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ABSTRACT 

The theme of this work is time-lapse polymerizations triggered by pH clock 

reactions. The first chapter is the introduction and gives a long overview of the different 

chemistries studied here. The second chapter focuses on the bromate-sulfite clock 

reaction. Based on some simplified and accepted reaction equations1 for the bromate-

sulfite clock, we presumed it may be possible to increase the pH of the solution via 

ammonia addition and hinder or significantly reduce the reactivity of the clock reagents, 

thus creating a storage stable reaction.  

Adding a polymer system that would not crosslink until the solution became 

acidic would have created a storable, cure-on-demand, adhesive or coating system that 

could be triggered by the drop in pH of the bromate-sulfite clock reaction. However, the 

clock time was only tunable on a 2 hour time scale and the polymer crosslinking system 

was not triggered by the change in pH of the clock reaction.  

Chapter 3 discusses the research performed on the urea-urease clock reaction 

as a trigger for the Michael-addition type polymerization of Thiocure® 1300 (ETTMP) 

and poly(ethylene glycol) diacrylate 700 (PEGDA). We had great success creating this 

time-lapse polymerization system and were even able to create the first isothermal 

frontal polymerization system that does not require the gel effect to propagate the 

polymer fronts. This work focuses on the effect changing reagent concentrations has on 

the clock time, gel time, storage modulus, and subsequent degradation time in the 

batch-cured trials. The swelling capabilities and mass loss over time of the lyophilized 

hydrogel were also studied. In the IFP trials front velocity and front occurrence as they 

were affected by the reagent concentration were investigated. It was found that the 
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clock reaction displayed the same trends with and without2 monomers present. The 

hydrogel formed showed similar properties to the previously studied hydrogel formed 

without3 a clock reaction. Finally, the polymer fronts were determined to propagate with 

the pH fronts. 
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CHAPTER 1 – INTRODUCTION 

1.1 – Time-Lapse Polymerizations 

A polymerizable system that can remain dormant for a predetermined amount of 

time and then react to form the desired product has many applications. This idea of a 

time-lapse polymerization is certainly not a new idea. The first time this term was coined 

was by Norling in his patent.4 He developed a system that had all the necessary 

components to create a one pot polymerization system that could be delayed for a 

programmable amount of time based on the inhibitor concentrations, and after the 

inhibitor was completely consumed, the polymerization proceeded without a decrease in 

reaction rate. This inspired the development of a time-lapse polymerization system in 

the Pojman lab. Hu et al. were able to use the change in pH of the formaldehyde clock 

reaction to trigger thiol-acrylate particle formation.5 Although this method worked well 

and proved a clock reaction could trigger a polymerization, the formaldehyde clock 

reaction is much too toxic to use in practical applications. Thus, a benign clock reaction 

was sought instead. This will be discussed further in The Urea-Urease Clock Reaction 

section. 

1.2 – Clock Reactions 

A clock reaction can be identified by the abrupt change in the concentration of a 

species.6 A common type of clock reaction is the pH clock, which can be identified by 

the abrupt increase or decrease in pH.5  During this abrupt change in pH the maximum 

reaction rate of the system is achieved and is termed as the clock time. The clock time 

can be measured via the inflection point of the pH curve plotted against time or the 

maximum peak of the first derivative of the same plot. This is usually due to either a 
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positive or negative feedback that causes a change in the system. Feedback is when an 

output signal from the system dictates what happens within the system. For example, 

autocatalysis is a type of positive feedback where one of the products increases the 

reaction rate of the system.7 Thus, the reaction rate increases as more product is 

formed, so the product is catalyzing the reaction.  

Figure 1-1 has an example of the bromate-sulfite clock reaction studied and 

discussed in Chapter 2. From this figure it can be seen that the pH starts around 7 and 

after an induction period, the pH abruptly shifts to a much lower pH around 2. Because 

the reaction is autocatalytic, there is a huge production of protons after the inhibitory 

steps are overcome and those protons promote the production of even more protons. 

Until finally, the reactants are consumed, and the reaction stops.  

Figure 1-1. Bromate-sulfite clock reaction. This example is without the addition of 
ammonia. 
 
1.3 – The Bromate-Sulfite Clock Reaction 

The bromate-sulfite reaction kinetics have been well studied for over half a 

century now.8 Williamson and King8a were one of the first groups to study this reaction. 

They monitored the change in pH and sulfur (IV) concentrations throughout the 
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experiment to determine the dependence of the second order rate coefficient on the pH. 

The rate coefficient, k2, was proportional to the H+ concentration above pH 6.4 and 

below pH 4.4. Since the sulfur (IV) ions had different “complexation species” in these pH 

ranges, Williamson and King determined there must be 2 different species responsible 

for the reactions with bromate. These different species were due to the different 

oxidation states of sulfur. They can be seen in Equation 1.  

(1)   [HSO ∙ BrO + nH O]	and	[SO ∙ BrO + mH O] 
Much of the work done with the bromate sulfite system is in the area of oscillating 

reactions. Noyes, Field, and Körös studied the sulfuric acid-bromate-cerium-malonic 

acid system that produced potentiometric oscillations in both the bromate and cerium 

electrodes. They could not fully explain the mechanism but  developed a plausible 

mechanism and rate equations for the system.9 Rábai, Bazsa, and Beck also studied 

the bromate-ascorbic acid-malonic acid system and proposed some possible reaction 

equations and mechanisms.10 Edblom, Orbán, and Epstein investigated the Landolt 

reaction with ferrocyanide in a CSTR. This reaction was along that same lines as the 

others except it replaces bromine with iodine and cerium with ferrocyanide.11 They 

followed that work up with a paper about the mechanism of the same system, proposing 

13 reactions and rate constants for the 7 overall reactions of the system.12 Gaspar and 

Showalter elaborated on this reaction and proposed a new set of mechanisms with even 

more equations and divided the equations up into categories by the processes they 

perform in the reaction.13 In 1980 Richard M. Noyes published a paper detailing A 

Generalized Mechanism for Bromate-Driven Oscillators Controlled by Bromide.14 Later, 

Edblom et al. developed a refined chemical model of the bromate-sulfite-ferrocyanide 
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reaction.15 Keresztessy, Nagy, Bazsa, and Pojman16 went on to study convection in 

traveling wave propagation of the bromate-sulfite system, while Nagy, Keresztessy, and 

Pojman17 also showed “Jumping” waves were possible due to periodic convection in the 

same system. For both papers, the mechanism of the bromate-sulfite system proposed 

by Edblom et al.15 was accepted.  

These are just a small handful of the oscillating bromate reactions that have been 

studied. The discrepancies in reaction mechanisms and rate constants goes to show 

how complex this system really is. There is no easy straight forward way to measure all 

the ions participating in the multitude of equilibria and reactions so some 

approximations and simplifications must be made to be able to model this system even 

remotely accurately.  

Hanazaki and Rábai1a studied the Origin of Chemical Instability in the Bromate-

Sulfite Flow System without a negative feedback and produced a pH clock reaction. 

They were also able to develop a simplified and accepted set of reaction equations for 

the bromate-sulfite system based on the original work of Williamson and King8a and the 

RKH model.18 They believed this method better described the observed behaviors of the 

system and went on to further simplify the model into 2 distinct pathways, the S path 

and the B path.  

The S path is the first to proceed and consumes the sulfite present via Equations 

2- 5 below.  

(2)   H+ + SO3 
2-       HSO3 

- 

(3)   HSO3 - + BrO3 - → SO4 2- + HBrO2 

(4)    HSO3 - + HBrO2 → SO4 2- + HOBr + H+ 
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(5)   HSO3 - + HOBr → SO4 2- + Br - + 2H+ 

The reactions involved in path B are listed below with Equations 6- 9.  

(6)   H+ + HSO3 
-       H2SO3 

(7)   H2SO3 + BrO3 - → SO4 2- + HBrO2 + H+ 

(8)   H2SO3 + HBrO2 → SO4 2- + HOBr + 2H+ 

(9)   H2SO3 + HOBr → SO4 2- + Br - + 3H+ 

A follow up work by Okazaki, Rábai, and Hanazaki1b describes this reaction well; 

the S path equilibrium (Equation 2) lies far to the left at basic pH. As protons are 

produced from Equations 3 – 5 the sulfite in Equation 2 quickly consumes it to produce 

HSO3
- and reduce more bromate. Therefore, the net change in [H+] ≈ 0. The reaction 

rate of Equations 2 – 5 are greater than 6 – 9 when SO3
2-, H+, and BrO3

- are present in 

solution. Once the sulfite is completely consumed the bisulfite pathway can start 

operating. This is the induction period of the clock reaction. Up until this point there is no 

change in pH. Once the bisulfite pathway starts producing protons there is a rapid 

decrease in pH because the B path produces 3 protons. As more protons are produced 

Equation 6 pushes further to the right, generating more H2SO3 and increasing the 

reaction rate of Equations 7 – 9 until all the bisulfite is consumed. Combining Equations 

3 – 5, gives the overall reaction of the S path (Equation 10), and combining Equations 7 

– 9 gives the overall reaction of the B path (Equation 11).8c, 19 

(10)   3H+ + 3SO3 2- + BrO3 - → 3SO4 2- + Br - + 3H+  

(11)   3H+ + 3HSO3 - + BrO3 - → 3SO4 2- + Br - + 6H+ 

In the current investigation, the clock reaction has been perturbed by adding a 

“fugitive base,” a base that can easily escape from the reaction system. Addition of 
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ammonium hydroxide has been studied because it can easily evaporate when left open 

to the air. Other low molecular weight amines were tested but only ammonia evaporated 

in a sufficient time frame without heating.  When left unperturbed, the bromate-sulfite 

clock reaction has an initial pH around 7. Thus, with the addition of ammonium 

hydroxide the initial pH can be increased and the induced delay in clock time studied. 

The idea is that the increase in pH will sufficiently delay the clock reaction and if the 

solution remains sealed so ammonia cannot evaporate, then the clock reaction will be 

halted long enough to create a storage stable system. This would prove useful to create 

a storage stable time-lapse polymerization system if combined with a polymerization 

reaction that is water soluble and will remain dormant until the pH decreases. Optimally 

reacting between pH 3 – 5, depending on initial reagent concentrations.  

1.4 – Polycarbodiimides 

Polycarbodiimides (PCDIs) are a type of polymer that contains carbodiimide 

(CDI) functionalities. Lloyd and Burns extensively studied the optimum reaction 

conditions20 and coupling mechanism21 of water-soluble CDIs. They discovered that the 

optimum pH for the reaction is about pH 4, and the CDIs are inactive at high pHs 

because the carboxylic acid is not protonated. CDIs have found their way into the 

coatings industry shortly after Lloyd and Burns’ studies. Many patents22 have been 

issued for systems using CDIs and PCDIs as either a crosslinker (CDIs) for a resin or 

the resin (PCDIs) to be crosslinked. All of these examples are for coatings but that is not 

the only use of CDIs and PCDIs. Han et al. have recently studied the reaction of PCDIs 

with poly(acrylic acid) (PAA) for use in a Li-ion battery negative electrode.23 They 

proposed a mechanism for the reaction. A drawing based on their mechanism, using the 

compounds studied in this research can be seen in Figure 1-2.  
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Figure 1-2. A) Maleic acid, one of the crosslinkers used. B) PCDI and malonic acid react 
readily at pH 4 to form an N-acyl urea type compound. 
 
 

In this work PCDI resins obtained from Picassian Polymers were crosslinked by 

dicarboxylic acids, specifically maleic or malonic acid. The idea was to study the 

crosslinking of the resins as it was triggered by reduction in pH from the bromate-sulfite 

clock reaction.  

Since PCDIs are unreactive at high pH and the bromate-sulfite clock reaction will 

not proceed at high pHs, our ultimate goal between these two systems was to have a 

time-lapse polymerization occur after the fugitive base escaped the reaction medium 

and the pH dropped below 5. After the switch in pH from the bromate-sulfite clock 

reaction, the solution will be acidic enough for the PCDI to react with the dicarboxylic 

acid and form a crosslinked network.  

1.5 – The Urea-Urease Clock Reaction 

 Another system that exhibits autocatalysis is the urea-urease clock reaction. 

This is another clock reaction that was studied in hopes of triggering a time-lapse 

polymerization. Urease has been studied for almost a century now, and the crystal 

structure was just recently elucidated by Balasubramanian and Ponnuraj.24 In 1926 

James B. Sumner published an article on the crystallization of Jack Bean urease25. This 

was the first enzyme to ever be crystallized, proving that enzymes are proteins and that 

pH 4A 

B 
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the crystallization of proteins was possible. Sumner’s feat was rewarded with a Nobel 

Prize in 1946.24 

Urea is also a well-studied molecule. In 1828 Wohler was the first to synthesize 

an organic compound, urea.26 Since both of these compounds are naturally occurring 

biological molecules, it makes sense that people would want to study them and employ 

them for new applications in chemistry. The decomposition of urea by urease has been 

studied in buffers27 and without buffers28. Purification methods of urease29 and 

investigation into the function of the nickels in the active site30 have been popular areas 

of study with the enzyme as well. Inhibitors of urease31 and pH dependence on 

structure32 are two more well studied areas. The hydrolysis of urea by urease can be 

seen in Figure 1-3.  

 

Figure 1-3. Urea decomposition with and without urease presence adapted from 
Krajewska et al.32 

  

Figure 1-3 shows how urease aids in the quick decomposition of urea in water as 

reported by Krajewska et al.32 With urease present at its optimal pH the enzyme can 

break down urea in about 1 microsecond to form carbamate and an ammonium ion. 
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After that, another water molecule breaks down the carbamate to make bicarbonate and 

ammonia. The bicarbonate is eventually reduced to carbon dioxide. Thus, the entire 

process generates 2 ammonias and 1 carbon dioxide in a matter of seconds. However, 

without urease, urea is stable in water for about 3.6 years and does not make the 

desired products but rather isocyanic acid.32   

Figure 1-4 from our work33 shows the pH dependent reaction rate of urease in 

Figure 1-4A. The enzyme is most active between pH 5.5 – 8.5, and the maximum rate is 

at pH 7. Therefore, we can see how the typical clock reaction graph in Figure 1-4B is 

possible. If a solution of urea has enough acid added to decrease the initial pH to about 

4, then when the urease is added it will have a very low reaction rate. As urea is 

degraded and ammonia is produced the pH of the solution will rise and in turn increase 

the reaction rate of the urease. Once the pH gets around 5.5 the enzyme’s activity is 

very high and there is an abrupt increase in pH because the rate of ammonia production 

increases significantly. Once the pH reaches about 8.5 the activity of enzyme starts to 

dwindle, and the solutions pH eventually plateaus somewhere around pH 9.  

 

Figure 1-4. A) Urease reaction rate as a function of pH. B) Typical urea-urease clock 
reaction pH profile over time. Adapted from Jee et al.33 
 

The first attempt at creating a clock reaction with the urea-urease system was 

performed by Hu et al.2a The studied the effect of adding a weak acid versus a strong 
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acid to the system and also how changing the concentration of the reagents affected the 

system. They found that a weak acid, like acetic acid, creates a buffer in the solution 

and dampens the sharpness of the pH switch. While adding sulfuric acid, a strong acid, 

did not produce a buffer, and a sharp pH switch was observed around the clock time. 

They also discovered that increasing the urea or urease concentrations decreased the 

clock time because more ammonia was produced in a shorter amount of time. Thus, the 

pH increased faster and increased the reactivity of the urease. Although, as expected, 

increasing the acid concentration increased the clock time because more ammonia had 

to be produced before the pH would rise and increase urease activity.  

In this same work by Hu et al., a mathematical model of the urea-urease clock 

reaction was developed from the Michaelis-Menten kinetics of the reaction and the 

appropriate acid/base equilibria. Computer simulations were performed and compared 

well with experimental results.  

In a follow up paper by Wrobel et al.2b pH wave fronts were studied in thin layers. 

They found that if the reaction mixture is sandwiched between an inverted petri dish 

cover and the bottom, creating a thin layer ≤ 1 mm, and preventing ammonia 

evaporation from the system, that changes in pH occur in a 2-dimensional zone and 

propagate outward from their point of initiation. An example of a pH front in thin layers 

can be seen in Figure 1-5. This picture is an example of the urea-urease fronts studied 

in this work with universal indicator added. The solution starts out acidic (red/orange), 

and the basic fronts (blue spots) appear randomly throughout the dish. As the fronts 

propagate, there is a pH gradient along the edge of the front. In Figure 1-5 it is seen as 

a yellow band around the front, this indicates a pH of about 6 - 7.  
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Wrobel et al. found that increasing either urea or urease concentration increased 

the front velocity and number of spontaneous fronts that occurred. The fronts were 

observed to travel with constant velocity. Wrobel also goes on to explain that inorganic 

pH wave front systems such as the bromate-sulfite system, which demonstrate acid 

autocatalysis, have faster fronts (1-20 mm/min) than the base autocatalysis driven urea-

urease fronts (0.1-1 mm/min) that were observed. Autocatalysis is the driving force 

behind these clock reactions discussed. 

Figure 1-5. Petri dish with urea-urease clock reaction and universal indicator. 
Red/orange color (pH <5.5), yellow (~pH 6.5), blue green (pH >8). Blue green fronts 
spontaneously occur and propagate throughout the dish. 

 

The interesting patterns produced in these autocatalytic reaction-diffusion 

systems are caused by spatial inhomogeneities that can occur in unstirred thin layer 

reaction vessels. These fronts are a delicate balance between the reactivity of the 

reagents and the diffusion of the products.34 Fronts have been studied with many types 

of biological reactions; glucose oxidase,35 DNA catalyzers,34 DNA oligonucleotides,36 

and self-replicating RNAs,37 to name a few. Some interesting applications of these types 

of reactions are to make smart materials38, synthetic mechanical pumping systems39, 

and a pH responsive nanoparticle coating40. 
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Work that has been done with the oscillating reactions discussed in the bromate-

sulfite section, and most of the other works not discussed as well, require chemical 

compounds that possess multiple oxidation states and can easily switch between them. 

Namely, halogens, sulfur compounds, and transition metals have been the subjects of 

interest.41 However, these compounds tend to be extremely oxidizing and a potential 

health hazard. Thus, the desire to create a non-toxic system for many potential 

biological applications in adhesives, drug delivery, tissue engineering, stimuli 

responsive sensors, etc. is understandable.  

Since urea and urease are both biological compounds, it seems feasible that if 

the clock reaction parameters are finely tuned it could be combined with a 

biocompatible polymer system to create a tunable reaction system. The urea-urease 

clock reaction starts at a low pH and then switches to a high pH through autocatalytic 

ammonia production and this change in pH could trigger another reaction. A Michael-

addition type polymerization would be a good candidate because it remains inactive at 

acidic pH. It has already been observed that the urea-urease clock time can be 

tunable,2a and the system is capable of producing pH wave fronts that are also 

tunable2b. Therefore, adding a polymerization reaction that should be unreactive with 

any component in the solution until the pH is sufficiently basic could produce a 

programmable batch-cured polymerization system that may also be capable of 

isothermal frontal polymerization. 

1.6 – Isothermal Frontal Polymerization 

Frontal Polymerization (FP) is a method of converting a monomer system into a 

polymer via a propagating reaction zone, or front.42 In Thermal Frontal Polymerization, 

hereafter referred to as simply FP, an external heat source, such as a soldering iron, is 
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applied to the monomer system as the energy source to initiate polymerization.43 The 

point of initiation will have the fastest reaction rate because the energy source is being 

directly applied. Due to the exothermic nature of the polymerization reaction, the front 

propagates through the monomer increasing the reaction rate thus leaving polymer 

behind.44 Once a front has been initiated the external energy source can be removed. If 

too much heat is lost during propagation there will not be enough energy to overcome 

the activation energy of the polymerization, and the front will be quenched.45  

In 1972 Chechilo and Enikolopyan discovered FP46 and studied the wave front 

structure and propagation47. Later, polymerizations of methyl methacrylates and how 

initiator type and concentration affected front velocity were explored48 as well as the 

effects of pressure on FP.49 Pojman and coworkers have extensively studied FP of 

acrylates and also epoxy resins,50  urethane-acrylate copolymerizations,51 thiol-ene 

chemistry,42 and many other systems and applications of FP. Mariani et al. have also 

done research in the area of frontal polymerization with systems such as 

dicyclopentadiene,52 polyurethanes,53 interpenetrating polymer networks54, and 

unsaturated polyester/styrene.55 FP is useful to produce strong polymer materials and 

composites for adhesives and fillers. However, the high temperatures (> 200 ºC) 

required for curing limit its range of application.56 

Isothermal Frontal Polymerization (IFP) is a type of frontal polymerization that 

occurs at a constant temperature. IFP systems have typically been made by addition of 

a polymer seed to a solution of monomer and possibly initiator. This required that the 

polymer be soluble in the monomer solution. When the monomers diffuse into the 

polymer seed a viscous area is produced. Polymerization begins in both the monomer 
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solution and the polymer seed, but the greater viscosity of the monomer solution in the 

polymer seed leads to a quicker polymerization rate. This is known as the Trommsdorff 

or gel effect.57 Because of this gradient in viscosity that is formed, optically58 and 

functionally59 gradient polymers can be produced. 

1.7 – Thiol-Acrylate Hydrogels 

In this work, ethoxylated trimethylolpropane tri(3-mercaptopropionate) (ETTMP or 

Thiocure® 1300 or thiol) and poly(ethylene glycol) diacrylate (PEGDA) monomers were 

used to create a time-lapse polymerization hydrogel triggered by the urea-urease clock 

reaction. The reaction scheme of the monomers and subsequent polymer can be seen 

in Figure 1-6. 

Once the solution is above pH 7, the thiols are deprotonated and become good 

nucleophiles for the electron deficient double bond of the acrylate. The thiol anion 

attacks the acrylate, and the negatively charged acrylate then grabs a proton from 

solution to neutralize itself.60 This produces the structure seen at the bottom of Figure  

1-6. Since the thiol is trifunctional and the acrylate is difunctional, they were kept in a 

2:3 molar ratio to ensure a 1:1 functional group ratio. 

Polymer networks are ubiquitous in synthetic products made for commercial use 

today. With advances in medicine being made every day, a significant area of polymer 

use and research is for medical purposes like drug delivery, tissue scaffolding, and 

wound dressings, to name a few.61 Some of these applications require the in situ 

formation of the polymer network, in which case the mechanical properties of the 

system and its biocompatibility must be well understood. 
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Figure 1-6. Michael-addition type reaction of Thiocure® 1300 and PEGDA and resulting 
polymer. 

 

A common, commercially available area of medical hydrogels is with the 

application of surgical tissue adhesives and sealants, of which poly(ethylene glycol) is a 

major component of the polymeric hydrogels used. This is because it is biocompatible 

and does not elicit an immune response from the body. It can also be passed quite 

easily through the kidneys once it hydrolyzes back into a liquid.62 These PEG based 

hydrogels on the market today have some sort of functionalization that can produce a 

crosslinked network like some combination of acrylate, thiol, or amine derivatives that 

can undergo either a photopolymerization or a base-catalyzed reaction by simply mixing 

the reagents together. The most common uses of these hydrogels are for air or fluid 

leakage prevention and soft tissue adhesion. For example, preventing suture line 

bleeding, postsurgical cerebrospinal fluid leakage, pulmonary air leakage, corneal 

Thiocure® 1300 poly(ethylene glycol) 
diacrylate 700 
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lacerations and transplant bandages, retina reattachment, and vascular closures among 

many others.63 

Some other great applications of PEG hydrogels pertain to tissue engineering. 

Xu et al. developed a hydrogel that could deliver stem cells to cutaneous wounds while 

keeping the cells hydrated and nourished.64 Lutolf et al. found a way to incorporate 

collagenous extracellular matrices into PEG based hydrogels for repairing bone 

defects.65 Young and Engler developed a PEGDA-thiolated hyaluronic acid system that 

could undergo a stiffening process after so many hours (>100 hours) post 

polymerization. They realized the heart muscle cells do this during development and to 

create a better scaffold for heart tissues in vitro, a hydrogel that could do the same was 

needed. Since the stiffening time was dependent upon PEGDA molecular weight, they 

stated the system could be tuned to other tissue scaffold stiffening needs as well.66   

Another useful application of PEG based hydrogels is for therapeutic delivery 

because of their high load capacity and biocompatibility. The wide range of drugs or 

therapeutics used today may include synthetic or natural pharmaceuticals, proteins, or 

living cells. In the case of living cells, the cytotoxicity of the hydrogel and gelation 

method is very important to ensure viability of the therapeutic. For this reason, click 

chemistries have emerged as a leading contender for hydrogel formation. Some of the 

most common are copper(I)-catalyzed azide-alkyne click hydrogels, thiol-ene 

photocoupling, Diels-Alder reactions, oxime reactions, and pseudo-click reactions like 

the thiol-Michael addition and aldehyde-hydrazide coupling.67 To allow release of the 

cargo these compounds must have a degradation method that can be completed in the 

body like hydrolysis of an ester, enzymatic cleavage, or light activated degradation.68  
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With these click chemistries, gelation begins upon mixing of the materials. To 

allow working time with the hydrogel, a delay in curing may be desired. To induce this 

induction time in gelation, a control over the gel rate must be employed.69 Lutolf et al. 

studied how changing the amount and type of charge on amino acids surrounding a 

cysteine thiol affected the reactivity of the thiol in a Michael-addition reaction to a PEG 

diacrylate.70 Lutolf and Hubbell also investigated the effect pH had on the gelation time 

of a thiol to a vinyl sulfone, which underwent a Michael-addition reaction.71 Chatani et al. 

from the Bowman group was able to produce an induction time with the thiol-click 

polymerization by adding methanesulfonic acid as an inhibitor.72  

The thiol-acrylate hydrogel used in this work has been previously characterized 

by Pritchard et al.3 They determined the hydrogel and monomers to be biocompatible 

and tested the hydrogel’s ability to be a drug delivery vehicle of methylprednisolone 

sodium succinate. Because the hydrogel contains many pH sensitive ester bonds, it is 

degradable over time in water. That is a property specifically needed for biomedical 

applications to ensure removal of the polymer system after it has performed its job.73 

1.8 – Conclusions 

In the next two chapters, I will describe how we attempted to develop two 

separate time-lapse polymerization systems. The first involves the bromate-sulfite clock 

reaction. Based on some computer simulations, we believed it would be possible to add 

ammonia to the clock solution and significantly delay the clock reaction. This would 

result in a storage stable solution for a few months as long as the container remained 

sealed to halt ammonia evaporation. By coupling a polymerization to the clock reaction 

that would only react at acidic pH (the final pH after completion of the clock reaction) it 

might be possible to create a time-lapse polymerization system with storage stable 
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capabilities. The polymer selected, polycarbodiimides (PCDIs), once crosslinked with a 

dicarboxylic acid would create a good waterproof coating after evaporation of the water 

in the clock reaction. Thus, after the time-lapse crosslinking system was opened, it 

could be applied to a surface, the ammonia would evaporate, the clock reaction reduce 

the pH, and then the dicarboxylic acid would crosslink the PCDI creating a coating. 

However, this was not the observed results. We found the system to be much more 

complex than anticipated. All of this will be discussed in chapter 2. 

The other system studied was the trithiol-diacrylate time-lapse polymerization 

system triggered by the urea-urease clock reaction. With this system we built upon the 

works of Hu et al. and Wrobel et al. Hu and coworkers developed the urea-urease clock 

reaction and studied the effect of acid type and concentration on the clock time. Wrobel 

and coworkers furthered the research by creating the first thin layer wave fronts with the 

urea-urease clock reaction. They studied how changing the reagent concentration affect 

front occurrence and front velocities.  

From these works we wanted to further the study and create the first Isothermal 

Frontal Polymerization (IFP) system that did not rely on the gel effect to propagate 

fronts and also develop a time-lapse polymerization system triggered by the change in 

pH of the clock reaction. Unlike the bromate-sulfite research, these endeavors were 

extremely successful and we were able to produce a hydrogel from a clock 

reaction/monomer solution. We studied how changing reagent concentrations of both 

the clock reaction and the monomers affected the clock time, gel time, degelation time, 

and swelling of the hydrogel from a dry state in batch-cured trials. We studied the effect 

of reagent concentrations on front occurrence and front velocities in the IFP trials. Other 
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questions answered from the IFP studies were whether or not any convective effects 

were present during propagation of the fronts and do the polymer fronts travel with the 

pH fronts? All of these results will be discussed in Chapter 3. 
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CHAPTER 2 – BROMATE-SULFITE CLOCK REACTIONS 

2.1 – Chapter Summary 

The bromate-sulfite clock reaction has been studied with addition of ammonia in 

hopes of inducing a delay in the clock time. It was found that changing the ammonia 

concentration can produce a delay in the clock time but does not actually affect the 

reaction rate of the clock reaction. Rather, the internal ammonia-ammonium buffer 

formed increases with increasing ammonia concentration, which requires more acid to 

be produced from the clock reaction to see an abrupt change in pH. The delay in clock 

time could not surpass 2 hours. Thus, a storage stable time-lapse polymerization 

system could not be developed.  

Attempts at creating a non-storable time-lapse polymerization system triggered 

by the bromate-sulfite clock reaction were also not successful. This may be due to the 

harsh oxidizers used in the reaction that destroyed the polymer frameworks, or more 

probably reaction of malonic/maleic acid (the polymer crosslinkers) with bromate 

generated a brominated compound that was too sterically hindered to react with the 

polycarbodiimides (PCDI). Never the less, due to time constraints attempts at creating a 

time-lapse polymerization system with the bromate-sulfite clock were abandoned, and 

efforts were directed to the urea-urease system discussed in Chapter 3. 

This chapter will describe the experiments performed with the clock reaction and 

the small range of tunability of the clock time based on ammonia concentration. Also to 

be discussed is the complexity of the clock reaction studied, the polymers tested for use 

in the time-lapse polymerization system, and why the selected systems were chosen.  
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2.2 – Introduction 

2.2.1 – Bromate-Sulfite Clock Reaction 

The kinetics of bromate-sulfite reaction have been well-studied.8a, 8b, 74 The 

reaction starts at pH 7, and after all the sulfite is consumed switches abruptly to pH 2. 

This happens in a matter of about 2 minutes when ammonia is not present (Figure 2-1). 

This behavior is exemplary of a pH clock reaction. A pH clock reaction is a reaction that 

abruptly switches pH after a calculated amount of time based on reagent 

concentrations. The inflection point of the graph is the point where the maximum 

reaction rate has been reached and is termed the “clock time” of the plot.6 

 

Figure 2-1. Typical bromate-sulfite clock reaction without ammonia. 
 

 

A majority of the work that has been done with the bromate-sulfite system is with 

oscillating clock reactions. By changing the metals used in the system different 

oscillators can be created.9-14 With each of these works the mechanisms of the 

bromate-sulfite reaction and the reactions with the metals incorporated have been 
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difficult to elucidate. There has been much debate over the true mechanisms because 

there are so many ions present in the system at any given time.  

More recently, several works1a, 1c, 19 have emerged with what seem to be valid 

simplified mechanisms of the bromate-sulfite clock reaction. These are by no means the 

complete list of mechanisms but the major ones that produce the change in pH 

observed over time with this system. As shown with Equations 2- 9 in the bromate-

sulfite section of the introduction, there are two distinct paths taken in this clock 

reaction: the sulfite (S) path and the bisulfite (B) path. The S path is the first to proceed 

and consumes all the sulfite present. As seen below in Equation 10 from the 

introduction, there is no net change in pH with this pathway. The time it takes for the 

sulfite to be consumed is the induction time of the clock reaction because the B path 

takes over after that. As seen in Equation 11 below, the B path has a net change of [H+] 

≈ 3. As protons are produced the solution pH decreases and the reaction rate of the B 

path increases, reaching the maximum reaction rate during this drop in pH. After all the 

bisulfite is consumed the pH levels off and the clock reaction ceases. Okazaki et al. 

explain this reaction very well in their recent work.1b 

(10)   3H+ + 3SO3 2- + BrO3 - → 3SO4 2- + Br - + 3H+  

(11)   3H+ + 3HSO3 - + BrO3 - → 3SO4 2- + Br - + 6H+ 

Figure 2-2 shows the change in reagent concentrations in the unaltered clock 

reaction. The sulfite, SO3
2-, is consumed first with the S path. After which the B path 

kicks in and consumes the remaining bisulfite, HSO3
-. This results in a large production 

of protons, which can be seen at 300 seconds in the pH graph of Figure 2-2. In the 
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bottom plot the bisulfite is quickly consumed, and it is also apparent that not all of the 

bromate is consumed. 

 

Figure 2-2. pH vs time of the bromate-sulfite clock in the top plot. The bottom plot shows 
the change in concentrations associated with the change in pH seen in the top plot. 
Image courtesy of Dr. Annette F. Taylor. 
 
 
2.2.2 – Attempts to Create a Time-Lapse Polymerization 

The crosslinking system chosen was a polycarbodiimide (PCDI) crosslinked by a 

dicarboxylic acid. This was chosen because it was readily available for purchase, was 

water soluble, proven to be non-reactive at basic pH and crosslink at mildly acidic pH 

(~4).75 In addition, PCDIs have proven to be useful polymers for coatings and many 

patents have been issued for them.22 PCDI and malonic acid readily react at pH 4 to 

form the N-acyl urea form of crosslinked polymer [Figure 2-3(B)]. The other crosslinker 

used was maleic acid [Figure 2-3(A)].  

HSO3
-

BrO3
-

SO3
2- 
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As mentioned, with this work we wanted to create a time-lapse polymerization 

system by coupling the clock reaction to an acid-catalyzed reaction. Ideally, the polymer 

chains and crosslinkers would remain unreactive until the pH dropped low enough and 

triggered the acid-catalyzed crosslinking reaction. Based on the computer simulation 

done by our collaborator, Dr. Annette F. Taylor at the University of Sheffield, it was 

predicted that this system could have optimum concentrations that would allow for a 

storage stable solution to create a one pot cure-on-demand adhesive.  

 

Figure 2-3. A) Maleic acid, one of the crosslinkers used. B) PCDI and malonic acid react 
readily at pH 4 to form an N-acyl urea type compound. C) Internal rearrangement 
mechanism of PCDI with a generic carboxylic acid. Adapted from Llyod and Burns.75a 

  

Based on Figure 2-4, the solution would have a very low rate of reaction on the 

shelf for a few months. After removing the lid and applying the solution to a surface the 

ammonia would evaporate, the clock reaction should proceed if enough sulfite and 

bromate remain, and then once the solution was acidic the crosslinking could occur. 

However, this was not proven to be the case. 

pH 4A 

B 

C 
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Figure 2-4. Using lower initial clock reagent concentrations, a delay of 100 days is 
theoretically possible if SO3

2- and BrO3
- are still present after ammonia evaporation. The 

top plot shows the pH change (solid black line) and change in rate of ammonia 
evaporation (k8, red dashed line). The bottom plot shows the change in clock reagent 
concentrations over time. Image courtesy of Dr. Annette F. Taylor.  
 
 
2.3 – Methods, Materials, and Reactions 

Reagent grade sodium sulfite, sodium bromate, malonic acid, and maleic acid 

were obtained from Sigma-Aldrich and used as received. Sodium metabisulfite, reagent 

grade, came from Acros Organics, and 30% Ammonium Hydroxide Solution came from 

Macron Chemicals. Both were used as received. Sodium sulfite and sodium 

metabisulfite were stored in a vacuum sealed desiccator to prevent oxidation. 

Polycarbodiimide XL-702 was donated by Picassian Polymers and used as received. 

Vernier pH sensors and Logger Lite software were used to record the change in pH as a 

function of time during the clock reactions.  

For every trial, the appropriate amounts of solids were weighed to make 0.1 M 

sodium sulfite and sodium bromate solutions, while 0.05 M sodium metabisulfite 

solutions were used. The sulfite and bisulfites were dissolved in one beaker and the 

bromate in another. The two solutions were not mixed until the appropriate amount of 

ammonium hydroxide was added to the bromate solution. Once mixed, the pH probe 

BrO3 
– 

HSO3 
– 

SO3 2– 
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started recording the change in pH vs. time until the clock reaction was complete. The 

magnetic stir plate was set between 1500 - 1700 rpms for all trials and a small stir bar (1 

cm width) was used in a 50 mL beaker at room temperature (22 ºC). Each trial had a 

total solution volume of 30 mL and initial pH after ammonium hydroxide addition ranged 

from 7 to 10. After the clock reaction switched and the pH remained relatively constant, 

data collection was terminated. 

2.4 – Results and Discussions 

A typical bromate-sulfite clock reaction with and without ammonium hydroxide 

addition is depicted in Figure 2-5. Without ammonium hydroxide the initial pH is about 7, 

the solution clocks in 2 minutes, and the final pH is about 2. With enough ammonium 

hydroxide to raise the initial pH to just over 8, the solution does not clock until about 70 

minutes, and the final pH is around 3. With increasing initial pH there was an increased 

delay in clock time of up to 5 hours, as shown in Figure 2-6. However, the final pH 

increased too. Furthermore, if the initial pH of the solution was above pH 9 there was a 

complete loss of clock behavior all together, Figure 2-7.  

It was also observed that when the clock solution was stored in a vial with no 

headspace of air for ammonia to evaporate, once the vial was opened the clock reaction 

never happened. Rather than seeing the typical sharp decrease in pH, a curve similar to 

the one seen in Figure 2-7 was observed, and the final pH was around 4- 5, depending 

on the concentrations of reagents. Another interesting feature was the linear decrease 

in pH from 10.5 to 8 and then a titration style hump observed from pH 8 to 6. These 

changes in the rate of pH decrease are indicative of ammonia evaporation. From pH 

10.5 to 8 the equilibrium is mostly on the aqueous ammonia side of the equation with 

ammonium hydroxide. Therefore, evaporation is easy because it does not need to be 
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deprotonated to enter the gaseous state. However, from pH 8 – 6 the ammonium ion is 

more prevalent than the aqueous ammonia. So evaporation slows down because this 

internal buffer between the aqueous ammonia and ammonium hydroxide is formed, 

decreasing the rate of conversion form aqueous ammonia to gaseous ammonia. This 

indicates that the trend observed with pH was simply ammonia evaporation and not the 

clock reaction.76  

 

Figure 2-5. Bromate sulfite clock with and without 18 M ammonium hydroxide present. 
 
 

Figure 2-6. Clock time as a function of initial pH, altered by 18 M ammonium hydroxide. 

0

100

200

300

6.5 7.0 7.5 8.0 8.5 9.0

C
lo

ck
 T

im
e 

(m
in

)

Initial pH

0

3

6

9

0 20 40 60 80

pH

Time (min)

NH3

No NH3



28 
  

Figure 2-7. pH time plot of bromate-sulfite reaction with enough 18 M ammonium 
hydroxide to raise the pH above 10. 
 

 

Going back to the computer simulations it is apparent that the clock reaction still 

proceeds in the presence of ammonia, but at a much slower rate. Looking at Figure 2-8, 

the bisulfite is essentially non-existent at high pHs because the system is lying far on 

the sulfite side of the equilibrium. Thus, when sulfite reacts with bromate there is no 

significant change in pH because the number of protons produced equals the number of 

protons consumed. So when the ammonia is finally allowed to evaporate the change in 

pH we see is just that: Ammonia evaporation because the sulfite has already been 

consumed. This is further indicated by the higher final pH between 4- 5 that is typically 

observed, as in Figure 2-7. From these results and the numerous studies and conflicting 

mechanisms and rate constants presented in the literature, it is easy to see how 

complex this system really is. There are so many ions reacting in solution at any given 

moment that a straight forward set of reactions and rate constants are difficult to 
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elucidate because only a small number of ions can actually be measured with indicator 

solutions and electrodes. 

 

Figure 2-8. Effect of ammonia on reagent concentrations in a closed system, time in 
seconds. Image courtesy of Dr. Annette F. Taylor.  
 

 

Even though we could not generate a storage stable system we still tried to 

create a time-lapse crosslinking system. Figure 2-9 shows the preliminary tests of PCDI 

with malonic and maleic acid (the two different dicarboxylic acids chosen as the 

crosslinkers). The images below show the PCDI mixed with malonic and maleic acid 

dissolved in a small amount of water and universal indicator. The acids lowered the pH 

to 4, as indicated by the red color, and the chemicals readily reacted over the course of 

a few hours. 

Even though the malonic and maleic acids are very similar in structure, only 

differing by 1 carbon and 1 double bond, they yielded very different polymers. The 
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maleic acid polymer was textured and had mechanical properties similar to dried up 

Silly String. It almost resembled a brain. This is due to the limited mobility of the carbon 

backbone because of the double bond in the middle of the molecule. The malonic acid 

has one more carbon and no double bond so it can move more to form the bonds. This 

sample had more of a gummy, squishy texture, like a fruit gummy snack.  

 

Figure 2-9. XL-702 (PCDI) polymerized with (A) malonic acid and (B) maleic acid 
 
 

After a reaction was observed the samples were added to the clock reaction to 

try and induce time-lapse crosslinking. However, the gelation of the media was never 

observed. Many different polymer and clock reaction concentrations were tested but a 

polymerization never occurred. This may be due to the malonic and maleic acids being 

brominated in a Belousov-Zhabotinsky (BZ) type reaction.77 This probably would cause 

some steric hindrance or some electronic effects by removing electron density from the 

reaction zone, prohibiting the internal cyclic rearrangement that is necessary to form the 

N-acyl urea compound to complete the crosslinking (Figure 2-10). Another possibility is 

the reaction of sulfuric acid with the CDI functional group, creating a sulfate ester 

(Figure 2-11). 78 Since the attempts at creating both a storage stable system and a time-

lapse crosslinking system with the bromate-sulfite clock reaction were unsuccessful we 
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quit wasting time and moved on to the urea-urease clock reaction system discussed in 

Chapter 3.  

 
 
 
 
 
 
 
 
 
Figure 2-10. Depiction of how a brominated carboxylic acid could affect the reaction of 
the PCDI with a malonic or maleic acid.  
 
 

Figure 2-11. Reaction of PCDI with sulfuric acid. Adapted from Hoiberg et al.78 
 
 
2.5 – Conclusions 

In this work the bromate-sulfite clock time dependence on initial pH as altered by 

18 M ammonium hydroxide was investigated. It was determined that the clock time 

could be delayed up to 2 hours with an initial pH < 9. However, an initial pH ≥ 9 resulted 

in the loss of clock reaction behavior. This because the bisulfite is not present at high 

pH, so the sulfite species is the one participating in the reaction with bromate. Because 

the S path is the only one reacting there is no net change in proton concertation. 

Therefore, the final pH does not drop drastically as it does when bisulfite reacts. To 

X
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further support this theory, the pH versus time plots when the initial pH is above 9 show 

characteristics of simple ammonia evaporation.  

Even though the computer simulations show low initial reagent concentrations 

should be able to halt the clock reaction long enough to be stored that is not what was 

observed experimentally. These results demonstrate how complex this clock reaction is 

and even though we can mimic the overall reaction fairly well, predicting minute 

changes in the reaction mechanisms are not so straight forward. 

In addition to failed attempts at creating a storage stable solution, creating a 

time-lapse crosslinking system was not successful either. The PCDI and malonic and 

maleic acids were shown to react readily without additional reagents at room 

temperature within a few hours. However, once incorporated into the bromate-sulfite 

clock reaction gelation was not observed over various reagent concentrations. This is 

most likely due to the reaction of the malonic and maleic acids with bromate in a BZ 

type reaction or reaction of PCDIs with sulfuric acid. With these results, the research of 

this system was concluded, and the urea-urease time-lapse polymerization system was 

pursued instead. 
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CHAPTER 3 – UREA-UREASE CLOCK REACTIONS 

3.1 – Chapter Summary 

This chapter will discuss the development of a new time-lapse polymerization 

system triggered by a pH clock reaction and the investigation of how changing reagent 

concentrations of the urea-urease clock reaction or thiol-acrylate hydrogel affected the 

final pH, clock time, gel time, degelation time, front velocities, storage modulus, and 

swelling ratio. Increasing the clock reagents’ concentrations increased the initial rate of 

ammonia production and the urea concentration affected the final pH of the solution. 

This resulted in decreased clock times, gel times, degelation times, and storage moduli, 

while increasing front velocities and swelling ratios. Increasing monomer concentrations 

lowered the initial pH by increasing the 3-mercaptopropionic acid buffer content and 

produced more effective crosslinking bonds. This had the opposite effect of the 

increased urea concentration trials. In addition, the first isothermal frontal polymerization 

system that does not rely on the gel effect to propagate polymer fronts was produced. 

With Schlieren imaging it was observed that polymer fronts travel with pH fronts. This 

system has been proven to be highly tunable as a time-lapse polymerization system.  

3.2 – Introduction 

There are many applications for a cure-on-demand biocompatible and/or 

degradable polymer systems, such as adhesives62, tissue engineering scaffolds79, drug 

delivery systems68, and in vitro cell differentiation platforms,66 which can benefit from 

having an induction or working time before polymerization. To achieve this goal one 

must determine the external trigger that induces self-assembly and disassembly, like 

pH, temperature, chemical agents, etc. then find a way to insert or remove the stimulus 
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on an appropriate time scale.69 Some work has been done using catalysts80 or clock 

reactions40 as triggers in self-assembly/disassembly. The urea-urease reaction 

specifically has been studied to produce self-mineralizing composites,81 trigger the 

gelation of peptides,82 create enzyme logic gates,83 and program the gelation of 

chitosan for delivery of cells.84 

Reaction-diffusion systems that produce chemical waves are of much interest to 

those studying biological processes and origins of life because these kinds of 

autocatalytic reactions are believed to be the methods by which the first organisms 

developed.85  They are also a convenient method to develop a polymerization that can 

propagate along with the chemical waves in a system. Some of the systems that have 

been shown to produce fronts and induction times utilize inorganic reactions39, 41, DNA 

catalyzers34, and self-replicating moieties.36-37, 86 These impressive and interesting 

systems unfortunately are either non-biocompatible or cannot easily be linked to other 

reactions. 

The time-lapse polymerization system studied here was used to create the first 

isothermal frontal polymerization (IFP) system that does not rely on the gel effect to 

propagate the polymer fronts. Frontal Polymerization (FP) was first discovered by 

Chechilo et al.46 and is a way to polymerize a solution or mixture by initiating the 

polymerization at one specific point and then the products of the polymerization promote 

further polymerization. The interesting part is that even after the external initiating 

stimulus is removed, the polymerization fronts can travel throughout the entire system. 

The most common type of FP is thermal FP. With this method a heat source is applied 

to one area of the reaction mixture, the heat produced from the exothermic reaction will 
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propagate through the system until it is fully polymerized even though the heat source 

was removed just after initiation.57b Although thermal FP can be very useful to create 

adhesives87, wood fillers57b, and endoskeletons for flexible materials88, the temperatures 

of the reactions are well above 100 ºC. So it is not useful for most biological 

applications. 

IFP is different from thermal FP in that the temperature remains constant 

throughout the system and is much lower than typical thermal FP systems. Previously, 

IFP required that the monomer solution be able to dissolve a small piece of polymer and 

could only be used with free-radical polymerizations. Once dissolved, the monomer 

solution has an increased viscosity in the polymer and polymerization will occur faster 

than in the less viscous monomer solution without polymer. This is referred to as the 

Trommsdorff or gel effect.57a IFP has been used to create optically gradient materials if 

a dopant is added.89  

Unlike IFP systems studied previously which utilize the gel effect and free-radical 

mechanisms59, we were able to develop an aqueous system that undergoes a Michael-

addition type polymerization mechanism to form a hydrogel and does not require the gel 

effect to propagate the polymer fronts. The change in pH induced by the urea-urease 

clock reaction triggers the reaction between ethoxylated trimethylolpropane tri(3-

mercaptopropionate) (ETTMP, Thiocure® 1300, or thiol) and poly(ethylene glycol) 

diacrylate (PEGDA). The solution is acidic upon addition of the thiol because there is 

residual 3-mercaptopropionic acid in each batch left over from the synthesis process 

which is difficult to remove. This was a useful happenstance because acid is needed to 

lower the pH of the solution to create a clock reaction with the urea-urease system.2a 
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Jack Bean Urease was the first enzyme to be crystalized almost a century ago.25 

Since then it has been well studied however, its complete crystal structure was just 

recently elucidated.24 The reaction of urea with urease in water produces 2 ammonia 

molecules and 1 carbon dioxide molecule. Because urease has a pH dependent bell-

shaped rate curve, a pH clock reaction can be produced if a small amount of acid is 

added to the solution before urease is added. Figure 3-1 shows the reaction mechanism 

of urea and urease, the pH dependent urease rate, a typical clock reaction pH plot, the 

pH dependent thiol-acrylate gelation rate, and the reaction ETTMP and PEGDA in basic 

solution. 

In the figure below, the enzyme activity rate of the reaction can be seen in Figure 

3-1(B). At pH 4 the urease is only mildly reactive. If urea and urease are in an acidic 

solution (between pH 3- 4 for this study), the urease will slowly start to decompose urea 

and produce ammonia [3-1(A)]. As the ammonia is produced the pH slowly starts to 

rise. With the increase in pH comes an increase in urease reaction rate, thus producing 

ammonia at a faster rate. We can see the autocatalytic rise in pH in Figure 3-1(C), 

yielding a typical urea-urease clock reaction graph. After the solution surpasses pH 7 

the thiol monomers are more easily deprotonated and begin to react with the acrylate 

monomers. The pH dependent polymerization rate is shown in Figure 3-1(D) and the 

reaction of the monomers above pH 7 is shown in 3-1(E). 

The urea-urease clock reaction was first studied by Hu et al.2a They determined 

the effect reagent concentrations had on the clock time and the difference between 

using a weak versus a strong acid had on the clock time. It was determined that a weak 
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acid dampens the abrupt switch in pH because a buffer is formed, increasing urea or 

urease decreases clock time, and increasing acid concentration increases clock time.2a 

 

Figure 3-1. A) Urea decomposition by urease in water to produce carbon dioxide and 2 
ammonia molecules. B) Urease enzyme activity graph. The maximum activity is at pH 7. 
C) Typical clock reaction graph for the urea-urease clock reaction. D) Polymerization 
rate of thiol-acrylate hydrogel made. These are adapted from Jee et al.33 E) Michael-
addition reaction of ETTMP to PEGDA and resulting bonds. The reaction does not stop 
here but rather continues to form a fully crosslinked network. 
 
 

Following up that work, Wrobel et al.2b studied pH wave front propagation in the 

urea-urease system. They found that increasing urea or urease concentrations 

increased the front velocities and decreased the induction time before fronts appeared. 

A 

B C D

E 
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Also, the number of fronts that appeared increased. They also found that fronts 

propagated with a constant velocity. This is expected34 from autocatalytic fronts that do 

not rely on diffusion alone to propagate. 

These two works by Hu et al. and Wrobel et al. were the foundation of the work 

presented here. We studied how adding thiol and acrylate monomers to the urea-urease 

clock reaction to trigger a time-lapse polymerization affected the clock time, gel time of 

the polymer, and subsequent degradation time of the polymer in batch-cured systems. 

We also investigated the change in rheological behavior and swelling ratios in the 

batch-cured polymers. Polymer and pH wave front propagation in the IFP system was 

also studied. These monomers were selected because they have already been well 

characterized in aqueous buffered solution and proven to be biocompatible.3 In addition 

to these features, the most important feature (besides being water soluble) was that 

they readily undergo a Michael-addition reaction in basic solution, while remaining 

unreactive at pH < 7.60 This would allow for the entrapment of therapeutics or cells, 

which could then release the entrapped moieties in the body after a predetermined time 

of degradation. Also, PEG hydrogels are well studied entities in the biomedical field 

because of their diverse range of possible functionalities, biocompatibility, tunability of 

degradation rates, hydrophilicity, and porosity.61, 67, 73b 

In this work, we explored the development of the time-lapse polymerization of 

ETTMP-PEGDA hydrogels triggered by the change in pH of the urea-urease clock 

reaction. The dependence of clock time, gel time, degradation time, front velocities, and 

front occurrence on reagent concentrations is discussed. Evidence that polymer fronts 

occur simultaneously with pH fronts is presented, and the gel times of stirred batch trials 
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are compared to the clock times. The swelling ratio of the hydrogel in DPBS at 20 ºC 

and 37 ºC were also investigated.   

3.3 – Materials, Reactions, and Methods 

The chemicals used for these experiments were: Jack Bean urease type III 

U1500 (34,310 Units/g solid) lyophilized powder from Sigma-Aldrich, extra pure (>98%) 

urea pearls from Acros Organics, Poly(ethylene glycol) diacrylate (PEGDA) (Mn = 700 

g/mol, ρ= 1.12 g/mL) from Sigma-Aldrich, ethoxylated trimethylolpropane tri(3-

mercaptopropionate) (ETTMP, Thiocure® 1300, or “thiol”) (Mn = 1300 g/mol, ρ= 1.15 

g/mL) from Bruno Bock Chemicals, and Universal Indicator (pH 2- 11) from Fischer 

Scientific. The pH probes used were purchased from Vernier and the accompanying 

Logger Lite software for data collection was utilized. For frontal polymerization 

experiments, 60 X 15 mm polystyrene Falcon® disposable petri dishes were obtained 

from VWR. The stir plates were VWR brand.  

In these experiments clock time and gel time were measured as a function of 

initial reagent concentrations. For each concentration variation 50 mL of solution was 

made to perform triplicate trials of both the batch-cured tests and thin layer IFP tests. 1 

mL of universal indicator was included in every trial. The batch-cured tests were the 

stirred trials in 50 mL glass beakers with a 5/8” X 5/16” Teflon stir bar. The stir plate was 

set to 4, which was later determined to be between 1500 – 1700 rpm depending on 

which stir plate was used. A Vernier pH probe was inserted into the liquid for all stirred 

trials. Unfortunately, the stroboscope tachometer, which was used to determine stir 

plate rpm, was not purchased until after the experiments were completed. Even though 

the setting of 4 on each stir plate varied by about 100 rpm, the results proved to be 
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reproducible in that range. The gel time was defined as the point when the stir bars 

ceased to spin because of sufficient gelation of the solution. 

In the thin layer experiments, 1.5 mL of the mixed solution from a batch trial was 

withdrawn and dispensed between the inverted petri dish lid and bottom. The bottom 

was placed carefully on the lid so no air bubbles were trapped. A Pentax Optio W80 

camera with time-lapse image shooting capability was anchored directly above the petri 

dish to record the propagating pH fronts. An illustration of the experimental set up can 

be seen in Figure 3-2 below. 

Figure 3-2. A) All reagents for the clock reaction were mixed together in a beaker. The 
pH probe was inserted and data collection commenced. A pipette was used to remove 
1.50 mL of the reaction mixture. B) The 1.50 mL removed was dispensed into the 
inverted petri dish top. The petri dish bottom was placed on top the solution and time-
lapse photography of the fronts began. 

 

The pH of the solution was recorded by the probe at a rate of 1 data point every 

3 seconds. Data collection continued until the switch in pH from acidic to basic was 

observed, and the pH remained constant over several minutes. The gel time of the 

solution was the time when the stir bar quit stirring. It was measure with a stop watch. 

Petri dish 

Inverted petri dish top 

Camera 

BA
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Time-lapse images of the wave fronts in the petri dish apparatuses were 

recorded until the entire dish switched from red (acidic) to blue (basic). Images were 

taken every 10 seconds. Image sequences were analyzed with ImageJ. The diameter 

growth of 3 different spots per image sequence were measured using the straight line 

measuring tool. The distance-to-pixel ratio of each image sequence was calibrated at 

the beginning of every new trial. Four measurements were taken of each chosen spot at 

each time interval to average and account for error in measurement. The measured 

diameters for each spot and time were imported to an Excel file. Plots of the radial 

distance traveled versus time were made for each spot measured. The front velocity 

was determined from the slope of the line made by those plots and were then averaged 

for each petri dish. Those averages were then used to calculate the average and 

standard deviation of each reagent concentration variation.  

Some trials did not produce wave fronts so switch time alone is reported. Switch 

time is the time needed for the entire system to switch from acidic to basic; similar to the 

clock time in the batch systems. The switch time was measured from the start of the 

video until the entire solution turned blue. The recorded times were plotted as a function 

of reagent concentration.  

Rheological experiments were also performed using a TA AR200ex rheometer 

with the aid of Dr. Qinglin Wu, Renewable Natural Resources Professor at LSU, and his 

graduate student, Kunlin Song. Solutions were made in a similar fashion as the batch 

studies. One solution containing the desired urea, thiol, and acrylate concentrations was 

made with a total volume of 3 mL. Then a 1 mL urease solution of desired concentration 

was made. The vials were transported to the rheometer lab, and the urease solution 
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was poured into the urea/thiol/acrylate solution. The resulting mixture was shaken for 

~30 seconds before 1.50 mL was withdrawn with a syringe and dispensed onto the 

Peltier plate. A 40 mm steel plate was lowered onto the solution at a set height of 

1.0000 mm. Any extraneous liquid that was expelled from between the plates was 

wiped up from the Peltier plate. The changes in storage and loss moduli were recorded 

over time as the sample was sheared at a fixed angular frequency of 0.628 rad/s, with a 

constant 1% strain, at ambient temperatures (typically 22- 24 ºC).  

In the gelation/degelation experiments in vials, 15 mL of solution was prepared 

for a given concentration set and dispensed into 4 mL vials until full. If an air bubble 

happened to be trapped in the solution it was monitored for movement. If an air bubble 

was not trapped during filling of the vials, then ammonia and carbon dioxide gases 

produced from the reaction of urea and urease were formed and those bubbles were 

monitored. Gelation was defined as the time when bubbles stopped moving upon 

inversion of the vials and degelation was defined as the time when movement was 

allowed again after sufficient hydrolysis of the gel. 

Shadowgraph experiments were performed to observe the propagating polymer 

fronts and elucidate if the fronts traveled with the pH fronts. Dr. Patrick Bunton, Physics 

Professor at William Jewel College, captured the shadowgraph images.  

Swelling studies were performed with discs made in a 1 cm diameter silicone 

mold with a volume of 0.60 mL solution per well. Discs were made in batches of 12 per 

concentration variation and allowed to cure for 24 hours before lyophilization for 48 

hours. After freeze drying the dry weights were measured, and the discs were placed in 

Dulbecco's phosphate-buffered saline (DPBS) for swelling. The discs were weighed 
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several times the first day and then once daily after that. For each measurement, the 

discs were removed from the DPBS, lightly blotted on a paper towel to remove excess 

liquid, and then the wet weight was recorded. After weighing the discs were returned to 

the jar of DPBS and either left on the bench top or placed back in the incubator. 

Swelling was monitored for at least a week, in some cases longer.  

3.4 – Results and Discussion 

3.4.1 – Batch Reaction Polymerizations 

The original idea, to create a hydrogel from poly(ethylene glycol) diacrylate 

(PEGDA) and ammonia produced from the decomposition of urea by urease, was not 

successful. Initial tests were performed with just PEGDA and concentrated ammonium 

hydroxide and also PEGDA mixed with some water and ammonium hydroxide. 

Theoretically, this should work because it is a simple base catalyzed Michael-addition 

reaction90 between the ammonia and an acrylate. To make sure it was possible we tried 

it first before coupling it to the clock reaction. Figure 3-3 shows the tests with two sets of 

vials. Figure 3-4 shows the reaction of the ammonia and PEGDA. 

When the PEGDA was added to the clock reaction, polymerization did not occur. 

The clock reaction still proceeded as normal but no gelation of the PEGDA was 

observed. The first thought was to look at the amount of ammonia being produced in a 

given reaction. With the higher urea concentrations used (0.1 M) the pH plateaus 

around 9.3. Since these systems are mostly water, and do not contain buffers or 

significant amounts of strong acids and bases, the pH should theoretically be much 

higher if all of the urea is converted to ammonia.  
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Figure 3-3. Images A & B show the mixing and subsequent gelation of 2.0 g PEGDA 
and 20 µL 18 M NH4OH. Images C & D show the mixing and subsequent gelation of 2.0 
g PEGDA, 2.0 g H2O, and 20 µL 18 M NH4OH.  
 

Figure 3-4. PEGDA and NH3 Michael addition type polymerization method leading to a 
completely crosslinked network. 
 
 

Using simple acid/base equilibrium equations (Equations 1-11) it can be seen 

that only 0.224 µM NH3 is produced if the pH stops at 9.3. From Equations 12 – 19 we 

can see that to produce enough ammonia to crosslink a 0.05 M PEGDA solution the pH 

must reach almost 11. 

(1)   14 = pOH + pH 

(2)   14 − 9.3 = pOH 

A C B D
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(3)   4.7 = pOH 

(4)   [OH] = 10 . = 1.995 × 10  

(5)   pK , = 4.75 

(6)   10 = 10 .  

(7)                    K , = 1.778 × 10  

(8)   K = [ ][ ]  

(9)   [NH ] = [ ]
 

(10)            [NH ] = . × 	. × 	  

(11)   [NH ] = 2.24 × 10 	M 

(12)   K = [ ][ ][ ]   

(13)              [NH ] × K = [OH ][NH ] 
(14)   	 0.05	M	NH 1.778 × 10 = [OH ][NH ] 
(15)                 [OH ] = √8.89 × 10 = 9.429 × 10  

(16)   = − log 9.429 × 10  

(17)   14 − =  

(18)   14 − 3.02 =  

(19)    ≅ 11 

Remembering the urease enzyme activity graph in Figure 3-1B, it is obvious that 

the enzyme does not work above pH 10. This graph is theoretical and more practically it 

is seen that the enzyme will not produce enough ammonia for the solution to go above 

9.3- 9.5. Therefore, this clock reaction can never produce enough ammonia to make a 
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hydrogel network using ammonia as a crosslinker between PEGDA monomers. Thus, a 

different set of monomers must be chosen. 

Some lab members were using ETTMP and PEGDA as monomers to make a 

hydrogel. The monomers are water soluble and undergo a Michael-addition type 

reaction. Below pH 7 they are unreactive, so they seemed like the perfect candidate. 

After the first time mixing them in with the clock reaction they polymerized when the 

solution turned basic.  

In this section, 3.4.1- Batch Polymerization Reactions, I will describe how 

changing the initial reagent concentrations of monomers, urea, and urease affected the 

clock time, gel time, and degradation time of the hydrogel. Since the two monomers 

needed a stoichiometric ratio of functional groups to optimally react, they were kept in a 

2:3 molar ratio of ETTMP:PEGDA throughout all experiments. For ease and to abate 

confusion, changes in the monomer concentration will be referenced in terms of ETTMP 

concentration. For example, if it is said that 0.05 M ETTMP was used, it is implied that 

the corresponding 0.075 M PEGDA was used to keep the appropriate ratio of 

monomers.  

Figure 3-5 shows the clock time, gel time, and final initial pH as a function of urea 

concentration. As urea concentration increases, the clock time and gel time decrease. 

This is the same trend observed in the experiments without the monomers.2a The initial 

pH does not change much with increasing urea concentration for the 0.01 M and 0.03 M 

trials because the urea does not have a direct effect on the pH of the solution. However, 

in the 0.05 M and the 0.10 M urea trials there is a large amount of experimental 

uncertainty associated with the initial reagent concentration. This is due to the ammonia 
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produced during initial mixing of the urea/ETTMP/PEGDA and urease solutions. With 

high urea concentrations the solutions begin producing ammonia within microseconds 

upon insertion of the urease solution which causes local variances in the initial pH. After 

about 30 seconds the solution is well mixed and homogeneous. This is further 

supported by the 0.1 - 0.2 increase in pH observed after complete mixing.  

 

Figure 3-5. Average clock time, gel time, and initial pH as a function of urea 
concentration. Initial concentrations were [urease]0 = 0.5 mg/mL (17 units/mL) and 
[ETTMP]0 = 0.05 M, T = 25 ºC. Error bars are from 3 repeat trials. 
 
 

Figure 3-6 shows the dependence of clock time, gel time, and initial pH on 

urease concentration. As urease concentration increases, the clock and gel times 

decrease. It is also interesting to note that because of the short clock times observed in 

these trials, the trend between clock time and gel time is easily discernible in this graph. 

Because of the large time scale associated with the other 2 reagent variation graphs, 

the gel time appears to happen around the same time of the clock time but the amount 
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of time between the two is not noticeable. They are all within 2-5 minutes of each other. 

This indicates that the polymer fronts should propagate closely behind the pH fronts in 

thin layers. This will be discussed further in the next section. 

Figure 3-6. Average clock time, gel time, and gel pH as a function of urease 
concentration. Initial concentrations were [urea]0 = 0.03 M and [ETTMP]0 = 0.05 M,  
T = 25 ºC. Error bars are from 3 repeat trials. 
 
  

The other information that can be gleaned from this graph is the initial pH 

dependence. The initial pH increases with increasing urease concentration, and the 

uncertainty associated with the largest concentration is much larger than the two lower 

concentrations. This is for the same reason as the experimental uncertainty seen in the 

largest urea concentrations. Upon mixing, the urease is most concentrated at the point 

of addition and starts reacting very quickly, thus increasing the pH instantly in that area. 

However, after thoroughly mixing the two solutions the urease concentration is 

homogenous throughout the beaker, and the rate of ammonia production slows down. 
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Within experimental uncertainty, the trend with urease concentration and clock time is 

similar to that observed in the monomer-free studies.2a 

Figure 3-7 shows the clock time, gel time, and initial pH dependence on ETTMP 

concentration. As expected, with increasing monomer concentration there was an 

increase in clock and gel time, and a decrease in initial pH. With the addition of 

monomer there is an addition of 3-mercaptopropionic acid. As with the previous work by 

Hu et al. an increase in acid concentration leads to a decrease in initial pH and an 

increase in clock time.2a  

Figure 3-7. Average clock time, gel time, and gel pH as a function of ETTMP 
concentration. Initial concentrations were [urea]0 = 0.03 M and [urease]0 = 0.5 mg/mL 
(17 units/mL), T = 25 ºC. Error bars are from 3 repeat trials. 
 
 

Figure 3-8 shows the final pH as a function of reagent concentration. Increasing 

urea concentration increases the amount of ammonia produced which raises the final 

pH. Increasing the urease concentration increases the rate that the ammonia is 

produced and therefore does not affect the final pH. Increasing ETTMP concentration 

3

4

5

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

0.04 0.06 0.08 0.10 0.12 0.14 0.16

pH

T
im

e 
(h

r)

ETTMP Concentration (M)

Average Clock Time Average Gel Time Initial pH



50 
  

lowers the initial pH of the solution, which not only delays the clock time, but also 

decreases the final pH when the same amount of ammonia is produced for each lower 

initial solution pH. 

Figure 3-8. Average final pH as a function of reagent concentration. Initial 
concentrations of the unvaried reagents were [urea]0 = 0.03 M, [urease]0 = 0.5 mg/mL 
(17 units/mL), [ETTMP]0 = 0.05 M, and T = 25 ºC. Error bars for 3 replicate trials of each 
variation. 
 
 

Figure 3-9 shows the degelation times of the batch-cured samples as a function 

of urea and ETTMP concentrations. During the first day, time was recorded starting with 

when the solutions were made and when any returned to liquid that time was recorded 

for the sample. After the first day the time to return to the liquid state was counted by 

days rather than hours and solutions were checked daily. There are 2 factors in this 

system that can be manipulated by changing the reagent concentrations to affect the 

hydrolysis rate. The final pH of the water present and the amount of water present in the 

hydrogel will determine the rate at which the hydrolysis occurs.91 Changing the number 

of carbons between the thiol group and the ester linkage could also alter the hydrolysis 
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rate92, but for this study we used the same monomers and only varied the reagent 

concentrations. As would be expected, decreasing the urea concentration increased the 

time required for the gel to revert back to a liquid. This is because the amount of 

ammonia formed was greater, producing a higher final pH. Increasing the ETTMP 

concentration led to a decrease in the amount of water present in the same volume of 

solution. This resulted in a decrease in the amount of hydroxide present to cleave the 

esters and also an increase in the number of bonds that would need to be cleaved in 

order to allow flow of the chains.  

Figure 3-9. Degelation time of samples based on urea and ETTMP concentrations is 
defined as the time it took the sample to return to the liquid state. Initial concentrations 
of unvaried reagents were [urea]0 = 0.03 M, [ETTMP]0 = 0.10 M, [urease]0 = 0.5 mg/mL 
(17 units/mL). Three replicate trials were prepared for each concentration and no 
discernible difference in degelation time was observed 
 
 

Figure 3-10 shows gelation and subsequent degradation of 0.05 M ETTMP 

hydrogels as triggered by two different urea concentrations in the urea-urease clock 

reactions (0.01 M urea and 0.1 M urea). As was seen with the urea concentration 

variation batch trials and the degradation study shown in Figures 3-5 and 3-9, using less 

urea resulted in an increase in gel time and degradation time. Comparing the black solid 
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line (0.1 M urea) and the blue dashed line (0.01 M urea) a difference in gel time, 

degradation time, and storage modulus can be seen. Since the monomer concentration 

is constant in both trials, these are all due to the difference in urea concentration, which 

affects the amount of ammonia produced. The 0.1 M urea trial polymerizes before the 

0.01 M urea trial because more ammonia is produced in the same amount of time 

initially, which increases the rate of ammonia production in the autocatalytic urea 

decomposition, and the buffer effects of the 3-mercaptopropionic acid are quickly 

overcome. Also, the final pH of the solution/hydrogel is higher with the greater urea 

concentration so the rate of hydrolysis of the ester groups is competitive with the rate of 

polymerization of the monomers. This is most likely why there is a difference in storage 

modulus between the two trials, even though the monomer concentrations are equal. 

And it is most definitely the reason the subsequent degradation of the 0.1 M urea trial is 

faster than the 0.01 M urea trial. 

Figure 3-10. Rheological measurements of hydrogels. Initial concentrations were 
[ETTMP]0 = 0.05 M, [PEGDA]0 = 0.075 M, [urease]0 = 0.5 mg/mL (17 units/mL),  
[urea1]0 = 0.1 M (black solid line), and [urea2]0 = 0.01 M (blue dashed line). Graph 
adapted from Jee et al.33 
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In Figure 3-11, once again, the urea concentration is varied with 0.01 M and 0.1 

M, but now the ETTMP concentration is raised to 0.1 M. Looking at this graph, the same 

trends as in Figure 3-10 can be seen with the difference in urea concentration: the 

higher urea concentration led to shorter gel times, shorter degradation times, and lower 

storage modulus of the hydrogel. However, the difference in gel time between the two 

trials with the 0.1 M ETTMP is greater than with the 0.05 M ETTMP because there is 

more 3-MPA buffer to overcome. Starting from a lower pH the rate of urea consumption 

by urease is lower and also, more ammonia must be produced to raise the pH above 

the buffered pH.2a 

 

Figure 3-11. Rheological measurements of hydrogels. Initial concentrations were  
[ETTMP]0 = 0.1 M, [PEGDA]0 = 0.15 M, [urease]0 = 0.5 mg/mL (17 units/mL),  
[urea1]0 = 0.1 M (black solid line), and [urea2]0 = 0.01 M (blue dashed line). Graph 
adapted from Jee et al.33 

 

The large difference in storage modulus between the two trials is most likely due 

to ester hydrolysis during polymerization, just like with the lower ETTMP concentrations. 

However, it is more pronounced with the increased ETTMP concentrations because 
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there are more ester groups that can be broken and more effective bonds in the 

hydrogel that can be made. With the more dilute  0.05 M ETTMP trials, there is a 

greater chance of ineffective bonds forming.91 Meaning, active chain ends are more 

likely to react intramolecularly and produce defects in the hydrogel network via self-

looping bonds, cyclic oligomers, or just leave unreacted ends dangling. With the more 

concentrated 0.1 M ETTMP hydrogel, there are more unreacted acrylate monomer ends 

around the active thiol anions, and it is less likely for intramolecular reactions to happen. 

Also, with the increased concentration comes the increased chance of entanglements, 

which also adds to the storage modulus of a hydrogel.91 The increase in effective bonds 

is also the reason the 0.1 M ETTMP trials took longer to degrade. With the 0.01 M 

urea/0.1 M ETTMP trial, it did not degrade over the 24-hour rheological study and was 

also the same concentration of one of the trials in the degelation study (Figure 3-9) that 

still has not degraded over the course of the year. The data shown here in Figures 3-10 

and 3-11 matches that explained in Figure 3-9. The gel times, degradation times, and 

gel strength can be tuned by adjusting urea or ETTMP concentrations. 

3.4.2 – Thin Layer pH Wave Front Experiments 

The thin layer IFP experiments were conducted alongside the batch-cured 

experiments. As mentioned in the materials and methods section, 1.5 mL of each 

solution was withdrawn from the preliminary batch sample trials and dispensed in a petri 

dish for wave front observation. The Pentax camera was mounted above the petri dish 

for imaging. After the IFP experiments were performed it was realized that all the 

concentrations should be lowered to allow a greater range between front speeds and 

switch times in the concentration ranges chosen. So there would be a direct comparison 
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between batch-cured and IFP trials it was decided to re-do the batch-cured experiments 

with the new range of concentrations chosen for IFP studies. So the batch-cured trials 

presented in the previous section, 3.4.1, are not the same concentrations as the IFP 

trials presented in this section, 3.4.2.  

Also, our collaborators had the shadowgraphy equipment set up to accurately 

measure the polymer wave fronts alongside the pH wave fronts and determine they 

were indeed propagating concurrently.33 Thus, after a new set of reagent concentrations 

was established, they performed the more accurately recorded experiments. Therefore, 

these wave front experiments cannot be directly compared to the batch experiments 

described in the previous section. However, the same general trends were observed: 

increasing clock reagent concentrations increases front velocities and clock times, while 

increasing monomer concentrations decreases front velocities and clock times.  

The universal pH indicator changes color according to the pH of the solution as 

follows: red < 3.0, orange-red (3.0 – 4.0), orange (4.0- 5.0), orange-yellow (5.0- 5.5), 

yellow (5.5- 6.0), green-yellow (6.5), yellow-green (7.0), light green (7.5), dark green 

(8.0), blue-green (8.5), blue (9.0), and purple ≥10. However, the clock reaction never 

reached pH 10. Determining the pH of the solution is not as accurate with the indicator 

as it is with the pH probe, but an estimation can be made. The switch times of the trials 

can be seen in Figure 3-12. The switch time of the petri dish trials were defined as the 

time when the entire petri dish turned blue, signifying the end of the pH change.  

From Figure 3-12 it is apparent that increasing the urea and urease 

concentrations results in a decrease in switch time.  As expected, the opposite trend is 

observed with increasing monomer concentrations from 0.13 M thiol (18.3 min switch) to 
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0.27 M thiol (21.7 min switch). When monomer concentrations were increased the 

amount of 3-MPA increased and creates a larger buffer to be overcome. This requires 

more ammonia to be produced before seeing a large increase in pH. Only two different 

monomer concentrations were tested so an official trend cannot be stated. However, the 

constant ETTMP concentration was 0.067 M, which is lower than the lowest data point 

for the monomer variations, and the urea concentration was 0.06 M. There were urea 

concentrations of 0.05 M and 0.08 M tested, and they switched at 1.9 and 1.3 min, 

respectively. Therefore we can estimate that the 0.067 M ETTMP concentration with a 

constant urea concentration of 0.06 M would switch around 1.6 min. This is significantly 

lower than the 0.13 M and 0.27 M ETTMP concentrations. 

 

Figure 3-12. Switch times of various reagent concentration samples in petri dishes. 
Switch times were measured as the time when the entire petri dish turned blue (basic). 
Initial concentrations of unvaried reagents were [urea]0 = 0.06 M, [urease]0 = 1.25 
mg/mL, [ETTMP]0 = 0.067 M, and [PEGDA] = 0.10 M, T = 22 ºC. 
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Front velocities were determined by measuring the change in diameter of a front 

spot over time. The diameter was then divided in half and plotted versus the time 

measured. A typical plot to determine front velocity can be seen in Figure 3-13. Each 

growing spot was kept as its own series of data points, and a line was fitted to it. Then 

the slope from each spot’s line was averaged with all the slopes for a given 

concentration set and the error was determined. After the front velocities were 

determined for all the concentration variations, a plot showing the trend between 

changing concentrations was made and can be seen in Figure 3-14.  

Figure 3-13. Radial distance traveled as a function of time for 3 different fronts in a 
single petri dish. Initial concentrations were [urease]0 = 1.25 mg/mL and [ETTMP]0 = 
0.067 M. 
 
 

A summary of the front velocities calculated from all the trials can be seen in 

Figure 3-14. Front velocities increased with increasing clock reagent concentrations. No 

trend can be deduced from the increasing monomer concentrations because only 2 

different concentrations were successfully recorded and only the lower monomer 

concentration trials actually produced fronts. The higher monomer concentration trials 

changed pH uniformly across the petri dish. The figures below will illustrate the 
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experiments performed to obtain front velocity and total switch time. The same trends 

are observed as were seen in the batch polymerization trials. An increase in urea or 

urease produces an increase in front velocity and switch time, because the clock 

reaction produces ammonia more quickly, thus increasing the autocatalytic response in 

urease activity. Also, an increase in monomer concentration led to a decrease in front 

velocity and switch time, because more 3-MPA was present and a larger buffer capacity 

was formed. 

Figure 3-14. Front velocities averaged over 3 trials per set of reagent concentrations. 
Initial concentrations of unvaried reagents were [urea]0 = 0.06 M, [urease]0 = 1.25 
mg/mL, [ETTMP]0 = 0.067 M. Monomers always kept in a 1:1 functional group ratio. 
 
 

In Figure 3-15 (0.13 M thiol) the first fronts appeared around 12 minutes, and the 

switch time was about 18 minutes. In 3-17 (0.27 M thiol) the first fronts take longer to 

appear (around 18 minutes), there are significantly fewer fronts than 3-15, and the 

entire system switched around 21 minutes (3 minutes slower than 3-16). Thus, with less 

monomer, there were more fronts that occurred about 6 minutes sooner and propagated 
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for about 6 minutes before the entire dish switched. However, with the doubled 

monomer concentration, it could be argued that no true fronts occurred, and the entire 

system switched from acid to base rather uniformly except for the few fronts that 

showed up towards the end, after the acid buffer was overcome throughout the petri 

dish.  

 

Figure 3-15. Time-lapse images of fronts. Petri dish diameter = 60 mm, solution height = 
1 mm. [ETTMP]0 = 0.13 M, [PEGDA]0 = 0.2 M, [urease]0 = 1.25 mg/mL, and [urea]0 = 
0.06 M.  

 

Figure 3-16. Time-lapse images of fronts. Petri dish diameter = 60 mm, solution height = 
1 mm.  [ETTMP]0 = 0.27 M, [PEGDA]0 = 0.4 M, [urease]0 = 1.25 mg/mL, and [urea]0 = 
0.06 M. 
 
 

From these Figures (3-15 and 3-16) it can be seen that the increase in acid 

content does affect the fronts produced. The speed of the fronts with the higher ETTMP 

concentration could not be measured because the entire system switched before any 

true fronts appeared. This can be explained by the large amount of ammonia present in 

Time =14.00 min Time = 15.67 minTime = 14.83 minTime = 13.17 min 

Time =19.50 min Time = 21.33 minTime = 20.50 minTime = 16.83 min 
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the system after 3-MPA buffer is overcome,2a allowing the system to increase in pH 

quickly.  

Figure 3-17 shows the 0.63 mg/mL urease, Figure 3-18 shows 1.25 mg/mL 

urease, and Figure 3-19 shows 2.0 mg/mL urease. With the increase in urease 

concentration there was an increase in front velocity and the number of fronts that 

appeared and a decrease in both the time needed for fronts to occur and the length of 

propagation before the entire system switched. The 0.625 mg/mL urease solution 

started producing fronts around 4 minutes, and they propagated for about 6 minutes 

before the entire system switched. The 1.25 mg/mL system had fronts appear around 

3.5 min and propagated for about 3.5 min before the entire dish switched. The 2.5 

mg/mL dish had no fronts appear and the entire system switched in just over 1 minute. 

These results are easily visualized in Figures 3-17 through 3-19. 

Figure 3-17. Time-lapse images of fronts. Petri dish diameter = 60 mm, solution height = 
1 mm.  [urease]0 = 0.63 mg/mL, [urea]0 = 0.06 M, [ETTMP]0 = 0.067 M, and [PEGDA]0 = 
0.1 M.  

 

We can see from these results that the increase in urease concentration had a 

large effect on the number of fronts that occurred and also the length of time the fronts 

propagated before switching. The number of fronts doubled with the increase in urease 

Time = 6.33 min Time = 9.67 minTime = 8.00 minTime = 4.67 min 
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concentration from 0.625 mg/mL to 1.25 mg/mL. There was a smaller effect on the front 

velocity, which only increased from 0.38 mm/min to 0.59 mm/min. 

Figure 3-18. Time-lapse images of fronts. Petri dish diameter = 60 mm, solution height = 
1 mm. [urease]0 = 1.3 mg/mL, [urea]0 = 0.06 M, [ETTMP]0 = 0.067 M, and [PEGDA]0 = 
0.1 M.  

 

Figure 3-19. Time-lapse images of fronts. Petri dish diameter = 60 mm, solution height = 
1 mm. [urease]0 = 2.5 mg/mL, [urea]0 = 0.06 M, [ETTMP]0 = 0.067 M, and [PEGDA]0 = 
0.1 M.  

  

Figures 3-20 and 3-21 show the difference between 0.005 M and 0.01 M urea 

trials. 3-21, shows 0.005 M urea trials where the first fronts appeared around 10 

minutes, propagated until a total switch at 19 minutes, and the front velocity was 0.29 ± 

0.01 mm/min. Upon increasing the urea concentration to 0.01 M, the first fronts 

appeared around 7 minutes, propagated until total switch at 13 minutes, and had a front 

velocity of 0.45 ± 0.04 mm/min. Also, the number of fronts that appeared increased 

slightly with increasing urea concentration.  

 

Time = 4.67 min Time = 6.33 minTime = 5.50 minTime = 3.83 min 

Time = 0.33 min Time = 1.17 min Time = 0.67 minTime = 0.00 min 
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Figure 3-20. Time-lapse images of fronts. Petri dish diameter = 60 mm, solution height = 
1 mm.  [urea]0 = 0.005 M, [urease]0 = 1.3 mg/mL, [ETTMP]0 = 0.067 M, and [PEGDA]0 = 
0.1 M.  
 

Figure 3-21. Time-lapse images of fronts. Petri dish diameter = 60 mm, solution height = 
1 mm.  [urea]0 = 0.01 M, [urease]0 = 1.3 mg/mL, [ETTMP]0 = 0.067 M, and [PEGDA]0 = 
0.1 M.  

 

When the urea concentration is increased again to 0.03 M the number of fronts 

that appeared significantly decreased, and the entire petri dish began to switch pH 

uniformly. With this trial there were a few fronts that appeared after the entire dish 

switched to ~pH 6 but that was it. The same thing happened to the rest of the urea 

variations, 0.05 M and 0.08 M, the pH of the entire petri dish increased uniformly. 

Because of this, only switch times can be recorded and are represented in the graph in 

Figure 3-12. Thus, these images are not shown here because no fronts were seen. As 

expected, increasing the urea concentration led to decreased switch times because 

more ammonia was being produced more quickly. 

Time = 13.67 min Time = 17.00 minTime = 15.13 minTime = 12.00 min 

Time = 9.67 min Time = 11.33 minTime = 10.50 minTime = 8.83 min 
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From these results, it can be seen that increasing the urease concentration had 

the greatest effect on the number of fronts that occurred and the switch time. It probably 

would have had the greatest effect on front velocity as well, however, this cannot be 

verified since the highest urease concentration switched before fronts could occur.  

Thus, leaving only 2 data points on the graph, which is not enough to form a trend. 

Although, the results in regards to the urea and urease reagents are similar to those 

observed in the system without monomers present.2b 

3.4.3 – Polymer Fronts Imaged with Shadowgraphy and Schlieren Imaging 

The images recorded and discussed in the previous section measured the 

change in pH of the solution with a visual aid from the universal pH indicator. However, 

this could not help with measuring the polymer fronts. The first attempts at using 

shadowgraphy to measure the polymer fronts were underwhelming. However, the right 

tools were not present in our lab so the images seen in Figure 3-22 are what were 

observed. Our collaborators did have the right equipment to perform the shadowgraph 

experiments so they handled those experiments for our manuscript. Although, there 

were still some important discoveries in our preliminary endeavors. 

In Figure 3-22(A), a light was shone under the petri dish apparatus to see the 

differences in refractive indices of the solution within. A hole was drilled in the center of 

the petri dish cover so a drop of basic solution could be added to initiate the fronts. The 

basic solution added was some urea-urease clock reaction without monomers that had 

already clocked; the pH was about 9.2. The drop added was gently placed on top of the 

hole and capillary action pulled it into the petri dish. The addition was added in this way 
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so the front propagation could not be attributed to the force of injecting an aliquot of 

solution with the syringe.  

Figure 3-22. Shadowgraphs of a thin layer urea-urease clock reaction with ETTMP and 
PEGDA monomers and universal pH indicator.  A) Shows the petri dish without a piece 
of white paper between the light and the dish so the change in turbidity can be seen. B) 
Shows the Petri dish with a piece of white paper between the light and dish so the 
universal indicator colors can be seen. 

 

Shortly after the addition of the drop, the front began to propagate. As can be 

seen in Figure 3-22(A), the reacted section of solution in the center of the petri dish is 

clear, while the outskirts of the petri dish where the clock reaction has not switched yet 

is still cloudy. This is because the thiol functional group was deprotonated and became 

more soluble in the aqueous media once it became charged and more polar. This can 

be understood by looking at the work by Pritchard et al.3 They determined the solubility 

of these ETTMP monomers in solution to be dependent on temperature and monomer 

concentration. At 4 ºC ETTMP was most soluble below 10 weight percent and above 40 

weight percent monomer in water. They also determined the pKa of ETTMP to be 9.87, 

which means at the basic pH observed in these experiments (pH 7.8 – 9.5) about 40 – 

50% of the thiols were deprotonated. 

A 

B
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In Figure 3-22(B), a white piece of paper was placed in between the petri dish 

and the light so the pH indicator colors could be seen. The propagating front is the 

yellow ring (pH 6- 7) in between the reacted basic blue (pH > 8) circle in the middle and 

the unreacted acidic red (pH < 4) area in the outside of the dish. This image was taken 

within 10 seconds of 3-23A. If Figure 3-22(B) is compared to Figure 3-22(A), the 

propagating front can be seen in both. In 3-22(A) the front is the ring around the clear 

center that has fingering occurring and both clear and cloudy areas can be seen within 

the ring. By comparing the two images it can be determined that the propagating front is 

around pH 6, and there is some dissolution of thiol within it. Since there are some clear 

fingers in the propagating front there could be some polymer formation. The change in 

turbidity of the solution indicates the thiol is dissolved but does not give us any 

information about the polymerization status.  

The next course of action was to attempt to get some images with the aid of 

someone who has the equipment to perform the experiments. So with assistance from 

Dr. Patrick Bunton, Physics Professor at William Jewell College, some Schlieren images 

of the polymer fronts were obtained. Figures 3-23 through 3-26 show some 

representative Schlieren images taken in time-lapse mode of 4 petri dish experiments.  

Figure 3-23 shows Schlieren images of a petri dish set up with 0.20 M ETTMP, 

0.30 M PEGDA, 0.03 M urea, 0.63 mg/mL urease, and 4% (v/v) universal indicator. 

From these images it is apparent that the polymer fronts travel concurrently with the pH 

fronts. The monomers can react above pH 7 and increase in reactivity as pH increases. 

The basic center of each front area has already gelled and the reaction spreads out with 

the propagating fronts. Since the pH fronts travel relatively slowly (0.25 – 1.0 mm/min), 
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the polymer fronts have time to form with the pH fronts where the solution is between 

pH 6- 7. Even though this pH is rather low, the slow propagation of the pH fronts allows 

time for the gel to form, as is seen in the Schlieren images below. 

The polymer front propagation of this trial can be seen in Figure 3-23 below. The 

blue/green textured circles are the basic gelled region, while the smooth red/orange 

area is the acidic liquid solution. As the neutral pH fronts propagate out slowly the 

polymer fronts do too. The entire petri dish was gelled at 20 minutes. To shorten the 

time of the experiment and reduce the amount of spontaneous front occurrence it was 

decided to initiate the solution in the petri dish with a drop of reacted urea-urease 

solution without monomers present (pH 9.2). In these trials the concentration of 

reagents was slightly altered as well. So none of the remaining trials can be compared 

to Figure 3-23. This trial was shown because it displays the polymer front propagation 

with the pH front propagation most clearly. 

Figure 3-23. Schlieren images of Exp. 1. This experiment contained 0.2 M ETTMP, 0.3 
M PEGDA, 0.03 M urea, 0.63 mg/mL urease, 4 % (v/v) universal indicator, no initiation 
of fronts.  

 

Figure 3-24 shows the Schlieren images of the sixth experiment in the series 

0.05 M ETTMP, 0.075 M PEGDA, 0.03 M urea, 0.93 mg/mL urease, and no universal 

indicator. The solution was initiated with a syringe needle by placing a drop of reacted 

Time = 10.00 min Time = 13.33 min Time = 20.00 min 
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solution on top of the hole in the petri dish, allowing capillary action to insert the drop. 

This way, any fronts that appear cannot be attributed to the force of injection. Many 

spontaneous fronts can be observed in the first image of the sequence and propagate 

until the entire dish gelled at 8.50 minutes. The increase in the number of spontaneous 

fronts from the previous trial is due to the increase in urease concentration, decrease in 

monomer concentration, and possibly the removal of universal indicator from solution. 

The effect of urease and monomer concentration was shown to affect this system in this 

way in our published work.33 However, the effect of universal indicator was not studied. 

It is not extensively studied in this work either, but could be a source of future work for 

someone interested in the effects. The components of universal indicator are an 

assortment of weak acids and bases and could have a buffering effect on the clock 

reaction.  

Figure 3-24. Schlieren Images of Exp 6. This experiment contained 0.05 M ETTMP, 
0.075 M PEGDA, 0.03 M urea, 0.93 mg/mL urease, no universal indicator, and initiation 
of fronts in center with already reacted urea-urease solution (pH 9).  

 

Figure 3-25 shows an experiment with all the same reagent concentrations as 

the previous experiment. The difference is the glass plate holding the petri dish was 

tilted to a 10º angle. The first image shows the syringe needle being removed from the 

petri dish after initiation. Many fronts are not visual for several minutes after initiation. 

Time = 0.25 min Time = 6.08 min Time = 8.50 min 
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After 12.50 minutes the entire dish had gelled. This is 4 minutes (or 1.5 X) longer than 

the untilted experiment present in Figure 3-24, possibly indicating a delay effect caused 

by the tilt. 

Figure 3-25. Schlieren Images of Exp. 8. This experiment contained 0.05 M ETTMP, 
0.075 M PEGDA, 0.03 M urea, 0.93 mg/mL urease, no universal indicator, and initiation 
of fronts in center with already reacted urea-urease solution (pH 9). Also, the petri dish 
was tilted 10º.  

 

Figure 3-26: Schlieren Images of Exp. 7. This experiment contained 0.05 M ETTMP, 
0.075 M PEGDA, 0.03 M urea, 0.93 mg/mL urease, 9% (v/v) universal indicator, and 
initiation of fronts in center with already reacted urea-urease solution (pH 9). Also, the 
petri dish was tilted 10º.  

 

Another interesting observation is the apparent difference in front velocity 

between the upward and downward propagating fronts. This is indicative of buoyancy 

driven convective effects.93 The reacted solution containing ammonia and carbon 

dioxide is less dense than the unreacted solution containing urea. Thus, the reacted 

solution floats up and raises the pH, triggering reaction of the monomers. In addition to 

Time = 0.00 min Time = 5.00 min Time = 12.50 min 

↓gravity 

Time = 0.08 min Time = 9.25 min Time = 15.25 min 

↓gravity 
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the convective effects of the solution, the polymerized monomer adheres to the petri 

dish. Thus, it cannot sink in solution to affect the pH in the unreacted solution below. 

Figure 3-26 shows an experiment with the same reagent concentrations as 3-25 

except 9% (v/v) universal indicator is used to observe pH fronts and see if there is a 

difference in reaction time with the indicator present. As before, the glass plate holding 

the petri dish was tilted to a 10º angle to see if any convective effects were present in 

the reaction. These images show that the fronts travel faster in the upward direction 

than in the downward direction, demonstrating buoyancy-driven convection again. The 

entire gel time of this experiment is 15.3 minutes, 3 minutes longer than the previous 

experiment without indicator and 7 minutes longer than the one without indicator and no 

tilt. This indicates the universal indicator plays a part in the delay of the reaction but 

more experiments would have to be performed to determine that definitively. 

Based on these results the polymer fronts propagate with the pH fronts. By 

comparing the experiments with and without universal indicator it would appear the 

indicator delays the gel time of the system. This could be from the weak acids and 

bases present in the universal indicator creating a low concentration buffer in solution. 

We did not investigate this effect but it would be easy to test by varying the 

concentration of universal indicator and running a control without indicator. From that it 

could be determined if there was a trend between indicator concentration and clock 

time. If there is a buffer formed it would delay the clock time as we saw with increasing 

3-MPA buffer concentration induced by increasing ETTMP concentration in the batch 

polymerization trials.  
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From the tilt it was also shown that the upward propagating fronts traveled faster 

than the downward propagating fronts. This is due to the change in solution density 

after urea is converted to carbon dioxide and ammonia. The reacted solution is less 

dense than the unreacted solution and subsequently rises up against gravity in the tilted 

apparatus. This causes the solution it diffuses into to become more basic and react 

more quickly than the solution below the initiation point. This is called buoyancy driven 

convection.  

Another effect of the tilt was the delay in total gel time of the petri dish. Figures  

3-24 through 3-26 showed increasing gel times of the entire petri dish with adding a 10º 

tilt to the petri dish and then adding universal indicator to the solution. This indicates the 

tilt and ions in the universal indicator may affect the clock reaction and polymerization 

but more precise studies would have to be done to say yes or no with certainty. We did 

not focus on those effects. 

These experiments gave some insight into the nature of the propagating polymer 

fronts but is in no way a conclusive study of front velocities as the experimental 

parameters are altered. It can be said with certainty by looking at the images that had 

both indicator and polymer that the polymer fronts form with the pH fronts. However, 

more extensive and carefully prepared experiments are necessary to determine the 

effect reagent concentrations have on front velocities. More results from the front 

velocity experiments associated with this work can be read in our publication.33 

3.4.4 - Swelling Studies of Hydrogel Discs 

The swelling studies were performed to determine the rate of water uptake, the 

amount of water uptake, and the degree of degradation that occurs over time with water 
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present. Hydrogel discs were formed in flexible molds with varying ETTMP 

concentrations. After 24 hours of curing the discs were removed from the molds and 

lyophilized for 48 hours. After lyophilization the dry discs were weighed to determine the 

dry weight before possible degradation in the swelling studies. Swelling was performed 

with Dulbecco's phosphate-buffered saline (DPBS) (+Ca/+Mg) and DPBS (-Ca/-Mg) at 

20 ºC to see if there was a difference in swelling between the two saline buffers. The 

difference between the two buffers is the presence (+Ca/+Mg) and absence (-Ca/-Mg) 

of calcium and magnesium ions. These ions may affect certain proteins, like trypsin, 

from performing correctly by binding to the protein. Since the urease is not an active 

component in the hydrogel crosslinks and the hydrogel functional groups are not known 

to cause a reaction or complexation with the calcium and magnesium ions, there is no 

reason to believe that the presence or absence of calcium or magnesium would affect 

the swelling or degradation of the hydrogel. However, both were tested to ensure no 

difference was found between them. As can be seen in Figure 3-27, there was not a 

difference between discs from the same batch at 20 ºC. Therefore, only DPBS 

(+Ca/+Mg) was used for future studies because it was readily available in the lab. 

The equation to determine percentage swelling can be seen in (20).94  

(20)   %	 = 	 × 100 

Ws refers to the swollen weight at the time of measurement, and Wd is the dry 

weight after lyophilization. To determine the amount of mass erosion after swelling the 

same equation was used except the dried weight after the second lyophilization (after 

swelling for 225 hours) was used in place of Ws. This resulted in a negative number so 

the absolute value was taken. 
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Figure 3-27. Comparison of DPBS +Ca/+Mg and DPBS -Ca/-Mg effect on swelling ratio 
at 20 ºC. Initial concentrations were [urea]0 = 0.03 M, [ETTMP]0 = 0.10 M, and  
[urease]0 = 0.5 mg/mL (17 units/mL). 

 

The effect of temperature on swelling was also studied. Discs were swollen in 

DPBS (+Ca/+Mg) at 37 ºC and 20 ºC. The two temperatures were studied because 

PEG based polymers exhibit a lower critical solution temperature (LCST) that affects 

solubility in water.95 The solubility of these monomers in water at various temperatures 

has been previously studied by Pritchard et al.3 They determined the PEGDA (Mn = 

400) was completely soluble from 4 – 37 ºC; but, ETTMP (Mn = 1300) was not 

completely soluble at 37 ºC. The concentration of monomers in water affected the 

solubility as well. They were least soluble at 25 wt% ETTMP. Above and below 25 wt.% 

they increased in solubility, being most soluble below 10 wt% and above 40 wt%.3 For 

these experiments PEGDA (Mn = 575) was used but there was no noticeable change in 

solubility. Figures 3-28 and 3-29 show the swelling of various monomer concentrations 

at 37 ºC and 20 ºC, respectively. 
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Figure 3-28. Swelling of discs in DPBS +Ca/+Mg at 37 ºC. Initial concentrations were  
[urea]0 = 0.03 M, [urease]0 = 0.5 mg/mL (17 units/mL). 0.05 M discs were too degraded 
to weigh by 120 hr. 

 

Figure 3-29. Swelling of discs in DPBS (+Ca/+Mg) at 20 ºC. Initial concentrations were  
[urea]0 = 0.03 M, [urease]0 = 0.5 mg/mL (17 units/mL). 0.05 M discs were too degraded 
to weigh by 102 hr. 

 

In both figures it is apparent that the 0.05 M ETTMP discs allowed for the most 

swelling and as monomer concentration increased swelling decreased. This is due to a 

change in the effective crosslink density.71, 91, 96 When monomers are more dilute in the 
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solution during polymerization, this leads to more defects in crosslinking. For example, 

monomer chains can loop back on themselves, oligomer chains can form cyclic 

compounds not connected to the rest of the hydrogel, and unreacted chain ends are 

more likely to form. Conversely, a decrease in swelling seen with the increase in 

monomer concentration was not only do to effective crosslink formation, but also an 

increase in entanglements. These concentration dependent behaviors indicate that a 

defect-free hydrogel is not being formed. In an ideal network, the monomers would react 

equally with each other regardless of concentration.71 

The 0.10 and 0.15 M discs in Figure 3-28 were lyophilized, and the dry weight 

was obtained at the end of the swelling study to determine the amount of mass erosion. 

The 0.10 M discs lost 33% ± 2% of dry mass after 225 hours in DPBS at 37 ºC. The 

0.15 M discs lost 16% ± 2% of dry mass after 225 hours in DPBS at 37 ºC. Since fewer 

crosslinks need to be broken in the lower concentration gels it makes sense that gel 

degradation and mass erosion happen faster than in the higher monomer concentration 

gels. 

Another interesting difference between the incubated and room temperature trials 

is that the incubated trials did not swell as much as the room temperature trials. This is 

due to the LCST of PEG containing monomers. Specifically, in this case, the ETTMP 

segments of the hydrogel. While PEGDA has an LCST well above the incubated 

temperature (37 ºC), the ETTMP has an LCST below 37 ºC.3 That means the ETTMP 

portions of the hydrogel shrink up because they are less soluble in the water. This 

reduces the volume of water that can be present in the hydrogel, which was found by 
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Metters and Hubbell to reduce the rate of ester hydrolysis in thiol-acrylate hydrogels.91 

They developed Equation 21, the rate equation for ester linkage hydrolysis in hydrogels. 

(21)   
[ ] = 	 k [H O][Ester] 

 This states that the change in ester concentration over time is dependent 

upon k0 (the true second-order rate constant of ester degradation), water concentration, 

and ester concentration. Thus, water concentration plays an important factor in the 

degradation of ester linkages. This explains why the less swollen hydrogel studied in the 

incubator does not degrade as quickly as the more swollen discs at room temperature.  

3.5 - Conclusions 

In this chapter it was shown that the urea-urease clock reaction could be used to 

trigger a Michael-addition thiol-acrylate hydrogel polymerization. By changing the urea 

concentration the clock time, gel time, degradation time, storage modulus of the 

hydrogel, and front velocities could be tuned. With increasing urea concentrations came 

increased ammonia concentrations. This affected the rate of ammonia production, 

which decreased the clock and gel times and increased the front velocities. Increasing 

the ammonia concentration also increased the pH of the final solution and hydrogel, 

which increased the degradation time and lowered the storage modulus, both because 

the rate of ester hydrolysis was higher. Increasing the urease concentration increased 

the clock time, gel time, and front velocities by producing more ammonia faster. 

An increase in ETTMP concentrations had the opposite effects. With the clock 

time, gel time, and front velocities, an increase in ETTMP meant an increase in 3-MPA 

buffer concentration. Therefore, the initial pH was lower (decreasing the urease activity) 

and more ammonia needed to be produced to exceed the buffer capacity. This led to 
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longer clock and gel times and slower front velocities. With respect to the degradation 

time, storage modulus, and swelling, an increase in ETTMP concentration meant an 

increase in the number of bonds that could be formed and a decrease in ineffective 

bond formations. This led to longer degradation times, higher storage moduli, and less 

water uptake during swelling.   

This system has proven to be tunable for all parameters tested by one or more 

reagents used. The monomers have been well studied as biomedical hydrogel 

compounds and are known to be biocompatible. Since the urea and urease are 

compounds found naturally in the body, it would lead one to believe that this system can 

operate in a biocompatible manner for use as a tunable, biodegradable hydrogel 

adhesive or therapeutic delivery vehicle. However, without specific cytotoxicity tests for 

this system specifically, it cannot be said for sure. The time-lapse polymerization 

capabilities of this system also afford the ability to have a benign, tunable cure-on-

demand adhesive system capable of IFP applications. Furthermore, this is the first IFP 

system produced that does not rely on the gel effect to initiate or propagate the polymer 

fronts. 
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CHAPTER 4 – CONCLUSIONS 

The bromate-sulfite clock reaction was not an achievable choice for creating a 

time-lapse crosslinking system. Not only was the clock reaction unable to be 

suppressed for a sufficient length of time, but the polymer crosslinking network chosen 

to accompany it was not successful either. The bromate-sulfite clock reaction has 

proven to be too complex to accurately model all the reactions present in solution. 

Based on the accepted reaction mechanisms and rate constants1, computer simulations 

predicted that there were optimum concentrations of the clock reagents that would 

produce a storable solution for 3 months. However, experimental results proved that the 

longest delay in clock time achievable with addition of 18 M ammonium hydroxide was 2 

hours.  

Increasing the initial pH does not seem to halt the reaction kinetics of the clock 

reaction as drastically as predicted. This was apparent from the pH versus time plots 

collected when the initial pH was raised above 9 and the final pH of the solution. The 

decrease in pH when the solution was above 7 matched the time frame and trend of 

ammonia evaporation. Particularly, the linear decrease in pH from pH 10.5 to 8 

represents the abundance of aqueous ammonia in solution that can easily volatize to 

gaseous ammonia and then the more gradual decrease in pH from 8 to 6 depicts the pH 

range where ammonia and ammonium create an internal buffer. In this range 

ammonium hydroxide is favored in the equilibrium and very little aqueous ammonia is 

present to evaporate, causing a delay in the decrease in pH.  

This extended clock time would have been acceptable if the clock reaction still 

proceeded after ammonia evaporation. However, there was never an abrupt change in 
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pH as there should be with a pH clock reaction. Also, the final pH ranged from 4 – 5, 

instead of 2 – 4 as it should have with the autocatalytic production of protons in the 

bromate-sulfite reaction. This indicated that the sulfite was being completely consumed 

at a high pH where bisulfite is not present, causing no net change in pH. 

Even though a storage stable system was not developed, creation of a time-

lapse crosslinking system was attempted. The polycarbodiimides (PCDIs) were 

crosslinked with either maleic or malonic acid in a test run before addition to the clock 

reaction system. They proved to be reactive with one another, yet, after addition to the 

clock reaction system no gelation was seen after the drop in pH. This is most likely due 

to either the reaction of bromate with the malonic and maleic acids in a BZ type reaction 

or the reaction of sulfuric acid with the PCDIs78, 97. Either of which could hinder the 

crosslinking of PCDI by malonic or maleic acid. With the conclusion of these tests 

efforts were redirected to the urea-urease system. 

There were many successful results with the urea-urease research. In the batch-

cured experiments the reagent concentrations were altered to study the effect on clock 

time, gel time, degelation time, storage modulus, and percentage swelling of the dried 

hydrogel samples. Increasing the urea concentrations resulted in an increase in 

ammonia produced and a decrease in clock and gel times. Another effect of the 

increased ammonia concentration was a higher final pH. The higher pH resulted in a 

decrease in degelation times and storage moduli, while increasing the percentage 

swelling observed. This is because the higher final pH caused hydrolysis of the ester 

compounds present in the hydrogel.98 
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Increasing the urease concentrations resulted in an increase in reaction rate with 

urea and decreased the clock and gel times. However, urease concentration had no 

effect on the hydrogel formation or resulting mechanical properties of the hydrogel.  

The monomers used, Thiocure® 1300 (ETTMP) and poly(ethylene glycol) 

diacrylate 700 (PEGDA) were always kept in a 2:3 molar ration to ensure a 1:1 

functional group ratio. The ETTMP contained residual 3-mercaptopropionic acid (3-

MPA) from synthesis of the monomers. This acid proved useful in creating the time-

lapse polymerization system because acid is needed to create the urea-urease clock 

reaction. By using the 3-MPA, no additional chemicals were needed because the 

varying monomer concentrations used in this study reduced the pH of the solution to an 

appropriate range (pH 3.25 – 3.75) to create the clock reaction. 

Increasing the monomer concentrations resulted in an increase in 3-MPA 

concentration, an increase in the number of effective crosslinks formed in the hydrogel, 

and a decrease in the amount of water present in the hydrogel. The increase in 3-MPA 

caused a decrease in the initial pH and a larger buffer capacity of the system that 

needed to be overcome by the clock reaction.2a This caused an increase in clock, gel, 

and degelation times. The degelation time increase was due to the decrease in the final 

pH because the initial pH was lower, thus reducing the hydrolysis rate of the ester 

groups.91, 99 An increase in the effective crosslinks resulted in higher storage moduli, an 

increase in degelation time (because more crosslinks had to be broken), and a 

decrease in percentage swelling (because the polymer chains did not have as much 

room to allow water uptake). The reduction in water content of the hydrogel also 
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resulted in a decrease in degelation time because there was less hydroxide present to 

hydrolyze the esters. 

The swelling studies were performed on lyophilized hydrogel discs in DPBS at 20 

ºC and 37 ºC. The discs displayed greater swelling capacity at 20 ºC than 37 ºC 

because of the LCST associated with the ETTMP monomer. 37 ºC is above the LCST of 

the ETTMP monomer, causing that portion of the polymer to become less soluble and 

shrink up.3 This leaves less volume for the water to occupy within the discs. Since less 

water is present, the discs degrade slower than in the room temperature swelling 

studies. The difference between DPBS with and without calcium and magnesium ions 

was also investigated and there was no difference between the two.  

Isothermal frontal polymerization experiments were also performed with this 

system. We were able to successfully create an IFP system that does not rely on the gel 

effect to propagate the polymer front. We were also able to show that the polymer fronts 

travel with the pH fronts. Also the front velocities do not decrease with time, signifying a 

true autocatalytic reaction-diffusion system was created.57b As expected from previous 

works on pH wave front propagation in the urea-urease system,2b increasing the clock 

reagents resulted in an increase in front occurrence and front velocities. Conversely, 

increasing the monomer concentrations meant an increase in 3-MPA, resulting in a 

decrease in front occurrence and front velocities. This system also displayed some 

buoyancy driven convective effects as a result of the decrease in density of the solution 

after urea is decomposed and ammonia is formed. The basic reacted solution rose up 

and catalyzed the polymerization of the solution above the front faster than the solution 

below the front.93c 
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Even though we were not able to create a storage stable time-lapse crosslinking 

system with the bromate-sulfite clock reaction, the urea-urease system proved to be a 

valuable reaction that has many applications in the biomedical and reversible adhesive 

fields. The hydrogel has already been proven to be biocompatible but its combination 

with the urea-urease system has not been studied. Since urea and urease are natural 

compounds found in the body it seems logical they could produce a biocompatible 

system. However, cytotoxicity tests would have to be done to ensure its safety.  

Cytotoxicity tests are one area of future research for this system. After which, 

biomedical applications such as drug delivery or wound dressings could be explored. To 

further this study the mechanical properties of the hydrogels should be determined 

using dynamic mechanical analysis (DMA) at room and biological temperatures, and 

also the change in properties over time. The change in modulus over time would give a 

correlation to the change in crosslink density and a hint to its applicability in the swollen 

state. Knowing the mechanical properties in the dehydrated state would be useful for 

use it’s as an adhesive.  
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