.1 TMPTA v PETA Kinetics 

Acrylate 
Kapp/[TEA]  

(kg2 mol-2 min-1) 
Initial Rate  

(mol kg-1 min-1) 
Final Conversion (%) 

TMPTAa 0.157 ± 0.004 0.028 ± 0.001 53 ± 1 

PETAa 0.30 ± 0.03 0.052 ± 0.003 68 ± 2 

a) All reactions performed with TMPTMP 

 Based on this data, the primary reason PETA gels more quickly than TMPTA is 

the faster polymerization rate, which is most likely due to the presence of the hydroxyl 

group in PETA.  It has been demonstrated in monofunctional systems that side groups 

on acrylate monomers can have a large impact on the acrylate reactivity due to 

intramolecular effects that make the double bond more susceptible to nucleophilic 

attack.95, 101  In the case of PETA, the hydroxyl group is altering the electronics of the 

acrylate double bonds to make them more susceptible to attack by the thiolate anion.   
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 The hydroxyl group on PETA could also increase the rate of the thiol-Michael 

addition by increasing the polarity of the system, which has been shown to increase the 

rate of Michael addition reactions.95  In the case of base-catalyzed systems, the 

increased polarity stabilizes the thiolate anion and allows for increased separation 

between it and the protonated base, which increases its reactivity towards the acrylate 

double bond.  In order to determine if that concentration of hydroxyl groups could 

significantly alter the polarity of the mixture and increase the reaction rate constant, 

butanol (BuOH) was added to TMPTA in a ratio of 3-1 acrylate groups to alcohols to 

mimic the concentration in PETA.  As shown in Table 2.2, there was a slight increase in 

the kapp/[TEA] for the TMPTA with BuOH, but it was within experimental error.  

Interestingly, the initial rate and final conversion in the alcohol system both decreased, 

which means that any increase in rate constant afforded by the increased polarity of the 

alcohol was overshadowed by the effect that decreasing the thiol and acrylate group 

concentration had on the overall polymerization reaction. 

Table 2.2 TMPTA Kinetics with Added Alcohol 

Acrylate 
Kapp/[TEA]  

(kg2 mol-2 min-1) 
Initial Rate  

(mol kg-1 min-1) 
Final Conversion (%) 

TMPTAa 0.157 ± 0.004 0.028 ± 0.001 53 ± 1 

TMPTA + BuOHa,b 0.17 ± 0.03 0.022 ± 0.004 50 ± 5 

a) All reactions performed with TMPTMP  b) 3-1 Acrylate to -OH by moles 

 Based on this data, it is evident that the increased reactivity observed in PETA is 

linked to the intramolecular effect the hydroxyl group has on the acrylate groups and not 

on the increase in system polarity that it brings compared to TMPTA.  These findings 

are in agreement with those reported by Kilambi et al. who demonstrated that the 

incorporation of a functional group into the acrylate molecule has a much greater effect 

on the rate constant than simply adding in that functional group via a solvent.94-95 
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2.6 The Effect of Acrylate Structure on the Polymerization Kinetics 

 In order to determine if acrylate structural variations other than functional group 

changes affected the base-catalyzed Michael addition polymerization rate of triacrylates 

with TMPTMP, the kinetics for a series of other acrylates were determined.  Table 2.3 

lists the kinetic parameters for seven additional triacrylates in addition to PETA and 

TMPTA all polymerized with TMPTMP at room temperature using 0.33 mol% TEA 

relative to thiol groups.  Entries 3-6 are all triacrylates based on TMPTA with a 

poly(ethylene glycol) (PEG) segment between the core and each acrylate group (see 

Scheme 2.1 for structures).  There is no statistical difference in the kapp/[TEA] with 

increasing PEG segment length for the first 3 monomers, but TMPETA 912 has a higher 

kapp/[TEA] than the other ethoxylated monomers and even TMPTA.  The only difference 

between TMPETA 912 and SR502 is the length of the PEG segment, so an increase in 

rate constant was not expected, especially since it had not increased between SR454 

and SR502.  Michael addition rate constants have previously been shown to decrease 

as spacer length increased in a diacrylate system, which was attributed to a reduction in 

the intramolecular effects that each acrylate group had on the electronics of the other as 

the distance between them grew.95  In that study, the spacer was changed from two 

carbons to six, so one possible reason why a reduction in rate constant was not 

observed in this system is due to the intramolecular contributions from the PEG spacers 

themselves.  The relatively high reactivity of TMPETA 912 could be partially due to the 

increased polarity of the system from the PEG spacers, but that is unlikely given that 

there was no increase in kapp/[TEA] between TMPTA and the other ethoxylated 

monomers.  One additional difference between the SR series monomers and TMPETA 
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912 is their different sources.  It is possible that an impurity that is absent in the SR 

series monomers but is present TMPETA 912 is the cause of the increased reactivity. 

Table 2.3 Kinetics of TMPTA Variants 

Entry Acrylatea Structural Difference kapp/[TEA] (kg2 mol-2 min-1) 

1 TMPTA - 0.157 ± 0.004 

2 PETA -OH for -CH3 0.30 ± 0.03 

3 SR454 Ethoxylated (1 per arm) 0.143 ± 0.004 

4 SR499 Ethoxylated (2 per arm) 0.13 ± 0.01 

5 SR502 Ethoxylated (3 per arm) 0.13 ± 0.02 

6 TMPETA 912 Ethoxylated (4-5 per arm) 0.20 ± 0.02 

7 TITA Cyanuric Acid Based 0.26 ± 0.03 

8 EB53 Glycerol Based and Propoxylated 0.082 ± 0.009 

9 TMPPTA Propoxylated (~2 per arm) 0.044 ± 0.005 

a) All reactions performed with TMPTMP 

 TITA has a kapp/[TEA] in between TMPTA and PETA, but the structure is very 

different.  TITA is based on cyanuric acid, and the increase in rate constant relative to 

TMPTA is likely due to intramolecular interactions with the cyanurate core that reduce 

the activation energy of the Michael addition, similarly to the carbamate functionalized 

acrylates studied previously.101  EB53 and TMPPTA gave the lowest kapp/[TEA] which is 

surprising given their relative structural similarity to the ethoxylated TMPTA monomers.  

The reason for the low reactivity could be due to the extra carbon present in the 

propxylate spacer present in EB53 and TMPPTA compared to the ethoxylate spacer in 

the other monomers.  Increasing the number of propxylates from 1 to 2 appeared to 

significantly increase the rate constant, but since the base alcohol also changed from 

glycerol to trimethylolpropane the effect cannot be isolated to a single cause.  The 

increase in the number of propxylate groups could decrease the rate constant due the 

higher number of carbons between the acrylate groups.  Alternatively, using glycerol as 



28 
 

the central compound could increase the intramolecular effect that the acrylates have 

on each other compared to trimethylolpropane since two of the acrylate groups are only 

separated by two carbons in EB53 while all three are separated by 3 carbons in 

TMPPTA. 

2.7 The Effect of Monomer Functionality on the Polymerization Kinetics 

 In order to determine the effect of monomer functionality on the kinetics of base-

catalyzed thiol-acrylate polymerizations, a series of acrylates and thiols with varying 

functionalities were studied.  Table 2.4 contains the results for several acrylates reacted 

with TMPTMP and 0.33 mol% TEA relative to thiol groups. 

Table 2.4 Effect of Acrylate Functionality on the Polymerization Kinetics 

Acrylatea Functionality kapp/[TEA] (kg2 mol-2 min-1) 

BDDA 2 0.101 ± 0.003 

TMPTA 3 0.157 ± 0.004 

PETTA 4 0.23 ± 0.01 

a) All reactions performed with TMPTMP 

 Clearly the acrylate functionality affects the polymerization reaction kinetics as 

there is a significant increase in the kapp/[TEA] with increasing acrylate functionality.  As 

with PETA, the increase in rate constant observed with increasing acrylate functionality 

is consistent with the theory that secondary functionalities containing electronegative 

atoms increase the reactivity of their surrounding acrylate groups.  This effect has been 

previously observed when increasing the acrylate functionality from 1 to 2, and further 

increases in functionality appear to also follow this trend.95   

 The effect of thiol functionality on the polymerization kinetics was also 

determined by fitting for kapp/[TEA] for when reacting several different 

mercaptopropionates with TMPTA using 0.33 mol% TEA relative to thiol groups.  As 
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shown by Table 2.5, the thiol functionality also has a considerable effect on the reaction 

behavior. 

Table 2.5 Effect of Thiol Functionality on the Polymerization Kinetics 

Thiola Functionality kapp/[TEA] (kg2 mol-2 min-1) 

EHMb 1 0.031 ± 0.002 

GDMPc 2 0.071 ± 0.007 

TMPTMP 3 0.157 ± 0.004 

PETMP 4 0.29 ± 0.01 

a) All reactions performed with TMPTA  b) Acquired using 3.33 mol% TEA  c) Rate 
constant determined over first 15 minutes of reaction 
 
 With each increase in thiol functionality, the kapp/[TEA] value essentially doubled, 

which when compared to the effect of acrylate functionality, suggests that the rate 

constant is more strongly influenced by whatever effect increasing thiol functionality has 

on the reaction.  Similar to the effect of increasing acrylate functionality, one possible 

explanation for the increase in rate constant is the electronic effect of the esters present 

in the mercaptopropionate groups lowering the pKa of the thiol, which is known to 

increase Michael addition reactivity in base-catalyzed systems.102  Altering the acidity of 

the thiol group will shift the Keq towards products, and since it is incorporated into the 

kapp term, this will increase the rate constant.  In order to test this theory, the kinetics 

were determined for an ethoxylated trithiol (ETMPTMP 700) under the same reaction 

conditions.  If the increase in rate constant with increasing thiol functionality is due to an 

effect similar to what was observed in the acrylates, the kapp/[TEA] for the ethoxylated 

monomer should remain comparable to the non-ethoxylated TMPTMP.  When the 

reaction was performed using the typical TEA concentration of 0.33 mol% relative to 

thiol groups, the reaction proceeded very slowly then was overshadowed by a radical 

polymerization (see Section 2.9 for more information on radical reactions).  This was the 
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first indication that the reaction rate constant for the ETMPTMP 700 was not the same 

as TMPTMP, since reactions using TMPTMP with that amine concentration progress at 

reasonable rates.  In order to effectively determine the kapp/[TEA] for the ETMPTMP 

700, the [TEA] was raised to 3.33 mol% relative to thiol groups.  The reaction 

proceeded successfully at this amine concentration, and the kapp/[TEA] was determined 

to be 0.086 ± 0.006 kg2 mol-2 min-1.  This falls significantly closer to the rate constant 

observed for dithiol than to TMPTMP, which is opposite of the trend seen in the 

acrylates.  This suggests that there may be another reason for the increase in rate 

constant observed with increasing thiol functionality. 

 One thing that adding the ethylene glycol repeating units to TMPTMP does affect 

is the distance between the thiol groups in the molecule.  It is possible that having 

multiple thiol groups close together in a multifunctional monomer could facilitate the 

deprotonation and subsequent addition to an acrylate of one thiol group after the 

addition of the first.  When an enolate is formed after the addition of a thiolate, it can 

either abstract a proton from a thiol group or a protonated amine, but for multifunctional 

thiols, the likelihood of direct thiol deprotonation by an enolate could increase since the 

local concentration of thiol groups increases with functionality.  Unfortunately, in order to 

formulate a better hypothesis, experiments using every functionality combination of thiol 

and acrylate need to be performed, as well as kinetic runs using other trithiols where the 

thiol groups are physically separated from one another. 

2.8 The Nucleophile-Initiated Mechanism 

 When using monofunctional thiols and acrylates, Chan et al. demonstrated a 3 

order of magnitude increase in the rate of reaction when switching from TEA to 
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hexylamine (HAm) which corresponds to a change in the reaction mechanism for base-

catalyzed to nucleophile initiated.18  In order to determine if this same effect occurs in 

multifunctional monomer systems, thiol-acrylate reactions were performed using 

primary, secondary, and tertiary amines as well as a phosphine.  Table 2.6 contains the 

initial rates of polymerization for TMPTA and PETA with TMPTMP using 0.33 mol% of 

each amine relative to thiol groups and 0.165 mol% of TPP. 

Table 2.6 Initial Polymerization Rates (mol kg-1 min-1) in Both Mechanisms 

Acrylatea TEA (3°) DPA (2°) HAm (1°) TPPb 

TMPTA 0.028 ± 0.001 0.234 ± 0.004 0.17 ± 0.02 0.104 ± 0.008 

PETA 0.052 ± 0.003 0.18 ± 0.02 0.11 ± 0.05 0.13 ± 0.03 

a) All reactions performed with TMPTMP  b) Performed using 0.165% TPP 

 When the amine was changed from TEA to DPA, the reaction mechanism 

switched from base-catalyzed to nucleophile-initiated, and the initial rate increased by 

~8.4x in TMPTA and only ~3.5x in PETA.  Considering the reported rate increase was 

~286x when switching between those two amines in a monofunctional system, the 

modest increase observed in this multifunctional system was somewhat surprising.  In 

addition to the relatively small increase in rate, the monomer that exhibited the higher 

reaction rate switched from PETA in the base-catalyzed mechanism to TMPTA in the 

nucleophile initiated mechanism.  Changing the amine from DPA to Ham should also 

increase the polymerization rate, but the observed rates of reaction decreased slightly 

for both PETA and TMPTA.  In addition to amines, phosphines are potent nucleophiles 

that will initiate thiol-Michael polymerization and have much faster polymerization rate 

than tertiary amines.  When TPP was used to initiate the reaction, the initial rate was 

slightly higher in PETA than TMPTA, which was the opposite of the primary and 

secondary amines.  When 0.33 mol% of the TPP was used to initiate the 
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polymerization, the conversion was extremely rapid, so 0.165 mol% was used to ensure 

that the monomer mixture could be placed on the FTIR before significant reaction 

occurred.  Considering that half as much TPP was used to obtain the initial rate values, 

the phosphine-initiated reaction initial rate cannot be directly compared to the amines. 

 The inversion of reactivity from PETA to TMPTA with the change in the reaction 

mechanism is likely due, once again, to the hydroxyl group in PETA.  Although the two 

mechanisms are referred to by different names, they operate in a very similar manner 

since the enolate produced by the addition of the initiating nucleophile to an ene is 

nothing more than a strong base.  Instead of using an amine base such as TEA (pka = 

10.8), the nucleophile-initiated mechanism generates a much stronger enolate base 

(pka ~ 25) in situ, which shifts the equilibrium between thiolate and base to the right and 

increases the thiolate concentration and thus the reaction rate.   

 Another similarity is that both bases are regenerated during the course of the 

reaction, except that a new enolate is formed with every thiol addition instead of the 

same protonated base being reactivated after deprotonation.  Keeping this in mind, any 

compound containing even slightly acidic hydrogens can be deprotonated by the 

enolate to form a weaker base, which will decrease the reaction rate by altering the 

base-thiolate equilibrium.  The identity of the protic species is the most dominant factor 

in determining what effect its presence has on the reaction since a relatively poor acid, 

like water (pka ≈ 15.7), will simply slow the reaction while a strong acid can stop the 

reaction from occurring completely.102-103  Alcohols, like in PETA, have pka values of 

~17 and should slow the reaction since they still form a strong base upon deprotonation, 
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which is likely why PETA does not perform as well in the nucleophile-initiated reactions 

despite its increased Michael addition reactivity compared to TMPTA.   

 The one nucleophile-initiated system where PETA performed slightly better than 

TMPTA was with TPP.  One possible explanation for this is that the enhanced 

nucleophilicity of the phosphine was able to produce enough propagating chains to 

overcome the inhibitory effects of the alcohol on the reaction.  One interesting difference 

between the amine-initiated and phosphine-initiated systems is that amines can act both 

as bases and nucleophiles, while phosphines are generally poor bases and will only add 

to the ene as a nucleophile.  This is consistent with observations of an short induction 

period at the beginning of the phosphine-initiated systems (see Figure 2.2) which is 

absent when any of the amines are used.104   

 In the amine systems, even if protic species are inhibiting the chain-like 

nucleophile initiated pathway by protonating the enolate, the amines can still operate as 

bases and catalyze the reaction.  In the phosphine systems, the induction time 

represents the consumption of the enolates produced when the phosphine adds to an 

ene, which slows the polymerization down dramatically, but once all of the protic 

species have been consumed, the reaction proceeds normally.  This theory is 

consistent with the observation that increasing the phosphine content shortens the 

induction time since the protic impurities are consumed more quickly by the higher 

enolate concentration. 
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Figure 2.2 Induction time observed for a phosphine-initiated reaction (inset shows the 
first 10 minutes of polymerization) 

 
 The decreased reactivity of PETA in the nucleophile-initiated thiol-Michael 

addition systems can be attributed to the hydroxyl group, but both TMPTA and PETA 

had lower polymerization rates than expected.  One difference between the well-studied 

monofunctional systems and these multifunctional monomer systems is that the reaction 

mixtures gel as the polymerization progresses.  Under the base-catalyzed mechanism, 

the gelation process has little effect on the polymerization rate since the base catalyst is 

typically a small molecule that can diffuse easily throughout the polymer network to 

continuously deprotonate thiol.  In the nucleophile-initiated mechanism however, the 

nucleophile imitates a propagating chain but is covalently bound into the network, so 

after just one polymerization step, the base responsible for deprotonating a thiol to 
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continue the reaction is now, at minimum, a dimer of the thiol and acrylate monomers.  

This much larger molecule will diffuse more slowly through the reaction mixture which 

could shift the equilibrium constant and slow the reaction.  Another possible explanation 

is that even though enolates are extremely strong bases, in multifunctional acrylates, 

the steric hindrance around that carbanion is likely increased due to the presence of the 

other acrylate groups in monomer and the added multifunctional thiol molecule.  High 

steric hindrance could offset some of the rate increase gained by producing a strong 

base and dampen the overall effect of switching mechanisms. 

2.9 The Effect of Background Radical Reactions 

 One of the disadvantages of thiol-ene systems is their poor shelf life since 

mixtures of thiols and enes will spontaneously polymerize with time.  Figure 2.3 shows 

the conversion profile for a 1-1 mixture of PETA and TT1 with no added amine.  Even 

during the two-hour duration of the experiment, over 80% of the acrylate groups 

reacted.  The difference in the thiol and acrylate conversions indicates that a radical 

thiol-ene reaction is occurring since the rate of acrylate radical homopolymerization is 

significantly faster than chain transfer to thiol.  The induction period is also indicative of 

a radical polymerization since the inhibitor in the acrylate must be consumed before 

significant reaction can occur.  The extent of the radical reaction over this short 

timescale was surprising, and it was important to determine if this background process 

was affecting the measured rates and rate constants for the thiol-Michael reactions.  To 

determine whether or not significant radical polymerization was occurring during the 

thiol-Michael addition polymerization studies, the kapp/[TEA] was determined for a 

system with and without a radical inhibitor present.  First, a series of preliminary kinetics 
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runs were performed to determine the ratio of TMPTA and TMPTMP that would give 

exactly 1-1 conversion.   

 

Figure 2.3 Radical polymerization in a PETA-TMPTMP mixture 

 It was determined that 10% excess acrylate (EA) groups were needed to 

compensate for the monomer impurities and give 1-1 conversion.  If there is radical 

polymerization occurring during the Michael addition, deviations from the exact 1-1 

conversion ratio would become evident when a radical inhibitor was added.  The next 

step was to find an inhibitor and concentration that would stop any significant radical 

polymerization from occurring over the 2-hour timescale of the experiment.  The ability 

of several radical inhibitors to stabilize thiol-ene mixtures has been investigated,105 and 

based on those results, tert-butylcatchol (TBC) was chosen to stabilize the thiol-acrylate 
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mixtures.  In addition to the 100 ppm of monomethyl ether hydroquinone (MEHQ) that 

was already present in the TMPTA, an additional 10 ppt of TBC was added to the 

TMPTA prior to mixing with the TMPTMP.  In order to confirm that the added TBC was 

suppressing the radical polymerization, FTIR runs were performed with and without the 

TBC on mixtures of TMPTA and TMPTMP with 10% EA and no amine, and example 

conversion v time plots are displayed in Figure 2.4.  Upon the addition of the TBC, no 

significant functional group conversion was observed over the two hour experiment 

window.  Next, the kapp/[TEA] for the thiol-Michael addition between TMPTA and 

TMPTMP was determined with and without TBC using 0.33 mol% TEA relative to thiol 

groups.   

 If there is significant radical polymerization occurring during the Michael addition, 

there should be an effect on the rate constant as well as a change in the conversion 

difference between thiol and acrylate.  As shown by Table 2.7, the kapp/[TEA], initial rate, 

and final conversion were slightly higher for the radically inhibited samples compared to 

the uninhibited ones, but the difference does not exceed experimental uncertainty.  

This, along with the nearly equivalent conversion profiles for thiol and acrylate, suggest 

that there is essentially no radical polymerization occurring when the thiol-Michael 

addition reaction is being promoted with a base catalyst.  To confirm this and determine 

the effectiveness of another radical inhibitor, the same procedure was repeated using 

2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO), which is a commonly used free radical 

trap.  As with the TBC, there was essentially no conversion observed over two hours 

when no amine was added to the monomer mixture.  The kinetic data acquired after 

0.33 mol% TEA was added is also presented in Table 2.7. 
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Figure 2.4 Radical polymerization of TMPTA-TMPTMP mixtures with a) no TBC and b) 

with 10 ppt TBC added 
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Table 2.7. Effect of radical inhibitors on thiol-Michael addition kinetics 

Inhibitor Kapp/[TEA]a Initial Rateb Average Final 
Conversionc 

Average Δ Final 
Conversionc,d 

None 0.145 ± 0.005 0.0278 ± 0.0008 51.5 ± 0.7 -0.8 ± 0.5 

100 ppm 
MEHQ + 10 

ppt TBC 
0.152 ± 0.007 0.030 ± 0.001 53 ± 1 0.6 ± 0.5 

100 ppm 
MEHQ + 10 
ppt TEMPO 

0.162 ± 0.002 0.0303 ± 0.0004 54.4 ± 0.4 -0.1 ± 1.8 

a) kg2 mol-2 min-1  b)mol kg-1 min-1  c) %  d) Thiol conversion - acrylate conversion 

 Compared to the uninhibited samples, adding TEMPO gave a slight increase in 

the average kapp/[TEA], initial rate, and final conversion, but the conversion profiles of 

thiol and acrylate remained consistent with each other.  While there is no evidence of 

radical polymerization occurring during the Michael addition, it is possible that the 

inhibitors, especially TEMPO, are somehow affecting the reaction and increasing the 

rate constant; however, this effect is relatively minor and was not investigated further. 

 Several situations where radical polymerization was observed during the thiol-

Michael addition reaction were towards the end of many of the nucleophile-initiated 

kinetic runs as well as during the TMPTA glycol di(3-mercaptopropionate) (GDMP) trials 

(see Figure 2.5).  One thing that these scenarios have in common is that the 

polymerization rate at these instances is quite low.  The GDMP systems react slowly 

from the onset, but the nucleophile-initiated mechanism have a period of rapid reaction 

followed by a slow rise due to a shift towards the base-catalyzed mechanism once all of 

the propagating anionic chains have been transferred to less reactive bases.   
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Figure 2.5 Radical polymerization during the thiol-Michael addition of a) TMPTA-

TMPTMP with 0.33% Ham and b) TMPTA-GDMP with 0.33% TEA 
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 In order to determine if there was a connection between the low thiol-Michael 

addition rate and the onset of polymerization, TMPTA and TMPTMP were polymerized 

in the presence of half the usual amount of TEA (0.165 mol% relative to thiol groups).  

As illustrated in Figure 2.6, after a short period of slow Michael addition polymerization 

the split in the conversion profiles and sharp increase in acrylate conversion indicates 

that a radial polymerization process occurred.   

 
Figure 2.6 Radical polymerization during the thiol-Michael addition of TMPTA and 

TMPTMP with 0.165 mol% TEA 
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the polymerization mechanism from anionic to radical is certainly interesting.  When 

making any material using a thiol-acrylate Michael addition polymerization, this process 

could completely alter the targeted properties of the cured polymer while not showing 

any obvious signs of change.  If unexpected radical polymerization were to occur in a 

thiol-acrylate sample, the resulting polymer network would be a mixture of acrylate 

homopolymer and thiol-acrylate Michael addition product, so choosing the right catalyst 

in an appropriate concentration is crucial to perform the reaction safely but avoid a low 

reaction rate that could lead to radical polymerization. 

2.10 Conclusions 

 The reaction kinetics and some applications in the field of microfluidics have 

been researched and presented for thiol-acrylate Michael addition polymerizations using 

multifunctional monomers.  It was determined that a triacrylate containing a hydroxyl 

group reacts more quickly than the same triacrylate with a methyl group at that position 

under the same reaction conditions.  This was attributed to intramolecular effects 

altering the double bond character of the acrylate groups, which makes them more 

susceptible to nucleophilic attack from a thiolate anion.  The rate constants for a series 

of other triacrylates were determined and reported for a base-catalyzed thiol-Michael 

addition reaction with a trithiol.  Increasing the distance between acrylate groups using 

an ethylene glycol repeating unit had little effect on the rate constant, but when a 

propylene glycol spacer was incorporated, the reaction slowed considerable, which is 

likely due to the extra carbon interrupting the electronic interactions between the 

acrylate groups.   



43 
 

 The effect of both acrylate and thiol functionality on the base-catalyzed thiol-

Michael addition polymerization rate constant was investigated.  When using the same 

trithiol, the reaction rate constant increased with increasing acrylate functionality.  When 

the thiol functionality was varied while using the same triacrylate, the rate constant 

increased with increasing functionality except when an ethoxylated trithiol was used.  In 

the acrylates, raising the functionality increases the intramolecular effects between 

acrylate groups and makes them more reactive.  The thiols could also benefit from this 

same effect, which could alter the pka of the thiol group, which in turn would shift the 

thiolate-base equilibrium and change the observed rate constant.  If that is the case, 

adding an ethylene glycol spacer to the trithiol should not lower the rate constant 

dramatically, which is the opposite of what was observed.  While this phenomenon 

needs further investigation, it is possible that spreading out the thiol groups further apart 

in space has some negative effect on polymerization. 

 The effect of switching from the base-catalyzed to nucleophile-initiated reaction 

schemes in trifunctional thiol-acrylate systems was also investigated.  While there was a 

reasonable increase in the initial reaction rate, the change was substantially smaller 

than the observed effect in monofunctional systems.  Furthermore, changing the initiator 

from a secondary to a primary amine had the opposite effect on the reaction rate 

compared to what is known to occur in monofunctional systems.  This was attributed to 

gelation of the network, which restricts the mobility of the large active chains, or 

increased steric hindrance around the enolate formed using multifunctional thiols and 

acrylates.  The change in mechanism also affected the order of reactivity for triacrylates 

with and without the hydroxyl group.  While the alcohol does increase the reactivity of 
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the acrylate double bonds through intramolecular effects, in the nucleophile-initiated 

mechanism it acts as a chain transfer agent that slows the rate by donating its proton to 

a stronger enolate base, which lowers the thiolate anion concentration in the reaction.  

This effect can be overcome when better nucleophiles, such as phosphines, are used to 

increase the enolate concentration in the reaction. 

 The presence and effect of radical polymerization reactions during the thiol-

acrylate Michael addition polymerizations was investigated.  It was determined that 

there is no significant radical polymerization occurring during the base-catalyzed thiol-

acrylate Michael addition polymerizations since the reaction kinetics and conversion 

were minimally affected by the addition of radical inhibitors.  Significant radical 

polymerization was observed in reactions where the rate of thiol-acrylate Michael 

additions was low, such as at the end of nucleophile-initiated reactions and base-

catalyzed polymerizations with low amine concentrations.  This observation is extremely 

important for thiol-acrylate materials made using the Michael addition polymerization 

since the presence of an acrylate homopolymer network alters many of the properties of 

the final material and leaves a large amount of unreacted thiol even though the 

polymerization appears to proceed normally.  The mechanism through which this 

process is occurring has not been elucidated and more detailed studies will need to be 

performed to formulate a reasonable hypothesis. 

 Overall, this research serves as an overview of some interesting effects seen in 

the thiol-acrylate Michael addition polymerization of multifunctional monomers.  Using 

this work as a starting point, more focused experiments should be designed to better 

characterize the behaviors and challenge the theories presented here.  
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CHAPTER 3. THE APPLICATIONS OF THIOL-ACRYLATE 

MICROFLUIDIC RESIN 

3.1 Chapter Summary 

 In this chapter, thiol-acrylate chemistry has been utilized to produce a material for 

use in the field of microfluidics.  First, the field of microfluidics will be introduced, and 

some of the challenges associated with using traditional materials for constructing 

devices will be addressed.  Following will be a brief overview of the thiol-acrylate 

microfluidic resin (TAMR) as developed by Bounds et al. including some of its 

advantages.76  Next, the general TAMR production and curing procedures will be 

discussed.  New contributions to this research project will begin with an investigation 

into several important characteristics of TAMR as they relate to microfluidics including: 

the hydrophilicity, the modulus, the absorption of solvents, and the bonding mechanism 

between TAMR pieces.  After, the development of a TAMR device used to detect 

pathogens via fluorescence will be discussed.  This study took advantage of some of 

the advantages of TAMR to produce a device that could detect E. coli by two different 

methods using a simple procedure.  The work presented here is an important proof of 

concept that demonstrates the utility of TAMR and feasibility as a material for the 

fabrication of microfluidic devices.  Finally, another device was constructed using both 

TAMR and a thiol-acrylate based hydrogel for the study of algal chemotaxis.  A thiol-

acrylate hydrogel was developed that was able to bond to a piece of TAMR imprinted 

with microfluidic channels.  Chemical gradients were established across the center 

channel of the device, which was maintained under flow-free conditions. 
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3.2 Introduction 

 Microfluidics is a relatively new and increasingly exciting field of research with 

seemingly limitless applications in the areas of biology, chemistry, and engineering.  As 

the name implies, microfluidic systems utilize micrometer scale channels imprinted into 

a material to guide the flow of liquids.  Several advantages of using channels on this 

scale are: the low volumes of sample and reagents required, high separation efficiency, 

increased detection sensitivity, short analysis times, reduced cost of manufacturing, 

smaller overall size, increased portability, and ability to combine several analysis steps 

into one device.106-110  Operating channels at these scales also causes several fluid 

behaviors to differ from typical examples including flow, diffusion, and capillary 

action.111-112  The flow regime in microfluidic channels can transition from turbulent flow 

at larger channel diameters, where there is constant and unpredictable mixing of the 

fluid, to laminar flow at smaller channel diameters, where fluid flow is uniform and 

predictable.  This allows users to more accurately control and predict the behavior of 

components in microfluidic flow streams.  Although the fundamentals of how species 

diffuse through a matrix is not affected by the channel size, the decreased length scale 

compared to everyday examples increases the impact diffusion has on microfluidic 

systems.  Diffusion in one dimension can be modeled simply as: 

d2 = 2Dt          Eq. 3.1 

where D is the diffusion coefficient and d is the distance traveled in time t.111, 113  A 

relatively small molecule with a diffusion coefficient of 5 x 10-5 cm2/s would take 10,000 

seconds to diffuse 1 cm, but when the distance is reduced to 100 μm it would only take 

1 second.  Capillary action also becomes an important consideration when operating 
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microfluidic devices, as the distance water will travel through a capillary is inversely 

proportional to the radius of the tube. 

 The first reported microfluidic device was developed as a miniaturized gas 

chromatograph in the late 1970s.114  Also in that decade, researchers at IBM forced ink 

through μm-sized orifices and developed the ink jet printing nozzle,115 but the field of 

microfluidics did not truly start to develop until the late 1980s, when multiple research 

groups began producing devices to manipulate liquid samples.  These devices were 

used to improve detection limits for already existing technologies, such as capillary 

electrophoresis116 and liquid chromatography,117 and to manipulate biomolecules for 

DNA sequencing118 or enzyme assays.119  The benefits of using narrow and short 

microfluidic channels over traditional methods was explored, and the idea of a device 

capable of performing a series of complex preparatory and analysis tasks in a small 

package was proposed and named a miniaturized total chemical analysis system (μ-

TAS).108  Early examples of this concept include a device that couples DNA polymerase 

chain reaction (PCR) amplification to capillary electrophoresis120 and another that lyses 

cells, performs a PCR amplification, then sizes the products.121  Although the μ-TAS 

term has largely been replaced by lab on a chip (LOC), these early examples laid the 

foundation for a field that has exploded in popularity over the last two decades. 

 One of the primary differences between microfluidic devices developed in the 

1990s and current technologies is the material with which the devices are constructed.  

The early work in microfluidics was heavily influenced by the advancements in 

microelectronic fabrication, and thus they used many of the same techniques and 

materials, such as photolithography and etching of silicon and glass.106-107, 110  Silicon 
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can be a difficult material to work with since it is opaque to both visible and ultraviolet 

(UV) light, typically requires a clean room environment to process, and has a relatively 

high cost.  Glass is optically transparent but can be challenging to etch accurately since 

it is an amorphous material.106-107, 122-123  Despite these disadvantages, early 

researchers used these materials to develop all of the devices discussed in the previous 

paragraph as well as several amazing fluid manipulation technologies including 

microvalves110, 124 and micropumps.125-126  However, silicon and glass have largely been 

replaced by plastics due to their overall lower materials cost, manufacturing cost, and 

variety of different physical and chemical properties.123   

 The techniques used to manufacture microfluidic devices out of silicon or glass 

involve the removal of material to create the channels by chemical etching,114-115, 117 

laser ablation,127-130 or plasma etching.131-133  Polymeric materials can be fabricated into 

microfluidic devices by a variety of different techniques due to their wide range of 

properties.  The main methods used to fabricate polymeric microfluidic devices can be 

grouped into two main categories including destructive techniques and replication.  

Using methods similar to those used to manufacture glass and silicon devices, areas of 

a polymer can be selectively removed to fabricate microfluidic channels.  One way to 

accomplish this is laser ablation, which was first used to construct a polymeric 

microfluidic device in 1997.123, 134  In this technique, the chemical bonds holding the 

polymer together are broken by the absorption of pulsed UV light from a laser.135  The 

decomposition products are ejected out and away from the area to leave an impression 

in the polymeric material that is typically around 1 μm deep, which means several 

passes need to be made over an area to form deeper structures.136  The pulsed nature 



49 
 

of the laser and multiple passes needed usually leave the surface of the finished device 

with a wavy pattern.123  The effectiveness of the ablation can vary based on the polymer 

composition, so a laser with an emission wavelength closest to a maximum on the 

polymer absorption spectrum will work the best.  Laser ablation can be performed with 

or without a photomask defining the microfluidic features.  If a photomask is used, the 

channel shapes are cut through the mask material, which is typically a metal.  If a 

photomask is not used, the laser beam needs to be focused to the desired width of the 

channel, and the material is moved under the beam in the desired pattern.  Some of the 

advantages of laser ablation are the large number of polymers it can be applied to and 

the small features that can produce.  Some of the disadvantages include the surface 

roughness, irregular shapes in deep features due to the laser defocusing, and the 

change in surface chemistry due to the ablation process.123   

 Another destructive technique for microfluidic feature fabrication is X-ray 

lithography.  This method uses X-rays to break down the polymer structure into soluble 

components that are washed away to reveal the channel features.  A photomask is 

used that will absorb X-rays to prevent the entire polymer surface from decomposing.  

This technique is limited to polymers that have high X-ray absorption and is typically 

used for poly(methyl methacrylate) (PMMA).  Since the source is not pulsed, the 

features obtained are typically smoother than with laser ablation and high aspect ratio 

channels can be fabricated, but the need for an X-ray source and the complicated 

masking procedure hinder widespread use.123 

 Microfluidic channel replication is the other main category of polymeric 

microstructure fabrication techniques.  These methods all use a master that has 
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impressions of the microfluidic features on its surface.  The pattern is transferred from 

the master to the polymer using a variety of different methods, which gives a polymeric 

device with the channels embedded in it.  These methods can be used to mass-produce 

devices, but since they rely on a master, the fidelity of the final device features relies 

heavily on the fabrication methods used to make the master.  Polymeric device 

fabrication techniques that use the replication method include hot embossing, micro-

thermoforming, injection molding, and soft lithography, and examples of how these 

techniques work are presented in Scheme 3.1.  In order to facilitate removal of the 

polymeric device from the master, the surface of the master mold needs to be 

chemically compatible with the polymer and physically smooth.  Ideally, the master mold 

material should be durable enough to survive a multitude of replication cycles.136   

 The first three of the replication methods listed above, hot embossing, micro-

thermoforming, and injection molding, require strong masters, and metals are a popular 

choice due to their durability.  Molds can be fabricated directly out of metal using 

conventional physical techniques137-138 or electro-discharge machining.139-140  

Alternatively, molds fabricated using additive processes can be electroplated with a 

metal to produce durable masters.  An example of this is the lithographie (lithography), 

galvanoformung (electroplating), abformung (molding) process, or LIGA.141-142  When 

making masters with LIGA, X-rays are used, with a mask of the desired pattern, to 

remove material from a resist (typically PMMA) sitting on top of a conductive substrate.  

Once the degraded resist is dissolved away, a metal is electroplated onto the substrate 

which fills the pattern left by the exposed resist.  The rest of the resist is stripped away 

leaving the substrate with a positive impression of the microfluidic pattern in metal.  
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Materials other than metal can be used for masters, such as silicon143 or other 

polymers,144-145 but they lack the durability of metal molds. 

 
Scheme 3.1 Microfluidic device replication techniques 

 The last replication technique listed, soft lithography, puts less stress on the 

master, so molds can be fabricated using weaker materials.  Silicon is commonly used 

as a base material, and positive impressions can be created on the surface using 

traditional silicon etching techniques,146 or more often, by curing a polymeric material in 

the desired pattern.147-148  The later technique is generally referred to as rapid 

prototyping, since it can be performed much more quickly than silicon etching.  In a 

typical procedure, the silicon wafer is coated with a negative photoresist that will 

chemically crosslink upon exposure to UV light.  Using a photomask where everything 
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but the desired microfluidic features are opaque gives a positive impression on the 

wafer after the uncrosslinked resist is washed away.  The length and width of the 

microfluidic channels are determined by the photomask geometry while the channel 

height can be varied by coating the photoresist at different thicknesses.  Masters 

fabricated using the previously discussed techniques may be used for soft lithography 

as well, as long as they have positive features. 

 Once the master has been fabricated, the replication of microfluidic features can 

be performed in the final device polymer.  The replication method is generally 

determined by factors such as cost, the number of devices required, and most 

importantly, the physical properties of the polymer.  Hot embossing, micro-

thermoforming, and injection molding all require thermoplastic polymers, while soft 

lithography is generally performed using thermoset polymers, although thermoplastics 

can be used.  These two classes are used to group polymers based on their general 

behavior at elevated temperatures, and simply put, will soften and eventually flow at 

high temperatures, while thermosets will decompose before softening appreciably when 

heated.  This fundamental difference in thermal properties is determined by the 

chemical structure of the polymer.  Thermoplastics are composed of linear polymer 

chains with no covalent bonding between them.  Upon heating, the increased molecular 

motion of the individual chains allows them to move past each other easily which 

causes the material to become malleable.  Thermoset polymers have connections 

between their linear portions called crosslinks, which restrict the large-scale molecular 

motion induced by heating and prevents the softening of the material.  Some examples 

of thermoplastic polymers used to fabricate microfluidic devices are cyclic olefin 
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copolymer,149-154 poly(vinyl chloride),155-158 polystyrene,152, 154, 159-161 polycarbonate,152, 

157, 159, 162-163 and poly(methyl methacrylate).152, 157, 159, 162-167  A variety of factors can 

influence which thermoplastic material is chosen to construct devices including thermal 

properties, mechanical properties, optical properties, surface modification strategies, 

and personal preference.  Some examples of polymers used to fabricate microfluidic 

devices using soft lithography are polyurethane-methacrylate (PUMA),168-170 thermoset 

polyester (TPE),171-173 Norland Optical Adhesive 81 (NOA81),174-177 and 

poly(dimethylsiloxane) (PDMS).106, 148, 178-179 

 Hot embossing, micro-thermoforming, and injection molding all require 

thermoplastics since they use heat to imprint microfluidic features into a solid polymer 

substrate.  Hot embossing was first introduced in the late 1990s and can be performed 

using a master mold or a wire.143, 180  Both methods use elevated temperatures to soften 

a polymer in order to press a design into the surface.  The wire method uses a heated 

wire that is pressed into the plastic to produce channels.  While this method is relatively 

inexpensive and easy to perform, it can only produce devices with simple designs with 

poor reproducibility.141  Using a master mold is much more common and can produce 

complex designs with high reproducibility.  Once the master has been fabricated, it and 

the polymer are placed into the embossing machine and heated to a temperature where 

the polymer softens.  The master and the polymer are then brought into contact under 

pressure and held there for a few minutes to transfer the positive design form the mold 

into the polymer.  The assembly is cooled and separated to give back the master and 

the newly imprinted microfluidic device component.  Devices fabricated using this 
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method are the exact inverse of the master mold, so reproducibility is excellent and the 

quality is limited by the fidelity of the method used to fabricate the master.123   

 Micro-thermoforming is another replication technique that uses heat to fabricate 

polymeric microfluidic structures.  Some advantages of micro-thermoforming are short 

cycle times, light and flexible devices, and relatively low fabrication temperatures.181  In 

this technique, a thin thermoplastic polymer film is pushed or pulled into the master 

mold (which can be a positive or a negative mold) using heat to soften the plastic and 

gas pressure.  The resulting device components are composed of a thin layer of 

polymer with the microfluidic features protruding from the surface.  During the molding 

process, the portion of polymer formed into the channels is stretched into a thinner layer 

than the original starting material, so the initial thickness of the polymer needs to be 

carefully chosen so that the final product is stable and rigid enough to handle fluid 

flow.182  Injection molding is a commonly used method to fabricate many polymeric 

components on a large scale, but it has also been adapted to fabricate microfluidic 

devices.  In this process, a thermoplastic polymer is heated to the melt stage then 

injected into a heated chamber with a positive master mold at high pressure.  After 

cooling, the assembly is pulled apart to eject the molded microfluidic component and 

reset to produce another device.  This process has been used to fabricate microfluidic 

devices since the late 1990s, but due to its complexity and startup expense, it is rarely 

used at the research level.183  Early examples demonstrate some of the complexities 

associated with this technique since it is relatively easy to get replication errors if the 

mold temperature, polymer temperature, and demolding time are not carefully controlled 

and tested.184  Despite these disadvantages, injection molding is likely the technique of 
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choice to mass-produce microfluidic devices in a thermoplastic polymer due to its high 

throughput.185 

 One microfluidic device replication technique that can be used with uncured 

thermoset or thermoplastic polymers is soft lithography.  In this method, a reactive liquid 

pre-polymer is poured over the master mold and cured in place.  The master and cured 

resin are separated to give the polymeric device with the features imbedded into the 

surface.  The material used to construct the master is influenced by the final properties 

of the polymer as well as the curing conditions.  Rigid masters fabricated using 

photolithography or machining techniques are suitable for elastomeric polymers, but 

polymers that become rigid with curing would be difficult to separate from an equally 

rigid mold.  Polymer curing conditions can also affect the master mold since many 

polymers cure at elevated temperatures or using UV light.  Soft lithography was first 

developed in the 1970s as an alternative to the variety of photolithographic techniques 

used for micro-fabrication,186-188 but it has since become mostly associated with the 

production of microfluidic devices.  The “soft” portion of the name indicates that flexible 

polymeric substrates are used to make and transfer features instead of using traditional 

methods and materials.  Soft lithography methods have lower initial cost than the 

previously discussed replication techniques since they do not require any machinery, 

but they generally have a lower throughput due to the polymer cure time and lack of 

automation.  Perhaps the most beneficial characteristic of soft lithography is the ability 

to use relatively fragile molds that can be rapidly fabricated and altered since the 

replication process is generally not as stressful to the master as other methods.  The 

majority of microfluidic research is conducted in devices produced using soft lithography 
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since at the research level, device designs change frequently and relatively few 

replications need to be performed.136 

 Although other materials exist, PDMS is the dominant polymer used in soft 

lithography-based microfluidics.  This is likely due to several factors including its low 

cost, optical properties, permeability to gases, ability to replicate submicron features, 

chemical inertness, ability to bond to a variety of substrates, and since it was introduced 

into the field of microfluidics relatively early.106-107, 123, 141  Unlike most polymer materials, 

PDMS has a backbone chain composed of silicon and oxygen (see Scheme 3.2).  

Although they seem unusual, organic silicon compounds were first reported in 1863 by 

Friedel and Crafts,189 and silicone polymers have been produced commercially since 

the 1940s.190  The exact origin of PDMS is unknown, but it has been used in microfluidic 

devices since the late 1990s when Whitesides, Effenhauser, and others published 

several foundational papers.106, 148, 179, 191-194  The general structure and curing reaction 

for commercially available PDMS are shown in Scheme 3.2.  PDMS is sold as a two-

part system where one part is the viscous base polymer and the other contains a short 

oligomer.  In the curing process, the vinyl terminated polymeric chains are crosslinked 

with the silane-containing oligomers using a platinum-based catalyst to give the final 

material.  While technically both the cured and uncured forms of PDMS are 

poly(dimethylsiloxane), henceforth, PDMS will be used to refer to the cured material.  A 

typical procedure for curing PDMS involves mixing the oligomeric curing agent into the 

viscous polymer base and letting the reaction progress at elevated temperatures.  The 

ratio of the two components varies by manufacturer, but for example, a ratio of 10:1 by 

mass (base to curing agent) is used in Sylgard® 184 which is a commonly used PDMS 
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system produced by Dow Corning.  Curing of PDMS is typically done at elevated 

temperatures since room temperature curing is extremely slow (48 hours for Sylgard® 

184 and 336 hours for Sylgard® 182).  Despite its widespread use in microfluidics, 

PDMS has many shortcomings, including channel deformation due to its low elastic 

modulus, water vapor permeability, solvent adsorption, leaching of catalyst or 

oligomers, ineffective gas transport, and unstable contact angles after surface 

modification.195 

 
Scheme 3.2 PDMS structure and curing reaction 

 Alternatives to PDMS exist, but none have gained widespread acceptance.  

Recently, our group has developed a microfluidic resin system using thiol-acrylate 

chemistry that addresses many of the shortcomings of PDMS,76 but in order to convince 
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researchers to use this new material, it needs to be well characterized.  The benefits 

and shortcomings of this new thiol-acrylate material have been assessed and are 

presented here along with comparisons to PDMS.  In addition, two microfluidic devices 

using this resin system have been developed to highlight the versatility of thiol-acrylate 

chemistry and demonstrate the usefulness of a PDMS alternative. 

3.3 Thiol-Acrylate Microfluidic Resin (TAMR) Overview 

 The thiol-acrylate microfluidic resin (TAMR) developed in our group is a liquid 

two-part system that cures at room temperature in less than 24 hours.  Once the two 

parts are mixed together, the working time is typically 20 minutes, after which the 

material will no longer flow.  The cured resin is relatively hydrophilic without the need for 

surface modification, and it has a higher modulus than PDMS.  Excess thiol or acrylate 

groups can be incorporated into the material, which allows for several potential surface 

modification strategies.  This property can be exploited to adhere two pieces of resin 

with complimentary functional groups in order to fabricate microfluidic devices. 

 The first part of the two-part TAMR system contains the acrylate and the curing 

agent.  Thiol-acrylate polymerizations are frequently conducted using amines as a 

catalyst or initiator (see Scheme 1.4), but since the fabrication of microfluidic devices 

requires the resin to cure on a flat mold, a volatile amine will evaporate from the surface 

and leave it tacky.  In order to prevent this, the amine is covalently bound into the resin 

system so that it cannot evaporate.  A Michael addition between the acrylate and a 

secondary amine is performed to produce a tertiary amine, which is covalently bound to 

the acrylate molecule (see Scheme 3.3).  The Michael addition reaction does not 

require any additional solvent or reactants other than the amine and acrylate and is 
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performed at room temperature in 3 hours.  This part of the TAMR system will be 

referred to as the amine activated acrylate (X-AA), where the X will refer to the amine 

used in that particular recipe.  The second part of the TAMR system is the thiol, which is 

used without any modifications and will be referred to as its chemical name.  When the 

two parts are mixed, the polymerization reaction begins and a highly crosslinked thiol-

acrylate network will form (Scheme 3.3). 

3.4 TAMR Preparation and General Curing Procedure 

 Part one of the TAMR system, the AA, is prepared by adding an amine, usually 

diethylamine (DEA), to pentaerythritol triacrylate (PETA) in a predetermined ratio that is 

designated as the percentage of acrylate groups that will react with the amine.  For 

example, for a 20% DEA-AA, the ratio of the components would be: 

Moles of DEA

Moles of Acrylate Groups
= 20%          Eq. 3.2 

PETA was added to a sealable container, followed by the necessary mass of amine.  

The amine addition needs to be performed rapidly to avoid significant evaporation of the 

amine.  The two components were mixed well and stirred in a sealed container for at 

least three hours prior to use.  The notation used here is different from that used by 

Bounds et al. who used the mol% of amine in the PETA-amine mixture relative to 

acrylate groups.  This change was made to simplify calculations and to make the 

amount of acrylate groups consumed in the reaction more evident.  For comparison, a 

16.1% AA under the system used by Bounds et al. equates to a 19.2% AA using this 

definition. 
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Scheme 3.3 TAMR a) AA synthesis and b) curing reaction with TMPTMP 
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 The TAMR was cured by mixing the AA with trimethylolpropane tris(3-

mercaptopropionate) TMPTMP in the desired ratio.  The resin can be made using a 1-1 

thiol:acrylate group ratio or with either thiol or acrylate groups in excess.  Resin samples 

made with equal moles of thiol and acrylate groups are designated 1-1.  Samples with 

excess functional groups are designated first by the percentage excess and then which 

group is in excess.  For example, a sample containing 40% more acrylate groups 

relative to thiol groups would be designated “40% EA”, and a sample made with 20% 

excess thiol groups relative to acrylate groups would be labeled as “20% ET”.  Once the 

required amount of TMPTMP was added to the AA, the two were mixed by hand 

thoroughly.  This process frequently works air bubbles into the mixture, which need to 

be removed in order to ensure uniform samples.  The mixture was placed into a 

centrifuge tube and spun for ~2 minutes at 4,000 rpm to force out the bubbles.  The 

resin was then poured into a mold or another container to cure.  Curing was performed 

at room temperature on the benchtop unless otherwise indicated. 

3.5 TAMR Characterization 

3.5.1 Introduction 

 When researchers choose a material to fabricate and perform experiment in a 

microfluidic device using soft lithography, many important properties of the material 

need to be considered.  Many material characteristics are significant in nearly all 

devices, but some applications require specific qualities in a microfluidic resin that are 

more obscure or completely different from those needed typical examples.  While no 

one material could satisfy all requirements for every application, a microfluidic resin that 

is highly tunable in a variety of areas would be highly desirable.  The TAMR developed 



62 
 

by Bounds et al. could fit that description, but a detailed investigation into several key 

properties of the resin is needed to determine its utility to actual microfluidics users.  In 

this study, several key properties of TAMR were investigated including: the cure 

kinetics, the hydrophilicity, the water absorption, the solvent absorption, the mechanical 

properties, the bonding mechanism, and ease of use.  Each of these properties is 

important in nearly all microfluidic applications, so understanding how they relate to the 

chemical composition of TAMR will allow users to adjust the base formula to target 

whatever performance criteria they need and provide a viable alternative material in the 

field of microfluidics.   

 The curing behavior of any microfluidics resin is one of the most important 

features since it dictates the timescale on which devices can be fabricated and what 

equipment will be required.  Within this broad category, several specific qualities include 

the ease of use, the working time, the cure time, and the cure temperature.  The 

working time of a material is important since the user needs an adequate amount of 

time to mix the system and perform any other necessary tasks before pouring it onto the 

master mold.  The problems associated with having a short working time are evident 

and will generally lead to wasted material and negatively affect user experience.  While 

there are no apparent drawbacks to having a long working time, that ability generally 

increases the cure time of the material.  The cure time is extremely important since it is 

the biggest influence on the rate at which devices can be fabricated.  One of the 

benefits of soft lithography is the ability to change designs and reproduce new devices 

more quickly than with other fabrication methods, but if it takes several days for the 

microfluidic material to cure then that advantage is lost.  Lastly, the cure temperature 
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dictates if heating equipment is required, which contributes to the overall cost of the 

material and impacts ease of use. 

 The hydrophilicity of a microfluidic resin is important in every experimental 

application since it affects fluid flow through the microfluidic channels in addition to a 

number of other considerations.  If the material used to fabricate the device is 

incompatible with the fluid being pumped through the channels, increased pressure will 

be required in order to force the liquid through, which can lead to device failure, device 

deformations, equipment damage, and negatively impact ease of use.  The 

hydrophilicity of the surface could also affect the experimental performance of the 

device, for example through its adsorption behavior towards biomolecules in 

bioassays196-197 or by influencing how fluid droplets develop and behave in droplet 

generating devices.198-200  A resin where the surface properties could be easily varied or 

modified would be ideal, as various applications can require large differences in 

hydrophilicity, sometimes even within the same device. 

 The absorbance of water and other solvents by microfluidic materials is a major 

concern when choosing what material to use or what experiments can be performed 

using a given resin.  Absorbing liquids in a microfluidic experiment can alter the 

properties of the microfluidic material or create air pockets in the device that will 

interfere with the analysis.  Microfluidic devices are not only used with aqueous 

biological systems but in applications that require the use of organic solvents or 

corrosive solutions, so many materials are not compatible with every type of 

experiment.  A material that resists swelling in both organic and aqueous systems would 

be ideal and could allow for the development of new device designs and applications. 
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 The mechanical properties of microfluidic materials used in soft lithography 

replication are most important when the device is removed from the master and when it 

is in operation.  Flexible materials are easily removed from rigid masters, but will deform 

under pressure when in use inside a device, so applications involving higher pressures 

generally require a higher modulus material.  Rigid materials are usually prepared using 

a flexible master mold, but damaging the master is more likely in these cases.  One 

possible solution is to use materials that are balanced between flexibility and rigidity, but 

a better solution would be a material that could be removed from the master in a flexible 

state by then become more rigid through modification or further curing. 

 In addition to the cure time, the procedure used to bond two halves of a 

microfluidic device together can be a limiting factor in device reproducibility and 

replication time.  In order to fabricate a usable device, the channel side obtained from 

the master is typically bonded to another flat piece of resin or another material, such as 

glass.  The mechanism by which this bond is achieved varies with each microfluidic 

material, but a tight bond between the two device halves is crucial for device 

performance.  The bonding procedure must also be reproducible to avoid wasting 

material on devices that were not adhered properly.  The time and equipment needed to 

achieve bonding are also important due to their effect on overall cost and replication 

time.  A material that can be bonded together quickly, reproducibly, and without the 

need for special equipment would be ideal for microfluidics. 

 Ease of use may be a largely subjective quality, but its importance to whether or 

not a material gets used is vital and should not be underestimated.  PDMS, for example, 

is easy to use since it is a two-part system with a reasonable mix ratio (10:1 by weight) 
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and can be handled under normal atmospheric conditions.  A resin with revolutionary 

properties may still fail to see use if, for example, it required mixing four parts in a 

100:1:0.5:0.0001 ratio under an inert atmosphere.  The cost, toxicity, cure time, working 

time, and bonding procedure all contribute to this quality as well. 

 In the following study, the properties which correlate to the microfluidic resin 

characteristics discussed above were determined for TAMR and compared to PDMS, 

which is the most commonly used material for soft lithography-based microfluidics.  

Along with the data, some qualities of TAMR relating to ease of use, general 

observations, and shortcomings will be discussed.   

3.5.2 Materials and Methods 

Materials 

 PETA stabilized with 300-400 ppm MEHQ was obtained from Alfa Aesar.  

TMPTMP was purchased from Evans Chemetics LP, Sigma Aldrich, and TCI America.  

DEA ≥99.5% was obtained from Alfa Aesar and Sigma Aldrich.  Lauryl acrylate 90% 

(LA), poly(ethylene glycol) methyl ether acrylate (PEGMEA), triethylamine ≥99% (TEA), 

diethanolamine ≥98.5% (DEOA), and N-ethylethanolamine ≥98% (EEOA) were 

obtained from Sigma Aldrich.  A Sylgard® 184 silicone elastomer kit was purchased 

from Electron Microscopy Sciences.  See Scheme 3.4 for structures. 

TAMR Preparation and Curing 

 The TAMR was prepared according to the general procedure described above.  

Curing of the TAMR was conducted following the standard protocol, while where the 

resin was cured varied by application and will be specified below. 
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Scheme 3.4 Reagent structures 

PDMS Curing 

 PDMS samples were made by adding the curing agent to the viscous base in a 

ratio of 1:10 by weight.  The mixture was stirred well and placed under vacuum for 

several minutes to remove air bubbles.  The PDMS was poured into the curing vessel 

and placed in an oven set at 70 °C to cure overnight.   

TAMR Cure Kinetics 

 The TAMR was prepared according to the general procedure described above.  

The necessary amounts of AA and TMPTMP were combined in a weigh boat and mixed 

well by hand.  A sample of the resin was removed and placed in a liquid cell on a Pike 
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Miracle single-bounce diamond attenuated total reflectance (ATR) cell attached to a 

Bruker Tensor 27 FTIR.  The instrument was set to acquire a spectrum at regular time 

intervals (every minute for 2 hours or every 5 minutes for 15 hours).  Data was acquired 

between 650 and 4000 cm-1 with a resolution of 4 cm-1, 16 scans were taken for each 

spectrum, and all of the reactions were performed at room temperature.  Once the FTIR 

data was acquired, the data was processed using Bruker’s FTIR software package, 

Opus.  A 9-point smooth was performed on the spectra and baseline correction was 

done using 10 iterations of the concave rubber band correction with 64 baseline points.  

After the smooth and baseline correction, the area under the peaks of interest was 

determined using the built in integration program.  The bounds for each peak were 

determined visually and method B was used in the Opus integration protocol.  

Conversion of functional groups was determined according to Equation 2.1. 

Water Contact Angle Testing 

 The TAMR was prepared and mixed according to the standard procedure 

described above.  The resin was cured in polystyrene Petri dishes with a diameter of 5.5 

cm or on a standard glass microscope slide.  Once the resin had cured for the desired 

period of time, individual pieces were cut out of each dish.  The sample pieces were 

placed on the stage of an AST Products VCA Optima contact angle goniometer and a 1 

μL drop of nanopure water from a Barnstead NANOpure Diamond water system was 

placed on the surface at room temperature.  After 10 seconds, the water contact angle 

was determined.  Two contact angles were measured for each water droplet, three 

droplets were tested per sample, and three samples were used for each formulation for 
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a total of 18 contact angle measurements.  The results were averaged, and the 

standard deviation was reported as error. 

Water Absorption Testing by Mass 

 A variety of TAMR formulations were prepared as above and cured for 24 hours 

in a polystyrene Petri dish.  Cylindrical pieces with a diameter of 1 cm and a height of ~4 

mm were punched out of the TAMR using a biopsy punch.  These samples were 

labeled, weighed, and submerged in distilled water.  At regular time intervals, the 

samples were removed from the water, dried to remove surface moisture, weighed 

again, and placed back into the water.  The visual appearance of the TAMR was noted 

as well. 

Solvent Adsorption Testing by Size 

 TAMR samples were prepared and cured in cylindrical molds with a diameter of 

3.5 mm and a height of 1 mm according to the standard procedure described above.  

After 24 hours of curing, the samples were removed from the mold, and the diameter of 

each sample was measured using a Nikon Eclipse 50i optical microscope and the NIS 

Elements software package.  The samples were then immersed in solvent and stored at 

room temperature for 24 hours.  After the soaking period had elapsed, the samples 

were placed in a glass Petri dish while remaining under solvent.  The diameter of the 

samples was measured again using the microscope while the resin pieces were 

immersed in solvent.  This was done to ensure there was no solvent evaporation out of 

the samples that would lead to changes in diameter and was adopted from a procedure 

used by Lee et a. to study the swelling of PDMS.178 
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Tensile Testing 

 TAMR was prepared according to the procedure above and cured in tensile test 

sample molds.  PDMS was mixed in a 10:1 ratio of base to curing agent by weight, 

stirred well, placed under vacuum to remove bubbles, and poured into the tensile 

sample molds.  The PDMS samples were cured overnight in an oven set to 70 °C.  The 

molds were constructed from acrylic (PMMA) with the type 1 dimensions specified 

under ASTM D638.  The molds were sprayed with a thin layer of boron nitride mold 

release to facilitate removal of the sample.  Once cured, the samples were removed 

from the mold and placed into the grips of an Instron 5969 universal testing machine for 

analysis.  A standard tensile test was performed with an extension rate of 5 mm/min, 

and the stress and strain on the sample were determined using Instron’s Bluehill 

software package.  The Young’s modulus of the sample was reported as the slope of 

the initial linear portion of the stress-strain curve. 

Bonding Scheme Testing 

 The bonding of TAMR to itself was tested using a simple microfluidic device 

design.  TAMR was prepared and mixed according to the standard procedure described 

above.  The channel half of the device was constructed by curing TAMR on a master 

mold made using silicon wafer and SU-8 by standard photolithography methods.  The 

device pattern had 3 parallel channels which were 650 μm wide and 150 μm tall.  The 

spacing between the center and outer channels was maintained at 450 μm for 1 cm.  

The flat portion of the device was fabricated by curing TAMR in a polystyrene Petri dish.  

Both the channel and flat pieces were cured for 1 hour in their respective molds, after 

which the TAMR was removed.  Inlet and outlet holes were drilled at the end of each 
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channel using a 1/16” drill bit, and the resulting dust was blown away with compressed 

air.  The channel side of the device was then slowly brought into contact with the 

polystyrene side of the flat portion of the device.  The two halves were gently pressed 

together to ensure a good seal and exclude air pockets.  The devices were left to finish 

curing at room temperature for 24 hours unless otherwise stated.  After curing, the 

devices were plumbed using 1/16” outside diameter polytetrafluoroethylene (PTFE) 

tubing, and the connections were sealed at each port using a 5-minute epoxy.  The 

center channel of the device was connected to a syringe filled with dyed water which 

was placed in a syringe pump.  A 10 μL/min flow was introduced into the channel and 

steadily increased until failure occurred.  The device was visually monitored for leaks, 

which would likely occur between the center and outside channels. 

Oxygen Plasma Treatment 

 TAMR and PDMS samples were cut out and removed from a polystyrene Petri 

dish.  The samples were laid on the sample tray polystyrene-cured side up and placed 

in the sample compartment of a Harrick Plasma PDC-32G plasma cleaner.  The 

chamber was sealed an evacuated of air for 3 minutes.  Next, the needle valve was 

opened and the plasma generator was turned on.  The power used and the treatment 

time were varied and will be indicated below.   

TAMR Surface Modification 

 19.2% DEA-AA samples made with 40% ET according to the standard procedure 

and cured for one hour at room temperature in a PS Petri dish.  Samples were cut out of 

the Petri dish and then immersed in a modifying acrylate containing 1 wt% 

trimethylamine (TEA) to ensure the thiol groups at the surface could be deprotonated 
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and add to the acrylate.  The samples were left in the acrylate solution for 1 hour, then 

removed and washed with water then acetone, twice each.  The samples were left to 

finish curing at room temperature for at least 24 hours. 

3.5.3 TAMR Variables 

 One of the things that makes TAMR so versatile is the ability to alter several key 

aspects of the resin quickly and easily, including: the amine concentration in the AA, the 

chemical structure of the amine in the AA, the ratio of thiol to acrylate groups, and the 

curing conditions.  Previous work has shown that altering the amine concentration in the 

AA affects resin strength and gel time, but the other variables have not been extensively 

tested.76  The effect that these additional changes have on the properties of TAMR was 

investigated and will be discussed in the sections to follow.   

3.5.4 TAMR Cure Kinetics 

 The curing time and conditions are important factors to consider when choosing 

what material to use for making microfluidic devices.  PDMS is typically cured at 

elevated temperatures for extended periods of time (65 °C for 8 hours for example) 

since the crosslinking reaction is extremely slow at room temperature.  TAMR is able to 

cure at room temperature within a matter of hours, but recipe and curing conditions can 

affect this process.  A detailed profile of the curing behavior of any microfluidic resin is 

essential information, and ideally, the curing behavior would be tunable.  The curing 

reaction for a variety of TAMR formulations was monitored using FTIR to assess how 

recipe changes and curing temperature affect the kinetics.  Figure 3.1 shows an 

example plot of functional group conversion versus time for a 19.2% DEA-AA 1-1 TAMR 

sample.  Full conversion was achieved after 10 hours of curing at room temperature 
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with a final acrylate conversion of ~99% and a thiol conversion of ~88%.  The difference 

between thiol and acrylate conversion is likely due to impurities in the TMPTMP, as 

discussed in the previous chapter.  This difference can be addressed by adding excess 

acrylate groups, and Figure 3.2 demonstrates this by showing conversion profiles for 

19.2% DEA-AA before and after the addition of 10% excess acrylate.  Since the 

conversion profiles of thiol and acrylate line up after the addition of 10% EA, TMPTMP 

contains ~10% more thiol groups than the theoretical molecular weight and functionality 

predict. 

 
Figure 3.1 Conversion profile for 19.2% 1-1 TAMR 
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in the 11.1% resin.  Figure 3.3 shows the conversion profiles for 19.2% DEA-AA with 

40% excess thiol and acrylate groups.   

 
Figure 3.2 Conversion profiles for a) 19.2% 1-1 TAMR and b) 19.2% 1-1 TAMR with 

14% EA groups to achieve 1-1 conversion 
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 The 40% ET samples reached full conversion in ~4 hours with 100% acrylate 

conversion and 60% thiol conversion.  The 40% EA TAMR reached 97% thiol 

conversion with 69% acrylate conversion and leveled off in ~6 hours.  This result may 

seem odd at first, since the 40% ET sample gave nearly ideal conversion of both thiol 

and acrylate.  However, since TMPTA is mostly pure, when it is the limiting reagent the 

corresponding thiol conversion should be in line with the theoretical value; whereas, 

when the thiol is the limiting reagent, the acrylate will react with however many thiol 

groups are present.  This indicates that the actual thiol content present in TMPTMP 

samples is ~7-10% higher than the theoretical value, which is consistent with previous 

observations. 

 While a variety of TAMR formulations have been shown to cure efficiently at 

room temperature, the utility of the resin would be increased if the cure time could be 

shortened without sacrificing performance.  Curing TAMR at elevated temperatures 

should decrease the cure time by increasing the rate of the polymerization reaction.  In 

19.2% DEA-AA 1-1 TAMR, increasing the cure temperature from room temperature to 

50 °C decreased the cure time from 10 hours to 3 hours.  Figure 3.4 shows the thiol and 

acrylate signals at several time points for a 19.2% 1-1 sample that was cured in an oven 

at 50 °C.  This reduction in cure time is impressive, and these mild conditions should be 

easy to reproduce in any laboratory setting.  Raising the cure temperature more should 

decrease the cure time even further, so it is conceivable that TAMR could be fully cured 

in one hour or less. 
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Figure 3.3 Conversion profiles for a) 40% ET and b) 40% EA 19.2% TAMR 
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Figure 3.4 FTIR acrylate peaks for 19.2% 1-1 TAMR a) at 2 hours of curing at room 

temperature and 60 °C and b) over time at 60 °C 
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3.5.5 Hydrophilicity of TAMR 

 The hydrophilicity of materials used to construct microfluidic devices is of critical 

importance for a variety of applications.  The most obvious examples that require 

aqueous conditions are biological systems, but other applications, such as droplet-

generation, use water as well.  Due to the high methyl group concentration at the 

polymer surface, cured PDMS has a water contact angle of ~110°, which is quite 

hydrophobic.201  Modification of the surface using oxygen plasma is routine and can 

decrease the contact angle significantly by adding oxygen species to the silicon atoms 

located near the surface of the PDMS.  However, immediately after plasma treatment 

the contact angle will start rising over time and will return to nearly the original value in a 

process called hydrophobic recovery,195, 202-204 which is caused by the diffusion of short, 

uncrosslinked PDMS oligomers to the surface of the material.205-206  In contrast, TAMR 

has a stable hydrophilic surface due to high ester group and amine concentrations in 

the polymer.76  Previous work focused on one DEA-AA concentration, so gathering 

more data with different TAMR variations was needed.   

 The hydrophilicity of TAMR surfaces was measured using water contact angle 

testing.  The samples were cured in a polystyrene (PS) Petri dish, which exposes one 

side of the resin to air and the other to PS during the polymerization process.  The side 

where the water contact angle measurements were taken will be indicated in every 

case.  Figure 3.5 shows the effect of amine concentration on the water contact angle for 

several TAMR formulations (PS side) at full cure.  As expected, the 19.2% DEA TAMR 

has a lower contact angle than the 11.1% due to the increase in polar amine groups 

throughout the polymer matrix.   
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Figure 3.5 Water contact angles for 19.2% and 11.1% 1-1 TAMR on the PS surface 
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thiol likely showed a decrease in contact angle due to the polarity of the unreacted thiol 

group.  All of the samples had contact angles significantly lower than unmodified PDMS, 

but the PS side of the 10% 1-1 samples did have a surprisingly high contact angle of 

~96°.   

 The water contact angles were also measured for the 19.2% samples after 1 

hour of curing instead of 24, and the results are displayed in Figure 3.6a.  At 1 hour, the 

1-1 40% EA 40% ET
0

20

40

60

80

100

120

 

 

W
a
te

r 
C

o
n

ta
c
t 

A
n

g
le

 (
°)

Formula

 11.1%

 19.2%



79 
 

1-1 sample still showed the highest contact angle at ~68°, but the difference between it 

and the samples with excess functional groups was smaller than at 24 hours.  When 

comparing the 1 and 24-hour contact angles, there was a distinct difference between 1 

and 24 hours of curing in the 1-1 samples (~14°), while the samples with excess 

functional groups essentially remained the same.  The 11.1% DEA-AA samples were 

also tested, except due to the slower rate of reaction with the lower amine 

concentration, the contact angles were measured at 2 hours of curing to ensure the 

resin had fully gelled.  Figure 3.6b shows that for the 11.1% samples, all three 

formulations showed an increase in contact angle with reaction time, and as with the 

19.2% sample, the 1-1 sample increased the most (~24°).  Although in both cases the 

water contact angle of the TAMR is increasing with reaction time, it is unlikely that the 

conversion from monomer to polymer has an appreciable change on the overall 

hydrophilicity of the material.  Instead, the change in contact angle is due to longer 

exposure times to the curing surface, which in this case is polystyrene. 

 In order to test the effect of curing surface on the contact angle, the water contact 

angle of the side of the resin exposed to air was determined for the samples at both low 

cure time and full conversion.  Figure 3.7 contains the air side contact angle results for 

both the 11.1% and 19.2% samples with 1-1, 40% EA, and 40% ET variations at the 

different cure times.  It is obvious that the curing surface plays an integral role in both 

the contact angle of the material and how it changes over time since for the air-side of 

the samples, the contact angle decreased with cure time.  This makes sense because 

the PS Petri dish surface has a relatively hydrophobic water contact angle of ~80°, and 

the air is more polar by comparison.   
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Figure 3.6 Water contact angles for a) 19.2% and b) 11.1% TAMR formulations over 

time on the PS surface 
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Figure 3.7 Water contact angles for a) 19.2% and b) 11.1% TAMR formulations over 

time on the air side 
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 During the curing process, the hydrophobic segments of PETA and TMPTMP 

can orient themselves to be in contact with the PS while the more hydrophilic ester 

segments would be on the interior of the sample.  As cure time increases, this 

orientation process continues, which increases the contact angle.  The air-side of the 

resin could go through a similar process, but other possible explanations for the 

decrease in contact angle over time are oxidation processes or absorption of water 

vapor. 

 To investigate the effect of a hydrophilic curing surface on the TAMR contact 

angle, 19.2% 1-1 samples were cured on a glass microscope slide.  The surface of the 

slide was determined to have a water contact angle of ~21°, which is due to the high 

oxygen concentration in the glass.  Figure 3.8 shows the contact angle for 19.2% TAMR 

cured for 1 hour and 24 hours on the hydrophilic glass surface.  At full cure, the contact 

angle is ~55° when cured on glass, which is nearly 30° lower than when the same 

sample was cured on the hydrophobic PS surface.  As with the previous examples, 

there was a slight decrease in the contact angle with increased exposure time to the 

surface.  The ability to vary contact angle by nearly 30° by altering the curing surface is 

extremely powerful since the same resin formulation could be used to achieve a variety 

of results.  Larger differences in contact angle could potentially result from curing TAMR 

on surfaces with more extreme contact angles, such as fluorinated polymers or oxygen 

plasma modified glass surfaces, and the upper and lower contact angle limits for TAMR 

likely vary by resin composition.  This property could be exploited to use TAMR as an 

adaptive surface that would take on a contact angle more compatible with whatever it 

was placed in contact with. 
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Figure 3.8 Water contact angles for 19.2% 1-1 TAMR cured on glass over time on the 

glass surface 
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Figure 3.9 Mass change over time for a) 19.2% and b) 11.1% TAMR samples soaking in 

water (insets show absorption at low soaking times) 
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 The ET samples likely have the lowest crosslink density due to the excess of 

monofunctional mercaptopropionic acid present in TMPTMP.  The EA samples have 

lower crosslink density than the 1-1 samples due to the unreacted acrylate chain ends 

present in the network at full cure.  Eventually all of the samples reached a maximum 

swelling amount then started to lose mass, with some samples decreasing below their 

initial masses.  The decrease in mass is due to the hydrolysis of the ester bonds 

present in the polymer matrix, which is catalyzed by the incorporated amine.  This 

explains why the 40% EA samples degraded the fastest followed by the 1-1 then the 

40% ET since that is the order of decreasing amine content.  Overall, the 11.1% 

samples swelled less than the 19.2% samples due to their increased crosslink density 

and decreased hydrophilicity. 

 The physical appearance of the TAMR samples was noted during the swelling 

data collection process.  Over time, all of the samples became less transparent and 

started to cloud.  The rate and intensity of the clouding paralleled the swelling rate for 

each sample.  At 24 hours, the 19.2% 40% ET TAMR samples were noticeably more 

cloudy, and by 4 days they were completely opaque.  At 8 days, all of the samples were 

cloudy, but both the 1-1 samples and 11.1% 40% EA samples were still translucent 

while the ET samples and the 19.2% 40% EA samples were opaque.  At 28 days, all of 

the samples except the 11.1% 1-1 were opaque, but it eventually clouded fully between 

42 and 90 days of soaking in water.  The 11.1% samples were overall more resistant to 

clouding compared to the 19.2% samples due to the slower rate of water absorption.  

Despite this clouding behavior, except for a long-term aqueous study lasting more than 

48 hours, each of the TAMR formulations tested remains usable. 
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 An interesting phenomenon that was observed during the TAMR swelling and 

clouding studies was the formation of disc-shaped droplets inside of the resin pieces.  

Figure 3.10 shows several examples of these features imbedded in polymer samples.   

 
Figure 3.10 Disc-shaped water droplets in TAMR where the disc diameter is a) ~2-5 μm 

in 19.2% 40% ET and  b-d) ~12-15 μm in 19.2% 40% EA 
 
 Generally, excess acrylate samples gave the most disc features, followed by 1-1 

then excess thiol samples, which follows the decrease in amine concentration in the 

resin samples.  The discs form slowly while the polymer is immersed in water and 

appear to increase in concentration before being obstructed by the clouding of the resin.  

Figure 3.11 shows a sequence of disc formation in a 19.2% 40% EA TAMR sample 

soaked in water.  Samples with increased amine content (35.5%) showed some disc 

formation, but they were dominated by the overall clouding of the resin.  When water 
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was mixed into the liquid resin before gelation, most of the water exists as large 

droplets, but this could be dependent on how aggressively the water is incorporated.  

The droplets and clouding can be removed by heating the resin samples in an oven to 

drive off the accumulated water.  While a detailed investigation into this process was not 

performed, disc-shaped water pockets have been previously observed in a variety of 

polymers.207-211   

 
Figure 3.11 Evolution of water droplets over time in 19.2% 40% EA TAMR a) 2 hr, b) 24 

hr, c) 48 hr, d) 120 hr, e) 168 hr, and f) 288 hr 
 
 Polycarbonate, polyester, and epoxy resins have been shown to develop disc-

shaped features upon exposure to water.  The driving force behind the disc formation in 

epoxy and polyester systems was identified to be water-soluble impurities present in the 

polymer matrix, and the disc formation process could be accelerated by the addition of 

salts such as KCl.  A similar process is likely occurring in the TAMR samples where the 

incorporated amine is acting as the water-soluble “impurity” and driving the disc 
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formation since the number of discs appears to correlate well with the amine 

concentration. 

3.5.7 TAMR Solvent Absorption 

 PDMS is known to swell dramatically in some solvents, especially nonpolar 

organic compounds and amines.122, 178  As microfluidic applications involving organic 

solvents, such as the preparation of microparticles, become more popular, the need for 

materials that will not swell in these solvents increases  The large number of methyl 

groups present in PDMS makes it hydrophobic, and although it is a thermoset, the 

crosslink density is low enough that it can swell significantly.  TAMR should perform 

much better in nonpolar solvents due to its more hydrophilic nature, and it should 

perform better overall since it is highly crosslinked.  A previous study showed that the 

mass increase of TAMR submerged in hexane was ~0.25% at 24 hours, while PDMS 

showed a mass increase of ~100%.  In trimethylamine, PDMS swelled by nearly 250% 

in 24 hours while TAMR only swelled by ~0.7%.76  While these results look promising, a 

wider variety of solvents needed to be screened to determine if TAMR preforms as 

expected. 

 The swelling behavior of TAMR in a variety of solvents is reported as the swelling 

ratio, which can be determined using the following equation: 

S =
D

D0
          Eq. 3.3 

where S is the swelling ratio, D is the sample diameter after 24 hours of soaking, and D0 

is the initial sample diameter.  Table 3.1 contains the swelling ratios for 19.2% 1-1 

TAMR in a variety of solvents and the swelling ratio for PDMS in those same solvents 

as reported by Lee et al.178   
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Table 3.1 Swelling Ratios for 19.2% 1-1 TAMR and PDMS 

Solvent TAMR Swelling Ratio PDMS Swelling Ratioa 

Water 1.01 ± 0.01 1.00 

1 M HCl 1.05 ± 0.01 1.02 ± 0.01b 

1 M NaOH 0.99 ± 0.01 1.01 ± 0.01c 

Diisopropylamine 1.02 ± 0.01 2.13 

Acetone 1.16 ± 0.01 1.06 

Toluene 1.12 ± 0.01 1.31 

a) Values reported by Lee et al.178  b) 12 M HCl used  c) 10 M NaOH used 

 Despite the long-term swelling behavior of TAMR in water, the swelling ratio of 

TAMR is comparable to PDMS in water at 24 hours.  To test the stability of TAMR under 

corrosive conditions, samples were immersed in 1 M HCl and 1 M NaOH.  The HCl 

samples had a higher swelling ratio than pure water; however, NaOH gave a swelling 

ratio slightly less than one, which means the samples decreased in size.  One possible 

explanation for this could be the neutralization of charged, protonated amines in the 

TAMR network by the stronger –OH base which led to a reduction in size due to the 

elimination of charge-charge repulsions.  The swelling ratios for diisopropylamine and 

toluene are significantly lower in TAMR compared to PDMS, while the swelling ratio for 

acetone is higher.  This is likely due to the polar nature of TAMR compared to PDMS.  

Although the TAMR samples did not swell dramatically in acetone, two of the six 

samples tested fractured in half during the testing process.  One possible explanation is 

that a prior defect in those samples propagated as the network swelled.  Overall, TAMR 

is more resilient to solvent swelling than PDMS, especially over 24 hours, but long-term 

exposure to the HCl or NaOH solutions will likely cause fairly rapid degradation of the 

material due to hydrolysis of the ester groups.   
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3.5.8 TAMR Mechanical Strength 

 The structural integrity of a microfluidic material is important in both the operation 

and construction phases of device use.  When performing microfluidic experiments, the 

material used to fabricate the device must be able to withstand the pressures applied to 

the channel without failing or deforming.  During the construction and assembly phase, 

the material should be tough enough to survive removal from the master mold, having 

tubing connected, the bonding procedure, and general handling by users.  Elastomers 

like PDMS are ideally suited for soft lithography fabrication using rigid masters, like 

silicon wafers, since they can be removed from the mold easily, but their flexibility 

hinders their use for higher pressure applications where they will deform 

substantially.122  Other microfluidic materials used for soft lithography, like PUMA, have 

high elastic moduli, but this means that they need to be cured on a flexible mold, like 

PDMS, instead of a silicon wafer.  This requires an addition step in the mold making 

process compared to PDMS replication.  A resin that is flexible enough to remove from 

a rigid mold while hardening to resist deformation would be ideal.  TPE is an example of 

such a resin since it can be partially cured by UV exposure, removed from a rigid mold, 

then fully cured to give a stiff polymer.  TAMR can also be removed from a rigid mold in 

a partially cured state then reach full cure over time to gain strength, which is primarily 

due to the high degree of crosslinking present in the system.  The mixture will gel at 

relatively low conversion due to the high average functionality of two trifunctional 

monomers, which allows it to be removed from the mold, but the strength will continue 

to increase as conversion increases with time.   
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 The elastic modulus of several TAMR formulations was determined at both low 

cure and full cure.  Figure 3.12 contains the elastic modulus for both 19.2% and 11.1% 

TAMR with 1-1, 40% EA, and 40% ET formulations.   

 
Figure 3.12 Elastic modulus for 19.2% & 11.1% TAMR formulations 
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moduli that are significantly higher than PDMS, which was determined to have an 

elastic modulus of 1.21 ± 0.05 MPa for the recommended 10:1 cure ratio.  The formulas 

containing excess groups have lower moduli than the 1-1 samples due to the overall 

lower crosslink density associated with the presence of a significant portion of 

unreacted groups in the polymer matrix, but all of the samples had higher moduli than 

1-1 40% EA 40% ET

0

2

4

6

8

10

12

 

 

E
la

s
ti

c
 M

o
d

u
lu

s
 (

M
P

a
)

Formula

 11.1%

 19.2%



92 
 

PDMS.  The 40% ET samples had a lower modulus than the excess acrylate samples 

due to the lower crosslink density produced by the monofunctional mercaptopropionic 

acid impurity present in TMPTMP.  In order to see what effect the small difference in the 

final thiol and acrylate conversions had on the modulus of the cured TAMR, 14% EA 

groups were added to a 19.2% 1-1 sample.  Using FTIR conversion plots of samples 

made using those same ratios, it was determined that 14% EA groups was enough to 

give a true 1-1 thiol-acrylate group ratio.  The modulus of samples made using the true 

1-1 ratio was found to be 8.5 ± 0.3, which is slightly higher than the unmodified 19.2% 

1-1 samples.  The increase in modulus is not dramatic since the monofunctional 

impurities are still present to reduce overall crosslinking density, but adjusting the 

formula to give a true 1-1 ratio is a viable way to gain a modest increase in modulus.   

 Figure 3.13 shows the elastic moduli for both amine concentrations at 1 and 24 

hours of curing for all three formulations.  Although the samples completely gel and can 

be handled easily, the modulus at 1 hour of curing was considerably lower than the 

modulus at 24 hours for each sample, which facilitates easy removal of the resin from 

rigid masters.  As shown earlier, TAMR can also be cured at elevated temperatures to 

speed the polymerization reaction.  In order to confirm that the heating process did not 

affect the structural properties of the resulting material, the elastic modulus was 

determined for 19.2% 1-1 TAMR cured for 3 hours at 50 °C.  When cured for 24 hours 

at room temperature, the TAMR had an elastic modulus of 8.09 ± 0.09 MPa, and when 

cured for 3 hours at 50 °C, the resin had a modulus of 8.1 ± 0.2 MPa.  This confirms that 

the increased temperature sped up the reaction rate while not affecting the mechanical 

properties of the resulting polymer network. 
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Figure 3.13 Elastic modulus for a) 19.2% and b) 11.1% TAMR formulations over time 
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 Several small modifications were performed on the 19.2% TAMR system in an 

attempt to raise the modulus.  First, for the 40% EA sample, instead of using more 

19.2% DEA-AA to raise the acrylate content to 40% above the thiol group content, 

unaltered PETA was used.  This should increase the modulus due to the higher average 

functionality in the unmodified PETA compared to the AA mixture where 19.2% of the 

acrylate groups have been reacted with an amine.  Figure 3.14a gives the results for the 

typical 19.2% 40% EA sample and one prepared using unmodified PETA.  While the 

results are far from dramatic, substituting PETA for the DEA-AA gave a modulus 

increase of 13.3%.  Next, instead of using DEA as the amine in the AA, EEOA and 

DEOA were used in an attempt to add hydrogen bond donors to the polymer system 

and increase the modulus.  While TAMR contains an abundance of hydrogen bond 

acceptors due to the ester group associated with each thiol and acrylate, there are 

relatively few hydrogen bond donors.  Figure 3.14b compares the modulus for the 

19.2% AAs using DEA, EEOA, and DEOA.  Switching from DEA to EEOA (adding one 

hydroxyl group) gave a modest modulus increase of ~10%.  Adding a second hydroxyl 

group by switching to DEOA caused a sharp drop in the modulus of ~20% instead of the 

expected increase, but in addition to the low modulus, the DEOA samples were cloudy 

upon curing even though the AA mixture was clear.  This is likely due to the hydrophilic 

DEOA promoting the AA to absorb a large amount of water vapor from the air which 

phase separated as the polymerization occurred and caused the cloudiness.  As seen in 

a variety of other polymer systems,210, 212-213 the excess water domains throughout the 

polymer matrix led to a reduction in elastic modulus through the formation of 

microcavities which caused premature fracturing of the polymer.   
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Figure 3.14 Elastic modulus for 19.2% a) 40% EA TAMR made with excess PETA and 

b) 1-1 with different amine AAs 
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3.5.9 TAMR Bonding Strength and Mechanism 

 Bonding strength is an important characteristic of any microfluidic material due to 

the high pressures and small bonding areas present in many devices.  PDMS is 

typically bound to glass or itself using an oxygen plasma treatment, which facilitates the 

formation of Si-O-Si linkages between the two surfaces.  TAMR can bond to itself by 

incorporating excess functional groups into each side of the device and bringing them 

into contact.  Earlier work has shown that the bond strength between the two surfaces 

increases with increasing excess functional group content, and the bonding mechanism 

was theorized to be an interfacial thiol-acrylate reaction between groups on the 

opposing surfaces.76  In order to confirm this and investigate what conditions are 

important for achieving a strong bond, several TAMR formulas were used to fabricate a 

series of test devices.  Four devices were fabricated per test variable, so the 

reproducibility of device fabrication will also be evaluated.  The first device tested was 

constructed using 19.2% DEA-AA TAMR with 40% EA groups for the channel half and 

40% ET for the flat half of the device.  The original device fabrication procedure called 

for a weight to be placed on top of the device after the two halves were put together, so 

in order to test if this was necessary to get a strong bond between the device layers, the 

weight was omitted during the curing process.  Of the four devices constructed, three 

were fully functional.  In the one nonfunctional device, a piece of debris, likely from the 

hole drilling process, was trapped between the device halves and spanned the gap 

between the center and one of the outside channels.  This caused an inadequate seal 

between the center and outside channels and so fluid crossed over the channel 

boundary at this point.  This method of failure is due to operator error and can be 
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prevented by more thorough dust removal with compressed air and device inspection 

before bonding.  The other three devices performed impressively and were able to 

withstand 10 mL/min of flow without failing, which was the maximum possible flow rate 

with the syringe pump.  One of the devices was tested on another syringe pump and 

was able to handle 26 mL/min without failing.  Clearly compressing the two device 

halves during the bonding process is not necessary to achieve a strong bond, which is 

important for devices with small features that could be damaged easily.   

 The effect of the amine content in the AA on the bond strength between TAMR 

layers has not been previously investigated.  Another set of test devices was fabricated 

using 11.1% DEA-AA to determine if the lower amine content would affect the device 

strength.  All four of the test devices were functional and each withstood the maximum 

flow rate of 10 mL/min without failure.  One device was fabricated and tested only 30 

minutes after the bonding procedure was performed.  This device was able to withstand 

10 mL/min but failed after fluid was manually forced through the channel.  The 

importance of having a fluid tight channel even when the TAMR has not fully cured will 

be discussed in Section 3.5.10. 

 As shown in a previous section, TAMR can be fully cured in three hours at 50 °C 

without affecting the mechanical properties of the finished material.  While this is an 

important observation, an even more important test is to determine if devices can be 

fabricated in this manner instead of waiting 24 hours for bonding to occur.  Four devices 

were fabricated by curing the halves at room temperature for the first hour, preparing 

and bonding the two halves, then finishing the cure at 50 °C for three additional hours.  

All four devices were useable and withstood 10 mL/min like the 19.2% devices cured at 
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room temperature for 24 hours.  This cuts the fabrication time for a device from 24 

hours down to 4 hours or less, which means devices can be fabricated and used in the 

same day, and even faster fabrication times are likely possible if higher cure 

temperatures were used.  The initial one-hour cure before removing the device halves 

from the mold and performing the bonding procedure could be done at elevated 

temperatures to decrease the time required, but the time savings would likely not offset 

the potential problems, such as uneven curing due to temperature variances and 

overshooting the optimal resin cure window.   

 The increase in bond strength with increasing functional group excesses 

observed in a previous study76 is compelling evidence that suggests the TAMR 

adhesion mechanism is in fact covalent bonding between the complimentary functional 

groups on each surface, but changing the concentration of excess functional groups 

also changes other resin properties.  Examples of extremely strong adhesion between 

surfaces without covalent bonding are a common phenomenon seen in adhesives like 

poly(vinyl acetate) glues.  This type of adhesion involves many weak forces, such as 

van der Waals forces and hydrogen bonding, summing together to produce a high 

overall strength and is referred to as the adsorption theory of adhesion.214  The 

adhesive strength of these systems is determined by factors such as the surface free 

energy, the modulus, and the wettability of the material.  In TAMR, the two surfaces 

should have good contact, since they are chemically very similar and are bonded 

together at low modulus, and they have many opportunities to form hydrogen bonds and 

dipole-dipole interactions due to the prevalence of ester, amine, and hydroxyl groups in 

the system.  In order to determine if the main adhesive mechanism is covalent bonding 
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or the sum of weak interactions, devices were fabricated using 1-1 19.2% DEA-AA 

TAMR for both halves instead of the excesses of complimentary functional groups.  

During device construction, the two resin halves adhered to each other, and leak testing 

showed that these 1-1 devices performed as well as the devices made using excess 

groups since each was able to withstand a slow rate of 10 mL/min without failing.  The 

adhesion between the two 1-1 surfaces is largely due to the summation of weak forces, 

but some covalent bonding could be present since not all of the functional groups have 

reacted at 1 hour of curing. 

 Since none of the devices failed in the flow tests due to poor bonding, the 

devices were physically pulled apart to evaluate how well they had adhered.  Two 

separate mechanisms of failure were observed in the devices: cohesive and adhesive 

failure.  In devices that failed cohesively, the bond between the two layers could not be 

broken before the actual material began to fail.  Adhesive failure occurred when the 

device halves could be separated cleanly without fracturing the bulk material.  All of the 

devices made using excess functional groups failed in a cohesive manner while the 1-1 

devices failed adhesively.  Examples of the two failure types can be seen in Figure 3.15.  

The cohesive failure specimen shows fracturing where the resin broke in the middle of 

the channels, so there are channel components on both halves of the device, while the 

adhesive failure specimen separated cleanly and only has channel components on one 

side of the split.  The 1-1 devices, likely bond together well enough for most microfluidic 

applications, but the excess functional group strategy is required to make the strongest 

devices.  The cohesive failure of the excess-bonded devices confirms that the primary 

bonding mechanism between the two device haves is covalent bonds between thiol and 
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acrylate groups on the opposing device halves.  Unlike PDMS, TAMR devices can be 

fabricated and bound together to achieve cohesive failure without the need for 

specialized equipment like a plasma generator. 

 
Figure 3.15 Microfluidic device failure modes 
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3.5.10 TAMR Surface Modification 

 Although a range of properties can be targeted by changing the TAMR 

formulation, selective modification of the surface of the resin would be advantageous.  

The surface of PDMS can be modified by exposing it to oxygen plasma then to a silane, 

which will covalently bond to the surface via and Si-O-Si bond.  The chemical structure 

of the silane can be adjusted to achieve a range of surface properties and chemistries.  

Plasma treatment of the PDMS surface is also used to bond devices together and 

increase the hydrophilicity of the material.  While surface modification of PDMS is 

possible, it requires an oxygen plasma generator, which is not a ubiquitous piece of lab 

equipment.  Surface modification of TAMR should be possible by making use of excess 

functional groups incorporated into the resin to perform thiol-acrylate coupling reaction 

with a modifying monomer.  For example, a TAMR sample made with excess thiol could 

be exposed to a fluorinated acrylate to produce a highly hydrophobic surface.  Bounds 

et al. have previously attempted this technique, but they performed the surface 

modification procedure after curing the TAMR for 24 hours.  While there is still an 

abundance of available functional groups in TAMR samples made with excess thiol or 

acrylate, even at full cure, they might not be readily accessible for modification.  The 

surface reorientation process described earlier in Section 3.5.5 could account for why 

their modification procedure was unsuccessful if most of the functional group sites were 

oriented to the interior of the polymer.  Other possibilities for the lack of surface 

functionalization observed at 24 hours of curing include the low mobility of the excess 

groups at full cure or air oxidation of the surface groups.  The ability of TAMR surfaces 

to be modified with liquid monomers was evaluated by monitoring the water contact 
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angle change after exposure to both hydrophilic and hydrophobic compounds after one 

hour of curing at room temperature.  The TAMR surface was also modified using 

oxygen plasma treatment in order to compare to PDMS. 

 Table 3.2 contains the results of the thiol-acrylate surface modification 

procedure.  The 19.2% 40% ET samples were allowed to cure for one hour, and then 

they were immersed in either LA or PEGMEA with 1 wt% TEA for 1 hour.  After washing 

the samples thoroughly with water and acetone, they were left to fully cure.   

Table 3.2 Water Contact Angles of Modified 19.2% 40% ET TAMR 

Modifying Acrylate PS Side Contact Angle  Air Side Contact Angle 

PEGMEA 43 ± 4° 45 ± 3° 

- 60 ± 3° 62 ± 3° 

LA 84 ± 5° 77 ± 3° 

 
 The water contact angle was reduced from 60° in a normal 19.2% 40% ET 

sample cured on PS to 43° for the PEGMEA modified sample, and raised to 84° in the 

LA sample which indicates that the modification procedure was successful.  The PS 

side of the TAMR showed slightly better modification results for both the LA and 

PEGMEA likely due to oxidation at the air interface.  The washing procedure should 

have been sufficient to remove any non-covalently bound acrylates, but further studies 

need to be performed to optimize the modification procedure and ensure the change in 

contact angle is due to the covalently bound modifying groups.  This liquid modification 

strategy can be used to selectively modify individual microfluidic channels since TAMR 

devices capable of containing fluid can be manufactured at low cure times.   

 In order to determine if TAMR samples could be modified using oxygen plasma, 

samples of 19.2% 1-1 TAMR cured for 1 hour and fully cured PDMS were exposed to 5 

minutes of plasma on the medium setting.  Table 3.3 contains the water contact angles 
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of the samples exposed to oxygen plasma that were obtained within 20 minutes and 

after being stored at room temperature for 5 days. 

Table 3.3 Oxygen plasma treatment of TAMR and PDMS 

 19.2% 1-1 TAMRa PDMS 

Immediate 46 ± 6° 23 ± 7° 

5 Day Storage 33 ± 5° 101 ± 4° 

14 Day Storage 50 ± 8° 105 ± 1° 

a. TAMR samples treated at 1 hour of curing at room temperature 

 The high uncertainties associated with these measured water contact angle 

values are due to several drops with much higher contact angles than the others.  This 

could be due to an inconsistency in the plasma field since both the PDMS and TAMR 

samples were affected.  Compared to unaltered samples, the water contact angle of 

TAMR was decreased by ~20° using plasma treatment, and although TAMR is not as 

responsive to plasma treatment as PDMS is, this could be an effective surface 

modification technique for TAMR.  Over the 5-day storage period, the water contact 

angle of the PDMS samples increased by nearly 80°.  This is due to the process of 

hydrophobic recovery where uncrosslinked PDMS oligomers migrate to the surface of 

the resin and raise the contact angle.  The TAMR samples actually showed a decrease 

in contact angle over the 5-day storage period.  This is likely due to the absorption of 

water at the hydrophilic surface or possibly surface reorganization where the polar 

ester, amine, and hydroxyl groups oriented towards the oxygen-rich surface.  After 14 

days of storage on the benchtop, PDMS continued to recover its hydrophobicity and the 

contact angle increased to 105°, but the TAMR sample also showed an increase in 

contact angle by rising to 50°.  Why the contact angle increased between 5 and 14 days 

is unclear. 
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3.5.11 General TAMR Usage Observation 

 While performing all of the more detailed TAMR analysis experiment discussed 

above, several interesting observations were made that were not investigated further 

but still deserve mentioning.  When making the AA, several interesting color changes 

were observed as the acrylate is initially clear, but when DEA is added, the mixture 

takes on a purple-brown color that fades over time into a yellow hue.  One possible 

explanation is that the color comes from the inhibitor MEHQ since when put into solution 

at neutral pH it is clear but raising the pH with NaOH produces a dark red-brown color.  

The deprotonation of the acidic phenol group in MEHQ frees up a pair of electrons to 

resonate around the aromatic core, which changes the absorption properties of the 

molecule and produces the color change.  In the AA synthesis, a strong enolate base is 

produced which could deprotonate the MEHQ and get the same effect.  The color fades 

over time since as the reaction progresses, the enolate concentration drops.  Efforts to 

observe this phenomenon by UV/Vis spectroscopy have been unsuccessful up to this 

point, but should be achievable.   

 Once it has been produced, the AA has been used successfully after 6 months, 

but long term storage stability has not been investigated.  One interesting phenomenon 

observed when testing a 19.2% DEA-AA that was stored for ~20 months on the 

benchtop in a plastic jar was that a 1-1 sample made with TMPTMP gelled in ~5 

minutes instead of the usual 18-20.  Figure 3.16 shows example conversion versus time 

plots for freshly prepared 19.2% DEA-AA and a 19.2% DEA-AA that was stored for over 

a year when cured with TMPTMP at a 1-1 ratio at room temperature.  It is evident that 

the faster gel time is, at least in part, due to an increase in the polymerization rate.  This 
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increase in rate can be attributed to the absorption of water, which increases the polarity 

of the mixture and, as shown above, speeds the rate of the thiol-Michael addition.  

Therefore, for long-term storage, AA should either be kept in a well-sealed airtight 

container or stored under dry conditions to maintain its original properties.   

 Once cured, the long-term storage properties of TAMR vary by formulation.  As 

discussed earlier, all TAMR samples will absorb water and cloud over time so dry 

storage is preferable.  Yellowing of the resin is observed after several months of sitting 

on the benchtop, and this phenomenon can be accelerated by storing the samples at 

higher temperatures, where the samples eventually turn orange.  This is most likely due 

to the oxidation of the bound amine, and many commercial adhesives and coatings 

made using amines have similar issues.  Eventually, samples stored in the open 

atmosphere will develop a film on the surface.  This is a commonly observed 

phenomenon in epoxy resins, called bloom or blush, that develops when amines react 

with carbon dioxide in the air to form ammonium bicarbonates, which absorb water and 

cause the greasy film.215  Eventually, after 3-4 years of storage in the open air at room 

temperature, the TAMR will degrade back into a viscous gel due to the hydrolysis of the 

ester linkages prevalent throughout the matrix.  The rate of the ester hydrolysis will 

increase with increasing amine content in the resin as well as with increasing water 

content.  Based on all of these observations, the best way to store TAMR samples long-

term would be under dry conditions and under inert atmosphere if yellowing is a 

concern. 
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Figure 3.16 Conversion profiles for normal and aged 19.2% 1-1 TAMR 
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 The ability to replicate small features (~50 μm or less) in TAMR has never been 

reported.  Figure 3.17a shows the replication of small cell trapper arrays in 19.2% 1-1 

TAMR which measure 60 x 35 μm.  Obviously TAMR is able to replicate the features 

with high fidelity, but the uncropped image shown in Figure 3.17b illustrates one current 

problem with TAMR.  When PDMS is used to replicate these features, it is put under 

vacuum for 30 minutes or more to remove bubbles and dissolved gasses after it has 

been mixed.  Using 19.2% TAMR, the resin will gel in ~20 minutes, so putting it under 

vacuum for 30 minutes would be impossible.  Altering the recipe by making a 2.9% 

DEA-AA raises the gel time to 1.5-2 hours, but even leaving it under vacuum until it gels 

after pouring it onto the master just raises the bubbles out of the features and into the 

bulk resin.  This could be due to the increasing viscosity of TAMR while it is curing or to 

the solubility of gases in the resin, but this is one area that needs improvement before 

TAMR can be used in devices with small features. 

 The ease of use for a microfluidic material is one of the main factors researchers 

will consider before using a resin system.  Both TAMR and PDMS have their strengths 

and weaknesses when it comes to ease of use.  In terms of resin preparation, PDMS is 

bought as a two-part system with no synthesis required, and while making the AA is not 

difficult, it is an extra step not present with PDMS.  One advantage of TAMR is that 

since the user is making the system, they have control over every aspect of the 

process.  The mixing process is quite similar for both systems although PDMS is 

generally made in a set 10:1 ratio while TAMR recipes tend to be closer to 1:1, but it 

depends on the formulation.  The PDMS base component is extremely viscous and 

cannot be pipetted easily while both TAMR components flow well.   
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Figure 3.17 Replication of small microfluidics in TAMR a) cell trappers, b) cell trappers 

with bubbles, c) microfluidic channel and port 
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 The resin curing procedure is where TAMR really shines since it can be cured at 

room temperature in 24 hours, while PDMS would take several days to cure.  Both 

resins can be cured at elevated temperatures for faster results though.  The device 

fabrication procedure highlights some of the biggest flaws in both PDMS and TAMR.  In 

order to flow liquids through the microfluidic channels, holes need to be made at the 

ends of the channels so tubing can be connected.  While in PDMS these holes can be 

punched out with a needle or biopsy punch, TAMR will crack under those conditions.  In 

order to get holes in the TAMR pieces, they have to be drilled out, which in itself is not 

that bad until you consider the amount of dust that the drilling process produces.  The 

drilling dust sticks to the TAMR and needs to be blown off with compressed gas or 

rinsed off.  When the time comes to bond the two device halves together, one weakness 

of PDMS is exposed.  In order to bond PDMS to itself or glass, a plasma generator is 

required to modify the surfaces, which must be put into contact immediately to stick 

together, but TAMR can be bonded to itself without any surface modification treatments.  

Once the holes have been produced, the tubing can be sealed using uncured PDMS or 

TAMR which is cured in place around the tubing.  Overall, PDMS requires more time to 

cure the resin, but once it is cured, it can be stored for long periods before fabricating a 

device.  TAMR cures quickly, but devices need to be put together after 1 hour of curing 

so the components cannot be stockpiled for bonding later.  While TAMR has several 

drawbacks that need to be addressed, the advantages it has over PDMS in certain 

areas could make it a useful material in the field of microfluidics. 
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3.5.12 Conclusions 

 Several key properties of TAMR have been investigated and the performance of 

the resin has been evaluated.  It has been shown that 19.2% 1-1 TAMR fully cures in 

~10 hours at room, but it can be successfully cured at 50 °C in 3 hours.  The 

hydrophilicity of the resin was determined for a variety of formulations and was found to 

depend on the resin composition as well as the curing surface.  This property could 

potentially be exploited to modulate the water contact angle of cured TAMR by as much 

as 30° without changing the resin formulation.  The absorption of water by cured TAMR 

samples was quantified by mass, and it was determined that the ET samples absorbed 

water the fastest, followed by EA, then 1-1 samples.  Formulations with lower amine 

content absorb water more slowly and do not cloud as quickly compared to higher 

amine content resins.  Degradation of TAMR was observed after immersion in water for 

extended periods of time, and the rate of degradation was shown to parallel amine 

content.  Disc-shaped droplets were observed in the resin, which were attributed to the 

accumulation of water around the highly polar, protonated amine groups in the resin.  

The absorption of a variety of solvents by TAMR was quantified by changes in the size 

of resin samples.  Acetone was able to swell TAMR most significantly, but overall TAMR 

performed better than PDMs due to its high crosslink density.  The elastic modulus of 

several TAMR samples was determined at both low and high cure.  On average, TAMR 

samples tripled in modulus between 1 hour and 24 hours curing, and samples made 

using lower amine concentrations were found to be stronger due to the higher crosslink 

density.  The TAMR bonding procedure was refined by determining that weight was not 

necessary to get a strong bond between the two device halves.  The bonding 
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mechanism was confirmed to be the covalent bonding of thiol and acrylate groups 

across the resin pieces, but devices of adequate strength can be fabricated using only 

1-1 resin.  Finally, several general observations were made about the use of TAMR 

including the storage stability, problems with bubbles, and ease of use.  While more 

characterization remains to be done, this information should provide researchers with 

enough information to make a more informed decision about using TAMR in future 

microfluidic applications. 

3.6 Fluorescence-Based Detection of Pathogens 

 The following section has been adapted from Ref. 77 with permission from The 

Royal Society of Chemistry. 

3.6.1 Introduction 

 The detection and identification of disease causing organisms is of crucial 

importance to world health.  Whether testing for E. coli in a meat packing plant or 

tuberculosis in the developing world, the timely discovery of pathogens can help 

medical personnel treat infected individuals quickly or prevent a devastating outbreak.  

The ability to test for a variety of organisms on-site, using a low cost and disposable 

point-of-care (POC) diagnostic device would be of great use to mankind.  POC testing is 

not a new concept, and several examples of POC tests include at home pregnancy 

tests or blood glucose monitors.  POC diagnostic devices give rapid results since they 

do not require processing by an off-site laboratory, and ideally, they can be used by 

individuals with minimal training.  Over the past few decades, there has been a push to 

develop POC devices to detect disease causing organisms,216-222 and despite many 
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advances, a small, disposable, and low-cost device capable of detecting a variety of 

pathogens remains a largely unrealized goal.223-224 

 Many of the most successful POC diagnostic devices capable of detecting 

pathogens are based on microfluidics.225-227  These two areas, microfluidics and POC 

diagnostics, share many of the same goals, including the miniaturization of complex 

components, the reduction of sample volume, and the production of low-cost and 

disposable devices.  One common way to perform POC diagnostics on a microfluidic 

device is an enzyme-linked immunosorbent assay (ELISA), which has many variations.  

The concept of an ELISA test is to use the specific relationship between antigens and 

antibodies to trap and detect pathogens or their components.  First, an antibody or 

antigen is bound to the wall of the microfluidic channel.  This bound biomolecule will 

capture any corresponding groups present in the solutions flowed through the channel.  

Next, a blocking compound is used to cover the channel walls where no compound is 

attached to prevent non-specific binding between the test compound and the 

microfluidic device material.  Commonly used blocking compounds are bovine serum 

albumin (BSA) and casein, and they are generally put into solution and flowed through 

the channel.  Finally, the analyte solution is put through the channel, and if any 

compounds specific to the bound biomolecule are present, they will attach.  After the 

attachment step, various means of detecting the bound analyte exist, but most use 

fluorescence. 

 One way to detect a pathogen is to capture the whole organism.  This can be 

accomplished by attaching an antibody specific to that organism onto the channel 

surface.  The antibody will specifically bind to the antigens present on the surface of the 
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pathogen and capture it for detection.  Alternative methods for confirming the presence 

of specific pathogens detect just the structural components of the organism.  These 

methods do not require the whole cell, and since one organism contains a large number 

of the compounds of interest, these methods can typically confirm the presence of the 

organism at lower concentrations.  One example are gram-negative bacteria, such as E. 

coli, which have lipopolysaccharides (LPSs) on their surface, which consist of a 

polysaccharide chain that protrudes from the cell and a lipid segment that anchors the 

structure into the cell membrane.  E. coli serotypes are categorized and named by their 

LPS structures.  For example E. coli O157:H7 is a pathogenic strain that frequently 

causes outbreaks in the United States.228  The number and letter combinations listed 

after E. coli designate the serotype, or subgroups of the bacterium.  The O in the 

serotype designation refers to the O-antigen, which is the end polysaccharide portion of 

the LPS.  The H refers to the H-antigen, which characterizes the flagellum of the 

bacterium.  The O-antigen has been used to classify E coli. serotypes since the 1940s, 

and there are ~180 O-antigen and ~50 H-antigen designations in use currently.229  

These LPSs can be captured via interactions with a compound like polymyxin B (PMB), 

which is an antibiotic peptide.230-233 

 Similarly to the field of microfluidics as a whole, many of the POC systems 

developed using microfluidics are fabricated with PDMS, which can be attributed to its 

relatively low cost, optical clarity, gas permeability, chemical inertness, ability to 

replicate submicron features, and the ability to bond it to glass or itself using a surface 

modification process.148, 234-235  Despite these advantages, PDMS has several 

limitations that hinder the development of POC diagnostic devices targeted at 
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pathogens.  First, as discussed in section 3.5.5, PDMS has a hydrophobic surface 

which can cause biomolecules, such as enzymes or antibodies, to denature.236-237  In 

their natural aqueous environment, proteins are folded so that the hydrophobic 

segments of their amino acid chains are oriented inward, and the hydrophilic segments 

are on the exterior.  When put in contact with a hydrophobic surface, like PDMS, the 

protein can change its conformation so that the once buried hydrophobic portions are 

exposed to the surface.  This change in morphology can cause the loss of protein 

activity, in the case of an enzyme, or a loss of binding specificity for a particular antigen 

in the case of an antibody.  Although PDMS has a hydrophobic surface after curing, the 

surface can be modified to become more hydrophilic.  The most common technique to 

accomplish this involves treatment of the surface with oxygen plasma, which is initially 

effective, but the hydrophilic surface in only transient as it quickly reorganizes to 

become hydrophobic again.238-239  Other surface modification techniques have been 

proposed and investigated with varying degrees of success, but they are generally more 

complex and less widely adopted compared to oxygen plasma treatment.240  Second, 

the typically unreactive surface of PDMS caused by its relatively simple chemical 

structure hinders the attachment of bio-sensing receptors.  As seen in Scheme 3.2, 

PDMS has a backbone composed of alternating silicon and oxygen atoms with methyl 

groups at each available position of the silicon.  This lack of functional groups prevents 

the attachment of biomolecules using traditional techniques.  The PDMS surface must 

be modified in order to facilitate attachment of the biomolecule, which is often a 

complicated process.241-243  Last, traditional blocking methods used in other microfluidic 

devices are ineffective in PDMS.244  Other techniques involving surface modification of 
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the PDMS have been developed to combat this, but none are as simple as traditional 

blocking using casein or bovine serum albumin.245-247 

3.6.2 TAMR POC Diagnostic Device Prototype Overview 

 The POC device prototype presented here was constructed using TAMR and 

was designed to detect E. coli by two different methods.  Scheme 3.4 illustrates 

detection strategy one where whole E. coli O157:H7 bacteria were captured using an 

antibody bound to the TAMR surface.   

 
Scheme 3.4 Bacterial capture in a TAMR microfluidic device 

 Bonding was achieved through Michael addition reactions between amines or 

thiols present as side groups in the peptide chain of the antibody and the excess 

acrylate groups present on the microfluidic channel surface.  Detection of the bacteria 

Excess Acrylate TAMR

Excess Thiol TAMR

Antibody Attachment

Bacterial Capture
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was confirmed by modifying them with a fluorophore then monitoring the increase in 

fluorescence in the channel.  In the second detection strategy, the presence of E. coli 

O55:B5 was confirmed by capturing the LPSs associated with that organism.  PMB was 

attached to the microfluidic channel surface via a Michael addition, and fluorescently 

labeled LPSs were captured and detected using fluorescence. 

3.6.3 Materials and Methods 

Materials 

 PETA stabilized with 300-400 ppm MEHQ was obtained from Alfa Aesar and 

TMPTMP was purchased from Evans Chemetics LP.  DEA ≥99.5% and casein blocking 

buffer were obtained from Sigma Aldrich.  PDMS was prepared using a Sylgard® 184 

silicone elastomer kit obtained from Elsworth Adhesives.  Both phosphate-buffered 

solution (PBS) and PBS with Tween 20 (PBS-T20) were purchased from Amresco Inc in 

powdered form.  E. coli O157:H7 antibodies were obtained from Kirkegaard & Perry 

Laboratories both labeled with fluorescein isothiocyanate (FITC) and unlabeled.  E. coli 

O55:B5 lipopolysaccharides labeled with Alexa Fluor® 568 dye and polymyxin B labeled 

with BODIPY® FL were purchased from Life Technologies.  With the exception of the 

powdered PBS and PBS-T20, which were reconstituted into working solutions, all 

reagents were used as received. 

Microfluidic Device Manufacture 

 First, 19.2% DEA-AA was made according to the procedure described previously 

in section 3.4.  To make the flat, bottom side of the device, the 19.2% DEA-AA was 

mixed with enough TMPTMP to give a mixture containing 40% excess thiol groups.  For 

the top side of the device containing the microfluidic channels, 19.2% DEA-AA was 
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mixed with enough TMPTMP to yield a mixture containing 40% excess acrylate groups.  

Both compositions were stirred thoroughly, to ensure a homogeneous mixture, and then 

centrifuged at ~5,000 rpm for 3 minutes to remove bubbles introduced during the mixing 

process.  The flat bottom half of the device was fabricated by curing the 40% ET resin in 

a polystyrene Petri dish.  The microfluidic channels were introduced into the top half of 

the device by pouring the 40% EA resin over a positive master machined out of PMMA 

and allowing it to cure.  The microfluidic channels were straight, rectangular channels 

with circular inlet and outlet ports at each end.  Both samples were allowed to cure for 1 

hour at room temperature before they were removed from their respective surfaces.  

After removal, holes were drilled at each end of the channels incorporated into the top 

half of the device using a Dremel press and a 1/16” bit.  The TAMR slab was rinsed with 

ethanol and blown dry with nitrogen to remove any residue left behind from the drilling 

process.  The final microfluidic device was constructed by bringing the top and bottom 

halves into contact with each other.  Air bubbles between the two halves were pressed 

out by hand to ensure a good seal, and the device was left to fully cure for 24 hours 

under a load of ~1.4 kg/in2. 

PDMS Preparation 

 PDMS was prepared by mixing the elastomer base with the curing agent in a 

10:1 ratio by weight.  The two components were stirred well, poured into a polystyrene 

Petri dish, degassed at 24 in Hg for 30 minutes, and finally cured on a hot plate for 4 

hours at 55 °C. 
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Fluorescent Labeling of E. coli O157:H7 

 A live culture of E. coli O157:H7 was prepared by inoculating Luria-Bertani broth 

for 12 hours at 37 °C.  At 12 hours, agar plating of the culture showed an average 

concentration of 109 colony-forming units per mL (cfu/mL).  To label the bacteria, the 

cells were washed twice with PBS by centrifuging 1 mL of the culture at 12,000 rpm for 

2 minutes, replacing 0.9 mL of the supernatant with PBS, and re-suspending the 

bacterial pellet by vortex mixing.  The fluorescent dye, TAMRA-SE (2 μL, 5 mg/mL), was 

mixed with the washed culture and allowed to incubate for 30 minutes at 37 °C.  The 

previously described washing procedure was repeated four times to remove any excess 

dye. 

Functionalization of the Microfluidic Channel 

 Tubing with an outside diameter of 1/16 inch was pretreated with casein blocking 

agent for 1 hour and rinsed with PBS prior to use.  One end of the tubing was inserted 

into the holes drilled into the microfluidic device, and the other end was attached to a 

syringe pump.  The microfluidic channels were washed with 1 mL of deionized water 

then filled with a 50 μg/mL antibody solution or a 100 μg/mL PMB solution.  The device 

was incubated for 16 hours at 4 °C and then washed with 2 mL of PBS-T20 followed by 

1 mL of PBS at a rate of 10 μL/min.  The channels were then blocked by filling them 

with casein blocking agent and incubating for 1 hour at room temperature.  The channel 

was washed using PBS-T20 and PBS in the same manner described above. 
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Bacterial Capture  

 Solutions of TAMRA-SE labeled E. coli O157:H7 were made at 105, 106, and 107 

cfu/mL, and 1 mL of each was pumped through a channel functionalized with antibody 

at 10 μL/min.  The channel was then rinsed with 3 mL of PBS at 10 μL/min. 

LPS Capture 

 Solutions of E. coli O55:B5 LPS were prepared at both 100 μg/mL and 1 μg/mL.  

One mL of each solution was pumped at 10 μL/min through a channel functionalized 

with PMB.  The channel was then rinsed with 3 mL of PBS at 10 μL/min. 

PDMS and TAMR Fluorescence 

 PDMS and a TAMR device were prepared as above and placed on a fluorescent 

microscope.  The focus was set to the upper surface of the material being tested, and 

images were taken using a variety of different fluorescence filter sets at five different 

locations across the material.  The average intensity of each image was calculated 

using ImageJ. 

Fluorescence Measurements 

 Fluorescence intensity was used to track changes in the microfluidic channel 

over the course of the experiments.  The fluorescence intensity from a piece of the 

TAMR device with no channel was used as an internal standard for each data point.  

The difference between the fluorescence intensity obtained in the channel and the 

background intensity was determined.  This process was repeated five times per 

sample, the results averaged, and the standard deviation calculated.  The average 

fluorescence intensity obtained was normalized in order to make the data more 

readable. 
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3.6.4 Background Fluorescence in TAMR and PDMS 

 In order for TAMR to be used in any fluorescence-based microfluidic assays, the 

background fluorescence of the resin needs to be minimal for a variety of fluorescence 

filter sets.  The fluorescent response obtained from TAMR was compared to PDMS, a 

widely used microfluidic material, for the 4’,6-diamidino-2-phenylindole (DAPI), FITC, 

tetramethylrhodamine isothiocyanate (TRITC), Texas Red, and Cy5 filter sets and the 

results displayed in Figure 3.18.   

 
Figure 3.18 Background fluorescence in TAMR and PDMS 

 Both TAMR and PDMS had similarly minimal fluorescence for the FITC, Texas 

Red, and Cy5 filter sets.  For the TRITC filter PDMS had a significantly higher 

fluorescence intensity than TAMR, while for DAPI, TAMR was more intensely 

fluorescent than PDMS.  Both materials fluoresced more intensely for DAPI and TRITC 
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than for FITC, Texas Red, or Cy5.  Based on this data, TAMR should perform similarly 

to PDMS in fluorescence-based microfluidic assays. 

3.6.5 Specific Detection of E. coli O157:H7 Using Antibodies 

 The attachment of anti-E. coli O157:H7 to the channel surface of the TAMR 

microfluidic device was determined by functionalizing one channel with fluorescently-

labeled antibody according to the procedure described above and comparing it to a 

control channel with only the casein blocking agent.  Figure 3.19 shows the 

fluorescence intensity of the control and functionalized channels as a function of rinsing 

time with PBS-T20 at 10 μL/min.   

 
Figure 3.19 Antibody attachment to the TAMR surface 
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time increases, the fluorescence from the functionalized channel decreases 

significantly.  This indicates that many of the antibodies were not covalently bound to 

the channel surface.  Despite this, even after 18 hours of rinsing, the functionalized 

channel maintained higher fluorescence intensity than the control channel, which 

indicates that a portion of the fluorescently labeled antibody was covalently linked to the 

TAMR surface or at least strongly attached. 

 Next, the ability of casein to block the non-specific binding of bacteria to the 

channel surface was determined.  Figure 3.20 shows the fluorescence intensity for the 

as prepared channel, the channel after casein blocking, and the channel after exposure 

to 105 and 107 cfu/mL of fluorescently labeled E. coli O157:H7.   

 

Figure 3.20 Blocking non-specific binding of bacteria with casein 
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Blocking the TAMR channel with casein led to a significant drop in the background 

fluorescence of the resin, which is likely due to the casein absorbing the fluorescence 

excitation light or the light emitted from the TAMR.  Upon exposure to the solution 

containing 105 cfu/mL of E. coli, the fluorescence signal increased due to non-specific 

binding of the bacteria to the blocked channel walls.  Exposing the channel to a higher 

concentration of bacteria (107 cfu/mL) showed no increased signal, which indicates that 

the non-specific binding sites were saturated. 

 The specific binding of fluorescently labeled E. coli O157:H7 to antibodies 

attached to the surface of the microfluidic channel was assessed by flowing solutions of 

increasing bacterial concentration through the channel and monitoring the fluorescence.  

As shown in Figure 3.21, as the bacterial concentration was increased from 105 to 106 

to 107 cfu/mL, there was a corresponding stepwise increase in the fluorescence signal 

from the fluorophore used to label the bacteria.  This indicates that the antibodies bound 

to the channel surface successfully captured bacterial cells because, as shown in the 

previous figure, the nonspecific bonding sites were saturated at 105 cfu/mL and showed 

no increase in fluorescence with increasing bacterial concentration.  The high standard 

deviation associated with the fluorescence intensity for the 107 cfu/mL solution is due to 

the accumulation of bacteria captured near the channel inlet that lead to a fluorescence 

gradient along the channel when the data was collected. 

3.6.6 Detection of E. coli O55:B5 Lipopolysaccharides Using Polymyxin B 

 The viability of an alternative method to whole cell capture using antibodies was 

tested which relies on the capture of the LPSs associated with a bacterium using an 

antimicrobial peptide attached to the microfluidic channel surface.   
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Figure 3.21 E. coli capture in the TAMR device 

 The first step was to evaluate the performance of casein as a blocking agent 

against the non-specific binding of LPSs.  Figure 3.22 shows the fluorescence signal 

obtained from the bare channel, the channel after casein blocking, and the blocked 

channel after exposure to a 1 μg/mL solution of fluorescently-labeled E. coli O55:B5 

LPS, all using the Texas Red filter set.   

 As seen previously, blocking the channel with casein led to a significant drop in 

fluorescence.  Exposure of the casein-blocked channel to the LPS solution gave a slight 

increase in signal due to a small amount of the labeled LPS non-specifically binding to 

the channel surface.  These results indicate that casein can be used to block the 

majority of non-specific LPS binding in the TAMR device.  Attachment of PMB to the 
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channel surface was confirmed by the increase in fluorescence signal obtained from 

performing the functionalization procedure using PMB labeled with FITC.   

 
Figure 3.22 Blocking the non-specific binding of LPS with casein 

 The capture of E. coli O55:B5 LPSs using the PMB-functionalized channel was 

monitored using the Texas Red filter set, and the results are displayed in Figure 3.23.  

After exposing the channel to a 1 μg/mL solution of labeled LPS, there was a dramatic 

increase in the fluorescence, and flowing through a 100 μg/mL solution showed a 

further increase in signal.  This indicates that the LPSs were successfully trapped using 

the PMB attached to the channel surface.  The increased error for the more 

concentrated LPS solution is again due to a fluorescence gradient starting at the 

channel inlet.   
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Figure 3.23 E coli LPS capture in the TAMR device 

3.6.7 Conclusions 

 These examples demonstrate that TAMR can be used to construct working 

microfluidic devices using soft lithography techniques.  The fluorescent response of the 

resin was determined using a variety of different filter sets commonly used by 

researchers, and the results were comparable to PDMS.  Casein was found to be an 

effective blocking agent that not only suppressed the non-specific binding of bacterial 

cells but also reduced the background fluorescence signal from the resin during assays.  

The hydrophilic and functional group rich surface of TAMR allowed for the successful 

attachment of proteins in one step.  While many of the antibodies were non-covalently 

bound to the channel surface, the presence of a detectable signal even after 18 hours of 

rinsing indicates some were bound to the resin walls.  E. coli O157:H7 was successfully 
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O55:B5 LPSs were confirmed down to 1 μg/mL using PMB.  Further optimization of the 

procedure and signal amplification techniques could be used to significantly decrease 

the limits of detection presented here, but these results confirm that TAMR can be 

utilized for the construction of microfluidic device based biological assays. 

3.7 A Gradient Generating Microfluidic Device 

3.7.1 Introduction 

 Algal blooms are characterized by a rapid increase in algae population and 

proliferation in either freshwater or marine ecosystems.  Although many of these events 

pose no threat to humans or aquatic organisms, certain species of algae will produce 

harmful algal blooms (HABs) that can greatly affect the environment due to the 

production of toxins or simply through the effects of their extreme biomass.248  Humans 

can be affected by HABs by ingesting foods contaminated with algae toxin, direct 

contact with water where the toxin is present, or through breathing aerosolized toxins.  

Some examples of the effects of algae toxins are neurotoxic shellfish poisoning, which 

is caused by brevetoxins, paralytic shellfish poisoning which is caused by saxitoxins, 

and amnesic shellfish poisoning caused by domoic acid.249  One thing that makes these 

toxins so harmful is the absence of known antidotes to these compounds.  In addition to 

physically harming people, HABs can also impact the economy through fish kills and 

seafood contamination as well as destabilize ecosystems through the effect of toxins 

and the depletion of oxygen from the water during the bacterial degradation of algal 

biomass.250   

 Algal blooms can occur naturally, and they have been reported for centuries, but 

unfortunately, it is widely agreed that HABs have grown more frequent in recent 
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years.250-253  Humans have directly impacted the increase in HABs through the 

introduction of nitrogen and phosphorus into the environment from the use of fertilizers.  

These excess nutrients, along with climate change, have caused HABs to occur more 

frequently and last longer.251-252  Detecting, identifying, and forecasting HABs is 

complicated due to the large number of variables that influence the formation of these 

events.  Factors such as nutrient concentration, water temperature, water salinity, pH, 

dissolved oxygen, and light levels all play a role in the formation and longevity of HABs.  

In order to these variables systematically, further experimentation needs to be 

conducted in carefully controlled laboratory settings. 

 One technology that maximizes control over experimental conditions and 

throughput while minimizing reagent use is microfluidics.  This relatively new field of 

study has been used to study a variety of biological systems, and algal growth 

kinetics254 and oil production screening255 studies have already been performed using 

microfluidic systems.  One example of an algae behavior that is important to understand 

in order to predict and model HABs is chemotaxis, or the movement of the cells in 

response to chemical cues.  It is crucial to understand what types of nutrients and what 

concentration will draw in certain species of algae.  Microfluidic devices have already 

been developed to study chemotaxis in bacterial systems using devices that generate 

chemical gradients.256-258  The most important aspect of these devices is that the 

channel where the algae are located must be flow-free so the cells are free to respond 

to the chemical gradient.   

 One design for these devices uses a PDMS upper portion, that contains the 

microfluidic channels, and a lower portion comprised of a hydrogel, such as agarose, 
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through which the chemical gradient is established via diffusion.  The center channel of 

the device contains the algae and is maintained in a flow-free state, while the gradient is 

established using the outside channels.  One channel acts as the nutrient source and 

contains a nutrient-rich solution while the other channel serves as a sink and contains a 

buffer solution with no nutrients.  The nutrient will diffuse into the hydrogel layer of the 

device and towards the sink channel, which establishes a linear nutrient concentration 

gradient across the center channel of the device.  The algae in the center channel are 

monitored to determine whether they respond to the chemical stimulus by tracking their 

movements.   

 One of the problems with gradient-generating microfluidic devices constructed 

using the two-layer PDMS and agarose design is that a fluid tight seal is difficult to 

establish between the two surfaces.  One method is to use an external support structure 

to clamp the hydrogel and PDMs layers together.  This can produce a working device, 

but the system is quite sensitive to the pressure applied by the support since too much 

pressure will force the hydrogel into the microfluidic channels while too little pressure 

will give a leaking device.  A device where the rigid microfluidic layer could bond to the 

hydrogel without external support would make fabrication much easier and improve 

device reproducibility and reliability.  Using thiol-acrylate chemistry, a gradient-

generating microfluidic device was constructed by coupling TAMR to a thiol-acrylate 

based hydrogel without using external support structure.  Scheme 3.5 displays a 

schematic of how the device is set up and an actual thiol-acrylate device with red dye in 

the channels to improve visibility. 



130 
 

 
Scheme 3.5 a) Thiol-acrylate gradient generating microfluidic device overview and b) a 

thiol-acrylate device 
 
3.7.2 Materials and Methods 

Materials 

 PETA stabilized with 300-400 ppm MEHQ was obtained from Alfa Aesar.  

TMPTMP was purchased from Evans Chemetics LP and Sigma Aldrich.  Ethoxylated 

trimethylolpropane tri(3-mercaptopropionate) 1300 (ETMPTMP 1300) was generously 

donated by Evans Chemetics LP.  Poly(ethylene glycol) diacrylate average Mn 700 

g/mol (PEGDA 700) and trimethylolpropane ethoxylate triacrylate average Mn ~912 

(TMPETA 912) were purchased from Sigma Aldrich.  DEA ≥99.5% was obtained from 

Alfa Aesar and Sigma Aldrich. See Scheme 3.4 for structures. 

 

a)

b)
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TAMR Microfluidic Channel Casting 

 Microfluidic channels were imbedded into TAMR by casting from a silicon and 

SU-8 master fabricated using standard photolithography techniques.  TAMR was 

prepared according to the general procedure described earlier.  The AA was mixed with 

enough TMPTMP to give a 1-1 ratio of functional groups, and after centrifugation, the 

resin was poured onto a clean silicon wafer with channel features while it sat in a 

polystyrene Petri dish.  Between 15 and 17 grams of total material was enough to 

completely cover the wafer in a layer 2-3 mm thick without spilling over onto the Petri 

dish.  After curing for 1 hour, the resin was peeled off the silicon wafer and cut into 

individual chips.  The TAMR pieces were allowed to continue curing at room 

temperature until 24 hours of total cure time had elapsed to ensure maximum 

conversion of functional groups.  Inlet and outlet holes were introduced at the 

appropriate places on the device using a drill equipped with a 1/16 inch drill bit.  Excess 

dust and residue from the drilling process was blown away using compressed air, and 

the devices were stored under dry conditions until used. 

Hydrogel Fabrication 

 Thiol-acrylate hydrogels were fabricated by adding the PEGDA 700 and 

TMPETA 912 (if applicable) to a centrifuge tube, followed by the ETMPTMP 1300, and 

then the aqueous component (typically PBS or TAP).  Care was taken to mix each layer 

as little as possible during addition to prevent local gelation from occurring when the 

curing agent was added.  (If the components are mixed together while they are being 

added to the tube, the curing agent will be encapsulated in gel immediately upon 

addition.  This causes the majority of the mixture to remain unreacted with clumps of 
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hydrogel spread throughout.)  The hydrogel was cured by raising the pH of the solution 

to between 7.5 and 8 by adding 0.01 mmol NaOH per gram of monomer/buffer.  This 

amount of NaOH gives a gel time of approximately 15 seconds, but it can be adjusted to 

increase or decrease gel time if desired.  Once the base was added, the mixture was 

vortexed for ~5 seconds, inverted several times, and vortexed again to ensure thorough 

mixing.  The solution was poured into a Petri dish and allowed to cure at room 

temperature for at least 5 minutes prior to use.  Hydrogels were labeled as the weight 

percent polymer content and the mole percent of acrylate groups from TMPETA 912 if 

applicable.  For example, a 22% hydrogel would contain 22 weight percent polymer in 

buffer solution with no TMPETA 912, and a 15% 50% 912 hydrogel would contain 15 

weight percent polymer with 50% of the total acrylate groups coming from TMPETA 

912. 

Construction of the Microfluidic Device 

 The cured TAMR pieces with the imbedded microfluidic channels were combined 

with the thiol-acrylate hydrogel to give a gradient generating microfluidic device.  Both 

components were prepared as described above.  The TAMR half of the device was 

plumbed with 1/16 inch outside diameter Teflon tubing at the inlet and outlet ports.  The 

seal between the tubing and cured TAMR was generally fluid tight, but the connection 

could be sealed using additional liquid TAMR that was applied around the tubing and 

allowed to cure in place.  Two pieces of tubing could be connected together using 22 

gauge needles after the tip was removed.  The tips of the needles were cut off using a 

pair of wire cutters, and the syringe fitting was pulled off.  The cutting process collapsed 

the end of the needle, so it was filed down until the opening was reformed.  The metal 



133 
 

tube that resulted from this process was pushed into the end of the Teflon tubing, and 

the resulting connection was liquid tight without the need for any sealant.  Once the 

necessary tubing was connected to the TAMR piece, it was placed on a freshly 

prepared thiol-acrylate hydrogel cured in a Petri dish.  The TAMR half of the device 

must be placed on the hydrogel cautiously in order to get a good seal between the two 

surfaces and since excess pressure could force the pliable hydrogel up into the 

microfluidic channel, which would block it.  The device was left to sit for 5 minutes prior 

to use to ensure a good bond between the hydrogel and TAMR layers. 

Hydrogel Swelling Studies 

 Thiol-acrylate hydrogels were prepared according to the procedure above and 

cured in molds measuring 7 x 14 mm.  After ~5 minutes, the gels were removed from 

the molds, weighed, and immersed in PBS.  The gels were taken out of the PBS, dried 

of excess surface moisture, and weighed again.  The percentage swelling was 

calculated as the weight at 24 hours of soaking minus the initial weight, divided by the 

initial weight.  Three replicates were run for each formulation with a minimum of three 

samples each, the values averaged, and the standard deviation reported as error. 

Microfluidic Gradient Characterization 

 A TAMR gradient-generating microfluidic device was prepared according to the 

procedures above.  The top channel of the device was connected to a 10 μM solution of 

rhodamine 6G prepared in N-free TAP media, and the bottom channel was connected 

to unaltered N-free TAP media.  The center channel was filled with N-free TAP media, 

and the surface of the hydrogel was also covered with N-free TAP to prevent 

evaporation from the hydrogel over the course of the experiment.  The top and bottom 
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channels were infused with their respective solutions at a rate of 15 μL/min.  Images 

were taken of the device using a fluorescent microscope with the rhodamine filter.  The 

diffusion of the solution containing the fluorophore was tracked by measuring the 

fluorescence intensity across the center channel of the device. 

3.7.3 Thiol-Acrylate Device Development 

 The initial goal of this project was to develop a microfluidic device that contained 

a rigid upper component that would bond to a porous hydrogel component.  This device 

would be analogous to a device currently in use by our collaborators, which uses PDMS 

and agarose.  TAMR was chosen as the top layer of the device since it is more 

hydrophilic than PDMS and can be fabricated with excess functional groups that could 

promote adhesion.  The first attempts focused on using TAMR in combination with 

agarose as the hydrogel, as it is well characterized and is the same hydrogel used in 

the device developed by our collaborators.  No adhesion was obtained using unmodified 

agarose and efforts to produce hybrid systems by incorporating thiol and acrylate 

monomers were also unsuccessful.  Alternative hydrogels, such as polyacrylamide were 

tested, but no bonding was achieved.  The breakthrough came when a thiol-acrylate 

hydrogel was developed, based on a report from Pritchard et al.,78 using a trifunctional 

thiol and a difunctional acrylate that both contained poly(ethylene glycol) chains to 

improve water solubility.  When TAMR was brought in contact with this hydrogel, there 

was an immediate attraction between the two surfaces.  If the two layers were left in 

contact for a few minutes, efforts to detach the TAMR from the hydrogel led to cohesive 

failure of the hydrogel, which indicates a strong bond between the two surfaces.  The 

reasons for why bonding is achieved between the TAMR and thiol-acrylate hydrogel and 
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not the other hydrogels have not been investigated, but one possibility involves the free 

versus bound water in the hydrogels.  In hydrogel systems, water is theorized to exist in 

two main states: bound water that is interacting with the polymer chains and free water, 

which occupies the space between the chains.259  When agarose was prepared 

between 1 and 3 weight percent in water, a film of liquid water is observed on the 

surface.  This film could prevent interactions between the TAMR surface and the 

agarose chains and is due to a process called syneresis, where water is expelled from 

the gel.260  In contrast, the thiol-acrylate (TA) hydrogels have a surface that is 

completely dry to the touch and have a much lower water content (typically ≤85% 

compared to agarose at ≥97%).  In addition, the TA hydrogels are chemically 

crosslinked gels while agarose is a physically crosslinked gel that is held together by 

polymer chain entanglements and interactions between groups along the backbone.  

This means that the amount of water the TA gels can hold is limited by the crosslink 

density of the network, while agarose gels will continue to absorb water until they 

disintegrate.  It is possible that the majority of the water in the TA hydrogels is bound 

water due to the relatively high polymer content of the system and the strong 

interactions between water and the ethylene glycol repeating groups present in the 

monomers.  This allows for interactions between the TAMR surface and the hydrogel 

polymer to develop and bind the two together.  It is unlikely that covalent bonding 

between thiol and acrylate groups from each surface is responsible for the hydrogel 

bonding since this phenomenon was observed for 1-1, 40% EA, and 40% ET TAMR 

formulations all at full cure. 
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 The TA hydrogels were initially cured using DEA, as is typical for TA 

polymerizations.  The theory was that the DEA would act as a nucleophile and bind into 

the polymer network via a Michal addition, similarly to the AA reaction in TAMR, and not 

leach out.  In actuality this process is likely unreliable as the amine will generally be 

protonated in an aqueous environment, which prevents it from acting as a nucleophile in 

the Michal addition.  Hydrogels were successfully fabricated using DEA, but the process 

was inconsistent due to the high volatility of DEA and the small reagent volumes need 

to gel the mixture.  In response, an alternative strategy was developed that used an AA 

mixture similar to the TAMR system.  A 66.6% DEA-AA was produced and used to cure 

the hydrogel, which improved reproducibility and ensured the amine was covalently 

bound into the polymer network.  While this strategy was effective, in order to simplify 

the system and avoid any biocompatibility issues, the hydrogel curing agent was 

changed to NaOH.  In the hydrogel system, it is the overall pH of the mixture that 

determines whether or not the polymerization reaction occurs, so the identity of the 

base is unimportant.   

 The water content of the hydrogel can be adjusted easily to achieve a wide range 

of physical properties, but for the microfluidic device, the hydrogel must be stable 

enough to support the rigid upper layer while allowing for the rapid diffusion of small 

molecules in solution.  The two main hydrogel concentrations used in this study were 22 

and 15 weight percent polymer.  When the concentration was lowered to 10%, the 

hydrogel was not rigid enough to consistently support and bond to the TAMR portion of 

the device.  Higher concentrations than 22% were not considered due to decreased 

diffusion at higher polymer content.  The original hydrogel formula was made using 
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PEGDA 700 and ETMPTMP 1300, but in order to increase crosslink density, 

trifunctional TMPETA 912 was added to the system.  A 1-1 ratio between acrylate and 

thiol groups was maintained while the number of acrylate groups contributed by the 

trifunctional monomer was altered.   

3.7.4 Hydrogel Swelling Studies 

 Initial experiments showed that the TA hydrogel was not fully saturated at 22% 

and would swell when put into contact with buffer solution.  This is a problem in the 

microfluidic device because the swelling alters the channel geometry, which can induce 

flow in the center channel or even completely block the channel.  The swelling behavior 

of the hydrogel was determined for a number of different formulations to find a system 

that would swell minimally but still be rigid enough to support the channel layer of the 

device.  The initial 22% hydrogel formula produced a gel that swells by 80 ± 5% when 

immersed in buffer solution over 24 hours, and decreasing the polymer content to 15% 

caused the gel to swell by 87 ± 15%.  Unfortunately, due to the high variance in the 

swelling for the 15% samples no conclusions can be made as to the effect of hydrogel 

concentration on the swelling in this system.  It is likely that the lower monomer 

concentration hydrogel would swell more than the higher one, which seems 

counterintuitive at first, but the increasing the monomer concentration increases chain 

interpenetration and typically gives a tighter network that absorbs less.261  Instead of 

altering the polymer content in the gel, another way to change the gel properties is to 

alter the polymer network structure by incorporating an ethoxylated triacrylate into the 

system while replacing some of the diacrylate with triacrylate in order to maintain a 1-1 

thiol-acrylate ratio.  When 50% of the PEGDA 700 acrylate groups were replaced with 
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TEMPETA 912 acrylate groups, the gel only swelled by 30 ± 3%.  This is due to the 

increased crosslink density of the network restricting the amount of water that can be 

absorbed by the gel.   

3.7.5 Microfluidic Gradient Characterization 

 The concentration gradient produced across the center channel of the device 

was characterized using a fluorophore solution.  The shape and concentration range of 

the gradient are important since the algae will not respond to a shallow gradient and a 

high stimulus concentration can overwhelm them.  The ideal chemical gradient would a 

fairly steep gradient that developed and reached a steady state quickly.  Figure 3.24a 

shows the diffusion profile over time for a 22% hydrogel obtained by taking the 

fluorescence intensity along a line drawn across the center channel of the device.  The 

right hand side of the graph corresponds to the part of the device closest to the source 

channel.  The gradient obtained is relatively shallow and slowly increases in intensity 

over the course of the 12-hour experiment due to the swelling of the gel ans slow 

diffusion of fluorophore through the gel.  In order to combat this, the polymer 

concentration in the hydrogel was reduced from 22% to 15% in an attempt to increase 

the diffusivity of the fluorophore through the gel, and the results from this change are 

shown in Figure 3.24b.  While a steady-state concentration gradient was not achieved 

during the experiment, a steeper gradient profile was developed in a shorter period of 

time than when using the 22% gel.  This is due to the faster diffusion of the fluorophore 

through the gel, but the gradient leveled off over time.   
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Figure 3.24 Concentration profiles in thiol-acrylate devices with a a) 22 % hydrogel and 

b) 15% hydrogel 
 
 The results from increasing the crosslink density of the gel by incorporating 

TMPETA 912 in a 15% 50% 912 hydrogel are displayed in Figure 3.25.  The increase in 

crosslink density appeared to slow the formation of the gradient down, but gave a 

steeper gradient that eventually reached a steady state after 7 hours.  Decreasing the 
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hydrogel thickness by about half with the 15% 50% 912 hydrogel gave the steepest and 

smoothest gradient profile, but the effect was minimal.   

 
Figure 3.25 Concentration profiles in thiol-acrylate devices with 15% 50% 912 hydrogels 

at a thickness of a) ~4mm and b) ~2 mm 
 
 Unfortunately, in each of 15% gels, the gradient nearly levels off 8-10 hours into 

the experiment.  This could be due to accumulation of the fluorophore in the gel caused 

by interactions between the rhodamine and polymer structure.  Figure 3.26 shows the 
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gradient profile obtained using 1% agarose as the hydrogel layer.  The gradient 

develops quickly and stays a uniform shape throughout the experiment, which is due to 

the extremely high water content in the agarose gel, which essentially has the diffusion 

properties of water.  While the TAMR hydrogel does not perform as well as agarose at 

this point, a linear gradient across the center channel of the device can be developed 

successfully for several hours.   

 
Figure 3.26 Concentration profile obtained in agarose 

3.7.6 Algae Viability 

 In order to successfully study the chemotaxis of algae in the thiol-acrylate-based 

gradient generating device, the algae need to remain viable in the device for extended 

periods of time under flow-free conditions.  Figure 3.27 shows the center channel of a 

thiol-acrylate gradient generator device with Chlamydomonas reinhardtiidtii algae 

present.  The algae were injected into the channel, which was sealed at both ends by 

placing liquid agarose solution on the end ports and allowing it to solidify.  The algae 
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were observed swimming around the channel without significant influence from flow 

through the channel.  The algae were left in the device for 3 hours to determine if the 

TAMR or thiol-acrylate hydrogel had a negative impact on their viability.  After 3 hours 

had elapsed, the algae were still swimming in the channel, which indicates the device is 

not dramatically harming the algae on this timescale.  More detailed viability studies are 

ongoing where the algae will be incubated in the device for longer periods, and their 

viability will be quantified using a chemical staining approach. 

 
Figure 3.27 Chlamydomonas reinhardtiidtii in the center channel of a thiol-acrylate 

gradient-generating device (channel width 450 μm) 
 
3.7.7 Conclusions 

 A gradient generating thiol-acrylate-based microfluidic device has been 

developed successfully.  Using traditional materials such as agarose and PDMS 

requires an external support structure to keep the two device layers in frim contact with 
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each other to ensure a liquid tight seal.  The thiol-acrylate device uses TAMR instead of 

PDMS and a thiol-acrylate hydrogel instead of agarose to produce a device that does 

not require any additional structures to remain sealed.  The TAMR half of the device 

bonds to the hydrogel after the two are placed in contact, and the bond is such that the 

hydrogel will fail cohesively before detaching from the TAMR.  The swelling properties 

of the thiol-acrylate hydrogels were determined as well as the effect of changing 

crosslink density on this behavior.  Chemical gradients were established in the thiol-

acrylate device and characterized using fluorescence microscopy.  Finally, algae were 

seeded into the device and successfully maintained under flow-free conditions. 
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CHAPTER 4. SUMMARY AND CONCLUSIONS 

 The kinetics and some microfluidic applications of thiol-acrylate Michael addition 

polymerizations using multifunctional monomers have been researched and discussed.  

While thiol-acrylate Michael addition polymerizations using monofunctional monomers 

have been extensively studied, the kinetics in multifunctional systems remains largely 

unexplored despite the growing usefulness of thiol-acrylate materials.  The aim of this 

study was to explore a range of both thiol and acrylate monomers to discern what 

structural changes affected the polymerization rate to provide a starting point for more 

focused future studies.   

 It was observed that secondary functionalities affect the polymerization rate 

through intramolecular interactions, which is consistent with previous reports in 

monofunctional systems.  The polymerization rate constant was found to increase with 

increasing thiol and acrylate functionality, which was attributed to the beneficial 

intramolecular effects stemming from adding more ester linkages into the monomer 

structure.  The increase in rate observed with increasing thiol functionality could be, at 

least in part, affected by another factor since spacing out the thiol groups while 

maintaining the same functionality actually decreased the rate.  More focused studies 

are needed to isolate this effect, but a preliminary hypothesis is that when the thiol 

groups are held in close proximity to one another, deprotonation of one thiol by the 

enolate produced from the addition of an adjacent thiol is more likely, which would 

increase the rate by shifting the thiolate-base equilibrium.   

 The effect of changing the reaction mechanism from base-catalyzed to the 

nucleophile-initiated thiol-acrylate Michael addition mechanism was studied in 
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trifunctional thiol-acrylate mixtures.  As expected, there was a significant increase in the 

rate of polymerization with the nucleophile-initiated mechanism, but the magnitude of 

this increase was much less than what has been previously reported in monofunctional 

systems.  This decreased reactivity is likely due to the increased steric hindrance 

associated with forming enolates on triacrylates using the corresponding trithiol in 

addition to a reduction in the diffusivity of the active polymerization species through 

gelling network.   

 Perhaps the most important practical observation of this study was the 

spontaneous initiation of radical polymerization during thiol-acrylate Michael addition 

reactions.  This phenomenon appears to occur in systems where the rate of the thiol-

Michael addition is slow, such as in base-catalyzed systems with low base 

concentrations, systems using lower functionality monomers which are less reactive, 

and towards the end of nucleophile-initiated reactions.  The cause of this phenomenon 

has yet to be determined, but further investigation in this area is important since 

unexpected radical polymerization in thiol-acrylate systems will produce materials with 

vastly different properties compared to materials where the thiol-acrylate Michael 

addition reaction is the dominant mechanism. 

 A range of properties for a thiol-acrylate microfluidic resin (TAMR) were 

determined, and two microfluidic applications featuring TAMR were presented.  The 

TAMR is a two-part system that uses a built-in amine catalyst to cure the system.  The 

kinetics of the curing process were investigated for several TAMR formulations, which 

showed that full conversion could be reached in only 3 hours at 50 °C or 10 hours at 

room temperature for one system.  The surface of TAMR is relatively hydrophilic and 
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was found to vary based on the resin formulation and the surface on which it was cured.  

This adaptive surface effect was attributed to the orientation of the polymer functional 

groups towards or away from the curing surface based on its polarity.  Changes in 

contact angle of 30° were observed by changing the curing surface from poly(styrene) 

to glass.   

 The absorption of water by the TAMR was quantified for several different resin 

compositions.  Short term exposure to water only swelled the resin by 1-2% but over 

long-term exposure, some formulations swell as much as ~28%.  Eventually, all of the 

samples reached a maximum swelling point before starting to degrade due to hydrolysis 

of the esters in the polymer backbone, but this only occurred after the samples were 

submerged for at least one month.  The absorption of other solvents by TAMR was also 

quantified, and overall, the observed swelling was minimal over 24 hours, especially in 

nonpolar organic solvents.   

 The elastic modulus of the TAMR was shown to vary with polymer cure time as 

well as resin composition.  There was no observed difference in the modulus between 

samples cured at room temperature or at elevated temperature, which means the curing 

of TAMR can be accelerated without compromising resin performance.  Bonding 

between two pieces of TAMR was achieved through interfacial thiol-acrylate coupling 

reactions by incorporating excess thiol and acrylate functional groups into each resin 

piece.  The bond strength did not decrease when the resin was cured at elevated 

temperatures, and even at room temperature, the bond strength at 30 minutes was 

sufficient to cause the thiol-acrylate material to fail cohesively when the resin pieces 

were forced apart.  TAMR formulations using a 1-1 ratio of functional groups could also 
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be bound together though these samples failed adhesively when forced apart.  TAMR 

was used to successfully replicate 30 μm sized microfluidic features, but removing 

bubbles from the curing resin remains a challenge.   

 A microfluidic device capable of detecting the presence of E. coli using a 

fluorescence based assay was produced.  Bacterial capture was preformed using an 

antibody which was attached to the TAMR surface.  While there was no conclusive 

evidence as to whether the antibody was covalently bound to the surface or just strongly 

adsorbed, the device successfully detected fluorescently labeled E. coli at a 

concentration of 105 cfu/mL without extensive process optimization or data treatment.  

Components of the bacterial cell, such as LPSs, were also successfully detected in this 

device.   

 Another microfluidic device was developed using TAMR in conjunction with a 

thiol-acrylate hydrogel to produce a gradient-generating device for the study of algal 

chemotaxis.  Bonding between the TAMR and hydrogel layers was achieved without 

any surface modification or external support structure.  Chemical gradients were 

successfully developed in the device, and the effect of changing several hydrogel 

parameters on the gradient was investigated.  Preliminary results suggest that algae 

remain viable in the device for several hours, but work on this project is on ongoing. 

 Overall, an investigation into the kinetics of thiol-acrylate polymerizations using 

multifunctional monomers has revealed that there are still many interesting and 

potentially impactful problems to study in these systems.  Similarly, while examining the 

properties of a thiol-acrylate material, several phenomena worthy of continued 

investigation were uncovered.  Two microfluidic devices were fabricated using thiol-
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acrylate materials to demonstrate the advantages and versatility of this chemistry in an 

area of study where the range of materials properties required for different applications 

is extremely broad.  Hopefully, this work has demonstrated that, while they are not a 

recent development, thiol-acrylate Michael addition polymerizations are worthy of future 

studies on the polymerization mechanism, the properties of materials produced using 

these reactions, and on the practical applications of this versatile and robust chemistry. 

  



149 
 

REFERENCES 

1. Posner, T., Beiträge zur Kenntniss der ungesättigten Verbindungen. II. Ueber die 
Addition von Mercaptanen an ungesättigte Kohlenwasserstoffe. Berichte der 
deutschen chemischen Gesellschaft 1905, 38 (1), 646-657. 

2. Goodyear, C. Improvement in India-Rubber Fabrics. U.S. Patent 3,633, June 15 
1844. 

3. Marvel, C. S.; Chambers, R. R., Polyalkylene Sulfides from Diolefins and 
Dimercaptans. Journal of the American Chemical Society 1948, 70 (3), 993-998. 

4. Marvel, C. S.; Caesar, P. D., Polyarylene-alkylene Sulfides1. Journal of the 
American Chemical Society 1951, 73 (3), 1097-1099. 

5. Morgan, C. R.; Magnotta, F.; Ketley, A. D., Thiol/ene photocurable polymers. 
Journal of Polymer Science: Polymer Chemistry Edition 1977, 15 (3), 627-645. 

6. Morgan, C. R., The photopolymerization of allylic and acrylic monomers in the 
presence of polyfunctional thiols. Journal of Radiation Curing 1980, 7 (2), 10. 

7. Klemm, E.; Sensfuss, S.; Holfter, U.; Flammersheim, H. J., Free-Radical 
stabilizers for the thiol/ene-systems. Angewandte Makromolekulare Chemie 
1993, 212 (1), 121-127. 

8. Rakas, M. A.; Jacobine, A. F., Mechanical and dynamic mechanical properties of 
photocrosslinked norbornene-thiol copolymer films. Journal of Adhesion 1992, 36 
(4), 247-263. 

9. Jacobine, A. F., Thiol-Ene Photopolymers. In Radiation Curing in Polymer 
Science and Technology, Fouassier, J. P., Ed. Elsevier: New York, 1993; pp 219-
268. 

10. Hoyle, C. E.; Cole, M.; Bachemin, M.; Yoder, B.; Mguyen, C.; Jonsson, S., 
Photopolymerization of Systems Incorporating Thiol-Enes. Polym. Preprints 
2001, 42, 697-698. 



150 
 

11. Cramer, N. B.; Reddy, S. K.; Cole, M.; Hoyle, C.; Bowman, C. N., Initiation and 
Kinetics of Thiol-ene Photopolymerizations without Photoinitiators. J. Polym. Sci. 
Part A Polym. Chem. 2004, 42, 5817-5826. 

12. Hoyle, C. E.; Lee, T. Y.; Roper, T., Thiol–Enes:  Chemistry of the Past with a 
Promise for the Future. J. Poly. Sci. Part A. Polym. Chem. 2004, 52, 5301-5338. 

13. Chan, J. W.; Wei, H.; Zhou, H.; Hoyle, C. E., The effects of primary amine 
catalyzed thio-acrylate Michael reaction on the kinetics, mechanical and physical 
properties of thio-acrylate networks. Eur. Polym. J. 2009, 45, 2717–2725. 

14. Hoyle, C. E.; Bowman, C. N., Thiol-Ene Click Chemistry. Angewandte Chemie 
International Edition 2009, 49 (9), 1540-1573. 

15. Cramer, N. B.; Davies, T.; O'Brien, A. K.; Bowman, C. N., Mechanism and 
Modeling of a Thiol−Ene Photopolymerization. Macromolecules 2003, 36 (12), 
4631-4636. 

16. Okay, O.; Bowman, C. N., Kinetic Modeling of Thiol-Ene Reactions with Both 
Step and Chain Growth Aspects. Macromol. Theory Simul. 2005, 14, 267-277. 

17. Khire, V. S.; Kloxin, A. M.; Couch, C. L.; Anseth, K. S.; Bowman, C. N., 
Synthesis, Characterization and Cleavage of Linear Polymers Attached to Silica 
Nanoparticles Formed Using Thiol-Acrylate Conjugate Addition Reactions. J. 
Polym. Sci. Part A:  Polym. Chem. 2008, 46 (20), 6896-6906. 

18. Chan, J. W.; Hoyle, C. E.; Lowe, A. B.; Bowman, M., Nucleophile-Initiated Thiol-
Michael Reactions: Effect of Organocatalyst, Thiol, and Ene. Macromolecules 
2010, 43, 6381–6388. 

19. Hoyle, C. E.; Lowe, A. B.; Bowman, C. N., Thiol-click chemistry: a multifaceted 
toolbox for small molecule and polymer synthesis. Chemical Society Reviews 
2010, 39 (4), 1355-1387. 

20. Lowe, A. B., Thiol-ene “click” reactions and recent applications in polymer and 
materials synthesis. Polymer Chemistry 2010, 1 (1), 17-36. 



151 
 

21. Kharasch, M. S.; Read, A. T.; Mayo, F. R., Peroxide effect in the addition of 
reagents to unsaturated compounds. XVI. Styrene and isobutylene. Chemistry & 
Industry 1938, 57, 752. 

22. Cramer, N. B.; Reddy, S. K.; O'Brien, A. K.; Bowman, C. N., Thiol−Ene 
Photopolymerization Mechanism and Rate Limiting Step Changes for Various 
Vinyl Functional Group Chemistries. Macromolecules 2003, 36 (21), 7964-7969. 

23. Hoyle, C. E.; Bowman, C. N., Thiol-ene click chemistry. Angewandte Chemie 
2010, 49 (9), 1540-73. 

24. Cramer, N. B.; Bowman, C. N., Kinetics of thiol–ene and thiol–acrylate 
photopolymerizations with real-time fourier transform infrared. J. Polym. Sci. A 
Polym. Chem. 2001, 39 (19), 3311-3319. 

25. O'Brien, A. K.; Cramer, N. B.; Bowman, C. N., Oxygen inhibition in thiol–acrylate 
photopolymerizations. Journal of Polymer Science Part A: Polymer Chemistry 
2006, 44 (6), 2007-2014. 

26. Lee, T. Y.; Smith, Z.; Reddy, S. K.; Cramer, N. B.; Bowman, C. N., Thiol−Allyl 
Ether−Methacrylate Ternary Systems. Polymerization Mechanism. 
Macromolecules 2007, 40 (5), 1466-1472. 

27. Cramer, N. B.; Couch, C. L.; Schreck, K. M.; Carioscia, J. A.; Boulden, J. E.; 
Stansbury, J. W.; Bowman, C. N., Investigation of thiol-ene and thiol-ene–
methacrylate based resins as dental restorative materials. Dental Materials 2010, 
26 (1), 21-28. 

28. Kade, M. J.; Burke, D. J.; Hawker, C. J., The Power of Thiol-ene Chemistry. J. 
Polym. Sci. Part A:  Polym. Chem. 2010, 48, 743-750. 

29. Lee, T. Y.; Guymon, C. A.; Jönsson, E. S.; Hoyle, C. E., The effect of monomer 
structure on oxygen inhibition of (meth)acrylates photopolymerization. Polymer 
2004, 45 (18), 6155-6162. 

30. Decker, C.; Jenkins, A. D., Kinetic approach of oxygen inhibition in ultraviolet- 
and laser-induced polymerizations. Macromolecules 1985, 18 (6), 1241-1244. 



152 
 

31. Cramer, N. B.; Scott, J. P.; Bowman, C. N., Photopolymerization of Thiol-Ene 
Polymers without Photoinitiators. Macromolecules 2002, 35, 5361-5365. 

32. Zhao, Y. H.; Vuluga, D.; Lecamp, L.; Burel, F., A rapid, eco- and environmental 
friendly alternative to oil oxidation for the preparation of fatty coatings using 
photoinitiated thiol-ene chemistry. Progress in Organic Coatings 2016, 101, 216-
224. 

33. Meissner, M.; Thompson, H., The photolysis of mercaptans. Transactions of the 
Faraday Society 1938, 34, 1238-1239. 

34. Klemm, E.; Sensfuß, S.; Holfter, U.; Schütz, H., Untersuchungen zur linearen 
thiol‐en‐photopolymerisation. Die Makromolekulare Chemie 1990, 191 (10), 
2403-2411. 

35. Klemm, E.; Sensfuß, S., Untersuchungen zum selbstinitiierungs‐mechanismus 
der thiol/En‐polymerisation. Die Makromolekulare Chemie 1991, 192 (1), 159-
164. 

36. Klemm, E.; Sensfuß, S.; Holfter, U.; Flammersheim, H. J., Free-Radical 
stabilizers for the thiol/ene-systems. Die Angewandte Makromolekulare Chemie 
1993, 212 (1), 121-127. 

37. Kühne, G.; Diesen, J. S.; Klemm, E., New results of the self‐initiation mechanism 
of SH/En addition polymerization. Die Angewandte Makromolekulare Chemie 
1996, 242 (1), 139-145. 

38. Pryor, W. A.; Coco, J. H.; Daly, W. H.; Houk, K. N., Radical generation from 
polymolecular reactions of closed shell molecules. Molecule-assisted homolysis 
(MAH). Hydrogen atom transfer from a Diels-Alder adduct to an alkene. Journal 
of the American Chemical Society 1974, 96 (17), 5591-5593. 

39. Morgan, C. R.; Magnotta, F.; Ketley, A. D., Thiol/ene photocurable polymers. J. 
Poly. Sci. Part A. Polym. Chem. 1977, 15, 627. 

40. Morgan, C. R.; Ketley, A. D., The effect of phosphines on thiol/ene curing 
systems. Journal of Polymer Science: Polymer Letters Edition 1978, 16 (2), 75-
79. 



153 
 

41. Jacobine, A. F.; Glaser, D. M.; Grabek, P. J.; Mancini, D.; Masterson, M.; Nakos, 
S. T.; Rakas, M. A.; Woods, J. G., Photocrosslinked norbornene–thiol 
copolymers: Synthesis, mechanical properties, and cure studies. Journal of 
Applied Polymer Science 1992, 45 (3), 471-485. 

42. Black, M.; Rawlins, J. W., Thiol–ene UV-curable coatings using vegetable oil 
macromonomers. European Polymer Journal 2009, 45 (5), 1433-1441. 

43. Khire, V. S.; Harant, A. W.; Watkins, A. W.; Anseth, K. S.; Bowman, C. N., 
Ultrathin Patterned Polymer Films on Surfaces Using Thiol−Ene Polymerizations. 
Macromolecules 2006, 39 (15), 5081-5086. 

44. Woods, J. G., Radiation-Curable Adhesives. In Radiation Curing : Science and 
Technology Pappas, S. P., Ed. Springer US: 1992; pp 333-398. 

45. Moszner, N.; Schöb, W.; Rheinberger, V., Synthesis, characterization and thiol-
ene polymerization of hydrolyzed/condensed norbornenyl silic acid ester. 
Polymer Bulletin 1996, 37 (3), 289-295. 

46. Rakas, M. A.; Jacobine, A. F., Mechanical and Dynamic Mechanical Properties of 
Photocrosslinked Norbornene-Thiol Copolymer Films. The Journal of Adhesion 
1992, 36 (4), 247-263. 

47. Toh, H. K.; Bateman, I. R.; Diggins, D. R.; Cieslinski, B. G. High index/high Abbe 
number composition. U.S. Patent 5,977,276, 1999. 

48. Chen, F.; Toh, H. K. UV curable high index vinyl esters. U.S. Patent 6,153,663, 
2000. 

49. Toh, H. K.; Bateman, I. R.; Diggins, D. R.; Cieslinski, B. G. High index/high abbe 
number composition. U.S. Patent 6,313,251, 2001. 

50. Toh, H. K.; Chen, F.; Kok, C. M. Acrylic thio monomers. U.S. Patent 6,172,140, 
2001. 

51. Bhargava, R.; Wang, S.-Q.; Koenig, J. L., FTIR Imaging Studies of a New Two-
Step Process To Produce Polymer Dispersed Liquid Crystals. Macromolecules 
1999, 32 (8), 2748-2760. 



154 
 

52. Bhargava, R.; Wang, S.-Q.; Koenig, J. L., Studying Polymer-Dispersed Liquid-
Crystal Formation by FTIR Spectroscopy. 1. Monitoring Curing Reactions. 
Macromolecules 1999, 32 (26), 8982-8988. 

53. Bhargava, R.; Levin, I. W., Noninvasive Imaging of Molecular Dynamics in 
Heterogeneous Materials. Macromolecules 2003, 36 (1), 92-96. 

54. Nwabunma, D.; Kyu, T., Phase behavior, photopolymerization, and morphology 
development in mixtures of eutectic nematic liquid crystal and photocurable 
monomer. Polymer 2001, 42 (2), 801-806. 

55. Natarajan, L. V.; Shepherd, C. K.; Brandelik, D. M.; Sutherland, R. L.; Chandra, 
S.; Tondiglia, V. P.; Tomlin, D.; Bunning, T. J., Switchable Holographic Polymer-
Dispersed Liquid Crystal Reflection Gratings Based on Thiol−Ene 
Photopolymerization. Chemistry of Materials 2003, 15 (12), 2477-2484. 

56. McNair, O. D.; Janisse, A. P.; Krzeminski, D. E.; Brent, D. E.; Gould, T. E.; 
Rawlins, J. W.; Savin, D. A., Impact Properties of Thiol–Ene Networks. ACS 
Applied Materials & Interfaces 2013, 5 (21), 11004-11013. 

57. Senyurt, A. F.; Wei, H.; Hoyle, C. E.; Piland, S. G.; Gould, T. E., Ternary Thiol-
Ene/Acrylate Photopolymers: Effect of Acrylate Structure on Mechanical 
Properties. Macromolecules 2007, 40, 4901-4909. 

58. McNair, O. D.; Gould, T. E.; Piland, S. G.; Savin, D. A., Characterization of 
mouthguard materials: A comparison of a commercial material to a novel thiolene 
family. Journal of Applied Polymer Science 2014, 131 (13). 

59. Pojman, J. A.; Varisli, B.; Perryman, A.; Edwards, C.; Hoyle, C., Frontal 
Polymerization with Thiol-Ene Systems. Macromolecules 2004, 37, 691-693. 

60. Nason, C.; Pojman, J. A.; Hoyle, C., The Effect of a Trithiol and Inorganic Fillers 
on the Photo- Induced Thermal Frontal Polymerization of a Triacrylate. J. Polym. 
Sci. Part A Polym. Chem. 2008, 46, 8091-8096. 

61. Aimetti, A. A.; Machen, A. J.; Anseth, K. S., Poly(ethylene glycol) hydrogels 
formed by thiol-ene photopolymerization for enzyme-responsive protein delivery. 
Biomaterials 2009, 30 (30), 6048-6054. 



155 
 

62. DeForest, C. A.; Polizzotti, B. D.; Anseth, K. S., Sequential click reactions for 
synthesizing and patterning three-dimensional cell microenvironments. Nature 
Materials 2009, 8 (8), 659-664. 

63. Polizzotti, B. D.; Fairbanks, B. D.; Anseth, K. S., Three-Dimensional Biochemical 
Patterning of Click-Based Composite Hydrogels via Thiolene 
Photopolymerization. Biomacromolecules 2008, 9 (4), 1084-1087. 

64. Fairbanks, B. D.; Schwartz, M. P.; Halevi, A. E.; Nuttelman, C. R.; Bowman, C. 
N.; Anseth, K. S., A Versatile Synthetic Extracellular Matrix Mimic via Thiol-
Norbornene Photopolymerization. Advanced Materials 2009, 21 (48), 5005-5010. 

65. Michael, A., On the Addition of Sodium Acetacetic Ether and Analagous Sodium 
Compounds to Unsaturated Organic Ethers. Am. Chem. J. 1887, 9, 115. 

66. Mather, B. D.; Viswanathan, K.; Miller, K. M.; Long, T. E., Michael addition 
reactions in macromolecular design for emerging technologies. Prog. Polym. Sci. 
2006, 31, 487-531. 

67. Nair, D. P.; Podgórski, M.; Chatani, S.; Gong, T.; Xi, W.; Fenoli, C. R.; Bowman, 
C. N., The Thiol-Michael Addition Click Reaction: A Powerful and Widely Used 
Tool in Materials Chemistry. Chem. Mater. 2014, 26 (1), 724-744. 

68. Allen, C. F. H.; Fournier, J. O.; Humphlett, W. J., THE THERMAL 
REVERSIBILITY OF THE MICHAEL REACTION: IV. THIOL ADDUCTS. 
Canadian Journal of Chemistry 1964, 42 (11), 2616-2620. 

69. Gershbein, L. L.; Hurd, C. D., The Reaction of Hydrogen Sulfide with 
Acrylonitrile, Acrylic Ester and Crotonaldehyde. Journal of the American 
Chemical Society 1947, 69 (2), 241-242. 

70. Hurd, C. D.; Gershbein, L. L., Reactions of Mercaptans with Acrylic and 
Methacrylic Derivatives. Journal of the American Chemical Society 1947, 69 (10), 
2328-2335. 

71. Ferruti, P.; Ranucci, E.; Sartore, L.; Bignotti, F.; Marchisio, M. A.; Bianciardi, P.; 
Veronese, F. M., Recent results on functional polymers and macromonomers of 
interest as biomaterials or for biomaterial modification. Biomaterials 1994, 15 
(15), 1235-1241. 



156 
 

72. Bounds, C. O.; Goetter, R.; Pojman, J. A.; Vandersall, M., Preparation and 
Application of Microparticles Prepared Via the Primary Amine-catalyzed Michael 
Addition of a Trithiol to a Triacrylate. J. Polym. Sci. Part A:  Polym. Chem. 2012, 
50, 409–422. 

73. Vernon, B.; Tirelli, N.; Bächi, T.; Haldimann, D.; Hubbell, J. A., Water‐borne, in 
situ crosslinked biomaterials from phase‐segregated precursors. J. Biomed. 
Mater. Res. Part A 2003, 64A (3), 447-456. 

74. Garber, L.; Chen, C.; Kilchrist, K. V.; Bounds, C.; Pojman, J.; Hayes, D., Thiol-
acrylate nanocomposite foams for critical size bone defect repair: A novel 
biomaterial. J. Biomed. Mater. Res. Part A 2013, 101A, 3531-3541. 

75. Smoak, M.; Garber, L.; Chen, C.; Hayes, D.; Pojman, J. A., Antimicrobial 
Cytocompatible Pentaerythritol Triacrylate-co-Trimethylolpropane Composite 
Scaffolds for Orthopaedic Implants. J. Appl. Poly. Sci. 2014, 131 (22), 41099. 

76. Bounds, C. O.; Upadhyay, J.; Totaro, N.; Thakuri, S.; Garber, L.; Vincent, M.; 
Huang, Z.; Pojman, J. A., Fabrication and characterization of stable hydrophilic 
microfluidic devices prepared via the in situ tertiary-amine catalyzed Michael 
addition of multifunctional thiols to multifunctional acrylates. ACS Appl. Mater. 
Interfaces 2013, 5, 1643–1655. 

77. Zhang, W.; Tullier, M. P.; Patel, K.; Carranza, A.; Pojman, J. A.; Radadia, A. D., 
Microfluidics using a thiol-acrylate resin for fluorescence-based pathogen 
detection assays. Lab Chip 2015, 15, 4227-4231. 

78. Pritchard, C. D.; O’Shea, T. M.; Siegwart, D. J.; Calo, E.; Anderson, D. G.; 
Reynolds, F. M.; Thomas, J. A.; Slotkin, J. R.; Woodard, E. J.; Langer, R., An 
injectable thiol-acrylate poly(ethylene glycol) hydrogel for sustained release of 
methylprednisolone sodium succinate. Biomaterials 2011, 32 (2), 587-597. 

79. Lutolf, M. P.; Hubbell, J. A., Synthesis and Physicochemical Characterization of 
End-Linked Poly(ethylene glycol)-co-peptide Hydrogels Formed by Michael-Type 
Addition. Biomacromolecules 2003, 4 (3), 713-722. 

80. Koehler, K. C.; Anseth, K. S.; Bowman, C. N., Diels–Alder Mediated Controlled 
Release from a Poly(ethylene glycol) Based Hydrogel. Biomacromolecules 2013, 
14 (2), 538-547. 



157 
 

81. Li, M.; De, P.; Gondi, S. R.; Sumerlin, B. S., End group transformations of RAFT-
generated polymers with bismaleimides: Functional telechelics and modular 
block copolymers. Journal of Polymer Science Part A: Polymer Chemistry 2008, 
46 (15), 5093-5100. 

82. Napoli, A.; Tirelli, N.; Kilcher, G.; Hubbell, A., New Synthetic Methodologies for 
Amphiphilic Multiblock Copolymers of Ethylene Glycol and Propylene Sulfide. 
Macromolecules 2001, 34 (26), 8913-8917. 

83. Rieger, J.; Van Butsele, K.; Lecomte, P.; Detrembleur, C.; Jerome, R.; Jerome, 
C., Versatile functionalization and grafting of poly(?-caprolactone) by Michael-
type addition. Chemical Communications 2005,  (2), 274-276. 

84. Tedja, R.; Soeriyadi, A. H.; Whittaker, M. R.; Lim, M.; Marquis, C.; Boyer, C.; 
Davis, T. P.; Amal, R., Effect of TiO2 nanoparticle surface functionalization on 
protein adsorption, cellular uptake and cytotoxicity: the attachment of PEG comb 
polymers using catalytic chain transfer and thiol-ene chemistry. Polymer 
Chemistry 2012, 3 (10), 2743-2751. 

85. Rim, C.; Son, D. Y., Facile and efficient synthesis of star-shaped oligomers from 
a triazine core. Tetrahedron Letters 2009, 50 (28), 4161-4163. 

86. Chan, J. W.; Yu, B.; Hoyle, C. E.; Lowe, A. B., Convergent synthesis of 3-arm 
star polymers from RAFT-prepared poly(N,N-diethylacrylamide) via a thiol-ene 
click reaction. Chemical Communications 2008,  (40), 4959-4961. 

87. Zhang, Q.; Li, G.-Z.; Becer, C. R.; Haddleton, D. M., Cyclodextrin-centred star 
polymers synthesized via a combination of thiol-ene click and ring opening 
polymerization. Chemical Communications 2012, 48 (65), 8063-8065. 

88. Chatani, S.; Podgórski, M.; Wang, C.; Bowman, C. N., Facile and Efficient 
Synthesis of Dendrimers and One-Pot Preparation of Dendritic–Linear Polymer 
Conjugates via a Single Chemistry: Utilization of Kinetically Selective Thiol–
Michael Addition Reactions. Macromolecules 2014, 47 (15), 4894-4900. 

89. Auty, S. E. R.; Andren, O.; Malkoch, M.; Rannard, S. P., The first peripherally 
masked thiol dendrimers: a facile and highly efficient functionalization strategy of 
polyester dendrimers via one-pot xanthate deprotection/thiol-acrylate Michael 
addition reactions. Chemical Communications 2014, 50 (50), 6574-6577. 



158 
 

90. Jones, M. W.; Mantovani, G.; Ryan, S. M.; Wang, X.; Brayden, D. J.; Haddleton, 
D. M., Phosphine-mediated one-pot thiol-ene "click" approach to polymer-protein 
conjugates. Chemical Communications 2009,  (35), 5272-5274. 

91. Boyer, C.; Davis, T. P., One- pot synthesis and biofunctionalization of 
glycopolymersviaRAFT polymerization and thiol-ene reactions. Chemical 
Communications 2009,  (40), 6029-6031. 

92. Lutolf, M. P.; Tirelli, N.; Cerritelli, S.; Cavalli, L.; Hubbell, J. A., Systematic 
Modulation of Michael-Type Reactivity of Thiols through the Use of Charged 
Amino Acids. Bioconjugate Chemistry 2001, 12 (6), 1051-1056. 

93. Vandenbergh, J.; Ranieri, K.; Junkers, T., Synthesis of (Bio)-Degradable Poly(β-
thioester)s via Amine Catalyzed Thiol−Ene Click Polymerization. Macromolecular 
Chemistry and Physics 2012, 213 (24), 2611-2617. 

94. Kilambi, H.; Reddy, S. K.; Beckel, E. R.; Stansbury, J. W.; Bowman, C. N., 
Influence of Secondary Functionalities on the Reaction Behavior of Monovinyl 
(Meth)Acrylates. Chemistry of Materials 2007, 19 (4), 641-643. 

95. Kilambi, H.; Stansbury, J. W.; Bowman, C. N., Enhanced reactivity of monovinyl 
acrylates characterized by secondary functionalities toward photopolymerization 
and Michael addition: Contribution of intramolecular effects. Journal of Polymer 
Science Part A: Polymer Chemistry 2008, 46 (10), 3452-3458. 

96. Odian, G., Principles of Polymerization, 4th Ed. 3rd ed. ed.; Wiley: New York, 
2004. 

97. Dmuchovsky, B.; Vineyard, B. D.; Zienty, F. B., The Mechanism of the Base-
Catalyzed Addition of Thiols to Maleic Anhydride. Journal of the American 
Chemical Society 1964, 86 (14), 2874-2877. 

98. Wang, C.; Qi, C., Mechanistic insights into N- or P-centered nucleophile 
promoted thiol–vinylsulfone Michael addition. Tetrahedron 2013, 69 (26), 5348-
5354. 

99. Espenson, J. H., Chemical Kinetics and Reaction Mechanisms. 2nd ed. ed.; 
McGraw-Hill: New York, 1995. 



159 
 

100. Newmark, R. A.; Palazzotto, J., Carbon-13 NMR Analysis of Pentaerythritol 
Triacrylate. Appl. Spectrosc. 1990, 44 (5), 804-807. 

101. Kilambi, H.; Reddy, S. K.; Schneidewind, L.; Stansbury, J. W.; Bowman, C. N., 

Influence of the secondary functionality on the radical‐vinyl chemistry of highly 
reactive monoacrylates. Journal of Polymer Science Part A: Polymer Chemistry 
2009, 47 (19), 4859-4870. 

102. Shin, J.; Matsushima, H.; Comer, C. M.; Bowman, C. N.; Hoyle, C. E., 
Thiol−Isocyanate−Ene Ternary Networks by Sequential and Simultaneous Thiol 
Click Reactions. Chemistry of Materials 2010, 22 (8), 2616-2625. 

103. Chatani, S.; Sheridan, R. J.; Podgórski, M.; Nair, D. P.; Bowman, C. N., 
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