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ABSTRACT 

Sampling molecular conformations is an important step in evaluating physical, mechanical, 

hydrodynamic, and optical properties of flexible molecules especially polymers. One powerful 

method for this purpose is configurational-bias Monte Carlo in which one random segment of a 

molecule is chosen, all segments toward one random end are removed, and then regrown 

segment by segment to produce a new geometry to be accepted/rejected according to probability 

laws. The advantage of this method is the ability to generate acceptable conformations that are 

favorable for intra- and intermolecular energies to save computational costs. However, when 

there are several interdependent energetic terms, trial generation can be very time consuming 

because a trial must be generated that is satisfactory for all energetic terms. There are two 

important cases where a number of intramolecular energies are coupled: bending angle energies 

in a branched point, and bending and torsional angle energies for growing segments between two 

fixed points. 

According to probability laws, if trials are generated according to their probability density 

function, all trials will be accepted. The basic idea of the methods, which have been developed 

for the two above cases, is to generate trials that are close to the Boltzmann distributions of 

intramolecular energies. It has been proved that new methods are faster and more efficient than 

traditional methods. One of the methods for generating bending angle trials have been used in 

nucleation simulations of flexible amine molecules which accelerates simulation process by four 

to five folds.  
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CHAPTER 1. INTRODUCTION 

1.1. Importance of molecular conformation 

Molecular conformation or molecular geometry is the arrangement of atoms in a molecule. 

This arrangement can be defined according to bond lengths, bending angles, and torsional angles. 

In addition to properties that define molecular dimensions, such as end-to-end distance
1
 and 

radius of gyration,
2
 there are many physical, mechanical, hydrodynamic, and thermodynamic 

properties that are highly dependent on molecular conformations. Some of these properties are 

dipole moment,
3
 light scattering,

4
 X-ray scattering,

5
 NMR spectroscopy,

6
 viscosity,

7
 elasticity,

8
 

diffusion,
9
 pH,

10
 and second virial coefficient.

11
 In biological molecules, such as proteins, the 

conformation of an antibody is crucial for targeting diseases.
12

 Statistical mechanics provides 

computational tools for evaluating these properties by averaging over molecular conformations. 

Thus, sampling molecular conformations is a key step in accurate calculations. 

Molecular simulation methods, such as molecular dynamics (MD) and Monte Carlo (MC),
13

 

are utilized for sampling a system. In MD, the equation of motion is solved numerically to 

calculate the position and the velocity of each particle at each time. In MC, positions of particles 

are sampled by proposing random moves that are accepted or rejected according to probability 

laws. According to statistical mechanics, the probability density function of a system is 

proportional to its Boltzmann distribution, 𝑒−𝛽𝑈, where β = (kBT)
-1

 (kB is the Boltzmann constant 

and T is the temperature) and U is the potential energy of the system. 

MD has the advantage to simulate time-dependent and nonequilibrium phenomena. On the 

other hand, MC moves are more efficient to jump between different energy regions. Jorgensen 

and Tirado-Rives demonstrated
14

 that for sampling molecular conformations, MC is 1.6-3.8 

times faster than MD because MD is very likely to be trapped by internal energy barriers such as 
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torsional energy. It must be noted that in their MC simulation, traditional MC moves have been 

implemented whereas in this study, advanced MC methods have been developed that are much 

more efficient. 

1.2. Background in probability and Monte Carlo 

A probability density function, f, for a continuous variable, x, has three properties
15

 

1. For each value of x, f(x) ≥ 0 

2. The probability density function is normalized 

∫ 𝑓(𝑥)𝑑𝑥
+∞

−∞
= 1                                                                                                                       (1.1) 

3. The probability of finding x between two values, x1 and x2, where x1 ≤ x2, is calculated by  

𝑃(𝑥1 ≤ 𝑥 ≤ 𝑥2) = ∫ 𝑓(𝑥)𝑑𝑥
𝑥2

𝑥1
                                                                                                 (1.2) 

The cumulative distribution function is defined as 

𝐹(𝑥) = ∫ 𝑓(𝑡)𝑑𝑡
𝑥

−∞
                                                                                                                   (1.3) 

According to Eq. (1.1), for each value of x, we have 

0 ≤ 𝐹(𝑥) ≤ 1                                                                                                                            (1.4) 

Thus, Eq. (1.2) can be written as  

𝑃(𝑥1 ≤ 𝑥 ≤ 𝑥2) = 𝐹(𝑥2) − 𝐹(𝑥1)                                                                                            (1.5) 

In order sample the probability density function, random variable x must be generated from 

f(x). The most straightforward method for this purpose is inverse transform. This method, which 

is based on Eq. (1.4), generate a uniform random number R on (0, 1) and calculate its 

corresponding random variable as 

𝑥 = 𝐹−1(𝑅)                                                                                                                               (1.6) 
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where F
-1

 is the inverse function of F. This method is applicable for simple probability density 

functions, such as sin x, where F and F
-1

 are calculated easily. 

For more complicated functions, accept-reject scheme
16

 can be used. In this algorithm, in 

order to sample probability density function f, a random variable x is generated from a simpler 

function g (e.g., uniform function), which is called generation function, and a uniform random 

number R on (0, 1) until 
𝑓(𝑥)

𝑐𝑔(𝑥)
≥ 𝑅, where c is a constant to ensure that the fraction 

𝑓(𝑥)

𝑐𝑔(𝑥)
 is 

between 0 and 1. 

The accept-reject method is very efficient for probability density functions with few 

variables. But, when there are many variables that can affect each other, this method becomes 

very time-consuming to generate an acceptable set of variables. For instance, in a liquid system 

with many molecules, random generation of all particles positions is very likely to produce a 

system with high energy because of probable molecular overlaps. Consequently, 𝑒−𝛽𝑈 is very 

low that leads to trial rejection. In order to sample these systems, Markov chain process
17

 is used. 

In this process, it is assumed that the probability of a system to be at each state only depends on 

the previous state and it is independent of states prior to the previous states. In other words, if the 

current state of the system is called xo and a new state, which is called xn, is generated from xo. 

The probability ratio of accepting the forward move to accepting the reverse move is 

𝑎𝑐𝑐(𝐱𝑜→𝐱𝑛)

𝑎𝑐𝑐(𝐱𝑛→𝐱𝑜)
=

𝑓(𝐱𝑛)
𝑔(𝐱𝑜→𝐱𝑛)

𝑓(𝐱𝑜)
𝑔(𝐱𝑛→𝐱𝑜)

                                                                                                                  (1.7) 

where arrow → means from one state to the other, f is the probability density function, g is the 

generation probability, and acc is the accepting probability. Eq. (1.7) can be written in the 

following form that is called detailed balance condition or microscopic reversibility 

𝑓(𝐱𝑜)𝜋(𝐱𝑜 → 𝐱𝑛) = 𝑓(𝐱𝑛)𝜋(𝐱𝑛 → 𝐱𝑜)                                                                                  (1.8) 
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where π is the transition probability which is the product of generation and accepting 

probabilities. The acceptance rate, which is also the ratio of accepted moves to attempted moves, 

is defined as 

𝑃𝑎𝑐𝑐 = min [1,
𝑎𝑐𝑐(𝐱𝑜→𝐱𝑛)

𝑎𝑐𝑐(𝐱𝑛→𝐱𝑜)
]                                                                                                      (1.9) 

A uniform random number R is generated on (0, 1). If Pacc ≥ R, the system goes to state xn, 

otherwise, it stays at state xo. According to Eqs. (1.7) and (1.9), if the new states are generated 

according to the probability density function, all moves will be accepted.  

In order to generate new states, several algorithms have been proposed. One of the 

traditional algorithms is Metropolis sampling
18

 where the generation probability is symmetric, 

i.e., g(xo → xn) = g(xn → xo), and the Boltzmann distribution describes the probability density 

function. So, the acceptance rate is 

𝑃𝑎𝑐𝑐 = min {1, exp(−𝛽[𝑈(𝐱𝑛) − 𝑈(𝐱𝑜)])}                                                                          (1.10) 

Two common moves in Metropolis sampling are translation and rotation where one 

molecule is chosen randomly and translated by a random displacement or rotated by a random 

angle to generate a new state. The potential energies of new and old states are calculated to 

accept or reject the move according to Eq. (1.10). 

1.3. Flexible molecules 

Metropolis algorithms are efficient for sampling positions of molecules in a system where a 

whole molecule is moved. However, it is not efficient for sampling conformations of a molecule 

because random displacement of one atom or one segment in a molecule can cause huge energy 

penalty due to the intramolecular interactions inside the molecule. 

One of the earliest methods that has been proposed to sample conformations of a linear 

chain is the self-avoiding walk (SAW)
19-20

 on square or cubic lattices for two or three dimensions 
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respectively. In this model, bond lengths are constant and equal to lattice constant. Each segment 

of the chain can occupy one lattice site. So, in order to generate conformations of a chain, the 

chain walks randomly on the lattice by occupying lattice sites segment by segment. Thus, 

bending angles can be either 90
o
 or 180

o
. If the chain crosses an occupied site, the conformation 

will be rejected due to excluded volume repulsions. As the chain length increases, more attempts 

are likely to be rejected (attrition problem). One solution to this problem was proposed by 

Rosenbluth and Rosenbluth
21

 to avoid occupied sites at each step by choosing one of the 

available sites. In this method, each grown chain is weighted to count all conformations equally 

(unbiased sampling). Another solution to the attrition problem is the enrichment method.
22-23

 In 

this approach, walking a long chain is done in n steps where in each steps, p short chains with 

lengths s are generated. Successfully grown chains are attempted to grow further for another s 

walks in the next step. Grassberger
24

 combined Rosenbluth-Rosenbluth and enrichment methods, 

so that very long chains can be generated in a lattice. 

After generating a configuration for a long chain, the molecule can relax to generate other 

configurations through Markov chain processes. In these Monte Carlo moves, such as end 

rotation, kink jumping,
25

 crankshaft,
26

 slithering snake,
27

 and pivot algorithm,
28

 one or a few 

segments are relocated to new lattice sites in a way that fixed bond lengths are preserved to 

generate a new valid configuration. The new configuration is accepted according to the detailed 

balance condition. 

1.4. Configurational-bias Monte Carlo 

Another method that can be used in both lattice and off-lattice model is configurational-bias 

Monte Carlo (CBMC).
13

 This method was first proposed to calculate chemical potential
29

 using 

particle insertion method
30

 in a lattice model.
31

 The first version was similar to Rosenbluth-
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Rosenbluth SAW with this difference that CBMC satisfies detailed balance condition to yield 

unbiased sampling. Since molecules in lattice models can only take fixed bond lengths and few 

bending angles, CBMC was extended to the off-lattice (or continuous) model
32-35

 to consider 

strong intramolecular interactions. In a CBMC move, a random segment of a random molecule is 

chosen; all segments toward one end are removed, and then, regrown segment by segment to 

generate a new conformation. In the growth of a segment, l, KTrial trials are generated and one of 

them (say ith trial) is selected with this probability 

𝑃select(𝑖) =
exp(−𝛽𝑈(𝑖))

𝑊𝑙
                                                                                                            (1.11) 

with  

𝑊𝑙 = ∑ exp(−𝛽𝑈(𝑖))
𝐾Trial
𝑖=1                                                                                                      (1.12) 

The Rosenbluth weight for growing N segments is 

𝑊 = ∏ 𝑊𝑙
𝑁
𝑙=1                                                                                                                           (1.13) 

The new conformation is accepted with the probability of min[1, W(n)/W(o)] where o and n stand 

for old and new conformations respectively. 

Since calculating intramolecular interactions is inexpensive in comparison with 

intermolecular interactions, it is computationally efficient to decouple them.
36

 The probability 

density function of intramolecular interactions can be written as Jexp(-βU
intra

), where J is the 

Jacobian factor and U
intra

 is the sum of all intramolecular energies. Each trial is generated 

according to this function using accept-reject method, which is also known as Boltzmann 

rejection method,
37

 and one trial is selected according to intermolecular energies with this 

probability 

𝑃select(𝑖) =
exp(−𝛽𝑈inter(𝑖))

𝑊inter                                                                                                      (1.14) 
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with  

𝑊inter = ∑ exp (−𝛽𝑈inter(𝑖))
𝐾Trial
𝑖=1                                                                                       (1.15) 

where U
inter

 is the intermolecular energy. This method had been used to study linear
38

 and 

branched
39-42

 molecules until Vlugt et al. showed
43

 that at a branch point, all branches must be 

grown simultaneously to yield correct distributions because several bending angles are coupled 

together. Their solution to this problem was to run a minor internal MC simulation to generate 

the positions of the branches simultaneously. 

Macedonia and Maginn
44

 proposed a branch point sampling method to deal with this 

problem where a set of correctly distributed molecular fragments are prepared and stored in 

advance to be used during the simulation. Apart from the large memory requirement, this method 

may not be used to generate any geometry outside of these pre-tabulated ones. 

Another solution to this problem is coupled-decoupled CBMC (CD-CBMC)
45

 where KTrial 

trials are generated according to the Jacobian term (i.e., the sin term), which is close to a 

uniform distribution, and one of them is selected based on the following Boltzmann probability 

distribution of intramolecular energies: 

𝑃select(𝑖) =
exp(−𝛽𝑈intra(𝑖))

𝑊intra
                                                                                                     (1.16) 

with  

𝑊intra = ∑ exp (−𝛽𝑈intra(𝑖))
𝐾Trial
𝑖=1                                                                                       (1.17) 

The growth of a branch point in CD-CBMC consists of two parts; in part 1, all bending 

angles of each branch with previously grown atoms are chosen; in part 2, the dihedral angles 

between planes made by growing angles are determined. These two parts are implemented 

independently and the product of their Rosenbluth weights appears in the detailed balance 
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condition. Since trials are generated almost uniformly despite the fact that bending and dihedral 

distributions are very narrow and nonuniform, many trials are required to be generated to 

produce an acceptable conformation. Thus, trial generation can become the most time-

consuming part as revealed from a recent profiling of our nucleation MC code, where the size of 

the nucleation system is fairly small, not more than 100 molecules typically.
46

 The angle 

generation was also found to be the most expensive component for the Gibbs ensemble MC 

(GEMC)
47-49

 in phase equilibrium calculation
50-52

 even for systems containing a few hundred 

molecules. For example, we repeated the phase equilibrium calculation reported for an n-heptane 

system
53

 (with 300 molecules and a liquid box of 40Å) and found that more than 60% of the 

computer time was spent on the generation of the intramolecular angles. For an isolated molecule 

in a gas phase, the angle generation consumed over 99% of the computer time. In addition, since 

the dihedral angle distributions depend on the selected bending angles, while the two parts are 

performed independently, high acceptance rates cannot be obtained for highly branched 

molecules. For example, the acceptance rate for growing 2,2-dimethylpropane does not exceed 

65% even with 10000 trials.
54

 

Martin and Frischknecht
54

 offered a solution, which is based on the energy bias scheme by 

Snurr et al.,
55

 to the problems of CD-CBMC by generating trials according to an arbitrary 

distribution, such as Gaussian,
56

 whose parameters are calculated during the simulation. An 

appropriate fitting approach is essential for this approach to achieve efficient sampling. They 

also coupled parts 1 and 2 to attain fairly good acceptance rates for branched molecules. This 

method works well for linear molecules, but needs many trials for branched molecules because 

Gaussian distribution cannot predict dihedral distribution correctly. 
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In chapter 2, two novel methods, the density-guided and the Jacobian-Gaussian, are 

explained for generating bending angle trials for linear and branched molecules. 

Although CBMC can sample oligomers with a small number of segments successfully, it 

cannot be applied to polymers and cyclic molecules. In the case of polymers, growing many 

segments reduces the acceptance rate. Thus, CBMC can be used for the segments close to the 

ends, but any regrowth involving inner segments is very likely to be rejected. For cyclic 

molecules, since CBMC regrows the molecule segment by segment and does not determine the 

position of the last segment at the beginning of the growth procedure, it is very unlikely to 

generate a cycle with acceptable conformation. For this problem to be overcome, techniques 

have been proposed and they can be categorized into three groups depending on how the 

intramolecular interactions are treated. 

In the first group, intramolecular interactions are ignored and all segments are connected to 

each other with fixed bond lengths. Thus, only nonbonded or intermolecular interactions are 

considered. One of the earliest methods uses the so-called crankshaft move
57-59

 in which one 

segment is chosen randomly and then rotated by a random angle around the line passing its two 

neighboring segments to produce a new conformation. Escobedo and Pablo
60-61

 developed 

extended continuum CBMC methods for linear, branched, and cross-linked molecules. In these 

methods, two segments for linear molecules and more than two segments for branched and cross-

linked molecules are chosen randomly, and the segments between them are removed and 

regrown to produce a new conformation. When growing each segment, the direction of the 

growth (i.e. the polar and the azimuth angles) is generated uniformly from the available space, 

which is determined using geometrical equations, to ensure the closure of the chain. Another 

approach is to use the biasing probability function for each growth direction that guides the 
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growing segment toward the final segment. Because of the absence of the intramolecular 

interactions, the biasing probability function can be counted
62

 for a lattice or calculated by 

integration
63

 over the continuous space. 

In the second group, bond lengths and bending angles are fixed at their equilibrium values, 

while torsional angles are allowed to vary under a given torsional potential. In each move, at 

least three segments
64

 are relocated to generate a new configuration. One method in this group is 

called concerted rotation (CONROT),
65

 where several sequential segments are chosen randomly. 

The torsional angles of the segments before and/or after the selected segments are changed to 

random values. The constraint equations (i.e., defined by the fixed bond lengths and fixed 

bending angles) are then solved numerically to find the new positions for these selected 

segments. Wu and Deem
66

 showed that there are at most 16 solutions for these equations, and all 

answers must be calculated to satisfy the detailed balance condition. CONROT can be combined 

with CBMC
67-68

 for cyclic peptides where the cyclic backbones are sampled using CONROT and 

the side chains are regrown with regular CBMC. Uhlherr
69

 developed the internal configurational 

bias method in which a finite, extendable, nonlinear, and elastic biasing probability function is 

utilized between the growing and the final segment. The last three segments are regrown using 

the CONROT move to close the chain. 

In the third group, a semiflexible model is used where bond lengths are fixed at their 

equilibrium values and bending and torsional angles are allowed to vary according to certain 

potential functions. Shah and Maginn
70

 utilized a fragments library containing different 

conformations of cyclic fragments (e.g., cyclohexane and methylcyclohexane) in trial generation. 

This method requires large memory storage. Ulmschneider and Jorgensen
71

 extended CONROT 

to flexible bending angles where several sequential segments are chosen randomly and their 
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bending and torsional angles are perturbed to create a new conformation. Because of the huge 

bending energy penalty and requirement for chain closure, only small angle perturbations can 

lead to acceptable conformations which increase sampling time. Rebridging configurational 

bias
72

 and self-adapting fixed end points CBMC
73-74

 extended regular CBMC to the regrowth of 

inner segments. In both methods, each trial is weighted by a biasing probability function that is 

assumed to be a function of the distance between the growing and the last fixed segment 

calculated either before or during the course of simulation. Despite the use of a large number of 

trials, the acceptance rates of these two methods for growing two, three, and four segments are 

approximately 40%, 20%, and 10%, respectively, and are even lower for higher number of 

segments. A low acceptance rate occurs for two reasons. First, the positions of the last few 

segments determine several tightly coupled bending and torsional angles, e.g., relocating even 

just two sequential segments in a linear chain, can lead to the change of up to four bending and 

five torsional angles. These two methods cannot include all these energetic terms in the trial 

generation step, and trial selection of each segment is performed sequentially, which ignores the 

coupling (or interdependencies) between these angles. Low acceptance rates were also observed 

for regular CBMC when using it on a highly branched molecule for similar reasons (i.e., the 

position of one branch simultaneously determines several tightly coupled intramolecular angles). 

Second, since each trial is weighted by both the Boltzmann factor and the biasing probability 

function, the final weight of each trial is not necessarily energetically favorable which may lead 

to a selection of inappropriate trial positions and consequently further decrease in the acceptance 

rate. In addition, because the biasing probability function must be evaluated between each pair of 

segments with different number of growing segments between them, this evaluation becomes 
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more computationally expensive and requires higher memory storage, in particular, for the case 

of polymers with different sequential orders of segments (e.g., proteins). 

In chapter 3, a novel method is explained to improve the efficiency of fixed end points 

CBMC. 

One of the developed methods for bending angle trial generation is tested in nucleation 

simulation of amines in chapter 4. 
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CHAPTER 2. BENDING ANGLE TRIAL GENERATION 

2.1. Introduction 

In this chapter, we explain the density-guided and the Jacobian-Gaussian methods for 

bending angle trial generation. A harmonic bending angle potential is used for angle θ as 

follows: 

𝑈bend(𝜃) =
1

2
𝑘𝜃(𝜃 − 𝜃0)2                                                                                                        (2.1) 

where θ0 and kθ are the equilibrium bending angle and the force constant, respectively. These 

force field parameters are chosen from the transferable potential for phase equilibria-united atom 

(TraPPE-UA)
45, 75

 and listed in Table 2.1 for different bending angle types in different 

molecules. The temperature of each simulation is T = 300 K. 

2.2. Density-guided method 

Here we introduce the density-guided method that attempts to use the exact probability 

density function so that each generated geometry can be accepted. In actual practice, due to the 

complexity of this probability density function, a numerical representation of this distribution 

function would be required. This numerical table can be generated either a priori from the 

distribution function or on-the-fly in a self-adapting manner. This method has been tested on 

propane, 2-methylpropane, and 2,2-dimethylpropane, that are good representatives of both linear 

and branched molecules. It has been shown from these test cases that reasonable approximations 

can be made (especially for the highly branched molecules) to drastically reduce the 

dimensionality and correspondingly the amount of the tabulated data that is needed to be stored, 

while the dependencies between the various geometrical variables can be still well considered so 

that a great acceptance rate can be achieved. 
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Table 2.1. Bending angle force field parameters 

Molecule Bending angle θ0 (degree) kθ/kB (K) 

Propane CH3-CH2-CH3 114 62500 

2-Methylpropane CH3-CH-CH3 112 62500 

2,2-dimethylpropane CH3-C-CH3 109.47 62500 

Acetone CH3-C-CH3 117.2 62500 

Acetone CH3-C=O 121.4 62500 

 

Described below are the details of this method. We only focus on the generation of bending 

angles for molecules in a gas-phase where the expected distribution of these angles can be 

numerically obtained via integration but extension of this method to other geometrical variables 

(including bond length and torsional angles) in other environment (with external interactions that 

can be tabulated in advance) is straightforward. 

2.2.1. Regrowth of a one-branched (linear) molecule. 

This case is shown in Fig. 2.1a where P and C are previous and current segments which have 

already been grown and segment G must be grown. The true normalized probability distribution 

of the bending angle can be described as follows: 

𝑓(𝜃) =
sin 𝜃exp(−𝛽𝑈bend(𝜃))

∫ sin 𝛼exp(−𝛽𝑈bend(𝛼))d𝛼
𝜋

0

                                                                                               (2.2) 

From this distribution, the cumulative probability distribution can be obtained 

𝑃(𝜃) = ∫ 𝑓(𝛼)d𝛼
𝜃

0
                                                                                                                    (2.3) 
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Fig. 2.1. Growth of (a) one-branched, (b) two-branched, and (c) three-branched molecules. (d) 

New variables, θS and ωS, are introduced to define the orientation of the third branch in case (c). 

Then a linear interpolation is done to find and tabulate values of  at desired P’s. These P values 

are typically evenly spaced with a certain P interval, say 0.001. In order to generate a new 

conformation, a random number, R, is chosen uniformly between 0 and 1. Based on where this 

random number is located in the P range, say in the i-th interval, with P(i) < R < P(i+1) and a 

P(i) = P(i+1)  P(i), the corresponding  interval can be determined, which is between (i) and 

(i+1) and an angle would be generated uniformly in that (i) interval. The detailed balance 

condition is 

sin 𝜃(𝑜) exp (−𝛽𝑈bend(𝜃(𝑜)))
∆𝑃(𝑛)

∆𝜃(𝑛)
𝑎𝑐𝑐(𝑜 → 𝑛) =

sin 𝜃(𝑛) exp (−𝛽𝑈bend(𝜃(𝑛)))
∆𝑃(𝑜)

∆𝜃(𝑜)
𝑎𝑐𝑐(𝑛 → 𝑜)                                                                  (2.4) 

where the sin term is the Jacobian factor for the bending angle. 

Although the  intervals are equal in probability, they are different in sizes, i.e., the sizes of 

these intervals are exactly inversely proportional to f() when they are infinitely small. Thus, 

they are much smaller toward the most probable region. Since these intervals are equally likely 

to be picked for the angle generation, the sampling becomes denser toward more probable 

regions. If viewed this way, this method uses the same idea behind a number of other existing 

techniques, such as the aggregation-volume-bias Monte Carlo
76-78

 that has led to recent successes 
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in simulating nucleation events.
46, 79-80

 That is, first divide the phase space that is originally rather 

heterogeneous into various smaller regions so that within each region the probability densities 

are more or less uniform, and then sample the phase space region by region. In the work by 

Macedonia and Maginn,
44

 a similar idea was proposed for the linear molecules. 

2.2.2. Regrowth of a two-branched molecule. 

In this case (see Fig. 2.1b), segments G1 and G2 must be grown. θ1, θ2, and θ12 are the three 

bending angles and ω12 is the dihedral angle between PCG1 and PCG2 planes. The geometry of 

this molecule can be specified by θ1, θ2, and ω12, prescribed by the following probability density 

function: 

𝑓(𝜃1, 𝜃2, 𝜔12) ∝ sin 𝜃1 sin 𝜃2 exp{−𝛽[𝑈bend(𝜃1) + 𝑈bend(𝜃2) + 𝑈bend(𝜃12)]}                   (2.5) 

The following geometrical equation shows how θ1, θ2, θ12, and ω12 are related: 

cos 𝜃12 = cos 𝜃1 cos 𝜃2 + sin 𝜃1 sin 𝜃2 cos 𝜔12                                                                       (2.6) 

For 2-methyl-propane, all three bending angles are equivalent and should have the same 

average distribution that can be calculated as follows: 

𝑓(𝜃1) = ∫ ∫ 𝑓(𝜃1, 𝜃2, 𝜔12)𝑑𝜃2𝑑𝜔12
2𝜋

0

𝜋

0
                                                                                   (2.7) 

Similarly, the average distribution of ω12 is 

𝑓(𝜔12) = ∫ ∫ 𝑓(𝜃1, 𝜃2, 𝜔12)𝑑𝜃1𝑑𝜃2
𝜋

0

𝜋

0
                                                                                     (2.8) 

It is expected that the distributions of 1, 2, and ω12 angles are interdependent. Thus if one 

uses the average distributions based on the above equations to generate these angles, the 

acceptance rate can be still rather poor. In order to consider the interdependencies of these angles 

while keeping the size of tabulated data reasonable, a more delicate procedure was employed. 

First, the dependencies of the distribution of 2 on 1 were analyzed by fixing 1 at various values 

(typically coinciding with the interval positions) and integrating the probability density function f  
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Fig. 2.2. ω12 (obtained from Eq. (2.6)) is drawn in the probable range of θ1 and θ2 at three 

different values of θ12 (all the angles are in units of degree). 

over the ω12 space. Then, the dependencies of the distribution of ω12 on both 1 and 2 were 

considered. In principle, 1 and 2 must be treated as independent variables but this would entail 

a large computational task in terms of both computer time used for integration and data 

generated that needs to be stored. Instead we tried to identify a collective degree of freedom that 

can be representative of a group of 1 and 2 values when the ω12 distributions are similar so that 

the dimensionality of this problem can be reduced. Realizing that the distribution of ω12 is mostly 

determined by the Boltzmann weight governed by Ubend(12), ω12 is drawn as function of 1 and 

2 at three different 12 values when this Boltzmann weight reaches the maximum or half of the 

maximum (see Fig. 2.2). This can be used as a guide to estimate the peak position and the width 

of the ω12 distribution. As shown in Fig. 2.2, for all three 12 surfaces the change in ω12 is very 

significant along the diagonal direction but negligible in the off-diagonal direction. Based on this 

observation, sum (= 1 + 2) was introduced to be such a collective variable and the distributions 

of ω12 were analyzed at constant values of sum. 

As discussed in section 2.2.1, this sampling scheme involves a careful division of the phase 

space into smaller regions each of which consists of states with similar probability density to 

overcome the heterogeneity issue present in the original space. For the two-branched case, this 
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space is multi-dimensional and there are many ways to divide this space. To further reduce the 

amount of data that needs to be stored, in our implementation, this space division is done first 

statically along 1 (similarly to the one-branched case) using the intervals obtained from the 

average 1 distribution, then dynamically along 2 (depending on the 1 value picked), followed 

by another dynamic division along ω12 (depending on sum). An interpolated scheme is used to 

obtain both 2 and ω12 intervals on-the-fly. Specifically, the 2 (or ω12) interval positions 

obtained from the 2 (or ω12) distributions at various 1 (or sum) values, can be casted in a 

polynomial function. A third-order polynomial was found to represent a good balance between 

the accuracy desired and the amount of data/time needed to generate these intervals during the 

simulation runs. For example, the starting position of the ith interval for 2 is interpolated using 

the following formula: 

𝜃2(𝑖) = 𝑎0
𝑖 + 𝑎1

𝑖 𝜃1 + 𝑎2
𝑖 𝜃1

2 + 𝑎3
𝑖 𝜃1

3                                                                                          (2.9) 

where a0, a1, a2, and a3 are the coefficients that would give the best fits to the sets of interval 

positions considered. In order to make sure that the deviations between the original interval 

positions/lengths and the interpolated ones are small (e.g., a threshold on the relative error of 

0.1% and 1% was used for the interval positions and the interval lengths, respectively), the entire 

1 (or sum) space is divided into several regions and this interpolation is performed for these 

different ranges of 1 (or sum), with each region yielding a different set of coefficients. For 2-

methylpropane, 4 sets of coefficients were used for interpolating the 2 intervals and 11 sets were 

used for ω12 to achieve the desired accuracy. 

2.2.3. Regrowth of a three-branched molecule. 
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In this case (see Fig. 2.1c), segments G1, G2, and G3 must be grown. θ1, θ2, θ3, θ12, θ23, and 

θ13 are the six bending angles. ω12 (or ω23) is the dihedral angle between PCG1 (or PCG3) and 

PCG2 planes. The probability density function is described as a function of θ1, θ2, θ3, ω12, and 

ω23 as: 

𝑓(𝜃1, 𝜃2, 𝜃3, 𝜔12, 𝜔23) ∝ sin 𝜃1 sin 𝜃2 sin 𝜃3 exp{−𝛽[𝑈bend(𝜃1) + 𝑈bend(𝜃2) + 𝑈bend(𝜃3) +

𝑈bend(𝜃12) + 𝑈bend(𝜃23) + 𝑈bend(𝜃13)]}                                                                             (2.10) 

For neo-pentane, all the bending angles are expected to have the same average distribution 

prescribed by the following formula: 

𝑓(𝜃1) = ∫ ∫ ∫ ∫ 𝑓(𝜃1, 𝜃2, 𝜃3, 𝜔12, 𝜔23)𝑑𝜃2𝑑𝜃3𝑑𝜔12𝑑𝜔23
2𝜋

0

2𝜋

0

𝜋

0

𝜋

0
                                         (2.11) 

Also all the dihedral angles would have the same average distribution as follows: 

𝑓(𝜔12) = ∫ ∫ ∫ ∫ 𝑓(𝜃1, 𝜃2, 𝜃3, 𝜔12, 𝜔23)𝑑𝜃1𝑑𝜃2𝑑𝜃3𝑑𝜔23
2𝜋

0

𝜋

0

𝜋

0

𝜋

0
                                           (2.12) 

A sparse-grid integration method was used to efficiently compute these high dimension 

integrals.
81

 

The regrowth of the first two branches follows the same procedure as described for the two-

branched case. For the last branch, instead of using 3 and ω23, two new angles, S and ωS, are 

introduced to define its orientation as the dependencies of these two angles on the existing three-

branched geometry can be more easily determined (see below). As shown in Fig. 2.1d, S is 

defined as the polar angle between this branch and the normal of the plane made by the other 

three ending atoms (called PG1G2 Plane), whereas ωS can be defined as the azimuth angle 

between the projection of the last branch and the projection of any of the other three existing 

branches onto this plane. Using this new set of angles, the probability density can be described as 

follows: 
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𝑓(𝜃1, 𝜃2, 𝜔12, 𝜃𝑆 , 𝜔𝑆) ∝ sin 𝜃1 sin 𝜃2 sin 𝜃𝑆 exp{−𝛽[𝑈bend(𝜃1) + 𝑈bend(𝜃2) + 𝑈bend(𝜃3) +

𝑈bend(𝜃12) + 𝑈bend(𝜃13) + 𝑈bend(𝜃23)]}                                                                             (2.13) 

Since the last branch determines 3, 13, and 23, as expected from Eq. (2.13) the most 

probable orientation of this vector would be decided by when all these three angles are 

optimized, i.e., to be close to the equilibrium tetrahedral angle. This can be achieved by placing 

the last branch around the normal vector of the PG1G2 Plane so that it is about equally far away 

from the existing three branches, like a perfect tetrahedral geometry. Thus it is natural to 

describe the orientation of the last branch relative to this normal vector using the set of S and ωS 

coordinates. In addition, the interdependencies between these two variables and those that define 

the existing 3-branched geometry can be more conveniently considered. For ωS, the distribution 

was found rather uniform irrespective the molecular geometry, eliminating the need to include 

this coordinate for special treatment as it can be simply generated by the conventional uniform 

sampling scheme. To examine how the S distribution is dependent on the molecular geometry, a 

collective coordinate is introduced, called the solid angle  (defined by the tetrahedron shaped 

by those three existing branches),
82

 with 

cos
Ω

2
=

1+cos 𝜃1+cos 𝜃2+cos 𝜃12

4 cos
𝜃1
2

cos
𝜃2
2

cos
𝜃12

2

                                                                                                  (2.14) 

This variable is a good measure of how closely (or sparsely) distributed the three existing 

branches are. For example, geometries with large  values correspond to a scenario when these 

branches are far from each other, which, in turn, would limit greatly the amount of space 

accessible for the last branch. That is, the S distribution would be narrower and shift to smaller 

values. Thus, the S distribution was treated as dependent upon only one coordinate , instead of 

originally three coordinates, 1, 2, and ω12. This greatly reduces the dimensionality of this 
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problem and correspondingly the computational expense. The division of the space along the S 

coordinate follows the same procedure as developed for 2 and ω12, which includes an 

interpolation of those S intervals, pre-calculated at different  values, into a third-order 

polynomial function of  so that these intervals can be generated on-the-fly later during the 

production run for any molecular geometry with any  value. It was found that 4 sets of 

coefficients are sufficient for interpolating the S intervals with the desired accuracy. 

2.3. Results of density-guided method 

Described in the following are the results obtained for the three different cases included in 

this study, i.e., propane, 2-methylpropane, and 2,2-dimethylpropane. For each case, we show that 

the new method proposed in Section 2.2 samples the correct probability density distributions for 

the various geometrical parameters specific to that particular molecule by comparing to the 

solutions obtained from the numerical integration over the analytical formula presented in 

Section 2.2.  The results generated from the CD-CBMC method are included in this comparison 

as well. For each case, both the acceptance rate and the computer time are compared between the 

new method and CD-CBMC. Finally, the advantages of this new method over other methods 

such as Boltzmann rejection and arbitrary trial distribution CBMC are discussed. 

2.3.1. Regrowth of a one-branched (linear) molecule. 

For this molecule, the bending angle  is the only variable required to define its geometry 

and the normalized distribution of this angle is prescribed by Eq. (2.2). Simulation runs using 

both the new method and the CD-CBMC method were carried out on a single propane molecule. 

Each run consists of 10
8
 conformational moves to obtain the distribution of  values. In Fig. 2.3, 
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the distributions produced from the simulation runs using both methods were compared to that 

predicted by Eq. (2.2). As shown in this figure, both methods sample the correct  distribution.  

 

Fig. 2.3. Bending angle distribution of propane obtained from numerical integration according to 

Eq. (2.2) (solid line) and from the simulation using CD-CBMC (blue dotted line) or the density-

guided method (red dashed line). 

However, the amount of time needed by these two methods can differ significantly from each 

other. Table 2.2 contains the time required by CD-CBMC using different numbers of trials and 

the density-guided method using different P values, as well as the acceptance rate obtained for 

each case. In general, the use of smaller P improves the acceptance rate for the new method at a 

cost of only a minor increase on the CPU time. On the other hand, the acceptance rate of CD-

CBMC improves by about 10 times from a use of a single trial to a use of 10
4 

trials but this 

improvement can be barely balanced by the increase on the computational requirement since it is 

directly proportional to the number of trials (note that here only a single molecule is considered, 

for large systems this increase on the computational expense becomes slightly less noticeable 

due to the significant computational overhead on the nonbonded interactions). In addition, even 

with a rather coarse division of the space at P = 0.1, this method yields an acceptance rate of 

73.22%. Clearly this method has a significantly better performance than CD-CBMC in terms of 

both acceptance rate and computer time. 
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This method can be further optimized with a flexible choice of P at different regions of . 

In particular, toward the two end (either when  or P is small or large),  f()  changes very 

rapidly and smaller P intervals would be desirable to keep each region being uniform in terms  

Table 2.2. Acceptance rate and time of simulation for 10
8
 CBMC steps for propane. 

Method Number of trials %Acceptance Time(s) 

 

CD-CBMC 

1 10.06 13 

10 51.11 129 

100 84.11 1203 

1000 94.97 12431 

10000 98.41 125130 

 

Density-guided 

 (one trial) 

ΔP %Acceptance Time(s) 

0.1 73.22 11 

0.01 96.20 11 

0.001 99.52 11 

0.0001 99.94 11 

 

of the probability density, which is essential for achieving a high acceptance rate. Indeed, for the 

case with P = 0.001, by dividing the two ending regions with P  0.001 or P  0.999 further in 

a logarithmic way until the last segment has a length of 10
8

 in terms of P, the acceptance rate 

was found to increase to 99.68%. 

2.3.2. Regrowth of a two-branched molecule. 
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For this molecule, the geometry is specified by three variables, two bending angles (1 and 

2, with the same distribution as prescribed by Eq. (2.7)) and one dihedral angle (ω12, with a 

distribution defined by Eq. (2.8)). In Fig. 2.4, the distributions produced from the simulation runs 

using both methods with 10
8
 Monte Carlo moves were compared to those predicted by Eqs. (2.7) 

and (2.8). As shown in this figure, both methods sample the correct distributions for both 

bending and dihedral angles. Whereas in the CD-CBMC simulation run 10
3
 trials were used for 

each angle with a yielded acceptance rate of 89.05%, in the run with the density-guided method 

one single trial was used for each angle (about 2-3 orders of magnitude more efficient than CD-

CBMC) with an even better acceptance rate of 98.26%. When using the average distributions 

prescribed by Eqs. (2.7) and (2.8) to generate 1, 2, and ω12 independently without taking into  

 

 

Fig. 2.4. Distributions of (a) the bending angles and (b) dihedral angle for 2-methylpropane 

obtained from numerical integration (solid lines) (i.e., according to Eqs. (2.7) and (2.8), 

respectively) and from the simulation using CD-CBMC (blue dotted line) and the density-guided 

method (red dashed line). 

their interdependencies, the acceptance rate lowers significantly to 60.48%. This indicates that 

these variables are coupled closely to each other and it is important to analyze their relationship. 
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As shown in Fig. 2.5a, initially increasing 1 leads to a shift of the 2 distribution to larger 

values until 1 reaches 130 (which is above the equilibrium angle of 112), further increase in 1 

leads to an opposite shift and a narrower 2 distribution. The existence of this turning point can 

be explained from the need to have all three bending angles (including 12, the bending angle 

between the two branches, see Fig. 2.1b) close to the equilibrium value. It should be noted that 

from Eq. (2.7), the probability becomes already quite low at that turning point (i.e., the integrated 

probability to have 1 above 130 is only 3×10
4

). Thus, for the most important part of the phase 

space, 2 is only weakly dependent on 1. If one ignores this part of dependencies and uses the 

average distribution prescribed by Eq. (2.7) to generate 1 and 2, an acceptance rate of 97.77% 

is obtained. 

In contrast, ω12 is much more strongly coupled with 1 and 2. As shown in Fig. 2.5b, the 

ω12 distribution is strongly dependent on the bending angles. In analyzing this part of  

 

Fig. 2.5. (a) Distributions of the bending angle θ2 obtained at different θ1 values using numerical 

integration for 2-methylpropane. (b) Distributions of the dihedral angle ω12 obtained at different 

θsum (= θ1 + θ2) using numerical integration for 2-methylpropane. 

dependencies, a collective coordinate, sum = (1 + 2), is introduced for the reasons presented in 

the section 2.2.2 (i.e., mainly to lower the dimensionality/complexity of this problem) and the 
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ω12 distribution is plotted as function of sum. It is clear that with increasing sum, the ω12 

distribution changes significantly, becoming broader and more closely centered toward the value 

of  (e.g., from a bimodal distribution at low sum values to a single-peaked distribution when 

sum is above 250). Again the change on the ω12 distribution can be explained by the need to 

have all three bending angles including 12 close to the equilibrium value, 0. For example, at 

large values of sum (or large values of 1 and 2 so that both are close to 0 to minimize the 

bending energies due to these two angles), in order to keep 12 close to 0, the two branches must 

be as far as possible with ω12 approaching , as expected from Eq. (2.6). Also expected from this 

equation, the ω12 distribution is symmetrical at  (i.e., the same 12 is obtained at ω12 or at 

2ω12), which is another important feature of Fig. 2.5b. Thus only half of this distribution (or 

ω12 intervals), either for the range [0, ] or [, 2] , need to be included. This leads to further 

saving of the amount of data required to be stored by this method. Listed in Table 2.3 are the  

Table 2.3. Acceptance rate and time of simulation for 10
8
 CBMC steps for 2-methylpropane. 

Method Number of trials %Acceptance Time(s) 

 

CD-CBMC 

1 0.18 59 

10 21.34 448 

100 71.93 4214 

1000 89.05 41240 

10000 92.99 406800 

Density-guided 1 98.26 95 
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time and acceptance rate of CD-CBMC using different numbers of trials and the density-guided 

method using a single trial. For this case, it is clear that the density-guided method easily 

outperforms the CD-CBMC on both CPU time required and the acceptance rate obtained.  

2.3.3. Regrowth of a three-branched molecule. 

For this molecule, the distribution for the bending angles (1, 2, 3, 12, 13, and 23) can be 

all described by Eq. (2.11), and the distribution for the dihedral angles (ω12, ω23, and ω13) can be 

described by Eq. (2.12). As shown in Fig. 2.6, these distributions can be sampled correctly by 

both CD-CBMC and the density-guided method. Whereas in the CD-CBMC simulation run a use 

of 10
3
 trials for each angle yielded an acceptance rate of only 62.36%, in the run with the 

density-guided method where only one single trial was used for each angle a nearly perfect 

acceptance rate of 95.98% can be still achieved. Again for the density-guided method, it is 

important to consider the interdependencies between the various variables that govern the 

geometry. For example, when using the averaging distributions to generate the bending and 

dihedral angles (in this case, 1, 2, 3, ω12, and ω23), an acceptance rate of 51.62% was obtained. 

Although for the first two branches, the same procedure developed for the two-branched 

molecule was applied to this three-branched molecule (namely, 1 was picked from the average 

bending angle distribution, then 2 was picked from a 1-dependent distribution, whereas ω12 was 

picked from a distribution depending on the value of sum), the interdependencies between 1, 2, 

and ω12 exhibit significant differences between these two cases. For example, the increase in 1 

only pushes the 2 distribution to smaller value (see Fig. 2.7a). The peak positions for the ω12 

distribution shift closer to  at larger sum values but at a much slower pace and within the part of 
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Fig. 2.6. Distributions of (a) bending angles and (b) dihedral angles for 2,2-dimethylpropane 

obtained from numerical integration (solid lines) (i.e., according to Eqs. (2.11) and (2.12), 

respectively) and from the simulation using CD-CBMC (blue dotted line) and the density-guided 

method (red dashed line). 

space accessible by this molecule they never reach  to form a single-peaked distribution (see 

Fig. 2.7b). These differences are caused by the presence of the third branch (and addition of three 

bending angles due to this branch), which limits both bending and dihedral angles to much 

smaller range. 

Instead of using 3 and ω23, the orientation of the third branch is specified by S and ωS 

since the dependencies of these two variables on the current geometry can be conveniently casted 

in terms of the solid angle,  (defined by the tetrahedron shaped by those three existing 

branches). In addition, the ωS distribution for the range of  values accessible by this molecule 

was found to be nearly flat. Thus generation of ωS follows the conventional uniform-sampling 

scheme (i.e., generated randomly/uniformly within the range of 0 and 2). The S distribution 

was found to depend slightly on . As shown in Fig. 2.7c, for larger  (when the three existing 

branches are far apart, which would leave less space for the last branch), the S distribution  
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Fig. 2.7. (a) Distributions of the bending angle θ2 obtained at different θ1 values using numerical 

integration for 2,2-dimethylpropane. (b) Distributions of the dihedral angle ω12 obtained at 

different θsum (= θ1 + θ2) using numerical integration for 2,2-dimethylpropane. (c) Distributions 

of the polar angle θS obtained at different solid angle  using numerical integration for 2,2-

dimethylpropane. 

becomes narrower and shifts closer to zero as expected. However, compared to 2 and ω12, the 

change of the S distribution is significantly smaller. If one neglects this part of dependency 

entirely by using the S distribution averaged over all  values for the new method, an 

acceptance rate of 95.52% is obtained, which is still far better than CD-CBMC. 

Listed in Table 2.4 are the time and acceptance rate of CD-CBMC using different numbers 

of trials and the new method using a single trial. For this case, the new method performs 

significantly better than CD-CBMC in terms of both CPU time and the acceptance rate. 

2.3.4. Comparison with the other methods 

It is necessary to discuss how the density-guided method compares to the other methods, 

such as CBMC using the Boltzmann rejection scheme,
37

 CD-CBMC,
45

 and CBMC using the 

arbitrary trial distribution,
54

 for the bending angle sampling for both linear and branched 

molecules. 
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For linear molecules, all the methods above, can sample the bending angle correctly, but the 

acceptance rate is high for the Boltzmann rejection scheme and CD-CBMC only when many 

trials are generated. This is because trials are not generated according to the true distribution (Eq.  

Table 2.4. Acceptance rate and time of simulation for 10
8
 CBMC steps for 2,2-dimethylpropane 

Method Number of trials %Acceptance Time(s) 

 

CD-CBMC 

1 6 × 10
-4

 112 

10 3.16 841 

100 44.10 8104 

1000 62.36 80110 

10000 65.61 775000 

Density-guided 1 95.98 138 

 

(2.2)). For instance, in CD-CBMC trials are generated from the sine distribution. Thus, only few 

generated angles have significant chance to be accepted, which is why a lot of trials are required. 

For branched molecules, the Boltzmann rejection scheme cannot sample bending angles 

correctly when branches are regrown sequentially without considering the coupling between 

these branches. Since in CD-CBMC branches are regrown simultaneously, it is able to sample 

bending angles correctly, but since the selection of each bending angle is based on the 

Boltzmann weight and phase space (sin) governed by this angle alone and this selection is 

carried out sequentially without considering the interdependencies between these angles, it 

cannot reach high acceptance rate even at high trial numbers (see, e.g., Table 2.4). In arbitrary 

trial distribution CBMC, a “Coupled to Pre-Nonbond (CPN) CD-CBMC” formula is used to 
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reach high acceptance rates but this still requires a high number of trials (e.g., 100 to 1000 in 

order to obtain an acceptance rate above 90%). 

In contrast, the density-guided method generates all the required geometrical variables using 

tabulated distributions obtained originally from the true distributions by taking into account the 

interdependencies between these variables, so just one trial is required to achieve high 

acceptance rates for both linear and branched molecules. 

2.4. Jacobian-Gaussian method 

The Jacobian-Gaussian method is a robust and general approach for generating angle trials 

for both linear and branched molecules. It is also very straightforward to be implemented for 

systems using harmonic bending potential (Eq. (2.1)) which is a popular potential in many force 

fields including consistent force field (CFF),
83

 TraPPE,
45, 75, 84-90

 Amber,
91-92

 OPLS-AA,
93

 and 

CHARMM.
94-95

 In addition, it can be conveniently extended to nonharmonic bending potentials. 

This approach does not require curve fitting or memory storage needed for preparing 

conformation libraries or tables. 

As it is explained in section 1.4, the probability density function for the intramolecular 

interactions is proportional to Jexp(-βU
intra

). Unlike CD-CBMC, in which trial generation is 

based on purely the Jacobian, the Jacobian-Gaussian method generates KTrial trials according to 

exp(-βU
intra

) and one of them (say, the ith-trial) is selected according to its Jacobian factor, Ji, as 

follows: 

𝑃select(𝑖) =
𝐽𝑖

𝑊𝐽
                                                                                                                         (2.15) 

with  

𝑊𝐽 = ∑ 𝐽𝑖
𝐾Trial
𝑖=1                                                                                                                          (2.16) 
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Finally, the new conformation is accepted according to the ratio of the Rosenbluth weights of 

new and old conformations, i.e. min[1, WJ(n)/WJ(o)], where o and n represent old and new 

conformations respectively. This method is tested on propane, 2-methylpropane, 2,2-

dimethylpropane, and acetone. 

2.4.1. Gaussian random number generator 

The probability density function of a Gaussian distribution is described by 

𝑓(𝑥|𝜇, 𝜎) =
1

√2𝜋𝜎
exp [−

(𝑥−𝜇)2

2𝜎2 ]                                                                                             (2.17) 

where μ and σ are the mean and the standard deviation, respectively. If μ = 0 and σ = 1, it is 

called standard Gaussian distribution. There are analytical methods for generating random 

numbers with Gaussian distribution. In the Box-Muller
96

 method, two independent random 

numbers, R1 and R2, are generated uniformly on (0, 1), then two independent random numbers 

with standard Gaussian distribution are obtained by 

{
𝑍1 = √−2ln𝑅1 cos(2𝜋𝑅2)

𝑍2 = √−2ln𝑅1 sin(2𝜋𝑅2)
                                                                                                   (2.18) 

Then, two independent Gaussian random numbers with μ and σ parameters are attained by 

{
𝑋1 = 𝑍1𝜎 + 𝜇
𝑋2 = 𝑍2𝜎 + 𝜇

                                                                                                                        (2.19) 

2.4.2. Regrowth of a one-branched (linear) molecule. 

In this case (Fig. 2.1a), according to the probability density function (Eq. (2.2)), the Jacobian 

factor is  

𝐽(𝜃) = sin 𝜃                                                                                                                            (2.20) 

When a harmonic potential (i.e., Eq. (2.1)) is used for 𝑈bend(𝜃), the exponential term in Eq. 

(2.2) corresponds to a Gaussian distribution with μ = θ0 and σ = (βkθ)
-0.5

. Since Gaussian random 
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numbers are generated on (-∞, +∞), in order to generate a valid trial, bending angle θ is 

generated according to its corresponding Gaussian distribution until it satisfies the bending angle 

condition such that θ ϵ (0, π). For this case, the probability of generating an angle outside this 

interval is less than 10
-20

. Thus, each generated angle is very likely to be a valid trial to be used 

in the next step, i.e., trial selection using Eqs. (2.15) and (2.16). 

2.4.3. Regrowth of a two-branched molecule. 

In this case (see Fig. 2.1b), when θ1, θ2, and ω12 are used as the growing variables (Eq. 

(2.5)), the Jacobian factor is 

𝐽(𝜃1, 𝜃2, 𝜔12) = sin 𝜃1 sin 𝜃2                                                                                                  (2.21) 

However, the fact that the energetic term contributes most to the probability distribution and 

that this term can be conveniently expressed as a function of the three bending angles would 

naturally lead to the idea of using θ1, θ2, and θ12 (instead of ω12) as the growing variables. A new 

Jacobian factor, 𝐽(𝜃1, 𝜃2, 𝜃12), must be used in conjunction with a differential volume element 

expressed by this new set of coordinates. Eq. (2.6) can be written as: 

cos 𝜔12 =
cos 𝜃12−cos 𝜃1 cos 𝜃2

sin 𝜃1 sin 𝜃2
                                                                                                   (2.22) 

Since -1 ≤ cos(ω12) ≤ 1, it can be inferred from Eq. (2.22) that 

cos(𝜃1 + 𝜃2) ≤ cos 𝜃12 ≤ cos(𝜃1 − 𝜃2)                                                                                (2.23) 

or 

|𝜃1 − 𝜃2| ≤ 𝜃12 ≤ min{(𝜃1 + 𝜃2), 2𝜋 − (𝜃1 + 𝜃2)}                                                              (2.24) 

The absolute value and min in Eq. (2.24) guarantee that θ12 ϵ [0, π]. 

This new Jacobian factor, 𝐽(𝜃1, 𝜃2, 𝜃12),  is determined by 

𝐽(𝜃1, 𝜃2, 𝜃12) = sin 𝜃1 sin 𝜃2 |
𝜕𝜔12

𝜕𝜃12
|                                                                                        (2.25) 
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From Eq. (2.22), we have 

𝜕𝜔12

𝜕𝜃12
=

sin 𝜃12

sin 𝜃1 sin 𝜃2 sin 𝜔12
                                                                                                           (2.26) 

So, Eq. (2.25) becomes 

𝐽(𝜃1, 𝜃2, 𝜃12) = |
sin 𝜃12

sin 𝜔12
|                                                                                                          (2.27) 

Each combination of bending angles θ1, θ2, and θ12 is valid if geometrical constraints (Eq. 

(2.24)) are satisfied. According to Eq. (2.22), for each valid set of (θ1, θ2, θ12), there are two 

possible answers for ω12 (i.e., ω12 ϵ (0, π) or (π, 2π)). In order to verify that θ1, θ2, and θ12 can 

span the whole space that is spanned by θ1, θ2, and ω12, it should be proved that 

∫ ∫ ∫ sin 𝜃1 sin 𝜃2 𝑑𝜔12𝑑𝜃2𝑑𝜃1
2𝜋

0

𝜋

0

𝜋

0
= 2 ∫ ∫ ∫ |

sin 𝜃12

sin 𝜔12
| 𝑑𝜃12𝑑𝜃2𝑑𝜃1

𝜃12
max

𝜃12
min

𝜋

0

𝜋

0
                         (2.28) 

where the factor 2 on the right side appears because of the two possible answers for ω12. 𝜃12
min 

and 𝜃12
max are the lower and upper limits of θ12 (Eq. (2.24)). The three dimensional integral on the 

left side of Eq. (2.28) is equal to 8π. The sin 𝜔12 term on the right side of the integral can be 

substituted by (1 − cos2𝜔12)0.5 and cos 𝜔12 can be written in terms of θ1, θ2, and θ12 using Eq. 

(2.22) and we have 

2 ∫ ∫ ∫
sin 𝜃1 sin 𝜃2 sin 𝜃12

√sin2𝜃1sin2𝜃2−(cos 𝜃12−cos 𝜃1 cos 𝜃2)2
𝑑𝜃12𝑑𝜃2𝑑𝜃1

𝜃12
max

𝜃12
min

𝜋

0

𝜋

0
=

2 ∫ ∫ (− sin 𝜃1 sin 𝜃2) [sin−1 (
cos 𝜃12−cos 𝜃1 cos 𝜃2

sin 𝜃1 sin 𝜃2
)]

𝜃12
min

𝜃12
max

𝑑𝜃2𝑑𝜃1
𝜋

0

𝜋

0
=

2 ∫ ∫ (− sin 𝜃1 sin 𝜃2) [sin−1 (
cos(𝜃1+𝜃2)−cos 𝜃1 cos 𝜃2

sin 𝜃1 sin 𝜃2
) −

𝜋

0

𝜋

0

sin−1 (
cos(𝜃1−𝜃2)−cos 𝜃1 cos 𝜃2

sin 𝜃1 sin 𝜃2
)] 𝑑𝜃2𝑑𝜃1 =

2 ∫ ∫ (− sin 𝜃1 sin 𝜃2)[sin−1(−1) − sin−1(1)]𝑑𝜃2𝑑𝜃1
𝜋

0

𝜋

0
=  

2𝜋 ∫ ∫ sin 𝜃1 sin 𝜃2 𝑑𝜃2𝑑𝜃1
𝜋

0

𝜋

0
= 8𝜋                                                                                       (2.29) 
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In order to generate one valid trial, θ1, θ2, and θ12 are generated independently and 

simultaneously according to their corresponding Gaussian distributions until the following 

conditions are satisfied 

1. 𝜃1 ∈ (0, 𝜋) 

2. 𝜃2 ∈ (0, 𝜋) 

3. 𝜃12 ∈ [|𝜃1 − 𝜃2|, min{(𝜃1 + 𝜃2), 2𝜋 − (𝜃1 + 𝜃2)}] 

For a valid set of (θ1, θ2, θ12), one of the two possible answers for ω12 (Eq. (12)) is chosen 

randomly. 

2.4.4. Regrowth of a three-branched molecule. 

In this case (see Fig. 2.1c), when θ1, θ2, θ3, ω12, and ω23 are used as the growing variables 

(Eq. (2.10)), the Jacobian factor is 

𝐽(𝜃1, 𝜃2, 𝜃3, 𝜔12, 𝜔23) = sin 𝜃1 sin 𝜃2 sin 𝜃3                                                                          (2.30) 

Again for the same reason as mentioned for the two-branched case, it is more convenient to 

use completely bending angles as the growing variables, i.e., replacing ω12 and ω23 by θ12 and 

θ23. A new Jacobian factor needs to be determined for this set of growing variables. In addition 

to Eq. (2.22), we have 

cos 𝜔23 =
cos 𝜃23−cos 𝜃2 cos 𝜃3

sin 𝜃2 sin 𝜃3
                                                                                                   (2.31) 

so 

𝜕𝜔23

𝜕𝜃23
=

sin 𝜃23

sin 𝜃2 sin 𝜃3 sin 𝜔23
                                                                                                           (2.32) 

Using Eqs. (2.26) and (2.32), growing variables are transformed into (θ1, θ2, θ3, θ12, θ23) and 

the Jacobian is 

𝐽(𝜃1, 𝜃2, 𝜃3, 𝜃12, 𝜃23) = |
sin 𝜃12 sin 𝜃23

sin 𝜃2 sin 𝜔12 sin 𝜔23
|                                                                           (2.33) 
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In order to generate one valid trial, θ1, θ2, θ3, θ12 and θ23 are generated independently and 

simultaneously according to their corresponding Gaussian distributions until the following 

conditions are satisfied 

1. 𝜃1 ∈ (0, 𝜋) 

2. 𝜃2 ∈ (0, 𝜋) 

3. 𝜃12 ∈ [|𝜃1 − 𝜃2|, min{(𝜃1 + 𝜃2), 2𝜋 − (𝜃1 + 𝜃2)}] 

* One of the two answers for ω12 (Eq. (2.22)) is chosen randomly. 

4. 𝜃3 ∈ (0, 𝜋) 

5. 𝜃23 ∈ [|𝜃2 − 𝜃3|, min{(𝜃2 + 𝜃3), 2𝜋 − (𝜃2 + 𝜃3)}] 

* One of the two answers for ω23 (Eq. (2.31)) is chosen randomly. 

6. 𝑒−𝛽𝑈𝑏𝑒𝑛𝑑(𝜃13) ≥ random(0, 1) 

where random(0, 1) is a random number which is generated uniformly on (0, 1). Condition (6) 

ensures that the generated trial is also taking into account the bending potential due to θ13. 

Using the above procedure, it is straightforward to extend this approach to cases containing 

even more branches. 

2.5. Results of Jacobian-Gaussian method 

2.5.1. Methodology verification and efficiency 

In this section, it will be demonstrated that the Jacobian-Gaussian (JG) method is both 

accurate and fast. In order to show that JG reproduces correct results, the angle distributions 

obtained by 10
9
 MC moves using this method with one trial (KTrial = 1 in Eq. (2.16)) are 

compared with the expected distributions for linear (Eq. (2.2)) and branched (Eqs. (2.7)-(2.8) and 

(2.11)-(2.12)) molecules. Fig. 2.8 compares these two distributions of the bending angle for 
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propane. Because of the symmetry in 2-methylpropane and 2,2-dimethylpropane, there is only 

one type of bending (or dihedral) angles. Fig. 2.9 compares the simulated to the expected 

distributions for both bending and dihedral angles of 2-methylpropane and 2,2-dimethylpropane. 

Figs. 2.8 and 2.9 show that in these cases, JG reproduces the correct distributions. 

In order to examine the speed and the efficiency of JG, both the time and the acceptance rate 

of 10
8
 single trial MC moves of the density-guided (DG) method and this method are compared. 

As shown in Table 2.5, in the case of propane, DG is faster because there is only one variable 

and one table is scanned to generate one trial. However, for 2-methylpropane, several tables must 

be used for trial generation which makes DG slower. In addition, JG is very fast because the trial 

generation loop in section 2.4.3 is very likely to produce one acceptable trial (i.e., within  

 

Fig. 2.8. Expected (black line) vs. simulated (red crosses) distributions obtained for the bending 

angle of propane. 

geometrical constraints) only in one run. In 2,2-dimethylpropane, JG is slower because the trial 

generation loop (section 2.4.4) is often required to be implemented two or three times to satisfy 

all conditions, in particular, condition (6). These results demonstrate that both the speed and the 

efficiency of JG method are on the same order of the DG method at least for this set of 

molecules. In addition, it has several advantages over DG. First, there is no need for time or 

memory for table preparation or storage. Second, for systems containing branched molecules 
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with different bending potentials, DG needs different tables for different growth directions, but 

JG can easily be adapted to different growth directions. Third, while it is simple to extend JG to 

molecules with higher number of branches, growing more than three branches in DG requires 

development of new collective variables and enormous amount of time for multidimensional 

integrations. 

It should be noted that DG attempts to generate each trial according to its expected 

probability (determined by both the Boltzmann and the Jacobian factor) so that every trial 

generated is always acceptable. However, JG only takes into account the Boltzmann factor when 

generating each trial and the Jacobian factor is only considered when accepting/rejecting the 

entire move. This may potentially affect its overall acceptance rate, in particular, when not only 

the Boltzmann exponential term but also the Jacobian factor contributes significantly to the 

probability distribution, which happens in planar molecules. Indeed, using JG with θ1, θ2, and θ12 

as growing variables on a planar molecule, acetone, yields substantially lower acceptance rates, 

i.e., 30% lower than the linear and branched alkane cases examined above when using only one 

trial (see Table 2.6). This occurs because acetone is a planar molecule and dihedral angles have 

peaks close to ω12 = π (see Fig. 2.10b, d) where there is a singularity in the Jacobian factor (see 

Eq. (2.27)). This effect can be also observed in Table 2.5 where the acceptance rate for 2,2-

dimethylpropane is 2% higher than 2-methylpropane. The dihedral angle distribution for 2,2- 

dimethylpropane (Fig. 2.9d) is tighter than 2-methylpropane (Fig. 2.9b) due to the presence of 

the third branch whose bending potentials prevent other branched to be located in one plane. 
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Fig. 2.9. Expected (solid lines) vs. simulated (red crosses) distributions obtained for (a) the 

bending angle of 2-methylpropane, (b) the dihedral angle of 2-methylpropane, (c) the bending 

angle of 2,2-dimethylpropane, and (d) the dihedral angle of 2,2-dimethylpropane. 

This singularity issue can be avoided by choosing θ1, θ2, and ω12 as the growing variables 

for acetone because the Jacobian factor there is simply sin 𝜃1 sin 𝜃2 (see Eq. (2.21)). However, 

one would still need to explicitly take into account the Boltzmann factor due the θ12 angle to 

ensure a good overall acceptance rate. This can be done via an additional Boltzmann rejection 

step. Thus, the following procedure is developed: θ1, θ2, and ω12 are generated independently and 

simultaneously, where θ1 and θ2 must be bending angles (i.e. on (0, π)) that are sampled from 

their corresponding Gaussian distributions and ω12 is generated uniformly on (0, 2π), until exp[-

βUbend(θ12)] ≥ random(0, 1). In acetone, there are two types of bending (CH3-C=O and CH3-C-

CH3) and two types of dihedral (CH3-C(=O)-CH3 and CH3-C(-CH3)=O) angles. As shown in 
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Table 2.5. Time and acceptance rates of 10
8
 single trial MC moves using the density-guided or 

the Jacobian-Gaussian method. 

 

Molecule Density-guided Jacobian-Gaussian 

Time (s) Acceptance (%) Time (s) Acceptance (%) 

Propane 11 99.52 16 98.26 

2-Methylpropane 95 98.26 38 94.89 

2,2-Dimethylpropane 138 95.98 235 96.88 

 

Fig. 2.10, JG can reproduce the expected distributions for all angles with both sets of growing 

variables. Table 2.6 compares the speed and the efficiency of these two different JG procedures. 

As shown by this table, a single trial with (θ1, θ2, ω12) is three to four times slower than a single 

trial with (θ1, θ2, θ12) which is due to the required attempts for trial generation according to the 

Boltzmann distribution of θ12 via the additional Boltzmann rejection step (similar to the 2,2-

dimethylpropane case discussed above). However, the acceptance rate is nearly perfect even with 

a single trial when using this new procedure. In contrast, with the old procedure even a use of 20 

trials, the acceptance rate is still far from being perfect.  Thus, it would be more preferable to use 

JG with (θ1, θ2, ω12) than (θ1, θ2, θ12) for branched planar molecules. It should be also noted that 

for all branched molecules, each dihedral distribution has two peaks that are symmetric around π. 

For non-planar molecules these two peaks are separated far from each other (see Fig. 2.9b, d). In 

contrast, for planar molecules these two peaks overlap each other (see Fig. 2.10b, d) that causes 

the overall dihedral distribution to be much broader. This also supports why generating ω12 from 

a uniform distribution works well for planar molecules. 
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Table 2.6. Time and acceptance rates of 10
8
 MC moves for acetone with different number of 

trials using the Jacobian-Gaussian method with two sets of growing variables. 

 

Growing Variables Number of trials Time (s) Acceptance rate (%) 

 

 

 

(θ1, θ2, θ12) 

1 43 65.84 

2 104 71.66 

3 176 74.87 

5 291 78.61 

8 478 81.75 

10 604 83.13 

20 1222 86.88 

(θ1, θ2, ω12) 1 158 97.67 

 

2.5.2. Extension to other potentials 

In some force fields, such as the Kirkwood-Buff force field,
97-98

 an improper potential is 

used frequently to force the molecule to be planar. Bending potentials in some force fields 

contain cubic and quartic terms (e.g., COMPASS,
99-100

) in addition to the quadratic term or a 1-3 

nonbonded term such as Urey-Bradley in CHARMM.
95

 In order to ensure that the trials are 

generated also according to these extra terms, similar to the regrowth of a three-branched 

molecule, Boltzmann rejection steps must be added to the trial generation loop. JG can be also 

extended to the GROMOS
101

 force field where bending energy is proportional to [cos(θ) – 

cos(θ0)]
2
. The Jacobian factor can be adapted in a way such that cos(θ) is generated according to 

its Gaussian distribution.  
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Fig. 2.10. Expected (solid lines) vs. simulated distributions (red × for (θ1, θ2, θ12) and blue circles 

for (θ1, θ2, ω12) as the growing variables) obtained for (a) the CH3-C=O bending angle, (b) the 

CH3-C(=O)-CH3 dihedral angle, (c) the CH3-C-CH3 bending angle, and (d) the CH3-C(-

CH3)=O dihedral angle of acetone. 
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CHAPTER 3. SAMPLING INTERNAL SECTIONS OF CYCLIC AND POLYMERIC 
MOLECULES 

3.1. Introduction 

In this chapter, we extend the Jacobian-Gaussian (JG) method to improve the efficiency of 

sampling inner sections of molecules. In previous chapter, this method was developed based on 

two pillars. First, the conventional growth variables are transformed into those used explicitly in 

expressing the various intramolecular energies via simple transformations, so that these energetic 

terms can be considered directly in the trial generation. Second, basic geometrical constraints are 

applied to ensure that the generated trials are valid, which avoids the need of a biasing 

probability function. In previous chapter, only bending angle potential presents in intramolecular 

energies and Gaussian random number generators were used to generate bending angles. In this 

chapter, it is also required to generate a torsional angle, φ, from its probability density function 

exp[-βUtor(φ)]. For this purpose, φ is generated uniformly on (0, 2π) until exp[-βUtor(φ)] ≥ 

random(0, 1), where random(0, 1) is a random number generated uniformly on (0, 1). 

A TraPPE-UA model for linear
84

 and cyclic
74

 alkanes is used in this work where all atoms in 

CHx group (e.g., CH2 or CH3) are united in one pseudoatom. The C-C bond length is fixed at 

1.54 Å. li,i+1 represents the bond length that connects segment i and i + 1. The C-C-C bending 

angle, θ, has a harmonic potential (Eq. (2.1)) with the force field parameters of propane (Table 

2.1). θi represents a bending angle made by i - 1, i, and i + 1 segments. Four sequential segments, 

C-C-C-C, make a torsional angle, φ, which is the angle between the two planes made by the first 

three and the last three segments. An OPLS united atom torsional potential
102

 is used 

𝑈tor(𝜑) =  𝑐0 + 𝑐1[1 + cos(𝜑)] + 𝑐2[1 − cos(2𝜑)] + 𝑐3[1 + cos(3𝜑)]                              (3.1) 

where c0 = 0, c1 = 2.9518, c2 = -0.5669, and c3 = 6.5793 (all in kJ mol
-1

). φi,i+3 represents the 

torsional angle made by segments i, i + 1, i + 2, and i + 3. There is a nonbonded pairwise-
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additive Lennard-Jones (LJ) 12-6 potential between segments i and j that are either in two 

molecules or in the same molecule with more than three bonds between them 

𝑈𝐿𝐽(𝑟𝑖𝑗) = 4𝜀𝑖𝑗 [(
𝜎𝑖𝑗

𝑟𝑖𝑗
)

12

− (
𝜎𝑖𝑗

𝑟𝑖𝑗
)

6

]                                                                                            (3.2) 

where rij is the distance between segments i and j, σij and εij are the LJ parameters that are 

computed using the Lorentz-Berthelot combining rules
103

 

{
𝜎𝑖𝑗 = (𝜎𝑖 + 𝜎𝑗) 2⁄

𝜀𝑖𝑗 = √𝜀𝑖𝜀𝑗

                                                                                                                    (3.3) 

In linear alkanes, for CH2, ε = 46 kB and σ = 3.95 Å, and for CH3, ε = 98 kB and σ = 3.75 Å. In 

cyclic alkanes, for CH2, ε = 51 kB and σ = 3.89 Å, where kB is the Boltzmann constant. The 

temperature for all simulations in this work is T = 300 K unless stated otherwise. 

3.2. Method 

Fig. 3.1 compares traditional procedure, which is explained in section 1.4, and the new 

procedure for growing three segments (i.e. segments 1-3) between two segments that are fixed at 

distance d (i.e., segments 0 and 4). For simplicity, it is assumed that two trials are generated and 

one of them is selected. In the traditional procedure, growing segments are removed from the old 

conformation in step 1. In step 2, two position trials are generated for segment 1. Then each trial 

is weighted with the biasing probability function, g, according to the distance of each trial from 

the final fixed segment (i.e. r1 and r2), and one of them is selected. The position of segment 2 is  
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Fig. 3.1. Growing three segments between two fixed segments using the traditional and the new 

procedure. 

determined in step 3 which is similar to step 2. For the last growing segment, two trials are 

generated using crankshaft moves in step 4, and one of them is selected, which forms the new 

conformation. In the new procedure, the first step is similar to the traditional procedure. In the 

next few steps, two trials are generated in parallel. In step 2, a free chain is grown which starts 

with segment 1 and ends with segment 4. The end-to-end distance of the free chain, the bond 

length between segment 0 and segment 1, and distance d must form a triangle to ensure chain 

closure and consequently, the biasing probability function is not required. This is examined in 

step 3, and if the triangle is not formed, step 2 is repeated. The final step is to rotate the freely 

grown chain around the line that passes segment 1 and segment 4 to form two new 

conformations. Then, one of them is selected as the new conformation. 

The following sections explain the mathematical derivations of the new procedure for 

sampling internal parts of molecules where segments between two fixed segments are relocated. 

In section 3.2.1, it is assumed that there are two fixed segments at a definite distance and other 
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segments must be regrown between these two segments. Then, section 3.2.2 utilizes the 

developed method in section 3.2.1 to relocate the internal parts of a molecule. 

 

Fig. 3.2. Regrowth of (a) two, (b) three, and (c) N segments between two fixed points. (d) 

Regrowth of N segments in a chain. 

3.2.1. Segment regrowth between two fixed points 

This section describes the regrowth of different numbers of segments between two fixed 

endpoints as those shown in Figs. 3.2a, 3.2b, and 3.2c for regrowth of 2, 3, and N segments 

respectively. In this case, there are two kinds of interactions, U
intra-in

 and U
inter-in

. U
intra-in

 is the 

sum of all bending and torsional energies (i.e., all intramolecular energies). U
inter-in

 is the sum of 

all nonbonded pair interactions. KIN trials are generated according to exp(-βU
intra-in

) and one of 

them (say, the k-th trial) is selected with the following probability 

𝑃Select(𝑘) =
𝐽𝑘exp[−𝛽𝑈inter−in(𝑘)]

𝑊IN
                                                                                               (3.4) 

where WIN is the Rosenbluth
21

 weight 

𝑊IN = ∑ 𝐽𝑘exp[−𝛽𝑈inter−in(𝑘)]
𝐾IN
𝑘=1                                                                                         (3.5) 
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Finally, the new conformation is accepted according to the ratio of the Rosenbluth weights of 

new (n) and old (o) conformations, i.e., min[1, WIN(n)/WIN(o)]. 

A. Regrowth of two segments between two fixed points 

This case is shown in Fig. 3.2a where segments 0 and 3 are fixed at distance d and segments 

1 and 2 must be regrown. U
intra-in

 is 

𝑈intra−in = 𝑈bend(𝜃1) + 𝑈bend(𝜃2) + 𝑈tor(𝜑0,3)                                                                   (3.6) 

Because there is no U
inter-in

, the probability density function will be 

𝑓(𝑑, 𝛾1, 𝜔2) ∝
sin 𝛾1𝑑2

𝑙1,2𝑙2,3𝑟1,3
exp[−𝛽𝑈intra−in]                                                                               (3.7) 

where γ1 is 1,0,3̂ angle, ω2 is the angle between 0,1,3̅̅ ̅̅ ̅̅  and 1,2,3̅̅ ̅̅ ̅̅  planes, and r1,3 is the distance 

between segments 1 and 3. The Jacobian factor, sinγ1 d
2
 (l1,2 l2,3 r1,3)

-1
, is the product of polar 

angle, sinγ1, radial distance, d
2
, and rotational move,

60
 (l1,2 l2,3 r1,3)

-1
. 

In regular CBMC, this molecule is regrown freely by generating θ1, θ2, and φ0,3. So, the 

probability density function can also be written in terms of θ1, θ2, and φ0,3, when segments 2 and 

3 are grown freely 

𝑓(𝜃1, 𝜃2, 𝜑0,3) ∝ sin 𝜃1 sin 𝜃2 exp[−𝛽𝑈intra−in]                                                                     (3.8) 

Comparing Eqs. (3.7) and (3.8), we can write 

sin 𝜃1 sin 𝜃2 =
sin 𝛾1𝑑2

𝑙1,2𝑙2,3𝑟1,3
|

𝜕(𝑑,𝛾1,𝜔2)

𝜕(𝜃1,𝜃2,𝜑0,3)
|                                                                                        (3.9) 

To regrow segments 1 and 2 directly according to the Boltzmann factor specified by those 

intramolecular angles while at the same time satisfying the given constraint, it is more 

convenient to transform the growth variables from (d, γ1, ω2) into (d, θ1, θ2) via the following 

Jacobian factor 
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𝐽(𝑑, 𝜃1, 𝜃2) =
sin 𝛾1𝑑2

𝑙1,2𝑙2,3𝑟1,3
|𝐝𝐞𝐭 (

𝜕𝛾1

𝜕𝜃1

𝜕𝛾1

𝜕𝜃2

𝜕𝜔2

𝜕𝜃1

𝜕𝜔2

𝜕𝜃2

)|                                                                             (3.10) 

The following two geometrical equations are held in this case 

𝑙0,1
2 + 𝑑2 − 2𝑙0,1𝑑 cos 𝛾1 = 𝑙1,2

2 + 𝑙2,3
2 − 2𝑙1,2𝑙2,3 cos 𝜃2                                                        (3.11) 

cos 𝜔2 =
cos 𝜃1−cos 𝛼 cos 𝛾2

sin 𝛼 sin 𝛾2
                                                                                                       (3.12) 

where α and γ2 are 0,1,3̂ and 2,1,3̂ angles, respectively. Eqs. (3.11) and (3.12) show that the 

diagonal components of the determinant in Eq. (3.10) are zero because γ1 does not depend on θ1 

and ω2 is independent of θ2. By differentiating these two equations on both sides, we obtain the 

two off-diagonal terms 

𝜕𝛾1

𝜕𝜃2
=

𝑙1,2𝑙2,3 sin 𝜃2

𝑙0,1𝑑 sin 𝛾1
                                                                                                                      (3.13) 

𝜕𝜔2

𝜕𝜃1
=

sin 𝜃1

sin 𝛼 sin 𝛾2 sin 𝜔2
                                                                                                               (3.14) 

Substituting Eqs. (3.13) and (3.14) in Eq. (3.10), we have 

𝐽(𝑑, 𝜃1, 𝜃2) = |
𝑑

𝑙0,1𝑟1,3

sin 𝜃1 sin 𝜃2

sin 𝛼 sin 𝛾2 sin 𝜔2
|                                                                                      (3.15) 

Eq. (3.12) can lead to two conclusions. First, it can be proved (Eq. (2.24)) that 

|𝛼 − 𝛾2| ≤ 𝜃1 ≤ min[(𝛼 + 𝛾2), 2𝜋 − (𝛼 + 𝛾2)]                                                                    (3.16) 

Second, for each valid set of θ1, α, and γ2 (i.e. satisfying Eq. (3.16)), there are two possible 

solutions for ω2 (i.e. ω2 ϵ (0, π) and ω2 ϵ (π, 2π)). 

In order to generate one valid trial at a definite d distance, θ1 and θ2 are generated 

independently and simultaneously according to their corresponding Gaussian distributions until 

these conditions are satisfied 

1. 𝜃2 ∈ (0, 𝜋) 

2. 0,1,3̅̅ ̅̅ ̅̅  is a triangle (i.e., |𝑟1,3 − 𝑙0,1| < 𝑑 < 𝑟1,3 + 𝑙0,1 ) 
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3. 𝜃1 ∈ [|𝛼 − 𝛾2|, min{(𝛼 + 𝛾2), 2𝜋 − (𝛼 + 𝛾2)}] 

* One of the two answers for ω2 (Eq. (3.12)) is chosen randomly. 

4. 𝑒−𝛽𝑈tor(𝜑0,3) ≥ random(0, 1) 

ω1, the rotational angle of segment 1 around d line, is generated uniformly on (0, 2π) because the 

probability density function (Eq. (3.7)) is independent of ω1. 

B. Regrowth of three segments between two fixed points 

In this case (see Fig. 3.2b), segments 0 and 4 are fixed at distance d and segments 1, 2, and 3 

must be regrown. U
intra-in

 and U
inter-in

 can be written as 

𝑈intra−in = 𝑈bend(𝜃1) + 𝑈bend(𝜃2) + 𝑈bend(𝜃3) + 𝑈tor(𝜑0,3) + 𝑈tor(𝜑1,4)                      (3.17) 

𝑈inter−in = 𝑈LJ(𝑟0,4)                                                                                                               (3.18) 

where r0,4 = d. The probability density function is 

𝑓(𝑑, 𝛾1, 𝛾2, 𝜔2, 𝜔3) ∝
sin 𝛾1 sin 𝛾2𝑑2

𝑙2,3𝑙3,4𝑟2,4
exp[−𝛽(𝑈intra−in + 𝑈inter−in)]                                     (3.19) 

where γ1 is 1,0,4̂, γ2 is 2,1,4̂, ω2 is the angle between 0,1,4̅̅ ̅̅ ̅̅  and 1,2,4̅̅ ̅̅ ̅̅  planes, ω3 is the angle 

between 1,2,4̅̅ ̅̅ ̅̅  and 2,3,4̅̅ ̅̅ ̅̅  planes, and r2,4 is the distance between segments 2 and 4. In order to 

generate trials according to exp(-β𝑈intra−in), the growth variables are transformed from (d, γ1, γ2, 

ω2, ω3) into (d, θ1, θ2, θ3, φ1,4) by the following Jacobian factor 

𝐽(𝑑, 𝜃1, 𝜃2, 𝜃3, 𝜑1,4) =
sin 𝛾1 sin 𝛾2𝑑2

𝑙2,3𝑙3,4𝑟2,4
|

𝜕𝜔2

𝜕𝜃1
| |

𝜕𝛾1

𝜕𝑟1,4
| |

𝜕(𝑟1,4,𝛾2,𝜔3)

𝜕(𝜃2,𝜃3,𝜑1,4)
|                                                 (3.20) 

According to the law of cosines, we have 

𝑟1,4
2 = 𝑙0,1

2 + 𝑑2 − 2𝑙0,1𝑑 cos 𝛾1                                                                                               (3.21) 

Thus, we can write 

|
𝜕𝛾1

𝜕𝑟1,4
| =

𝑟1,4

𝑙0,1𝑑 sin 𝛾1
                                                                                                                    (3.22) 

According to Eq. (3.9), we have 
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|
𝜕(𝑟1,4,𝛾2,𝜔3)

𝜕(𝜃2,𝜃3,𝜑1,4)
| =

𝑙2,3𝑙3,4𝑟2,4

𝑟1,4
2

sin 𝜃2 sin 𝜃3

sin 𝛾2
                                                                                          (3.23) 

Substituting Eqs. (3.14), (3.22), and (3.23) in Eq. (3.20), we have 

𝐽(𝑑, 𝜃1, 𝜃2, 𝜃3, 𝜑1,4) = |
𝑑

𝑙0,1𝑟1,4

sin 𝜃1 sin 𝜃2 sin 𝜃3

sin 𝛼 sin 𝛾2 sin 𝜔2
|                                                                       (3.24) 

As it can be seen in Fig. 3.2b, the regrowth process should produce a subsection that starts 

with segment 1 and ends with segment 4. Eq. (3.23), which was derived from Eq. (3.9), implies 

that this subsection can be produced either restrictively, where growing variables are r1,4, γ2, and 

ω3, or freely, where growing variables are θ2, θ3, and φ1,4. In the former case, growing variables 

are interdependent, which makes it difficult to generate them simultaneously. In the latter case, 

growing variables are independent, and because they are also energy variables, each of them can 

be generated directly according to its own Boltzmann distribution. Thus, to generate a valid trial 

at a definite d distance, a free chain, starting with segment 1 and ending with segment 4, is 

grown in vacuum by generating θ2 and θ3 according to their Gaussian distributions and φ1,4 

according to its torsional distribution, and θ1 is generated simultaneously according to its 

Gaussian distribution until these conditions are satisfied 

1. 𝜃2, 𝜃3 ∈ (0, 𝜋) 

2. 0,1,4̅̅ ̅̅ ̅̅  is a triangle (i.e. |𝑟1,4 − 𝑙0,1| < 𝑑 < 𝑟1,4 + 𝑙0,1 ) 

3. 𝜃1 ∈ [|𝛼 − 𝛾2|, min{(𝛼 + 𝛾2), 2𝜋 − (𝛼 + 𝛾2)}] 

* One of the two answers for ω2 (Eq. (3.12)) is chosen randomly. γ1 is calculated by the cosine 

law for 0,1,4̅̅ ̅̅ ̅̅  triangle and ω1 is generated uniformly on (0, 2π). Segment 1 is regrown using l0,1, 

γ1, and ω1. At this step, because the positions of segments 1 and 4 are determined, the freely 

grown chain is inserted into the system in such a way that the starting and the ending segments of 

this chain are located at the positions of segments 1 and 4, respectively. The inserted chain is 
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rotated around the r1,4 line so that the angle between the 0,1,4̅̅ ̅̅ ̅̅  plane and the 1,2,4̅̅ ̅̅ ̅̅  plane becomes 

equal to ω2.  

4. 𝑒−𝛽𝑈tor(𝜑0,3) ≥ random(0, 1) 

C. Regrowth of N segments between two fixed points 

In this case (Fig. 3.2c), segments 0 and N + 1 are fixed at distance d and segments 1, 2, …, N 

must be regrown. 𝑈intra−in and 𝑈inter−in can be written as 

𝑈intra−in = ∑ 𝑈bend(𝜃𝑖)
𝑁
𝑖=1 + ∑ 𝑈tor(𝜑𝑖,𝑖+3)𝑁−2

𝑖=0                                                                    (3.25) 

𝑈inter−in = ∑ ∑ 𝑈LJ(𝑟𝑖𝑗)𝑁+1
𝑗=𝑖+4

𝑁−3
𝑖=0                                                                                            (3.26) 

The procedure that is developed in the previous section is generalized in this section. The 

Jacobian factor is the product of a few factors encountered in growing a free chain (i.e., 

∏ sin 𝜃𝑖
𝑁
𝑖=2 ), generating θ1 instead of ω2 (i.e., sin 𝜃1 sin 𝛼 sin 𝛾2 sin 𝜔2⁄ ), and the chain closure 

restriction (i.e., 𝑑 𝑙0,1𝑟1,𝑁+1⁄ ) 

𝐽(𝑑, 𝜃1, 𝜃2, … , 𝜃𝑁 , 𝜑1,4, 𝜑2,5, … , 𝜑𝑁−2,𝑁+1) = |
𝑑

𝑙0,1𝑟1,𝑁+1

∏ sin 𝜃𝑖
𝑁
𝑖=1

sin 𝛼 sin 𝛾2 sin 𝜔2
|                                (3.27) 

For one valid trial to be generated at a definite d distance, a free chain, starting with segment 

1 and ending with segment N + 1, is grown in vacuum (i.e., generate θ2, θ3, …, θN according to 

their corresponding Gaussian distributions and φ1,4, φ2,5, …, φN-2,N+1 from their torsional 

distributions), and θ1 is generated independently and simultaneously according to its Gaussian 

distribution until these conditions are satisfied 

1. 𝜃2, 𝜃3, … , 𝜃𝑁 ∈ (0, 𝜋) 

2. 0,1, 𝑁 + 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ is a triangle (i.e., |𝑟1,𝑁+1 − 𝑙0,1| < 𝑑 < 𝑟1,𝑁+1 + 𝑙0,1 ) 

3. 𝜃1 ∈ [|𝛼 − 𝛾2|, min{(𝛼 + 𝛾2), 2𝜋 − (𝛼 + 𝛾2)}] 
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* One of the two answers for ω2 from Eq. (3.12) is chosen randomly. γ1 is calculated by the 

cosine law for the 0,1, 𝑁 + 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ triangle and ω1 is generated uniformly on (0, 2π). Segment 1 is 

regrown using l0,1, γ1, and ω1. At this step, because the positions of segments 1 and N + 1 are 

determined, the freely grown chain is inserted into the system in such a way that the starting and 

the ending segments of this chain are located at the positions of segments 1 and N + 1, 

respectively. The inserted chain is rotated around the r1,N+1 line so that the angle between the 

0,1, 𝑁 + 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ plane and the 1,2, 𝑁 + 1̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ plane becomes equal to ω2.  

4. 𝑒−𝛽𝑈tor(𝜑0,3) ≥ random(0, 1) 

3.2.2. Regrowth of N sequential segments in a molecule 

In order to locally sample the internal sections of a molecule (see Fig. 3.2d), N sequential 

segments are selected randomly as growing segments (segments 1, 2, …, N), the two segments 

before and after growing ones are considered as fixed endpoints (segments 0 and N+1), other 

segments of the molecule are colored in black as shown in Fig. 3.2d. In addition to 𝑈intra−in and 

𝑈inter−in (Eqs. (3.25) and (3.26)), 𝑈intra−out and 𝑈inter−out can also be present in this case 

because of the presence of other segments. 𝑈intra−out is the sum of all bending and torsional 

energies where at least one member used to define these angles is a growing segment and at least 

one member comes from the other segments. For instance, for the molecule shown in Fig. 3.2d, 

we have 

𝑈intra−out = 𝑈bend(𝜃0) + 𝑈bend(𝜃𝑁+1) + 𝑈tor(𝜑−2,1) + 𝑈tor(𝜑−1,2) + 𝑈tor(𝜑𝑁−1,𝑁+2) +

𝑈tor(𝜑𝑁,𝑁+3)                                                                                                                           (3.28) 

𝑈inter−out is the sum of all nonbonded energies between growing segments and other 

segments or segments of other molecules. These N segments are regrown according to the 

procedure explained in previous section. There is one degree of freedom left in this case, which 
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can be used to rotate all regrown segments simultaneously around the line that passes the two 

fixed segments (i.e., segments 0 and N + 1). This degree of freedom means that, because ω1 is 

generated randomly on (0, 2π), it is possible to generate different values of ω1 without altering 

the other variables. Although 𝑈intra−in and 𝑈inter−in are independent of ω1, 𝑈intra−out and 

𝑈inter−out depend on ω1. In this case, similar to previous cases, trials are generated according to 

exp(-β𝑈intra−in), and the Jacobian factor and other energetic terms must be included in the 

Rosenbluth weight. Because calculating intermolecular interactions requires computing 

distances, they are more computationally expensive than intramolecular energies. To reduce the 

computational cost, 𝑈intra−out is coupled
45

 to 𝑈inter−in and 𝑈inter−out. In addition, because 

nonbonded segments at shorter distances, which are stored in a neighbor list, have a higher 

impact on 𝑈inter−out and a greater effect on accepting or rejecting a conformation, 𝑈inter−out of 

each growing segment can be split
36

 into two parts 

𝑈inter−out =  𝑈𝑟<𝑟CBMC

inter−out + 𝑈𝑟≥𝑟CBMC
inter−out                                                                                     (3.29) 

where rCBMC is the split-energy cutoff. Because 𝑈𝑟<𝑟CBMC

inter−out is calculated within a short distance, it 

is less computationally expensive and appears in the Rosenbluth weight. However, 𝑈𝑟≥𝑟CBMC
inter−out, 

which is more computationally expensive, is computed only in the end when determining the 

overall acceptance probability. The whole procedure can be summarized in the following 9 steps 

1. Select N sequential segments randomly and identify fixed endpoints. 

2. Generate one trial for growing segments according to exp(-β𝑈intra−in) as explained in section 

3.2.1. 

3. Generate KRot trials of ω1 uniformly on (0, 2π) and calculate 𝑈intra−out for each of them. 

4. Select one of the trials of ω1 (say, the k-th trial) with this probability 
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𝑃Select(𝑘) =
exp[−𝛽𝑈intra−out(𝑘)]

𝑊Rot
                                                                                               (3.30) 

with  

𝑊Rot = ∑ exp[−𝛽𝑈intra−out(𝑘)]
𝐾Rot
𝑘=1                                                                                      (3.31) 

5. Repeat steps 2-4 for KTrial times to obtain KTrial trials. 

6. Calculate 𝑈inter−in and 𝑈𝑟<𝑟CBMC

inter−out for KTrial trials. 

7. Select one trial (say, the i-th trial) with this probability 

𝑃Select(𝑖) =
𝑊Rot(𝑖)𝐽𝑖exp[−𝛽(𝑈inter−in(𝑖)+𝑈𝑟<𝑟CBMC

inter−out(𝑖))]

𝑊Trial
                                                              (3.32) 

with 

𝑊Trial = ∑ 𝑊Rot(𝑖)𝐽𝑖exp [−𝛽 (𝑈inter−in(𝑖) + 𝑈𝑟<𝑟CBMC

inter−out(𝑖))]
𝐾Trial
𝑖=1                                       (3.33) 

8. Calculate 𝑈𝑟≥𝑟CBMC
inter−out for the selected trial in step 7. 

9. The new conformation is accepted with this probability 

𝑃Accept(𝑜 → 𝑛) = min {1,
𝑊Trial(𝑛)

𝑊Trial(𝑜)
exp [−𝛽 (𝑈𝑟≥𝑟CBMC

inter−out(𝑛) − 𝑈𝑟≥𝑟CBMC
inter−out(𝑜))]}                  (3.34) 

3.3. Results and discussion 

3.3.1. Segment regrowth between fixed points 

For the new methodology to be verified, torsional distributions produced by this method are 

compared to those yielded from an MC simulation using regular CBMC to grow a free chain 

starting with segment 0 and ending with segment N + 1. It is assumed that all segments are CH2 

for linear alkanes and all bond lengths are 1.54 Å. The simulation run with regular CBMC 

produces the expected distribution of each torsional angle (i.e., φ0,3, φ1,4, …, φN-2,N+1) as well as 

the end-to-end distance (i.e., the distance between segments 0 and segments N + 1) distribution. 

Then, an MC simulation is run using fixed endpoints CBMC in which segments 0 and N + 1 are 
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fixed at distance d and segments 1, 2, …, N are regrown between them using the JG method to 

find the distribution of each torsional angle. This simulation is repeated at different values of d, 

which are generated from the end-to-end distribution obtained from the regular CBMC 

simulation, to compute the ensemble average distribution of each torsional angle. 

 

 

Fig. 3.3. Torsional distributions obtained from regular CBMC (solid black lines) vs. fixed-

endpoints CBMC (red ×) for (a) φ0,3 of a two-segments regrowth, (b) φ0,3 (or φ1,4) of a three-

segments regrowth, and (c) φ0,3 (or φ2,5) and (d) φ1,4 of a four-segment regrowth. 

In this section, torsional distributions are presented for the growth of two, three, and four 

segments between two fixed points. In the case of a two-segment regrowth (see Fig. 3.2a), there 

is one torsional angle, φ0,3. For a three-segment regrowth (see Fig. 3.2b), there are two torsional 

angles, φ0,3 and φ1,4, whose distributions are equal because of the symmetry. A four-segment 
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regrowth involves three torsional angles, φ0,3, φ1,4, and φ2,5. Again because of symmetry, φ0,3 and 

φ2,5 have the same distributions. Fig. 3.3 compares the two torsional distributions obtained by 

regular CBMC and fixed endpoints CBMC, which proves that JG indeed produces the correct 

results. Each torsional angle distribution has a global maximum which occurs at the trans 

conformation (φ = π) and two local symmetric maximums at the gauche conformations. 

 

Fig. 3.4. Distance distribution between two fixed points separated by (a) two, (b) three, and (c) 

four segments. Fixed endpoints growth acceptance rates for growing (d) two, (e) three, and (f) 

four segments as function of this end-to-end distance. 

Panels a, b, and c in Fig. 3.4 show the end-to-end distributions for fixed endpoints regrowth 

of two, three, and four segments, respectively. The peaks of each distance distribution occur 

when bending angles are at their equilibrium values and each torsional angle is located at one of 

the three maximums. In the case of the two-segment regrowth (see Fig. 3.2a), the distance 
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distribution (see Fig. 3.4a) has two peaks at d ≈ 3.15 and 3.96 Å, which correspond to the gauche 

and trans conformations, respectively. The three-segment regrowth distribution (see Fig. 3.4b) 

shows one peak at d ≈ 5.15 Å, when both torsional angles, φ0,3 and φ1,4, are at the trans 

conformations, and one peak at d ≈ 4.57 Å, when one torsional angle is at the trans conformation 

and the other one is at the gauche conformation. There are other peaks at shorter distances when 

both torsional angles are at the gauche conformations, but these peaks are diminished due to the 

Lennard-Jones repulsion between segments 0 and 4. In all cases, the global maximum of the end-

to-end distance distribution happens when all torsional angles are at their trans conformations. 

The acceptance rates obtained for the fixed endpoints regrowth with one trial (i.e., KIN = 1 in 

Eq. (3.5)) as a function of the end-to-end distance for two, three, and four segments are displayed 

in Figs. 3.4d, 3.4e, and 3.4f, respectively. The acceptance rate can be affected by two factors: 

U
inter-in

 and singularity in Jacobian. The acceptance rate for growing four segments (see Fig. 3.4f) 

is significantly lower at short end-to-end distances due to the U
inter-in

 factor, i.e., Lennard-Jones 

repulsions between segments 0 and 4 and/or between segments 1 and 5. This U
inter-in

 term cannot 

affect either two- or three-segment regrowths. Although it is absent in the former, in the latter it 

is equal for the old and new conformations, which will be counterbalanced in the detailed 

balance condition (see Eq. (3.18)). Thus, for these two cases, the Jacobian factor would be the 

only source to affect the acceptance rates. For these two (and also the four-segment regrowth), 

noticeably lower acceptance rates (~ 58%) are observed at longer end-to-end distances. This 

could be explained by the fact that the denominator of the Jacobian (see Eqs. (3.15), (3.24), and 

(3.27)) includes a sinω2 term which approaches zero when ω2 approaches 0 or π. This causes a 

singularity issue, which affects directly the trans conformation (which occurs at longer end-to-

end distances) because ω2 → 0 there, but not so much for the other stable gauche conformations 
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where ω2 is not close to either 0 or π. This singularity issue was also observed for the regrowth 

of a two-branched planar molecule in chapter 2, which led to the proposal of using a different set 

of variables for the regrowth procedure. Here it is also possible to change the growth variables to 

obtain higher acceptance rates. For instance, in the two-segment regrowth, the singularity issue 

can be avoided if (d, ω2, θ2) are used as the growth variables since the Jacobian factor becomes 

𝐽(𝑑, 𝜔2, 𝜃2) =
𝑑 sin 𝜃2

𝑙0,1𝑟1,3
                                                                                                               (3.35) 

Table 3.1. Ensemble averages of the acceptance rates (%) using JG for growing N segments 

between two fixed points with KIN trials. 

 

N                             KIN 

1 2 5 10 20 

2 71.94 76.98 82.89 86.67 89.71 

3 71.73 77.19 83.18 86.92 89.93 

4 65.28 71.46 78.70 83.18 86.91 

5 62.62 69.24 77.02 81.94 86.01 

6 58.77 66.27 74.97 80.44 84.86 

7 56.26 64.28 73.65 79.43 84.16 

8 52.97 61.77 71.77 77.99 83.10 

9 50.33 59.61 70.24 76.93 82.31 

10 47.45 57.24 68.55 75.59 81.26 

 

In this case, for each trial generation at a definite value of d, θ2 is generated from its 

corresponding Gaussian distribution, and ω2 is generated uniformly on (0, 2π) until 0,1,3̅̅ ̅̅ ̅̅  

becomes a triangle and exp[-β(Ubend(θ1) + Utor(φ0,3))] ≥ random(0, 1). The acceptance rate at 
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every end-to-end distance was found to be nearly 97%. However, trial generation is 4-5 times 

slower due to the requirement of a generated trial to be according to both bending (θ1) and 

torsional (φ0,3) distributions. Although changing the growth variables can improve the acceptance 

rates by a few percent for this simple two-segment regrowth, it has no noticeable effect on other 

more complicated cases. As explained later, the acceptance rate of relocating internal segments 

of molecules is mainly determined by 𝑈intra−out and 𝑈inter−out. 

Listed in Table 3.1 are the ensemble averages of the acceptance rates obtained using the JG 

method for growing N segments (2 ≤ N ≤ 10) with different number of trials (1 ≤ KIN ≤ 20). It is 

clear from these data that high acceptance rates are attainable with relatively low number of 

trials. In addition, increasing the number of trials, KIN, has a higher effect in a larger number of 

growing segments, N, because the use of just a few choices can quickly allow the molecule to 

find a more suitable conformation in terms of U
inter-in

 by avoiding bad contacts. Typically, the 

number of trials used in the regular CBMC to explore this relatively soft, nonbonded  

 

Fig. 3.5. Average number of generation loops needed to generate a valid trial for growing N 

segments between two fixed points. 

configurational space is around 10 for each growing segment. In contrast, the presence of 

singularity and, correspondingly a rather sharp distribution of the Jacobian factor at certain 
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geometry (such as trans) would require a significantly larger number of trials, similar to the use 

of a large number of trials in the regular CBMC (up to 1000) to sample a rather stiff bending 

angle. Thus, using a KIN up to 20 only a small improvement is observed with regard to this 

singularity issue. However, because this problem only occurs at certain geometry, for all cases 

the overall acceptance rate obtained from all possible geometries is above 80% when using 20 

trials. 

𝑛̅loop is defined as the average number of times that the trial generation loop is implemented 

until a valid trial, which satisfies all conditions, is produced. Fig. 3.5 shows that 𝑛̅loop increases 

linearly with the number of growing segments. Energetic condition (i.e., φ0,3 must be sampled 

according to the torsional distribution via the Boltzmann rejection scheme) is the main reason 

why several loops are needed at low number of growing segments. However, as the number of 

growing segments increases, the distance distributions become broader. Then, geometrical 

conditions (i.e., conditions 2 and 3) also increase the average number of loops required. In 

general, 𝑛̅loop is computationally reasonable because a free chain can be grown rapidly 

according to its intramolecular interactions. 

3.3.2. Regrowth of N sequential segments in a chain molecule 

The new method is examined on n-C20 and n-C100 alkane molecules. The procedure of 

growing N internal segments is explained in section 3.2.2. 

The conformational space of this molecule can also be sampled using regular CBMC moves 

where one random segment is chosen and all segments are removed toward one random end and 

then regrown segment by segment. In growing each segment, 20 trials are generated where for 

each trial, one bending and one torsion angles are generated according to their probability 

density functions and the Boltzmann factor of intermolecular energy terms is calculated for each 
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trial. One of the trials is selected according to this Boltzmann factor. Our computations show that 

increasing the number of trials does not remarkably improve acceptance rates particularly for 

high number of segments. 

For this N-segment regrowth, regular CBMC is expected to yield higher acceptance rates than 

fixed endpoints CBMC for three reasons. First, regular CBMC is not restricted by the endpoint, 

so it has more freedom to avoid unfavorable high-energy conformations. Second, in regular 

CBMC, intramolecular energies (i.e., bending and torsional energies) are independent of each 

other, whereas several intramolecular energies (see Eq. (3.28)) are coupled to each other in fixed 

endpoints CBMC. Third, because regular CBMC is implemented segment by segment and the 

intermolecular energy of each growing segment is considered at its growth steps, the 

intermolecular energies of sequential growing segments are independent to a certain extent. In 

contrast, the JG method for sampling internal segments regrows all selected segments for each 

trial generation and then calculates the intermolecular energies (i.e., U
inter-in

 and U
inter-out

) for all 

growing segments simultaneously, so the trial needs to be energetically favorable for all growing 

segments, which is more difficult. Thus, the acceptance rates of regular CBMC moves for 

different number of growing segments can be considered as the upper limit for the acceptance 

rates of fixed endpoints CBMC moves. 

In our simulation, KRot (see Eqs. (3.30) and (3.31)) is set to 100 as further increase of this 

parameter does not lead to any appreciable improvement in the acceptance rate. Following 

previous work,
73

 rCBMC (see Eqs. (3.32)-(3.34)) is set to 5 Å. Fig. 3.6 shows acceptance rates and 

representative snapshots obtained for the n-C20 and n-C100 chains. It is clear that, with the 

increase of the chain length, nonbonded interactions become more important in forming 

conformations, i.e., they make the chain fold on itself such that each segment is surrounded 
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Fig. 3.6. Acceptance rates of regular CBMC (dashed line) with 20 trials and fixed endpoints 

CBMC (solid lines) with different number of trials for growing N segments in n-C20 and n-C100 

alkane chains. Representative snapshots of n-C20 and n-C100 alkane chains. 

by more nonbonded segments. Thus, the available space for growing segments using regular and 

fixed-endpoints CBMC moves becomes even more restricted. As a result, these moves are more 

likely to be rejected. This can be observed in Fig. 3.6 where the acceptance rates obtained for n-

C20 are substantially higher than those obtained for n-C100. Because this issue is present in both 

regular and fixed endpoints CBMC, the lower acceptance rates observed for both n-C20 and n-

C100 when using fixed endpoints vs. regular CBMC are mainly due to U
intra-out

. Comparing these 

results with those obtained with previous approaches
72-73

 proves that JG is much closer to the 

upper limit (i.e., the acceptance rates obtained by regular CBMC). 

The efficiency of the new method in conformation generation is compared with both the 

crankshaft and the rebridging configurational bias (RCB)
72

 method by measuring the decay rate 

of half-chain end-to-end autocorrelation function.
72

 In the JG move, KRot = 30, rCBMC = 5 Å, and 
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KTrial = 1, and 10 trials are generated for each crankshaft move. These parameters are chosen to 

yield an optimal ratio of the acceptance rate to the CPU time. JG and RCB are compared in 

simulating an isolated n-C70 alkane chain at 400 K using the NERD
104

 force field and a softer 

bending potential with kθ = 31250K (while bond lengths and torsional angle potential remain the 

same). The autocorrelation function of the crankshaft algorithm for this molecule serves as a 

reference to compare JG with RCB. JG and the crankshaft algorithm are also compared in 

relaxing an isolated n-C100 alkane chain at 300 K using the TraPPE-UA force field that has a 

stronger bending potential (Table 2.1). In all simulations, after each move, a one-site regular 

CBMC is performed to vary the position of one of the two end segments randomly. The results 

of all simulations are shown in Fig. 3.7. According to Chen and Escobedo,
72

 for an isolated n-C70 

chain, the autocorrelation function in the RCB method reaches zero when the autocorrelation 

function of crankshaft move is about 0.82 that takes more time than JG (see Fig. 3.7). Thus, the 

new method can produce new conformations very efficiently without the requirement for biasing  

 

Fig. 3.7.  Half-chain end-to-end autocorrelation function of JG (red) and crankshaft (blue) moves 

for an isolated n-C70 alkane chain at 400K and an isolated n-C100 alkane chain at 300K. 
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probability functions. For an isolated n-C100 chain, Fig. 3.7 shows that JG is also very efficient 

for models with strong intramolecular interactions at low temperatures when the crankshaft 

algorithm is very time consuming in producing new conformations. 

3.3.3. Regrowth of N sequential segments in a cyclic molecule 

JG is also examined on growing the internal segments of cyclic molecules with KRot = 100 

and rCBMC = 5Å. Simulations were run for cyclododecane and cyclohexane as examples of large 

and small cyclic molecules, respectively. 

Fig. 3.8a shows the acceptance rates for growing different number of segments in 

cyclododecane. In comparison with growing the internal segments of a linear chain, the 

acceptance rate is lower for this case, because it is less probable, particularly at higher number of 

growing segments, to regrow segments between two fixed points at shorter distances. As 

explained in section 3.3.1 (see Fig. 3.4f), the acceptance rate is lower due to nonbonded 

repulsions in U
inter-in

. 

The acceptance rates for growing two and three segments in cyclohexane are shown in Fig. 3.8b. 

For this molecule, a different torsional potential model
105

 is used (see Fig. 3.8c). The simulated 

average distribution of all torsional angles in cyclohexane has a peak close to 55
o
 (Fig. 3.8c) due 

to the rigid structure of the ring which has been observed in the previous experimental
106

 and 

simulation
107

 works. Because each pair of segments inside this molecule is separated by fewer 

than four bonds, there is no nonbonded interaction inside the molecule. Thus, U
intra-out

 is the only 

factor which affects the acceptance rate. Because this energetic term is similar for growing 

different number of segments, the acceptance rates for growing two and three segments in 

cyclohexane are close to each other. In addition, the high acceptance rates for growing three 

segments prove that our method can be used to regrow the whole molecule where the first three 
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segments are regrown using the regular procedure described in chapter 2 and the last three 

segments are regrown using the procedure described here. Thus, the new method is applicable to 

transfer cyclic molecules between phases in grand canonical
108

 and Gibbs
109

 ensembles. 

 

Fig. 3.8. Acceptance rates of growing N segments of (a) cyclododecane and (b) cyclohexane with 

different number of trials. (c) Torsional potential model (blue) and average torsional angle 

distribution (red) for cyclohexane. 

3.3.4. Extensions to other cases 

As it was explained in section 2.5.2, this method can be extended to nonharmonic bending 

potentials using extra Boltzmann rejection steps. In some force fields, such as TraPPE-UA for 

acrylates,
110

 there are 1-4 potentials in addition to torsional interactions. These extra energetic 

terms can be included in the Rosenbluth weight of U
inter-in

 or U
intra-out

. 
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It is also possible to extend this method to fully flexible molecules where bond lengths are 

also generated according to their probability density functions using the Boltzmann rejection 

scheme in a decoupled
111

 style. 

Because a free chain of segments 1, 2, …, N + 1 is grown in this method, it can be extended 

to a molecule where segments 2 or 3 or … or N are branched points. Furthermore, if segment 1 is 

a branched point, other bending and dihedral angles can be generated independently and 

simultaneously as described in previous chapter. In this case, each rotational angle generation 

must consider all associated torsional energies in the Boltzmann rejection step. 

 

 

 

 

 

 

 

 

 

 

 



67 
 

CHAPTER 4. WATER-AMMONIA/AMINE NUCLEATION 

4.1. Introduction 

Nucleation is a common event that occurs in many biological,
112

 industrial,
113

 and 

atmospheric
114

 phenomena. So, nucleation affects cloud formation,
115

 weather and climate 

change,
116

 solar radiation,
117

 and public health.
118

 Nucleation happens when the system is not at 

equilibrium.
119

 For instance, when the vapor pressure is greater than the saturation pressure, few 

molecules of the vapor phase aggregate and form a liquid cluster to reduce the free energy. 

However, since the ratio of the surface to volume is high for small clusters, the free energy of the 

cluster surface increases the total free energy. Thus, the free energy profile passes a maximum 

which is called nucleation barrier. Nucleation can occur homogeneously, where there is only one 

molecular type, or heterogeneously, i.e., in presence of other agents such as surface of a solid or 

other molecular types. In classical nucleation theory for homogeneous nucleation,
120

 it is 

assumed that the cluster is spherical and the properties of the cluster, such as liquid density ρl and 

surface tension σ, are equal to those of the bulk phase. Thus, the free energy difference can be 

written as a function of the cluster size n as follows 

∆𝐺(𝑛) = −𝑛∆𝜇 + 𝐴𝜎                                                                                                               (4.1) 

where Δμ is the chemical potential difference and A is the area of the cluster surface. The 

chemical potential difference for vapor liquid nucleation can be written as 

∆𝜇 = 𝑘𝐵𝑇 ln (
𝜌

𝜌sat
)                                                                                                                    (4.2) 

Where ρ is the vapor density and ρ
sat

 is the saturation vapor density. The area of a spherical 

cluster of size n is  

𝐴 = (
36𝜋

𝜌𝑙
2 )

1
3

𝑛
2

3                                                                                                                            (4.3) 



68 
 

In the atmosphere, precursor gases, such as sulfuric acid, ammonia, etc., can act as 

nucleating agents
121

 where condensation of water molecules happens and ultrafine aerosols form 

which can grow to larger particles. The annual emissions of ammonia, methylamine (MA), 

dimethylamine (DMA), and trimethylamine (TMA) are 58000, 96.2, 38.2, and 196 Gg/yr 

respectively.
122

 Thus, experimental
123-125

 and computational
126-128

 works have been done to study 

the effect of these species in atmospheric nucleation. Computational studies usually use density 

functional theory (DFT) where only a few molecules present in the system and it would be very 

expensive for higher number of molecules. On the other hand, since nucleation occurs at 

molecular levels, it is very difficult to be observed experimentally. In this chapter, MC is applied 

to cover a wide range of cluster sizes, from a few to tens of molecules, to study the effect of 

ammonia/amines on water nucleation. The details of simulations are explained in section 4.2 and 

results are discussed in section 4.3. 

4.2. Simulation details 

In these simulations, water and ammonia are assumed to be rigid molecules where bond 

lengths (e.g., O-H and N-H) and bending angles (e.g., HOĤ and HNĤ) are fixed. A four-site
129

 

and a five-site
130

 potentials are used for water and ammonia respectively. Lennard-Jones 

parameters are zero for hydrogens and nonzero for oxygen (or nitrogen). Partial positive charges 

are located on hydrogen sites whereas partial negative charge is not located at the position of 
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Table 4.1. Force field parameters for amines. 

Bond length (Å) Angle kθ/kB (K) θ0 (Deg) Amine Site σ (Å) ε (K) q (e) 

 

N-C 

 

1.448 

 

H-N-H 

 

43910 

 

106.4 

 

MA 

N 3.34 111 -0.892 

H 0 0 0.356 

CH3 3.75 98 0.18 

 

H-N-C 

 

62500 

 

112.9 

 

DMA 

N 3.52 58 -0.745 

 

N-H 

 

1.01 

H 0 0 0.385 

CH3 3.75 98 0.18 

 

C-N-C 

 

50356 

 

109.5 

 

TMA 

N 3.78 12 -0.54 

CH3 3.75 98 0.18 

 

oxygen (or nitrogen), but on the symmetry axis with a displacement from oxygen (or nitrogen). 

A transferable potential for phase equilibria-explicit hydrogen (TraPPE-EH) has been proposed
89

 

for amines where all hydrogen atoms are treated explicitly. In order to reduce computational 

costs, a TraPPE-UA is used in these simulations where CH3 group is considered as one 

pseudoatom. Bond lengths are rigid and bending angles have harmonic potential (Eq. (2.1)). 

Intermolecular interactions include Lennard-Jones and electrostatic components. Force field 

parameters are presented in Table 4.1. In order to ensure that the united atom model is accurate 

enough, we run GEMC simulations using Towhee package
47, 131-135

 to obtain vapor-liquid phase 

coexistence curve and compare it with experimental results. 

In our MC nucleation simulation, in addition to conventional translation and rotation moves, 

we use aggregation volume bias Monte Carlo (AVBMC)
76-77, 108

 to swap molecules between the 

gas phase and the cluster. For flexible amine molecules, CBMC is used to sample molecular 
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conformations and to regrow a molecule in a swap move. We also examine the Jacobian-

Gaussian method for these molecules. A self-adaptive umbrella sampling (US)
53, 78, 136

 is used to 

calculate the two-dimensional nucleation free energy (NFE) plot that is a function of number of  

 

Fig. 4.1. GEMC simulation results (red) vs. experimental data (blue) of vapor-liquid coexistence 

curve for MA, DMA, and TMA. 

molecules of water nW and ammonia/amine nA. After obtaining NFE plot at two arbitrary gas 

phase densities for water ρW and ammonia/amine ρA, NFE can be calculated at other gas phase 

densities, 𝜌𝑊́ and 𝜌𝐴́, as following
137

 

∆𝐺𝜌𝑊́,𝜌𝐴́
(𝑛𝑊, 𝑛𝐴) = ∆𝐺𝜌𝑊,𝜌𝐴

(𝑛𝑊, 𝑛𝐴) − 𝑛𝑊𝑘𝐵𝑇 ln (𝜌𝑊́
𝜌𝑊

) − 𝑛𝐴𝑘𝐵𝑇 ln (𝜌𝐴́
𝜌𝐴

)                             (4.4) 

As a reference point for NFE, the free energy is set to be zero for a concentration of 1 

droplet/Å
3
. The concentration of a cluster of size n can be written as the sum of cluster 

concentrations of sizes n with different combinations of water and ammonia/amine 

𝑃tot(𝑛) = ∑ 𝑃(𝑛𝑊, 𝑛 − 𝑛𝑊)𝑛
𝑛𝑊=0                                                                                             (4.5) 

or  

exp[− ∆𝐺tot(𝑛) 𝑘𝐵𝑇⁄ ] = ∑ exp[− ∆𝐺(𝑛𝑊, 𝑛 − 𝑛𝑊) 𝑘𝐵𝑇⁄ ]𝑛
𝑛𝑊=0                                             (4.6) 
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This one-dimensional free energy is used to examine the effect of the second molecule type on 

water nucleation. An arbitrary free energy barrier is chosen as ΔG
onset

. The activity of each 

molecule type is defined as 

a =
𝜌

𝜌𝑜
                                                                                                                                        (4.7) 

 

Table 4.2. Simulation and experimental properties for MA, DMA, and TMA. 

Amine Force Field TC (K) ρC (gr/cm
3
) TB (K) 

MA TraPPE-UA 412.9 0.253 254.9 

Experiment 431 0.224 267 

DMA TraPPE-UA 428.3 0.254 266.5 

Experiment 438 - 281 

TMA TraPPE-UA 435.3 0.261 265.8 

Experiment 433 0.234 275 

 

where ρ
o
 is the gas phase density of the molecule type which results in ΔG

onset
 barrier for 

homogeneous nucleation. Using Eq (4.6) for ΔG
tot

 = ΔG
onset

 and Eq. (4.4), it is possible to 

calculate aA vs. aW plot (or onset plot) where A and W subscripts stand for ammonia/amine and 

water respectively. If the onset plot is below the diagonal line, the presence of the second 

molecule type enhances the nucleation of water because a lower gas phase density is required for 

nucleation and if the plot is above the diagonal line, the two molecule types are reluctant to 

nucleate with each other. Simulations of binary nucleation were run at 230K and 300K as low 

and high temperatures. 
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4.3. Results and discussions 

Fig. 4.1 compares GEMC simulation results and experimental data
89, 138-139

 of vapor-liquid 

coexistence curve for MA, DMA, and TMA. The critical temperature TC and the critical density 

ρC are calculated using equilibrium densities of liquid ρliq and vapor ρvap phases according to the 

scaling law
110

 

𝜌liq − 𝜌vap = 𝐵(𝑇 − 𝑇C)0.325                                                                                                   (4.8) 

1

2
(𝜌liq + 𝜌vap) = 𝜌C + 𝐴(𝑇 − 𝑇C)                                                                                            (4.9) 

where A and B are constants. The normal boiling point TB is calculated according to Clausius-

Clapeyron equation.
140

 Table 4.2 present simulation and experimental
89

 values for critical 

properties and normal boiling points for MA, DMA, and TMA. Fig. 4.1 and Table 4.2 show that 

TraPPE-UA is an accurate force field to be used in nucleation simulations. 

Fig. 4.2 shows two-dimensional NFE contours for binary nucleation of water with 

ammonia/amine in 230 and 300K at given gas phase densities. The nucleation path can be 

determined according to the saddle point which can move to water-rich domain or 

ammonia/amine-rich domain or vanish by varying gas phase densities. So, the nucleation 

mechanism depends on gas phase densities. 
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Fig. 4.2. Contour of NFEs (in units of kBT) for (a) water-ammonia at 300K with ρW = 3 × 10
-6 

Å
-3

 

and ρA = 2 × 10
-4

 Å
-3

, (b) water-ammonia at 230K with ρW = 2 × 10
-8

 Å
-3

 and 3 × 10
-5

 Å
-3

, (c) 

water-MA at 300K with ρW = 2.75 × 10
-6

 Å
-3

 and ρA = 1.75 × 10
-4

 Å
-3

, (d) water-MA at 230K 

with ρW = 1.45 × 10
-8

 Å
-3

 and ρA = 2 × 10
-5

 Å
-3

, (e) water-DMA at 300K with ρW = 3.75 × 10
-6

 Å
-

3
 and ρA = 1.4 × 10

-4
 Å

-3
, (f) water-DMA at 230K with ρW = 3 × 10

-8
 Å

-3
, ρA = 1.75 × 10

-5
  Å

-3
, 

(g) water-TMA at 300K with ρW = 5 × 10
-6

 Å
-3

 and ρA = 1.4 × 10
-4

 Å
-3

, and (h) water-TMA at 

230K with ρW = 5 × 10
-8

 Å
-3

 and ρA = 3 × 10
-5

 Å
-3

. 

 

Fig. 4.3 presents the onset plots at 230K, where ΔG
onset

 = 50.64 kBT, and 300K, where 

ΔG
onset

 = 32.24 kBT. These results show that as temperature increases, water becomes more 

reluctant to co-nucleate with ammonia/amine. DFT calculations also show
141

 that while the free 

energy for MA-water system is positive at 298.15K, it is negative at 216.65K. It can be seen that 

while MA enhances water nucleation more than ammonia at 230, MA is more reluctant to 

nucleate with water than ammonia at 300K. These onset plots are affected by two factors: the  
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Fig. 4.3. Onset plots at (a) 230K and (b) 300K. 

interactions between water and ammonia/amine and the stability of the cluster. As the number of 

methyl groups increases, the second molecule type becomes more hydrophobic and consequently 

co-nucleation with water is more unfavorable. In addition, clusters with lower surface free 

energies are more stable. These two factors are assessed quantitatively as follows. 

Fig. 4.4 shows a few snapshots of binary clusters at 230K and 300K. It can be seen that in 

both temperatures, water molecules are more likely to locate in the center of the cluster and 

ammonia/amine molecules are more probable to be at the surface. This can also be observed in 

radial number density plots (Fig. 4.5) for oxygen and nitrogen for clusters of 40 water and 40 

ammonia/amine molecules. These results indicate that the second molecule type with less methyl 

groups is more likely to penetrate the cluster and co-nucleate with water. 

According to Figs. 4.4 and 4.5, it is reasonable to analyze the stability and surface free 

energy of the cluster by calculating surface tensions of pure ammonia/amine. Using Eqs. (4.1) 

and (4.3) for classical nucleation theory, we can define δΔG as 

𝛿∆𝐺(𝑛) = ∆𝐺(𝑛) − ∆𝐺(𝑛 − 1) = (
36𝜋

𝜌𝑙
2 )

1
3

𝜎 (𝑛
2

3 − (𝑛 − 1)
2

3) − ∆𝜇                                     (4.10) 
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Fig. 4.4. Sample snapshots of binary clusters. 

So, the surface tension can be calculated from the slope of δΔG vs. (𝑛
2

3 − (𝑛 − 1)
2

3) plot. Fig. 

4.6 presents δΔG plots of homogeneous nucleation for different molecule types. At small cluster 

sizes (i.e., large (𝑛
2

3 − (𝑛 − 1)
2

3)), there is a negative deviation from the CNT prediction due to 

entropic effects
120

 which prevent small clusters from constructing spherical shapes. However, at 

large cluster sizes (i.e., small (𝑛
2

3 − (𝑛 − 1)
2

3)), there is a linear behavior as predicted by CNT 

where the slope is used to calculate surface tensions. Table 4.3 presents surface tensions 

calculated from MC simulation of homogeneous nucleation. At 300K, the surface tension of 

water is greater than other component which justifies the presence of water inside binary 
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clusters. Comparing ammonia and MA, the difference of their surface tensions is greater at 230K 

which causes MA to form a more stable cluster. 

 

Fig. 4.5. Radial number density for oxygen and nitrogen for clusters of 40 water and 40 

ammonia/amine molecules at (a) 230K and (b) 300K. 

Finally, using the Jacobian-Gaussian for amines makes MC simulation 4-5 times faster compare 

to uniform trial generation. 
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Fig. 4.6. Comparison of simulation results (blue dots) and CNT (red lines) for δΔG plots of 

homogeneous nucleation for (a) ammonia at 300K and ρ = 4 × 10
-4

  Å
-3

, (b) ammonia at 230K 

and ρ = 7 × 10
-5

  Å
-3

,  (c) MA at 300K and ρ = 3 × 10
-4

  Å
-3

, (d) MA at 230K and ρ = 3 × 10
-5

  Å
-

3
, (e) DMA at 300K and ρ = 1.7 × 10

-4
  Å

-3
, (f) DMA at 230K and ρ = 3 × 10

-5
  Å

-3
, (g) TMA at 

300K and ρ = 1.5 × 10
-4

  Å
-3

, (h) TMA at 230K and ρ = 4 × 10
-5

  Å
-3

, and (i) water at 300K and ρ 

= 4 × 10
-6

  Å
-3

. 
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Table 4.3. Surface tensions of different compounds at high and low temperatures. 

Compound T(K) σ (dyne/cm) 

Ammonia 230 48.7 

300 27.0 

MA 230 29.7 

300 18.5 

DMA 230 29.0 

300 17.7 

TMA 230 25.2 

300 15.5 

Water 300 61.1 
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CHAPTER 5. CONCLUSIONS 

In this dissertation, we have developed new methods to improve the efficiency of 

configurational-bias Monte Carlo for sampling molecular conformations. These methods showed 

to be superior to previous approaches in sampling complicated molecules such as branched, 

polymeric, and cyclic molecules. The Jacobian-Gaussian method has been examined in amine 

nucleation simulation to increase simulation speed. These methods are hoped to be used in 

simulating complex molecules, such as polypeptides, polypeptoids, polynucleotides, etc., to 

sample their conformational spaces to study their physical and mechanical properties. 
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