
Louisiana State University Louisiana State University 

LSU Digital Commons LSU Digital Commons 

LSU Doctoral Dissertations Graduate School 

12-12-2019 

Influencing Factors on the Velocity and Temperature of Influencing Factors on the Velocity and Temperature of 

Propagating Fronts in Acrylate Composites Propagating Fronts in Acrylate Composites 

Samuel Morris Bynum 

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_dissertations 

 Part of the Polymer Chemistry Commons 

Recommended Citation Recommended Citation 
Bynum, Samuel Morris, "Influencing Factors on the Velocity and Temperature of Propagating Fronts in 
Acrylate Composites" (2019). LSU Doctoral Dissertations. 5124. 
https://digitalcommons.lsu.edu/gradschool_dissertations/5124 

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It 
has been accepted for inclusion in LSU Doctoral Dissertations by an authorized graduate school editor of LSU 
Digital Commons. For more information, please contactgradetd@lsu.edu. 

https://digitalcommons.lsu.edu/
https://digitalcommons.lsu.edu/gradschool_dissertations
https://digitalcommons.lsu.edu/gradschool
https://digitalcommons.lsu.edu/gradschool_dissertations?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F5124&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/140?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F5124&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_dissertations/5124?utm_source=digitalcommons.lsu.edu%2Fgradschool_dissertations%2F5124&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu


INFLUENCING FACTORS ON THE VELOCITY AND 
TEMPERATURE OF PROPAGATING FRONTS IN ACRYLATE 

COMPOSITES 
 

 

 

 

 

A Dissertation 

Submitted to the Graduate Faculty of the  
Louisiana State University 

Agricultural and Mechanical College 
in partial fulfillment of the 

requirements for the degree of  
Doctor of Philosophy 

in 

The Department of Chemistry 

 

 

 

 

 

 

 

by 
Samuel Morris Bynum 

B.S., University of West Florida, 2014 
May 2020 

 



ii 
 

ACKNOWLEDGEMENTS 

I first would like to thank my family for their support and love throughout this whole 

process. Mom, there is absolutely no way I would have been able to make it without you as my 

rock. You were always there for me no matter what, anything I needed. Joe you were always 

there for me to vent or have a good laugh, and you were always handy with a good podcast or 

YouTube video to help me get my mind off things. I love you both unconditionally. 

I would like to thank and acknowledge my guide and mentor Dr. John A. Pojman. You 

challenged me constantly to learn and explore and have given me a completely new perspective 

on life and how to be a better scientist in it. Not to mention the great fishing outings and 

conversation. I would also like to thank my committee members Dr. David Spivak and Dr. 

Donghui Zhang. You have both been fantastic mentors and teachers, and I have enjoyed greatly 

our time and discussions both in and out of class. 

I would like to thank all the group members in the Pojman lab and office. Our time 

together isn’t always productive but is always fun and necessary for maintaining sanity. I would 

also like to thank Taylor and Rachel Cappadona and their son Carson for being the best second 

family I could ask for. I love you guys. Thank you. 

I would like to dedicate this document to my father, Kenneth Bynum (1/4/54 – 5/10/15). 

 

  



iii 
 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS ............................................................................................................ ii  

LIST OF TABLES .......................................................................................................................... v  

LIST OF IMAGES ......................................................................................................................... vi  

LIST OF FIGURES ...................................................................................................................... vii  

LIST OF ABBREVIATIONS ........................................................................................................ ix 

ABSTRACT ................................................................................................................................... xi  

CHAPTER 1. INTRODUCTION ................................................................................................... 1  
1.1. Free Radical Polymerization .................................................................................................... 1  
1.2. Frontal Polymerization............................................................................................................. 3  

CHAPTER 2. EFFECTS OF FUNCTIONALITY ON FRONTAL POLYMERIZATION 
VELOCITY AND TEMPERATURE ............................................................................................. 8 
2.1. Introduction .............................................................................................................................. 8  
2.2. Materials and methods ........................................................................................................... 10  
2.3. Increased Functionality Effects on Velocity and Temperature.............................................. 13 
2.4. Direct Comparison of Monomers with Equivalent Double Bond Concentration .................. 15  
2.5. Controlling Double Bond Concentration in Multi-functional Monomers ............................. 16 
2.6. Effects of Water and Solvent ................................................................................................. 19  
2.6. Conclusions ............................................................................................................................ 21  

CHAPTER 3. EFFECT OF INORGANIC FILLERS ON THE FRONTAL POLYMERIZATION 
OF MULTI-FUNCTIONAL ACRYLATES ................................................................................ 22  
3.1. Introduction ............................................................................................................................ 22  
3.2. Materials and Methods ........................................................................................................... 24  
3.3. Single Filler System ............................................................................................................... 25  
3.4. Multiple Filler Systems .......................................................................................................... 27  
3.5. Effect of Initiator Concentration ............................................................................................ 31  
3.6. Conclusion ............................................................................................................................. 32  

CHAPTER 4. INCORPORATION OF CONTINUOUS CONDUCTIVE ELEMENT INTO 
ACRYLATE COMPOSITES AND THEIR EFFECT ON FRONT VELOCITY........................ 34 
4.1. Introduction ............................................................................................................................ 34  
4.2. Materials ................................................................................................................................ 34  
4.3. Preparation of Clay ................................................................................................................ 35  
4.4. Method for Copper Setup....................................................................................................... 35  
4.5. Method for Collecting Front Data.......................................................................................... 35 
4.6. Results and Discussion .......................................................................................................... 36  



iv 
 

4.7. Conclusions ............................................................................................................................ 40  

CHAPTER 5. SUMMARY AND CONCLUSION ...................................................................... 42  

APPENDIX. CHAPTER 2 PERMISSION ................................................................................... 44 

REFERENCES ............................................................................................................................. 52  

VITA ............................................................................................................................................. 61  
 

 
  



v 
 

LIST OF TABLES 
 
1. Thermal properties of selected fillers and monomer………………………………………….25 
 
2. Front temperatures for mixed filler systems with BPO as initiator…………………………...30 
 
3. Front temperatures for mixed filler systems with Luperox ® 231 as initiator………………..31 

 



vi 
 

LIST OF IMAGES 

1. Infrared image of descending front in test tube……………………………………………….12 

2. The effect of graphite in a BPO/TMPTA system. The image on the left depicts graphite 
powder, TMPTA, and 1 phr immediately after mixing. The image on the right depicts the     
same system ten minutes after mixing…………………………………………………………...28 
 
3. Image showing comparison of the front propagation of acrylic composites with and       
without conductive element……………………………………………………………………...38 
 
4. Polymerization of acrylate composite with single copper sheet of thickness                               
a) 0.5 mm b) 1.0 mm c) 1.5 mm and d) 3.0 mm…………………………………………………39 
 
5. Two sheets of copper placed 0.5, 1.0, and 2.0 cm apart………………………………………40 
 

 

  



vii 
 

LIST OF FIGURES 

1. Diagram showing the steps of a free radical polymerization of an "ene"………………………2 

2. Diagram of a frontal polymerization……………………………………………………………4 

3. Reagents used………………………………………………………………………………….11 

4. Front velocities and temperatures for acrylates of different functionalities. The initiator 
(Luperox ® 231) concentration was 1 phr, and no filler or solvent was used.                                 
* indicates that no front would propagate under given conditions………………………………13 
 
5. Front velocity and temperature as a function of the ratio of a triacrylate (TMPTA)                  
to diacrylate (HDDA). No solvent or filler was used. The concentration of                        
Luperox ® 231 was 0.1 phr……………………………………………………………………...14 
 
6. Front velocity and temperature as a function of the ratio of a triacrylate (TMPTA)                  
to diacrylate (BDDA). No solvent or filler was used. The concentration of                             
Luperox ® 231 was 0.1 phr……………………………………………………………………...15 
 
7. Front velocities and temperatures for HA, BDDA, and TMPTA. Experiments                     
were performed in DMSO with 3 phr initiator, and 5 phr fumed silica………………………….17 
 
8. Front velocities and front temperatures of several difunctional monomers.               
Experiments were performed in DMSO with 3 phr initiator and 5 phr fumed silica……………18 
 
9. Front velocities and front temperatures of several difunctional monomers                             
BDDA, HDDA, DEGDA, and PEGDA. Experiments were performed in                               
DMSO with 3 phr initiator and 5 phr fumed silica………………………………………………19 
 
10. The effect of water on HA and AA on front velocities. BDDA was polymerized in DMSO or 
PC. Compositions by mass: BDDA (59.23%), H2O (1.52%), Luperox ® 231 (2.80%), fumed 
silica (4.65%), and PC (31.80%). HA and AA were used instead of 
water…………………………………….……………………………………………………….20 
 
11. Front temperature and velocity vs. mass fraction kaolin clay for BPO system……………...26 
 
12. Front temperature and velocity vs mass fraction kaolin clay for Luperox ® 231 system…...26 
 
13. Front temperature and velocity vs. mass fraction of fumed silica in a                             
Luperox ® 231 system…………………………………………………………………………...27 
 
14. Mixed filler system contains 51% w/w 1 phr BPO in TMPTA and 49% w/w total filler 
loading. Solid additive loading is reported as the fraction of total filler loading………………..30 
 



viii 
 

15. Mixed filler system contains 51% w/w 1 phr Luperox ® 231 in TMPTA                             
and 49% w/w total filler loading. Solid additive loading is reported as fraction                      
relative to total filler loading……………………………………………………………………..31 
 
16. Front velocity vs. solid additive fraction relative to filler loading for 4                           
different initiator concentrations…………………………………………………………………32 
 
17. Temperature profile showing frontal polymerization of acrylic composites                         
with and without copper………………………………………………………………………….38 
 

18. Front velocity for composites with single copper sheets of increasing thickness…………...40 

  



ix 
 

LIST OF ABBREVIATIONS 

κ – thermal diffusivity 

AA – acrylic acid 

BDDA – 1,4-butanediol diacrylate 

BPO – benzoyl acrylate 

DEGDA – di(ethylene glycol) diacrylate 

DMSO – dimethyl sulfoxide 

DSC – differential scanning calorimetry 

DTMPTA - di(trimethylolpropane) tetraacrylate 

E – activation energy 

FP – frontal polymerization 

FS – fumed silica 

HA – hexyl acrylate 

HDDA – 1,6-hexanediol diacrylate 

IFP – isothermal frontal polymerization 

IUPAC – International Union of Pure and Applied Chemistry 

OcOH – 1-octanol 

PC – propylene carbonate 

PE – poly(ethylene) 

PP – poly(propylene) 

PEGDA – poly(ethylene glycol) diacrylate 

PETIA – 1:1 pentaerythritol tetraacrylate : pentaerythritol triacrylate 

PFP – photo-frontal polymerization 



x 
 

PMMA – poly(methyl methacrylate) 

PVC – polyvinyl chloride 

Tf – front temperature 

TFP – thermal frontal polymerization 

TMPTA – trimethylolpropane triacrylate  



xi 
 

ABSTRACT 

Thermal frontal polymerization is a type of polymerization in which a localized reaction zone 

propagates through an unstirred system. It is incumbent upon the production and transport of 

heat produced as a result of the exothermic reaction associated with free-radical polymerization. 

First discovered in the 1970s, frontal polymerization has been since utilized to produce a variety 

of different materials, utilizing a variety of different chemistries. The temperature of the 

propagating front and the velocity at which it propagates can be influenced via chemical or 

physical means. We show that through careful selection of monomers and control of the 

concentration of double bonds in a system, that increasing the functionality of the monomer can 

increase the velocity of a propagating front. We have also shown that residual water in the 

monomer can effectively lower the front velocity and temperature via heat loss due to 

vaporization. It was also shown that secondary functional groups present in certain monomers 

can act as chain-transfer agents. This slows the propagation of the front. 

 We have also tested influencing the fronts’ velocity and temperature with fillers and 

conductive elements. The use of powdered fillers with high thermal diffusivity and thermal 

conductivity can lead to more efficient transport of heat through a system. As heat is transported 

more efficiently the front can propagate much faster with less heat. Using powdered fillers can 

become expensive in real world applications so composites were studied that had a continuous 

conductive element embedded through the length of the composite. In our study copper was 

used. Copper strips were shown to increase the velocity of the front without changing the front 

temperature by conducting heat ahead of the propagating front. 
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CHAPTER 1. INTRODUCTION 

1.1. Free Radical Polymerization 

The International Union of Pure and Applied Chemistry (IUPAC) defines a polymer as a, 

“molecule of high relative molecular mass, the structure of which essentially comprises the 

multiple repetition of units derived, actually or conceptually, from molecules of low relative 

molecular mass”.1 The word polymer comes from the Greek “poly” meaning many, and “mer” 

meaning parts. Polymers make up a significant part of everyday life from bio-polymers in the 

form of proteins and DNA, to many of the industrial and consumer commodities that are integral 

in society today. 

 There are many ways to make polymer be it a radical, anionic, or cationic driven process, 

but the two main classifications are chain and step-growth polymerizations. Step-growth 

polymerization, often referred to as condensation polymerization, involves bi- or multi-

functional monomers reacting together to first form small dimers and trimers. These small 

dimers and trimers go on to create larger oligomers and eventually long chains of polymer. 

Common examples of step-growth polymers are polyurethanes, and polyesters. Chain-growth 

polymerization, or addition polymerization, is a classification of polymerization that involves the 

creation of a reactive monomer species and then the subsequent addition of one monomer unit at 

a time to that reactive site. This reactive site is propagated along the chain as it grows. Common 

polymers produced via chain-growth are polyethylene (PE), polypropylene (PP), and polyvinyl 

chloride (PVC). Chain-growth polymerization will be the focus for the remainder of this 

document. 

 The most common mechanism of chain-growth polymerization is free-radical 

polymerization. There are three main steps in a chain or radical polymerization and those are 
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initiation, propagation, and termination. In a free-radical polymerization, the initiation step 

requires the generation of a radical species. This is often achieved using an initiator molecule 

that decomposes to create the initiating radical. The formation of this initiating radical can occur 

via heating, redox reactions, irradiation, ultra-violet radiation, and a few other means. The newly 

formed radical will then react with the monomer that contains, in most cases, a carbon-carbon 

double bond. This pi-bond is cleaved, and a new radical is formed that can then react with 

another monomer and so on and so on, growing a long chain polymer. This growth step is known 

as propagation. Being that the criteria for radical polymerization, in theory, only requires the 

monomer have a carbon-carbon double bond, there are a vast number of monomers that are 

suitable for free-radical polymerization. The process through which the growth of the polymer 

chain is ended is known as termination and can happen in one of two ways; recombination or 

disproportionation. In recombination two active polymer chains combine to form a stable 

covalent bond. In disproportionation an active polymer chain transfers a proton to another active 

polymer chain forming two stable molecules and ending the propagation.  

 

Figure 1. Diagram showing the steps of a free radical polymerization of an "ene" 
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There is also a process called chain transfer in which an active polymer chain extracts an 

atom from another molecule, referred to as a chain transfer agent, thus terminating the growth of 

the original chain and creating a new reactive radical species. 

A chain transfer agent can be a molecule added to deliberately facilitate this phenomenon or it 

can be a side reaction with some part of the polymerization system, such as unreacted monomer 

or solvent. Chain transfer events effectively lower the average molecular weight of the resulting 

polymer. Figure 1 shows the general schematic for a free-radical polymerization of an “ene” with 

termination occurring by combination.  

1.2. Frontal Polymerization  

One niche form of polymerization is frontal polymerization (FP). Frontal polymerization is 

defined as a process in which a localized reaction zone propagates through an unstirred system 

converting monomer to polymer.2 Figure 2 shows a general schematic of frontal polymerization. 

There are three modes of frontal polymerization and those are thermal, photo, and isothermal. 

Each of these forms of FP require unique conditions to allow the phenomenon to occur. In photo-

frontal polymerization a continuous flux of radiation is applied to a system containing a photo-

active initiator that allows for the reaction zone to propagate through the system.3, 4 In thermal 

frontal polymerization (TFP) an external heat source, such as a heat gun or soldering iron, is 

applied to small exposed spot of a system containing monomer and initiator. This causes the 

decomposition of the initiator molecule, most commonly a peroxide, and the formation of an 

initiating species such as a radical. The initiating species then goes on to perform the propagation 

event as described earlier. In the case of an “ene” polymerization, which will be the focus in this 

document, a π-bond is converted to a σ-bond, and the polymer chain begins to grow. This bond 

conversion is an exothermic event that releases heat. This heat then diffuses into the surrounding 
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monomer/initiator and is used to convert more monomer to polymer. The result is a highly 

reactive zone that propagates through the unstirred system. So, as this reaction zone moves 

through the system monomer is being converted and polymer is left behind. If the conditions of 

the system are such that not enough heat is produced or cannot sufficiently diffuse into the 

surroundings, the front will quench, and the reaction zone will no longer propagate.5 For this 

reason, careful consideration must be taken when choosing and designing a TFP system.  

 

 

 

Figure 2. Diagram of a Frontal Polymerization 

 Chechilo and Enikolopyan first studied the structure and propagation of wave fronts in 

the Soviet Union in 1972.6 There were further studies done on initiator type and concentration 

using methyl methacrylate, as well as the influence of pressure and initial temperature of the 

system.7, 8 There has been extensive work done by Pojman investigating TFP of acrylates and 

epoxy resins, copolymerization of urethane-acrylate systems, and thiol-ene systems.2, 9, 10 One of 
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the main aspects of TFP that limit its applications is the high temperatures associated with the 

propagating fronts, which can reach temperatures greater than 200 °C. They often times also 

produce undesirable fuming and smoking.11 However, it is this high temperature that will 

drastically increase the front velocity. Fronts that propagate faster can be used to create materials 

with quick cure times. Cure time can dramatically affect the number of applications in which 

these materials may be used. TFP can be used to make rapid repair materials that can easily 

conform to unique morphologies and consume much less energy than what is required for 

traditional bulk curing applications. The faster velocity can also cut down on the amount of 

fuming and smoking. Fuming and smoking is mostly caused by the decomposition of the 

initiator. Therefore, if a system can be designed that propagates faster by use of a filler or by 

carefully selecting a reactive monomer or combination of monomers then less initiator can be 

used while still supporting a stable front. TFP would also be useful in coatings, but the thin 

layers required often don’t support a front due to the dissipation of heat. However, if a front were 

robust enough, producing enough heat to support a fast front, then TFP could possibly be used 

for a multitude of coating applications.    

Photo-Frontal Polymerization (PFP) is frontal polymerization in which a continuous input of 

radiation, usually in the form of ultra-violet (UV) light, is applied to a system containing a 

photoreactive initiating species that allows a front to propagate. It is very similar to TFP in 

aspects other than the initiating event. PFP has been used to create a wide variety of materials 

ranging from gradient optical materials, microfluidic chips, to spatially controlled filaments.12-15  

Finally, isothermal frontal polymerization (IFP) is a frontal polymerization that occurs at a 

constant temperature and involves a polymer seed, or solid piece of polymer, that is introduced 

into a solution of the monomer and initiator.16 The process of IFP was first discovered by Koike 
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et al. in a polymethyl methacrylate (PMMA) system and was described as “interfacial gel 

polymerization”.17 This solid piece of polymer, usually of high molecular weight, is dissolved by 

the monomer initiator solution creating a region of high viscosity, or gel. As the initiator 

decomposed throughout the solution it initiates subsequent polymerization but due to the 

Norrish-Trommsdorff effect, or gel effect, the polymerization rate is much higher in the more 

viscous gel region. Experiments conducted by Evstratova et al. confirmed that the process is 

indeed isothermal and that there is a minimum molecular weight that is required for the “seed” 

polymer.18 

While TFP is an effective mode of polymerization there are some issues that can arise. One 

issue is porosity.19 Due to the high temperatures created during a typical TFP porosity can be 

cause by dissolved gases that might be in the monomer used, as well as gases created by volatile 

by-products created during the decomposition of the initiator molecule. For, example a common 

initiator benzoyl peroxide (BPO) will decompose creating carbon dioxide which will form pores 

in the polymer created, and because the initiator concentration in typical frontal polymerizations 

can be quite high large amounts of bubbles or pores can cause problems. These pores can cause 

convection driven instabilities in the propagating front which can cause deformities that may 

ultimately quench the front. These pores can also lead to loss in mechanical strength. 

The other big issue that can influence the front is buoyancy driven convection.20 During a frontal 

polymerization the reaction zone propagating through the system consists of a polymer-monomer 

interface. The newly formed polymer will be denser and depending on the monomer’s ability to 

crosslink can be either solid or liquid. As the front propagates convection of the heat produced in 

the reaction zone can interfere with the propagating front. If a non-crosslinking monomer is used, 

convection at the fluid-fluid interface can cause irregularity in the front known as “viscous 
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fingering” which can quench the front or cause faults in the resulting polymer. There are a few 

methods employed to avoid this problem. One method is to use monomers that will sufficiently 

crosslink. This creates a solid polymer that does not allow for sufficient fluid motion that may 

disrupt the front. This allows the front to propagate and avoids any problems. Another, and more 

applicable, solution is to use nonreactive, or reactive fillers. This modifies the density and 

viscosity of the monomer system and allows a sustainable front to propagate.21   
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CHAPTER 2. EFFECTS OF FUNCTIONALITY ON FRONTAL 
POLYMERIZATION VELOCITY AND TEMPERATURE 
 

2.1. Introduction 

Frontal polymerization is a method of converting monomer(s) to polymer via a localized reaction 

zone that propagates from the coupling of thermal diffusion with the Arrhenius kinetics of an 

exothermic polymerization. 

Frontal polymerization was first explored in the 1970s in Chernogolovka, Russia,6-8, 22-24 

with more work in the 1980s.25-28 Pojman independently “rediscovered” FP in the 1990s while 

researching methacrylate polymerization.29-32 Since then, research on FP has expanded 

significantly to include cure-on-demand materials,33, 34 synthesis of gels35-38 and gradient 

materials,39, 40 epoxide polymerizations,9, 41-43 composite materials,44-48 and self-stiffening 

materials49 and deep eutectic solvents.50, 51 Most of the work on FP has involved free-radical 

polymerization, although epoxy curing9, 23, 52-54 has been considered as well as ring-opening 

metathesis polymerization.55-58 

Here, we will consider free-radical FP. There are several factors that affect front velocity 

and front temperature with the relative reactivity of the monomer being paramount. For example, 

frontal acrylamide polymerization is very rapid,59 and fronts of acrylate polymerization are more 

rapid that methacrylate’s due to radical stability.60 Initiator concentration and stability are also 

important.61 

 
 This chapter has been previously published as Bynum, S.;  Tullier, M.;  Morejon-Garcia, C.;  
Guidry, J.;  Runnoe, E.; Pojman, J. A., The effect of acrylate functionality on frontal 
polymerization velocity and temperature. Journal of Polymer Science Part A: Polymer 
Chemistry 2019, 57 (9), 982-988. © 03/09/2019 Reprinted with permission. 
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Although FP is usually performed with neat monomers, it can be performed in high-

boiling point solvents such as dimethyl sulfoxide (DMSO),31, 38, 46, 62 or glycerol.63 

Young et al.64 studied the effect of using a dimethacrylate or trimethacrylate on the 

polymerization rate of octyl methacrylate photopolymerization. The trimethacrylate-containing 

solution polymerized faster than the dimethacrylate solution. Nason et al. studied 1,6-hexanediol 

diacrylate (HDDA) and trimethylolpropane triacrylate (TMPTA) polymerization by photo-

differential scanning calorimetry (DSC) and found that TMPTA polymerized almost twice as fast 

as HDDA.60 Tryson and Schultz studied, by photo-DSC, the polymerization of lauryl acrylate, 

HDDA, and pentaerythritol tetraacrylate and found that lauryl acrylate polymerized more slowly 

than the multifunctional acrylates, but also found that the tetraacrylate polymerized slower than 

the diacrylate.65 Also, they found that conversion was significantly lower for the multifunctional 

acrylates due to increased crosslinking. Lauryl acrylate polymerized almost to completion, but 

HDDA achieved 46% and pentaerythritol tetraacrylate only 22% conversion. 

We are particularly interested in the effect of functionality on the front velocity, because 

the front velocity determines how rapidly the curing can be achieved. Monoacrylates have been 

known to support slower fronts than multifunctional acrylates.60 However, front velocity is not 

only a function of the intrinsic reactivity of the monomer, but also the front temperature.11 To 

determine the effect of monomer functionality on the velocity of frontally polymerized systems, 

the monomers tested need to be chosen carefully. Typically, increasing the functionality of an 

acrylate decreases the equivalent weight (g mol-1 of acrylate groups), which increases the 

acrylate group concentration. Since the front velocity of a system is dependent on the amount of 

heat released in the polymerization step of the reaction, a higher acrylate group concentration 

should give a higher front velocity. 
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To separate the effect of the degree of acrylate functionality from front temperature 

TMPTA (296.32 g mol-1), a trifunctional acrylate, and 1,4-butanediol diacrylate (BDDA) (198.22 

g mol-1), a diacrylate, were selected for study since both have equivalent weights of 99 g mol-1 of 

acrylate groups. Comparing the front velocities obtained for each monomer, and using the same 

initiator concentration, allowed determination of the effect of monomer functionality on the front 

velocity and front temperature. 

In order to study a variety of multifunctional acrylates, we first determined conditions 

that would support FP in acrylates with functionalities ranging from mono to tetrafunctional. To 

compensate for the differences in concentration of acrylate groups that arise from increased 

functionality, we dissolved the acrylates in DMSO such that the concentration of double bonds 

was constant. We also studied the effect of low concentrations of alcohol and water on the front 

velocity. 

2.2. Materials and methods 

BDDA 90%, HDDA 85%, and hexyl acrylate >96% (HA) were obtained from TCI (Portland, 

Oregon). Di(ethylene glycol) diacrylate 75% (DEGDA), poly(ethylene glycol) diacrylate (Mn 

250) (PEGDA), di(trimethylolpropane) tertaacrylate (DTMPTA), and Luperox ® 231 (1,1-

bis(tert-butylperoxy)-3,3,5-trimethylcyclohexane) 92%, were all obtained from Sigma-Aldrich. 

Pentaerythritol triacrylate (PETIA) was obtained from Allnex (Frankfurt, Germany). TMPTA 

was purchased from Sartomer (Exton, Pennsylvania), and 1-octanol 99% (OcOH) was obtained 

from Acros Organics (Geel, Belgium), fumed silica (FS) (AEROSIL ® M5) was purchased from 

US Composites (West Palm Beach, Florida). DMSO (99%) and propylene carbonate (PC) were 

from Aldrich (St. Louis, Missouri). Polygloss 90 was purchased from KaMin performance 

minerals. All reagents were used as received. Figure 3 shows the structures of the monomers 
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used. FP samples were prepared by mixing the acrylate or acrylates together with Luperox ® 

231. Solvent and fumed silica were then incorporated, when appropriate, and the mixture was 

stirred thoroughly to ensure homogeneity. The reactant mixture was poured into 16 mm x 150 

mm glass test tubes marked at 1 cm intervals, with a typical sample being roughly 20 mL. FP 

was induced via heat from a soldering iron or butane torch. 

 

Figure 3. Reagents used 

A butane soldering iron was heated and the tip was placed at the top of test tube against 

the glass. This heating element was held against the glass until the polymerization was initiated. 

For all intents and purposes, any heat source can be used to initiate the polymerization if the 

sample amount is great enough to allow the reaction to reach a steady state. 

 For the neat monomer polymerizations, the required polymerization conditions were 1 

part per hundred resin (phr) Luperox ® 231, meaning that for every 100 g of monomer, 1 g of 

initiator was used. For the remainder of the experiments, a basis was needed to run all acrylates 

with the same concentration of acrylate groups. First, we determined the conditions to achieve 

FP with neat HA, which was 5 phr of fumed silica and 3 phr of Luperox ® 231. The 
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concentration of acrylate groups in pure HA is 5.68 M. To achieve the same for multifunctional 

acrylates, DMSO was used. All other components stayed the same. For filled systems, a 1 phr 

Luperox ® 231 and monomer solution was mixed with 50 phr Polygloss ® 90. The resulting 

putty-like material was then set into a wooden slab mold of dimensions 8 mm x 20 mm x 100 

mm. 

 The propagation of the front was recorded using a camera, and the front temperature was 

tracked by capturing images periodically using a Seek Thermal infrared camera on an iPhone, 

see Image 1.  

 

Image 1. Infrared image of descending front in test tube 

The values obtained were the temperature of the surface of the glass test tube but were 

proportional the internal front temperature. The front velocity was determined by plotting the 

position of the front versus time and determining the slope of the best fit line. All experiments 

were run in triplicate, the values averaged, and the standard deviation used for the error bars. 
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2.3. Increased Functionality Effects on Velocity and Temperature 

To first establish the front velocity and temperature behavior of acrylic monomers with different 

functionalities, the concentration of double bonds was not altered. All eight monomers chosen 

were mixed with 1 phr initiator and polymerized using no diluent. These results are shown in 

Figure 4. HA, a mono functional acrylate, would not support a front under the chosen conditions. 

This was overcome in future experiments. There is no clear trend, but it should be noted that 

TMPTA, a triacrylate, produces the fastest fronts with difunctional acrylates (BDDA, HDDA, 

DEGDA, PEGDA) being slightly slower. The difunctional acrylates propagate at similar 

velocities with DEGDA being slightly slower. 

 

 

Figure 4. Front velocities and temperatures for acrylates of different functionalities. The initiator 
(Luperox ® 231) concentration was 1 phr, and no filler or solvent was used. * indicates that no 

front would propagate under given conditions 
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Interestingly, the two tetrafunctional acrylates (DTMPTA and PETIA) produced the 

slowest fronts. PETIA is a 1:1 ratio of a triacrylate and a tetraacrylate based on pentaerythritol, 

which in the case of the triacrylate leaves a free hydroxyl group. The possible impact of this free 

hydroxyl group will be explored later.  

 Figure 5 shows the comparison of TMPTA, HDDA, and mixtures of the two. As the ratio 

of TMPTA is increased, the front velocity and temperature both increased. This trend continued 

with both temperature and velocity increasing as the amount of triacrylate increased. The 

velocity difference between pure HDDA and TMPTA was more than double, 2.19 times greater. 

This is in agreeance with results reported by Nason et al.60 TMPTA produces faster fronts than 

HDDA due to its lower molecular weight per acrylate, 99 and 113 g mol-1, respectively, as well 

as the increased crosslinking due to higher functionality. 

 

Figure 5. Front velocity and temperature as a function of the ratio of a triacrylate (TMPTA) to 
diacrylate (HDDA). No solvent or filler was used. The concentration of Luperox ® 231 was 0.1 

phr. 
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2.4. Direct Comparison of Monomers with Equivalent Double Bond Concentration 

In order to properly compare the intrinsic reactivity of acrylates of different functionalities, it is 

necessary to control the concentration of acrylate groups. This is difficult given the few 

monomers that have different functionality, but equal acrylate concentration. One pair of 

monomers which allows this is BDDA and TMPTA, each having a molecular weight per acrylate 

of 99 g mol-1. Figure 6 shows the comparison of the front velocities and temperatures as a 

function of the ratio of the two monomers. The data show a similar trend as was observed in the 

comparison of HDDA and TMPTA. As the fraction of triacrylate was increased, the velocity and 

temperature increased with pure TMPTA being approximately twice as fast as pure BDDA. 

 

Figure 6. Front velocity and temperature as a function of the ratio of a triacrylate (TMPTA) to 
diacrylate (BDDA). No solvent or filler was used. The concentration of Luperox ® 231 was 0.1 

phr. 
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2.5. Controlling Double Bond Concentration in Multi-functional Monomers 

Monofunctional acrylates, or acrylates of higher functionality, are difficult to compare due to the 

lack of examples with the same equivalent weight; therefore, another method was employed to 

maintain a constant acrylate group concentration. First conditions to run HA as a front were 

determined. This monomer served as the standard to which all other acrylates could be 

compared, if they have an equivalent weight less than 156 g mol-1 per acrylate groups. It was 

found that HA required 3 phr of Luperox ® 231 and 5 phr of fumed silica to reliably run as a 

front. Fumed silica was added to increase the viscosity of the mixture in order to eliminate 

convection, which can quench fronts.66 Other acrylates were compared to HA by maintaining 

constant concentrations of acrylate groups (5.68 M). For acrylates with lower equivalent weights, 

such as TMPTA (99 g mol-1 acrylate groups), DMSO was used as inert diluent to maintain 

constant acrylate group concentrations. DMSO was chosen because it has a high boiling point 

(~190 °C), was miscible with all the monomers we tested, and has been used in fronts 

previously.31, 38, 46, 62 
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Figure 7. Front velocities and temperatures for HA, BDDA, and TMPTA. Experiments were 
performed in DMSO with 3 phr initiator, and 5 phr fumed silica. 

  

Figure 7 shows the results for HA, BDDA, and TMPTA using this method. HA, a 

monoacrylate, has a considerably lower front velocity than either multifunctional acrylate, as 

well as a corresponding lower front temperature. The increase of front velocity with increasing 

acrylate functionality, especially from monofunctional to difunctional, is due to autoacceleration. 

Radical polymerization reactions are known to proceed at increased rates as the local viscosity of 

the reaction mixture increases.67, 68 As monomer is converted into polymer, the mobility of large 

propagating radical chains becomes limited. While relatively small and mobile monomer units 

can easily diffuse and add to the propagating centers, it becomes harder for two propagating 

radicals to come together and terminate. This decrease in the rate of termination causes an 

increase in the rate of polymerization, which is known as autoacceleration.67, 69 Crosslinking of 

polymer chains causes this effect to occur at lower conversions, which means that monomers 

with higher functionality will autoaccelerate at lower conversions. Thoma et al. measured by 

EPR the concertation of the trapped radicals as high as 8.7 x 10-3 mol kg-1.70 This explains the 
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large difference in front velocity from monofunctional acrylate, in which there is no crosslinking, 

to diacrylate, in which there is extensive crosslinking. This also explains the smaller difference 

between difunctional and trifunctional acrylates. 

 Figure 8 presents the front velocities and front temperatures for four diacrylates in 

DMSO. It is curious that HDDA supports slower fronts that the other diacrylates, and a possible 

explanation for this could be the lower purity.  

 

Figure 8. Front velocities and front temperatures of several difunctional monomers. Experiments 
were performed in DMSO with 3 phr initiator and 5 phr fumed silica. 

 

If the impurity is some sort of monoacrylate, it could be the case that this copolymerization 

lowers the overall rate of reaction for the system. It has been shown in literature that during some 

photoinitiated copolymerization of acrylates of increasing side chain lengths, the systems with 

the highest amount of short chain methacrylate lowered the reaction rate in those systems.71, 72 

The front velocities and front temperatures for several multifunctional acrylates are 

shown in Figure 9. The triacrylate, TMPTA, produces the fastest fronts of this group, as well as 

for all acrylates tested. Although the dimer of TMPTA, DTMPTA, is a tetraacrylate, this 

additional acrylate group does not increase the velocity of the front. PETIA is a 1:1 mixture of 
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the tri and tetra acrylate monomers based on pentaerythritol. PETIA produces a slower front than 

both TMPTA and DTMPTA. As for the differences between the pentaerythritol-based and 

trimethylolpropane-based monomers, we suspected that the hydroxyl group on the 

pentaerythritol acted as a chain-transfer agent, which reduced the crosslinking, and lowered the 

polymerization rate. We tested this hypothesis by adding an equimolar amount of 1-octanol 

(OcOH) to TMPTA; this indeed lowered the front velocity. 

 

Figure 9. Front velocities and front temperatures of several difunctional monomers BDDA, 
HDDA, DEGDA, and PEGDA. Experiments were performed in DMSO with 3 phr initiator and 5 

phr fumed silica. 
2.6. Effects of Water and Solvent 

We observed in some experiments without solvent that if we dried the monomer, the fronts 

propagated faster than with the monomer straight from the container. We then tested the effect of 

water for the BDDA polymerization in DMSO. We added 1.5% by weight water to the diacrylate 

in DMSO and observed an almost 20% decrease in velocity, this is shown in Figure 10. To test if 

the components in the DMSO could be acting as inhibitors, we switched to propylene carbonate 

(PC) as the solvent. The front velocity was decreased, but within experimental uncertainty. We 

hypothesized that water could cause hydrolysis of the acrylates to produce acrylic acid (AA), 
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which was observed in the FP of benzyl acrylate.73 If all of the water hydrolyzed esters, then 

13% of the acrylate groups would be converted to AA. We added 13 n/n % of AA to the 

formulation in PC, which increased the front velocity. Although the system would be less 

crosslinked, the greater reactivity of AA overcame this effect.74 However, adding HA also 

increased the front velocity. In neither case was the front temperature affected.  

 

Figure 10. The effect of water, HA, and AA on front velocities. BDDA was polymerized in 
DMSO or PC. Compositions by mass: BDDA (59.23%), H2O (1.52%), Luperox ® 231 (2.80%), 

fumed silica (4.65%), and PC (31.80%). HA and AA were substituted in place of water. 
  

We also considered whether water could act as a chain-transfer agent, but this was found 

not to be the case in previous studies.75, 76 We calculated the heat absorbed in vaporizing 1.5 g of 

water in a 100 g sample and using a heat capacity of the acrylate solutions of 2 J g-1 K-1, the 

result would be a decrease in front temperature of 17 °C. The front temperature was lowered by 8 

°C in both DMSO and PC. The front velocity is a strong function of temperature,77 which 

suggests that small amounts of water can reduce front velocity by absorbing heat through 

vaporization. 
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2.6. Conclusions 

We studied the effect of acrylate functionality on FP velocity and temperature. BDDA and 

TMPTA have the same equivalent weight per acrylate. Frontally polymerizing them neat at 

different ratios revealed that the velocity increases as the ratio of TMPTA was increased with 

pure TMPTA polymerizing twice as fast as pure BDDA. 

 To set a baseline, we polymerized several acrylates with different functionalities and 

molecular weight per acrylate groups. We then studied FP of several acrylates in DMSO such 

that the concentration of acrylate groups was constant, HA fronts were five times slower than 

BDDA fronts, and six times slower than TMPTA fronts. Fronts with HDDA propagated 20% 

slower than BDDA or the two other diacrylates we studied, for which we have no current 

explanation. We then compared several multifunctional acrylates. TMPTA fronts were the 

fastest. A 1:1 mixture of tri and tetraacrylate (PETIA), produced slower fronts that those with 

only tetraacrylate (DTMPTA). PETIA fronts were slower than ones with TMPA because of 

chain-transfer from the hydroxyl group, which we confirmed by adding 1-octanol to TMPTA. 

Finally, we determined that small amounts of water present in the monomers, slowed FP. We 

first tested to see if this water might be hydrolyzing the ester of the acrylate group. The amount 

of acrylic acid produced if hydrolysis was 100% efficient was calculated, and this molar amount 

of AA was added into the polymerization system to simulate the effect of the side reaction. This 

proved to increase the front velocity which we suspected was form increased double bond 

concentration, and increased reactivity of AA. It was determined that at the high temperature of 

the propagating front the water is vaporized. This vaporization pulls heat from the system and 

this lowers the front temperature and velocity.  
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CHAPTER 3. EFFECT OF INORGANIC FILLERS ON THE FRONTAL 
POLYMERIZATION OF MULTI-FUNCTIONAL ACRYLATES 
 

3.1. Introduction 

One of the drawbacks of thermal frontal polymerization (TFP) of multifunctional acrylates is that 

front temperatures can get as high as 250 C.78 High front temperatures lead to increases in the 

velocity of the front leading to a faster cure time, but this can also be an issue when considering 

applications. There have been many different approaches to reducing front temperature such as 

the addition of thiols,34 or the use of redox initiators.79, 80 These two solutions, while viable, can 

drastically lower shelf life and limit the assortment of monomers and initiators that can be used.81 

One way to address the issue of high front temperatures is by using different fillers. Nason et al. 

showed that using an inorganic filler in conjunction with a trithiol monomer significantly 

reduced the front temperature, which would necessarily reduce the front velocity.80 It is herein 

proposed that by selectively choosing fillers with the certain thermal properties, a filled system 

could have a lower front temperature while propagating at an increased velocity proportional to 

filler loading.  

 To first understand how fillers might influence fronts it is useful to mention first that 

Novozhilov derived an analytical expression for the dependence of front velocity for a one-step 

reaction on front temperature, the activation energy of the reaction, and the thermal diffusivity of 

the system.77 

This relation is shown in equation [1] where E is the activation energy of the reaction, Tf 

is the front temperature, and κ is the thermal diffusivity. 

𝑣𝑒𝑙 ∝  √𝜅 𝑇 𝑒                                  [1]  
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The equation shows that velocity scales with the square root of thermal diffusivity. From this we 

hypothesize that creating a system that includes fillers with a high thermal diffusivity should 

increase the front velocity while keeping the front temperatures relatively stable. 

 In this study we investigate the effects of different inert fillers on front temperature and 

velocity. Several fillers including fumed silica, kaolin clay, graphite, aluminum powder, 

aluminum oxide, and boron nitride were used. Previous studies considered the impact of silica or 

inorganic fillers on suppressing convection and on front velocity.62, 82 The problem of adding a 

filler to reduce the front temperature is that it can greatly reduce the front velocity as well. Viner 

and Pojman have attempted this by using mixtures of inert phase change materials and kaolin 

clay but found that substituting kaolin with inert phase change material resulted in lower front 

temperatures and velocities.5 

 One class of fillers, called refractory materials, are of significant interest. Refractory 

materials are heat resistant materials that resist decomposition by heat, pressure, or chemical 

means. For the purpose of these experiments the refractory materials of interest will be compared 

to kaolin clay. Graphite and boron nitride were of interest due to their thermal properties. 

Graphite has a slightly lower heat capacity than kaolin clay, but its thermal diffusivity is almost 

thirty times larger. We hypothesize that the increased thermal diffusivity will lead to an overall 

increase in the front velocity while maintaining a lower front temperature. Boron nitride has both 

a higher heat capacity and thermal diffusivity. In this case the heat capacity should hinder the 

diffusion of heat while the thermal diffusivity should increase it.  

 Ultra-fine kaolin is used in these composites because of its ability to produce a putty 

when mixed with monomer. Fumed silica has a greater rheological effect on the monomer than 

kaolin, so it is used in much smaller amount to obtain the desired viscosity. 
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3.2. Materials and Methods 

Technical grade trimethylolpropane triacrylate (TMPTA) was obtained from Sartomer. Benzoyl 

Peroxide (BPO), 1,1-Bis(tert-butylperoxy)-3,3,5-tricyclohexane (Luperox ® 231), aluminum 

powder (~20 micron particle size), and graphite (2-12 micron particle size) were obtained from 

Sigma-Aldrich. Polygloss ® 90 (referred to simply as kaolin for the remainder of the paper) a 

kaolinite clay (0.4 micron particle size) was obtained from KaMin performance minerals. Fumed 

silica (Aerosil ® 200 175-225m2/g BET surface area) was obtained from Evonik Industries. 

Hexagonal boron nitride (10 micron) was obtained from Panadyne. Alumina powder was 

obtained from Huber Engineered Materials (Atlanta, GA). All materials were used as received. 

Table 1 shows the physical/thermal properties of interest for the various fillers and monomer. 

Various amounts of 1 phr (parts per hundred resin) initiator in TMPTA and inert filler were 

manually mixed until a moldable putty was formed. For experiments involving mixed filler 

systems, the mass fraction of total filler was held constant, but the type of fillers and fractions 

thereof were changed. Both BPO and Luperox ® 231 were used as initiators. 

 The putty was formed in wooden molds with dimensions of 3.0 cm wide x 2.5 cm high x 

10 cm long. To measure front temperature a type K thermocouple connected to a laptop with 

Logger Lite ® software was inserted into the middle of the strip of putty at approximately half 

depth. To initiate the fronts a handheld butane soldering iron was used to heat a small portion of 

the putty strip at one end. Front velocity data was gathered by filming the reactions with a cm 

scale in frame in order to track the propagating front. Graphs of front position versus time were 

plotted in order to obtain the front velocities. All experiments were done in triplicate. 

 For experiments in which multiple fillers were used, the total filler loading was chosen to 

be 49% by weight. This filler portion was comprised of various amounts of kaolin and what will 
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be referred to as “solid additives”. Solid additives include those fillers that have high thermal 

diffusivity. The amount of solid additive used in a sample will be reported as a fraction of the 

total filler amount.  

Table 1. Thermal properties of selected fillers and monomer 
 ρ (g cm-3)  Cp (J g-1K-1) κ (cm2s-1) 

TMPTA 2.00 1.10 1.00 x 10-3 

Polygloss ® 90 (kaolin) 2.60 1.20 3.00 x 10-3 

Matroxid ® TM-3310 (alumina) 2.70 0.88 1.02 x 10-2 

Hexagonal Boron Nitride 2.28 1.61 5.45 x 10-2 

Graphite 2.26 0.70 8.48 x 10-2 

Aluminum 2.70 0.90 6.00 x 10-1 

Aerosil ® 200 (fumed silica) 2.20   

 

3.3. Single Filler System 

The first task when working with the selected filler was to establish the upper loading threshold 

for the system. TMPTA with 1 phr initiator was mixed with the filler of interest until a moldable 

putty, that would support a front, was formed. This was established as the upper loading limit; 

the lower limit was established as the amount that would produce a moldable putty. The first 

filler investigated was kaolin, an ultrafine silicate mineral. It was suspected, based off of thermal 

data (Table 1), that there would be no increase in velocity or temperature with the addition of 

kaolin. Figure 11 shows that the upper loading limit for kaolin was 47%, and the lower limit was 

27% by mass. For these initial experiments both BPO and Luperox ® 231 were tested. BPO is a 

common initiator used in free-radical polymerization but has poor solubility in acrylates. 

Luperox ® 231 is a liquid and is readily soluble in a variety of monomers, which allows a wider 
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variety of initiator concentrations. Figures 11 and 12 show that, for both BPO and Luperox ® 

231 respectively, as the fraction of kaolin increases, both the front velocity and temperature 

decreases. 

 

Figure 11. Front temperature and velocity vs. mass fraction of kaolin clay for BPO system 

As the amount of kaolin in the system increases the clay acts as a heat sink. The 

propagating front loses heat to the kaolin reducing the front temperature and thus the front 

velocity. The other two fillers tested in a single filler system were fumed silica and graphite 

powder. In the case of fumed silica, extremely low density, and high surface area of the filler 

only allows for a small amount of filler loading, but the trend was the same as in kaolin systems. 

As the filler loading increased the velocity and temperature decreased, shown in Figure 13. 

 

Figure 12. Front temperature and velocity vs mass fraction of kaolin clay for Luperox ® 231 
system 
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In the case of graphite powder, boron nitride, aluminum, and alumina the amount of filler 

necessary to form a moldable putty created a composite that would not support a front. There 

was local polymerization at the site of initiation, but the front soon quenched. This was the case 

for both initiators, but there was also notable unique behavior in BPO graphite systems 

 

Figure 13. Front temperature and velocity vs. mass fraction of fumed silica in a Luperox ® 231 
system 

 

Once the graphite powder was mixed into the monomer/initiator solution a reaction 

quickly occurred, and the mixture spontaneously polymerized. Lopes et al. studied this 

phenomenon and found that there is an interaction between graphite and functional groups on the 

surface of graphite.83 Image 2 shows this effect, with the left image showing graphite powder, 

TMPTA, and 1 phr BPO immediately after mixing. The centrifuge tube is tilted to show that the 

mixture still flows. The right image is the same mixture after ten minutes and is inverted to show 

that the mixture has hardened indicating spontaneous polymerization.  

3.4. Multiple Filler Systems  

As mentioned in the previous section kaolin and fumed silica were the only two fillers that would 

form a moldable putty while still supporting a viable front. To work around this dilemma, the 

fillers that would not support a front, herein referred to as solid additives, would be mixed with 
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kaolin for the study. The total filler amount would be held constant while the fraction of solid 

additive would be increased. The total filler amount was based upon the experiments done with 

kaolin as the single filler. As with the previous experiment both BPO and Luperox ® 231 were 

tested to see if there were any adverse effects. All velocities were normalized for better 

comparison.  

 

 

Image 2. The effect of graphite in a BPO/TMPTA system. The image on the left depicts graphite 
powder, TMPTA, and 1 phr immediately after mixing. The image on the right depicts the same 

system ten minutes after mixing. 
  

 As noted in the Novozhilov equation the front velocity scales directly with the square 

root of the thermal diffusivity.77 The thermal diffusivity is proportional to the thermal 

conductivity, a materials ability to conduct heat, and the density multiplied by the specific heat 

capacity. The various solid additives have relatively comparable heat capacities and densities. 

Thus, we expect that highly conductive materials when mixed with kaolin, which has similar 

heat capacity and density, will increase the diffusion of heat allowing the front to propagate 

faster with less heat.  
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 Figures 14 and 15 show these results for both BPO, and Luperox ® 231 respectively. For 

both initiators the most effective filler was hexagonal boron nitride. As the amount of solid 

additive was increased, the velocity increased as well. The highest solid additive loading of 60%, 

roughly 30% by weight, increased the front velocity by 30-35%. 

 In the BPO containing system graphite had a pronounced inhibitory effect, decreasing the 

velocity by almost 30%. In fact, initially all the additives seemed to lower the velocity. At the 

highest additive loading of graphite, there seemed to possibly be an increase. The decrease in 

velocity seen could be some interaction between BPO as in the case of graphite, or it could be 

radical scavenging. Another reason for the decrease in velocity could be explained by a study 

conducted by Solomon et al. in which clays were shown to participate in the termination of 

growing polymer chains.84 They were able to show that octahedral aluminums at the surface of 

clays similar to kaolin act as Lewis acids and can react with radicals causing chain terminations.  

The alumina and aluminum, which would have an oxidized surface, used in these experiments 

could have some Lewis acidity which would cause them to interfere in the polymerization of 

TMPTA. 

For the systems containing Luperox ® 231 there did not seem to be as much of an 

inhibitory effect except when alumina was the additive. The graphite and aluminum both had 

minimal effect on the velocity but were not as inhibitory as in the BPO systems.  
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Figure 14. Mixed filler system contains 51% w/w 1 phr BPO in TMPTA and 49% w/w total filler 
loading. Solid additive loading is reported as fraction of total filler loading 

 

Table 2. Front temperatures for mixed filler systems with BPO as initiator. 
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Figure 15. Mixed filler system contains 51% w/w 1 phr Luperox ® 231 in TMTPA and 49% w/w 
total filler loading. Solid additive loading is reported as fraction relative to total filler loading. 

 

Table 3. Front temperatures for mixed filler systems with Luperox ® 231 as initiator. 

 

3.5. Effect of Initiator Concentration 

It was hypothesized that because the effect of the solid additive was a thermal one, and not an 

influence on the chemical reaction rate, that the trend seen in the previous mixed filler study 

would hold constant no matter the initiator concentration. The velocities would still increase with 

the increased additive loading, but overall the velocities would become higher and higher as the 

initiator concentration was increased. With this, if the velocities were normalized and plotted on 
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one graph the individual curves would collapse onto each other. Figure 16 shows this data. While 

the data fall close to each other there appears to be deviance from the hypothesis for which we 

have no explanation. In addition to the thermal influence of the solid additive there appears to be 

some other effects.  

 

Figure 16. Front velocity vs. solid additive fraction relative to filler loading for 4 different 
initiator concentrations. 

 

3.6. Conclusion  

Fillers can be very useful in polymers and can be used to simply add mechanical properties or 

can be used to influence the polymerization itself. We studied the impact of a variety of fillers on 

the frontal polymerization of a multifunctional acrylate. We examined how the filler could 

influence the diffusion of heat through a system which would increase the velocity of the 

propagating front. Some fillers that do not have sufficiently high thermal diffusivity, and a 

relatively high heat capacity, can cause the filler to act as a heat sink. Heat is lost to the system 
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lowering the front temperature and thus the front velocity. To overcome this issue thermally 

conductive materials were mixed into the clay system in order to allow for greater thermal 

transport and thus faster moving fronts. The filler that performed the best was hexagonal born 

nitride, increasing the front velocity by as much as 30% while not increasing the front 

temperature. Some fillers seem to act an inhibitor in the polymerization, significantly lowering 

the front velocity. These fillers could be interacting with the initiator itself or acting as radical 

scavengers slowing the propagating the front. We also showed that while thermal transport was 

the dominate influence in increasing the front velocity, the trend does not remain constant over a 

range of initiator concentrations.  
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CHAPTER 4. INCORPORATION OF CONTINUOUS CONDUCTIVE 
ELEMENT INTO ACRYLATE COMPOSITES AND THEIR EFFECT ON 
FRONT VELOCITY 
 

4.1. Introduction 

Thermal frontal polymerization (TFP) is a process that couples thermal transport with the 

Arrhenius dependent kinetics of an exothermic reaction.85 As heat is produced by the exothermic 

reaction it diffuses into the system around it and initiates further polymerization. This creates a 

reaction zone that propagates through an unstirred system.  

 Most studies of TFP have dealt with the polymerizations being in homogenous mixtures. 

However, some experiments have been done to investigate the effect of a continuous conductive 

element that runs through the length of the entire polymerization system.86 Choosing an element 

that efficiently conducts heat could help utilize excess heat produced by the reaction to create 

faster moving fronts. Normally excess heat produced slowly diffuses into the walls of the 

reaction vessel, or in this case the mold and the environment. If the conductive element directs 

excess heat forward the unreacted portion will increase in temperature. It has been shown that FP 

can increase in reactivity if the initial temperature or the reactants is raised.87 Copper sheets will 

be used as the conductive element. The effect of the thickness of the sheets will be tested as well 

as the spacing between multiple sheets. 

4.2. Materials 

All materials were used as received with no further processing or purification. The monomer 

used in these experiments is trimethylolpropane triacrylate (TMPTA) that was purchased from 

Allnex (Alpharetta, GA, USA). The initiator used was 1,1-bis(tert-butylperoxy)-3,3,5-

trimethylcyclohezane, referred to as Luperox ® 231, that was purchased from Arkema 
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(Pasadena, TX, USA). The two filler materials used in these experiments were Polygloss 90® 

and Aerosil 200 purchased from KaMin LLC (Macon, GA) and Aerosil® (Mobile, AL, USA) 

respectively. Aerosil 200 is a fumed silica with a BET surface area of 200 ± 25 (m2/g). 

4.3. Preparation of Clay 

To prepare the polymer clays all materials were weighed and mixed together manually until a 

homogenous even material was obtained. The amounts used of each material has been reported 

in parts per hundred resin (phr). This is a common mix ratio denotation used in the resin industry 

with 1 phr being the equivalent of 1 part by weight additive or initiator per 100 parts by weight 

of resin. The resin in these experiments will always be TMPTA. After testing multiple 

formulations, the best performing filler loading was determined to be 65 phr kaolin and 5 phr 

fumed silica in a 1 phr TMPTA/Luperox ® 231 solution. This mixture was used for all 

experiments reported.    

4.4. Method for Copper Setup 

Copper was incorporated into these systems by taking solid copper sheets and cutting them down 

into strips. The copper sheets were then embedded into the clay slabs. There were multiple 

thicknesses of copper sheet tested. The length was held constant, but the height and thickness 

were both varied. There were also experiments done in which multiple copper sheets were 

embedded into a single system with various spacing tested. 

4.5. Method for Collecting Front Data 

For each experiment a constant amount of clay, 100 g, was shaped into a slab using a wooden 

mold with dimensions of 14 cm x 5 cm x 1 cm. If the experiment called for the use of copper 

sheeting a precut copper sheet was embedded into the molded clay parallel with the length of the 

slab. To initiate the polymerization, electric soldering irons were heated, and contact was made 
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between the hot soldering iron and one edge of the polymer clay. This application of heat caused 

the decomposition of the initiator and the propagation of a polymer front ensued. To track the 

velocity of the propagating front a camera was used to film the reaction with a cm scale in frame.  

Blue phosphorescent powder was dusted over the surface of the polymer clay to aid in tracking 

the front. This will be evident in photos of the experiments. The videos were then analyzed by 

tracking front position as a function of time to obtain a velocity in cm/min. Temperatures were 

recorded for some experiments to compare front temperatures of systems with and without 

copper. For this a type-K thermocouple embedded in the middle of the clay channel was used in 

conjunction with LogerLite software and a laptop. As the propagating front passed the 

thermocouple, a steep increase in heat was registered with the maximum being the front 

temperature. All experiments were run in triplicate. 

4.6. Results and Discussion 

4.6.1. Establishing baseline data for systems with no copper 

In order to first establish what the baseline front temperature and velocity were, the prepared clay 

was polymerized without copper. This run was initiated with an electrical soldering iron held on 

one spot at the end face of the clay slab. The polymer clay with no copper in the system 

propagated at a velocity of 8.05 ± 0.61 cm/min with a front temperature of 231 °C. The free-

radical frontal polymerization of TMPTA with the same initiator concentration, but with no 

filler, propagates at a velocity of approximately 10 cm/min.88 When some fillers are added to a 

system, as the loading is increased the amount of heat absorbed by the filler increases, which 

reduces the front velocity.77 For the remainder of the experiments the baseline velocity was 

established as 8.05 ± 0.61 cm/min, and will be displayed as a reference with all other data.  
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4.6.2. Velocity and Temperature for Systems with Single Copper Sheet 

To first probe the effects of copper on the propagation of a front a single 0.5 mm thick copper 

sheet cut to 14 cm x 1 cm was used. The clay was molded into a slab, and then the copper sheet 

was embedded into the middle of the clay slab parallel to the length of the mold. Upon initiation 

of the front it was immediately evident that the front was propagating faster along the copper 

strip where there was direct contact with the clay. Once the front reaches a steady state, the front 

levels off at a constant angle away from the copper and propagates in a spearhead like fashion. 

Image 3 shows this phenomenon. The velocity of the front at the polymer copper interface was 

14.2 ± 0.55 cm/min which is approximately a two-fold increase in the velocity. There was little 

change in the front temperature as heat was being transported more efficiently, not being created. 

For the purposes of this study the focus was on the velocity of the fronts, but the front 

temperature was recorded for these first two systems for comparison. The front temperature for 

the system without copper was 231 °C, and the system with copper was 234 °C. Figure 17 shows 

the plot of temperature vs time for the two systems; there is little difference in the temperature 

profiles. This supports the hypothesis that heat is being conducted by the copper and that the 

effect observed is not a result of increased reactivity. 

To further investigate the effect of a single copper sheet in these systems the thickness of 

the copper sheet was increased. The thicknesses tested were 0.5, 1.0, 1.5, and 3.0 mm. The same 

general front shape and behavior was observed with velocities decreasing as the thickness 

increased, this is shown in Image 4. This was most likely due to the increased mass of copper 

absorbing heat as the thickness increased drawing heat away from the polymerizing system. This 

also translated to slower front velocities as the thickness of the copper was increased. The 3.0 
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mm copper sheet absorbed so much heat that the front did not reach a steady state within the 14 

cm, thus in Image 1 d), the front still has a flat shape. 

 

Image 3. Image showing comparison of the front propagation of acrylic composites with and 
without conductive element 

 

 

 

Figure 17. Temperature profile showing frontal polymerization of acrylic composites with and 
without copper 
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Figure 18 shows that the addition of a single 0.5 mm copper sheet almost doubles the 

velocity, but that as the thickness, thus mass, is increased the velocity of the propagating front 

decreases to almost the same velocity as a front in an acrylate system with no copper. 

 

Image 4. Polymerization of acrylate composite with single copper sheet of thicknesses a) 0.5 mm 
b) 1.0 mm c) 1.5 mm and d) 3.0 mm 

 

4.6.3. Velocity and Temperature for Systems with Two Copper Sheets. 

Another system tested was one with two lanes, or strips, of copper. For these experiments 

the thickness of the copper was held constant at 0.5 mm, with the variable being the space of the 

gap between the copper strips. The gap widths tested were 0.5, 1.0, and 2.0 cm and produced 

velocities of 13.57 ± 0.45, 13.19 ± 0.68, and 12.68 ± 0.36 cm/min, respectively. Image 5 shows a 

snapshot of these systems side by side. It was hypothesized that the polymer in the gap between 

the copper sheets would polymerize faster than that outside the space, with the difference in 

velocity becoming less significant as the space increased. However, this was not observed in the 

experimental data. The front in the middle channel propagated much like a front with no 

conductive element would. It was concave with the material adjacent to the copper propagating 

faster. 
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Figure 18. Front velocity for composites with single copper sheets of increasing thickness. 

 

 

Image 5. Two sheets of copper placed 0.5, 1.0, and 2.0 cm apart 

 

4.7. Conclusions 

We were able to investigate the effect of a continuous conductive element embedded in an 

acrylate composite containing Luperox ® 231, TMPTA, and kaolin clay. Copper strips of 

varying thicknesses were tested, as well as two copper strips of constant thickness with varying 

gap width between the two strips. It was shown that the high thermal conductivity of the copper 

increased heat transport and caused the propagating polymer front to travel faster along its 
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length. As the walls of the mold absorb heat the front propagated at an angle with the polymer 

closest to the copper propagating fastest. The copper transfers the excess heat produced by the 

front forward to the unreacted monomer instead of having it diffuse to the environment. The 

experiments showed that a system containing two parallel strips of copper produced similar 

results with the polymer between the two strips propagating as a more even front than the 

polymer on the outside. This effect was less noticeable as the gap between the two strips 

increased. 
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CHAPTER 5. SUMMARY AND CONCLUSION 

Thermal frontal polymerization utilizes the production and transport of heat produced during the 

exothermic reaction of a free-radical polymerization. The velocity of the propagating front is 

directly related to temperature of the propagating front. We have demonstrated different ways to 

influence the propagation of this front through chemical and physical means. We first 

demonstrated how the functionality of the monomer used can influence the velocity and 

temperature. It was shown that as the concentration of double bonds in a system increased the 

velocity and temperature of the propagating front increased as well. After controlling the 

concentration of double bonds in multiple different multifunctional monomers by use solvent, we 

found that increased crosslinking was the main influence on the polymerization due to decreased 

termination leading to autoacceleration. Residual water in unpurified monomers lowered the 

velocity and temperature of the front by absorbing heat through vaporization. Secondary 

functional groups present in some monomers acted as chain transfer agents and also slowed the 

propagating front. 

 Another way to influence a propagating front is through the use of fillers. Specific fillers 

were chosen to not only give proper consistency to the material in order to collect good data, but 

thermally conductive fillers were chosen in order to increase the velocity of the propagating 

front. We showed that some fillers will slow a front by absorbing heat and causing the 

temperature of the front to lower, thus causing the velocity to lower. By selecting fillers that have 

higher thermal conductivity, such as boron nitride, heat is more easily able to diffuse through the 

system, and thus increase the velocity of the propagating front. Some of the fillers, such as 

graphite and alumina, showed inhibitory effect This was most likely due to interaction with the 

radicals in the system and the surface of the additive.  



43 
 

Finally, it was shown that a continuous conductive element can increase and direct the 

propagation of a front. Copper sheets embedded into a multifunctional acrylate composite 

showed that they could effectively direct heat produced by the polymerization. and allow the 

front to propagate faster along the length of the conductive element. The thickness of the copper 

strip was also varied and showed that at a certain thickness the copper absorbs more heat and has 

less influence of the velocity of the front. 

Overall, we have shown that thermal fronts can be influenced, and made to propagate at 

higher velocities, in multiple ways. Chemically, the monomer chosen can influence the 

propagating front via its molecular weight relative the number of reactive groups and its ability 

to undergo crosslinking. This can allow for use of less initiator which cuts down on the amount 

of fume and smoke produced. Physically a front can be influenced by using different fillers 

which may cause an increase or decrease in the conduction of heat. Using fillers with high 

thermal conductivity can effectively increase the front temperature and thus the velocity. This 

could allow for front to be run in systems with high surface area relative to volume in 

applications such as coatings. A continuous conductive element can be used to help transport and 

direct heat as well. These techniques can be used to help increase the cure time of these materials 

which could make bulk curing less energy costly. 
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